Initial Problem

Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l1
Transitions:
t₀: l0(X₀, X₁) → l1(X₀, X₁)
t₁: l1(X₀, X₁) → l1(2⋅X₀, 3⋅X₁) :|: X₀ ≤ 4⋅X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁

Preprocessing

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l1
Transitions:
t₀: l0(X₀, X₁) → l1(X₀, X₁)
t₁: l1(X₀, X₁) → l1(2⋅X₀, 3⋅X₁) :|: X₀ ≤ 4⋅X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁

Time-Bound by TWN-Loops:

TWN-Loops: t₁ 4⋅X₀+14 {O(n)}

TWN-Loops:

entry: t₀: l0(X₀, X₁) → l1(X₀, X₁)
results in twn-loop: twn: (X₀,X₁) -> (2⋅X₀,3⋅X₁) :|: X₀ ≤ 4⋅X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁
order: [X₀; X₁]
closed-form:
X₀: X₀ * 2^n
X₁: X₁ * 3^n

Termination: true
Formula:

0 < X₁ ∧ 0 < X₀ ∧ X₁ < 0 ∧ 0 < 4⋅X₁
∨ 0 < X₁ ∧ 0 < X₀ ∧ X₁ < 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 < X₁ ∧ 0 < X₀ ∧ X₁ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 0 < X₁ ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 4⋅X₁
∨ 0 < X₁ ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 < X₁ ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 4⋅X₁
∨ 0 < X₁ ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 < X₁ ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 0 < X₁ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₁ < 0 ∧ 0 < 4⋅X₁
∨ 0 < X₁ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₁ < 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 < X₁ ∧ 1 < 0 ∧ X₁ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 0 < X₁ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 4⋅X₁
∨ 0 < X₁ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 < X₁ ∧ 1 < 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 0 < X₁ ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 4⋅X₁
∨ 0 < X₁ ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 < X₁ ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 0 < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 0 < 4⋅X₁
∨ 0 < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 0 < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 4⋅X₁
∨ 0 < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 4⋅X₁
∨ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < X₀ ∧ X₁ < 0 ∧ 0 < 4⋅X₁
∨ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < X₀ ∧ X₁ < 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < X₀ ∧ X₁ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 1 < 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 4⋅X₁
∨ 1 < 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 1 < 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 4⋅X₁
∨ 1 < 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₁ < 0 ∧ 0 < 4⋅X₁
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₁ < 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ X₁ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 4⋅X₁
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 1 < 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 4⋅X₁
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 0 < 4⋅X₁
∨ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 4⋅X₁
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 4⋅X₁
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ < 0 ∧ 0 < 4⋅X₁
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ < 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 4⋅X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 4⋅X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₁ < 0 ∧ 0 < 4⋅X₁
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₁ < 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₁ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 4⋅X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 4⋅X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 0 < 4⋅X₁
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 4⋅X₁
∨ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 4⋅X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 0 ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 4⋅X₁ ∧ 4⋅X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀

Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: 1
M: 0
N: 1
Bound: 4 {O(1)}
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 1
M: 0
N: 1
Bound: 4 {O(1)}
Stabilization-Threshold for: X₁ ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: X₀ ≤ 4⋅X₁
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}

relevant size-bounds w.r.t. t₀:
X₀: X₀ {O(n)}
Runtime-bound of t₀: 1 {O(1)}
Results in: 4⋅X₀+14 {O(n)}

4⋅X₀+14 {O(n)}

All Bounds

Timebounds

Overall timebound:4⋅X₀+15 {O(n)}
t₀: 1 {O(1)}
t₁: 4⋅X₀+14 {O(n)}

Costbounds

Overall costbound: 4⋅X₀+15 {O(n)}
t₀: 1 {O(1)}
t₁: 4⋅X₀+14 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₁, X₀: 2^(4⋅X₀+14)⋅X₀ {O(EXP)}
t₁, X₁: 3^(4⋅X₀+14)⋅X₁ {O(EXP)}