Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: G
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l12(X₀, X₁, X₂, X₃, X₄, X₅)
t₁₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: 3 ≤ 0
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅)
t₃: l10(X₀, X₁, X₂, X₃, X₄, X₅) → l11(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 1
t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: 2 ≤ X₁
t₁₉: l11(X₀, X₁, X₂, X₃, X₄, X₅) → l13(X₀, X₁, X₂, X₃, X₄, X₅)
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅) → l10(X₁, X₁, X₂, X₃, X₄, X₅)
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: G+1 ≤ 0
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ G
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅)
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₂, X₃-1)
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: G+1 ≤ 0
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ G
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅)
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅-2)
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₄, X₅-1, X₄, X₅)
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂+1 ≤ X₃
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₃ ≤ X₂
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l10(X₃+1-X₂, X₂-1, X₂, X₃, X₄, X₅)
t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₁-1, X₀+X₁-1, X₄, X₅)

Preprocessing

Cut unsatisfiable transition t₁₂: l1→l4

Cut unsatisfiable transition t₁₃: l4→l5

Cut unsatisfiable transition t₁₄: l4→l5

Cut unsatisfiable transition t₁₅: l4→l6

Cut unreachable locations [l4; l5] from the program graph

Found invariant X₁ ≤ 1 for location l11

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ for location l2

Found invariant 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ for location l6

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ for location l7

Found invariant X₁ ≤ 1 for location l13

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ for location l8

Found invariant 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ for location l1

Found invariant 2 ≤ X₁ for location l9

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: G
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l12(X₀, X₁, X₂, X₃, X₄, X₅)
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁
t₃: l10(X₀, X₁, X₂, X₃, X₄, X₅) → l11(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 1
t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: 2 ≤ X₁
t₁₉: l11(X₀, X₁, X₂, X₃, X₄, X₅) → l13(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 1
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅) → l10(X₁, X₁, X₂, X₃, X₄, X₅)
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: G+1 ≤ 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ G ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₂, X₃-1) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₄, X₅-1, X₄, X₅) :|: 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂+1 ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₃ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l10(X₃+1-X₂, X₂-1, X₂, X₃, X₄, X₅) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁
t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₁-1, X₀+X₁-1, X₄, X₅) :|: 2 ≤ X₁

MPRF for transition t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF:

l3 [X₃ ]
l1 [X₃ ]
l6 [X₃-1 ]
l2 [X₃ ]
l8 [X₁+X₃-X₂-1 ]
l10 [X₀+X₁ ]
l9 [X₀+X₁ ]
l7 [X₃ ]

MPRF for transition t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: 2 ≤ X₁ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l3 [X₂+1 ]
l1 [X₂+1 ]
l6 [X₂+1 ]
l2 [X₁ ]
l8 [X₂ ]
l10 [X₁+1 ]
l9 [X₁ ]
l7 [X₂+1 ]

MPRF for transition t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: G+1 ≤ 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₁+1 {O(n)}

MPRF:

l3 [X₃-2 ]
l1 [X₅-1 ]
l6 [X₅-1 ]
l2 [X₃-1 ]
l8 [X₃-1 ]
l10 [X₀+X₁-1 ]
l9 [X₀+X₁-1 ]
l7 [X₃ ]

MPRF for transition t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ G ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₁+1 {O(n)}

MPRF:

l3 [X₃-2 ]
l1 [X₅-1 ]
l6 [X₅-1 ]
l2 [X₃-1 ]
l8 [X₃-1 ]
l10 [X₀+X₁-1 ]
l9 [X₀+X₁-1 ]
l7 [X₃ ]

MPRF for transition t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l3 [X₂ ]
l1 [X₄ ]
l6 [X₁+X₄-X₂-1 ]
l2 [X₁-1 ]
l8 [X₁-3 ]
l10 [X₁-1 ]
l9 [X₁-1 ]
l7 [X₁-1 ]

MPRF for transition t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₂, X₃-1) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF:

l3 [X₂+X₃+1-X₁ ]
l1 [X₂+X₅-X₁ ]
l6 [X₅-1 ]
l2 [X₂+X₃+1-X₁ ]
l8 [X₃ ]
l10 [X₀+X₁ ]
l9 [X₀+X₁ ]
l7 [X₃ ]

MPRF for transition t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₄, X₅-1, X₄, X₅) :|: 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF:

l3 [X₃ ]
l1 [X₅+1 ]
l6 [X₅+1 ]
l2 [X₃ ]
l8 [X₁+X₃-X₂-1 ]
l10 [X₀+X₁ ]
l9 [X₀+X₁ ]
l7 [X₃+1 ]

MPRF for transition t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₃ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l3 [X₂ ]
l1 [X₁+X₅-X₃ ]
l6 [X₁+X₅-X₃ ]
l2 [X₁-1 ]
l8 [X₂-2 ]
l10 [X₁-1 ]
l9 [X₁-1 ]
l7 [X₂ ]

MPRF for transition t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂+1 ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₁+2 {O(n)}

MPRF:

l3 [2⋅X₂+X₃-2⋅X₁ ]
l1 [X₃+2⋅X₄-2⋅X₁-1 ]
l6 [X₁+X₅-X₄-3 ]
l2 [X₂+X₃-X₁-1 ]
l8 [X₃-2 ]
l10 [X₀+X₁-2 ]
l9 [X₀+X₁-2 ]
l7 [X₂+X₃-X₁ ]

MPRF for transition t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l10(X₃+1-X₂, X₂-1, X₂, X₃, X₄, X₅) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₁+1 {O(n)}

MPRF:

l3 [2⋅X₁-2 ]
l1 [2⋅X₂ ]
l6 [2⋅X₂ ]
l2 [2⋅X₁-2 ]
l8 [2⋅X₂ ]
l10 [2⋅X₁+1 ]
l9 [2⋅X₁ ]
l7 [4⋅X₂+2-2⋅X₁ ]

MPRF for transition t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₁-1, X₀+X₁-1, X₄, X₅) :|: 2 ≤ X₁ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l3 [X₂-2 ]
l1 [X₂-2 ]
l6 [X₂-2 ]
l2 [X₁-3 ]
l8 [X₂-2 ]
l10 [X₁-1 ]
l9 [X₁-1 ]
l7 [X₁-3 ]

All Bounds

Timebounds

Overall timebound:18⋅X₁+13 {O(n)}
t₀: 1 {O(1)}
t₁₁: 2⋅X₁ {O(n)}
t₂: X₁+1 {O(n)}
t₃: 1 {O(1)}
t₁₉: 1 {O(1)}
t₁: 1 {O(1)}
t₇: 2⋅X₁+1 {O(n)}
t₈: 2⋅X₁+1 {O(n)}
t₉: X₁+1 {O(n)}
t₁₀: 2⋅X₁ {O(n)}
t₁₇: 2⋅X₁ {O(n)}
t₅: X₁+1 {O(n)}
t₆: 2⋅X₁+2 {O(n)}
t₁₈: 2⋅X₁+1 {O(n)}
t₄: X₁+1 {O(n)}

Costbounds

Overall costbound: 18⋅X₁+13 {O(n)}
t₀: 1 {O(1)}
t₁₁: 2⋅X₁ {O(n)}
t₂: X₁+1 {O(n)}
t₃: 1 {O(1)}
t₁₉: 1 {O(1)}
t₁: 1 {O(1)}
t₇: 2⋅X₁+1 {O(n)}
t₈: 2⋅X₁+1 {O(n)}
t₉: X₁+1 {O(n)}
t₁₀: 2⋅X₁ {O(n)}
t₁₇: 2⋅X₁ {O(n)}
t₅: X₁+1 {O(n)}
t₆: 2⋅X₁+2 {O(n)}
t₁₈: 2⋅X₁+1 {O(n)}
t₄: X₁+1 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₁₁, X₀: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₁ {O(n)}
t₁₁, X₃: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₁₁, X₄: 2⋅X₁ {O(n)}
t₁₁, X₅: 14⋅X₁⋅X₁+18⋅X₁ {O(n^2)}
t₂, X₀: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: 3⋅X₁+X₂ {O(n)}
t₂, X₃: 14⋅X₁⋅X₁+18⋅X₁+X₃ {O(n^2)}
t₂, X₄: 4⋅X₁+X₄ {O(n)}
t₂, X₅: 28⋅X₁⋅X₁+36⋅X₁+X₅ {O(n^2)}
t₃, X₀: 7⋅X₁⋅X₁+10⋅X₁ {O(n^2)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: 3⋅X₁+X₂ {O(n)}
t₃, X₃: 14⋅X₁⋅X₁+18⋅X₁+X₃ {O(n^2)}
t₃, X₄: 2⋅X₄+4⋅X₁ {O(n)}
t₃, X₅: 28⋅X₁⋅X₁+2⋅X₅+36⋅X₁ {O(n^2)}
t₁₉, X₀: 7⋅X₁⋅X₁+10⋅X₁ {O(n^2)}
t₁₉, X₁: 2⋅X₁ {O(n)}
t₁₉, X₂: 3⋅X₁+X₂ {O(n)}
t₁₉, X₃: 14⋅X₁⋅X₁+18⋅X₁+X₃ {O(n^2)}
t₁₉, X₄: 2⋅X₄+4⋅X₁ {O(n)}
t₁₉, X₅: 28⋅X₁⋅X₁+2⋅X₅+36⋅X₁ {O(n^2)}
t₁, X₀: X₁ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₇, X₀: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₁ {O(n)}
t₇, X₃: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₇, X₄: 4⋅X₁+X₄ {O(n)}
t₇, X₅: 28⋅X₁⋅X₁+36⋅X₁+X₅ {O(n^2)}
t₈, X₀: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₁ {O(n)}
t₈, X₃: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₈, X₄: 4⋅X₁+X₄ {O(n)}
t₈, X₅: 28⋅X₁⋅X₁+36⋅X₁+X₅ {O(n^2)}
t₉, X₀: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₁ {O(n)}
t₉, X₃: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₉, X₄: 4⋅X₁+X₄ {O(n)}
t₉, X₅: 28⋅X₁⋅X₁+36⋅X₁+X₅ {O(n^2)}
t₁₀, X₀: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₁ {O(n)}
t₁₀, X₃: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₁₀, X₄: 2⋅X₁ {O(n)}
t₁₀, X₅: 14⋅X₁⋅X₁+18⋅X₁ {O(n^2)}
t₁₇, X₀: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₁₇, X₁: X₁ {O(n)}
t₁₇, X₂: X₁ {O(n)}
t₁₇, X₃: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₁₇, X₄: 2⋅X₁ {O(n)}
t₁₇, X₅: 14⋅X₁⋅X₁+18⋅X₁ {O(n^2)}
t₅, X₀: 14⋅X₁⋅X₁+18⋅X₁ {O(n^2)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: 2⋅X₁ {O(n)}
t₅, X₃: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₅, X₄: 4⋅X₁+X₄ {O(n)}
t₅, X₅: 28⋅X₁⋅X₁+36⋅X₁+X₅ {O(n^2)}
t₆, X₀: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₁ {O(n)}
t₆, X₃: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₆, X₄: 4⋅X₁+X₄ {O(n)}
t₆, X₅: 28⋅X₁⋅X₁+36⋅X₁+X₅ {O(n^2)}
t₁₈, X₀: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: 3⋅X₁ {O(n)}
t₁₈, X₃: 14⋅X₁⋅X₁+18⋅X₁ {O(n^2)}
t₁₈, X₄: 4⋅X₁+X₄ {O(n)}
t₁₈, X₅: 28⋅X₁⋅X₁+36⋅X₁+X₅ {O(n^2)}
t₄, X₀: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₁ {O(n)}
t₄, X₃: 7⋅X₁⋅X₁+9⋅X₁ {O(n^2)}
t₄, X₄: 4⋅X₁+X₄ {O(n)}
t₄, X₅: 28⋅X₁⋅X₁+36⋅X₁+X₅ {O(n^2)}