Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₃₅: l10(X₀, X₁, X₂, X₃, X₄) → l24(X₀, X₁, X₂, X₃, X₄)
t₆: l11(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄)
t₈: l12(X₀, X₁, X₂, X₃, X₄) → l14(X₀, X₁, X₂, X₃, X₄)
t₇: l13(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄)
t₉: l14(X₀, X₁, X₂, X₃, X₄) → l15(X₀, X₁, X₂, X₃, X₄)
t₁₀: l15(X₀, X₁, X₂, X₃, X₄) → l19(X₀, X₁, X₂, X₃, X₄)
t₃₄: l16(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₀, X₄)
t₃₂: l17(X₀, X₁, X₂, X₃, X₄) → l18(X₃+1, X₁, X₂, X₃, X₄)
t₃₃: l18(X₀, X₁, X₂, X₃, X₄) → l16(X₀, X₁, X₂, X₃, X₄)
t₁₁: l19(X₀, X₁, X₂, X₃, X₄) → l20(X₀, X₁, X₂, X₃, X₄)
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₁₂: l20(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄)
t₂₁: l21(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂
t₂₀: l21(X₀, X₁, X₂, X₃, X₄) → l26(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁
t₃₀: l22(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₁, X₃, X₄)
t₂₉: l22(X₀, X₁, X₂, X₃, X₄) → l23(X₀, X₁, X₂, X₃, X₄)
t₃₁: l23(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₄, X₃, X₄)
t₁₉: l25(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, 0, X₃, X₄)
t₂₃: l26(X₀, X₁, X₂, X₃, X₄) → l27(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ < X₁
t₂₄: l26(X₀, X₁, X₂, X₃, X₄) → l27(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂
t₂₂: l26(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ X₁ ≤ X₃+3+2⋅X₂
t₂₅: l27(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄)
t₂₆: l27(X₀, X₁, X₂, X₃, X₄) → l29(X₀, X₁, X₂, X₃, X₄)
t₂₇: l28(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+1)
t₂₈: l29(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+2)
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₅: l4(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 2
t₄: l4(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: 2 < X₁
t₁₅: l5(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄)
t₁₃: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₁₄: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄)
t₁₆: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, 0, X₄)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 2+X₃
t₁₇: l9(X₀, X₁, X₂, X₃, X₄) → l25(X₀, X₁, X₂, X₃, X₄) :|: X₃+2 ≤ X₁

Preprocessing

Cut unsatisfiable transition t₂₄: l26→l27

Found invariant 3 ≤ X₁ for location l11

Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l25

Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location l27

Found invariant 3 ≤ X₁ for location l6

Found invariant 3 ≤ X₁ for location l15

Found invariant 3 ≤ X₁ for location l19

Found invariant 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l26

Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location l29

Found invariant 3 ≤ X₁ for location l12

Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l23

Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l17

Found invariant 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l28

Found invariant 3 ≤ X₁ for location l7

Found invariant 3 ≤ X₁ for location l20

Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l21

Found invariant 3 ≤ X₁ for location l5

Found invariant 3 ≤ X₁ for location l13

Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l22

Found invariant 3 ≤ X₁ for location l8

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l16

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l18

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l9

Found invariant 3 ≤ X₁ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₃₅: l10(X₀, X₁, X₂, X₃, X₄) → l24(X₀, X₁, X₂, X₃, X₄)
t₆: l11(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₈: l12(X₀, X₁, X₂, X₃, X₄) → l14(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₇: l13(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₉: l14(X₀, X₁, X₂, X₃, X₄) → l15(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁₀: l15(X₀, X₁, X₂, X₃, X₄) → l19(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₃₄: l16(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₀, X₄) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₃₂: l17(X₀, X₁, X₂, X₃, X₄) → l18(X₃+1, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₃₃: l18(X₀, X₁, X₂, X₃, X₄) → l16(X₀, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l19(X₀, X₁, X₂, X₃, X₄) → l20(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₁₂: l20(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₂₁: l21(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₀: l21(X₀, X₁, X₂, X₃, X₄) → l26(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₃₀: l22(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₁, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₉: l22(X₀, X₁, X₂, X₃, X₄) → l23(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₃₁: l23(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₄, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₁₉: l25(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, 0, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁
t₂₃: l26(X₀, X₁, X₂, X₃, X₄) → l27(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ < X₁ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₂: l26(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ X₁ ≤ X₃+3+2⋅X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₅: l27(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₂₆: l27(X₀, X₁, X₂, X₃, X₄) → l29(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₂₇: l28(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₈: l29(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+2) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₅: l4(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 2
t₄: l4(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: 2 < X₁
t₁₅: l5(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁₃: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁₄: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁₆: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, 0, X₄) :|: 3 ≤ X₁
t₁₈: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 2+X₃ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁
t₁₇: l9(X₀, X₁, X₂, X₃, X₄) → l25(X₀, X₁, X₂, X₃, X₄) :|: X₃+2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁

MPRF for transition t₃₄: l16(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₀, X₄) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁ {O(n)}

MPRF:

l18 [X₁-X₃ ]
l16 [X₁+1-X₀ ]
l17 [X₁-X₃ ]
l23 [X₁-X₃ ]
l21 [X₁-X₃ ]
l26 [X₁-X₃ ]
l27 [X₁-X₃ ]
l28 [X₁-X₃ ]
l29 [X₁-X₃ ]
l22 [X₁-X₃ ]
l9 [X₁-X₃ ]
l25 [X₁-X₃ ]

MPRF for transition t₃₂: l17(X₀, X₁, X₂, X₃, X₄) → l18(X₃+1, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l18 [X₁-X₃-2 ]
l16 [X₁-X₃-2 ]
l17 [X₁-X₃-1 ]
l23 [X₁-X₃-1 ]
l21 [X₁-X₃-1 ]
l26 [X₁-X₃-1 ]
l27 [X₁-X₃-1 ]
l28 [X₁-X₃-1 ]
l29 [X₁-X₃-1 ]
l22 [X₁-X₃-1 ]
l9 [X₁-X₃-1 ]
l25 [X₁-X₃-1 ]

MPRF for transition t₃₃: l18(X₀, X₁, X₂, X₃, X₄) → l16(X₀, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁ {O(n)}

MPRF:

l18 [X₁-X₃ ]
l16 [X₁-X₃-1 ]
l17 [X₁-X₃ ]
l23 [X₁-X₃ ]
l21 [X₁-X₃ ]
l26 [X₁-X₃ ]
l27 [X₁-X₃ ]
l28 [X₁-X₃ ]
l29 [X₁-X₃ ]
l22 [X₁-X₃ ]
l9 [X₁-X₃ ]
l25 [X₁-X₃ ]

MPRF for transition t₂₁: l21(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l18 [X₁-X₃ ]
l16 [X₁-X₃ ]
l17 [X₁-X₃ ]
l23 [X₁+1-X₃ ]
l21 [X₁+1-X₃ ]
l26 [X₁+1-X₃ ]
l27 [X₁+1-X₃ ]
l28 [X₁+1-X₃ ]
l29 [X₁+1-X₃ ]
l22 [X₁+1-X₃ ]
l9 [X₁+1-X₃ ]
l25 [X₁+1-X₃ ]

MPRF for transition t₁₉: l25(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, 0, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l18 [X₁-X₃-2 ]
l16 [X₁-X₀-1 ]
l17 [X₁-X₃-2 ]
l23 [X₁-X₃-2 ]
l21 [X₁-X₃-2 ]
l26 [X₁-X₃-2 ]
l27 [X₁-X₃-2 ]
l28 [X₁-X₃-2 ]
l29 [X₁-X₃-2 ]
l22 [X₁-X₃-2 ]
l9 [X₁-X₃-1 ]
l25 [X₁-X₃-1 ]

MPRF for transition t₁₇: l9(X₀, X₁, X₂, X₃, X₄) → l25(X₀, X₁, X₂, X₃, X₄) :|: X₃+2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l18 [X₁-X₃ ]
l16 [X₁+1-X₀ ]
l17 [X₁-X₃ ]
l23 [X₁-X₃ ]
l21 [X₁-X₃ ]
l26 [X₁-X₃ ]
l27 [X₁-X₃ ]
l28 [X₁-X₃ ]
l29 [X₁-X₃ ]
l22 [X₁-X₃ ]
l9 [X₁+1-X₃ ]
l25 [X₁-X₃ ]

MPRF for transition t₂₀: l21(X₀, X₁, X₂, X₃, X₄) → l26(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₁⋅X₁+X₁ {O(n^2)}

MPRF:

l9 [X₁-2⋅X₂ ]
l18 [X₁-2⋅X₂ ]
l16 [X₁-2⋅X₂ ]
l17 [X₁-2⋅X₂ ]
l23 [X₁-2⋅X₄ ]
l25 [X₁ ]
l21 [X₁-2⋅X₂ ]
l26 [X₁-2⋅X₂-2 ]
l27 [X₁-2⋅X₂-2 ]
l28 [X₁-2⋅X₂-2 ]
l29 [X₁-2⋅X₂-2 ]
l22 [X₁-2⋅X₂-2 ]

MPRF for transition t₂₉: l22(X₀, X₁, X₂, X₃, X₄) → l23(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₁⋅X₁+X₁ {O(n^2)}

MPRF:

l9 [X₁-X₂-2⋅X₃ ]
l18 [X₁-X₂-2 ]
l16 [X₁-2⋅X₀-X₂ ]
l17 [X₁-X₂-2 ]
l23 [X₁-X₂-3 ]
l25 [X₁ ]
l21 [X₁-X₂-2 ]
l26 [X₁-X₂-2 ]
l27 [X₁-X₂-2 ]
l28 [X₁-X₂-2 ]
l29 [X₁-X₂-2 ]
l22 [X₁-X₂-2 ]

MPRF for transition t₃₀: l22(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₁, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₁⋅X₁+X₁ {O(n^2)}

MPRF:

l9 [X₁-X₂ ]
l18 [X₁-X₂ ]
l16 [X₁-X₂ ]
l17 [X₁-X₂ ]
l23 [X₁-X₄ ]
l25 [X₁ ]
l21 [X₁-X₂ ]
l26 [X₁-X₂ ]
l27 [X₁-X₂ ]
l28 [X₁-X₂ ]
l29 [X₁-X₂ ]
l22 [X₁-X₂ ]

MPRF for transition t₃₁: l23(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₄, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₁⋅X₁+X₁ {O(n^2)}

MPRF:

l9 [-X₂ ]
l18 [X₁-X₂ ]
l16 [-X₂ ]
l17 [X₁-X₂ ]
l23 [X₁-X₂ ]
l25 [X₁ ]
l21 [X₁-X₂ ]
l26 [X₁-X₂ ]
l27 [X₁-X₂ ]
l28 [X₁-X₂ ]
l29 [X₁-X₂ ]
l22 [X₁-X₂ ]

MPRF for transition t₂₂: l26(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ X₁ ≤ X₃+3+2⋅X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₁⋅X₁+X₁ {O(n^2)}

MPRF:

l9 [X₁-X₂ ]
l18 [X₁-X₂ ]
l16 [X₁-X₂ ]
l17 [X₁-X₂ ]
l23 [X₁-X₂-1 ]
l25 [X₁ ]
l21 [X₁-X₂ ]
l26 [X₁-X₂ ]
l27 [X₁-X₂ ]
l28 [X₁-X₂-1 ]
l29 [X₁-X₂ ]
l22 [X₁-X₂-1 ]

MPRF for transition t₂₃: l26(X₀, X₁, X₂, X₃, X₄) → l27(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ < X₁ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₁⋅X₁+X₁ {O(n^2)}

MPRF:

l9 [X₁-X₂-2⋅X₃ ]
l18 [X₁-X₂-2 ]
l16 [X₁-X₂-2 ]
l17 [X₁-X₂-2 ]
l23 [X₁-X₂-3 ]
l25 [X₁ ]
l21 [X₁-X₂-2 ]
l26 [X₁-X₂-2 ]
l27 [X₁-X₂-3 ]
l28 [X₁-X₂-3 ]
l29 [X₁-X₂-3 ]
l22 [X₁-X₂-3 ]

MPRF for transition t₂₅: l27(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:

new bound:

X₁⋅X₁+X₁ {O(n^2)}

MPRF:

l9 [X₁-X₂ ]
l18 [X₁-X₂ ]
l16 [X₁-X₂ ]
l17 [X₁-X₂ ]
l23 [X₁-X₄ ]
l25 [X₁ ]
l21 [X₁-X₂ ]
l26 [X₁-X₂ ]
l27 [X₁-X₂ ]
l28 [X₁-X₂-1 ]
l29 [X₁-X₂ ]
l22 [X₁-X₂-1 ]

MPRF for transition t₂₆: l27(X₀, X₁, X₂, X₃, X₄) → l29(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:

new bound:

X₁⋅X₁+X₁ {O(n^2)}

MPRF:

l9 [X₁-X₂ ]
l18 [X₁-X₂ ]
l16 [X₁-X₂ ]
l17 [X₁-X₂ ]
l23 [X₁-X₂-1 ]
l25 [X₁ ]
l21 [X₁-X₂ ]
l26 [X₁-X₂ ]
l27 [X₁-X₂ ]
l28 [X₁-X₂ ]
l29 [X₁-X₂-1 ]
l22 [X₁-X₂-1 ]

MPRF for transition t₂₇: l28(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₁⋅X₁+X₁ {O(n^2)}

MPRF:

l9 [X₁-X₂-2 ]
l18 [X₁-X₂-2 ]
l16 [X₁-X₂-2 ]
l17 [X₁-X₂-2 ]
l23 [X₁-X₄-2 ]
l25 [X₁ ]
l21 [X₁-X₂-2 ]
l26 [X₁-X₂-2 ]
l27 [X₁-X₂-2 ]
l28 [X₁-X₂-2 ]
l29 [X₁-X₂-2 ]
l22 [X₁-X₂-3 ]

MPRF for transition t₂₈: l29(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+2) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:

new bound:

X₁⋅X₁+X₁ {O(n^2)}

MPRF:

l9 [X₁-X₂ ]
l18 [X₁-X₂ ]
l16 [X₁-X₂ ]
l17 [X₁-X₂ ]
l23 [X₁-X₄ ]
l25 [X₁ ]
l21 [X₁-X₂ ]
l26 [X₁-X₂ ]
l27 [X₁-X₂ ]
l28 [X₁-X₂ ]
l29 [X₁-X₂ ]
l22 [X₁-X₂-1 ]

Analysing control-flow refined program

Cut unsatisfiable transition t₁₀₇₈: n_l21___1→n_l26___17

Found invariant X₄ ≤ 2 ∧ X₄ ≤ 2+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l23___5

Found invariant 3 ≤ X₁ for location l6

Found invariant X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l27___16

Found invariant 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 3+X₂ ≤ X₄ ∧ 10 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l22___10

Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l28___23

Found invariant 3 ≤ X₁ for location l19

Found invariant 2+X₄ ≤ X₁ ∧ 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 3+X₂ ≤ X₄ ∧ 10 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l23___9

Found invariant X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ for location n_l28___15

Found invariant 2+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ for location n_l23___7

Found invariant 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l26___26

Found invariant 3 ≤ X₁ for location l12

Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ for location n_l22___8

Found invariant 3 ≤ X₁ for location l20

Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l21___1

Found invariant 3+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 9 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l23___11

Found invariant X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l29___13

Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l22___4

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l18

Found invariant 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₁ for location n_l21___20

Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l23___2

Found invariant 3 ≤ X₁ for location l14

Found invariant 3 ≤ X₁ for location l11

Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l25

Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 9 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l22___12

Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 3+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l22___21

Found invariant X₄ ≤ 2 ∧ X₄ ≤ 2+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l22___6

Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 3+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l23___19

Found invariant 3 ≤ X₁ for location l15

Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l27___25

Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l29___22

Found invariant X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l28___14

Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l17

Found invariant 3 ≤ X₁ for location l7

Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l21

Found invariant 3 ≤ X₁ for location l5

Found invariant 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l28___24

Found invariant 3 ≤ X₁ for location l13

Found invariant 3 ≤ X₁ for location l8

Found invariant X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l21___18

Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 3+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₁ for location n_l21___3

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l16

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l9

Found invariant X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ for location n_l26___17

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₀₈₀: l21(X₀, X₁, X₂, X₃, X₄) → n_l26___26(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁ ∧ 2+X₃ ≤ X₁ ∧ 3+2⋅X₂+X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₁₀₁: n_l26___26(X₀, X₁, X₂, X₃, X₄) → n_l27___25(X₀, X₁, X₂, X₃, X₄) :|: 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+2⋅X₂+X₃ < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₁₀₂: n_l26___26(X₀, X₁, X₂, X₃, X₄) → n_l28___24(X₀, X₁, X₂, X₁-2⋅X₂-3, X₄) :|: 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 3+2⋅X₂ ≤ X₁ ∧ X₁ ≤ 2⋅X₂+X₃+3 ∧ 3+2⋅X₂+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₁₀₅: n_l27___25(X₀, X₁, X₂, X₃, X₄) → n_l28___23(X₀, X₁, X₂, X₃, X₄) :|: 3+X₃ < X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₁₀₆: n_l27___25(X₀, X₁, X₂, X₃, X₄) → n_l29___22(X₀, X₁, X₂, X₃, X₄) :|: 3+X₃ < X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₁₀₉: n_l28___23(X₀, X₁, X₂, X₃, X₄) → n_l22___21(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₁₁₀: n_l28___24(X₀, X₁, X₂, X₃, X₄) → n_l22___4(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 3 ≤ X₁ ∧ X₁ ≤ X₃+3 ∧ 3+X₃ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₁₁₂: n_l29___22(X₀, X₁, X₂, X₃, X₄) → n_l22___6(X₀, X₁, X₂, X₃, 2⋅X₂+2) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₀₈₅: n_l22___21(X₀, X₁, X₂, X₃, X₄) → n_l21___20(X₀, X₁, X₁, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 3+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₀₈₆: n_l22___21(X₀, X₁, X₂, X₃, X₄) → n_l23___19(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 3+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₀₈₇: n_l22___4(X₀, X₁, X₂, X₃, X₄) → n_l21___3(X₀, X₁, X₁, X₃, X₄) :|: 3 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₃+3 ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₀₈₈: n_l22___4(X₀, X₁, X₂, X₃, X₄) → n_l23___2(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₃+3 ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₀₈₉: n_l22___6(X₀, X₁, X₂, X₃, X₄) → n_l21___20(X₀, X₁, X₁, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₄ ≤ 2 ∧ 2 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 2 ∧ X₄ ≤ 2+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₀₉₀: n_l22___6(X₀, X₁, X₂, X₃, X₄) → n_l23___5(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₄ ≤ 2 ∧ 2 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 2 ∧ X₄ ≤ 2+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₀₉₄: n_l23___19(X₀, X₁, X₂, X₃, X₄) → n_l21___18(X₀, X₁, X₄, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 3+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₀₉₅: n_l23___2(X₀, X₁, X₂, X₃, X₄) → n_l21___1(X₀, X₁, X₄, X₃, X₄) :|: 3 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₃+3 ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₀₉₆: n_l23___5(X₀, X₁, X₂, X₃, X₄) → n_l21___18(X₀, X₁, X₄, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₄ ≤ 2 ∧ 2 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 2 ∧ X₄ ≤ 2+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₁₂₉: n_l21___1(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₁

knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₁₃₂: n_l21___3(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 3+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₁

MPRF for transition t₁₀₇₉: n_l21___18(X₀, X₁, X₂, X₃, X₄) → n_l26___17(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ 3+2⋅X₂+X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:

new bound:

8⋅X₁⋅X₁+27⋅X₁+19 {O(n^2)}

MPRF:

l18 [2⋅X₁-2 ]
l16 [2⋅X₁-2 ]
l21 [2⋅X₁-2 ]
l9 [2⋅X₁-2 ]
l25 [2⋅X₁-2 ]
l17 [2⋅X₁-2 ]
n_l22___21 [4⋅X₁+7⋅X₄ ]
n_l21___3 [2⋅X₁-2 ]
n_l22___6 [4⋅X₁-10 ]
n_l21___20 [2⋅X₂-2 ]
n_l23___11 [4⋅X₁+3⋅X₄-10⋅X₂-11 ]
n_l23___19 [4⋅X₁+7 ]
n_l23___2 [2⋅X₃+4⋅X₄ ]
n_l21___1 [2⋅X₁+4⋅X₂-6 ]
n_l23___5 [4⋅X₁-10 ]
n_l23___7 [4⋅X₁-2⋅X₄-6 ]
n_l23___9 [4⋅X₁+8⋅X₂+4-6⋅X₄ ]
n_l21___18 [4⋅X₁-2⋅X₂-6 ]
n_l26___17 [4⋅X₁-4⋅X₂-8 ]
n_l26___26 [2⋅X₁-2 ]
n_l27___16 [4⋅X₁-4⋅X₂-8 ]
n_l28___23 [2⋅X₁-2 ]
n_l27___25 [2⋅X₁-2 ]
n_l29___22 [2⋅X₁-2 ]
n_l28___14 [4⋅X₁-4⋅X₄-8 ]
n_l22___12 [4⋅X₁+3⋅X₄-10⋅X₂-11 ]
n_l28___15 [4⋅X₁-4⋅X₂-8 ]
n_l22___8 [2⋅X₁+2⋅X₃-2 ]
n_l28___24 [2⋅X₁-2 ]
n_l22___4 [2⋅X₁-2 ]
n_l29___13 [4⋅X₁-4⋅X₂-8 ]
n_l22___10 [4⋅X₁+8⋅X₂+4-6⋅X₄ ]

MPRF for transition t₁₁₃₀: n_l21___18(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:

new bound:

X₁+3 {O(n)}

MPRF:

l18 [X₁-X₀-3 ]
l16 [X₁-X₀-3 ]
l21 [X₁-X₃-3 ]
l9 [X₁-X₃-3 ]
l25 [X₁-X₃-3 ]
l17 [X₁-X₃-4 ]
n_l21___3 [X₁-X₃-4 ]
n_l21___20 [X₂-X₃-4 ]
n_l23___11 [X₁+30⋅X₄-60⋅X₂-X₃-33 ]
n_l23___19 [X₁+30⋅X₄-X₃-33 ]
n_l23___2 [-1 ]
n_l21___1 [X₁-X₃-4 ]
n_l23___5 [X₁-X₃-3 ]
n_l23___7 [20⋅X₂+38⋅X₃+29⋅X₄+85-38⋅X₁ ]
n_l23___9 [X₁-X₃-3 ]
n_l21___18 [X₁-X₃-3 ]
n_l26___17 [X₁-X₃-3 ]
n_l26___26 [X₁-X₃-3 ]
n_l27___16 [X₁-X₃-3 ]
n_l27___25 [X₁-X₃-3 ]
n_l28___14 [X₁-X₃-3 ]
n_l22___12 [X₁-X₃-3 ]
n_l28___15 [2⋅X₄ ]
n_l22___8 [20⋅X₂+39⋅X₃+30⋅X₄+87-39⋅X₁ ]
n_l28___23 [X₁-X₃-3 ]
n_l22___21 [X₁-X₃-3 ]
n_l28___24 [0 ]
n_l22___4 [-1 ]
n_l29___13 [X₁-X₃-3 ]
n_l22___10 [X₁-X₃-3 ]
n_l29___22 [X₁-X₃-3 ]
n_l22___6 [X₁-X₃-3 ]

MPRF for transition t₁₁₃₁: n_l21___20(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₁ of depth 1:

new bound:

X₁+3 {O(n)}

MPRF:

l18 [X₁-X₀-3 ]
l16 [X₁-X₀-3 ]
l21 [X₁-X₃-3 ]
l9 [X₁-X₃-3 ]
l25 [X₁-X₃-3 ]
l17 [X₁-X₃-4 ]
n_l21___3 [X₂-X₃-4 ]
n_l21___20 [X₂-X₃-3 ]
n_l23___11 [X₁-X₃-3 ]
n_l23___19 [X₁+6⋅X₄-X₃-9 ]
n_l23___2 [3⋅X₃+6⋅X₄+2-3⋅X₁ ]
n_l21___1 [-1 ]
n_l23___5 [X₁+3⋅X₄-X₃-9 ]
n_l23___7 [X₁+6⋅X₄-12⋅X₂-X₃-9 ]
n_l23___9 [X₁-X₃-3 ]
n_l21___18 [X₁-X₃-3 ]
n_l26___17 [X₁-X₃-3 ]
n_l26___26 [X₁-X₃-3 ]
n_l27___16 [X₁-X₃-3 ]
n_l27___25 [X₁-X₃-3 ]
n_l28___14 [X₁-X₃-3 ]
n_l22___12 [X₁-X₃-3 ]
n_l28___15 [2⋅X₄ ]
n_l22___8 [X₁-X₃-3 ]
n_l28___23 [X₁-X₃-3 ]
n_l22___21 [X₁-X₃-3 ]
n_l28___24 [0 ]
n_l22___4 [X₁-X₃-4 ]
n_l29___13 [X₁-X₃-3 ]
n_l22___10 [X₁-X₃-3 ]
n_l29___22 [X₁-X₃-3 ]
n_l22___6 [X₁+3⋅X₄-X₃-9 ]

MPRF for transition t₁₀₈₁: n_l22___10(X₀, X₁, X₂, X₃, X₄) → n_l21___20(X₀, X₁, X₁, X₃, X₄) :|: 1+X₃+X₄ < X₁ ∧ 0 ≤ X₃ ∧ 4 ≤ X₄ ∧ 2⋅X₂+2 ≤ X₄ ∧ X₄ ≤ 2+2⋅X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 3+X₂ ≤ X₄ ∧ 10 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l18 [X₁-X₃ ]
l16 [X₁-X₃ ]
l21 [X₁+1-X₃ ]
l9 [X₁+1-X₃ ]
l25 [X₁+1-X₃ ]
l17 [X₁-X₃ ]
n_l21___3 [X₁-X₃ ]
n_l21___20 [X₁-X₃ ]
n_l23___11 [X₁+X₄-2⋅X₂-X₃ ]
n_l23___19 [X₁+1-X₃ ]
n_l23___2 [X₁-X₃ ]
n_l21___1 [3 ]
n_l23___5 [X₁+X₄-X₃-1 ]
n_l23___7 [X₄+3 ]
n_l23___9 [X₁+1-X₃ ]
n_l21___18 [X₁+1-X₃ ]
n_l26___17 [X₁+1-X₃ ]
n_l26___26 [X₁+1-X₃ ]
n_l27___16 [X₁+1-X₃ ]
n_l27___25 [X₁+1-X₃ ]
n_l28___14 [X₁+1-X₃ ]
n_l22___12 [X₁+X₄-2⋅X₂-X₃ ]
n_l28___15 [2⋅X₄+4 ]
n_l22___8 [X₄+3 ]
n_l28___23 [X₁+1-X₃ ]
n_l22___21 [X₁+X₄-X₃ ]
n_l28___24 [3 ]
n_l22___4 [X₁-X₃ ]
n_l29___13 [X₁+1-X₃ ]
n_l22___10 [X₁+1-X₃ ]
n_l29___22 [X₁+1-X₃ ]
n_l22___6 [X₁+1-X₃ ]

MPRF for transition t₁₀₈₂: n_l22___10(X₀, X₁, X₂, X₃, X₄) → n_l23___9(X₀, X₁, X₂, X₃, X₄) :|: 1+X₃+X₄ < X₁ ∧ 0 ≤ X₃ ∧ 4 ≤ X₄ ∧ 2⋅X₂+2 ≤ X₄ ∧ X₄ ≤ 2+2⋅X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 3+X₂ ≤ X₄ ∧ 10 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:

new bound:

4⋅X₁⋅X₁+8⋅X₁+4 {O(n^2)}

MPRF:

l18 [0 ]
l16 [0 ]
l21 [0 ]
l9 [0 ]
l25 [0 ]
l17 [0 ]
n_l22___21 [2⋅X₁+1-2⋅X₄ ]
n_l21___3 [0 ]
n_l22___6 [2⋅X₁-1 ]
n_l21___20 [7 ]
n_l23___11 [2⋅X₁+1-2⋅X₄ ]
n_l23___19 [2⋅X₁+1-2⋅X₄ ]
n_l23___2 [0 ]
n_l21___1 [0 ]
n_l23___5 [2⋅X₁-3 ]
n_l23___7 [X₁+X₃ ]
n_l23___9 [2⋅X₁+1-2⋅X₄ ]
n_l21___18 [2⋅X₁+X₂+1-3⋅X₄ ]
n_l26___17 [2⋅X₁+1-2⋅X₄ ]
n_l26___26 [0 ]
n_l27___16 [2⋅X₁+1-2⋅X₂ ]
n_l28___23 [0 ]
n_l27___25 [0 ]
n_l29___22 [0 ]
n_l28___14 [2⋅X₁-4⋅X₄-1 ]
n_l22___12 [2⋅X₁+1-2⋅X₄ ]
n_l28___15 [X₁+2⋅X₂+X₃+4-2⋅X₄ ]
n_l22___8 [X₁+X₃+2 ]
n_l28___24 [0 ]
n_l22___4 [0 ]
n_l29___13 [2⋅X₁+1-2⋅X₂ ]
n_l22___10 [2⋅X₁+3-X₄ ]

MPRF for transition t₁₀₈₃: n_l22___12(X₀, X₁, X₂, X₃, X₄) → n_l21___20(X₀, X₁, X₁, X₃, X₄) :|: 2+X₃+X₄ < X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₄ ∧ 2⋅X₂+1 ≤ X₄ ∧ X₄ ≤ 1+2⋅X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 9 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l18 [X₁-X₃ ]
l16 [X₁-X₃ ]
l21 [X₁+1-X₃ ]
l9 [X₁+1-X₃ ]
l25 [X₁+1-X₃ ]
l17 [X₁-X₃ ]
n_l21___3 [X₁-X₃ ]
n_l21___20 [X₂-X₃ ]
n_l23___11 [X₁+1-X₃ ]
n_l23___19 [X₁+4⋅X₄-X₃-3 ]
n_l23___2 [3⋅X₄ ]
n_l21___1 [X₁-X₃ ]
n_l23___5 [X₁+1-X₃ ]
n_l23___7 [2⋅X₂+X₃+X₄+6-X₁ ]
n_l23___9 [X₁+1-X₃ ]
n_l21___18 [X₁+1-X₃ ]
n_l26___17 [X₁+1-X₃ ]
n_l26___26 [X₁+1-X₃ ]
n_l27___16 [X₁+1-X₃ ]
n_l27___25 [X₁+1-X₃ ]
n_l28___14 [X₁+1-X₃ ]
n_l22___12 [X₁+1-X₃ ]
n_l28___15 [2⋅X₄+4 ]
n_l22___8 [2⋅X₂+X₃+X₄+6-X₁ ]
n_l28___23 [X₁+1-X₃ ]
n_l22___21 [X₁+1-X₃ ]
n_l28___24 [4 ]
n_l22___4 [X₁+3⋅X₄-X₃-2 ]
n_l29___13 [X₁+1-X₃ ]
n_l22___10 [X₁+1-X₃ ]
n_l29___22 [X₁+1-X₃ ]
n_l22___6 [X₁+1-X₃ ]

MPRF for transition t₁₀₈₄: n_l22___12(X₀, X₁, X₂, X₃, X₄) → n_l23___11(X₀, X₁, X₂, X₃, X₄) :|: 2+X₃+X₄ < X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₄ ∧ 2⋅X₂+1 ≤ X₄ ∧ X₄ ≤ 1+2⋅X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 9 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:

new bound:

2⋅X₁⋅X₁+9⋅X₁+8 {O(n^2)}

MPRF:

l18 [-1 ]
l16 [X₃-X₀ ]
l21 [-1 ]
l9 [-1 ]
l25 [-1 ]
l17 [-1 ]
n_l22___21 [X₁-3⋅X₄ ]
n_l21___3 [-1 ]
n_l22___6 [X₁-2⋅X₄ ]
n_l21___20 [X₁-X₄-2 ]
n_l23___11 [X₁-X₄-3 ]
n_l23___19 [X₁-3⋅X₄ ]
n_l23___2 [X₃+2-X₁ ]
n_l21___1 [X₃+2-X₁ ]
n_l23___5 [X₁-2⋅X₄ ]
n_l23___7 [X₁+4⋅X₂-3⋅X₄ ]
n_l23___9 [X₁-X₄-2 ]
n_l21___18 [X₁-X₄-3 ]
n_l26___17 [X₁-X₂-4 ]
n_l26___26 [-1 ]
n_l27___16 [X₁-X₂-4 ]
n_l28___23 [-X₁ ]
n_l27___25 [-4 ]
n_l29___22 [-4 ]
n_l28___14 [X₁+X₂-2⋅X₄-4 ]
n_l22___12 [X₁+X₂-X₄-3 ]
n_l28___15 [X₁-X₂-4 ]
n_l22___8 [X₁+4⋅X₂-3⋅X₄ ]
n_l28___24 [-1 ]
n_l22___4 [X₃+2-X₁ ]
n_l29___13 [X₁-X₂-4 ]
n_l22___10 [X₁-X₄-2 ]

MPRF for transition t₁₀₉₁: n_l22___8(X₀, X₁, X₂, X₃, X₄) → n_l21___20(X₀, X₁, X₁, X₃, X₄) :|: 2+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ X₁ ≤ X₃+X₄+2 ∧ 2+X₃+X₄ ≤ X₁ ∧ 2⋅X₂+1 ≤ X₄ ∧ X₄ ≤ 1+2⋅X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ of depth 1:

new bound:

X₁+4 {O(n)}

MPRF:

l18 [X₁-X₃-5 ]
l16 [X₁-X₀-4 ]
l21 [X₁-X₃-4 ]
l9 [X₁-X₃-4 ]
l25 [X₁-X₃-4 ]
l17 [X₁-X₃-5 ]
n_l21___3 [-1 ]
n_l21___20 [X₂-X₃-5 ]
n_l23___11 [X₁-X₃-4 ]
n_l23___19 [X₁-X₃-4 ]
n_l23___2 [-1 ]
n_l21___1 [X₁-5⋅X₂-X₃ ]
n_l23___5 [X₁-X₃-4 ]
n_l23___7 [2⋅X₁+2⋅X₂-2⋅X₃-2⋅X₄-5 ]
n_l23___9 [X₁-X₃-4 ]
n_l21___18 [X₁-X₃-4 ]
n_l26___17 [X₁-X₃-4 ]
n_l26___26 [X₁-X₃-4 ]
n_l27___16 [X₁-X₃-4 ]
n_l27___25 [X₁-X₃-4 ]
n_l28___14 [X₁-X₃-4 ]
n_l22___12 [X₁-X₃-4 ]
n_l28___15 [2⋅X₂-1 ]
n_l22___8 [2⋅X₂-1 ]
n_l28___23 [X₁-X₃-4 ]
n_l22___21 [X₁-X₃-4 ]
n_l28___24 [-1 ]
n_l22___4 [-1 ]
n_l29___13 [X₁-X₃-4 ]
n_l22___10 [X₁-X₃-4 ]
n_l29___22 [X₁-X₃-4 ]
n_l22___6 [X₁-X₃-4 ]

MPRF for transition t₁₀₉₂: n_l22___8(X₀, X₁, X₂, X₃, X₄) → n_l23___7(X₀, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ X₁ ≤ X₃+X₄+2 ∧ 2+X₃+X₄ ≤ X₁ ∧ 2⋅X₂+1 ≤ X₄ ∧ X₄ ≤ 1+2⋅X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ of depth 1:

new bound:

2⋅X₁⋅X₁+4⋅X₁+1 {O(n^2)}

MPRF:

l18 [-X₁ ]
l16 [-X₁ ]
l21 [-X₁ ]
l9 [-X₁ ]
l25 [-X₁ ]
l17 [-X₁ ]
n_l22___21 [X₁+X₄ ]
n_l21___3 [-X₁ ]
n_l22___6 [X₁ ]
n_l21___20 [2⋅X₃+X₄-X₂ ]
n_l23___11 [X₁-2⋅X₄ ]
n_l23___19 [X₁+1 ]
n_l23___2 [-X₃-3 ]
n_l21___1 [-X₁ ]
n_l23___5 [X₁ ]
n_l23___7 [2⋅X₂+2⋅X₃+4-X₁ ]
n_l23___9 [X₁-2⋅X₄ ]
n_l21___18 [X₁-2⋅X₂ ]
n_l26___17 [X₁-2⋅X₄ ]
n_l26___26 [-X₁ ]
n_l27___16 [X₁-2⋅X₄ ]
n_l28___23 [-X₁ ]
n_l27___25 [-X₁ ]
n_l29___22 [-X₁ ]
n_l28___14 [X₁-2⋅X₂ ]
n_l22___12 [X₁-2⋅X₂-4 ]
n_l28___15 [X₁+2⋅X₂-4⋅X₄ ]
n_l22___8 [2⋅X₂+2⋅X₃+6-X₁ ]
n_l28___24 [-X₁ ]
n_l22___4 [-X₁ ]
n_l29___13 [X₁-2⋅X₄ ]
n_l22___10 [X₁-2⋅X₂-6 ]

MPRF for transition t₁₀₉₃: n_l23___11(X₀, X₁, X₂, X₃, X₄) → n_l21___18(X₀, X₁, X₄, X₃, X₄) :|: 2+X₃+X₄ < X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₄ ∧ 2⋅X₂+1 ≤ X₄ ∧ X₄ ≤ 1+2⋅X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 3+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 9 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:

new bound:

4⋅X₁⋅X₁+14⋅X₁+14 {O(n^2)}

MPRF:

l18 [X₁-5 ]
l16 [X₁+5⋅X₃-5⋅X₀ ]
l21 [X₁-5 ]
l9 [X₁-5 ]
l25 [X₁-5 ]
l17 [X₁-5 ]
n_l22___21 [2⋅X₁-X₄-6 ]
n_l21___3 [X₂-5 ]
n_l22___6 [2⋅X₁-X₄ ]
n_l21___20 [X₂-3 ]
n_l23___11 [2⋅X₁-X₄-5 ]
n_l23___19 [2⋅X₁-X₄-6 ]
n_l23___2 [X₁-5 ]
n_l21___1 [X₁-5⋅X₂ ]
n_l23___5 [2⋅X₁-X₄ ]
n_l23___7 [X₁+X₃-4 ]
n_l23___9 [2⋅X₁-X₂-7 ]
n_l21___18 [2⋅X₁-X₂-7 ]
n_l26___17 [2⋅X₁-X₄-7 ]
n_l26___26 [X₁-5 ]
n_l27___16 [2⋅X₁-X₂-7 ]
n_l28___23 [X₁-5 ]
n_l27___25 [X₁-5 ]
n_l29___22 [X₁-5 ]
n_l28___14 [2⋅X₁-X₄-7 ]
n_l22___12 [2⋅X₁+X₂-X₄-6 ]
n_l28___15 [2⋅X₁-X₄-7 ]
n_l22___8 [2⋅X₁-X₂-7 ]
n_l28___24 [3⋅X₃+4-2⋅X₁ ]
n_l22___4 [X₁-5 ]
n_l29___13 [2⋅X₁-X₂-7 ]
n_l22___10 [2⋅X₁-X₂-7 ]

MPRF for transition t₁₀₉₇: n_l23___7(X₀, X₁, X₂, X₃, X₄) → n_l21___18(X₀, X₁, X₄, X₃, X₄) :|: 2+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ X₁ ≤ X₃+X₄+2 ∧ 2+X₃+X₄ ≤ X₁ ∧ 2⋅X₂+1 ≤ X₄ ∧ X₄ ≤ 1+2⋅X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 2+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ of depth 1:

new bound:

2⋅X₁⋅X₁+7⋅X₁+6 {O(n^2)}

MPRF:

l18 [-X₃ ]
l16 [-X₃ ]
l21 [1-X₃ ]
l9 [1-X₃ ]
l25 [1-X₃ ]
l17 [-X₃ ]
n_l22___21 [X₁-X₄-2 ]
n_l21___3 [-X₃ ]
n_l22___6 [X₁-X₄ ]
n_l21___20 [X₂-X₃-X₄-2 ]
n_l23___11 [X₁-X₃-X₄-1 ]
n_l23___19 [X₁-X₄-2 ]
n_l23___2 [-X₃ ]
n_l21___1 [-X₃ ]
n_l23___5 [X₁-X₄ ]
n_l23___7 [X₁-X₃-X₄-1 ]
n_l23___9 [X₁-X₃-X₄ ]
n_l21___18 [X₁+X₄-2⋅X₂-X₃-2 ]
n_l26___17 [X₁-2⋅X₂-X₃-2 ]
n_l26___26 [1-X₃ ]
n_l27___16 [X₁-X₃-2⋅X₄-2 ]
n_l28___23 [-X₃ ]
n_l27___25 [1-X₃ ]
n_l29___22 [-X₃ ]
n_l28___14 [X₁-2⋅X₂-X₃-2 ]
n_l22___12 [X₁-X₃-X₄-1 ]
n_l28___15 [4⋅X₂+X₃+4-X₁-2⋅X₄ ]
n_l22___8 [X₃+X₄+3-X₁ ]
n_l28___24 [3-X₁ ]
n_l22___4 [-X₃ ]
n_l29___13 [X₁-X₃-2⋅X₄-2 ]
n_l22___10 [X₁-X₃-X₄ ]

MPRF for transition t₁₀₉₈: n_l23___9(X₀, X₁, X₂, X₃, X₄) → n_l21___18(X₀, X₁, X₄, X₃, X₄) :|: 1+X₃+X₄ < X₁ ∧ 0 ≤ X₃ ∧ 4 ≤ X₄ ∧ 2⋅X₂+2 ≤ X₄ ∧ X₄ ≤ 2+2⋅X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 2+X₄ ≤ X₁ ∧ 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 3+X₂ ≤ X₄ ∧ 10 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:

new bound:

3⋅X₁⋅X₁+7⋅X₁+6 {O(n^2)}

MPRF:

l18 [-2 ]
l16 [2⋅X₃-2⋅X₀ ]
l21 [-2 ]
l9 [-2 ]
l25 [-2 ]
l17 [-2 ]
n_l22___21 [2⋅X₁ ]
n_l21___3 [-2 ]
n_l22___6 [X₁-X₄-2 ]
n_l21___20 [X₂-X₁ ]
n_l23___11 [X₁-X₄-3 ]
n_l23___19 [2⋅X₁ ]
n_l23___2 [-2⋅X₄ ]
n_l21___1 [-2⋅X₂ ]
n_l23___5 [X₁-X₄-4 ]
n_l23___7 [X₁-2⋅X₂-3 ]
n_l23___9 [X₁-X₄-1 ]
n_l21___18 [X₁+X₂-2⋅X₄-4 ]
n_l26___17 [X₁-X₂-4 ]
n_l26___26 [-2 ]
n_l27___16 [X₁-X₂-4 ]
n_l28___23 [-2 ]
n_l27___25 [-2 ]
n_l29___22 [-2 ]
n_l28___14 [X₁-X₂-5 ]
n_l22___12 [X₁-X₂-5 ]
n_l28___15 [2⋅X₁-3⋅X₂-X₃-7 ]
n_l22___8 [X₃+X₄-X₂-2 ]
n_l28___24 [-2 ]
n_l22___4 [-2 ]
n_l29___13 [X₁-X₂-4 ]
n_l22___10 [X₁-X₂-4 ]

MPRF for transition t₁₀₉₉: n_l26___17(X₀, X₁, X₂, X₃, X₄) → n_l27___16(X₀, X₁, X₂, X₃, X₄) :|: 3+X₃+2⋅X₄ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+2⋅X₂+X₃ < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ of depth 1:

new bound:

2⋅X₁⋅X₁+5⋅X₁+3 {O(n^2)}

MPRF:

l18 [-X₃-1 ]
l16 [-X₀ ]
l21 [-X₃ ]
l9 [-X₃ ]
l25 [-X₃ ]
l17 [-X₃-1 ]
n_l22___21 [X₁-X₄ ]
n_l21___3 [-X₃ ]
n_l22___6 [X₁-X₄ ]
n_l21___20 [X₁-X₃-X₄-3 ]
n_l23___11 [X₁+6⋅X₄-14⋅X₂-10 ]
n_l23___19 [X₁-X₄ ]
n_l23___2 [-X₃ ]
n_l21___1 [-X₃ ]
n_l23___5 [X₁-X₄ ]
n_l23___7 [2⋅X₁+X₄-6⋅X₂-X₃-7 ]
n_l23___9 [X₁-X₄-3 ]
n_l21___18 [X₁+X₄-2⋅X₂-3 ]
n_l26___17 [X₁-X₄-3 ]
n_l26___26 [-X₃ ]
n_l27___16 [X₁-2⋅X₂-4 ]
n_l28___23 [-X₃ ]
n_l27___25 [-X₃ ]
n_l29___22 [-X₃ ]
n_l28___14 [X₁-X₂-X₄-4 ]
n_l22___12 [X₁+6⋅X₄-14⋅X₂-10 ]
n_l28___15 [2⋅X₁-2⋅X₂-X₃-X₄-6 ]
n_l22___8 [2⋅X₁+X₄-5⋅X₂-X₃-8 ]
n_l28___24 [3-X₁ ]
n_l22___4 [-X₃ ]
n_l29___13 [X₁-2⋅X₂-5 ]
n_l22___10 [X₁-X₄-3 ]

MPRF for transition t₁₁₀₀: n_l26___17(X₀, X₁, X₂, X₃, X₄) → n_l28___15(X₀, X₁, X₂, X₁-2⋅X₂-3, X₄) :|: 3+X₃+2⋅X₄ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂ ∧ 3+2⋅X₂ ≤ X₁ ∧ X₁ ≤ 2⋅X₂+X₃+3 ∧ 3+2⋅X₂+X₃ ≤ X₁ ∧ X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ of depth 1:

new bound:

2⋅X₁⋅X₁+22⋅X₁+19 {O(n^2)}

MPRF:

l18 [-X₁ ]
l16 [-X₁ ]
l21 [-X₁ ]
l9 [-X₁ ]
l25 [-X₁ ]
l17 [-X₁ ]
n_l22___21 [X₁+7 ]
n_l21___3 [-X₃-3 ]
n_l22___6 [X₁+6⋅X₄ ]
n_l21___20 [-X₁ ]
n_l23___11 [X₁+10⋅X₄-24⋅X₂-3 ]
n_l23___19 [X₁+9-2⋅X₄ ]
n_l23___2 [-X₃-3 ]
n_l21___1 [-X₁ ]
n_l23___5 [X₁+6⋅X₄ ]
n_l23___7 [X₁+9-2⋅X₄ ]
n_l23___9 [X₁+4⋅X₄-12⋅X₂ ]
n_l21___18 [X₁+2⋅X₄+9-4⋅X₂ ]
n_l26___17 [X₁+9-2⋅X₄ ]
n_l26___26 [-X₁ ]
n_l27___16 [X₁+9-2⋅X₂ ]
n_l28___23 [-X₁ ]
n_l27___25 [-X₁ ]
n_l29___22 [-X₁ ]
n_l28___14 [X₁+9-2⋅X₄ ]
n_l22___12 [X₁+10⋅X₄-22⋅X₂-3 ]
n_l28___15 [X₁+7-4⋅X₄ ]
n_l22___8 [X₁+9-2⋅X₄ ]
n_l28___24 [-X₁ ]
n_l22___4 [-X₃-3 ]
n_l29___13 [X₁+9-2⋅X₄ ]
n_l22___10 [X₁+4⋅X₄-12⋅X₂ ]

MPRF for transition t₁₁₀₃: n_l27___16(X₀, X₁, X₂, X₃, X₄) → n_l28___14(X₀, X₁, X₂, X₃, X₄) :|: 3+X₃+2⋅X₄ < X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:

new bound:

6⋅X₁⋅X₁+11⋅X₁+7 {O(n^2)}

MPRF:

l18 [2⋅X₁-4 ]
l16 [2⋅X₁+4⋅X₃-4⋅X₀ ]
l21 [2⋅X₁-4 ]
l9 [2⋅X₁-4 ]
l25 [2⋅X₁-4 ]
l17 [2⋅X₁-4 ]
n_l22___21 [3⋅X₁-X₄ ]
n_l21___3 [2⋅X₂-4 ]
n_l22___6 [3⋅X₁-X₄ ]
n_l21___20 [3⋅X₁-X₄-6 ]
n_l23___11 [3⋅X₁-X₄-6 ]
n_l23___19 [3⋅X₁-X₄ ]
n_l23___2 [2⋅X₃+2⋅X₄ ]
n_l21___1 [2⋅X₁+2⋅X₂-6 ]
n_l23___5 [3⋅X₁-X₄ ]
n_l23___7 [3⋅X₁+12⋅X₂-7⋅X₄ ]
n_l23___9 [3⋅X₁+2⋅X₂-2⋅X₄-1 ]
n_l21___18 [3⋅X₁+X₂-2⋅X₄-6 ]
n_l26___17 [3⋅X₁-X₂-6 ]
n_l26___26 [2⋅X₁-4 ]
n_l27___16 [3⋅X₁-X₄-6 ]
n_l28___23 [2⋅X₁-4 ]
n_l27___25 [2⋅X₁-4 ]
n_l29___22 [2⋅X₁-4 ]
n_l28___14 [3⋅X₁-X₂-X₄-7 ]
n_l22___12 [3⋅X₁-X₄-6 ]
n_l28___15 [3⋅X₁-X₂-7 ]
n_l22___8 [3⋅X₁+12⋅X₂-7⋅X₄ ]
n_l28___24 [3⋅X₁-X₃-7 ]
n_l22___4 [2⋅X₁-4 ]
n_l29___13 [3⋅X₁-X₄-6 ]
n_l22___10 [3⋅X₁+3⋅X₂-2⋅X₄-2 ]

MPRF for transition t₁₁₀₄: n_l27___16(X₀, X₁, X₂, X₃, X₄) → n_l29___13(X₀, X₁, X₂, X₃, X₄) :|: 3+X₃+2⋅X₄ < X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:

new bound:

6⋅X₁⋅X₁+9⋅X₁+1 {O(n^2)}

MPRF:

l18 [2⋅X₁ ]
l16 [2⋅X₁ ]
l21 [2⋅X₁ ]
l9 [2⋅X₁ ]
l25 [2⋅X₁ ]
l17 [2⋅X₁ ]
n_l22___21 [3⋅X₁-X₄ ]
n_l21___3 [2⋅X₁ ]
n_l22___6 [3⋅X₁ ]
n_l21___20 [2⋅X₂ ]
n_l23___11 [3⋅X₁-X₄ ]
n_l23___19 [3⋅X₁-X₄ ]
n_l23___2 [2⋅X₁ ]
n_l21___1 [2⋅X₁ ]
n_l23___5 [3⋅X₁ ]
n_l23___7 [3⋅X₁-X₂ ]
n_l23___9 [3⋅X₁-X₄ ]
n_l21___18 [3⋅X₁-X₂ ]
n_l26___17 [3⋅X₁-X₂ ]
n_l26___26 [2⋅X₁ ]
n_l27___16 [3⋅X₁+1-2⋅X₄ ]
n_l28___23 [2⋅X₁ ]
n_l27___25 [2⋅X₁ ]
n_l29___22 [2⋅X₁ ]
n_l28___14 [3⋅X₁-2⋅X₄-1 ]
n_l22___12 [3⋅X₁-X₄ ]
n_l28___15 [3⋅X₁-X₂ ]
n_l22___8 [3⋅X₁-X₂ ]
n_l28___24 [2⋅X₁ ]
n_l22___4 [2⋅X₁ ]
n_l29___13 [3⋅X₁-2⋅X₄-2 ]
n_l22___10 [3⋅X₁-X₄ ]

MPRF for transition t₁₁₀₇: n_l28___14(X₀, X₁, X₂, X₃, X₄) → n_l22___12(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 3+X₃+2⋅X₄ < X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:

new bound:

4⋅X₁⋅X₁+7⋅X₁+7 {O(n^2)}

MPRF:

l18 [X₁-2⋅X₀-5 ]
l16 [X₁+5⋅X₃-7⋅X₀ ]
l21 [-X₁-1 ]
l9 [X₁-2⋅X₃-5 ]
l25 [X₁-2⋅X₃-5 ]
l17 [X₁-2⋅X₃-7 ]
n_l22___21 [2⋅X₁ ]
n_l21___3 [X₁-2⋅X₃-7 ]
n_l22___6 [2⋅X₁-X₄ ]
n_l21___20 [2⋅X₁-X₂-2⋅X₃-7 ]
n_l23___11 [2⋅X₁-X₄-9 ]
n_l23___19 [2⋅X₁ ]
n_l23___2 [X₁-2⋅X₃-7 ]
n_l21___1 [X₁-2⋅X₃-7 ]
n_l23___5 [2⋅X₁-X₄ ]
n_l23___7 [2⋅X₁+X₄-4⋅X₂-10 ]
n_l23___9 [2⋅X₁-X₄-9 ]
n_l21___18 [2⋅X₁+X₂-2⋅X₄-9 ]
n_l26___17 [2⋅X₁-X₂-10 ]
n_l26___26 [-X₁-1 ]
n_l27___16 [2⋅X₁-2⋅X₂-9 ]
n_l28___23 [-X₁-1 ]
n_l27___25 [-X₁-1 ]
n_l29___22 [-X₁-1 ]
n_l28___14 [2⋅X₁-2⋅X₂-9 ]
n_l22___12 [2⋅X₁+X₄-4⋅X₂-11 ]
n_l28___15 [3⋅X₁-3⋅X₂-X₃-13 ]
n_l22___8 [4⋅X₁-5⋅X₂-2⋅X₃-16 ]
n_l28___24 [-X₃-4 ]
n_l22___4 [X₁-2⋅X₃-7 ]
n_l29___13 [2⋅X₁-2⋅X₂-11 ]
n_l22___10 [2⋅X₁-X₄-9 ]

MPRF for transition t₁₁₀₈: n_l28___15(X₀, X₁, X₂, X₃, X₄) → n_l22___8(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 3+2⋅X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃+2⋅X₄+3 ∧ 3+X₃+2⋅X₄ ≤ X₁ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ of depth 1:

new bound:

4⋅X₁⋅X₁+8⋅X₁+3 {O(n^2)}

MPRF:

l18 [X₁ ]
l16 [X₁ ]
l21 [X₁ ]
l9 [X₁ ]
l25 [X₁ ]
l17 [X₁ ]
n_l22___21 [2⋅X₁+1-X₄ ]
n_l21___3 [X₁ ]
n_l22___6 [2⋅X₁-1 ]
n_l21___20 [2⋅X₂-X₄-2 ]
n_l23___11 [2⋅X₁+1-X₄ ]
n_l23___19 [2⋅X₁+1-X₄ ]
n_l23___2 [X₃+3⋅X₄ ]
n_l21___1 [X₃+3⋅X₄ ]
n_l23___5 [2⋅X₁-1 ]
n_l23___7 [X₁+2⋅X₂+X₃+4-X₄ ]
n_l23___9 [2⋅X₁+1-X₄ ]
n_l21___18 [2⋅X₁+1-X₂ ]
n_l26___17 [2⋅X₁+2-2⋅X₂ ]
n_l26___26 [X₁ ]
n_l27___16 [2⋅X₁-2⋅X₂ ]
n_l28___23 [X₁ ]
n_l27___25 [X₁ ]
n_l29___22 [X₁ ]
n_l28___14 [2⋅X₁-2⋅X₂ ]
n_l22___12 [2⋅X₁-2⋅X₂ ]
n_l28___15 [X₁+X₃+5 ]
n_l22___8 [X₁+X₃+3 ]
n_l28___24 [X₁ ]
n_l22___4 [X₁ ]
n_l29___13 [2⋅X₁-X₂-X₄-1 ]
n_l22___10 [2⋅X₁+1-X₄ ]

MPRF for transition t₁₁₁₁: n_l29___13(X₀, X₁, X₂, X₃, X₄) → n_l22___10(X₀, X₁, X₂, X₃, 2⋅X₂+2) :|: 3+X₃+2⋅X₄ < X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:

new bound:

2⋅X₁⋅X₁+7⋅X₁+5 {O(n^2)}

MPRF:

l18 [-2⋅X₃-2 ]
l16 [-2⋅X₀ ]
l21 [-2⋅X₃ ]
l9 [-2⋅X₃ ]
l25 [-2⋅X₃ ]
l17 [-2⋅X₃-2 ]
n_l22___21 [X₁+1-X₄ ]
n_l21___3 [-2⋅X₃ ]
n_l22___6 [X₁+1-X₄ ]
n_l21___20 [X₂+1-2⋅X₃-X₄ ]
n_l23___11 [X₁+1-X₄ ]
n_l23___19 [X₁+1-X₄ ]
n_l23___2 [-2⋅X₃ ]
n_l21___1 [-2⋅X₃ ]
n_l23___5 [X₁+1-X₄ ]
n_l23___7 [X₁+1-X₄ ]
n_l23___9 [X₁+1-X₄ ]
n_l21___18 [X₁+X₂+1-2⋅X₄ ]
n_l26___17 [X₁-2⋅X₂ ]
n_l26___26 [-2⋅X₃ ]
n_l27___16 [X₁-X₂-X₄ ]
n_l28___23 [-2⋅X₃ ]
n_l27___25 [-2⋅X₃ ]
n_l29___22 [-2⋅X₃ ]
n_l28___14 [X₁-X₂-X₄ ]
n_l22___12 [X₁+1-X₄ ]
n_l28___15 [X₁-2⋅X₂ ]
n_l22___8 [X₁+1-X₄ ]
n_l28___24 [6-2⋅X₁ ]
n_l22___4 [-2⋅X₃ ]
n_l29___13 [X₁-2⋅X₄ ]
n_l22___10 [X₁-2⋅X₂-1 ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:10⋅X₁⋅X₁+16⋅X₁+23 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₃₅: 1 {O(1)}
t₆: 1 {O(1)}
t₈: 1 {O(1)}
t₇: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₃₄: X₁ {O(n)}
t₃₂: X₁+1 {O(n)}
t₃₃: X₁ {O(n)}
t₁₁: 1 {O(1)}
t₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₂₀: X₁⋅X₁+X₁ {O(n^2)}
t₂₁: X₁+1 {O(n)}
t₂₉: X₁⋅X₁+X₁ {O(n^2)}
t₃₀: X₁⋅X₁+X₁ {O(n^2)}
t₃₁: X₁⋅X₁+X₁ {O(n^2)}
t₁₉: X₁+1 {O(n)}
t₂₂: X₁⋅X₁+X₁ {O(n^2)}
t₂₃: X₁⋅X₁+X₁ {O(n^2)}
t₂₅: X₁⋅X₁+X₁ {O(n^2)}
t₂₆: X₁⋅X₁+X₁ {O(n^2)}
t₂₇: X₁⋅X₁+X₁ {O(n^2)}
t₂₈: X₁⋅X₁+X₁ {O(n^2)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₃: 1 {O(1)}
t₁₄: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: X₁+1 {O(n)}
t₁₈: 1 {O(1)}

Costbounds

Overall costbound: 10⋅X₁⋅X₁+16⋅X₁+23 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₃₅: 1 {O(1)}
t₆: 1 {O(1)}
t₈: 1 {O(1)}
t₇: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₃₄: X₁ {O(n)}
t₃₂: X₁+1 {O(n)}
t₃₃: X₁ {O(n)}
t₁₁: 1 {O(1)}
t₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₂₀: X₁⋅X₁+X₁ {O(n^2)}
t₂₁: X₁+1 {O(n)}
t₂₉: X₁⋅X₁+X₁ {O(n^2)}
t₃₀: X₁⋅X₁+X₁ {O(n^2)}
t₃₁: X₁⋅X₁+X₁ {O(n^2)}
t₁₉: X₁+1 {O(n)}
t₂₂: X₁⋅X₁+X₁ {O(n^2)}
t₂₃: X₁⋅X₁+X₁ {O(n^2)}
t₂₅: X₁⋅X₁+X₁ {O(n^2)}
t₂₆: X₁⋅X₁+X₁ {O(n^2)}
t₂₇: X₁⋅X₁+X₁ {O(n^2)}
t₂₈: X₁⋅X₁+X₁ {O(n^2)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₃: 1 {O(1)}
t₁₄: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: X₁+1 {O(n)}
t₁₈: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃₅, X₀: X₀+X₁+1 {O(n)}
t₃₅, X₁: 2⋅X₁ {O(n)}
t₃₅, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁+X₂ {O(EXP)}
t₃₅, X₃: X₁+X₃+1 {O(n)}
t₃₅, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+2⋅X₄ {O(EXP)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₃₄, X₀: X₁+1 {O(n)}
t₃₄, X₁: X₁ {O(n)}
t₃₄, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁ {O(EXP)}
t₃₄, X₃: X₁+1 {O(n)}
t₃₄, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₃₂, X₀: X₁+1 {O(n)}
t₃₂, X₁: X₁ {O(n)}
t₃₂, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁ {O(EXP)}
t₃₂, X₃: X₁+1 {O(n)}
t₃₂, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₃₃, X₀: X₁+1 {O(n)}
t₃₃, X₁: X₁ {O(n)}
t₃₃, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁ {O(EXP)}
t₃₃, X₃: X₁+1 {O(n)}
t₃₃, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₂₀, X₀: X₀+X₁+1 {O(n)}
t₂₀, X₁: X₁ {O(n)}
t₂₀, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₀, X₃: X₁+1 {O(n)}
t₂₀, X₄: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₁, X₀: 4⋅X₀+4⋅X₁+4 {O(n)}
t₂₁, X₁: X₁ {O(n)}
t₂₁, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁ {O(EXP)}
t₂₁, X₃: X₁+1 {O(n)}
t₂₁, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₉, X₀: X₀+X₁+1 {O(n)}
t₂₉, X₁: X₁ {O(n)}
t₂₉, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁ {O(EXP)}
t₂₉, X₃: X₁+1 {O(n)}
t₂₉, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₃₀, X₀: 2⋅X₀+2⋅X₁+2 {O(n)}
t₃₀, X₁: X₁ {O(n)}
t₃₀, X₂: 2⋅X₁ {O(n)}
t₃₀, X₃: X₁+1 {O(n)}
t₃₀, X₄: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁ {O(EXP)}
t₃₁, X₀: X₀+X₁+1 {O(n)}
t₃₁, X₁: X₁ {O(n)}
t₃₁, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₃₁, X₃: X₁+1 {O(n)}
t₃₁, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₁₉, X₀: X₀+X₁+1 {O(n)}
t₁₉, X₁: X₁ {O(n)}
t₁₉, X₂: 0 {O(1)}
t₁₉, X₃: X₁+1 {O(n)}
t₁₉, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₂, X₀: X₀+X₁+1 {O(n)}
t₂₂, X₁: X₁ {O(n)}
t₂₂, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₂, X₃: X₁+1 {O(n)}
t₂₂, X₄: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₃, X₀: X₀+X₁+1 {O(n)}
t₂₃, X₁: X₁ {O(n)}
t₂₃, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₃, X₃: X₁+1 {O(n)}
t₂₃, X₄: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₅, X₀: X₀+X₁+1 {O(n)}
t₂₅, X₁: X₁ {O(n)}
t₂₅, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₅, X₃: X₁+1 {O(n)}
t₂₅, X₄: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₆, X₀: X₀+X₁+1 {O(n)}
t₂₆, X₁: X₁ {O(n)}
t₂₆, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₆, X₃: X₁+1 {O(n)}
t₂₆, X₄: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₇, X₀: X₀+X₁+1 {O(n)}
t₂₇, X₁: X₁ {O(n)}
t₂₇, X₂: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁ {O(EXP)}
t₂₇, X₃: X₁+1 {O(n)}
t₂₇, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₈, X₀: X₀+X₁+1 {O(n)}
t₂₈, X₁: X₁ {O(n)}
t₂₈, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₈, X₃: X₁+1 {O(n)}
t₂₈, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₁₅, X₀: X₀ {O(n)}
t₁₅, X₁: X₁ {O(n)}
t₁₅, X₂: X₂ {O(n)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₁ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₄, X₀: X₀ {O(n)}
t₁₄, X₁: X₁ {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: X₁ {O(n)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: 0 {O(1)}
t₁₆, X₄: X₄ {O(n)}
t₁₇, X₀: X₀+X₁+1 {O(n)}
t₁₇, X₁: X₁ {O(n)}
t₁₇, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁+X₂ {O(EXP)}
t₁₇, X₃: X₁+1 {O(n)}
t₁₇, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₁₈, X₀: X₁+1 {O(n)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁ {O(EXP)}
t₁₈, X₃: X₁+1 {O(n)}
t₁₈, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}