Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: K
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₁₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(0, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉)
t₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, 0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 19
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 20 ≤ X₀
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 20 ≤ X₁
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, K, X₈, K) :|: X₁ ≤ 19
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, 0, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 19
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉) :|: 20 ≤ X₂
t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 20 ≤ X₃
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, K, K, X₉) :|: X₃ ≤ 19
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉) :|: X₄ ≤ 19
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 20 ≤ X₄
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉) :|: 20 ≤ X₅
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉) :|: X₅ ≤ 19
t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉) :|: 20 ≤ X₆
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉) :|: X₆ ≤ 19
Preprocessing
Eliminate variables {K,X₇,X₈,X₉} that do not contribute to the problem
Found invariant X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l2
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l6
Found invariant 20 ≤ X₄ ∧ 40 ≤ X₂+X₄ ∧ 40 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l7
Found invariant 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l5
Found invariant X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l8
Found invariant 0 ≤ X₀ for location l1
Found invariant X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l4
Found invariant 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₃₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(0, X₁, X₂, X₃, X₄, X₅, X₆)
t₃₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, 0, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 19 ∧ 0 ≤ X₀
t₃₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, 0, X₃, X₄, X₅, X₆) :|: 20 ≤ X₀ ∧ 0 ≤ X₀
t₃₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: 20 ≤ X₁ ∧ X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 19 ∧ X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, 0, X₄, X₅, X₆) :|: X₂ ≤ 19 ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₃₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, 0, X₅, X₆) :|: 20 ≤ X₂ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: 20 ≤ X₃ ∧ X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆) :|: X₃ ≤ 19 ∧ X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, 0, X₆) :|: X₄ ≤ 19 ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 20 ≤ X₄ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 20 ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, 0) :|: X₅ ≤ 19 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 20 ≤ X₆ ∧ X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₆ ≤ 19 ∧ X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
MPRF for transition t₃₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, 0, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 19 ∧ 0 ≤ X₀ of depth 1:
new bound:
20 {O(1)}
MPRF:
l2 [19-X₀ ]
l1 [20-X₀ ]
Found invariant X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l2
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l6
Found invariant 20 ≤ X₄ ∧ 40 ≤ X₂+X₄ ∧ 40 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l7
Found invariant 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l5
Found invariant X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l8
Found invariant 0 ≤ X₀ for location l1
Found invariant X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l4
Found invariant 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l3
Time-Bound by TWN-Loops:
TWN-Loops: t₃₆ 840 {O(1)}
TWN-Loops:
entry: t₃₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, 0, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 19 ∧ 0 ≤ X₀
results in twn-loop: twn:Inv: [X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆) -> (X₀,X₁+1,X₂,X₃,X₄,X₅,X₆) :|: X₁ ≤ 19
order: [X₀; X₁]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₁ < 19 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 19 ∧ 19 ≤ X₁
Stabilization-Threshold for: X₁ ≤ 19
alphas_abs: 19
M: 0
N: 1
Bound: 40 {O(1)}
relevant size-bounds w.r.t. t₃₄:
Runtime-bound of t₃₄: 20 {O(1)}
Results in: 840 {O(1)}
840 {O(1)}
Found invariant 1 ≤ 0 for location l2
Found invariant 1 ≤ 0 for location l6
Found invariant 1 ≤ 0 for location l7
Found invariant 1 ≤ 0 for location l5
Found invariant 1 ≤ 0 for location l8
Found invariant 1 ≤ 0 for location l1
Found invariant 1 ≤ 0 for location l4
Found invariant 1 ≤ 0 for location l3
Found invariant X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l2
Found invariant 1 ≤ 0 for location l6
Found invariant 1 ≤ 0 for location l7
Found invariant 1 ≤ 0 for location l5
Found invariant 1 ≤ 0 for location l8
Found invariant X₀ ≤ 0 ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ 0 for location l4
Found invariant 1 ≤ 0 for location l3
Time-Bound by TWN-Loops:
TWN-Loops: t₃₇ 66403 {O(1)}
TWN-Loops:
entry: t₃₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 19 ∧ X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
results in twn-loop: twn:Inv: [X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 1+X₀] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆) -> (1+X₀,0,X₂,X₃,X₄,X₅,X₆) :|: 20 ≤ X₁ ∧ X₀ ≤ 18
entry: t₃₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(0, X₁, X₂, X₃, X₄, X₅, X₆)
results in twn-loop: twn:Inv: [0 ≤ X₀ ∧ 0 ≤ 20 ∧ 0 ≤ 20+X₀ ∧ 0 ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆) -> (X₀+1,0,X₂,X₃,X₄,X₅,X₆) :|: X₀ ≤ 19 ∧ 20 ≤ 0
order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: [[n == 0]] * X₁
Termination: true
Formula:
1 < 0 ∧ 20 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 0 < 1 ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 0 < X₀ ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < 1 ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < X₀ ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ X₀ < 18 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 20 < 0 ∧ 0 < 1
∨ X₀ < 18 ∧ 20 < 0 ∧ 0 < 1 ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 18 ∧ 20 < 0 ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ X₀ < 18 ∧ 20 < 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1
∨ X₀ < 18 ∧ 20 < 0 ∧ 0 < X₀ ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 18 ∧ 20 < 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ X₀ < 18 ∧ 20 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₀ < 18 ∧ 20 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 18 ∧ 20 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ X₀ < 18 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < 1
∨ X₀ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < 1 ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ X₀ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1
∨ X₀ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < X₀ ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ X₀ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₀ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 < 0 ∧ 0 < 1
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 < 0 ∧ 0 < 1 ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 < 0 ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 < 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 < 0 ∧ 0 < X₀ ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 < 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < 1
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < 1 ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < X₀ ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 18 ∧ 18 ≤ X₀ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₀ ∧ 20+X₀ ≤ 0
Stabilization-Threshold for: X₀ ≤ 18
alphas_abs: 18+X₀
M: 0
N: 1
Bound: 2⋅X₀+38 {O(n)}
relevant size-bounds w.r.t. t₃₆:
X₀: 19 {O(1)}
Runtime-bound of t₃₆: 840 {O(1)}
Results in: 66360 {O(1)}
order: [X₀]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
Termination: true
Formula:
20 < 0 ∧ 1 < 0
∨ 20 < 0 ∧ X₀ < 19 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 20 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 19 ∧ 19 ≤ X₀
∨ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 1 < 0
∨ 20 ≤ 0 ∧ 0 ≤ 20 ∧ X₀ < 19 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 19 ∧ 19 ≤ X₀
Stabilization-Threshold for: X₀ ≤ 19
alphas_abs: X₀+19
M: 0
N: 1
Bound: 2⋅X₀+40 {O(n)}
relevant size-bounds w.r.t. t₃₃:
X₀: 0 {O(1)}
Runtime-bound of t₃₃: 1 {O(1)}
Results in: 43 {O(1)}
66403 {O(1)}
MPRF for transition t₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, 0, X₄, X₅, X₆) :|: X₂ ≤ 19 ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ of depth 1:
new bound:
20 {O(1)}
MPRF:
l4 [19-X₂ ]
l3 [20-X₂ ]
Found invariant X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l2
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l6
Found invariant 20 ≤ X₄ ∧ 40 ≤ X₂+X₄ ∧ 40 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l7
Found invariant 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l5
Found invariant X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l8
Found invariant 0 ≤ X₀ for location l1
Found invariant X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l4
Found invariant 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l3
Time-Bound by TWN-Loops:
TWN-Loops: t₄₀ 840 {O(1)}
TWN-Loops:
entry: t₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, 0, X₄, X₅, X₆) :|: X₂ ≤ 19 ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀
results in twn-loop: twn:Inv: [X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆) -> (X₀,X₁,X₂,X₃+1,X₄,X₅,X₆) :|: X₃ ≤ 19
order: [X₀; X₂; X₃]
closed-form:
X₀: X₀
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₃ < 19 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 19 ∧ 19 ≤ X₃
Stabilization-Threshold for: X₃ ≤ 19
alphas_abs: 19
M: 0
N: 1
Bound: 40 {O(1)}
relevant size-bounds w.r.t. t₃₈:
Runtime-bound of t₃₈: 20 {O(1)}
Results in: 840 {O(1)}
840 {O(1)}
Found invariant X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l2
Found invariant 1 ≤ 0 for location l6
Found invariant 1 ≤ 0 for location l7
Found invariant 1 ≤ 0 for location l5
Found invariant 1 ≤ 0 for location l8
Found invariant 0 ≤ X₀ for location l1
Found invariant 1 ≤ 0 for location l4
Found invariant 1 ≤ 0 for location l3
Found invariant X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l2
Found invariant 1 ≤ 0 for location l6
Found invariant 1 ≤ 0 for location l7
Found invariant 1 ≤ 0 for location l5
Found invariant 1 ≤ 0 for location l8
Found invariant 0 ≤ X₀ for location l1
Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 20+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 20 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 20+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l4
Found invariant X₂ ≤ 0 ∧ 20+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l3
Time-Bound by TWN-Loops:
TWN-Loops: t₄₁ 66403 {O(1)}
TWN-Loops:
entry: t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆) :|: X₃ ≤ 19 ∧ X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀
results in twn-loop: twn:Inv: [X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 19 ≤ X₀+X₂ ∧ 20 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆) -> (X₀,X₁,1+X₂,0,X₄,X₅,X₆) :|: 20 ≤ X₃ ∧ X₂ ≤ 18
entry: t₃₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, 0, X₃, X₄, X₅, X₆) :|: 20 ≤ X₀ ∧ 0 ≤ X₀
results in twn-loop: twn:Inv: [0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ ∧ 0 ≤ 20 ∧ 0 ≤ 20+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ X₂ ∧ 20 ≤ X₀ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆) -> (X₀,X₁,X₂+1,0,X₄,X₅,X₆) :|: X₂ ≤ 19 ∧ 20 ≤ 0
order: [X₀; X₂; X₃]
closed-form:
X₀: X₀
X₂: X₂ + [[n != 0]] * n^1
X₃: [[n == 0]] * X₃
Termination: true
Formula:
1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ < 18 ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 < 0 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 < X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 20+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₂ ≤ 18 ∧ 18 ≤ X₂ ∧ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 20 ≤ X₀ ∧ X₀ ≤ 20 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 20+X₂ ∧ 20+X₂ ≤ 0
Stabilization-Threshold for: X₂ ≤ 18
alphas_abs: 18+X₂
M: 0
N: 1
Bound: 2⋅X₂+38 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₂: 19 {O(1)}
Runtime-bound of t₄₀: 840 {O(1)}
Results in: 66360 {O(1)}
order: [X₀; X₂]
closed-form:
X₀: X₀
X₂: X₂ + [[n != 0]] * n^1
Termination: true
Formula:
20 < 0 ∧ 1 < 0
∨ 20 < 0 ∧ X₂ < 19 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 20 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 19 ∧ 19 ≤ X₂
∨ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 1 < 0
∨ 20 ≤ 0 ∧ 0 ≤ 20 ∧ X₂ < 19 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 20 ≤ 0 ∧ 0 ≤ 20 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 19 ∧ 19 ≤ X₂
Stabilization-Threshold for: X₂ ≤ 19
alphas_abs: X₂+19
M: 0
N: 1
Bound: 2⋅X₂+40 {O(n)}
relevant size-bounds w.r.t. t₃₅:
X₂: 0 {O(1)}
Runtime-bound of t₃₅: 1 {O(1)}
Results in: 43 {O(1)}
66403 {O(1)}
MPRF for transition t₄₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, 0, X₆) :|: X₄ ≤ 19 ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ of depth 1:
new bound:
20 {O(1)}
MPRF:
l5 [20-X₄ ]
l8 [19-X₄ ]
l6 [19-X₄ ]
MPRF for transition t₄₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, 0) :|: X₅ ≤ 19 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ of depth 1:
new bound:
400 {O(1)}
MPRF:
l5 [-X₅ ]
l8 [19-X₅ ]
l6 [20-X₅ ]
MPRF for transition t₄₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 20 ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ of depth 1:
new bound:
400 {O(1)}
MPRF:
l5 [X₂+1-2⋅X₄ ]
l8 [X₂ ]
l6 [X₂ ]
Found invariant X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l2
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l6
Found invariant 20 ≤ X₄ ∧ 40 ≤ X₂+X₄ ∧ 40 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l7
Found invariant 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l5
Found invariant X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l8
Found invariant 0 ≤ X₀ for location l1
Found invariant X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l4
Found invariant 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l3
Time-Bound by TWN-Loops:
TWN-Loops: t₄₆ 16800 {O(1)}
TWN-Loops:
entry: t₄₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, 0) :|: X₅ ≤ 19 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
results in twn-loop: twn:Inv: [X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆) -> (X₀,X₁,X₂,X₃,X₄,X₅,X₆+1) :|: X₆ ≤ 19
order: [X₀; X₂; X₄; X₅; X₆]
closed-form:
X₀: X₀
X₂: X₂
X₄: X₄
X₅: X₅
X₆: X₆ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₆ < 19 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₆ ≤ 19 ∧ 19 ≤ X₆
Stabilization-Threshold for: X₆ ≤ 19
alphas_abs: 19
M: 0
N: 1
Bound: 40 {O(1)}
relevant size-bounds w.r.t. t₄₄:
Runtime-bound of t₄₄: 400 {O(1)}
Results in: 16800 {O(1)}
16800 {O(1)}
Found invariant X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l2
Found invariant 1 ≤ 0 for location l6
Found invariant 1 ≤ 0 for location l7
Found invariant X₄ ≤ 0 ∧ 20+X₄ ≤ X₂ ∧ 20+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l5
Found invariant 1 ≤ 0 for location l8
Found invariant 0 ≤ X₀ for location l1
Found invariant X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l4
Found invariant 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l3
knowledge_propagation leads to new time bound 16800 {O(1)} for transition t₄₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 20 ≤ X₆ ∧ X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
All Bounds
Timebounds
Overall timebound:168950 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: 20 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 840 {O(1)}
t₃₇: 66403 {O(1)}
t₃₈: 20 {O(1)}
t₃₉: 1 {O(1)}
t₄₀: 840 {O(1)}
t₄₁: 66403 {O(1)}
t₄₂: 20 {O(1)}
t₄₃: 1 {O(1)}
t₄₄: 400 {O(1)}
t₄₅: 400 {O(1)}
t₄₆: 16800 {O(1)}
t₄₇: 16800 {O(1)}
Costbounds
Overall costbound: 168950 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: 20 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 840 {O(1)}
t₃₇: 66403 {O(1)}
t₃₈: 20 {O(1)}
t₃₉: 1 {O(1)}
t₄₀: 840 {O(1)}
t₄₁: 66403 {O(1)}
t₄₂: 20 {O(1)}
t₄₃: 1 {O(1)}
t₄₄: 400 {O(1)}
t₄₅: 400 {O(1)}
t₄₆: 16800 {O(1)}
t₄₇: 16800 {O(1)}
Sizebounds
t₃₃, X₀: 0 {O(1)}
t₃₃, X₁: X₁ {O(n)}
t₃₃, X₂: X₂ {O(n)}
t₃₃, X₃: X₃ {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₅: X₅ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₄, X₀: 19 {O(1)}
t₃₄, X₁: 0 {O(1)}
t₃₄, X₂: X₂ {O(n)}
t₃₄, X₃: X₃ {O(n)}
t₃₄, X₄: X₄ {O(n)}
t₃₄, X₅: X₅ {O(n)}
t₃₄, X₆: X₆ {O(n)}
t₃₅, X₀: 20 {O(1)}
t₃₅, X₁: 20 {O(1)}
t₃₅, X₂: 0 {O(1)}
t₃₅, X₃: X₃ {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₅, X₅: X₅ {O(n)}
t₃₅, X₆: X₆ {O(n)}
t₃₆, X₀: 19 {O(1)}
t₃₆, X₁: 20 {O(1)}
t₃₆, X₂: X₂ {O(n)}
t₃₆, X₃: X₃ {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₅: X₅ {O(n)}
t₃₆, X₆: X₆ {O(n)}
t₃₇, X₀: 20 {O(1)}
t₃₇, X₁: 20 {O(1)}
t₃₇, X₂: X₂ {O(n)}
t₃₇, X₃: X₃ {O(n)}
t₃₇, X₄: X₄ {O(n)}
t₃₇, X₅: X₅ {O(n)}
t₃₇, X₆: X₆ {O(n)}
t₃₈, X₀: 20 {O(1)}
t₃₈, X₁: 20 {O(1)}
t₃₈, X₂: 19 {O(1)}
t₃₈, X₃: 0 {O(1)}
t₃₈, X₄: X₄ {O(n)}
t₃₈, X₅: X₅ {O(n)}
t₃₈, X₆: X₆ {O(n)}
t₃₉, X₀: 20 {O(1)}
t₃₉, X₁: 20 {O(1)}
t₃₉, X₂: 20 {O(1)}
t₃₉, X₃: 20 {O(1)}
t₃₉, X₄: 0 {O(1)}
t₃₉, X₅: X₅ {O(n)}
t₃₉, X₆: X₆ {O(n)}
t₄₀, X₀: 20 {O(1)}
t₄₀, X₁: 20 {O(1)}
t₄₀, X₂: 19 {O(1)}
t₄₀, X₃: 20 {O(1)}
t₄₀, X₄: X₄ {O(n)}
t₄₀, X₅: X₅ {O(n)}
t₄₀, X₆: X₆ {O(n)}
t₄₁, X₀: 20 {O(1)}
t₄₁, X₁: 20 {O(1)}
t₄₁, X₂: 20 {O(1)}
t₄₁, X₃: 20 {O(1)}
t₄₁, X₄: X₄ {O(n)}
t₄₁, X₅: X₅ {O(n)}
t₄₁, X₆: X₆ {O(n)}
t₄₂, X₀: 20 {O(1)}
t₄₂, X₁: 20 {O(1)}
t₄₂, X₂: 20 {O(1)}
t₄₂, X₃: 20 {O(1)}
t₄₂, X₄: 19 {O(1)}
t₄₂, X₅: 0 {O(1)}
t₄₂, X₆: X₆+20 {O(n)}
t₄₃, X₀: 20 {O(1)}
t₄₃, X₁: 20 {O(1)}
t₄₃, X₂: 20 {O(1)}
t₄₃, X₃: 20 {O(1)}
t₄₃, X₄: 20 {O(1)}
t₄₃, X₅: 20 {O(1)}
t₄₃, X₆: 20 {O(1)}
t₄₄, X₀: 20 {O(1)}
t₄₄, X₁: 20 {O(1)}
t₄₄, X₂: 20 {O(1)}
t₄₄, X₃: 20 {O(1)}
t₄₄, X₄: 19 {O(1)}
t₄₄, X₅: 19 {O(1)}
t₄₄, X₆: 0 {O(1)}
t₄₅, X₀: 20 {O(1)}
t₄₅, X₁: 20 {O(1)}
t₄₅, X₂: 20 {O(1)}
t₄₅, X₃: 20 {O(1)}
t₄₅, X₄: 20 {O(1)}
t₄₅, X₅: 20 {O(1)}
t₄₅, X₆: 20 {O(1)}
t₄₆, X₀: 20 {O(1)}
t₄₆, X₁: 20 {O(1)}
t₄₆, X₂: 20 {O(1)}
t₄₆, X₃: 20 {O(1)}
t₄₆, X₄: 19 {O(1)}
t₄₆, X₅: 19 {O(1)}
t₄₆, X₆: 20 {O(1)}
t₄₇, X₀: 20 {O(1)}
t₄₇, X₁: 20 {O(1)}
t₄₇, X₂: 20 {O(1)}
t₄₇, X₃: 20 {O(1)}
t₄₇, X₄: 19 {O(1)}
t₄₇, X₅: 20 {O(1)}
t₄₇, X₆: 20 {O(1)}