Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+X₁, X₁+X₂, X₂-1, X₃, X₄, X₅, X₆) :|: 1 ≤ X₀
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₀ ≤ 0
t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆) :|: 1 ≤ X₃
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0

Preprocessing

Found invariant X₂ ≤ X₆ ∧ X₀ ≤ 0 for location l2

Found invariant X₂ ≤ X₆ for location l1

Found invariant X₂ ≤ X₆ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ X₀ ≤ 0 for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+X₁, X₁+X₂, X₂-1, X₃, X₄, X₅, X₆) :|: 1 ≤ X₀ ∧ X₂ ≤ X₆
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ X₂ ≤ X₆
t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆) :|: 1 ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0

MPRF for transition t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆) :|: 1 ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

l2 [X₃ ]
l1 [X₃-1 ]

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l3

Found invariant X₂ ≤ X₆ ∧ X₀ ≤ 0 for location l2

Found invariant X₂ ≤ X₆ for location l1

Found invariant X₂ ≤ X₆ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ X₀ ≤ 0 for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₁ 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+27⋅X₃+30⋅X₆+36⋅X₄+36⋅X₅+39 {O(n^2)}

TWN-Loops:

entry: t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆) :|: 1 ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0
results in twn-loop: twn:Inv: [X₂ ≤ X₆] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆) -> (X₀+X₁,X₁+X₂,X₂-1,X₃,X₄,X₅,X₆) :|: 1 ≤ X₀
entry: t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆)
results in twn-loop: twn:Inv: [X₂ ≤ X₆] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆) -> (X₀+X₁,X₁+X₂,X₂-1,X₃,X₄,X₅,X₆) :|: 1 ≤ X₀
order: [X₂; X₁; X₀; X₆]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1
X₁: X₁ + [[n != 0]] * X₂ * n^1 + [[n != 0, n != 1]] * -1/2 * n^2 + [[n != 0, n != 1]] * 1/2 * n^1
X₀: X₀ + [[n != 0]] * X₁ * n^1 + [[n != 0, n != 1]] * 1/2⋅X₂ * n^2 + [[n != 0, n != 1]] * -1/2⋅X₂ * n^1 + [[n != 0, n != 1, n != 2]] * -1/6 * n^3 + [[n != 0, n != 1, n != 2]] * 1/2 * n^2 + [[n != 0, n != 1, n != 2]] * -1/3 * n^1
X₆: X₆

Termination: true
Formula:

1 < 0
∨ 0 < 3⋅X₂+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0
∨ 6 < 6⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6

Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 11+6⋅X₀+6⋅X₁+6⋅X₂
M: 2
N: 2
Bound: 12⋅X₀+12⋅X₁+12⋅X₂+25 {O(n)}

relevant size-bounds w.r.t. t₃:
X₀: 2⋅X₄ {O(n)}
X₁: 2⋅X₅ {O(n)}
X₂: 2⋅X₆ {O(n)}
Runtime-bound of t₃: X₃+1 {O(n)}
Results in: 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+24⋅X₄+24⋅X₅+24⋅X₆+27⋅X₃+27 {O(n^2)}

order: [X₂; X₁; X₀; X₆]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1
X₁: X₁ + [[n != 0]] * X₂ * n^1 + [[n != 0, n != 1]] * -1/2 * n^2 + [[n != 0, n != 1]] * 1/2 * n^1
X₀: X₀ + [[n != 0]] * X₁ * n^1 + [[n != 0, n != 1]] * 1/2⋅X₂ * n^2 + [[n != 0, n != 1]] * -1/2⋅X₂ * n^1 + [[n != 0, n != 1, n != 2]] * -1/6 * n^3 + [[n != 0, n != 1, n != 2]] * 1/2 * n^2 + [[n != 0, n != 1, n != 2]] * -1/3 * n^1
X₆: X₆

Termination: true
Formula:

1 < 0
∨ 0 < 3⋅X₂+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0
∨ 6 < 6⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6

Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 3+6⋅X₀+6⋅X₁+3⋅X₂
M: 0
N: 3
Bound: 12⋅X₀+12⋅X₁+6⋅X₂+10 {O(n)}

relevant size-bounds w.r.t. t₀:
X₀: X₄ {O(n)}
X₁: X₅ {O(n)}
X₂: X₆ {O(n)}
Runtime-bound of t₀: 1 {O(1)}
Results in: 12⋅X₄+12⋅X₅+6⋅X₆+12 {O(n)}

24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+27⋅X₃+30⋅X₆+36⋅X₄+36⋅X₅+39 {O(n^2)}

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l3

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ X₀ ≤ 0 for location l2

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ for location l1

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ X₀ ≤ 0 for location l3

knowledge_propagation leads to new time bound 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+28⋅X₃+30⋅X₆+36⋅X₄+36⋅X₅+41 {O(n^2)} for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ X₂ ≤ X₆

Analysing control-flow refined program

Found invariant 1+X₂ ≤ X₆ ∧ 1 ≤ X₄ for location n_l1___6

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ X₀ ≤ 0 for location n_l2___5

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l2___2

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ for location l1

Found invariant X₂ ≤ X₆ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ X₀ ≤ 0 for location l3

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l1___1

Found invariant 1+X₂ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₀ ≤ 0 for location n_l2___4

Cut unsatisfiable transition t₇₁: n_l1___3→n_l2___2

MPRF for transition t₇₀: n_l1___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___6(X₀+X₁, X₁+X₂, X₂-1, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₆ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

n_l1___6 [X₃-1 ]
n_l2___4 [X₃ ]
n_l1___3 [X₃ ]

MPRF for transition t₇₇: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___3(X₄, X₅, X₆, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₁ ≤ X₀+X₂ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

n_l1___6 [X₃-1 ]
n_l2___4 [X₃ ]
n_l1___3 [X₃-1 ]

Found invariant 1 ≤ 0 for location n_l1___6

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ X₀ ≤ 0 for location n_l2___5

Found invariant 1 ≤ 0 for location n_l1___3

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l2___2

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ for location l1

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ X₀ ≤ 0 for location l3

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l1___1

Found invariant 1 ≤ 0 for location n_l2___4

Found invariant 1+X₂ ≤ X₆ ∧ 1 ≤ X₄ for location n_l1___6

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ X₀ ≤ 0 for location n_l2___5

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l2___2

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ for location l1

Found invariant X₂ ≤ X₆ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ X₀ ≤ 0 for location l3

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l1___1

Found invariant 1+X₂ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₀ ≤ 0 for location n_l2___4

Time-Bound by TWN-Loops:

TWN-Loops: t₇₂ 120⋅X₃⋅X₅+184⋅X₃⋅X₆+48⋅X₃⋅X₄+122⋅X₃+168⋅X₅+240⋅X₆+72⋅X₄+184 {O(n^2)}

TWN-Loops:

entry: t₇₀: n_l1___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___6(X₀+X₁, X₁+X₂, X₂-1, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₆ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [1+X₂ ≤ X₆ ∧ 1 ≤ X₄] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆) -> (X₀+X₁,X₁+X₂,X₂-1,X₃,X₄,X₅,X₆) :|: X₂ ≤ X₆ ∧ X₁ ≤ X₀+X₂ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₆
entry: t₇₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___6(X₀+X₁, X₁+X₂, X₂-1, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₆ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
results in twn-loop: twn:Inv: [1+X₂ ≤ X₆ ∧ 1 ≤ X₄] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆) -> (X₀+X₁,X₁+X₂,X₂-1,X₃,X₄,X₅,X₆) :|: X₂ ≤ X₆ ∧ X₁ ≤ X₀+X₂ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₆
order: [X₂; X₁; X₀; X₄; X₆]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1
X₁: X₁ + [[n != 0]] * X₂ * n^1 + [[n != 0, n != 1]] * -1/2 * n^2 + [[n != 0, n != 1]] * 1/2 * n^1
X₀: X₀ + [[n != 0]] * X₁ * n^1 + [[n != 0, n != 1]] * 1/2⋅X₂ * n^2 + [[n != 0, n != 1]] * -1/2⋅X₂ * n^1 + [[n != 0, n != 1, n != 2]] * -1/6 * n^3 + [[n != 0, n != 1, n != 2]] * 1/2 * n^2 + [[n != 0, n != 1, n != 2]] * -1/3 * n^1
X₄: X₄
X₆: X₆

Termination: true
Formula:

0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 3⋅X₂+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 6 < 6⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 < 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 < 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ < X₆ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 1 < 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 1 < 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁

Stabilization-Threshold for: X₂ ≤ X₆
alphas_abs: X₂+X₆
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₆+2 {O(n)}
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 11+6⋅X₀+6⋅X₁+6⋅X₂
M: 2
N: 2
Bound: 12⋅X₀+12⋅X₁+12⋅X₂+25 {O(n)}
Stabilization-Threshold for: 1+X₂ ≤ X₆
alphas_abs: 1+X₂+X₆
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₆+4 {O(n)}
Stabilization-Threshold for: X₁ ≤ X₀+X₂
alphas_abs: 17+6⋅X₀+12⋅X₁+18⋅X₂
M: 2
N: 2
Bound: 12⋅X₀+24⋅X₁+36⋅X₂+37 {O(n)}

relevant size-bounds w.r.t. t₇₀:
X₀: 2⋅X₄+2⋅X₅ {O(n)}
X₁: 2⋅X₅+2⋅X₆ {O(n)}
X₂: 2⋅X₆+1 {O(n)}
X₆: 2⋅X₆ {O(n)}
Runtime-bound of t₇₀: X₃+1 {O(n)}
Results in: 120⋅X₃⋅X₅+184⋅X₃⋅X₆+48⋅X₃⋅X₄+120⋅X₅+122⋅X₃+184⋅X₆+48⋅X₄+122 {O(n^2)}

order: [X₂; X₁; X₀; X₄; X₆]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1
X₁: X₁ + [[n != 0]] * X₂ * n^1 + [[n != 0, n != 1]] * -1/2 * n^2 + [[n != 0, n != 1]] * 1/2 * n^1
X₀: X₀ + [[n != 0]] * X₁ * n^1 + [[n != 0, n != 1]] * 1/2⋅X₂ * n^2 + [[n != 0, n != 1]] * -1/2⋅X₂ * n^1 + [[n != 0, n != 1, n != 2]] * -1/6 * n^3 + [[n != 0, n != 1, n != 2]] * 1/2 * n^2 + [[n != 0, n != 1, n != 2]] * -1/3 * n^1
X₄: X₄
X₆: X₆

Termination: true
Formula:

0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 3⋅X₂+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 6 < 6⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 < 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 < 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ < X₆ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 1 < 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 1 < 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ < X₆ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁

Stabilization-Threshold for: X₂ ≤ X₆
alphas_abs: X₂+X₆
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₆+2 {O(n)}
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 3+6⋅X₀+6⋅X₁+3⋅X₂
M: 0
N: 3
Bound: 12⋅X₀+12⋅X₁+6⋅X₂+10 {O(n)}
Stabilization-Threshold for: 1+X₂ ≤ X₆
alphas_abs: 1+X₂+X₆
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₆+4 {O(n)}
Stabilization-Threshold for: X₁ ≤ X₀+X₂
alphas_abs: 6+6⋅X₀+6⋅X₁+9⋅X₂
M: 0
N: 3
Bound: 12⋅X₀+12⋅X₁+18⋅X₂+16 {O(n)}

relevant size-bounds w.r.t. t₇₄:
X₀: X₄+X₅ {O(n)}
X₁: X₅+X₆ {O(n)}
X₂: X₆+1 {O(n)}
X₆: X₆ {O(n)}
Runtime-bound of t₇₄: 1 {O(1)}
Results in: 24⋅X₄+48⋅X₅+56⋅X₆+62 {O(n)}

120⋅X₃⋅X₅+184⋅X₃⋅X₆+48⋅X₃⋅X₄+122⋅X₃+168⋅X₅+240⋅X₆+72⋅X₄+184 {O(n^2)}

Found invariant 1 ≤ 0 for location n_l1___6

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ X₀ ≤ 0 for location n_l2___5

Found invariant 1 ≤ 0 for location n_l1___3

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l2___2

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ for location l1

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ X₀ ≤ 0 for location l3

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l1___1

Found invariant 1 ≤ 0 for location n_l2___4

Found invariant X₆ ≤ 1+X₂ ∧ 1+X₂ ≤ X₆ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₄ for location n_l1___6

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ X₀ ≤ 0 for location n_l2___5

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 1+X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 2+X₁+X₅ ≤ 0 ∧ 2+X₅ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l2___2

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ for location l1

Found invariant X₆ ≤ 1+X₂ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ X₀ ≤ 0 for location l3

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l1___1

Found invariant X₆ ≤ 1+X₂ ∧ 1+X₂ ≤ X₆ ∧ 1+X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₀ ≤ 0 for location n_l2___4

knowledge_propagation leads to new time bound 120⋅X₃⋅X₅+184⋅X₃⋅X₆+48⋅X₃⋅X₄+123⋅X₃+168⋅X₅+240⋅X₆+72⋅X₄+186 {O(n^2)} for transition t₇₃: n_l1___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___4(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₂ ≤ X₆ ∧ X₁ ≤ X₀+X₂ ∧ 1+X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₄

MPRF for transition t₆₉: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___2(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₂ ≤ X₆ ∧ X₀ ≤ 0 ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0 ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0 ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

n_l2___2 [X₃ ]
n_l1___1 [X₃ ]

MPRF for transition t₇₆: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___1(X₄, X₅, X₆, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0 ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

n_l2___2 [X₃+1 ]
n_l1___1 [X₃ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:48⋅X₃⋅X₄+48⋅X₃⋅X₅+48⋅X₃⋅X₆+56⋅X₃+60⋅X₆+72⋅X₄+72⋅X₅+83 {O(n^2)}
t₀: 1 {O(1)}
t₁: 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+27⋅X₃+30⋅X₆+36⋅X₄+36⋅X₅+39 {O(n^2)}
t₂: 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+28⋅X₃+30⋅X₆+36⋅X₄+36⋅X₅+41 {O(n^2)}
t₃: X₃+1 {O(n)}
t₄: 1 {O(1)}

Costbounds

Overall costbound: 48⋅X₃⋅X₄+48⋅X₃⋅X₅+48⋅X₃⋅X₆+56⋅X₃+60⋅X₆+72⋅X₄+72⋅X₅+83 {O(n^2)}
t₀: 1 {O(1)}
t₁: 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+27⋅X₃+30⋅X₆+36⋅X₄+36⋅X₅+39 {O(n^2)}
t₂: 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+28⋅X₃+30⋅X₆+36⋅X₄+36⋅X₅+41 {O(n^2)}
t₃: X₃+1 {O(n)}
t₄: 1 {O(1)}

Sizebounds

t₀, X₀: X₄ {O(n)}
t₀, X₁: X₅ {O(n)}
t₀, X₂: X₆ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: 13824⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₄+13824⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅+13824⋅X₃⋅X₃⋅X₃⋅X₆⋅X₆⋅X₆+41472⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅+41472⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₆+41472⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+41472⋅X₃⋅X₃⋅X₃⋅X₄⋅X₆⋅X₆+41472⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₆+41472⋅X₃⋅X₃⋅X₃⋅X₅⋅X₆⋅X₆+82944⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅⋅X₆+172800⋅X₃⋅X₃⋅X₄⋅X₆⋅X₆+172800⋅X₃⋅X₃⋅X₅⋅X₆⋅X₆+179712⋅X₃⋅X₃⋅X₄⋅X₄⋅X₆+179712⋅X₃⋅X₃⋅X₅⋅X₅⋅X₆+186624⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅+186624⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+359424⋅X₃⋅X₃⋅X₄⋅X₅⋅X₆+46656⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄+46656⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅+46656⋅X₃⋅X₃⋅X₃⋅X₆⋅X₆+55296⋅X₃⋅X₃⋅X₆⋅X₆⋅X₆+62208⋅X₃⋅X₃⋅X₄⋅X₄⋅X₄+62208⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅+93312⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅+93312⋅X₃⋅X₃⋅X₃⋅X₄⋅X₆+93312⋅X₃⋅X₃⋅X₃⋅X₅⋅X₆+192960⋅X₃⋅X₃⋅X₆⋅X₆+208512⋅X₃⋅X₃⋅X₄⋅X₄+208512⋅X₃⋅X₃⋅X₅⋅X₅+239328⋅X₃⋅X₄⋅X₆⋅X₆+239328⋅X₃⋅X₅⋅X₆⋅X₆+259200⋅X₃⋅X₄⋅X₄⋅X₆+259200⋅X₃⋅X₅⋅X₅⋅X₆+279936⋅X₃⋅X₄⋅X₄⋅X₅+279936⋅X₃⋅X₄⋅X₅⋅X₅+401472⋅X₃⋅X₃⋅X₄⋅X₆+401472⋅X₃⋅X₃⋅X₅⋅X₆+417024⋅X₃⋅X₃⋅X₄⋅X₅+518400⋅X₃⋅X₄⋅X₅⋅X₆+52488⋅X₃⋅X₃⋅X₃⋅X₄+52488⋅X₃⋅X₃⋅X₃⋅X₅+52488⋅X₃⋅X₃⋅X₃⋅X₆+73440⋅X₃⋅X₆⋅X₆⋅X₆+93312⋅X₃⋅X₄⋅X₄⋅X₄+93312⋅X₃⋅X₅⋅X₅⋅X₅+110160⋅X₄⋅X₆⋅X₆+110160⋅X₅⋅X₆⋅X₆+124416⋅X₄⋅X₄⋅X₆+124416⋅X₅⋅X₅⋅X₆+139968⋅X₄⋅X₄⋅X₅+139968⋅X₄⋅X₅⋅X₅+19683⋅X₃⋅X₃⋅X₃+224208⋅X₃⋅X₃⋅X₆+232956⋅X₃⋅X₃⋅X₄+232956⋅X₃⋅X₃⋅X₅+248832⋅X₄⋅X₅⋅X₆+265500⋅X₃⋅X₆⋅X₆+310608⋅X₃⋅X₄⋅X₄+310752⋅X₃⋅X₅⋅X₅+32400⋅X₆⋅X₆⋅X₆+46656⋅X₄⋅X₄⋅X₄+46656⋅X₅⋅X₅⋅X₅+575136⋅X₃⋅X₄⋅X₆+575280⋅X₃⋅X₅⋅X₆+621360⋅X₃⋅X₄⋅X₅+121500⋅X₆⋅X₆+154224⋅X₄⋅X₄+154440⋅X₅⋅X₅+274320⋅X₄⋅X₆+274500⋅X₅⋅X₆+308664⋅X₄⋅X₅+319020⋅X₃⋅X₆+344616⋅X₃⋅X₄+344778⋅X₃⋅X₅+86751⋅X₃⋅X₃+127440⋅X₃+151200⋅X₆+169923⋅X₄+170160⋅X₅+62400 {O(n^6)}
t₁, X₁: 1152⋅X₃⋅X₃⋅X₄⋅X₅+1152⋅X₃⋅X₃⋅X₄⋅X₆+1152⋅X₃⋅X₃⋅X₅⋅X₆+576⋅X₃⋅X₃⋅X₄⋅X₄+576⋅X₃⋅X₃⋅X₅⋅X₅+576⋅X₃⋅X₃⋅X₆⋅X₆+1296⋅X₃⋅X₃⋅X₄+1296⋅X₃⋅X₃⋅X₅+1296⋅X₃⋅X₃⋅X₆+1584⋅X₃⋅X₆⋅X₆+1728⋅X₃⋅X₄⋅X₄+1728⋅X₃⋅X₅⋅X₅+3312⋅X₃⋅X₄⋅X₆+3312⋅X₃⋅X₅⋅X₆+3456⋅X₃⋅X₄⋅X₅+1080⋅X₆⋅X₆+1296⋅X₄⋅X₄+1296⋅X₅⋅X₅+2376⋅X₄⋅X₆+2376⋅X₅⋅X₆+2592⋅X₄⋅X₅+3678⋅X₃⋅X₆+3840⋅X₃⋅X₄+3840⋅X₃⋅X₅+729⋅X₃⋅X₃+2133⋅X₃+2610⋅X₆+2844⋅X₄+2847⋅X₅+1560 {O(n^4)}
t₁, X₂: 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+27⋅X₃+33⋅X₆+36⋅X₄+36⋅X₅+39 {O(n^2)}
t₁, X₃: 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+30⋅X₃+30⋅X₆+36⋅X₄+36⋅X₅+41 {O(n^2)}
t₁, X₄: 2⋅X₄ {O(n)}
t₁, X₅: 2⋅X₅ {O(n)}
t₁, X₆: 2⋅X₆ {O(n)}
t₂, X₀: 13824⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₄+13824⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅+13824⋅X₃⋅X₃⋅X₃⋅X₆⋅X₆⋅X₆+41472⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅+41472⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₆+41472⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+41472⋅X₃⋅X₃⋅X₃⋅X₄⋅X₆⋅X₆+41472⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₆+41472⋅X₃⋅X₃⋅X₃⋅X₅⋅X₆⋅X₆+82944⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅⋅X₆+172800⋅X₃⋅X₃⋅X₄⋅X₆⋅X₆+172800⋅X₃⋅X₃⋅X₅⋅X₆⋅X₆+179712⋅X₃⋅X₃⋅X₄⋅X₄⋅X₆+179712⋅X₃⋅X₃⋅X₅⋅X₅⋅X₆+186624⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅+186624⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+359424⋅X₃⋅X₃⋅X₄⋅X₅⋅X₆+46656⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄+46656⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅+46656⋅X₃⋅X₃⋅X₃⋅X₆⋅X₆+55296⋅X₃⋅X₃⋅X₆⋅X₆⋅X₆+62208⋅X₃⋅X₃⋅X₄⋅X₄⋅X₄+62208⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅+93312⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅+93312⋅X₃⋅X₃⋅X₃⋅X₄⋅X₆+93312⋅X₃⋅X₃⋅X₃⋅X₅⋅X₆+192960⋅X₃⋅X₃⋅X₆⋅X₆+208512⋅X₃⋅X₃⋅X₄⋅X₄+208512⋅X₃⋅X₃⋅X₅⋅X₅+239328⋅X₃⋅X₄⋅X₆⋅X₆+239328⋅X₃⋅X₅⋅X₆⋅X₆+259200⋅X₃⋅X₄⋅X₄⋅X₆+259200⋅X₃⋅X₅⋅X₅⋅X₆+279936⋅X₃⋅X₄⋅X₄⋅X₅+279936⋅X₃⋅X₄⋅X₅⋅X₅+401472⋅X₃⋅X₃⋅X₄⋅X₆+401472⋅X₃⋅X₃⋅X₅⋅X₆+417024⋅X₃⋅X₃⋅X₄⋅X₅+518400⋅X₃⋅X₄⋅X₅⋅X₆+52488⋅X₃⋅X₃⋅X₃⋅X₄+52488⋅X₃⋅X₃⋅X₃⋅X₅+52488⋅X₃⋅X₃⋅X₃⋅X₆+73440⋅X₃⋅X₆⋅X₆⋅X₆+93312⋅X₃⋅X₄⋅X₄⋅X₄+93312⋅X₃⋅X₅⋅X₅⋅X₅+110160⋅X₄⋅X₆⋅X₆+110160⋅X₅⋅X₆⋅X₆+124416⋅X₄⋅X₄⋅X₆+124416⋅X₅⋅X₅⋅X₆+139968⋅X₄⋅X₄⋅X₅+139968⋅X₄⋅X₅⋅X₅+19683⋅X₃⋅X₃⋅X₃+224208⋅X₃⋅X₃⋅X₆+232956⋅X₃⋅X₃⋅X₄+232956⋅X₃⋅X₃⋅X₅+248832⋅X₄⋅X₅⋅X₆+265500⋅X₃⋅X₆⋅X₆+310608⋅X₃⋅X₄⋅X₄+310752⋅X₃⋅X₅⋅X₅+32400⋅X₆⋅X₆⋅X₆+46656⋅X₄⋅X₄⋅X₄+46656⋅X₅⋅X₅⋅X₅+575136⋅X₃⋅X₄⋅X₆+575280⋅X₃⋅X₅⋅X₆+621360⋅X₃⋅X₄⋅X₅+121500⋅X₆⋅X₆+154224⋅X₄⋅X₄+154440⋅X₅⋅X₅+274320⋅X₄⋅X₆+274500⋅X₅⋅X₆+308664⋅X₄⋅X₅+319020⋅X₃⋅X₆+344616⋅X₃⋅X₄+344778⋅X₃⋅X₅+86751⋅X₃⋅X₃+127440⋅X₃+151200⋅X₆+169926⋅X₄+170160⋅X₅+62400 {O(n^6)}
t₂, X₁: 1152⋅X₃⋅X₃⋅X₄⋅X₅+1152⋅X₃⋅X₃⋅X₄⋅X₆+1152⋅X₃⋅X₃⋅X₅⋅X₆+576⋅X₃⋅X₃⋅X₄⋅X₄+576⋅X₃⋅X₃⋅X₅⋅X₅+576⋅X₃⋅X₃⋅X₆⋅X₆+1296⋅X₃⋅X₃⋅X₄+1296⋅X₃⋅X₃⋅X₅+1296⋅X₃⋅X₃⋅X₆+1584⋅X₃⋅X₆⋅X₆+1728⋅X₃⋅X₄⋅X₄+1728⋅X₃⋅X₅⋅X₅+3312⋅X₃⋅X₄⋅X₆+3312⋅X₃⋅X₅⋅X₆+3456⋅X₃⋅X₄⋅X₅+1080⋅X₆⋅X₆+1296⋅X₄⋅X₄+1296⋅X₅⋅X₅+2376⋅X₄⋅X₆+2376⋅X₅⋅X₆+2592⋅X₄⋅X₅+3678⋅X₃⋅X₆+3840⋅X₃⋅X₄+3840⋅X₃⋅X₅+729⋅X₃⋅X₃+2133⋅X₃+2610⋅X₆+2844⋅X₄+2850⋅X₅+1560 {O(n^4)}
t₂, X₂: 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+27⋅X₃+36⋅X₄+36⋅X₅+36⋅X₆+39 {O(n^2)}
t₂, X₃: 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+30⋅X₃+30⋅X₆+36⋅X₄+36⋅X₅+41 {O(n^2)}
t₂, X₄: 2⋅X₄ {O(n)}
t₂, X₅: 2⋅X₅ {O(n)}
t₂, X₆: 2⋅X₆ {O(n)}
t₃, X₀: 2⋅X₄ {O(n)}
t₃, X₁: 2⋅X₅ {O(n)}
t₃, X₂: 2⋅X₆ {O(n)}
t₃, X₃: 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+30⋅X₃+30⋅X₆+36⋅X₄+36⋅X₅+41 {O(n^2)}
t₃, X₄: 2⋅X₄ {O(n)}
t₃, X₅: 2⋅X₅ {O(n)}
t₃, X₆: 2⋅X₆ {O(n)}
t₄, X₀: 13824⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₄+13824⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅+13824⋅X₃⋅X₃⋅X₃⋅X₆⋅X₆⋅X₆+41472⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅+41472⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₆+41472⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+41472⋅X₃⋅X₃⋅X₃⋅X₄⋅X₆⋅X₆+41472⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₆+41472⋅X₃⋅X₃⋅X₃⋅X₅⋅X₆⋅X₆+82944⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅⋅X₆+172800⋅X₃⋅X₃⋅X₄⋅X₆⋅X₆+172800⋅X₃⋅X₃⋅X₅⋅X₆⋅X₆+179712⋅X₃⋅X₃⋅X₄⋅X₄⋅X₆+179712⋅X₃⋅X₃⋅X₅⋅X₅⋅X₆+186624⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅+186624⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+359424⋅X₃⋅X₃⋅X₄⋅X₅⋅X₆+46656⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄+46656⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅+46656⋅X₃⋅X₃⋅X₃⋅X₆⋅X₆+55296⋅X₃⋅X₃⋅X₆⋅X₆⋅X₆+62208⋅X₃⋅X₃⋅X₄⋅X₄⋅X₄+62208⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅+93312⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅+93312⋅X₃⋅X₃⋅X₃⋅X₄⋅X₆+93312⋅X₃⋅X₃⋅X₃⋅X₅⋅X₆+192960⋅X₃⋅X₃⋅X₆⋅X₆+208512⋅X₃⋅X₃⋅X₄⋅X₄+208512⋅X₃⋅X₃⋅X₅⋅X₅+239328⋅X₃⋅X₄⋅X₆⋅X₆+239328⋅X₃⋅X₅⋅X₆⋅X₆+259200⋅X₃⋅X₄⋅X₄⋅X₆+259200⋅X₃⋅X₅⋅X₅⋅X₆+279936⋅X₃⋅X₄⋅X₄⋅X₅+279936⋅X₃⋅X₄⋅X₅⋅X₅+401472⋅X₃⋅X₃⋅X₄⋅X₆+401472⋅X₃⋅X₃⋅X₅⋅X₆+417024⋅X₃⋅X₃⋅X₄⋅X₅+518400⋅X₃⋅X₄⋅X₅⋅X₆+52488⋅X₃⋅X₃⋅X₃⋅X₄+52488⋅X₃⋅X₃⋅X₃⋅X₅+52488⋅X₃⋅X₃⋅X₃⋅X₆+73440⋅X₃⋅X₆⋅X₆⋅X₆+93312⋅X₃⋅X₄⋅X₄⋅X₄+93312⋅X₃⋅X₅⋅X₅⋅X₅+110160⋅X₄⋅X₆⋅X₆+110160⋅X₅⋅X₆⋅X₆+124416⋅X₄⋅X₄⋅X₆+124416⋅X₅⋅X₅⋅X₆+139968⋅X₄⋅X₄⋅X₅+139968⋅X₄⋅X₅⋅X₅+19683⋅X₃⋅X₃⋅X₃+224208⋅X₃⋅X₃⋅X₆+232956⋅X₃⋅X₃⋅X₄+232956⋅X₃⋅X₃⋅X₅+248832⋅X₄⋅X₅⋅X₆+265500⋅X₃⋅X₆⋅X₆+310608⋅X₃⋅X₄⋅X₄+310752⋅X₃⋅X₅⋅X₅+32400⋅X₆⋅X₆⋅X₆+46656⋅X₄⋅X₄⋅X₄+46656⋅X₅⋅X₅⋅X₅+575136⋅X₃⋅X₄⋅X₆+575280⋅X₃⋅X₅⋅X₆+621360⋅X₃⋅X₄⋅X₅+121500⋅X₆⋅X₆+154224⋅X₄⋅X₄+154440⋅X₅⋅X₅+274320⋅X₄⋅X₆+274500⋅X₅⋅X₆+308664⋅X₄⋅X₅+319020⋅X₃⋅X₆+344616⋅X₃⋅X₄+344778⋅X₃⋅X₅+86751⋅X₃⋅X₃+127440⋅X₃+151200⋅X₆+169926⋅X₄+170160⋅X₅+62400 {O(n^6)}
t₄, X₁: 1152⋅X₃⋅X₃⋅X₄⋅X₅+1152⋅X₃⋅X₃⋅X₄⋅X₆+1152⋅X₃⋅X₃⋅X₅⋅X₆+576⋅X₃⋅X₃⋅X₄⋅X₄+576⋅X₃⋅X₃⋅X₅⋅X₅+576⋅X₃⋅X₃⋅X₆⋅X₆+1296⋅X₃⋅X₃⋅X₄+1296⋅X₃⋅X₃⋅X₅+1296⋅X₃⋅X₃⋅X₆+1584⋅X₃⋅X₆⋅X₆+1728⋅X₃⋅X₄⋅X₄+1728⋅X₃⋅X₅⋅X₅+3312⋅X₃⋅X₄⋅X₆+3312⋅X₃⋅X₅⋅X₆+3456⋅X₃⋅X₄⋅X₅+1080⋅X₆⋅X₆+1296⋅X₄⋅X₄+1296⋅X₅⋅X₅+2376⋅X₄⋅X₆+2376⋅X₅⋅X₆+2592⋅X₄⋅X₅+3678⋅X₃⋅X₆+3840⋅X₃⋅X₄+3840⋅X₃⋅X₅+729⋅X₃⋅X₃+2133⋅X₃+2610⋅X₆+2844⋅X₄+2850⋅X₅+1560 {O(n^4)}
t₄, X₂: 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+27⋅X₃+36⋅X₄+36⋅X₅+36⋅X₆+39 {O(n^2)}
t₄, X₃: 24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₃⋅X₆+30⋅X₃+30⋅X₆+36⋅X₄+36⋅X₅+41 {O(n^2)}
t₄, X₄: 2⋅X₄ {O(n)}
t₄, X₅: 2⋅X₅ {O(n)}
t₄, X₆: 2⋅X₆ {O(n)}