Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l6(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: 1 ≤ X₂ ∧ X₂+1 ≤ X₁
t₃: l1(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ ≤ 0
t₄: l1(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ X₂
t₅: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: 1 ≤ X₀
t₆: l2(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₀ ≤ 0
t₇: l3(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1)
t₈: l4(X₀, X₁, X₂) → l1(X₀, X₁, X₂-1)
t₉: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂)
t₁: l6(X₀, X₁, X₂) → l1(X₂, X₁, X₀) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁
Preprocessing
Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l2
Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l7
Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l5
Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l1
Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l4
Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l6(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: 1 ≤ X₂ ∧ X₂+1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃: l1(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₄: l1(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₅: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₆: l2(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₇: l3(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₈: l4(X₀, X₁, X₂) → l1(X₀, X₁, X₂-1) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₉: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁: l6(X₀, X₁, X₂) → l1(X₂, X₁, X₀) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁
Analysing control-flow refined program
Cut unsatisfiable transition t₃: l1→l5
Cut unsatisfiable transition t₄: l1→l5
Cut unsatisfiable transition t₂₆₇: n_l1___3→l5
Cut unsatisfiable transition t₂₆₆: n_l1___6→l5
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___6
Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___4
Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___5
Found invariant 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___3
Found invariant 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l2___2
Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l7
Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l2___9
Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___8
Found invariant 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___1
Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l5
Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l1
Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___7
MPRF for transition t₂₄₆: n_l1___6(X₀, X₁, X₂) → n_l2___5(X₀, X₁, X₂) :|: 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+X₁+2 {O(n)}
MPRF:
n_l2___5 [X₁-X₂ ]
n_l3___4 [X₁-X₂ ]
n_l1___6 [X₁+1-X₂ ]
MPRF for transition t₂₄₈: n_l2___5(X₀, X₁, X₂) → n_l3___4(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+X₁+1 {O(n)}
MPRF:
n_l2___5 [X₁-X₂ ]
n_l3___4 [X₁-X₂-1 ]
n_l1___6 [X₁-X₂ ]
MPRF for transition t₂₅₁: n_l3___4(X₀, X₁, X₂) → n_l1___6(X₀, X₁, X₂+1) :|: 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+X₁+1 {O(n)}
MPRF:
n_l2___5 [X₁-X₂ ]
n_l3___4 [X₁-X₂ ]
n_l1___6 [X₁-X₂ ]
MPRF for transition t₂₄₅: n_l1___3(X₀, X₁, X₂) → n_l2___2(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
X₀+1 {O(n)}
MPRF:
n_l2___2 [X₂ ]
n_l4___1 [X₂ ]
n_l1___3 [X₂+1 ]
MPRF for transition t₂₄₇: n_l2___2(X₀, X₁, X₂) → n_l4___1(X₀, X₁, X₂) :|: X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
X₀ {O(n)}
MPRF:
n_l2___2 [X₂ ]
n_l4___1 [X₂-1 ]
n_l1___3 [X₂ ]
MPRF for transition t₂₅₃: n_l4___1(X₀, X₁, X₂) → n_l1___3(X₀, X₁, X₂-1) :|: X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
X₀ {O(n)}
MPRF:
n_l2___2 [X₂ ]
n_l4___1 [X₂ ]
n_l1___3 [X₂ ]
CFR: Improvement to new bound with the following program:
new bound:
3⋅X₁+6⋅X₀+5 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l5, l6, l7, n_l1___3, n_l1___6, n_l2___2, n_l2___5, n_l2___9, n_l3___4, n_l3___8, n_l4___1, n_l4___7
Transitions:
t₀: l0(X₀, X₁, X₂) → l6(X₀, X₁, X₂)
t₂₄₄: l1(X₀, X₁, X₂) → n_l2___9(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₉: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁: l6(X₀, X₁, X₂) → l1(X₂, X₁, X₀) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁
t₂₆₅: n_l1___3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₂₄₅: n_l1___3(X₀, X₁, X₂) → n_l2___2(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₂₆₈: n_l1___6(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₄₆: n_l1___6(X₀, X₁, X₂) → n_l2___5(X₀, X₁, X₂) :|: 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₄₇: n_l2___2(X₀, X₁, X₂) → n_l4___1(X₀, X₁, X₂) :|: X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₂₄₈: n_l2___5(X₀, X₁, X₂) → n_l3___4(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₄₉: n_l2___9(X₀, X₁, X₂) → n_l3___8(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₅₀: n_l2___9(X₀, X₁, X₂) → n_l4___7(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₅₁: n_l3___4(X₀, X₁, X₂) → n_l1___6(X₀, X₁, X₂+1) :|: 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₅₂: n_l3___8(X₀, X₁, X₂) → n_l1___6(X₀, X₁, X₂+1) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₅₃: n_l4___1(X₀, X₁, X₂) → n_l1___3(X₀, X₁, X₂-1) :|: X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₂₅₄: n_l4___7(X₀, X₁, X₂) → n_l1___3(X₀, X₁, X₂-1) :|: X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
All Bounds
Timebounds
Overall timebound:3⋅X₁+6⋅X₀+15 {O(n)}
t₀: 1 {O(1)}
t₂₄₄: 1 {O(1)}
t₉: 1 {O(1)}
t₁: 1 {O(1)}
t₂₄₅: X₀+1 {O(n)}
t₂₆₅: 1 {O(1)}
t₂₄₆: X₀+X₁+2 {O(n)}
t₂₆₈: 1 {O(1)}
t₂₄₇: X₀ {O(n)}
t₂₄₈: X₀+X₁+1 {O(n)}
t₂₄₉: 1 {O(1)}
t₂₅₀: 1 {O(1)}
t₂₅₁: X₀+X₁+1 {O(n)}
t₂₅₂: 1 {O(1)}
t₂₅₃: X₀ {O(n)}
t₂₅₄: 1 {O(1)}
Costbounds
Overall costbound: 3⋅X₁+6⋅X₀+15 {O(n)}
t₀: 1 {O(1)}
t₂₄₄: 1 {O(1)}
t₉: 1 {O(1)}
t₁: 1 {O(1)}
t₂₄₅: X₀+1 {O(n)}
t₂₆₅: 1 {O(1)}
t₂₄₆: X₀+X₁+2 {O(n)}
t₂₆₈: 1 {O(1)}
t₂₄₇: X₀ {O(n)}
t₂₄₈: X₀+X₁+1 {O(n)}
t₂₄₉: 1 {O(1)}
t₂₅₀: 1 {O(1)}
t₂₅₁: X₀+X₁+1 {O(n)}
t₂₅₂: 1 {O(1)}
t₂₅₃: X₀ {O(n)}
t₂₅₄: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₂₄₄, X₀: X₂ {O(n)}
t₂₄₄, X₁: X₁ {O(n)}
t₂₄₄, X₂: X₀ {O(n)}
t₉, X₀: 4⋅X₂ {O(n)}
t₉, X₁: 4⋅X₁ {O(n)}
t₉, X₂: 3⋅X₀+X₁+3 {O(n)}
t₁, X₀: X₂ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₀ {O(n)}
t₂₄₅, X₀: X₂ {O(n)}
t₂₄₅, X₁: X₁ {O(n)}
t₂₄₅, X₂: X₀ {O(n)}
t₂₆₅, X₀: 2⋅X₂ {O(n)}
t₂₆₅, X₁: 2⋅X₁ {O(n)}
t₂₆₅, X₂: 0 {O(1)}
t₂₄₆, X₀: X₂ {O(n)}
t₂₄₆, X₁: X₁ {O(n)}
t₂₄₆, X₂: 2⋅X₀+X₁+2 {O(n)}
t₂₆₈, X₀: 2⋅X₂ {O(n)}
t₂₆₈, X₁: 2⋅X₁ {O(n)}
t₂₆₈, X₂: 3⋅X₀+X₁+3 {O(n)}
t₂₄₇, X₀: X₂ {O(n)}
t₂₄₇, X₁: X₁ {O(n)}
t₂₄₇, X₂: X₀ {O(n)}
t₂₄₈, X₀: X₂ {O(n)}
t₂₄₈, X₁: X₁ {O(n)}
t₂₄₈, X₂: 2⋅X₀+X₁+2 {O(n)}
t₂₄₉, X₀: X₂ {O(n)}
t₂₄₉, X₁: X₁ {O(n)}
t₂₄₉, X₂: X₀ {O(n)}
t₂₅₀, X₀: X₂ {O(n)}
t₂₅₀, X₁: X₁ {O(n)}
t₂₅₀, X₂: X₀ {O(n)}
t₂₅₁, X₀: X₂ {O(n)}
t₂₅₁, X₁: X₁ {O(n)}
t₂₅₁, X₂: 2⋅X₀+X₁+2 {O(n)}
t₂₅₂, X₀: X₂ {O(n)}
t₂₅₂, X₁: X₁ {O(n)}
t₂₅₂, X₂: X₀+1 {O(n)}
t₂₅₃, X₀: X₂ {O(n)}
t₂₅₃, X₁: X₁ {O(n)}
t₂₅₃, X₂: X₀ {O(n)}
t₂₅₄, X₀: X₂ {O(n)}
t₂₅₄, X₁: X₁ {O(n)}
t₂₅₄, X₂: X₀ {O(n)}