Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: K, L
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₆: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(1, X₁, 0, 9, 1, K, X₆, X₇, X₈, X₉)
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₃
t₃₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₂
t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(1, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉) :|: X₂+L+1 ≤ X₁+K
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(1, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉) :|: 1+X₁+L ≤ X₂+K
t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(0, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉)
t₁₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(1, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉) :|: L+1 ≤ K
t₁₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(1, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉)
t₁₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(0, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉)
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄+1 ≤ 0 ∧ X₂+1 ≤ X₃
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₄ ∧ X₂+1 ≤ X₃
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, 0, X₂, X₃, 0, X₅, 0, X₇, X₈, X₉) :|: X₂+1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₃₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄+1 ≤ 0 ∧ X₃ ≤ X₂
t₃₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₄ ∧ X₃ ≤ X₂
t₃₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, 1) :|: X₃ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, 0, X₂, X₃, 1, X₅, 1, X₇, X₈, X₉) :|: K+1 ≤ X₃
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, 0, X₂, X₃, 0, X₅, 0, X₇, X₈, X₉)
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, 0, X₂, X₃, 0, X₅, 0, X₇, X₈, X₉) :|: K+1 ≤ 0
t₂₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₁
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₂+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₃ ∧ X₂+1 ≤ X₁
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₁ ≤ X₂ ∧ X₁+1 ≤ X₃
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0) :|: X₀+1 ≤ 0
t₂₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0) :|: 1 ≤ X₀
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀+1 ≤ 0
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₀
t₁₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(0, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(0, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀+1 ≤ 0
t₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₀
t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂+L+1 ≤ X₁+K
t₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₁+L ≤ X₂+K
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(0, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉)
Preprocessing
Cut unsatisfiable transition t₂: l8→l9
Eliminate variables {X₅,X₆,X₇,X₈,X₉} that do not contribute to the problem
Found invariant X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 for location l11
Found invariant X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 for location l2
Found invariant X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 8+X₄ ≤ X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 18 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 9 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 8+X₀ ≤ X₂ ∧ X₀ ≤ 1 for location l6
Found invariant X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₁+X₄ ≤ 9 ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₁+X₃ ≤ 17 ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₁ ≤ X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ 8+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 8 ∧ X₀+X₁ ≤ 9 ∧ X₀ ≤ 1 for location l7
Found invariant X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 8+X₄ ≤ X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 18 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 9 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 8+X₀ ≤ X₂ ∧ X₀ ≤ 1 for location l5
Found invariant X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 9+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 9 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ for location l8
Found invariant X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 10 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 10 ≤ X₃+X₄ ∧ X₃ ≤ 8+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 8+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₂+X₃ ≤ 18 ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 9 ∧ X₂ ≤ 8+X₀ ∧ X₀+X₂ ≤ 10 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l1
Found invariant X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l10
Found invariant X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 for location l4
Found invariant X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l9
Found invariant X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 9 ∧ X₄ ≤ 8+X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₂+X₃ ≤ 17 ∧ X₃ ≤ 16+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 8 ∧ X₂ ≤ 15+X₀ ∧ X₀+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 0 ≤ 7+X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: K, L
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₇₄: l0(X₀, X₁, X₂, X₃, X₄) → l1(1, X₁, 0, 9, 1)
t₇₅: l1(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂+1, X₃, X₄) :|: X₂+1 ≤ X₃ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 10 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 10 ≤ X₃+X₄ ∧ X₃ ≤ 8+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 8+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₂+X₃ ≤ 18 ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 9 ∧ X₂ ≤ 8+X₀ ∧ X₀+X₂ ≤ 10 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₇₆: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 0, X₃, X₄) :|: X₃ ≤ X₂ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 10 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 10 ≤ X₃+X₄ ∧ X₃ ≤ 8+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 8+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₂+X₃ ≤ 18 ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 9 ∧ X₂ ≤ 8+X₀ ∧ X₀+X₂ ≤ 10 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₇₇: l10(X₀, X₁, X₂, X₃, X₄) → l4(1, X₁+1, X₂, X₃, X₄) :|: X₂+L+1 ≤ X₁+K ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₇₈: l10(X₀, X₁, X₂, X₃, X₄) → l4(1, X₁+1, X₂, X₃, X₄) :|: 1+X₁+L ≤ X₂+K ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₇₉: l10(X₀, X₁, X₂, X₃, X₄) → l4(0, X₁+1, X₂, X₃, X₄) :|: X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₈₀: l11(X₀, X₁, X₂, X₃, X₄) → l8(1, X₁, X₂, X₃, X₄) :|: L+1 ≤ K ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₈₁: l11(X₀, X₁, X₂, X₃, X₄) → l8(1, X₁, X₂, X₃, X₄) :|: X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₈₂: l11(X₀, X₁, X₂, X₃, X₄) → l8(0, X₁, X₂, X₃, X₄) :|: X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₈₃: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₄+1 ≤ 0 ∧ X₂+1 ≤ X₃ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₈₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₂+1 ≤ X₃ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₈₅: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, 0, X₂, X₃, 0) :|: X₂+1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₈₆: l2(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: X₄+1 ≤ 0 ∧ X₃ ≤ X₂ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₈₇: l2(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₈₈: l2(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, 0) :|: X₃ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₈₉: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, 0, X₂, X₃, 1) :|: K+1 ≤ X₃ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 9 ∧ X₄ ≤ 8+X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₂+X₃ ≤ 17 ∧ X₃ ≤ 16+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 8 ∧ X₂ ≤ 15+X₀ ∧ X₀+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 0 ≤ 7+X₀
t₉₀: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, 0, X₂, X₃, 0) :|: X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 9 ∧ X₄ ≤ 8+X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₂+X₃ ≤ 17 ∧ X₃ ≤ 16+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 8 ∧ X₂ ≤ 15+X₀ ∧ X₀+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 0 ≤ 7+X₀
t₉₁: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, 0, X₂, X₃, 0) :|: K+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 9 ∧ X₄ ≤ 8+X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₂+X₃ ≤ 17 ∧ X₃ ≤ 16+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 8 ∧ X₂ ≤ 15+X₀ ∧ X₀+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 0 ≤ 7+X₀
t₉₅: l4(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂+1, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₉₄: l4(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₂+1, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₉₂: l4(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ X₂+1 ≤ X₁ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₉₃: l4(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₂ ∧ X₁+1 ≤ X₃ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
t₉₆: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 8+X₄ ≤ X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 18 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 9 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 8+X₀ ≤ X₂ ∧ X₀ ≤ 1
t₉₇: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₀ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 8+X₄ ≤ X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 18 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 9 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 8+X₀ ≤ X₂ ∧ X₀ ≤ 1
t₉₈: l5(X₀, X₁, X₂, X₃, X₄) → l6(0, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 8+X₄ ≤ X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 18 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 9 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 8+X₀ ≤ X₂ ∧ X₀ ≤ 1
t₉₉: l7(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₁+X₄ ≤ 9 ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₁+X₃ ≤ 17 ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₁ ≤ X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ 8+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 8 ∧ X₀+X₁ ≤ 9 ∧ X₀ ≤ 1
t₁₀₀: l7(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₀ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₁+X₄ ≤ 9 ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₁+X₃ ≤ 17 ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₁ ≤ X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ 8+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 8 ∧ X₀+X₁ ≤ 9 ∧ X₀ ≤ 1
t₁₀₁: l7(X₀, X₁, X₂, X₃, X₄) → l8(0, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₁+X₄ ≤ 9 ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₁+X₃ ≤ 17 ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₁ ≤ X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ 8+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 8 ∧ X₀+X₁ ≤ 9 ∧ X₀ ≤ 1
t₁₀₃: l8(X₀, X₁, X₂, X₃, X₄) → l4(0, X₁+1, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 9+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 9 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
t₁₀₂: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₀ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 9+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 9 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
t₁₀₄: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₂+L+1 ≤ X₁+K ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₀₅: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁+L ≤ X₂+K ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₀₆: l9(X₀, X₁, X₂, X₃, X₄) → l4(0, X₁+1, X₂, X₃, X₄) :|: X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
MPRF for transition t₇₅: l1(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂+1, X₃, X₄) :|: X₂+1 ≤ X₃ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 10 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 10 ≤ X₃+X₄ ∧ X₃ ≤ 8+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 8+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₂+X₃ ≤ 18 ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 9 ∧ X₂ ≤ 8+X₀ ∧ X₀+X₂ ≤ 10 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
10 {O(1)}
MPRF:
l1 [10-X₂ ]
MPRF for transition t₈₃: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₄+1 ≤ 0 ∧ X₂+1 ≤ X₃ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 of depth 1:
new bound:
831 {O(1)}
MPRF:
l3 [80⋅X₃-80⋅X₂-8⋅X₄-103 ]
l2 [80⋅X₃-80⋅X₂-16⋅X₄-95 ]
l11 [5⋅X₃+500-80⋅X₂-16⋅X₄ ]
l7 [545-80⋅X₂-16⋅X₄ ]
l8 [545-80⋅X₂-16⋅X₄ ]
l10 [50⋅X₀+495-80⋅X₂-16⋅X₄ ]
l9 [50⋅X₀+495-80⋅X₂-16⋅X₄ ]
l4 [X₃+536-80⋅X₂-16⋅X₄ ]
MPRF for transition t₈₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₂+1 ≤ X₃ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 of depth 1:
new bound:
9 {O(1)}
MPRF:
l3 [X₃-X₂-1 ]
l2 [X₃-X₂ ]
l11 [8-X₂ ]
l7 [X₃-X₂-1 ]
l8 [8-X₂ ]
l10 [8⋅X₀-X₂ ]
l9 [8⋅X₀-X₂ ]
l4 [X₃-X₂-1 ]
MPRF for transition t₈₅: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, 0, X₂, X₃, 0) :|: X₂+1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 of depth 1:
new bound:
74 {O(1)}
MPRF:
l3 [72-9⋅X₂ ]
l2 [73-9⋅X₂-X₄ ]
l11 [72-9⋅X₂-X₄ ]
l7 [72-9⋅X₂-X₄ ]
l8 [8⋅X₃-9⋅X₂-X₄ ]
l10 [72⋅X₀-9⋅X₂-X₄ ]
l9 [72⋅X₀+8⋅X₃-9⋅X₂-X₄-72 ]
l4 [72-9⋅X₂-X₄ ]
MPRF for transition t₈₉: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, 0, X₂, X₃, 1) :|: K+1 ≤ X₃ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 9 ∧ X₄ ≤ 8+X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₂+X₃ ≤ 17 ∧ X₃ ≤ 16+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 8 ∧ X₂ ≤ 15+X₀ ∧ X₀+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 0 ≤ 7+X₀ of depth 1:
new bound:
81 {O(1)}
MPRF:
l3 [81-9⋅X₂ ]
l2 [81-9⋅X₂ ]
l11 [72-9⋅X₂ ]
l7 [8⋅X₃-9⋅X₂ ]
l8 [8⋅X₃-9⋅X₂ ]
l10 [8⋅X₃-9⋅X₂ ]
l9 [8⋅X₃-9⋅X₂ ]
l4 [72-9⋅X₂ ]
MPRF for transition t₉₀: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, 0, X₂, X₃, 0) :|: X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 9 ∧ X₄ ≤ 8+X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₂+X₃ ≤ 17 ∧ X₃ ≤ 16+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 8 ∧ X₂ ≤ 15+X₀ ∧ X₀+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 0 ≤ 7+X₀ of depth 1:
new bound:
9 {O(1)}
MPRF:
l3 [9-X₂ ]
l2 [9-X₂ ]
l11 [8-X₂ ]
l7 [8-X₂ ]
l8 [17-X₂-X₃ ]
l10 [8⋅X₀-X₂ ]
l9 [8⋅X₀+9-X₂-X₃ ]
l4 [8-X₂ ]
MPRF for transition t₉₁: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, 0, X₂, X₃, 0) :|: K+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 9 ∧ X₄ ≤ 8+X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₂+X₃ ≤ 17 ∧ X₃ ≤ 16+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 8 ∧ X₂ ≤ 15+X₀ ∧ X₀+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 0 ≤ 7+X₀ of depth 1:
new bound:
81 {O(1)}
MPRF:
l3 [81-9⋅X₂ ]
l2 [81-9⋅X₂ ]
l11 [72-9⋅X₂ ]
l7 [72-9⋅X₂ ]
l8 [8⋅X₃-9⋅X₂ ]
l10 [8⋅X₃-9⋅X₂ ]
l9 [8⋅X₃-9⋅X₂ ]
l4 [72-9⋅X₂ ]
MPRF for transition t₉₂: l4(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ X₂+1 ≤ X₁ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 of depth 1:
new bound:
10⋅X₁+18039 {O(n)}
MPRF:
l3 [81⋅X₀+81⋅X₂-10⋅X₁-575 ]
l2 [9⋅X₃+73-10⋅X₁ ]
l11 [72-X₁ ]
l7 [72-X₁ ]
l8 [8⋅X₃-X₁ ]
l10 [72-X₁ ]
l9 [8⋅X₃-X₁ ]
l4 [73-X₁ ]
MPRF for transition t₉₃: l4(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₂ ∧ X₁+1 ≤ X₃ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 of depth 1:
new bound:
X₁+1961 {O(n)}
MPRF:
l3 [8-X₁-X₃ ]
l2 [X₂-X₁-1 ]
l11 [X₂-X₁-1 ]
l7 [X₂-X₁-1 ]
l8 [X₂+8-X₁-X₃ ]
l10 [X₂-X₁-1 ]
l9 [8⋅X₀+X₂-X₁-X₃ ]
l4 [X₂-X₁ ]
MPRF for transition t₉₄: l4(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₂+1, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 of depth 1:
new bound:
X₁+2205 {O(n)}
MPRF:
l3 [-X₁ ]
l2 [X₂-X₁ ]
l11 [X₂-X₁ ]
l7 [X₂-X₁ ]
l8 [X₂-X₁ ]
l10 [X₂-X₁ ]
l9 [X₂-X₁ ]
l4 [X₂+1-X₁ ]
MPRF for transition t₉₅: l4(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂+1, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 of depth 1:
new bound:
2205 {O(1)}
MPRF:
l3 [-4⋅X₂ ]
l2 [-4⋅X₂ ]
l11 [9 ]
l7 [9 ]
l8 [9 ]
l10 [9 ]
l9 [9 ]
l4 [9 ]
MPRF for transition t₉₉: l7(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₁+X₄ ≤ 9 ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₁+X₃ ≤ 17 ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₁ ≤ X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ 8+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 8 ∧ X₀+X₁ ≤ 9 ∧ X₀ ≤ 1 of depth 1:
new bound:
X₁+6144 {O(n)}
MPRF:
l3 [X₃+8-X₁-2⋅X₂ ]
l2 [X₃+9-X₀-X₁ ]
l11 [17-X₁ ]
l7 [18-X₀-X₁ ]
l8 [17-X₁ ]
l10 [26-X₁-X₃ ]
l9 [17⋅X₀+9-X₁-X₃ ]
l4 [X₃+9-X₀-X₁ ]
MPRF for transition t₁₀₀: l7(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₀ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₁+X₄ ≤ 9 ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₁+X₃ ≤ 17 ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₁ ≤ X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ 8+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 8 ∧ X₀+X₁ ≤ 9 ∧ X₀ ≤ 1 of depth 1:
new bound:
10⋅X₁+18039 {O(n)}
MPRF:
l3 [81⋅X₀+73-10⋅X₁ ]
l2 [9⋅X₃+73-10⋅X₁ ]
l11 [72-X₁ ]
l7 [73-X₁ ]
l8 [8⋅X₃-X₁ ]
l10 [72⋅X₀-X₁ ]
l9 [72⋅X₀+8⋅X₃-X₁-72 ]
l4 [73-X₁ ]
MPRF for transition t₁₀₁: l7(X₀, X₁, X₂, X₃, X₄) → l8(0, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₁+X₄ ≤ 9 ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₁+X₃ ≤ 17 ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 1+X₁ ≤ X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ 8+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 8 ∧ X₀+X₁ ≤ 9 ∧ X₀ ≤ 1 of depth 1:
new bound:
X₁+17885 {O(n)}
MPRF:
l3 [-X₁ ]
l2 [-X₁ ]
l11 [8⋅X₃-X₁ ]
l7 [73-X₁ ]
l8 [72-X₁ ]
l10 [72⋅X₀-X₁ ]
l9 [8⋅X₃-X₁ ]
l4 [73-X₁ ]
knowledge_propagation leads to new time bound 11⋅X₁+24183 {O(n)} for transition t₈₀: l11(X₀, X₁, X₂, X₃, X₄) → l8(1, X₁, X₂, X₃, X₄) :|: L+1 ≤ K ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
knowledge_propagation leads to new time bound 11⋅X₁+24183 {O(n)} for transition t₈₁: l11(X₀, X₁, X₂, X₃, X₄) → l8(1, X₁, X₂, X₃, X₄) :|: X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
knowledge_propagation leads to new time bound 11⋅X₁+24183 {O(n)} for transition t₈₂: l11(X₀, X₁, X₂, X₃, X₄) → l8(0, X₁, X₂, X₃, X₄) :|: X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1
knowledge_propagation leads to new time bound 22⋅X₁+48366 {O(n)} for transition t₁₀₂: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₀ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 9+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 9 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 12⋅X₁+42068 {O(n)} for transition t₁₀₃: l8(X₀, X₁, X₂, X₃, X₄) → l4(0, X₁+1, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 9+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 9 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 22⋅X₁+48366 {O(n)} for transition t₁₀₄: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₂+L+1 ≤ X₁+K ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 22⋅X₁+48366 {O(n)} for transition t₁₀₅: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁+L ≤ X₂+K ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 22⋅X₁+48366 {O(n)} for transition t₁₀₆: l9(X₀, X₁, X₂, X₃, X₄) → l4(0, X₁+1, X₂, X₃, X₄) :|: X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 44⋅X₁+96732 {O(n)} for transition t₇₇: l10(X₀, X₁, X₂, X₃, X₄) → l4(1, X₁+1, X₂, X₃, X₄) :|: X₂+L+1 ≤ X₁+K ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 44⋅X₁+96732 {O(n)} for transition t₇₈: l10(X₀, X₁, X₂, X₃, X₄) → l4(1, X₁+1, X₂, X₃, X₄) :|: 1+X₁+L ≤ X₂+K ∧ X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 44⋅X₁+96732 {O(n)} for transition t₇₉: l10(X₀, X₁, X₂, X₃, X₄) → l4(0, X₁+1, X₂, X₃, X₄) :|: X₄ ≤ 1 ∧ 8+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ X₃ ≤ 9 ∧ X₃ ≤ 9+X₂ ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 10 ∧ 9 ≤ X₃ ∧ 9 ≤ X₂+X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
All Bounds
Timebounds
Overall timebound:289⋅X₁+665858 {O(n)}
t₇₄: 1 {O(1)}
t₇₅: 10 {O(1)}
t₇₆: 1 {O(1)}
t₇₇: 44⋅X₁+96732 {O(n)}
t₇₈: 44⋅X₁+96732 {O(n)}
t₇₉: 44⋅X₁+96732 {O(n)}
t₈₀: 11⋅X₁+24183 {O(n)}
t₈₁: 11⋅X₁+24183 {O(n)}
t₈₂: 11⋅X₁+24183 {O(n)}
t₈₃: 831 {O(1)}
t₈₄: 9 {O(1)}
t₈₅: 74 {O(1)}
t₈₆: 1 {O(1)}
t₈₇: 1 {O(1)}
t₈₈: 1 {O(1)}
t₈₉: 81 {O(1)}
t₉₀: 9 {O(1)}
t₉₁: 81 {O(1)}
t₉₂: 10⋅X₁+18039 {O(n)}
t₉₃: X₁+1961 {O(n)}
t₉₄: X₁+2205 {O(n)}
t₉₅: 2205 {O(1)}
t₉₆: 1 {O(1)}
t₉₇: 1 {O(1)}
t₉₈: 1 {O(1)}
t₉₉: X₁+6144 {O(n)}
t₁₀₀: 10⋅X₁+18039 {O(n)}
t₁₀₁: X₁+17885 {O(n)}
t₁₀₂: 22⋅X₁+48366 {O(n)}
t₁₀₃: 12⋅X₁+42068 {O(n)}
t₁₀₄: 22⋅X₁+48366 {O(n)}
t₁₀₅: 22⋅X₁+48366 {O(n)}
t₁₀₆: 22⋅X₁+48366 {O(n)}
Costbounds
Overall costbound: 289⋅X₁+665858 {O(n)}
t₇₄: 1 {O(1)}
t₇₅: 10 {O(1)}
t₇₆: 1 {O(1)}
t₇₇: 44⋅X₁+96732 {O(n)}
t₇₈: 44⋅X₁+96732 {O(n)}
t₇₉: 44⋅X₁+96732 {O(n)}
t₈₀: 11⋅X₁+24183 {O(n)}
t₈₁: 11⋅X₁+24183 {O(n)}
t₈₂: 11⋅X₁+24183 {O(n)}
t₈₃: 831 {O(1)}
t₈₄: 9 {O(1)}
t₈₅: 74 {O(1)}
t₈₆: 1 {O(1)}
t₈₇: 1 {O(1)}
t₈₈: 1 {O(1)}
t₈₉: 81 {O(1)}
t₉₀: 9 {O(1)}
t₉₁: 81 {O(1)}
t₉₂: 10⋅X₁+18039 {O(n)}
t₉₃: X₁+1961 {O(n)}
t₉₄: X₁+2205 {O(n)}
t₉₅: 2205 {O(1)}
t₉₆: 1 {O(1)}
t₉₇: 1 {O(1)}
t₉₈: 1 {O(1)}
t₉₉: X₁+6144 {O(n)}
t₁₀₀: 10⋅X₁+18039 {O(n)}
t₁₀₁: X₁+17885 {O(n)}
t₁₀₂: 22⋅X₁+48366 {O(n)}
t₁₀₃: 12⋅X₁+42068 {O(n)}
t₁₀₄: 22⋅X₁+48366 {O(n)}
t₁₀₅: 22⋅X₁+48366 {O(n)}
t₁₀₆: 22⋅X₁+48366 {O(n)}
Sizebounds
t₇₄, X₀: 1 {O(1)}
t₇₄, X₁: X₁ {O(n)}
t₇₄, X₂: 0 {O(1)}
t₇₄, X₃: 9 {O(1)}
t₇₄, X₄: 1 {O(1)}
t₇₅, X₀: 1 {O(1)}
t₇₅, X₁: X₁ {O(n)}
t₇₅, X₂: 9 {O(1)}
t₇₅, X₃: 9 {O(1)}
t₇₅, X₄: 1 {O(1)}
t₇₆, X₀: 1 {O(1)}
t₇₆, X₁: X₁ {O(n)}
t₇₆, X₂: 0 {O(1)}
t₇₆, X₃: 9 {O(1)}
t₇₆, X₄: 1 {O(1)}
t₇₇, X₀: 1 {O(1)}
t₇₇, X₁: 166⋅X₁+380654 {O(n)}
t₇₇, X₂: 53 {O(1)}
t₇₇, X₃: 9 {O(1)}
t₇₇, X₄: 2 {O(1)}
t₇₈, X₀: 1 {O(1)}
t₇₈, X₁: 166⋅X₁+380654 {O(n)}
t₇₈, X₂: 53 {O(1)}
t₇₈, X₃: 9 {O(1)}
t₇₈, X₄: 2 {O(1)}
t₇₉, X₀: 0 {O(1)}
t₇₉, X₁: 166⋅X₁+380654 {O(n)}
t₇₉, X₂: 53 {O(1)}
t₇₉, X₃: 9 {O(1)}
t₇₉, X₄: 2 {O(1)}
t₈₀, X₀: 1 {O(1)}
t₈₀, X₁: 166⋅X₁+380654 {O(n)}
t₈₀, X₂: 53 {O(1)}
t₈₀, X₃: 9 {O(1)}
t₈₀, X₄: 2 {O(1)}
t₈₁, X₀: 1 {O(1)}
t₈₁, X₁: 166⋅X₁+380654 {O(n)}
t₈₁, X₂: 53 {O(1)}
t₈₁, X₃: 9 {O(1)}
t₈₁, X₄: 2 {O(1)}
t₈₂, X₀: 0 {O(1)}
t₈₂, X₁: 166⋅X₁+380654 {O(n)}
t₈₂, X₂: 53 {O(1)}
t₈₂, X₃: 9 {O(1)}
t₈₂, X₄: 2 {O(1)}
t₈₃, X₀: 7 {O(1)}
t₈₃, X₁: 830⋅X₁+1903279 {O(n)}
t₈₃, X₂: 8 {O(1)}
t₈₃, X₃: 9 {O(1)}
t₈₃, X₄: 12 {O(1)}
t₈₄, X₀: 7 {O(1)}
t₈₄, X₁: 831⋅X₁+1903279 {O(n)}
t₈₄, X₂: 8 {O(1)}
t₈₄, X₃: 9 {O(1)}
t₈₄, X₄: 1 {O(1)}
t₈₅, X₀: 7 {O(1)}
t₈₅, X₁: 0 {O(1)}
t₈₅, X₂: 8 {O(1)}
t₈₅, X₃: 9 {O(1)}
t₈₅, X₄: 0 {O(1)}
t₈₆, X₀: 10 {O(1)}
t₈₆, X₁: 830⋅X₁+1903279 {O(n)}
t₈₆, X₂: 279 {O(1)}
t₈₆, X₃: 9 {O(1)}
t₈₆, X₄: 12 {O(1)}
t₈₇, X₀: 10 {O(1)}
t₈₇, X₁: 830⋅X₁+1903279 {O(n)}
t₈₇, X₂: 279 {O(1)}
t₈₇, X₃: 9 {O(1)}
t₈₇, X₄: 1 {O(1)}
t₈₈, X₀: 10 {O(1)}
t₈₈, X₁: 830⋅X₁+1903279 {O(n)}
t₈₈, X₂: 279 {O(1)}
t₈₈, X₃: 9 {O(1)}
t₈₈, X₄: 0 {O(1)}
t₈₉, X₀: 7 {O(1)}
t₈₉, X₁: 0 {O(1)}
t₈₉, X₂: 8 {O(1)}
t₈₉, X₃: 9 {O(1)}
t₈₉, X₄: 1 {O(1)}
t₉₀, X₀: 7 {O(1)}
t₉₀, X₁: 0 {O(1)}
t₉₀, X₂: 8 {O(1)}
t₉₀, X₃: 9 {O(1)}
t₉₀, X₄: 0 {O(1)}
t₉₁, X₀: 7 {O(1)}
t₉₁, X₁: 0 {O(1)}
t₉₁, X₂: 8 {O(1)}
t₉₁, X₃: 9 {O(1)}
t₉₁, X₄: 0 {O(1)}
t₉₂, X₀: 7 {O(1)}
t₉₂, X₁: 8 {O(1)}
t₉₂, X₂: 7 {O(1)}
t₉₂, X₃: 9 {O(1)}
t₉₂, X₄: 2 {O(1)}
t₉₃, X₀: 30 {O(1)}
t₉₃, X₁: 166⋅X₁+380654 {O(n)}
t₉₃, X₂: 53 {O(1)}
t₉₃, X₃: 9 {O(1)}
t₉₃, X₄: 2 {O(1)}
t₉₄, X₀: 8 {O(1)}
t₉₄, X₁: 9 {O(1)}
t₉₄, X₂: 8 {O(1)}
t₉₄, X₃: 9 {O(1)}
t₉₄, X₄: 2 {O(1)}
t₉₅, X₀: 10 {O(1)}
t₉₅, X₁: 830⋅X₁+1903279 {O(n)}
t₉₅, X₂: 279 {O(1)}
t₉₅, X₃: 9 {O(1)}
t₉₅, X₄: 12 {O(1)}
t₉₆, X₀: 20 {O(1)}
t₉₆, X₁: 1660⋅X₁+3806558 {O(n)}
t₉₆, X₂: 558 {O(1)}
t₉₆, X₃: 9 {O(1)}
t₉₆, X₄: 13 {O(1)}
t₉₇, X₀: 1 {O(1)}
t₉₇, X₁: 1660⋅X₁+3806558 {O(n)}
t₉₇, X₂: 558 {O(1)}
t₉₇, X₃: 9 {O(1)}
t₉₇, X₄: 13 {O(1)}
t₉₈, X₀: 0 {O(1)}
t₉₈, X₁: 1660⋅X₁+3806558 {O(n)}
t₉₈, X₂: 558 {O(1)}
t₉₈, X₃: 9 {O(1)}
t₉₈, X₄: 13 {O(1)}
t₉₉, X₀: 37 {O(1)}
t₉₉, X₁: 166⋅X₁+380654 {O(n)}
t₉₉, X₂: 53 {O(1)}
t₉₉, X₃: 9 {O(1)}
t₉₉, X₄: 2 {O(1)}
t₁₀₀, X₀: 1 {O(1)}
t₁₀₀, X₁: 166⋅X₁+380654 {O(n)}
t₁₀₀, X₂: 53 {O(1)}
t₁₀₀, X₃: 9 {O(1)}
t₁₀₀, X₄: 2 {O(1)}
t₁₀₁, X₀: 0 {O(1)}
t₁₀₁, X₁: 166⋅X₁+380654 {O(n)}
t₁₀₁, X₂: 53 {O(1)}
t₁₀₁, X₃: 9 {O(1)}
t₁₀₁, X₄: 2 {O(1)}
t₁₀₂, X₀: 1 {O(1)}
t₁₀₂, X₁: 166⋅X₁+380654 {O(n)}
t₁₀₂, X₂: 53 {O(1)}
t₁₀₂, X₃: 9 {O(1)}
t₁₀₂, X₄: 2 {O(1)}
t₁₀₃, X₀: 0 {O(1)}
t₁₀₃, X₁: 166⋅X₁+380654 {O(n)}
t₁₀₃, X₂: 53 {O(1)}
t₁₀₃, X₃: 9 {O(1)}
t₁₀₃, X₄: 2 {O(1)}
t₁₀₄, X₀: 1 {O(1)}
t₁₀₄, X₁: 166⋅X₁+380654 {O(n)}
t₁₀₄, X₂: 53 {O(1)}
t₁₀₄, X₃: 9 {O(1)}
t₁₀₄, X₄: 2 {O(1)}
t₁₀₅, X₀: 1 {O(1)}
t₁₀₅, X₁: 166⋅X₁+380654 {O(n)}
t₁₀₅, X₂: 53 {O(1)}
t₁₀₅, X₃: 9 {O(1)}
t₁₀₅, X₄: 2 {O(1)}
t₁₀₆, X₀: 0 {O(1)}
t₁₀₆, X₁: 166⋅X₁+380654 {O(n)}
t₁₀₆, X₂: 53 {O(1)}
t₁₀₆, X₃: 9 {O(1)}
t₁₀₆, X₄: 2 {O(1)}