Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉
Temp_Vars: U
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₃₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l11(X₀, X₂, X₂, X₄, X₄, X₆, X₆, X₈, X₈, X₁₀, X₁₀, X₁₂, X₁₂, X₁₄, X₁₄, X₁₆, X₁₆, X₁₈, X₁₈, X₀)
t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, U, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₅+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₅+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₅, X₁₈, X₁₉) :|: X₁+2 ≤ X₀ ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, 0, X₁₄, 1, X₁₆, 0, X₁₈, X₁₉) :|: 1 ≤ X₁ ∧ 1 ≤ 0 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₉ ≤ 2 ∧ 2 ≤ X₁₉ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₂₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, 0, X₁₆, 1, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₃₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, 0, X₁₆, 2, X₁₈, X₁₉) :|: 4 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, 0, X₁₆, X₁₉, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, 0, X₁₆, X₁₉, X₁₈, X₁₉) :|: 4 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 0, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ X₁+1 ∧ X₀ ≤ 1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1, X₁₆, 1, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₅ ≤ X₁₆ ∧ X₁₆ ≤ X₁₅ ∧ X₁₇ ≤ X₁₈ ∧ X₁₈ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₅ ≤ X₁₆ ∧ X₁₆ ≤ X₁₅ ∧ X₁₇ ≤ X₁₈ ∧ X₁₈ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l10(X₀, X₁₅, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l3(X₀, X₁, X₂, U, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁
t₂₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l1(X₀, X₁, X₂, X₃, X₄, U, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₃+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₃+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₇, X₁₈, X₁₉) :|: 2⋅X₇+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₇+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₅+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₅+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 1+2⋅X₇ ∧ 1 ≤ X₁₅ ∧ 0 ≤ 1+2⋅X₅ ∧ 0 ≤ 1+2⋅X₉ ∧ 0 ≤ 1+2⋅X₃ ∧ 2⋅X₉+1 ≤ X₁₅ ∧ 2⋅X₅+1 ≤ X₁₅ ∧ 2⋅X₃+1 ≤ X₁₅ ∧ 2⋅X₇+1 ≤ X₁₅ ∧ 2⋅X₅ ≤ 2⋅X₃+1 ∧ 2⋅X₉ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₇+1 ∧ 2⋅X₅ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₉+1 ∧ 2⋅X₅ ≤ 2⋅X₉+1 ∧ 2⋅X₉ ≤ 2⋅X₃+1 ∧ 2⋅X₇ ≤ 2⋅X₃+1 ∧ 2⋅X₃ ≤ 2⋅X₅+1 ∧ 2⋅X₉ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₉+1 ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₇ ∧ X₇ ≤ X₁₇ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, 0, X₁₄, 1+X₁₅, X₁₆, 0, X₁₈, X₁₉) :|: 1 ≤ X₁₇+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₃ ∧ 3 ≤ X₀ ∧ X₁₃ ≤ 1 ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₅+2 ≤ X₀ ∧ X₀ ≤ X₁₅+2 ∧ X₁₁+3 ≤ X₀ ∧ X₀ ≤ X₁₁+3
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, 1, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, 2, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ X₁₁+2 ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2⋅X₁₃+X₁₅+2 ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 1+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 2+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 2+X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 1+2⋅X₁₇, X₁₈, X₁₉) :|: X₀+X₁₅+3 ≤ 0 ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 2+2⋅X₁₇, X₁₈, X₁₉) :|: X₀+X₁₅+4 ≤ 0 ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₀+X₁₅+3 ≤ 0 ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
t₁₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₀+X₁₅+4 ≤ 0 ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇

Preprocessing

Cut unsatisfiable transition t₂₅: l10→l9

Cut unsatisfiable transition t₂₆: l10→l6

Cut unsatisfiable transition t₈: l8→l8

Cut unsatisfiable transition t₉: l8→l7

Cut unsatisfiable transition t₁₀: l8→l8

Cut unsatisfiable transition t₁₁: l8→l7

Found invariant X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ for location l11

Found invariant X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l2

Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l6

Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l7

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l5

Found invariant X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l8

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l1

Found invariant X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l4

Found invariant X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ for location l9

Found invariant 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉
Temp_Vars: U
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₃₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l11(X₀, X₂, X₂, X₄, X₄, X₆, X₆, X₈, X₈, X₁₀, X₁₀, X₁₂, X₁₂, X₁₄, X₁₄, X₁₆, X₁₆, X₁₈, X₁₈, X₀)
t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, U, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₅+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₅+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₅, X₁₈, X₁₉) :|: X₁+2 ≤ X₀ ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, 0, X₁₆, 1, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₃₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, 0, X₁₆, 2, X₁₈, X₁₉) :|: 4 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, 0, X₁₆, X₁₉, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, 0, X₁₆, X₁₉, X₁₈, X₁₉) :|: 4 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1, X₁₆, 1, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₅ ≤ X₁₆ ∧ X₁₆ ≤ X₁₅ ∧ X₁₇ ≤ X₁₈ ∧ X₁₈ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂
t₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₅ ≤ X₁₆ ∧ X₁₆ ≤ X₁₅ ∧ X₁₇ ≤ X₁₈ ∧ X₁₈ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l10(X₀, X₁₅, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l3(X₀, X₁, X₂, U, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₂₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l1(X₀, X₁, X₂, X₃, X₄, U, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₃+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₃+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₇, X₁₈, X₁₉) :|: 2⋅X₇+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₇+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₅+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₅+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 1+2⋅X₇ ∧ 1 ≤ X₁₅ ∧ 0 ≤ 1+2⋅X₅ ∧ 0 ≤ 1+2⋅X₉ ∧ 0 ≤ 1+2⋅X₃ ∧ 2⋅X₉+1 ≤ X₁₅ ∧ 2⋅X₅+1 ≤ X₁₅ ∧ 2⋅X₃+1 ≤ X₁₅ ∧ 2⋅X₇+1 ≤ X₁₅ ∧ 2⋅X₅ ≤ 2⋅X₃+1 ∧ 2⋅X₉ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₇+1 ∧ 2⋅X₅ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₉+1 ∧ 2⋅X₅ ≤ 2⋅X₉+1 ∧ 2⋅X₉ ≤ 2⋅X₃+1 ∧ 2⋅X₇ ≤ 2⋅X₃+1 ∧ 2⋅X₃ ≤ 2⋅X₅+1 ∧ 2⋅X₉ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₉+1 ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₇ ∧ X₇ ≤ X₁₇ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, 0, X₁₄, 1+X₁₅, X₁₆, 0, X₁₈, X₁₉) :|: 1 ≤ X₁₇+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₃ ∧ 3 ≤ X₀ ∧ X₁₃ ≤ 1 ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₅+2 ≤ X₀ ∧ X₀ ≤ X₁₅+2 ∧ X₁₁+3 ≤ X₀ ∧ X₀ ≤ X₁₁+3 ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, 1, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, 2, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ X₁₁+2 ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2⋅X₁₃+X₁₅+2 ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 1+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 2+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 2+X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇ ∧ X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀

MPRF for transition t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₅, X₁₈, X₁₉) :|: X₁+2 ≤ X₀ ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l10 [X₁₉-X₁ ]
l3 [X₁₉-X₁₅ ]
l1 [X₁₉-X₁₅ ]
l4 [X₁₉-X₁₅ ]
l5 [X₁₉-X₁₅ ]
l2 [X₁₉-X₁₅ ]

MPRF for transition t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l10(X₀, X₁₅, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l10 [X₁₉-X₁-1 ]
l3 [X₁₉-X₁₅ ]
l1 [X₀-X₁₅ ]
l4 [X₀-X₁₅ ]
l5 [X₁₉-X₁₅ ]
l2 [X₁₉-X₁₅ ]

MPRF for transition t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, U, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₅+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₅+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

8⋅X₀⋅X₀+17⋅X₀+12 {O(n^2)}

MPRF:

l10 [3⋅X₁₉-2⋅X₁₅ ]
l3 [X₁₇+3⋅X₁₉-3⋅X₁₅-2 ]
l1 [X₁₇+3⋅X₁₉-3⋅X₁₅-2 ]
l4 [3⋅X₀+X₁₇-3⋅X₁₅-3 ]
l5 [3⋅X₀+2⋅X₁₇-3⋅X₁₅-2 ]
l2 [X₁₇+3⋅X₁₉-3⋅X₁₅-2 ]

MPRF for transition t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l3(X₀, X₁, X₂, U, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀+9⋅X₀+9 {O(n^2)}

MPRF:

l10 [2⋅X₁₅-1 ]
l3 [X₁₇ ]
l1 [X₁₇ ]
l4 [X₁₇ ]
l5 [2⋅X₁₇+1 ]
l2 [X₁₇+1 ]

MPRF for transition t₂₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l1(X₀, X₁, X₂, X₃, X₄, U, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₃+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₃+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

5⋅X₀⋅X₀+20⋅X₀+24 {O(n^2)}

MPRF:

l10 [5⋅X₁₅ ]
l3 [3⋅X₁₅+X₁₇-3 ]
l1 [3⋅X₁₅+X₁₇-5 ]
l4 [3⋅X₁₅+X₁₇-5 ]
l5 [3⋅X₁₅+2⋅X₁₇-4 ]
l2 [3⋅X₁₅+2⋅X₁₇-4 ]

MPRF for transition t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₇, X₁₈, X₁₉) :|: 2⋅X₇+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₇+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₅+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₅+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

4⋅X₀⋅X₀+16⋅X₀+18 {O(n^2)}

MPRF:

l10 [4⋅X₁₅ ]
l3 [2⋅X₁₅+2⋅X₁₇-2 ]
l1 [2⋅X₁₅+2⋅X₁₇-2 ]
l4 [2⋅X₁₅+2⋅X₁₇-2⋅X₃-2 ]
l5 [2⋅X₇+2⋅X₁₅+2⋅X₁₇-2⋅X₃-1 ]
l2 [2⋅X₁₅+2⋅X₁₇-2 ]

MPRF for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 1+2⋅X₇ ∧ 1 ≤ X₁₅ ∧ 0 ≤ 1+2⋅X₅ ∧ 0 ≤ 1+2⋅X₉ ∧ 0 ≤ 1+2⋅X₃ ∧ 2⋅X₉+1 ≤ X₁₅ ∧ 2⋅X₅+1 ≤ X₁₅ ∧ 2⋅X₃+1 ≤ X₁₅ ∧ 2⋅X₇+1 ≤ X₁₅ ∧ 2⋅X₅ ≤ 2⋅X₃+1 ∧ 2⋅X₉ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₇+1 ∧ 2⋅X₅ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₉+1 ∧ 2⋅X₅ ≤ 2⋅X₉+1 ∧ 2⋅X₉ ≤ 2⋅X₃+1 ∧ 2⋅X₇ ≤ 2⋅X₃+1 ∧ 2⋅X₃ ≤ 2⋅X₅+1 ∧ 2⋅X₉ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₉+1 ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₇ ∧ X₇ ≤ X₁₇ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀+8⋅X₀+9 {O(n^2)}

MPRF:

l10 [2⋅X₁₅ ]
l3 [2⋅X₁₇-1 ]
l1 [2⋅X₁₇-1 ]
l4 [2⋅X₁₇-1 ]
l5 [4⋅X₇+1 ]
l2 [2⋅X₁₇-1 ]

MPRF for transition t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, 0, X₁₄, 1+X₁₅, X₁₆, 0, X₁₈, X₁₉) :|: 1 ≤ X₁₇+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₃ ∧ 3 ≤ X₀ ∧ X₁₃ ≤ 1 ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₅+2 ≤ X₀ ∧ X₀ ≤ X₁₅+2 ∧ X₁₁+3 ≤ X₀ ∧ X₀ ≤ X₁₁+3 ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

8⋅X₀+28 {O(n)}

MPRF:

l7 [X₁-X₁₅ ]
l8 [X₁-X₁₅ ]
l6 [X₁+1-X₁₅ ]

MPRF for transition t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

8⋅X₀+2 {O(n)}

MPRF:

l7 [X₁₉-X₁₅ ]
l8 [X₀-X₁₅-1 ]
l6 [X₁+1-X₁₅ ]

MPRF for transition t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, 1, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

8⋅X₀+16 {O(n)}

MPRF:

l7 [X₁-X₁₅ ]
l8 [X₁₇-X₁₅-1 ]
l6 [X₁-X₁₁ ]

MPRF for transition t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

16⋅X₀+18 {O(n)}

MPRF:

l7 [X₁₉-X₁₅ ]
l8 [2⋅X₀-X₁-X₁₅-2 ]
l6 [X₁+1-X₁₅ ]

MPRF for transition t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, 2, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

8⋅X₀+28 {O(n)}

MPRF:

l7 [X₁-X₁₅ ]
l8 [X₁-X₁₅ ]
l6 [X₁+1-X₁₅ ]

MPRF for transition t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2⋅X₁₃+X₁₅+2 ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

8⋅X₀+8 {O(n)}

MPRF:

l7 [X₀-X₁₅-2 ]
l8 [X₀-X₁₅-2 ]
l6 [X₀-X₁₁-3 ]

MPRF for transition t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

16⋅X₀+22 {O(n)}

MPRF:

l7 [X₀-X₁₅-1 ]
l8 [X₀+X₁₉-X₁-X₁₅-3 ]
l6 [X₀+2⋅X₁₁+X₁₉-X₁-3⋅X₁₅ ]

MPRF for transition t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

40⋅X₀+142 {O(n)}

MPRF:

l7 [4⋅X₁-4⋅X₁₅-7 ]
l8 [4⋅X₁+X₁₉-4⋅X₁₅-X₁₇-8 ]
l6 [4⋅X₁+9⋅X₁₁+2-13⋅X₁₅ ]

MPRF for transition t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 2+X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇ ∧ X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

8⋅X₀+8 {O(n)}

MPRF:

l7 [X₀-X₁₅-2 ]
l8 [X₀-X₁₅-2 ]
l6 [X₀-X₁₅-2 ]

MPRF for transition t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 1+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

1152⋅X₀⋅X₀+2500⋅X₀+1355 {O(n^2)}

MPRF:

l6 [2⋅X₀-X₁ ]
l8 [2⋅X₀+X₁₉-X₁-X₁₃-X₁₇ ]
l7 [X₀+X₁₃-2⋅X₁₇-1 ]

MPRF for transition t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 2+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

1536⋅X₀⋅X₀+2888⋅X₀+1350 {O(n^2)}

MPRF:

l6 [3⋅X₀-X₁ ]
l8 [4⋅X₀+X₁₇-X₁-X₁₃-2⋅X₁₉ ]
l7 [2⋅X₀-2⋅X₁₇ ]

Analysing control-flow refined program

Found invariant X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ for location l11

Found invariant X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l2

Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l6

Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 2 ∧ X₁₇ ≤ 2+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 4 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 2+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 2 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l7

Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 5 ≤ X₁₉ ∧ 8 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 5+X₁₅ ≤ X₁₉ ∧ 8 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 9 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 10 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 3 ∧ X₁₇ ≤ 3+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 6 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 6 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 7 ≤ X₁+X₁₇ ∧ 8 ≤ X₀+X₁₇ ∧ 4+X₁₅ ≤ X₁ ∧ 5+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 3 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 3+X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 3 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 3 ≤ X₁₃ ∧ 7 ≤ X₁+X₁₃ ∧ 8 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 5 ≤ X₀ for location n_l7___2

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l5

Found invariant X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l8

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l1

Found invariant 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ 1+X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 0 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 1 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l4

Found invariant X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ for location l9

Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 6 ≤ X₁₉ ∧ 10 ≤ X₁₇+X₁₉ ∧ 6 ≤ X₁₅+X₁₉ ∧ 6+X₁₅ ≤ X₁₉ ∧ 10 ≤ X₁₃+X₁₉ ∧ 11 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 12 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 4 ≤ X₁₇ ∧ 4 ≤ X₁₅+X₁₇ ∧ 8 ≤ X₁₃+X₁₇ ∧ 9 ≤ X₁+X₁₇ ∧ 10 ≤ X₀+X₁₇ ∧ 5+X₁₅ ≤ X₁ ∧ 6+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 4 ≤ X₁₃+X₁₅ ∧ 5 ≤ X₁+X₁₅ ∧ 6 ≤ X₀+X₁₅ ∧ 4 ≤ X₁₃ ∧ 9 ≤ X₁+X₁₃ ∧ 10 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 6 ≤ X₀ for location n_l7___1

Found invariant 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l3

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₉₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → n_l7___1(X₀, X₀-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2⋅X₁₃+1, X₁₄, X₁₅, X₁₆, 2⋅X₁₃+1, X₁₈, X₀) :|: 2+2⋅X₉ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₇ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ X₁₇ ≤ 2 ∧ 2 ≤ X₁₇ ∧ X₁₃ ≤ 2 ∧ 2 ≤ X₁₃ ∧ X₁₅ ≤ 0 ∧ 0 ≤ X₁₅ ∧ 4 ≤ X₀ ∧ 2+2⋅X₉ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ 2+2⋅X₉ ≤ X₀ ∧ 3+2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 2 ∧ X₁₇ ≤ 2+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 4 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 2+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 2 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₉₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → n_l7___1(X₀, X₀-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2⋅X₁₃+2, X₁₄, X₁₅, X₁₆, 2⋅X₁₃+2, X₁₈, X₀) :|: 2+2⋅X₉ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₇ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ X₁₇ ≤ 2 ∧ 2 ≤ X₁₇ ∧ X₁₃ ≤ 2 ∧ 2 ≤ X₁₃ ∧ X₁₅ ≤ 0 ∧ 0 ≤ X₁₅ ∧ 4 ≤ X₀ ∧ 2+2⋅X₉ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ 2+2⋅X₉ ≤ X₀ ∧ 4+2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 2 ∧ X₁₇ ≤ 2+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 4 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 2+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 2 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₉₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → n_l7___1(X₀, X₀-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2⋅X₁₃+2, X₁₄, X₁₅, X₁₆, 2⋅X₁₃+2, X₁₈, X₀) :|: 2+2⋅X₉ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₇ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ X₁₇ ≤ 1 ∧ 1 ≤ X₁₇ ∧ X₁₃ ≤ 1 ∧ 1 ≤ X₁₃ ∧ X₁₅ ≤ 0 ∧ 0 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ 2+2⋅X₉ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ 2+2⋅X₉ ≤ X₀ ∧ 4+2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 2 ∧ X₁₇ ≤ 2+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 4 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 2+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 2 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → n_l7___2(X₀, X₀-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2⋅X₁₃+1, X₁₄, X₁₅, X₁₆, 2⋅X₁₃+1, X₁₈, X₀) :|: 2+2⋅X₉ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₇ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ X₁₇ ≤ 1 ∧ 1 ≤ X₁₇ ∧ X₁₃ ≤ 1 ∧ 1 ≤ X₁₃ ∧ X₁₅ ≤ 0 ∧ 0 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ 2+2⋅X₉ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ 2+2⋅X₉ ≤ X₀ ∧ 3+2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 2 ∧ X₁₇ ≤ 2+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 4 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 2+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 2 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₀+28 {O(n)} for transition t₅₀₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → n_l7___1(X₀, X₀-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2⋅X₁₃+1, X₁₄, X₁₅, X₁₆, 2⋅X₁₃+1, X₁₈, X₀) :|: 2+2⋅X₉ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₇ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ 1+X₁₁ ≤ X₁₅ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ X₁₇ ≤ 2 ∧ 2 ≤ X₁₇ ∧ X₁₃ ≤ 2 ∧ 2 ≤ X₁₃ ∧ 2+2⋅X₉ ≤ X₀ ∧ 4+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ 2+2⋅X₉ ≤ X₀ ∧ 3+2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 2 ∧ X₁₇ ≤ 2+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 4 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 2+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 2 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₀+28 {O(n)} for transition t₅₀₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → n_l7___1(X₀, X₀-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2⋅X₁₃+2, X₁₄, X₁₅, X₁₆, 2⋅X₁₃+2, X₁₈, X₀) :|: 2+2⋅X₉ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₇ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ 1+X₁₁ ≤ X₁₅ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ X₁₇ ≤ 2 ∧ 2 ≤ X₁₇ ∧ X₁₃ ≤ 2 ∧ 2 ≤ X₁₃ ∧ 2+2⋅X₉ ≤ X₀ ∧ 4+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ 2+2⋅X₉ ≤ X₀ ∧ 4+2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 2 ∧ X₁₇ ≤ 2+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 4 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 2+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 2 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₀+16 {O(n)} for transition t₅₀₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → n_l7___1(X₀, X₀-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2⋅X₁₃+2, X₁₄, X₁₅, X₁₆, 2⋅X₁₃+2, X₁₈, X₀) :|: 2+2⋅X₉ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₇ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ 1+X₁₁ ≤ X₁₅ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ X₁₇ ≤ 1 ∧ 1 ≤ X₁₇ ∧ X₁₃ ≤ 1 ∧ 1 ≤ X₁₃ ∧ 3+X₁₅ ≤ X₀ ∧ 2+2⋅X₉ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ 2+2⋅X₉ ≤ X₀ ∧ 4+2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 2 ∧ X₁₇ ≤ 2+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 4 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 2+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 2 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₀+16 {O(n)} for transition t₅₀₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → n_l7___2(X₀, X₀-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2⋅X₁₃+1, X₁₄, X₁₅, X₁₆, 2⋅X₁₃+1, X₁₈, X₀) :|: 2+2⋅X₉ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₇ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ 1+X₁₁ ≤ X₁₅ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ X₁₇ ≤ 1 ∧ 1 ≤ X₁₇ ∧ X₁₃ ≤ 1 ∧ 1 ≤ X₁₃ ∧ 3+X₁₅ ≤ X₀ ∧ 2+2⋅X₉ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ 2+2⋅X₉ ≤ X₀ ∧ 3+2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 2 ∧ X₁₇ ≤ 2+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 4 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 2+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 2 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₀+17 {O(n)} for transition t₄₉₅: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → n_l7___1(X₀, X₀-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2⋅X₁₃+1, X₁₄, X₁₅, X₁₆, 2⋅X₁₃+1, X₁₈, X₀) :|: 2+2⋅X₉ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₇ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 0 ≤ X₁₅ ∧ 2+X₁₅+X₁₇ ≤ X₀ ∧ 2+2⋅X₉ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ 2+2⋅X₉ ≤ X₀ ∧ 3+2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 5 ≤ X₁₉ ∧ 8 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 5+X₁₅ ≤ X₁₉ ∧ 8 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 9 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 10 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 3 ∧ X₁₇ ≤ 3+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 6 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 6 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 7 ≤ X₁+X₁₇ ∧ 8 ≤ X₀+X₁₇ ∧ 4+X₁₅ ≤ X₁ ∧ 5+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 3 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 3+X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 3 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 3 ≤ X₁₃ ∧ 7 ≤ X₁+X₁₃ ∧ 8 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 5 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₀+17 {O(n)} for transition t₄₉₆: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → n_l7___1(X₀, X₀-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2⋅X₁₃+2, X₁₄, X₁₅, X₁₆, 2⋅X₁₃+2, X₁₈, X₀) :|: 2+2⋅X₉ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₇ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 0 ≤ X₁₅ ∧ 2+X₁₅+X₁₇ ≤ X₀ ∧ 2+2⋅X₉ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ 2+2⋅X₉ ≤ X₀ ∧ 4+2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₁₃ ≤ X₁₇ ∧ X₁₇ ≤ X₁₃ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 5 ≤ X₁₉ ∧ 8 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 5+X₁₅ ≤ X₁₉ ∧ 8 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 9 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 10 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 3 ∧ X₁₇ ≤ 3+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 6 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 6 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 7 ≤ X₁+X₁₇ ∧ 8 ≤ X₀+X₁₇ ∧ 4+X₁₅ ≤ X₁ ∧ 5+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 3 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 3+X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 3 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 3 ≤ X₁₃ ∧ 7 ≤ X₁+X₁₃ ∧ 8 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 5 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₀+17 {O(n)} for transition t₅₁₆: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2⋅X₁₃+X₁₅+2 ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 5 ≤ X₁₉ ∧ 8 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 5+X₁₅ ≤ X₁₉ ∧ 8 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 9 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 10 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 3 ∧ X₁₇ ≤ 3+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 6 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 6 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 7 ≤ X₁+X₁₇ ∧ 8 ≤ X₀+X₁₇ ∧ 4+X₁₅ ≤ X₁ ∧ 5+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 3 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 3+X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 3 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 3 ≤ X₁₃ ∧ 7 ≤ X₁+X₁₃ ∧ 8 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 5 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₀+17 {O(n)} for transition t₅₁₈: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 5 ≤ X₁₉ ∧ 8 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 5+X₁₅ ≤ X₁₉ ∧ 8 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 9 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 10 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 3 ∧ X₁₇ ≤ 3+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 6 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 6 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 7 ≤ X₁+X₁₇ ∧ 8 ≤ X₀+X₁₇ ∧ 4+X₁₅ ≤ X₁ ∧ 5+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 3 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 3+X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 3 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 3 ≤ X₁₃ ∧ 7 ≤ X₁+X₁₃ ∧ 8 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 5 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₀+17 {O(n)} for transition t₅₂₀: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 5 ≤ X₁₉ ∧ 8 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 5+X₁₅ ≤ X₁₉ ∧ 8 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 9 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 10 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 3 ∧ X₁₇ ≤ 3+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 6 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 6 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 7 ≤ X₁+X₁₇ ∧ 8 ≤ X₀+X₁₇ ∧ 4+X₁₅ ≤ X₁ ∧ 5+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 3 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 3+X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 3 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 3 ≤ X₁₃ ∧ 7 ≤ X₁+X₁₃ ∧ 8 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 5 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₀+17 {O(n)} for transition t₅₂₂: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2⋅X₁₃+X₁₅+2 ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 5 ≤ X₁₉ ∧ 8 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 5+X₁₅ ≤ X₁₉ ∧ 8 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 9 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 10 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 3 ∧ X₁₇ ≤ 3+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 6 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 6 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 7 ≤ X₁+X₁₇ ∧ 8 ≤ X₀+X₁₇ ∧ 4+X₁₅ ≤ X₁ ∧ 5+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 3 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 3+X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 3 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 3 ≤ X₁₃ ∧ 7 ≤ X₁+X₁₃ ∧ 8 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 5 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₀+17 {O(n)} for transition t₅₂₄: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 5 ≤ X₁₉ ∧ 8 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 5+X₁₅ ≤ X₁₉ ∧ 8 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 9 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 10 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 3 ∧ X₁₇ ≤ 3+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 6 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 6 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 7 ≤ X₁+X₁₇ ∧ 8 ≤ X₀+X₁₇ ∧ 4+X₁₅ ≤ X₁ ∧ 5+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 3 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 3+X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 3 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 3 ≤ X₁₃ ∧ 7 ≤ X₁+X₁₃ ∧ 8 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 5 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₀+17 {O(n)} for transition t₅₂₆: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 5 ≤ X₁₉ ∧ 8 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 5+X₁₅ ≤ X₁₉ ∧ 8 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 9 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 10 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 3 ∧ X₁₇ ≤ 3+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 6 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 6 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 7 ≤ X₁+X₁₇ ∧ 8 ≤ X₀+X₁₇ ∧ 4+X₁₅ ≤ X₁ ∧ 5+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 3 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 3+X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 3 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 3 ≤ X₁₃ ∧ 7 ≤ X₁+X₁₃ ∧ 8 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 5 ≤ X₀

All Bounds

Timebounds

Overall timebound:2709⋅X₀⋅X₀+5580⋅X₀+3059 {O(n^2)}
t₃₁: 1 {O(1)}
t₂₂: 8⋅X₀⋅X₀+17⋅X₀+12 {O(n^2)}
t₂₄: X₀+1 {O(n)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₁₈: 2⋅X₀⋅X₀+9⋅X₀+9 {O(n^2)}
t₁₉: X₀+1 {O(n)}
t₂₃: 5⋅X₀⋅X₀+20⋅X₀+24 {O(n^2)}
t₂₀: 4⋅X₀⋅X₀+16⋅X₀+18 {O(n^2)}
t₂₁: 2⋅X₀⋅X₀+8⋅X₀+9 {O(n^2)}
t₁₂: 1 {O(1)}
t₁₃: 8⋅X₀+28 {O(n)}
t₁₄: 8⋅X₀+2 {O(n)}
t₁₅: 8⋅X₀+16 {O(n)}
t₁₆: 16⋅X₀+18 {O(n)}
t₁₇: 8⋅X₀+28 {O(n)}
t₂: 8⋅X₀+8 {O(n)}
t₃: 16⋅X₀+22 {O(n)}
t₄: 1152⋅X₀⋅X₀+2500⋅X₀+1355 {O(n^2)}
t₅: 40⋅X₀+142 {O(n)}
t₆: 1536⋅X₀⋅X₀+2888⋅X₀+1350 {O(n^2)}
t₇: 8⋅X₀+8 {O(n)}

Costbounds

Overall costbound: 2709⋅X₀⋅X₀+5580⋅X₀+3059 {O(n^2)}
t₃₁: 1 {O(1)}
t₂₂: 8⋅X₀⋅X₀+17⋅X₀+12 {O(n^2)}
t₂₄: X₀+1 {O(n)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₁₈: 2⋅X₀⋅X₀+9⋅X₀+9 {O(n^2)}
t₁₉: X₀+1 {O(n)}
t₂₃: 5⋅X₀⋅X₀+20⋅X₀+24 {O(n^2)}
t₂₀: 4⋅X₀⋅X₀+16⋅X₀+18 {O(n^2)}
t₂₁: 2⋅X₀⋅X₀+8⋅X₀+9 {O(n^2)}
t₁₂: 1 {O(1)}
t₁₃: 8⋅X₀+28 {O(n)}
t₁₄: 8⋅X₀+2 {O(n)}
t₁₅: 8⋅X₀+16 {O(n)}
t₁₆: 16⋅X₀+18 {O(n)}
t₁₇: 8⋅X₀+28 {O(n)}
t₂: 8⋅X₀+8 {O(n)}
t₃: 16⋅X₀+22 {O(n)}
t₄: 1152⋅X₀⋅X₀+2500⋅X₀+1355 {O(n^2)}
t₅: 40⋅X₀+142 {O(n)}
t₆: 1536⋅X₀⋅X₀+2888⋅X₀+1350 {O(n^2)}
t₇: 8⋅X₀+8 {O(n)}

Sizebounds

t₃₁, X₀: X₀ {O(n)}
t₃₁, X₁: X₂ {O(n)}
t₃₁, X₂: X₂ {O(n)}
t₃₁, X₃: X₄ {O(n)}
t₃₁, X₄: X₄ {O(n)}
t₃₁, X₅: X₆ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: X₈ {O(n)}
t₃₁, X₈: X₈ {O(n)}
t₃₁, X₉: X₁₀ {O(n)}
t₃₁, X₁₀: X₁₀ {O(n)}
t₃₁, X₁₁: X₁₂ {O(n)}
t₃₁, X₁₂: X₁₂ {O(n)}
t₃₁, X₁₃: X₁₄ {O(n)}
t₃₁, X₁₄: X₁₄ {O(n)}
t₃₁, X₁₅: X₁₆ {O(n)}
t₃₁, X₁₆: X₁₆ {O(n)}
t₃₁, X₁₇: X₁₈ {O(n)}
t₃₁, X₁₈: X₁₈ {O(n)}
t₃₁, X₁₉: X₀ {O(n)}
t₂₂, X₀: 2⋅X₀ {O(n)}
t₂₂, X₁: 2⋅X₀+X₂+7 {O(n)}
t₂₂, X₂: 2⋅X₂ {O(n)}
t₂₂, X₄: 2⋅X₄ {O(n)}
t₂₂, X₆: 2⋅X₆ {O(n)}
t₂₂, X₈: 2⋅X₈ {O(n)}
t₂₂, X₁₀: 2⋅X₁₀ {O(n)}
t₂₂, X₁₁: 2⋅X₁₂ {O(n)}
t₂₂, X₁₂: 2⋅X₁₂ {O(n)}
t₂₂, X₁₃: 2⋅X₁₄ {O(n)}
t₂₂, X₁₄: 2⋅X₁₄ {O(n)}
t₂₂, X₁₅: X₀+3 {O(n)}
t₂₂, X₁₆: 2⋅X₁₆ {O(n)}
t₂₂, X₁₈: 2⋅X₁₈ {O(n)}
t₂₂, X₁₉: 2⋅X₀ {O(n)}
t₂₄, X₀: 2⋅X₀ {O(n)}
t₂₄, X₁: 2⋅X₀+7 {O(n)}
t₂₄, X₂: 2⋅X₂ {O(n)}
t₂₄, X₄: 2⋅X₄ {O(n)}
t₂₄, X₆: 2⋅X₆ {O(n)}
t₂₄, X₈: 2⋅X₈ {O(n)}
t₂₄, X₁₀: 2⋅X₁₀ {O(n)}
t₂₄, X₁₁: 2⋅X₁₂ {O(n)}
t₂₄, X₁₂: 2⋅X₁₂ {O(n)}
t₂₄, X₁₃: 2⋅X₁₄ {O(n)}
t₂₄, X₁₄: 2⋅X₁₄ {O(n)}
t₂₄, X₁₅: X₀+3 {O(n)}
t₂₄, X₁₆: 2⋅X₁₆ {O(n)}
t₂₄, X₁₇: X₀+3 {O(n)}
t₂₄, X₁₈: 2⋅X₁₈ {O(n)}
t₂₄, X₁₉: 2⋅X₀ {O(n)}
t₂₇, X₀: 2⋅X₀ {O(n)}
t₂₇, X₁: 2⋅X₀+7 {O(n)}
t₂₇, X₂: 2⋅X₂ {O(n)}
t₂₇, X₄: 2⋅X₄ {O(n)}
t₂₇, X₆: 2⋅X₆ {O(n)}
t₂₇, X₈: 2⋅X₈ {O(n)}
t₂₇, X₁₀: 2⋅X₁₀ {O(n)}
t₂₇, X₁₁: 2⋅X₁₂ {O(n)}
t₂₇, X₁₂: 2⋅X₁₂ {O(n)}
t₂₇, X₁₃: 1 {O(1)}
t₂₇, X₁₄: 2⋅X₁₄ {O(n)}
t₂₇, X₁₅: 0 {O(1)}
t₂₇, X₁₆: 2⋅X₁₆ {O(n)}
t₂₇, X₁₇: 2⋅X₀ {O(n)}
t₂₇, X₁₈: 2⋅X₁₈ {O(n)}
t₂₇, X₁₉: 2⋅X₀ {O(n)}
t₂₈, X₀: 2⋅X₀ {O(n)}
t₂₈, X₁: 2⋅X₀+7 {O(n)}
t₂₈, X₂: 2⋅X₂ {O(n)}
t₂₈, X₄: 2⋅X₄ {O(n)}
t₂₈, X₆: 2⋅X₆ {O(n)}
t₂₈, X₈: 2⋅X₈ {O(n)}
t₂₈, X₁₀: 2⋅X₁₀ {O(n)}
t₂₈, X₁₁: 2⋅X₁₂ {O(n)}
t₂₈, X₁₂: 2⋅X₁₂ {O(n)}
t₂₈, X₁₃: 1 {O(1)}
t₂₈, X₁₄: 2⋅X₁₄ {O(n)}
t₂₈, X₁₅: 0 {O(1)}
t₂₈, X₁₆: 2⋅X₁₆ {O(n)}
t₂₈, X₁₇: 1 {O(1)}
t₂₈, X₁₈: 2⋅X₁₈ {O(n)}
t₂₈, X₁₉: 2⋅X₀ {O(n)}
t₂₉, X₀: 2⋅X₀ {O(n)}
t₂₉, X₁: 2⋅X₀+7 {O(n)}
t₂₉, X₂: 2⋅X₂ {O(n)}
t₂₉, X₄: 2⋅X₄ {O(n)}
t₂₉, X₆: 2⋅X₆ {O(n)}
t₂₉, X₈: 2⋅X₈ {O(n)}
t₂₉, X₁₀: 2⋅X₁₀ {O(n)}
t₂₉, X₁₁: 2⋅X₁₂ {O(n)}
t₂₉, X₁₂: 2⋅X₁₂ {O(n)}
t₂₉, X₁₃: 2 {O(1)}
t₂₉, X₁₄: 2⋅X₁₄ {O(n)}
t₂₉, X₁₅: 0 {O(1)}
t₂₉, X₁₆: 2⋅X₁₆ {O(n)}
t₂₉, X₁₇: 2⋅X₀ {O(n)}
t₂₉, X₁₈: 2⋅X₁₈ {O(n)}
t₂₉, X₁₉: 2⋅X₀ {O(n)}
t₃₀, X₀: 2⋅X₀ {O(n)}
t₃₀, X₁: 2⋅X₀+7 {O(n)}
t₃₀, X₂: 2⋅X₂ {O(n)}
t₃₀, X₄: 2⋅X₄ {O(n)}
t₃₀, X₆: 2⋅X₆ {O(n)}
t₃₀, X₈: 2⋅X₈ {O(n)}
t₃₀, X₁₀: 2⋅X₁₀ {O(n)}
t₃₀, X₁₁: 2⋅X₁₂ {O(n)}
t₃₀, X₁₂: 2⋅X₁₂ {O(n)}
t₃₀, X₁₃: 2 {O(1)}
t₃₀, X₁₄: 2⋅X₁₄ {O(n)}
t₃₀, X₁₅: 0 {O(1)}
t₃₀, X₁₆: 2⋅X₁₆ {O(n)}
t₃₀, X₁₇: 2 {O(1)}
t₃₀, X₁₈: 2⋅X₁₈ {O(n)}
t₃₀, X₁₉: 2⋅X₀ {O(n)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₂ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₄ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₆ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₈ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₁₀ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₂ {O(n)}
t₀, X₁₂: X₁₂ {O(n)}
t₀, X₁₃: X₁₄ {O(n)}
t₀, X₁₄: X₁₄ {O(n)}
t₀, X₁₅: X₁₆ {O(n)}
t₀, X₁₆: X₁₆ {O(n)}
t₀, X₁₇: X₁₈ {O(n)}
t₀, X₁₈: X₁₈ {O(n)}
t₀, X₁₉: X₀ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₂ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₄ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₆ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₈ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₂ {O(n)}
t₁, X₁₂: X₁₂ {O(n)}
t₁, X₁₃: X₁₄ {O(n)}
t₁, X₁₄: X₁₄ {O(n)}
t₁, X₁₅: 1 {O(1)}
t₁, X₁₆: X₁₆ {O(n)}
t₁, X₁₇: 1 {O(1)}
t₁, X₁₈: X₁₈ {O(n)}
t₁, X₁₉: X₀ {O(n)}
t₁₈, X₀: 2⋅X₀ {O(n)}
t₁₈, X₁: 2⋅X₀+X₂+7 {O(n)}
t₁₈, X₂: 2⋅X₂ {O(n)}
t₁₈, X₄: 2⋅X₄ {O(n)}
t₁₈, X₆: 2⋅X₆ {O(n)}
t₁₈, X₈: 2⋅X₈ {O(n)}
t₁₈, X₁₀: 2⋅X₁₀ {O(n)}
t₁₈, X₁₁: 2⋅X₁₂ {O(n)}
t₁₈, X₁₂: 2⋅X₁₂ {O(n)}
t₁₈, X₁₃: 2⋅X₁₄ {O(n)}
t₁₈, X₁₄: 2⋅X₁₄ {O(n)}
t₁₈, X₁₅: X₀+3 {O(n)}
t₁₈, X₁₆: 2⋅X₁₆ {O(n)}
t₁₈, X₁₈: 2⋅X₁₈ {O(n)}
t₁₈, X₁₉: 2⋅X₀ {O(n)}
t₁₉, X₀: 2⋅X₀ {O(n)}
t₁₉, X₁: 2⋅X₀+7 {O(n)}
t₁₉, X₂: 2⋅X₂ {O(n)}
t₁₉, X₄: 2⋅X₄ {O(n)}
t₁₉, X₆: 2⋅X₆ {O(n)}
t₁₉, X₈: 2⋅X₈ {O(n)}
t₁₉, X₁₀: 2⋅X₁₀ {O(n)}
t₁₉, X₁₁: 2⋅X₁₂ {O(n)}
t₁₉, X₁₂: 2⋅X₁₂ {O(n)}
t₁₉, X₁₃: 2⋅X₁₄ {O(n)}
t₁₉, X₁₄: 2⋅X₁₄ {O(n)}
t₁₉, X₁₅: X₀+3 {O(n)}
t₁₉, X₁₆: 2⋅X₁₆ {O(n)}
t₁₉, X₁₈: 2⋅X₁₈ {O(n)}
t₁₉, X₁₉: 2⋅X₀ {O(n)}
t₂₃, X₀: 2⋅X₀ {O(n)}
t₂₃, X₁: 2⋅X₀+X₂+7 {O(n)}
t₂₃, X₂: 2⋅X₂ {O(n)}
t₂₃, X₄: 2⋅X₄ {O(n)}
t₂₃, X₆: 2⋅X₆ {O(n)}
t₂₃, X₈: 2⋅X₈ {O(n)}
t₂₃, X₁₀: 2⋅X₁₀ {O(n)}
t₂₃, X₁₁: 2⋅X₁₂ {O(n)}
t₂₃, X₁₂: 2⋅X₁₂ {O(n)}
t₂₃, X₁₃: 2⋅X₁₄ {O(n)}
t₂₃, X₁₄: 2⋅X₁₄ {O(n)}
t₂₃, X₁₅: X₀+3 {O(n)}
t₂₃, X₁₆: 2⋅X₁₆ {O(n)}
t₂₃, X₁₈: 2⋅X₁₈ {O(n)}
t₂₃, X₁₉: 2⋅X₀ {O(n)}
t₂₀, X₀: 2⋅X₀ {O(n)}
t₂₀, X₁: 2⋅X₀+X₂+7 {O(n)}
t₂₀, X₂: 2⋅X₂ {O(n)}
t₂₀, X₄: 2⋅X₄ {O(n)}
t₂₀, X₆: 2⋅X₆ {O(n)}
t₂₀, X₈: 2⋅X₈ {O(n)}
t₂₀, X₁₀: 2⋅X₁₀ {O(n)}
t₂₀, X₁₁: 2⋅X₁₂ {O(n)}
t₂₀, X₁₂: 2⋅X₁₂ {O(n)}
t₂₀, X₁₃: 2⋅X₁₄ {O(n)}
t₂₀, X₁₄: 2⋅X₁₄ {O(n)}
t₂₀, X₁₅: X₀+3 {O(n)}
t₂₀, X₁₆: 2⋅X₁₆ {O(n)}
t₂₀, X₁₈: 2⋅X₁₈ {O(n)}
t₂₀, X₁₉: 2⋅X₀ {O(n)}
t₂₁, X₀: 2⋅X₀ {O(n)}
t₂₁, X₁: 2⋅X₀+X₂+7 {O(n)}
t₂₁, X₂: 2⋅X₂ {O(n)}
t₂₁, X₄: 2⋅X₄ {O(n)}
t₂₁, X₆: 2⋅X₆ {O(n)}
t₂₁, X₈: 2⋅X₈ {O(n)}
t₂₁, X₁₀: 2⋅X₁₀ {O(n)}
t₂₁, X₁₁: 2⋅X₁₂ {O(n)}
t₂₁, X₁₂: 2⋅X₁₂ {O(n)}
t₂₁, X₁₃: 2⋅X₁₄ {O(n)}
t₂₁, X₁₄: 2⋅X₁₄ {O(n)}
t₂₁, X₁₅: X₀+3 {O(n)}
t₂₁, X₁₆: 2⋅X₁₆ {O(n)}
t₂₁, X₁₈: 2⋅X₁₈ {O(n)}
t₂₁, X₁₉: 2⋅X₀ {O(n)}
t₁₂, X₀: 48⋅X₀ {O(n)}
t₁₂, X₁: 48⋅X₀+168 {O(n)}
t₁₂, X₂: 48⋅X₂ {O(n)}
t₁₂, X₄: 48⋅X₄ {O(n)}
t₁₂, X₆: 48⋅X₆ {O(n)}
t₁₂, X₈: 48⋅X₈ {O(n)}
t₁₂, X₁₀: 48⋅X₁₀ {O(n)}
t₁₂, X₁₁: 128⋅X₀+130 {O(n)}
t₁₂, X₁₂: 48⋅X₁₂ {O(n)}
t₁₂, X₁₃: 0 {O(1)}
t₁₂, X₁₄: 48⋅X₁₄ {O(n)}
t₁₂, X₁₅: 32⋅X₀+34 {O(n)}
t₁₂, X₁₆: 48⋅X₁₆ {O(n)}
t₁₂, X₁₇: 0 {O(1)}
t₁₂, X₁₈: 48⋅X₁₈ {O(n)}
t₁₂, X₁₉: 48⋅X₀ {O(n)}
t₁₃, X₀: 48⋅X₀ {O(n)}
t₁₃, X₁: 48⋅X₀+168 {O(n)}
t₁₃, X₂: 48⋅X₂ {O(n)}
t₁₃, X₄: 48⋅X₄ {O(n)}
t₁₃, X₆: 48⋅X₆ {O(n)}
t₁₃, X₈: 48⋅X₈ {O(n)}
t₁₃, X₁₀: 48⋅X₁₀ {O(n)}
t₁₃, X₁₁: 128⋅X₀+130 {O(n)}
t₁₃, X₁₂: 48⋅X₁₂ {O(n)}
t₁₃, X₁₃: 0 {O(1)}
t₁₃, X₁₄: 48⋅X₁₄ {O(n)}
t₁₃, X₁₅: 32⋅X₀+34 {O(n)}
t₁₃, X₁₆: 48⋅X₁₆ {O(n)}
t₁₃, X₁₇: 0 {O(1)}
t₁₃, X₁₈: 48⋅X₁₈ {O(n)}
t₁₃, X₁₉: 48⋅X₀ {O(n)}
t₁₄, X₀: 24⋅X₀ {O(n)}
t₁₄, X₁: 24⋅X₀+84 {O(n)}
t₁₄, X₂: 24⋅X₂ {O(n)}
t₁₄, X₄: 24⋅X₄ {O(n)}
t₁₄, X₆: 24⋅X₆ {O(n)}
t₁₄, X₈: 24⋅X₈ {O(n)}
t₁₄, X₁₀: 24⋅X₁₀ {O(n)}
t₁₄, X₁₁: 128⋅X₀+128 {O(n)}
t₁₄, X₁₂: 24⋅X₁₂ {O(n)}
t₁₄, X₁₃: 1 {O(1)}
t₁₄, X₁₄: 24⋅X₁₄ {O(n)}
t₁₄, X₁₅: 16⋅X₀+16 {O(n)}
t₁₄, X₁₆: 24⋅X₁₆ {O(n)}
t₁₄, X₁₇: 48⋅X₀ {O(n)}
t₁₄, X₁₈: 24⋅X₁₈ {O(n)}
t₁₄, X₁₉: 24⋅X₀ {O(n)}
t₁₅, X₀: 24⋅X₀ {O(n)}
t₁₅, X₁: 24⋅X₀+84 {O(n)}
t₁₅, X₂: 24⋅X₂ {O(n)}
t₁₅, X₄: 24⋅X₄ {O(n)}
t₁₅, X₆: 24⋅X₆ {O(n)}
t₁₅, X₈: 24⋅X₈ {O(n)}
t₁₅, X₁₀: 24⋅X₁₀ {O(n)}
t₁₅, X₁₁: 128⋅X₀+128 {O(n)}
t₁₅, X₁₂: 24⋅X₁₂ {O(n)}
t₁₅, X₁₃: 1 {O(1)}
t₁₅, X₁₄: 24⋅X₁₄ {O(n)}
t₁₅, X₁₅: 16⋅X₀+16 {O(n)}
t₁₅, X₁₆: 24⋅X₁₆ {O(n)}
t₁₅, X₁₇: 1 {O(1)}
t₁₅, X₁₈: 24⋅X₁₈ {O(n)}
t₁₅, X₁₉: 24⋅X₀ {O(n)}
t₁₆, X₀: 24⋅X₀ {O(n)}
t₁₆, X₁: 24⋅X₀+84 {O(n)}
t₁₆, X₂: 24⋅X₂ {O(n)}
t₁₆, X₄: 24⋅X₄ {O(n)}
t₁₆, X₆: 24⋅X₆ {O(n)}
t₁₆, X₈: 24⋅X₈ {O(n)}
t₁₆, X₁₀: 24⋅X₁₀ {O(n)}
t₁₆, X₁₁: 128⋅X₀+128 {O(n)}
t₁₆, X₁₂: 24⋅X₁₂ {O(n)}
t₁₆, X₁₃: 2 {O(1)}
t₁₆, X₁₄: 24⋅X₁₄ {O(n)}
t₁₆, X₁₅: 16⋅X₀+16 {O(n)}
t₁₆, X₁₆: 24⋅X₁₆ {O(n)}
t₁₆, X₁₇: 48⋅X₀ {O(n)}
t₁₆, X₁₈: 24⋅X₁₈ {O(n)}
t₁₆, X₁₉: 24⋅X₀ {O(n)}
t₁₇, X₀: 24⋅X₀ {O(n)}
t₁₇, X₁: 24⋅X₀+84 {O(n)}
t₁₇, X₂: 24⋅X₂ {O(n)}
t₁₇, X₄: 24⋅X₄ {O(n)}
t₁₇, X₆: 24⋅X₆ {O(n)}
t₁₇, X₈: 24⋅X₈ {O(n)}
t₁₇, X₁₀: 24⋅X₁₀ {O(n)}
t₁₇, X₁₁: 128⋅X₀+128 {O(n)}
t₁₇, X₁₂: 24⋅X₁₂ {O(n)}
t₁₇, X₁₃: 2 {O(1)}
t₁₇, X₁₄: 24⋅X₁₄ {O(n)}
t₁₇, X₁₅: 16⋅X₀+16 {O(n)}
t₁₇, X₁₆: 24⋅X₁₆ {O(n)}
t₁₇, X₁₇: 2 {O(1)}
t₁₇, X₁₈: 24⋅X₁₈ {O(n)}
t₁₇, X₁₉: 24⋅X₀ {O(n)}
t₂, X₀: 24⋅X₀ {O(n)}
t₂, X₁: 24⋅X₀+84 {O(n)}
t₂, X₂: 24⋅X₂ {O(n)}
t₂, X₄: 24⋅X₄ {O(n)}
t₂, X₆: 24⋅X₆ {O(n)}
t₂, X₈: 24⋅X₈ {O(n)}
t₂, X₁₀: 24⋅X₁₀ {O(n)}
t₂, X₁₁: 64⋅X₀+64 {O(n)}
t₂, X₁₂: 24⋅X₁₂ {O(n)}
t₂, X₁₃: 10776⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅X₀+2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅5376⋅X₀⋅X₀+2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅5434+6 {O(EXP)}
t₂, X₁₄: 24⋅X₁₄ {O(n)}
t₂, X₁₅: 16⋅X₀+16 {O(n)}
t₂, X₁₆: 24⋅X₁₆ {O(n)}
t₂, X₁₇: 10776⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅X₀+2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅5376⋅X₀⋅X₀+2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅5434+6 {O(EXP)}
t₂, X₁₈: 24⋅X₁₈ {O(n)}
t₂, X₁₉: 24⋅X₀ {O(n)}
t₃, X₀: 24⋅X₀ {O(n)}
t₃, X₁: 24⋅X₀+84 {O(n)}
t₃, X₂: 24⋅X₂ {O(n)}
t₃, X₄: 24⋅X₄ {O(n)}
t₃, X₆: 24⋅X₆ {O(n)}
t₃, X₈: 24⋅X₈ {O(n)}
t₃, X₁₀: 24⋅X₁₀ {O(n)}
t₃, X₁₁: 1280⋅X₀+20⋅X₁₂+1280 {O(n)}
t₃, X₁₂: 24⋅X₁₂ {O(n)}
t₃, X₁₃: 10752⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅X₀⋅X₀+10868⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)+21552⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅X₀+24 {O(EXP)}
t₃, X₁₄: 24⋅X₁₄ {O(n)}
t₃, X₁₅: 16⋅X₀+16 {O(n)}
t₃, X₁₆: 24⋅X₁₆ {O(n)}
t₃, X₁₇: 100⋅X₀ {O(n)}
t₃, X₁₈: 24⋅X₁₈ {O(n)}
t₃, X₁₉: 24⋅X₀ {O(n)}
t₄, X₀: 24⋅X₀ {O(n)}
t₄, X₁: 24⋅X₀+84 {O(n)}
t₄, X₂: 24⋅X₂ {O(n)}
t₄, X₄: 24⋅X₄ {O(n)}
t₄, X₆: 24⋅X₆ {O(n)}
t₄, X₈: 24⋅X₈ {O(n)}
t₄, X₁₀: 24⋅X₁₀ {O(n)}
t₄, X₁₁: 512⋅X₀+8⋅X₁₂+512 {O(n)}
t₄, X₁₂: 24⋅X₁₂ {O(n)}
t₄, X₁₃: 2688⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅X₀⋅X₀+2717⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)+2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅5388⋅X₀ {O(EXP)}
t₄, X₁₄: 24⋅X₁₄ {O(n)}
t₄, X₁₅: 16⋅X₀+16 {O(n)}
t₄, X₁₆: 24⋅X₁₆ {O(n)}
t₄, X₁₇: 2688⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅X₀⋅X₀+2717⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)+2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅5388⋅X₀ {O(EXP)}
t₄, X₁₈: 24⋅X₁₈ {O(n)}
t₄, X₁₉: 24⋅X₀ {O(n)}
t₅, X₀: 24⋅X₀ {O(n)}
t₅, X₁: 24⋅X₀+84 {O(n)}
t₅, X₂: 24⋅X₂ {O(n)}
t₅, X₄: 24⋅X₄ {O(n)}
t₅, X₆: 24⋅X₆ {O(n)}
t₅, X₈: 24⋅X₈ {O(n)}
t₅, X₁₀: 24⋅X₁₀ {O(n)}
t₅, X₁₁: 1280⋅X₀+20⋅X₁₂+1280 {O(n)}
t₅, X₁₂: 24⋅X₁₂ {O(n)}
t₅, X₁₃: 10752⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅X₀⋅X₀+10868⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)+21552⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅X₀+24 {O(EXP)}
t₅, X₁₄: 24⋅X₁₄ {O(n)}
t₅, X₁₅: 16⋅X₀+16 {O(n)}
t₅, X₁₆: 24⋅X₁₆ {O(n)}
t₅, X₁₇: 100⋅X₀ {O(n)}
t₅, X₁₈: 24⋅X₁₈ {O(n)}
t₅, X₁₉: 24⋅X₀ {O(n)}
t₆, X₀: 24⋅X₀ {O(n)}
t₆, X₁: 24⋅X₀+84 {O(n)}
t₆, X₂: 24⋅X₂ {O(n)}
t₆, X₄: 24⋅X₄ {O(n)}
t₆, X₆: 24⋅X₆ {O(n)}
t₆, X₈: 24⋅X₈ {O(n)}
t₆, X₁₀: 24⋅X₁₀ {O(n)}
t₆, X₁₁: 512⋅X₀+8⋅X₁₂+512 {O(n)}
t₆, X₁₂: 24⋅X₁₂ {O(n)}
t₆, X₁₃: 2688⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅X₀⋅X₀+2717⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)+2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅5388⋅X₀ {O(EXP)}
t₆, X₁₄: 24⋅X₁₄ {O(n)}
t₆, X₁₅: 16⋅X₀+16 {O(n)}
t₆, X₁₆: 24⋅X₁₆ {O(n)}
t₆, X₁₇: 2688⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅X₀⋅X₀+2717⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)+2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅5388⋅X₀ {O(EXP)}
t₆, X₁₈: 24⋅X₁₈ {O(n)}
t₆, X₁₉: 24⋅X₀ {O(n)}
t₇, X₀: 24⋅X₀ {O(n)}
t₇, X₁: 24⋅X₀+84 {O(n)}
t₇, X₂: 24⋅X₂ {O(n)}
t₇, X₄: 24⋅X₄ {O(n)}
t₇, X₆: 24⋅X₆ {O(n)}
t₇, X₈: 24⋅X₈ {O(n)}
t₇, X₁₀: 24⋅X₁₀ {O(n)}
t₇, X₁₁: 64⋅X₀+64 {O(n)}
t₇, X₁₂: 24⋅X₁₂ {O(n)}
t₇, X₁₃: 21504⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅X₀⋅X₀+21736⋅2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)+2^(1152⋅X₀⋅X₀+2500⋅X₀+1355)⋅2^(1536⋅X₀⋅X₀+2888⋅X₀+1350)⋅43104⋅X₀+54 {O(EXP)}
t₇, X₁₄: 24⋅X₁₄ {O(n)}
t₇, X₁₅: 16⋅X₀+16 {O(n)}
t₇, X₁₆: 24⋅X₁₆ {O(n)}
t₇, X₁₇: 300⋅X₀ {O(n)}
t₇, X₁₈: 24⋅X₁₈ {O(n)}
t₇, X₁₉: 24⋅X₀ {O(n)}