Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆
Temp_Vars: B1, C1, D1, E1, F1, G1, H1, I1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₄₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₄₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₃
t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂+1, X₃, B1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₃₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₃₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₂ ≤ X₀
t₃₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂ ∧ X₆+1 ≤ 0
t₃₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂ ∧ 1 ≤ X₆
t₃₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₃
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l14(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆+B1, B1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, B1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₅ ≤ 3
t₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 4 ≤ X₅
t₁₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1-C1, D1, E1, F1, G1, H1, I1, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₈ ≤ X₉ ∧ D1+X₁₁+1 ≤ E1
t₁₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1-C1, D1, E1, F1, G1, H1, I1, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₈ ≤ X₉ ∧ 1+E1 ≤ D1+X₁₁
t₂₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, C1, C1+X₁₁, D1, X₂₀, X₂₁, X₂₂, E1, F1, G1, H1) :|: 1+X₈ ≤ X₉
t₁₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₈
t₁₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, C1, D1, E1, F1) :|: 0 ≤ X₂₀
t₂₁: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, X₁₇, X₁₈, -X₁₉, X₂₀, X₂₁, X₂₂, C1, D1, E1, F1) :|: X₂₀+1 ≤ 0
t₂₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁ ≤ X₃
t₃₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₁
t₂₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₀
t₂₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₁
t₃₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₁
t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁ ≤ X₂
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₀
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₁
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, D1, B1, C1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀ ∧ X₅ ≤ 4
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, G1, B1, C1, D1, D1+C1, E1, F1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ E1+C1+1 ≤ F1
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, G1, B1, C1, D1, D1+C1, E1, F1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1+F1 ≤ E1+C1
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, F1, B1, C1, D1, E1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ D1+C1+1 ≤ E1
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, F1, B1, C1, D1, E1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1+E1 ≤ D1+C1
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, B1, C1, D1, D1+C1, E1, E1+C1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀ ∧ 5 ≤ X₅
t₃₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₃
t₂₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₂₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₅ ≤ 50
t₃₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 51 ≤ X₅
t₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₂ ≤ X₀
t₃₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂
Cut unsatisfiable transition t₃: l11→l11
Cut unsatisfiable transition t₂₅: l5→l5
Eliminate variables {H1,I1,X₄,X₇,X₁₀,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆} that do not contribute to the problem
Found invariant 1+X₀ ≤ X₂ for location l11
Found invariant 1 ≤ 0 for location l2
Found invariant 1 ≤ 0 for location l6
Found invariant 1 ≤ 0 for location l15
Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l12
Found invariant 1 ≤ 0 for location l17
Found invariant 1 ≤ 0 for location l7
Found invariant 1 ≤ 0 for location l5
Found invariant 1+X₀ ≤ X₂ for location l13
Found invariant 1+X₀ ≤ X₂ for location l8
Found invariant X₂ ≤ X₀ for location l10
Found invariant 1 ≤ 0 for location l16
Found invariant 1 ≤ 0 for location l4
Found invariant 1 ≤ 0 for location l9
Found invariant 1 ≤ 0 for location l3
Found invariant 1 ≤ 0 for location l14
Cut unsatisfiable transition t₉₈: l12→l14
Cut unsatisfiable transition t₉₉: l12→l15
Cut unsatisfiable transition t₁₀₀: l12→l15
Cut unsatisfiable transition t₁₀₂: l14→l14
Cut unsatisfiable transition t₁₀₃: l14→l12
Cut unsatisfiable transition t₁₀₄: l15→l9
Cut unsatisfiable transition t₁₀₅: l15→l9
Cut unsatisfiable transition t₁₀₆: l16→l6
Cut unsatisfiable transition t₁₀₇: l16→l17
Cut unsatisfiable transition t₁₀₈: l16→l17
Cut unsatisfiable transition t₁₀₉: l16→l4
Cut unsatisfiable transition t₁₁₀: l17→l4
Cut unsatisfiable transition t₁₁₁: l17→l4
Cut unsatisfiable transition t₁₁₂: l2→l2
Cut unsatisfiable transition t₁₁₃: l2→l3
Cut unsatisfiable transition t₁₁₄: l3→l3
Cut unsatisfiable transition t₁₁₅: l3→l5
Cut unsatisfiable transition t₁₁₆: l4→l4
Cut unsatisfiable transition t₁₁₇: l4→l2
Cut unsatisfiable transition t₁₁₈: l5→l6
Cut unsatisfiable transition t₁₁₉: l6→l6
Cut unsatisfiable transition t₁₂₀: l6→l16
Cut unsatisfiable transition t₁₂₁: l6→l16
Cut unsatisfiable transition t₁₂₂: l6→l16
Cut unsatisfiable transition t₁₂₃: l6→l16
Cut unsatisfiable transition t₁₂₄: l6→l16
Cut unsatisfiable transition t₁₂₅: l6→l9
Cut unsatisfiable transition t₁₂₆: l7→l7
Cut unsatisfiable transition t₁₂₇: l7→l8
Cut unsatisfiable transition t₁₃₀: l9→l6
Cut unsatisfiable transition t₁₃₁: l9→l7
Cut unreachable locations [l14; l15; l16; l17; l2; l3; l4; l5; l6; l7; l9] from the program graph
Eliminate variables {X₁,X₈,X₉,X₁₁,X₂₀} that do not contribute to the problem
Start: l0
Program_Vars: X₀, X₂, X₃, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l8
Transitions:
t₂₃₆: l0(X₀, X₂, X₃, X₅, X₆) → l1(X₀, X₂, X₃, X₅, X₆)
t₂₃₇: l1(X₀, X₂, X₃, X₅, X₆) → l10(X₀, X₂, X₃, X₅, X₆) :|: X₂ ≤ X₀
t₂₃₈: l1(X₀, X₂, X₃, X₅, X₆) → l11(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂
t₂₄₀: l10(X₀, X₂, X₃, X₅, X₆) → l1(X₀, X₂+1, X₃, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
t₂₃₉: l10(X₀, X₂, X₃, X₅, X₆) → l10(X₀, X₂, X₃+1, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₂ ≤ X₀
t₂₄₁: l11(X₀, X₂, X₃, X₅, X₆) → l8(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₂₄₂: l12(X₀, X₂, X₃, X₅, X₆) → l13(X₀, X₂, X₃, X₅, 0) :|: X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂
t₂₄₃: l8(X₀, X₂, X₃, X₅, X₆) → l12(X₀, X₂, X₃, X₅, 0) :|: X₅ ≤ 50 ∧ 1+X₀ ≤ X₂
t₂₄₄: l8(X₀, X₂, X₃, X₅, X₆) → l13(X₀, X₂, X₃, X₅, X₆) :|: 51 ≤ X₅ ∧ 1+X₀ ≤ X₂
new bound:
X₀+X₂+1 {O(n)}
MPRF:
l10 [X₀-X₂ ]
l1 [X₀+1-X₂ ]
new bound:
X₀+X₃+1 {O(n)}
MPRF:
l10 [X₀+1-X₃ ]
l1 [X₀+1-X₃ ]
new bound:
X₀+X₂+1 {O(n)}
MPRF:
l10 [X₀+1-X₂ ]
l1 [X₀+1-X₂ ]
Overall timebound:2⋅X₂+3⋅X₀+X₃+9 {O(n)}
t₂₃₆: 1 {O(1)}
t₂₃₇: X₀+X₂+1 {O(n)}
t₂₃₈: 1 {O(1)}
t₂₃₉: X₀+X₃+1 {O(n)}
t₂₄₀: X₀+X₂+1 {O(n)}
t₂₄₁: 1 {O(1)}
t₂₄₂: 1 {O(1)}
t₂₄₃: 1 {O(1)}
t₂₄₄: 1 {O(1)}
Overall costbound: 2⋅X₂+3⋅X₀+X₃+9 {O(n)}
t₂₃₆: 1 {O(1)}
t₂₃₇: X₀+X₂+1 {O(n)}
t₂₃₈: 1 {O(1)}
t₂₃₉: X₀+X₃+1 {O(n)}
t₂₄₀: X₀+X₂+1 {O(n)}
t₂₄₁: 1 {O(1)}
t₂₄₂: 1 {O(1)}
t₂₄₃: 1 {O(1)}
t₂₄₄: 1 {O(1)}
t₂₃₆, X₀: X₀ {O(n)}
t₂₃₆, X₂: X₂ {O(n)}
t₂₃₆, X₃: X₃ {O(n)}
t₂₃₆, X₅: X₅ {O(n)}
t₂₃₆, X₆: X₆ {O(n)}
t₂₃₇, X₀: X₀ {O(n)}
t₂₃₇, X₂: 2⋅X₂+X₀+1 {O(n)}
t₂₃₇, X₃: 2⋅X₃+X₀+1 {O(n)}
t₂₃₇, X₅: X₅ {O(n)}
t₂₃₇, X₆: X₆ {O(n)}
t₂₃₈, X₀: 2⋅X₀ {O(n)}
t₂₃₈, X₂: 3⋅X₂+X₀+1 {O(n)}
t₂₃₈, X₃: 3⋅X₃+X₀+1 {O(n)}
t₂₃₈, X₅: 2⋅X₅ {O(n)}
t₂₃₈, X₆: 2⋅X₆ {O(n)}
t₂₃₉, X₀: X₀ {O(n)}
t₂₃₉, X₂: 2⋅X₂+X₀+1 {O(n)}
t₂₃₉, X₃: 2⋅X₃+X₀+1 {O(n)}
t₂₃₉, X₅: X₅ {O(n)}
t₂₃₉, X₆: X₆ {O(n)}
t₂₄₀, X₀: X₀ {O(n)}
t₂₄₀, X₂: 2⋅X₂+X₀+1 {O(n)}
t₂₄₀, X₃: 2⋅X₃+X₀+1 {O(n)}
t₂₄₀, X₅: X₅ {O(n)}
t₂₄₀, X₆: X₆ {O(n)}
t₂₄₁, X₀: 2⋅X₀ {O(n)}
t₂₄₁, X₂: 3⋅X₂+X₀+1 {O(n)}
t₂₄₁, X₃: 3⋅X₃+X₀+1 {O(n)}
t₂₄₁, X₅: 2⋅X₅ {O(n)}
t₂₄₁, X₆: 2⋅X₆ {O(n)}
t₂₄₂, X₀: 2⋅X₀ {O(n)}
t₂₄₂, X₂: 3⋅X₂+X₀+1 {O(n)}
t₂₄₂, X₃: 3⋅X₃+X₀+1 {O(n)}
t₂₄₂, X₅: 2⋅X₅ {O(n)}
t₂₄₂, X₆: 0 {O(1)}
t₂₄₃, X₀: 2⋅X₀ {O(n)}
t₂₄₃, X₂: 3⋅X₂+X₀+1 {O(n)}
t₂₄₃, X₃: 3⋅X₃+X₀+1 {O(n)}
t₂₄₃, X₅: 2⋅X₅ {O(n)}
t₂₄₃, X₆: 0 {O(1)}
t₂₄₄, X₀: 2⋅X₀ {O(n)}
t₂₄₄, X₂: 3⋅X₂+X₀+1 {O(n)}
t₂₄₄, X₃: 3⋅X₃+X₀+1 {O(n)}
t₂₄₄, X₅: 2⋅X₅ {O(n)}
t₂₄₄, X₆: 2⋅X₆ {O(n)}