Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: K, L
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(0, K, L, 0, X₄, X₅, X₆, X₇, X₈, X₉)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₄
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉) :|: X₄ ≤ X₃
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉) :|: X₅+1 ≤ X₄
t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉) :|: X₄ ≤ X₅
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉) :|: X₆+1 ≤ X₄
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ X₆
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀+1 ≤ X₄
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉) :|: X₄ ≤ X₀
t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, X₈, X₉) :|: X₇+1 ≤ X₄
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉) :|: X₄ ≤ X₇
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉) :|: X₈+1 ≤ X₄
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0) :|: X₄ ≤ X₈
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1) :|: X₉+1 ≤ X₄
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ X₉
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀+1 ≤ X₄
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ X₀
Preprocessing
Eliminate variables {K,L,X₁,X₂} that do not contribute to the problem
Found invariant X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l2
Found invariant X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l6
Found invariant X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l7
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l5
Found invariant X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ X₃ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l8
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l1
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l4
Found invariant X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ X₃ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l9
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₄₂: l0(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(0, 0, X₄, X₅, X₆, X₇, X₈, X₉)
t₄₃: l1(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₄₄: l1(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₃, X₄, 0, X₆, X₇, X₈, X₉) :|: X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₄₅: l2(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉) :|: X₅+1 ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₄₆: l2(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₃, X₄, X₅, 0, X₇, X₈, X₉) :|: X₄ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₄₇: l3(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉) :|: X₆+1 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₄₈: l3(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(0, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₄₉: l4(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀+1 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₅₀: l4(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₃, X₄, X₅, X₆, 0, X₈, X₉) :|: X₄ ≤ X₀ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₅₁: l5(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₃, X₄, X₅, X₆, X₇+1, X₈, X₉) :|: X₇+1 ≤ X₄ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₅₂: l5(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₃, X₄, X₅, X₆, X₇, 0, X₉) :|: X₄ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₅₃: l6(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉) :|: X₈+1 ≤ X₄ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₅₄: l6(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₃, X₄, X₅, X₆, X₇, X₈, 0) :|: X₄ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₅₅: l7(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1) :|: X₉+1 ≤ X₄ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₅₆: l7(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(0, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₅₇: l8(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀+1 ≤ X₄ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ X₃ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₅₈: l8(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ X₀ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ X₃ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
MPRF for transition t₄₃: l1(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l1 [X₄-X₃ ]
MPRF for transition t₄₅: l2(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉) :|: X₅+1 ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF:
l2 [X₃+1-X₅ ]
MPRF for transition t₄₇: l3(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉) :|: X₆+1 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄+2 {O(n)}
MPRF:
l3 [X₅+1-X₆ ]
MPRF for transition t₄₉: l4(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀+1 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄+3 {O(n)}
MPRF:
l4 [X₆+1-X₀ ]
MPRF for transition t₅₁: l5(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₃, X₄, X₅, X₆, X₇+1, X₈, X₉) :|: X₇+1 ≤ X₄ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₄+5 {O(n)}
MPRF:
l5 [X₆+1-X₇ ]
MPRF for transition t₅₃: l6(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉) :|: X₈+1 ≤ X₄ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₄+6 {O(n)}
MPRF:
l6 [X₇+1-X₈ ]
MPRF for transition t₅₅: l7(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1) :|: X₉+1 ≤ X₄ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
8⋅X₄+17 {O(n)}
MPRF:
l7 [X₆+1-X₉ ]
MPRF for transition t₅₇: l8(X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀+1 ≤ X₄ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ X₃ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
64⋅X₄+1 {O(n)}
MPRF:
l8 [X₃+1-X₀ ]
All Bounds
Timebounds
Overall timebound:80⋅X₄+44 {O(n)}
t₄₂: 1 {O(1)}
t₄₃: X₄ {O(n)}
t₄₄: 1 {O(1)}
t₄₅: X₄+1 {O(n)}
t₄₆: 1 {O(1)}
t₄₇: X₄+2 {O(n)}
t₄₈: 1 {O(1)}
t₄₉: X₄+3 {O(n)}
t₅₀: 1 {O(1)}
t₅₁: 2⋅X₄+5 {O(n)}
t₅₂: 1 {O(1)}
t₅₃: 2⋅X₄+6 {O(n)}
t₅₄: 1 {O(1)}
t₅₅: 8⋅X₄+17 {O(n)}
t₅₆: 1 {O(1)}
t₅₇: 64⋅X₄+1 {O(n)}
t₅₈: 1 {O(1)}
Costbounds
Overall costbound: 80⋅X₄+44 {O(n)}
t₄₂: 1 {O(1)}
t₄₃: X₄ {O(n)}
t₄₄: 1 {O(1)}
t₄₅: X₄+1 {O(n)}
t₄₆: 1 {O(1)}
t₄₇: X₄+2 {O(n)}
t₄₈: 1 {O(1)}
t₄₉: X₄+3 {O(n)}
t₅₀: 1 {O(1)}
t₅₁: 2⋅X₄+5 {O(n)}
t₅₂: 1 {O(1)}
t₅₃: 2⋅X₄+6 {O(n)}
t₅₄: 1 {O(1)}
t₅₅: 8⋅X₄+17 {O(n)}
t₅₆: 1 {O(1)}
t₅₇: 64⋅X₄+1 {O(n)}
t₅₈: 1 {O(1)}
Sizebounds
t₄₂, X₀: 0 {O(1)}
t₄₂, X₃: 0 {O(1)}
t₄₂, X₄: X₄ {O(n)}
t₄₂, X₅: X₅ {O(n)}
t₄₂, X₆: X₆ {O(n)}
t₄₂, X₇: X₇ {O(n)}
t₄₂, X₈: X₈ {O(n)}
t₄₂, X₉: X₉ {O(n)}
t₄₃, X₀: 0 {O(1)}
t₄₃, X₃: X₄ {O(n)}
t₄₃, X₄: X₄ {O(n)}
t₄₃, X₅: X₅ {O(n)}
t₄₃, X₆: X₆ {O(n)}
t₄₃, X₇: X₇ {O(n)}
t₄₃, X₈: X₈ {O(n)}
t₄₃, X₉: X₉ {O(n)}
t₄₄, X₀: 0 {O(1)}
t₄₄, X₃: X₄ {O(n)}
t₄₄, X₄: 2⋅X₄ {O(n)}
t₄₄, X₅: 0 {O(1)}
t₄₄, X₆: 2⋅X₆ {O(n)}
t₄₄, X₇: 2⋅X₇ {O(n)}
t₄₄, X₈: 2⋅X₈ {O(n)}
t₄₄, X₉: 2⋅X₉ {O(n)}
t₄₅, X₀: 0 {O(1)}
t₄₅, X₃: X₄ {O(n)}
t₄₅, X₄: 2⋅X₄ {O(n)}
t₄₅, X₅: X₄+1 {O(n)}
t₄₅, X₆: 2⋅X₆ {O(n)}
t₄₅, X₇: 2⋅X₇ {O(n)}
t₄₅, X₈: 2⋅X₈ {O(n)}
t₄₅, X₉: 2⋅X₉ {O(n)}
t₄₆, X₀: 0 {O(1)}
t₄₆, X₃: 2⋅X₄ {O(n)}
t₄₆, X₄: 4⋅X₄ {O(n)}
t₄₆, X₅: X₄+1 {O(n)}
t₄₆, X₆: 0 {O(1)}
t₄₆, X₇: 4⋅X₇ {O(n)}
t₄₆, X₈: 4⋅X₈ {O(n)}
t₄₆, X₉: 4⋅X₉ {O(n)}
t₄₇, X₀: 0 {O(1)}
t₄₇, X₃: 2⋅X₄ {O(n)}
t₄₇, X₄: 4⋅X₄ {O(n)}
t₄₇, X₅: X₄+1 {O(n)}
t₄₇, X₆: X₄+2 {O(n)}
t₄₇, X₇: 4⋅X₇ {O(n)}
t₄₇, X₈: 4⋅X₈ {O(n)}
t₄₇, X₉: 4⋅X₉ {O(n)}
t₄₈, X₀: 0 {O(1)}
t₄₈, X₃: 4⋅X₄ {O(n)}
t₄₈, X₄: 8⋅X₄ {O(n)}
t₄₈, X₅: 2⋅X₄+2 {O(n)}
t₄₈, X₆: X₄+2 {O(n)}
t₄₈, X₇: 8⋅X₇ {O(n)}
t₄₈, X₈: 8⋅X₈ {O(n)}
t₄₈, X₉: 8⋅X₉ {O(n)}
t₄₉, X₀: X₄+3 {O(n)}
t₄₉, X₃: 4⋅X₄ {O(n)}
t₄₉, X₄: 8⋅X₄ {O(n)}
t₄₉, X₅: 2⋅X₄+2 {O(n)}
t₄₉, X₆: X₄+2 {O(n)}
t₄₉, X₇: 8⋅X₇ {O(n)}
t₄₉, X₈: 8⋅X₈ {O(n)}
t₄₉, X₉: 8⋅X₉ {O(n)}
t₅₀, X₀: X₄+3 {O(n)}
t₅₀, X₃: 8⋅X₄ {O(n)}
t₅₀, X₄: 16⋅X₄ {O(n)}
t₅₀, X₅: 4⋅X₄+4 {O(n)}
t₅₀, X₆: 2⋅X₄+4 {O(n)}
t₅₀, X₇: 0 {O(1)}
t₅₀, X₈: 16⋅X₈ {O(n)}
t₅₀, X₉: 16⋅X₉ {O(n)}
t₅₁, X₀: X₄+3 {O(n)}
t₅₁, X₃: 8⋅X₄ {O(n)}
t₅₁, X₄: 16⋅X₄ {O(n)}
t₅₁, X₅: 4⋅X₄+4 {O(n)}
t₅₁, X₆: 2⋅X₄+4 {O(n)}
t₅₁, X₇: 2⋅X₄+5 {O(n)}
t₅₁, X₈: 16⋅X₈ {O(n)}
t₅₁, X₉: 16⋅X₉ {O(n)}
t₅₂, X₀: 2⋅X₄+6 {O(n)}
t₅₂, X₃: 16⋅X₄ {O(n)}
t₅₂, X₄: 32⋅X₄ {O(n)}
t₅₂, X₅: 8⋅X₄+8 {O(n)}
t₅₂, X₆: 4⋅X₄+8 {O(n)}
t₅₂, X₇: 2⋅X₄+5 {O(n)}
t₅₂, X₈: 0 {O(1)}
t₅₂, X₉: 32⋅X₉ {O(n)}
t₅₃, X₀: 2⋅X₄+6 {O(n)}
t₅₃, X₃: 16⋅X₄ {O(n)}
t₅₃, X₄: 32⋅X₄ {O(n)}
t₅₃, X₅: 8⋅X₄+8 {O(n)}
t₅₃, X₆: 4⋅X₄+8 {O(n)}
t₅₃, X₇: 2⋅X₄+5 {O(n)}
t₅₃, X₈: 2⋅X₄+6 {O(n)}
t₅₃, X₉: 32⋅X₉ {O(n)}
t₅₄, X₀: 4⋅X₄+12 {O(n)}
t₅₄, X₃: 32⋅X₄ {O(n)}
t₅₄, X₄: 64⋅X₄ {O(n)}
t₅₄, X₅: 16⋅X₄+16 {O(n)}
t₅₄, X₆: 8⋅X₄+16 {O(n)}
t₅₄, X₇: 4⋅X₄+10 {O(n)}
t₅₄, X₈: 2⋅X₄+6 {O(n)}
t₅₄, X₉: 0 {O(1)}
t₅₅, X₀: 4⋅X₄+12 {O(n)}
t₅₅, X₃: 32⋅X₄ {O(n)}
t₅₅, X₄: 64⋅X₄ {O(n)}
t₅₅, X₅: 16⋅X₄+16 {O(n)}
t₅₅, X₆: 8⋅X₄+16 {O(n)}
t₅₅, X₇: 4⋅X₄+10 {O(n)}
t₅₅, X₈: 2⋅X₄+6 {O(n)}
t₅₅, X₉: 8⋅X₄+17 {O(n)}
t₅₆, X₀: 0 {O(1)}
t₅₆, X₃: 64⋅X₄ {O(n)}
t₅₆, X₄: 128⋅X₄ {O(n)}
t₅₆, X₅: 32⋅X₄+32 {O(n)}
t₅₆, X₆: 16⋅X₄+32 {O(n)}
t₅₆, X₇: 8⋅X₄+20 {O(n)}
t₅₆, X₈: 4⋅X₄+12 {O(n)}
t₅₆, X₉: 8⋅X₄+17 {O(n)}
t₅₇, X₀: 64⋅X₄+1 {O(n)}
t₅₇, X₃: 64⋅X₄ {O(n)}
t₅₇, X₄: 128⋅X₄ {O(n)}
t₅₇, X₅: 32⋅X₄+32 {O(n)}
t₅₇, X₆: 16⋅X₄+32 {O(n)}
t₅₇, X₇: 8⋅X₄+20 {O(n)}
t₅₇, X₈: 4⋅X₄+12 {O(n)}
t₅₇, X₉: 8⋅X₄+17 {O(n)}
t₅₈, X₀: 64⋅X₄+1 {O(n)}
t₅₈, X₃: 128⋅X₄ {O(n)}
t₅₈, X₄: 256⋅X₄ {O(n)}
t₅₈, X₅: 64⋅X₄+64 {O(n)}
t₅₈, X₆: 32⋅X₄+64 {O(n)}
t₅₈, X₇: 16⋅X₄+40 {O(n)}
t₅₈, X₈: 8⋅X₄+24 {O(n)}
t₅₈, X₉: 16⋅X₄+34 {O(n)}