Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l10, l100, l101, l102, l103, l104, l105, l106, l107, l108, l109, l11, l110, l111, l112, l113, l114, l115, l116, l117, l118, l119, l12, l120, l121, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l34, l35, l36, l37, l38, l39, l4, l40, l41, l42, l43, l44, l45, l46, l47, l48, l49, l5, l50, l51, l52, l53, l54, l55, l56, l57, l58, l59, l6, l60, l61, l62, l63, l64, l65, l66, l67, l68, l69, l7, l70, l71, l72, l73, l74, l75, l76, l77, l78, l79, l8, l80, l81, l82, l83, l84, l85, l86, l87, l88, l89, l9, l90, l91, l92, l93, l94, l95, l96, l97, l98, l99
Transitions:
t₀: l0(X₀, X₁, X₂) → l1(0, 2, 0)
t₁: l1(X₀, X₁, X₂) → l1(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 2
t₂₄₀: l1(X₀, X₁, X₂) → l2(X₀, X₁, 0) :|: 3 ≤ X₂
t₁₀: l10(X₀, X₁, X₂) → l10(X₀+X₂, X₁, X₂+1) :|: 2+X₂ ≤ 0
t₂₃₁: l10(X₀, X₁, X₂) → l11(X₀, X₁, -3) :|: 0 ≤ 1+X₂
t₁₀₀: l100(X₀, X₁, X₂) → l100(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 1+X₂
t₁₄₁: l100(X₀, X₁, X₂) → l101(X₀, X₁, 9) :|: 2+X₂ ≤ 0
t₁₀₁: l101(X₀, X₁, X₂) → l101(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 1+X₂
t₁₄₀: l101(X₀, X₁, X₂) → l102(X₀, X₁, 9) :|: 2+X₂ ≤ 0
t₁₀₂: l102(X₀, X₁, X₂) → l102(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 2+X₂
t₁₃₉: l102(X₀, X₁, X₂) → l103(X₀, X₁, 9) :|: 3+X₂ ≤ 0
t₁₀₃: l103(X₀, X₁, X₂) → l103(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 1+X₂
t₁₃₈: l103(X₀, X₁, X₂) → l104(X₀, X₁, 9) :|: 2+X₂ ≤ 0
t₁₀₄: l104(X₀, X₁, X₂) → l104(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 2+X₂
t₁₃₇: l104(X₀, X₁, X₂) → l105(X₀, X₁, 0) :|: 3+X₂ ≤ 0
t₁₀₅: l105(X₀, X₁, X₂) → l105(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 2+X₂
t₁₃₆: l105(X₀, X₁, X₂) → l106(X₀, X₁, 0) :|: 3+X₂ ≤ 0
t₁₀₆: l106(X₀, X₁, X₂) → l106(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 3+X₂
t₁₃₅: l106(X₀, X₁, X₂) → l107(X₀, X₁, 0) :|: 4+X₂ ≤ 0
t₁₀₇: l107(X₀, X₁, X₂) → l107(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 2+X₂
t₁₃₄: l107(X₀, X₁, X₂) → l108(X₀, X₁, 0) :|: 3+X₂ ≤ 0
t₁₀₈: l108(X₀, X₁, X₂) → l108(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 3+X₂
t₁₃₃: l108(X₀, X₁, X₂) → l109(X₀, X₁, -1) :|: 4+X₂ ≤ 0
t₁₀₉: l109(X₀, X₁, X₂) → l109(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 4+X₂
t₁₃₂: l109(X₀, X₁, X₂) → l110(X₀, X₁, -1) :|: 5+X₂ ≤ 0
t₁₁: l11(X₀, X₁, X₂) → l11(X₀+X₂, X₁, X₂+1) :|: 3+X₂ ≤ 0
t₂₃₀: l11(X₀, X₁, X₂) → l12(X₀, X₁, -3) :|: 0 ≤ 2+X₂
t₁₁₀: l110(X₀, X₁, X₂) → l110(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 5+X₂
t₁₃₁: l110(X₀, X₁, X₂) → l111(X₀, X₁, -1) :|: 6+X₂ ≤ 0
t₁₁₁: l111(X₀, X₁, X₂) → l111(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 4+X₂
t₁₃₀: l111(X₀, X₁, X₂) → l112(X₀, X₁, -1) :|: 5+X₂ ≤ 0
t₁₁₂: l112(X₀, X₁, X₂) → l112(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 5+X₂
t₁₂₉: l112(X₀, X₁, X₂) → l113(X₀, X₁, -2) :|: 6+X₂ ≤ 0
t₁₁₃: l113(X₀, X₁, X₂) → l113(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 6+X₂
t₁₂₈: l113(X₀, X₁, X₂) → l114(X₀, X₁, -2) :|: 7+X₂ ≤ 0
t₁₁₄: l114(X₀, X₁, X₂) → l114(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 7+X₂
t₁₂₇: l114(X₀, X₁, X₂) → l115(X₀, X₁, -2) :|: 8+X₂ ≤ 0
t₁₁₅: l115(X₀, X₁, X₂) → l115(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 6+X₂
t₁₂₆: l115(X₀, X₁, X₂) → l116(X₀, X₁, -2) :|: 7+X₂ ≤ 0
t₁₁₆: l116(X₀, X₁, X₂) → l116(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 7+X₂
t₁₂₅: l116(X₀, X₁, X₂) → l117(X₀, X₁, 16) :|: 8+X₂ ≤ 0
t₁₁₇: l117(X₀, X₁, X₂) → l117(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 7+X₂
t₁₂₄: l117(X₀, X₁, X₂) → l118(X₀, X₁, 16) :|: 8+X₂ ≤ 0
t₁₁₈: l118(X₀, X₁, X₂) → l118(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 8+X₂
t₁₂₃: l118(X₀, X₁, X₂) → l119(X₀, X₁, 16) :|: 9+X₂ ≤ 0
t₁₁₉: l119(X₀, X₁, X₂) → l119(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 7+X₂
t₁₂₂: l119(X₀, X₁, X₂) → l120(X₀, X₁, 16) :|: 8+X₂ ≤ 0
t₁₂: l12(X₀, X₁, X₂) → l12(X₀+X₂, X₁, X₂+1) :|: 2+X₂ ≤ 0
t₂₂₉: l12(X₀, X₁, X₂) → l13(X₀, X₁, -4) :|: 0 ≤ 1+X₂
t₁₂₀: l120(X₀, X₁, X₂) → l120(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 8+X₂
t₁₂₁: l120(X₀, X₁, X₂) → l121(X₀, X₁, X₂) :|: 9+X₂ ≤ 0
t₁₃: l13(X₀, X₁, X₂) → l13(X₀+X₂, X₁, X₂+1) :|: 2+X₂ ≤ 0
t₂₂₈: l13(X₀, X₁, X₂) → l14(X₀, X₁, -4) :|: 0 ≤ 1+X₂
t₁₄: l14(X₀, X₁, X₂) → l14(X₀+X₂, X₁, X₂+1) :|: X₂+1 ≤ 0
t₂₂₇: l14(X₀, X₁, X₂) → l15(X₀, X₁, -4) :|: 0 ≤ X₂
t₁₅: l15(X₀, X₁, X₂) → l15(X₀+X₂, X₁, X₂+1) :|: 2+X₂ ≤ 0
t₂₂₆: l15(X₀, X₁, X₂) → l16(X₀, X₁, -4) :|: 0 ≤ 1+X₂
t₁₆: l16(X₀, X₁, X₂) → l16(X₀+X₂, X₁, X₂+1) :|: X₂+1 ≤ 0
t₂₂₅: l16(X₀, X₁, X₂) → l17(X₀, X₁, -5) :|: 0 ≤ X₂
t₁₇: l17(X₀, X₁, X₂) → l17(X₀+X₂, X₁, X₂+1) :|: X₂+1 ≤ 0
t₂₂₄: l17(X₀, X₁, X₂) → l18(X₀, X₁, -5) :|: 0 ≤ X₂
t₁₈: l18(X₀, X₁, X₂) → l18(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 0
t₂₂₃: l18(X₀, X₁, X₂) → l19(X₀, X₁, -5) :|: 1 ≤ X₂
t₁₉: l19(X₀, X₁, X₂) → l19(X₀+X₂, X₁, X₂+1) :|: X₂+1 ≤ 0
t₂₂₂: l19(X₀, X₁, X₂) → l20(X₀, X₁, -5) :|: 0 ≤ X₂
t₂: l2(X₀, X₁, X₂) → l2(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 3
t₂₃₉: l2(X₀, X₁, X₂) → l3(X₀, X₁, 0) :|: 4 ≤ X₂
t₂₀: l20(X₀, X₁, X₂) → l20(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 0
t₂₂₁: l20(X₀, X₁, X₂) → l21(X₀, X₁, -6) :|: 1 ≤ X₂
t₂₁: l21(X₀, X₁, X₂) → l21(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 3
t₂₂₀: l21(X₀, X₁, X₂) → l22(X₀, X₁, -6) :|: 4 ≤ X₂
t₂₂: l22(X₀, X₁, X₂) → l22(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 4
t₂₁₉: l22(X₀, X₁, X₂) → l23(X₀, X₁, -6) :|: 5 ≤ X₂
t₂₃: l23(X₀, X₁, X₂) → l23(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 3
t₂₁₈: l23(X₀, X₁, X₂) → l24(X₀, X₁, -6) :|: 4 ≤ X₂
t₂₄: l24(X₀, X₁, X₂) → l24(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 4
t₂₁₇: l24(X₀, X₁, X₂) → l25(X₀, X₁, 0) :|: 5 ≤ X₂
t₂₅: l25(X₀, X₁, X₂) → l25(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 2
t₂₁₆: l25(X₀, X₁, X₂) → l26(X₀, X₁, 0) :|: 3 ≤ X₂
t₂₆: l26(X₀, X₁, X₂) → l26(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 3
t₂₁₅: l26(X₀, X₁, X₂) → l27(X₀, X₁, 0) :|: 4 ≤ X₂
t₂₇: l27(X₀, X₁, X₂) → l27(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 2
t₂₁₄: l27(X₀, X₁, X₂) → l28(X₀, X₁, 0) :|: 3 ≤ X₂
t₂₈: l28(X₀, X₁, X₂) → l28(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 3
t₂₁₃: l28(X₀, X₁, X₂) → l29(X₀, X₁, 1) :|: 4 ≤ X₂
t₂₉: l29(X₀, X₁, X₂) → l29(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 1
t₂₁₂: l29(X₀, X₁, X₂) → l30(X₀, X₁, 1) :|: 2 ≤ X₂
t₃: l3(X₀, X₁, X₂) → l3(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 2
t₂₃₈: l3(X₀, X₁, X₂) → l4(X₀, X₁, 0) :|: 3 ≤ X₂
t₃₀: l30(X₀, X₁, X₂) → l30(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 2
t₂₁₁: l30(X₀, X₁, X₂) → l31(X₀, X₁, 1) :|: 3 ≤ X₂
t₃₁: l31(X₀, X₁, X₂) → l31(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 1
t₂₁₀: l31(X₀, X₁, X₂) → l32(X₀, X₁, 1) :|: 2 ≤ X₂
t₃₂: l32(X₀, X₁, X₂) → l32(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 2
t₂₀₉: l32(X₀, X₁, X₂) → l33(X₀, X₁, -3) :|: 3 ≤ X₂
t₃₃: l33(X₀, X₁, X₂) → l33(X₀+X₂, X₁, X₂+X₁) :|: 3+X₂ ≤ 0
t₂₀₈: l33(X₀, X₁, X₂) → l34(X₀, X₁, -3) :|: 0 ≤ 2+X₂
t₃₄: l34(X₀, X₁, X₂) → l34(X₀+X₂, X₁, X₂+X₁) :|: 2+X₂ ≤ 0
t₂₀₇: l34(X₀, X₁, X₂) → l35(X₀, X₁, -3) :|: 0 ≤ 1+X₂
t₃₅: l35(X₀, X₁, X₂) → l35(X₀+X₂, X₁, X₂+X₁) :|: 3+X₂ ≤ 0
t₂₀₆: l35(X₀, X₁, X₂) → l36(X₀, X₁, -3) :|: 0 ≤ 2+X₂
t₃₆: l36(X₀, X₁, X₂) → l36(X₀+X₂, X₁, X₂+X₁) :|: 2+X₂ ≤ 0
t₂₀₅: l36(X₀, X₁, X₂) → l37(X₀, X₁, -4) :|: 0 ≤ 1+X₂
t₃₇: l37(X₀, X₁, X₂) → l37(X₀+X₂, X₁, X₂+X₁) :|: 2+X₂ ≤ 0
t₂₀₄: l37(X₀, X₁, X₂) → l38(X₀, X₁, -4) :|: 0 ≤ 1+X₂
t₃₈: l38(X₀, X₁, X₂) → l38(X₀+X₂, X₁, X₂+X₁) :|: X₂+1 ≤ 0
t₂₀₃: l38(X₀, X₁, X₂) → l39(X₀, X₁, -4) :|: 0 ≤ X₂
t₃₉: l39(X₀, X₁, X₂) → l39(X₀+X₂, X₁, X₂+X₁) :|: 2+X₂ ≤ 0
t₂₀₂: l39(X₀, X₁, X₂) → l40(X₀, X₁, -4) :|: 0 ≤ 1+X₂
t₄: l4(X₀, X₁, X₂) → l4(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 3
t₂₃₇: l4(X₀, X₁, X₂) → l5(X₀, X₁, 1) :|: 4 ≤ X₂
t₄₀: l40(X₀, X₁, X₂) → l40(X₀+X₂, X₁, X₂+X₁) :|: X₂+1 ≤ 0
t₂₀₁: l40(X₀, X₁, X₂) → l41(X₀, X₁, -5) :|: 0 ≤ X₂
t₄₁: l41(X₀, X₁, X₂) → l41(X₀+X₂, X₁, X₂+X₁) :|: X₂+1 ≤ 0
t₂₀₀: l41(X₀, X₁, X₂) → l42(X₀, X₁, -5) :|: 0 ≤ X₂
t₄₂: l42(X₀, X₁, X₂) → l42(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 0
t₁₉₉: l42(X₀, X₁, X₂) → l43(X₀, X₁, -5) :|: 1 ≤ X₂
t₄₃: l43(X₀, X₁, X₂) → l43(X₀+X₂, X₁, X₂+X₁) :|: X₂+1 ≤ 0
t₁₉₈: l43(X₀, X₁, X₂) → l44(X₀, X₁, -5) :|: 0 ≤ X₂
t₄₄: l44(X₀, X₁, X₂) → l44(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 0
t₁₉₇: l44(X₀, X₁, X₂) → l45(X₀, X₁, -6) :|: 1 ≤ X₂
t₄₅: l45(X₀, X₁, X₂) → l45(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 3
t₁₉₆: l45(X₀, X₁, X₂) → l46(X₀, X₁, -6) :|: 4 ≤ X₂
t₄₆: l46(X₀, X₁, X₂) → l46(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 4
t₁₉₅: l46(X₀, X₁, X₂) → l47(X₀, X₁, -6) :|: 5 ≤ X₂
t₄₇: l47(X₀, X₁, X₂) → l47(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 3
t₁₉₄: l47(X₀, X₁, X₂) → l48(X₀, X₁, -6) :|: 4 ≤ X₂
t₄₈: l48(X₀, X₁, X₂) → l48(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 4
t₁₉₃: l48(X₀, X₁, X₂) → l49(X₀, X₁, 5) :|: 5 ≤ X₂
t₄₉: l49(X₀, X₁, X₂) → l49(X₀+X₂, X₁, X₂-1) :|: 3 ≤ X₂
t₁₉₂: l49(X₀, X₁, X₂) → l50(X₀, X₁, 5) :|: X₂ ≤ 2
t₅: l5(X₀, X₁, X₂) → l5(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 1
t₂₃₆: l5(X₀, X₁, X₂) → l6(X₀, X₁, 1) :|: 2 ≤ X₂
t₅₀: l50(X₀, X₁, X₂) → l50(X₀+X₂, X₁, X₂-1) :|: 2 ≤ X₂
t₁₉₁: l50(X₀, X₁, X₂) → l51(X₀, X₁, 5) :|: X₂ ≤ 1
t₅₁: l51(X₀, X₁, X₂) → l51(X₀+X₂, X₁, X₂-1) :|: 3 ≤ X₂
t₁₉₀: l51(X₀, X₁, X₂) → l52(X₀, X₁, 5) :|: X₂ ≤ 2
t₅₂: l52(X₀, X₁, X₂) → l52(X₀+X₂, X₁, X₂-1) :|: 2 ≤ X₂
t₁₈₉: l52(X₀, X₁, X₂) → l53(X₀, X₁, 6) :|: X₂ ≤ 1
t₅₃: l53(X₀, X₁, X₂) → l53(X₀+X₂, X₁, X₂-1) :|: 2 ≤ X₂
t₁₈₈: l53(X₀, X₁, X₂) → l54(X₀, X₁, 6) :|: X₂ ≤ 1
t₅₄: l54(X₀, X₁, X₂) → l54(X₀+X₂, X₁, X₂-1) :|: 1 ≤ X₂
t₁₈₇: l54(X₀, X₁, X₂) → l55(X₀, X₁, 6) :|: X₂ ≤ 0
t₅₅: l55(X₀, X₁, X₂) → l55(X₀+X₂, X₁, X₂-1) :|: 2 ≤ X₂
t₁₈₆: l55(X₀, X₁, X₂) → l56(X₀, X₁, 6) :|: X₂ ≤ 1
t₅₆: l56(X₀, X₁, X₂) → l56(X₀+X₂, X₁, X₂-1) :|: 1 ≤ X₂
t₁₈₅: l56(X₀, X₁, X₂) → l57(X₀, X₁, 7) :|: X₂ ≤ 0
t₅₇: l57(X₀, X₁, X₂) → l57(X₀+X₂, X₁, X₂-1) :|: 1 ≤ X₂
t₁₈₄: l57(X₀, X₁, X₂) → l58(X₀, X₁, 7) :|: X₂ ≤ 0
t₅₈: l58(X₀, X₁, X₂) → l58(X₀+X₂, X₁, X₂-1) :|: 0 ≤ X₂
t₁₈₃: l58(X₀, X₁, X₂) → l59(X₀, X₁, 7) :|: X₂+1 ≤ 0
t₅₉: l59(X₀, X₁, X₂) → l59(X₀+X₂, X₁, X₂-1) :|: 1 ≤ X₂
t₁₈₂: l59(X₀, X₁, X₂) → l60(X₀, X₁, 7) :|: X₂ ≤ 0
t₆: l6(X₀, X₁, X₂) → l6(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 2
t₂₃₅: l6(X₀, X₁, X₂) → l7(X₀, X₁, 1) :|: 3 ≤ X₂
t₆₀: l60(X₀, X₁, X₂) → l60(X₀+X₂, X₁, X₂-1) :|: 0 ≤ X₂
t₁₈₁: l60(X₀, X₁, X₂) → l61(X₀, X₁, 8) :|: X₂+1 ≤ 0
t₆₁: l61(X₀, X₁, X₂) → l61(X₀+X₂, X₁, X₂-1) :|: 0 ≤ X₂
t₁₈₀: l61(X₀, X₁, X₂) → l62(X₀, X₁, 8) :|: X₂+1 ≤ 0
t₆₂: l62(X₀, X₁, X₂) → l62(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 1+X₂
t₁₇₉: l62(X₀, X₁, X₂) → l63(X₀, X₁, 8) :|: 2+X₂ ≤ 0
t₆₃: l63(X₀, X₁, X₂) → l63(X₀+X₂, X₁, X₂-1) :|: 0 ≤ X₂
t₁₇₈: l63(X₀, X₁, X₂) → l64(X₀, X₁, 8) :|: X₂+1 ≤ 0
t₆₄: l64(X₀, X₁, X₂) → l64(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 1+X₂
t₁₇₇: l64(X₀, X₁, X₂) → l65(X₀, X₁, 9) :|: 2+X₂ ≤ 0
t₆₅: l65(X₀, X₁, X₂) → l65(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 1+X₂
t₁₇₆: l65(X₀, X₁, X₂) → l66(X₀, X₁, 9) :|: 2+X₂ ≤ 0
t₆₆: l66(X₀, X₁, X₂) → l66(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 2+X₂
t₁₇₅: l66(X₀, X₁, X₂) → l67(X₀, X₁, 9) :|: 3+X₂ ≤ 0
t₆₇: l67(X₀, X₁, X₂) → l67(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 1+X₂
t₁₇₄: l67(X₀, X₁, X₂) → l68(X₀, X₁, 9) :|: 2+X₂ ≤ 0
t₆₈: l68(X₀, X₁, X₂) → l68(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 2+X₂
t₁₇₃: l68(X₀, X₁, X₂) → l69(X₀, X₁, 0) :|: 3+X₂ ≤ 0
t₆₉: l69(X₀, X₁, X₂) → l69(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 2+X₂
t₁₇₂: l69(X₀, X₁, X₂) → l70(X₀, X₁, 0) :|: 3+X₂ ≤ 0
t₇: l7(X₀, X₁, X₂) → l7(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 1
t₂₃₄: l7(X₀, X₁, X₂) → l8(X₀, X₁, 1) :|: 2 ≤ X₂
t₇₀: l70(X₀, X₁, X₂) → l70(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 3+X₂
t₁₇₁: l70(X₀, X₁, X₂) → l71(X₀, X₁, 0) :|: 4+X₂ ≤ 0
t₇₁: l71(X₀, X₁, X₂) → l71(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 2+X₂
t₁₇₀: l71(X₀, X₁, X₂) → l72(X₀, X₁, 0) :|: 3+X₂ ≤ 0
t₇₂: l72(X₀, X₁, X₂) → l72(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 3+X₂
t₁₆₉: l72(X₀, X₁, X₂) → l73(X₀, X₁, -1) :|: 4+X₂ ≤ 0
t₇₃: l73(X₀, X₁, X₂) → l73(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 4+X₂
t₁₆₈: l73(X₀, X₁, X₂) → l74(X₀, X₁, -1) :|: 5+X₂ ≤ 0
t₇₄: l74(X₀, X₁, X₂) → l74(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 5+X₂
t₁₆₇: l74(X₀, X₁, X₂) → l75(X₀, X₁, -1) :|: 6+X₂ ≤ 0
t₇₅: l75(X₀, X₁, X₂) → l75(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 4+X₂
t₁₆₆: l75(X₀, X₁, X₂) → l76(X₀, X₁, -1) :|: 5+X₂ ≤ 0
t₇₆: l76(X₀, X₁, X₂) → l76(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 5+X₂
t₁₆₅: l76(X₀, X₁, X₂) → l77(X₀, X₁, -2) :|: 6+X₂ ≤ 0
t₇₇: l77(X₀, X₁, X₂) → l77(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 6+X₂
t₁₆₄: l77(X₀, X₁, X₂) → l78(X₀, X₁, -2) :|: 7+X₂ ≤ 0
t₇₈: l78(X₀, X₁, X₂) → l78(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 7+X₂
t₁₆₃: l78(X₀, X₁, X₂) → l79(X₀, X₁, -2) :|: 8+X₂ ≤ 0
t₇₉: l79(X₀, X₁, X₂) → l79(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 6+X₂
t₁₆₂: l79(X₀, X₁, X₂) → l80(X₀, X₁, -2) :|: 7+X₂ ≤ 0
t₈: l8(X₀, X₁, X₂) → l8(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 2
t₂₃₃: l8(X₀, X₁, X₂) → l9(X₀, X₁, -3) :|: 3 ≤ X₂
t₈₀: l80(X₀, X₁, X₂) → l80(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 7+X₂
t₁₆₁: l80(X₀, X₁, X₂) → l81(X₀, X₁, 16) :|: 8+X₂ ≤ 0
t₈₁: l81(X₀, X₁, X₂) → l81(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 7+X₂
t₁₆₀: l81(X₀, X₁, X₂) → l82(X₀, X₁, 16) :|: 8+X₂ ≤ 0
t₈₂: l82(X₀, X₁, X₂) → l82(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 8+X₂
t₁₅₉: l82(X₀, X₁, X₂) → l83(X₀, X₁, 16) :|: 9+X₂ ≤ 0
t₈₃: l83(X₀, X₁, X₂) → l83(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 7+X₂
t₁₅₈: l83(X₀, X₁, X₂) → l84(X₀, X₁, 16) :|: 8+X₂ ≤ 0
t₈₄: l84(X₀, X₁, X₂) → l84(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 8+X₂
t₁₅₇: l84(X₀, X₁, X₂) → l85(X₀, X₁, 5) :|: 9+X₂ ≤ 0
t₈₅: l85(X₀, X₁, X₂) → l85(X₀+X₂, X₁, X₂-X₁) :|: 3 ≤ X₂
t₁₅₆: l85(X₀, X₁, X₂) → l86(X₀, X₁, 5) :|: X₂ ≤ 2
t₈₆: l86(X₀, X₁, X₂) → l86(X₀+X₂, X₁, X₂-X₁) :|: 2 ≤ X₂
t₁₅₅: l86(X₀, X₁, X₂) → l87(X₀, X₁, 5) :|: X₂ ≤ 1
t₈₇: l87(X₀, X₁, X₂) → l87(X₀+X₂, X₁, X₂-X₁) :|: 3 ≤ X₂
t₁₅₄: l87(X₀, X₁, X₂) → l88(X₀, X₁, 5) :|: X₂ ≤ 2
t₈₈: l88(X₀, X₁, X₂) → l88(X₀+X₂, X₁, X₂-X₁) :|: 2 ≤ X₂
t₁₅₃: l88(X₀, X₁, X₂) → l89(X₀, X₁, 6) :|: X₂ ≤ 1
t₈₉: l89(X₀, X₁, X₂) → l89(X₀+X₂, X₁, X₂-X₁) :|: 2 ≤ X₂
t₁₅₂: l89(X₀, X₁, X₂) → l90(X₀, X₁, 6) :|: X₂ ≤ 1
t₂₃₂: l9(X₀, X₁, X₂) → l10(X₀, X₁, -3) :|: 0 ≤ 2+X₂
t₉: l9(X₀, X₁, X₂) → l9(X₀+X₂, X₁, X₂+1) :|: 3+X₂ ≤ 0
t₉₀: l90(X₀, X₁, X₂) → l90(X₀+X₂, X₁, X₂-X₁) :|: 1 ≤ X₂
t₁₅₁: l90(X₀, X₁, X₂) → l91(X₀, X₁, 6) :|: X₂ ≤ 0
t₉₁: l91(X₀, X₁, X₂) → l91(X₀+X₂, X₁, X₂-X₁) :|: 2 ≤ X₂
t₁₅₀: l91(X₀, X₁, X₂) → l92(X₀, X₁, 6) :|: X₂ ≤ 1
t₉₂: l92(X₀, X₁, X₂) → l92(X₀+X₂, X₁, X₂-X₁) :|: 1 ≤ X₂
t₁₄₉: l92(X₀, X₁, X₂) → l93(X₀, X₁, 7) :|: X₂ ≤ 0
t₉₃: l93(X₀, X₁, X₂) → l93(X₀+X₂, X₁, X₂-X₁) :|: 1 ≤ X₂
t₁₄₈: l93(X₀, X₁, X₂) → l94(X₀, X₁, 7) :|: X₂ ≤ 0
t₉₄: l94(X₀, X₁, X₂) → l94(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ X₂
t₁₄₇: l94(X₀, X₁, X₂) → l95(X₀, X₁, 7) :|: X₂+1 ≤ 0
t₉₅: l95(X₀, X₁, X₂) → l95(X₀+X₂, X₁, X₂-X₁) :|: 1 ≤ X₂
t₁₄₆: l95(X₀, X₁, X₂) → l96(X₀, X₁, 7) :|: X₂ ≤ 0
t₉₆: l96(X₀, X₁, X₂) → l96(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ X₂
t₁₄₅: l96(X₀, X₁, X₂) → l97(X₀, X₁, 8) :|: X₂+1 ≤ 0
t₉₇: l97(X₀, X₁, X₂) → l97(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ X₂
t₁₄₄: l97(X₀, X₁, X₂) → l98(X₀, X₁, 8) :|: X₂+1 ≤ 0
t₉₈: l98(X₀, X₁, X₂) → l98(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 1+X₂
t₁₄₃: l98(X₀, X₁, X₂) → l99(X₀, X₁, 8) :|: 2+X₂ ≤ 0
t₁₄₂: l99(X₀, X₁, X₂) → l100(X₀, X₁, 8) :|: X₂+1 ≤ 0
t₉₉: l99(X₀, X₁, X₂) → l99(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ X₂

Preprocessing

Eliminate variables {X₀} that do not contribute to the problem

Found invariant 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l115

Found invariant X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l49

Found invariant X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l54

Found invariant X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l32

Found invariant X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l53

Found invariant X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l6

Found invariant X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l82

Found invariant 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l45

Found invariant X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l57

Found invariant X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l52

Found invariant X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l43

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l12

Found invariant X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l61

Found invariant X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l81

Found invariant X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l56

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l10

Found invariant X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l4

Found invariant X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l3

Found invariant X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l103

Found invariant X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l118

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l14

Found invariant 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l116

Found invariant X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l117

Found invariant X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l25

Found invariant X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l41

Found invariant 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l79

Found invariant X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l2

Found invariant X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l85

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l109

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l39

Found invariant X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l65

Found invariant X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l91

Found invariant X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l100

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l111

Found invariant X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l31

Found invariant X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l38

Found invariant X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l26

Found invariant X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l67

Found invariant X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l94

Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l7

Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l42

Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l5

Found invariant X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l8

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l16

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l72

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l73

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l36

Found invariant X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l64

Found invariant X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l27

Found invariant 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l48

Found invariant X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l93

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l34

Found invariant X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l66

Found invariant X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l90

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l112

Found invariant X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l119

Found invariant X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l96

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l19

Found invariant X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l87

Found invariant X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l29

Found invariant 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l47

Found invariant X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l62

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l70

Found invariant X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l20

Found invariant X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l51

Found invariant X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l55

Found invariant X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l22

Found invariant X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l1

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l108

Found invariant X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l18

Found invariant X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l63

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l74

Found invariant 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l77

Found invariant X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l98

Found invariant 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l46

Found invariant X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l59

Found invariant X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l83

Found invariant X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l97

Found invariant 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l11

Found invariant X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l50

Found invariant X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l58

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l76

Found invariant 9+X₂ ≤ 0 ∧ 11+X₂ ≤ X₁ ∧ 7+X₁+X₂ ≤ 0 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l121

Found invariant X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l60

Found invariant X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l86

Found invariant X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l24

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l75

Found invariant X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l88

Found invariant X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l95

Found invariant X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l102

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l107

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l15

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l33

Found invariant X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l84

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l71

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l106

Found invariant X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l30

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l35

Found invariant X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l68

Found invariant X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l92

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l69

Found invariant X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l89

Found invariant X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l23

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l110

Found invariant 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l113

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l17

Found invariant X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l28

Found invariant 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l80

Found invariant X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l101

Found invariant X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l21

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l37

Found invariant 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l78

Found invariant 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l13

Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l44

Found invariant 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l114

Found invariant 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l9

Found invariant X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l104

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l105

Found invariant X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l120

Found invariant X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l40

Found invariant X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location l99

Problem after Preprocessing

Start: l0
Program_Vars: X₁, X₂
Temp_Vars:
Locations: l0, l1, l10, l100, l101, l102, l103, l104, l105, l106, l107, l108, l109, l11, l110, l111, l112, l113, l114, l115, l116, l117, l118, l119, l12, l120, l121, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l34, l35, l36, l37, l38, l39, l4, l40, l41, l42, l43, l44, l45, l46, l47, l48, l49, l5, l50, l51, l52, l53, l54, l55, l56, l57, l58, l59, l6, l60, l61, l62, l63, l64, l65, l66, l67, l68, l69, l7, l70, l71, l72, l73, l74, l75, l76, l77, l78, l79, l8, l80, l81, l82, l83, l84, l85, l86, l87, l88, l89, l9, l90, l91, l92, l93, l94, l95, l96, l97, l98, l99
Transitions:
t₆₀₂: l0(X₁, X₂) → l1(2, 0)
t₆₀₃: l1(X₁, X₂) → l1(X₁, X₂+1) :|: X₂ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₀₄: l1(X₁, X₂) → l2(X₁, 0) :|: 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₀₅: l10(X₁, X₂) → l10(X₁, X₂+1) :|: 2+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₀₆: l10(X₁, X₂) → l11(X₁, -3) :|: 0 ≤ 1+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₀₇: l100(X₁, X₂) → l100(X₁, X₂-X₁) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₀₈: l100(X₁, X₂) → l101(X₁, 9) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₀₉: l101(X₁, X₂) → l101(X₁, X₂-X₁) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₁₀: l101(X₁, X₂) → l102(X₁, 9) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₁₁: l102(X₁, X₂) → l102(X₁, X₂-X₁) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₁₂: l102(X₁, X₂) → l103(X₁, 9) :|: 3+X₂ ≤ 0 ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₁₃: l103(X₁, X₂) → l103(X₁, X₂-X₁) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₁₄: l103(X₁, X₂) → l104(X₁, 9) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₁₅: l104(X₁, X₂) → l104(X₁, X₂-X₁) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₁₆: l104(X₁, X₂) → l105(X₁, 0) :|: 3+X₂ ≤ 0 ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₁₇: l105(X₁, X₂) → l105(X₁, X₂-X₁) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₁₈: l105(X₁, X₂) → l106(X₁, 0) :|: 3+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₁₉: l106(X₁, X₂) → l106(X₁, X₂-X₁) :|: 0 ≤ 3+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₂₀: l106(X₁, X₂) → l107(X₁, 0) :|: 4+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₂₁: l107(X₁, X₂) → l107(X₁, X₂-X₁) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₂₂: l107(X₁, X₂) → l108(X₁, 0) :|: 3+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₂₃: l108(X₁, X₂) → l108(X₁, X₂-X₁) :|: 0 ≤ 3+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₂₄: l108(X₁, X₂) → l109(X₁, -1) :|: 4+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₂₅: l109(X₁, X₂) → l109(X₁, X₂-X₁) :|: 0 ≤ 4+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₂₆: l109(X₁, X₂) → l110(X₁, -1) :|: 5+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₂₇: l11(X₁, X₂) → l11(X₁, X₂+1) :|: 3+X₂ ≤ 0 ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₂₈: l11(X₁, X₂) → l12(X₁, -3) :|: 0 ≤ 2+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₂₉: l110(X₁, X₂) → l110(X₁, X₂-X₁) :|: 0 ≤ 5+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₃₀: l110(X₁, X₂) → l111(X₁, -1) :|: 6+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₃₁: l111(X₁, X₂) → l111(X₁, X₂-X₁) :|: 0 ≤ 4+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₃₂: l111(X₁, X₂) → l112(X₁, -1) :|: 5+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₃₃: l112(X₁, X₂) → l112(X₁, X₂-X₁) :|: 0 ≤ 5+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₃₄: l112(X₁, X₂) → l113(X₁, -2) :|: 6+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₃₅: l113(X₁, X₂) → l113(X₁, X₂-X₁) :|: 0 ≤ 6+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₃₆: l113(X₁, X₂) → l114(X₁, -2) :|: 7+X₂ ≤ 0 ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₃₇: l114(X₁, X₂) → l114(X₁, X₂-X₁) :|: 0 ≤ 7+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₃₈: l114(X₁, X₂) → l115(X₁, -2) :|: 8+X₂ ≤ 0 ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₃₉: l115(X₁, X₂) → l115(X₁, X₂-X₁) :|: 0 ≤ 6+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₄₀: l115(X₁, X₂) → l116(X₁, -2) :|: 7+X₂ ≤ 0 ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₄₁: l116(X₁, X₂) → l116(X₁, X₂-X₁) :|: 0 ≤ 7+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₄₂: l116(X₁, X₂) → l117(X₁, 16) :|: 8+X₂ ≤ 0 ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₄₃: l117(X₁, X₂) → l117(X₁, X₂-X₁) :|: 0 ≤ 7+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₄₄: l117(X₁, X₂) → l118(X₁, 16) :|: 8+X₂ ≤ 0 ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₄₅: l118(X₁, X₂) → l118(X₁, X₂-X₁) :|: 0 ≤ 8+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₄₆: l118(X₁, X₂) → l119(X₁, 16) :|: 9+X₂ ≤ 0 ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₄₇: l119(X₁, X₂) → l119(X₁, X₂-X₁) :|: 0 ≤ 7+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₄₈: l119(X₁, X₂) → l120(X₁, 16) :|: 8+X₂ ≤ 0 ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₄₉: l12(X₁, X₂) → l12(X₁, X₂+1) :|: 2+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₅₀: l12(X₁, X₂) → l13(X₁, -4) :|: 0 ≤ 1+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₅₁: l120(X₁, X₂) → l120(X₁, X₂-X₁) :|: 0 ≤ 8+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₅₂: l120(X₁, X₂) → l121(X₁, X₂) :|: 9+X₂ ≤ 0 ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₅₃: l13(X₁, X₂) → l13(X₁, X₂+1) :|: 2+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₅₄: l13(X₁, X₂) → l14(X₁, -4) :|: 0 ≤ 1+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₅₅: l14(X₁, X₂) → l14(X₁, X₂+1) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₅₆: l14(X₁, X₂) → l15(X₁, -4) :|: 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₅₇: l15(X₁, X₂) → l15(X₁, X₂+1) :|: 2+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₅₈: l15(X₁, X₂) → l16(X₁, -4) :|: 0 ≤ 1+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₅₉: l16(X₁, X₂) → l16(X₁, X₂+1) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₆₀: l16(X₁, X₂) → l17(X₁, -5) :|: 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₆₁: l17(X₁, X₂) → l17(X₁, X₂+1) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₆₂: l17(X₁, X₂) → l18(X₁, -5) :|: 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₆₃: l18(X₁, X₂) → l18(X₁, X₂+1) :|: X₂ ≤ 0 ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₆₄: l18(X₁, X₂) → l19(X₁, -5) :|: 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₆₅: l19(X₁, X₂) → l19(X₁, X₂+1) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₆₆: l19(X₁, X₂) → l20(X₁, -5) :|: 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₆₇: l2(X₁, X₂) → l2(X₁, X₂+1) :|: X₂ ≤ 3 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₆₈: l2(X₁, X₂) → l3(X₁, 0) :|: 4 ≤ X₂ ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₆₉: l20(X₁, X₂) → l20(X₁, X₂+1) :|: X₂ ≤ 0 ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₇₀: l20(X₁, X₂) → l21(X₁, -6) :|: 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₇₁: l21(X₁, X₂) → l21(X₁, X₂+1) :|: X₂ ≤ 3 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₇₂: l21(X₁, X₂) → l22(X₁, -6) :|: 4 ≤ X₂ ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₇₃: l22(X₁, X₂) → l22(X₁, X₂+1) :|: X₂ ≤ 4 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₇₄: l22(X₁, X₂) → l23(X₁, -6) :|: 5 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₇₅: l23(X₁, X₂) → l23(X₁, X₂+1) :|: X₂ ≤ 3 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₇₆: l23(X₁, X₂) → l24(X₁, -6) :|: 4 ≤ X₂ ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₇₇: l24(X₁, X₂) → l24(X₁, X₂+1) :|: X₂ ≤ 4 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₇₈: l24(X₁, X₂) → l25(X₁, 0) :|: 5 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₇₉: l25(X₁, X₂) → l25(X₁, X₂+X₁) :|: X₂ ≤ 2 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₈₀: l25(X₁, X₂) → l26(X₁, 0) :|: 3 ≤ X₂ ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₈₁: l26(X₁, X₂) → l26(X₁, X₂+X₁) :|: X₂ ≤ 3 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₈₂: l26(X₁, X₂) → l27(X₁, 0) :|: 4 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₈₃: l27(X₁, X₂) → l27(X₁, X₂+X₁) :|: X₂ ≤ 2 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₈₄: l27(X₁, X₂) → l28(X₁, 0) :|: 3 ≤ X₂ ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₈₅: l28(X₁, X₂) → l28(X₁, X₂+X₁) :|: X₂ ≤ 3 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₈₆: l28(X₁, X₂) → l29(X₁, 1) :|: 4 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₈₇: l29(X₁, X₂) → l29(X₁, X₂+X₁) :|: X₂ ≤ 1 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₈₈: l29(X₁, X₂) → l30(X₁, 1) :|: 2 ≤ X₂ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₈₉: l3(X₁, X₂) → l3(X₁, X₂+1) :|: X₂ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₉₀: l3(X₁, X₂) → l4(X₁, 0) :|: 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₉₁: l30(X₁, X₂) → l30(X₁, X₂+X₁) :|: X₂ ≤ 2 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₉₂: l30(X₁, X₂) → l31(X₁, 1) :|: 3 ≤ X₂ ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₉₃: l31(X₁, X₂) → l31(X₁, X₂+X₁) :|: X₂ ≤ 1 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₉₄: l31(X₁, X₂) → l32(X₁, 1) :|: 2 ≤ X₂ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₉₅: l32(X₁, X₂) → l32(X₁, X₂+X₁) :|: X₂ ≤ 2 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₉₆: l32(X₁, X₂) → l33(X₁, -3) :|: 3 ≤ X₂ ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₉₇: l33(X₁, X₂) → l33(X₁, X₂+X₁) :|: 3+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₉₈: l33(X₁, X₂) → l34(X₁, -3) :|: 0 ≤ 2+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₆₉₉: l34(X₁, X₂) → l34(X₁, X₂+X₁) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₀₀: l34(X₁, X₂) → l35(X₁, -3) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₀₁: l35(X₁, X₂) → l35(X₁, X₂+X₁) :|: 3+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₀₂: l35(X₁, X₂) → l36(X₁, -3) :|: 0 ≤ 2+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₀₃: l36(X₁, X₂) → l36(X₁, X₂+X₁) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₀₄: l36(X₁, X₂) → l37(X₁, -4) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₀₅: l37(X₁, X₂) → l37(X₁, X₂+X₁) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₀₆: l37(X₁, X₂) → l38(X₁, -4) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₀₇: l38(X₁, X₂) → l38(X₁, X₂+X₁) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₀₈: l38(X₁, X₂) → l39(X₁, -4) :|: 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₀₉: l39(X₁, X₂) → l39(X₁, X₂+X₁) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₁₀: l39(X₁, X₂) → l40(X₁, -4) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₁₁: l4(X₁, X₂) → l4(X₁, X₂+1) :|: X₂ ≤ 3 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₁₂: l4(X₁, X₂) → l5(X₁, 1) :|: 4 ≤ X₂ ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₁₃: l40(X₁, X₂) → l40(X₁, X₂+X₁) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₁₄: l40(X₁, X₂) → l41(X₁, -5) :|: 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₁₅: l41(X₁, X₂) → l41(X₁, X₂+X₁) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₁₆: l41(X₁, X₂) → l42(X₁, -5) :|: 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₁₇: l42(X₁, X₂) → l42(X₁, X₂+X₁) :|: X₂ ≤ 0 ∧ X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₁₈: l42(X₁, X₂) → l43(X₁, -5) :|: 1 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₁₉: l43(X₁, X₂) → l43(X₁, X₂+X₁) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₂₀: l43(X₁, X₂) → l44(X₁, -5) :|: 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₂₁: l44(X₁, X₂) → l44(X₁, X₂+X₁) :|: X₂ ≤ 0 ∧ X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₂₂: l44(X₁, X₂) → l45(X₁, -6) :|: 1 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₂₃: l45(X₁, X₂) → l45(X₁, X₂+X₁) :|: X₂ ≤ 3 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₂₄: l45(X₁, X₂) → l46(X₁, -6) :|: 4 ≤ X₂ ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₂₅: l46(X₁, X₂) → l46(X₁, X₂+X₁) :|: X₂ ≤ 4 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₂₆: l46(X₁, X₂) → l47(X₁, -6) :|: 5 ≤ X₂ ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₂₇: l47(X₁, X₂) → l47(X₁, X₂+X₁) :|: X₂ ≤ 3 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₂₈: l47(X₁, X₂) → l48(X₁, -6) :|: 4 ≤ X₂ ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₂₉: l48(X₁, X₂) → l48(X₁, X₂+X₁) :|: X₂ ≤ 4 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₃₀: l48(X₁, X₂) → l49(X₁, 5) :|: 5 ≤ X₂ ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₃₁: l49(X₁, X₂) → l49(X₁, X₂-1) :|: 3 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₃₂: l49(X₁, X₂) → l50(X₁, 5) :|: X₂ ≤ 2 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₃₃: l5(X₁, X₂) → l5(X₁, X₂+1) :|: X₂ ≤ 1 ∧ X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₃₄: l5(X₁, X₂) → l6(X₁, 1) :|: 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₃₅: l50(X₁, X₂) → l50(X₁, X₂-1) :|: 2 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₃₆: l50(X₁, X₂) → l51(X₁, 5) :|: X₂ ≤ 1 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₃₇: l51(X₁, X₂) → l51(X₁, X₂-1) :|: 3 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₃₈: l51(X₁, X₂) → l52(X₁, 5) :|: X₂ ≤ 2 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₃₉: l52(X₁, X₂) → l52(X₁, X₂-1) :|: 2 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₄₀: l52(X₁, X₂) → l53(X₁, 6) :|: X₂ ≤ 1 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₄₁: l53(X₁, X₂) → l53(X₁, X₂-1) :|: 2 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₄₂: l53(X₁, X₂) → l54(X₁, 6) :|: X₂ ≤ 1 ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₄₃: l54(X₁, X₂) → l54(X₁, X₂-1) :|: 1 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₄₄: l54(X₁, X₂) → l55(X₁, 6) :|: X₂ ≤ 0 ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₄₅: l55(X₁, X₂) → l55(X₁, X₂-1) :|: 2 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₄₆: l55(X₁, X₂) → l56(X₁, 6) :|: X₂ ≤ 1 ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₄₇: l56(X₁, X₂) → l56(X₁, X₂-1) :|: 1 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₄₈: l56(X₁, X₂) → l57(X₁, 7) :|: X₂ ≤ 0 ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₄₉: l57(X₁, X₂) → l57(X₁, X₂-1) :|: 1 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₅₀: l57(X₁, X₂) → l58(X₁, 7) :|: X₂ ≤ 0 ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₅₁: l58(X₁, X₂) → l58(X₁, X₂-1) :|: 0 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₅₂: l58(X₁, X₂) → l59(X₁, 7) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₅₃: l59(X₁, X₂) → l59(X₁, X₂-1) :|: 1 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₅₄: l59(X₁, X₂) → l60(X₁, 7) :|: X₂ ≤ 0 ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₅₅: l6(X₁, X₂) → l6(X₁, X₂+1) :|: X₂ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₅₆: l6(X₁, X₂) → l7(X₁, 1) :|: 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₅₇: l60(X₁, X₂) → l60(X₁, X₂-1) :|: 0 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₅₈: l60(X₁, X₂) → l61(X₁, 8) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₅₉: l61(X₁, X₂) → l61(X₁, X₂-1) :|: 0 ≤ X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₆₀: l61(X₁, X₂) → l62(X₁, 8) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₆₁: l62(X₁, X₂) → l62(X₁, X₂-1) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₆₂: l62(X₁, X₂) → l63(X₁, 8) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₆₃: l63(X₁, X₂) → l63(X₁, X₂-1) :|: 0 ≤ X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₆₄: l63(X₁, X₂) → l64(X₁, 8) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₆₅: l64(X₁, X₂) → l64(X₁, X₂-1) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₆₆: l64(X₁, X₂) → l65(X₁, 9) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₆₇: l65(X₁, X₂) → l65(X₁, X₂-1) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₆₈: l65(X₁, X₂) → l66(X₁, 9) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₆₉: l66(X₁, X₂) → l66(X₁, X₂-1) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₇₀: l66(X₁, X₂) → l67(X₁, 9) :|: 3+X₂ ≤ 0 ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₇₁: l67(X₁, X₂) → l67(X₁, X₂-1) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₇₂: l67(X₁, X₂) → l68(X₁, 9) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₇₃: l68(X₁, X₂) → l68(X₁, X₂-1) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₇₄: l68(X₁, X₂) → l69(X₁, 0) :|: 3+X₂ ≤ 0 ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₇₅: l69(X₁, X₂) → l69(X₁, X₂-1) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₇₆: l69(X₁, X₂) → l70(X₁, 0) :|: 3+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₇₇: l7(X₁, X₂) → l7(X₁, X₂+1) :|: X₂ ≤ 1 ∧ X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₇₈: l7(X₁, X₂) → l8(X₁, 1) :|: 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₇₉: l70(X₁, X₂) → l70(X₁, X₂-1) :|: 0 ≤ 3+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₈₀: l70(X₁, X₂) → l71(X₁, 0) :|: 4+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₈₁: l71(X₁, X₂) → l71(X₁, X₂-1) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₈₂: l71(X₁, X₂) → l72(X₁, 0) :|: 3+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₈₃: l72(X₁, X₂) → l72(X₁, X₂-1) :|: 0 ≤ 3+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₈₄: l72(X₁, X₂) → l73(X₁, -1) :|: 4+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₈₅: l73(X₁, X₂) → l73(X₁, X₂-1) :|: 0 ≤ 4+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₈₆: l73(X₁, X₂) → l74(X₁, -1) :|: 5+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₈₇: l74(X₁, X₂) → l74(X₁, X₂-1) :|: 0 ≤ 5+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₈₈: l74(X₁, X₂) → l75(X₁, -1) :|: 6+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₈₉: l75(X₁, X₂) → l75(X₁, X₂-1) :|: 0 ≤ 4+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₉₀: l75(X₁, X₂) → l76(X₁, -1) :|: 5+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₉₁: l76(X₁, X₂) → l76(X₁, X₂-1) :|: 0 ≤ 5+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₉₂: l76(X₁, X₂) → l77(X₁, -2) :|: 6+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₉₃: l77(X₁, X₂) → l77(X₁, X₂-1) :|: 0 ≤ 6+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₉₄: l77(X₁, X₂) → l78(X₁, -2) :|: 7+X₂ ≤ 0 ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₉₅: l78(X₁, X₂) → l78(X₁, X₂-1) :|: 0 ≤ 7+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₉₆: l78(X₁, X₂) → l79(X₁, -2) :|: 8+X₂ ≤ 0 ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₉₇: l79(X₁, X₂) → l79(X₁, X₂-1) :|: 0 ≤ 6+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₉₈: l79(X₁, X₂) → l80(X₁, -2) :|: 7+X₂ ≤ 0 ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₇₉₉: l8(X₁, X₂) → l8(X₁, X₂+1) :|: X₂ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₀₀: l8(X₁, X₂) → l9(X₁, -3) :|: 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₀₁: l80(X₁, X₂) → l80(X₁, X₂-1) :|: 0 ≤ 7+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₀₂: l80(X₁, X₂) → l81(X₁, 16) :|: 8+X₂ ≤ 0 ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₀₃: l81(X₁, X₂) → l81(X₁, X₂-1) :|: 0 ≤ 7+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₀₄: l81(X₁, X₂) → l82(X₁, 16) :|: 8+X₂ ≤ 0 ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₀₅: l82(X₁, X₂) → l82(X₁, X₂-1) :|: 0 ≤ 8+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₀₆: l82(X₁, X₂) → l83(X₁, 16) :|: 9+X₂ ≤ 0 ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₀₇: l83(X₁, X₂) → l83(X₁, X₂-1) :|: 0 ≤ 7+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₀₈: l83(X₁, X₂) → l84(X₁, 16) :|: 8+X₂ ≤ 0 ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₀₉: l84(X₁, X₂) → l84(X₁, X₂-1) :|: 0 ≤ 8+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₁₀: l84(X₁, X₂) → l85(X₁, 5) :|: 9+X₂ ≤ 0 ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₁₁: l85(X₁, X₂) → l85(X₁, X₂-X₁) :|: 3 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₁₂: l85(X₁, X₂) → l86(X₁, 5) :|: X₂ ≤ 2 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₁₃: l86(X₁, X₂) → l86(X₁, X₂-X₁) :|: 2 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₁₄: l86(X₁, X₂) → l87(X₁, 5) :|: X₂ ≤ 1 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₁₅: l87(X₁, X₂) → l87(X₁, X₂-X₁) :|: 3 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₁₆: l87(X₁, X₂) → l88(X₁, 5) :|: X₂ ≤ 2 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₁₇: l88(X₁, X₂) → l88(X₁, X₂-X₁) :|: 2 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₁₈: l88(X₁, X₂) → l89(X₁, 6) :|: X₂ ≤ 1 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₁₉: l89(X₁, X₂) → l89(X₁, X₂-X₁) :|: 2 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₂₀: l89(X₁, X₂) → l90(X₁, 6) :|: X₂ ≤ 1 ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₂₂: l9(X₁, X₂) → l10(X₁, -3) :|: 0 ≤ 2+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₂₁: l9(X₁, X₂) → l9(X₁, X₂+1) :|: 3+X₂ ≤ 0 ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₂₃: l90(X₁, X₂) → l90(X₁, X₂-X₁) :|: 1 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₂₄: l90(X₁, X₂) → l91(X₁, 6) :|: X₂ ≤ 0 ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₂₅: l91(X₁, X₂) → l91(X₁, X₂-X₁) :|: 2 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₂₆: l91(X₁, X₂) → l92(X₁, 6) :|: X₂ ≤ 1 ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₂₇: l92(X₁, X₂) → l92(X₁, X₂-X₁) :|: 1 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₂₈: l92(X₁, X₂) → l93(X₁, 7) :|: X₂ ≤ 0 ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₂₉: l93(X₁, X₂) → l93(X₁, X₂-X₁) :|: 1 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₃₀: l93(X₁, X₂) → l94(X₁, 7) :|: X₂ ≤ 0 ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₃₁: l94(X₁, X₂) → l94(X₁, X₂-X₁) :|: 0 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₃₂: l94(X₁, X₂) → l95(X₁, 7) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₃₃: l95(X₁, X₂) → l95(X₁, X₂-X₁) :|: 1 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₃₄: l95(X₁, X₂) → l96(X₁, 7) :|: X₂ ≤ 0 ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₃₅: l96(X₁, X₂) → l96(X₁, X₂-X₁) :|: 0 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₃₆: l96(X₁, X₂) → l97(X₁, 8) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₃₇: l97(X₁, X₂) → l97(X₁, X₂-X₁) :|: 0 ≤ X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₃₈: l97(X₁, X₂) → l98(X₁, 8) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₃₉: l98(X₁, X₂) → l98(X₁, X₂-X₁) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₄₀: l98(X₁, X₂) → l99(X₁, 8) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₄₂: l99(X₁, X₂) → l100(X₁, 8) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₈₄₁: l99(X₁, X₂) → l99(X₁, X₂-X₁) :|: 0 ≤ X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

MPRF for transition t₆₀₃: l1(X₁, X₂) → l1(X₁, X₂+1) :|: X₂ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

3 {O(1)}

MPRF:

l1 [3-X₂ ]

MPRF for transition t₆₆₇: l2(X₁, X₂) → l2(X₁, X₂+1) :|: X₂ ≤ 3 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

4 {O(1)}

MPRF:

l2 [4-X₂ ]

MPRF for transition t₆₈₉: l3(X₁, X₂) → l3(X₁, X₂+1) :|: X₂ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

3 {O(1)}

MPRF:

l3 [3-X₂ ]

MPRF for transition t₇₁₁: l4(X₁, X₂) → l4(X₁, X₂+1) :|: X₂ ≤ 3 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

4 {O(1)}

MPRF:

l4 [4-X₂ ]

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₃₃: l5(X₁, X₂) → l5(X₁, X₂+1) :|: X₂ ≤ 1 ∧ X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

MPRF for transition t₇₅₅: l6(X₁, X₂) → l6(X₁, X₂+1) :|: X₂ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l6 [4-X₂ ]

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₇₇: l7(X₁, X₂) → l7(X₁, X₂+1) :|: X₂ ≤ 1 ∧ X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

MPRF for transition t₇₉₉: l8(X₁, X₂) → l8(X₁, X₂+1) :|: X₂ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l8 [4-X₂ ]

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₈₂₁: l9(X₁, X₂) → l9(X₁, X₂+1) :|: 3+X₂ ≤ 0 ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

MPRF for transition t₆₀₅: l10(X₁, X₂) → l10(X₁, X₂+1) :|: 2+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

3 {O(1)}

MPRF:

l10 [-X₂ ]

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₂₇: l11(X₁, X₂) → l11(X₁, X₂+1) :|: 3+X₂ ≤ 0 ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

MPRF for transition t₆₄₉: l12(X₁, X₂) → l12(X₁, X₂+1) :|: 2+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

3 {O(1)}

MPRF:

l12 [-X₂ ]

MPRF for transition t₆₅₃: l13(X₁, X₂) → l13(X₁, X₂+1) :|: 2+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

4 {O(1)}

MPRF:

l13 [-X₂ ]

MPRF for transition t₆₅₅: l14(X₁, X₂) → l14(X₁, X₂+1) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l14 [1-X₂ ]

MPRF for transition t₆₅₇: l15(X₁, X₂) → l15(X₁, X₂+1) :|: 2+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

4 {O(1)}

MPRF:

l15 [-X₂ ]

MPRF for transition t₆₅₉: l16(X₁, X₂) → l16(X₁, X₂+1) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l16 [1-X₂ ]

MPRF for transition t₆₆₁: l17(X₁, X₂) → l17(X₁, X₂+1) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l17 [1-X₂ ]

MPRF for transition t₆₆₃: l18(X₁, X₂) → l18(X₁, X₂+1) :|: X₂ ≤ 0 ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l18 [1-X₂ ]

MPRF for transition t₆₆₅: l19(X₁, X₂) → l19(X₁, X₂+1) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l19 [1-X₂ ]

MPRF for transition t₆₆₉: l20(X₁, X₂) → l20(X₁, X₂+1) :|: X₂ ≤ 0 ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l20 [1-X₂ ]

MPRF for transition t₆₇₁: l21(X₁, X₂) → l21(X₁, X₂+1) :|: X₂ ≤ 3 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

10 {O(1)}

MPRF:

l21 [4-X₂ ]

MPRF for transition t₆₇₃: l22(X₁, X₂) → l22(X₁, X₂+1) :|: X₂ ≤ 4 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

11 {O(1)}

MPRF:

l22 [5-X₂ ]

MPRF for transition t₆₇₅: l23(X₁, X₂) → l23(X₁, X₂+1) :|: X₂ ≤ 3 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

10 {O(1)}

MPRF:

l23 [4-X₂ ]

MPRF for transition t₆₇₇: l24(X₁, X₂) → l24(X₁, X₂+1) :|: X₂ ≤ 4 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

11 {O(1)}

MPRF:

l24 [5-X₂ ]

MPRF for transition t₆₇₉: l25(X₁, X₂) → l25(X₁, X₂+X₁) :|: X₂ ≤ 2 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l25 [5-X₂ ]

MPRF for transition t₆₈₁: l26(X₁, X₂) → l26(X₁, X₂+X₁) :|: X₂ ≤ 3 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l26 [6-X₂ ]

MPRF for transition t₆₈₃: l27(X₁, X₂) → l27(X₁, X₂+X₁) :|: X₂ ≤ 2 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l27 [5-X₂ ]

MPRF for transition t₆₈₅: l28(X₁, X₂) → l28(X₁, X₂+X₁) :|: X₂ ≤ 3 ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l28 [6-X₂ ]

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₈₇: l29(X₁, X₂) → l29(X₁, X₂+X₁) :|: X₂ ≤ 1 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₉₁: l30(X₁, X₂) → l30(X₁, X₂+X₁) :|: X₂ ≤ 2 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₉₃: l31(X₁, X₂) → l31(X₁, X₂+X₁) :|: X₂ ≤ 1 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₉₅: l32(X₁, X₂) → l32(X₁, X₂+X₁) :|: X₂ ≤ 2 ∧ X₂ ≤ 4 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 6 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₉₇: l33(X₁, X₂) → l33(X₁, X₂+X₁) :|: 3+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₉₉: l34(X₁, X₂) → l34(X₁, X₂+X₁) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₀₁: l35(X₁, X₂) → l35(X₁, X₂+X₁) :|: 3+X₂ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₀₃: l36(X₁, X₂) → l36(X₁, X₂+X₁) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁

MPRF for transition t₇₀₅: l37(X₁, X₂) → l37(X₁, X₂+X₁) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l37 [1-X₂ ]

MPRF for transition t₇₀₇: l38(X₁, X₂) → l38(X₁, X₂+X₁) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

4 {O(1)}

MPRF:

l38 [-X₂ ]

MPRF for transition t₇₀₉: l39(X₁, X₂) → l39(X₁, X₂+X₁) :|: 2+X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l39 [1-X₂ ]

MPRF for transition t₇₁₃: l40(X₁, X₂) → l40(X₁, X₂+X₁) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

4 {O(1)}

MPRF:

l40 [-X₂ ]

MPRF for transition t₇₁₅: l41(X₁, X₂) → l41(X₁, X₂+X₁) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l41 [-X₂ ]

MPRF for transition t₇₁₇: l42(X₁, X₂) → l42(X₁, X₂+X₁) :|: X₂ ≤ 0 ∧ X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l42 [1-X₂ ]

MPRF for transition t₇₁₉: l43(X₁, X₂) → l43(X₁, X₂+X₁) :|: X₂+1 ≤ 0 ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 3 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l43 [-X₂ ]

MPRF for transition t₇₂₁: l44(X₁, X₂) → l44(X₁, X₂+X₁) :|: X₂ ≤ 0 ∧ X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l44 [1-X₂ ]

MPRF for transition t₇₂₃: l45(X₁, X₂) → l45(X₁, X₂+X₁) :|: X₂ ≤ 3 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

10 {O(1)}

MPRF:

l45 [4-X₂ ]

MPRF for transition t₇₂₅: l46(X₁, X₂) → l46(X₁, X₂+X₁) :|: X₂ ≤ 4 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

11 {O(1)}

MPRF:

l46 [5-X₂ ]

MPRF for transition t₇₂₇: l47(X₁, X₂) → l47(X₁, X₂+X₁) :|: X₂ ≤ 3 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

10 {O(1)}

MPRF:

l47 [4-X₂ ]

MPRF for transition t₇₂₉: l48(X₁, X₂) → l48(X₁, X₂+X₁) :|: X₂ ≤ 4 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

11 {O(1)}

MPRF:

l48 [5-X₂ ]

MPRF for transition t₇₃₁: l49(X₁, X₂) → l49(X₁, X₂-1) :|: 3 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l49 [X₂ ]

MPRF for transition t₇₃₅: l50(X₁, X₂) → l50(X₁, X₂-1) :|: 2 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l50 [X₂ ]

MPRF for transition t₇₃₇: l51(X₁, X₂) → l51(X₁, X₂-1) :|: 3 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l51 [X₂ ]

MPRF for transition t₇₃₉: l52(X₁, X₂) → l52(X₁, X₂-1) :|: 2 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l52 [X₂ ]

MPRF for transition t₇₄₁: l53(X₁, X₂) → l53(X₁, X₂-1) :|: 2 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l53 [X₂ ]

MPRF for transition t₇₄₃: l54(X₁, X₂) → l54(X₁, X₂-1) :|: 1 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

7 {O(1)}

MPRF:

l54 [X₂+1 ]

MPRF for transition t₇₄₅: l55(X₁, X₂) → l55(X₁, X₂-1) :|: 2 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l55 [X₂ ]

MPRF for transition t₇₄₇: l56(X₁, X₂) → l56(X₁, X₂-1) :|: 1 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

7 {O(1)}

MPRF:

l56 [X₂+1 ]

MPRF for transition t₇₄₉: l57(X₁, X₂) → l57(X₁, X₂-1) :|: 1 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

8 {O(1)}

MPRF:

l57 [X₂+1 ]

MPRF for transition t₇₅₁: l58(X₁, X₂) → l58(X₁, X₂-1) :|: 0 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

8 {O(1)}

MPRF:

l58 [X₂+1 ]

MPRF for transition t₇₅₃: l59(X₁, X₂) → l59(X₁, X₂-1) :|: 1 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

8 {O(1)}

MPRF:

l59 [X₂+1 ]

MPRF for transition t₇₅₇: l60(X₁, X₂) → l60(X₁, X₂-1) :|: 0 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

8 {O(1)}

MPRF:

l60 [X₂+1 ]

MPRF for transition t₇₅₉: l61(X₁, X₂) → l61(X₁, X₂-1) :|: 0 ≤ X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

9 {O(1)}

MPRF:

l61 [X₂+1 ]

MPRF for transition t₇₆₁: l62(X₁, X₂) → l62(X₁, X₂-1) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

10 {O(1)}

MPRF:

l62 [X₂+2 ]

MPRF for transition t₇₆₃: l63(X₁, X₂) → l63(X₁, X₂-1) :|: 0 ≤ X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

9 {O(1)}

MPRF:

l63 [X₂+1 ]

MPRF for transition t₇₆₅: l64(X₁, X₂) → l64(X₁, X₂-1) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

10 {O(1)}

MPRF:

l64 [X₂+2 ]

MPRF for transition t₇₆₇: l65(X₁, X₂) → l65(X₁, X₂-1) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

11 {O(1)}

MPRF:

l65 [X₂+2 ]

MPRF for transition t₇₆₉: l66(X₁, X₂) → l66(X₁, X₂-1) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

13 {O(1)}

MPRF:

l66 [X₂+4 ]

MPRF for transition t₇₇₁: l67(X₁, X₂) → l67(X₁, X₂-1) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

11 {O(1)}

MPRF:

l67 [X₂+2 ]

MPRF for transition t₇₇₃: l68(X₁, X₂) → l68(X₁, X₂-1) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

13 {O(1)}

MPRF:

l68 [X₂+4 ]

MPRF for transition t₇₇₅: l69(X₁, X₂) → l69(X₁, X₂-1) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

4 {O(1)}

MPRF:

l69 [X₂+4 ]

MPRF for transition t₇₇₉: l70(X₁, X₂) → l70(X₁, X₂-1) :|: 0 ≤ 3+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l70 [X₂+5 ]

MPRF for transition t₇₈₁: l71(X₁, X₂) → l71(X₁, X₂-1) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 3+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

4 {O(1)}

MPRF:

l71 [X₂+4 ]

MPRF for transition t₇₈₃: l72(X₁, X₂) → l72(X₁, X₂-1) :|: 0 ≤ 3+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l72 [X₂+5 ]

MPRF for transition t₇₈₅: l73(X₁, X₂) → l73(X₁, X₂-1) :|: 0 ≤ 4+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l73 [X₂+5 ]

MPRF for transition t₇₈₇: l74(X₁, X₂) → l74(X₁, X₂-1) :|: 0 ≤ 5+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

7 {O(1)}

MPRF:

l74 [X₂+6 ]

MPRF for transition t₇₈₉: l75(X₁, X₂) → l75(X₁, X₂-1) :|: 0 ≤ 4+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l75 [X₂+5 ]

MPRF for transition t₇₉₁: l76(X₁, X₂) → l76(X₁, X₂-1) :|: 0 ≤ 5+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

7 {O(1)}

MPRF:

l76 [X₂+6 ]

MPRF for transition t₇₉₃: l77(X₁, X₂) → l77(X₁, X₂-1) :|: 0 ≤ 6+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

9 {O(1)}

MPRF:

l77 [X₂+7 ]

MPRF for transition t₇₉₅: l78(X₁, X₂) → l78(X₁, X₂-1) :|: 0 ≤ 7+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

10 {O(1)}

MPRF:

l78 [X₂+8 ]

MPRF for transition t₇₉₇: l79(X₁, X₂) → l79(X₁, X₂-1) :|: 0 ≤ 6+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

9 {O(1)}

MPRF:

l79 [X₂+7 ]

MPRF for transition t₈₀₁: l80(X₁, X₂) → l80(X₁, X₂-1) :|: 0 ≤ 7+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

10 {O(1)}

MPRF:

l80 [X₂+8 ]

MPRF for transition t₈₀₃: l81(X₁, X₂) → l81(X₁, X₂-1) :|: 0 ≤ 7+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

25 {O(1)}

MPRF:

l81 [X₂+9 ]

MPRF for transition t₈₀₅: l82(X₁, X₂) → l82(X₁, X₂-1) :|: 0 ≤ 8+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

26 {O(1)}

MPRF:

l82 [X₂+10 ]

MPRF for transition t₈₀₇: l83(X₁, X₂) → l83(X₁, X₂-1) :|: 0 ≤ 7+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

25 {O(1)}

MPRF:

l83 [X₂+9 ]

MPRF for transition t₈₀₉: l84(X₁, X₂) → l84(X₁, X₂-1) :|: 0 ≤ 8+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

26 {O(1)}

MPRF:

l84 [X₂+10 ]

MPRF for transition t₈₁₁: l85(X₁, X₂) → l85(X₁, X₂-X₁) :|: 3 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l85 [X₂ ]

MPRF for transition t₈₁₃: l86(X₁, X₂) → l86(X₁, X₂-X₁) :|: 2 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l86 [X₂+1 ]

MPRF for transition t₈₁₅: l87(X₁, X₂) → l87(X₁, X₂-X₁) :|: 3 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

5 {O(1)}

MPRF:

l87 [X₂ ]

MPRF for transition t₈₁₇: l88(X₁, X₂) → l88(X₁, X₂-X₁) :|: 2 ≤ X₂ ∧ X₂ ≤ 5 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 7 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

6 {O(1)}

MPRF:

l88 [X₂+1 ]

MPRF for transition t₈₁₉: l89(X₁, X₂) → l89(X₁, X₂-X₁) :|: 2 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

7 {O(1)}

MPRF:

l89 [X₂+1 ]

MPRF for transition t₈₂₃: l90(X₁, X₂) → l90(X₁, X₂-X₁) :|: 1 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

8 {O(1)}

MPRF:

l90 [X₂+2 ]

MPRF for transition t₈₂₅: l91(X₁, X₂) → l91(X₁, X₂-X₁) :|: 2 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

7 {O(1)}

MPRF:

l91 [X₂+1 ]

MPRF for transition t₈₂₇: l92(X₁, X₂) → l92(X₁, X₂-X₁) :|: 1 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 4+X₁ ∧ X₁+X₂ ≤ 8 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

8 {O(1)}

MPRF:

l92 [X₂+2 ]

MPRF for transition t₈₂₉: l93(X₁, X₂) → l93(X₁, X₂-X₁) :|: 1 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

9 {O(1)}

MPRF:

l93 [X₂+2 ]

MPRF for transition t₈₃₁: l94(X₁, X₂) → l94(X₁, X₂-X₁) :|: 0 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

8 {O(1)}

MPRF:

l94 [X₂+1 ]

MPRF for transition t₈₃₃: l95(X₁, X₂) → l95(X₁, X₂-X₁) :|: 1 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

9 {O(1)}

MPRF:

l95 [X₂+2 ]

MPRF for transition t₈₃₅: l96(X₁, X₂) → l96(X₁, X₂-X₁) :|: 0 ≤ X₂ ∧ X₂ ≤ 7 ∧ X₂ ≤ 5+X₁ ∧ X₁+X₂ ≤ 9 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

8 {O(1)}

MPRF:

l96 [X₂+1 ]

MPRF for transition t₈₃₇: l97(X₁, X₂) → l97(X₁, X₂-X₁) :|: 0 ≤ X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

9 {O(1)}

MPRF:

l97 [X₂+1 ]

MPRF for transition t₈₃₉: l98(X₁, X₂) → l98(X₁, X₂-X₁) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

10 {O(1)}

MPRF:

l98 [X₂+2 ]

MPRF for transition t₈₄₁: l99(X₁, X₂) → l99(X₁, X₂-X₁) :|: 0 ≤ X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ 0 ≤ 2+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 4+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

9 {O(1)}

MPRF:

l99 [X₂+1 ]

MPRF for transition t₆₀₇: l100(X₁, X₂) → l100(X₁, X₂-X₁) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 8 ∧ X₂ ≤ 6+X₁ ∧ X₁+X₂ ≤ 10 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

10 {O(1)}

MPRF:

l100 [X₂+2 ]

MPRF for transition t₆₀₉: l101(X₁, X₂) → l101(X₁, X₂-X₁) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

11 {O(1)}

MPRF:

l101 [X₂+2 ]

MPRF for transition t₆₁₁: l102(X₁, X₂) → l102(X₁, X₂-X₁) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

12 {O(1)}

MPRF:

l102 [X₂+3 ]

MPRF for transition t₆₁₃: l103(X₁, X₂) → l103(X₁, X₂-X₁) :|: 0 ≤ 1+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

11 {O(1)}

MPRF:

l103 [X₂+2 ]

MPRF for transition t₆₁₅: l104(X₁, X₂) → l104(X₁, X₂-X₁) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 9 ∧ X₂ ≤ 7+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

12 {O(1)}

MPRF:

l104 [X₂+3 ]

MPRF for transition t₆₁₇: l105(X₁, X₂) → l105(X₁, X₂-X₁) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

3 {O(1)}

MPRF:

l105 [X₂+3 ]

MPRF for transition t₆₁₉: l106(X₁, X₂) → l106(X₁, X₂-X₁) :|: 0 ≤ 3+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

4 {O(1)}

MPRF:

l106 [X₂+4 ]

MPRF for transition t₆₂₁: l107(X₁, X₂) → l107(X₁, X₂-X₁) :|: 0 ≤ 2+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 4+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ X₁ ≤ 6+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

3 {O(1)}

MPRF:

l107 [X₂+3 ]

MPRF for transition t₆₂₃: l108(X₁, X₂) → l108(X₁, X₂-X₁) :|: 0 ≤ 3+X₂ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ 0 ≤ 5+X₂ ∧ 0 ≤ 3+X₁+X₂ ∧ X₁ ≤ 7+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

4 {O(1)}

MPRF:

l108 [X₂+4 ]

MPRF for transition t₆₂₅: l109(X₁, X₂) → l109(X₁, X₂-X₁) :|: 0 ≤ 4+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

8 {O(1)}

MPRF:

l109 [X₂+7 ]

MPRF for transition t₆₂₉: l110(X₁, X₂) → l110(X₁, X₂-X₁) :|: 0 ≤ 5+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

9 {O(1)}

MPRF:

l110 [X₂+8 ]

MPRF for transition t₆₃₁: l111(X₁, X₂) → l111(X₁, X₂-X₁) :|: 0 ≤ 4+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 6+X₂ ∧ 0 ≤ 4+X₁+X₂ ∧ X₁ ≤ 8+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

8 {O(1)}

MPRF:

l111 [X₂+7 ]

MPRF for transition t₆₃₃: l112(X₁, X₂) → l112(X₁, X₂-X₁) :|: 0 ≤ 5+X₂ ∧ 1+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 1 ∧ 0 ≤ 7+X₂ ∧ 0 ≤ 5+X₁+X₂ ∧ X₁ ≤ 9+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

9 {O(1)}

MPRF:

l112 [X₂+8 ]

MPRF for transition t₆₃₅: l113(X₁, X₂) → l113(X₁, X₂-X₁) :|: 0 ≤ 6+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

9 {O(1)}

MPRF:

l113 [X₂+7 ]

MPRF for transition t₆₃₇: l114(X₁, X₂) → l114(X₁, X₂-X₁) :|: 0 ≤ 7+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

10 {O(1)}

MPRF:

l114 [X₂+8 ]

MPRF for transition t₆₃₉: l115(X₁, X₂) → l115(X₁, X₂-X₁) :|: 0 ≤ 6+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 8+X₂ ∧ 0 ≤ 6+X₁+X₂ ∧ X₁ ≤ 10+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

9 {O(1)}

MPRF:

l115 [X₂+7 ]

MPRF for transition t₆₄₁: l116(X₁, X₂) → l116(X₁, X₂-X₁) :|: 0 ≤ 7+X₂ ∧ 2+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ 9+X₂ ∧ 0 ≤ 7+X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

10 {O(1)}

MPRF:

l116 [X₂+8 ]

MPRF for transition t₆₄₃: l117(X₁, X₂) → l117(X₁, X₂-X₁) :|: 0 ≤ 7+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

24 {O(1)}

MPRF:

l117 [X₂+8 ]

MPRF for transition t₆₄₅: l118(X₁, X₂) → l118(X₁, X₂-X₁) :|: 0 ≤ 8+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

25 {O(1)}

MPRF:

l118 [X₂+9 ]

MPRF for transition t₆₄₇: l119(X₁, X₂) → l119(X₁, X₂-X₁) :|: 0 ≤ 7+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

24 {O(1)}

MPRF:

l119 [X₂+8 ]

MPRF for transition t₆₅₁: l120(X₁, X₂) → l120(X₁, X₂-X₁) :|: 0 ≤ 8+X₂ ∧ X₂ ≤ 16 ∧ X₂ ≤ 14+X₁ ∧ X₁+X₂ ≤ 18 ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ of depth 1:

new bound:

25 {O(1)}

MPRF:

l120 [X₂+9 ]

All Bounds

Timebounds

Overall timebound:1053 {O(1)}
t₆₀₂: 1 {O(1)}
t₆₀₃: 3 {O(1)}
t₆₀₄: 1 {O(1)}
t₆₀₅: 3 {O(1)}
t₆₀₆: 1 {O(1)}
t₆₀₇: 10 {O(1)}
t₆₀₈: 1 {O(1)}
t₆₀₉: 11 {O(1)}
t₆₁₀: 1 {O(1)}
t₆₁₁: 12 {O(1)}
t₆₁₂: 1 {O(1)}
t₆₁₃: 11 {O(1)}
t₆₁₄: 1 {O(1)}
t₆₁₅: 12 {O(1)}
t₆₁₆: 1 {O(1)}
t₆₁₇: 3 {O(1)}
t₆₁₈: 1 {O(1)}
t₆₁₉: 4 {O(1)}
t₆₂₀: 1 {O(1)}
t₆₂₁: 3 {O(1)}
t₆₂₂: 1 {O(1)}
t₆₂₃: 4 {O(1)}
t₆₂₄: 1 {O(1)}
t₆₂₅: 8 {O(1)}
t₆₂₆: 1 {O(1)}
t₆₂₇: 1 {O(1)}
t₆₂₈: 1 {O(1)}
t₆₂₉: 9 {O(1)}
t₆₃₀: 1 {O(1)}
t₆₃₁: 8 {O(1)}
t₆₃₂: 1 {O(1)}
t₆₃₃: 9 {O(1)}
t₆₃₄: 1 {O(1)}
t₆₃₅: 9 {O(1)}
t₆₃₆: 1 {O(1)}
t₆₃₇: 10 {O(1)}
t₆₃₈: 1 {O(1)}
t₆₃₉: 9 {O(1)}
t₆₄₀: 1 {O(1)}
t₆₄₁: 10 {O(1)}
t₆₄₂: 1 {O(1)}
t₆₄₃: 24 {O(1)}
t₆₄₄: 1 {O(1)}
t₆₄₅: 25 {O(1)}
t₆₄₆: 1 {O(1)}
t₆₄₇: 24 {O(1)}
t₆₄₈: 1 {O(1)}
t₆₄₉: 3 {O(1)}
t₆₅₀: 1 {O(1)}
t₆₅₁: 25 {O(1)}
t₆₅₂: 1 {O(1)}
t₆₅₃: 4 {O(1)}
t₆₅₄: 1 {O(1)}
t₆₅₅: 5 {O(1)}
t₆₅₆: 1 {O(1)}
t₆₅₇: 4 {O(1)}
t₆₅₈: 1 {O(1)}
t₆₅₉: 5 {O(1)}
t₆₆₀: 1 {O(1)}
t₆₆₁: 6 {O(1)}
t₆₆₂: 1 {O(1)}
t₆₆₃: 6 {O(1)}
t₆₆₄: 1 {O(1)}
t₆₆₅: 6 {O(1)}
t₆₆₆: 1 {O(1)}
t₆₆₇: 4 {O(1)}
t₆₆₈: 1 {O(1)}
t₆₆₉: 6 {O(1)}
t₆₇₀: 1 {O(1)}
t₆₇₁: 10 {O(1)}
t₆₇₂: 1 {O(1)}
t₆₇₃: 11 {O(1)}
t₆₇₄: 1 {O(1)}
t₆₇₅: 10 {O(1)}
t₆₇₆: 1 {O(1)}
t₆₇₇: 11 {O(1)}
t₆₇₈: 1 {O(1)}
t₆₇₉: 5 {O(1)}
t₆₈₀: 1 {O(1)}
t₆₈₁: 6 {O(1)}
t₆₈₂: 1 {O(1)}
t₆₈₃: 5 {O(1)}
t₆₈₄: 1 {O(1)}
t₆₈₅: 6 {O(1)}
t₆₈₆: 1 {O(1)}
t₆₈₇: 1 {O(1)}
t₆₈₈: 1 {O(1)}
t₆₈₉: 3 {O(1)}
t₆₉₀: 1 {O(1)}
t₆₉₁: 1 {O(1)}
t₆₉₂: 1 {O(1)}
t₆₉₃: 1 {O(1)}
t₆₉₄: 1 {O(1)}
t₆₉₅: 1 {O(1)}
t₆₉₆: 1 {O(1)}
t₆₉₇: 1 {O(1)}
t₆₉₈: 1 {O(1)}
t₆₉₉: 1 {O(1)}
t₇₀₀: 1 {O(1)}
t₇₀₁: 1 {O(1)}
t₇₀₂: 1 {O(1)}
t₇₀₃: 1 {O(1)}
t₇₀₄: 1 {O(1)}
t₇₀₅: 5 {O(1)}
t₇₀₆: 1 {O(1)}
t₇₀₇: 4 {O(1)}
t₇₀₈: 1 {O(1)}
t₇₀₉: 5 {O(1)}
t₇₁₀: 1 {O(1)}
t₇₁₁: 4 {O(1)}
t₇₁₂: 1 {O(1)}
t₇₁₃: 4 {O(1)}
t₇₁₄: 1 {O(1)}
t₇₁₅: 5 {O(1)}
t₇₁₆: 1 {O(1)}
t₇₁₇: 6 {O(1)}
t₇₁₈: 1 {O(1)}
t₇₁₉: 5 {O(1)}
t₇₂₀: 1 {O(1)}
t₇₂₁: 6 {O(1)}
t₇₂₂: 1 {O(1)}
t₇₂₃: 10 {O(1)}
t₇₂₄: 1 {O(1)}
t₇₂₅: 11 {O(1)}
t₇₂₆: 1 {O(1)}
t₇₂₇: 10 {O(1)}
t₇₂₈: 1 {O(1)}
t₇₂₉: 11 {O(1)}
t₇₃₀: 1 {O(1)}
t₇₃₁: 5 {O(1)}
t₇₃₂: 1 {O(1)}
t₇₃₃: 1 {O(1)}
t₇₃₄: 1 {O(1)}
t₇₃₅: 5 {O(1)}
t₇₃₆: 1 {O(1)}
t₇₃₇: 5 {O(1)}
t₇₃₈: 1 {O(1)}
t₇₃₉: 5 {O(1)}
t₇₄₀: 1 {O(1)}
t₇₄₁: 6 {O(1)}
t₇₄₂: 1 {O(1)}
t₇₄₃: 7 {O(1)}
t₇₄₄: 1 {O(1)}
t₇₄₅: 6 {O(1)}
t₇₄₆: 1 {O(1)}
t₇₄₇: 7 {O(1)}
t₇₄₈: 1 {O(1)}
t₇₄₉: 8 {O(1)}
t₇₅₀: 1 {O(1)}
t₇₅₁: 8 {O(1)}
t₇₅₂: 1 {O(1)}
t₇₅₃: 8 {O(1)}
t₇₅₄: 1 {O(1)}
t₇₅₅: 5 {O(1)}
t₇₅₆: 1 {O(1)}
t₇₅₇: 8 {O(1)}
t₇₅₈: 1 {O(1)}
t₇₅₉: 9 {O(1)}
t₇₆₀: 1 {O(1)}
t₇₆₁: 10 {O(1)}
t₇₆₂: 1 {O(1)}
t₇₆₃: 9 {O(1)}
t₇₆₄: 1 {O(1)}
t₇₆₅: 10 {O(1)}
t₇₆₆: 1 {O(1)}
t₇₆₇: 11 {O(1)}
t₇₆₈: 1 {O(1)}
t₇₆₉: 13 {O(1)}
t₇₇₀: 1 {O(1)}
t₇₇₁: 11 {O(1)}
t₇₇₂: 1 {O(1)}
t₇₇₃: 13 {O(1)}
t₇₇₄: 1 {O(1)}
t₇₇₅: 4 {O(1)}
t₇₇₆: 1 {O(1)}
t₇₇₇: 1 {O(1)}
t₇₇₈: 1 {O(1)}
t₇₇₉: 5 {O(1)}
t₇₈₀: 1 {O(1)}
t₇₈₁: 4 {O(1)}
t₇₈₂: 1 {O(1)}
t₇₈₃: 5 {O(1)}
t₇₈₄: 1 {O(1)}
t₇₈₅: 6 {O(1)}
t₇₈₆: 1 {O(1)}
t₇₈₇: 7 {O(1)}
t₇₈₈: 1 {O(1)}
t₇₈₉: 6 {O(1)}
t₇₉₀: 1 {O(1)}
t₇₉₁: 7 {O(1)}
t₇₉₂: 1 {O(1)}
t₇₉₃: 9 {O(1)}
t₇₉₄: 1 {O(1)}
t₇₉₅: 10 {O(1)}
t₇₉₆: 1 {O(1)}
t₇₉₇: 9 {O(1)}
t₇₉₈: 1 {O(1)}
t₇₉₉: 5 {O(1)}
t₈₀₀: 1 {O(1)}
t₈₀₁: 10 {O(1)}
t₈₀₂: 1 {O(1)}
t₈₀₃: 25 {O(1)}
t₈₀₄: 1 {O(1)}
t₈₀₅: 26 {O(1)}
t₈₀₆: 1 {O(1)}
t₈₀₇: 25 {O(1)}
t₈₀₈: 1 {O(1)}
t₈₀₉: 26 {O(1)}
t₈₁₀: 1 {O(1)}
t₈₁₁: 5 {O(1)}
t₈₁₂: 1 {O(1)}
t₈₁₃: 6 {O(1)}
t₈₁₄: 1 {O(1)}
t₈₁₅: 5 {O(1)}
t₈₁₆: 1 {O(1)}
t₈₁₇: 6 {O(1)}
t₈₁₈: 1 {O(1)}
t₈₁₉: 7 {O(1)}
t₈₂₀: 1 {O(1)}
t₈₂₁: 1 {O(1)}
t₈₂₂: 1 {O(1)}
t₈₂₃: 8 {O(1)}
t₈₂₄: 1 {O(1)}
t₈₂₅: 7 {O(1)}
t₈₂₆: 1 {O(1)}
t₈₂₇: 8 {O(1)}
t₈₂₈: 1 {O(1)}
t₈₂₉: 9 {O(1)}
t₈₃₀: 1 {O(1)}
t₈₃₁: 8 {O(1)}
t₈₃₂: 1 {O(1)}
t₈₃₃: 9 {O(1)}
t₈₃₄: 1 {O(1)}
t₈₃₅: 8 {O(1)}
t₈₃₆: 1 {O(1)}
t₈₃₇: 9 {O(1)}
t₈₃₈: 1 {O(1)}
t₈₃₉: 10 {O(1)}
t₈₄₀: 1 {O(1)}
t₈₄₁: 9 {O(1)}
t₈₄₂: 1 {O(1)}

Costbounds

Overall costbound: 1053 {O(1)}
t₆₀₂: 1 {O(1)}
t₆₀₃: 3 {O(1)}
t₆₀₄: 1 {O(1)}
t₆₀₅: 3 {O(1)}
t₆₀₆: 1 {O(1)}
t₆₀₇: 10 {O(1)}
t₆₀₈: 1 {O(1)}
t₆₀₉: 11 {O(1)}
t₆₁₀: 1 {O(1)}
t₆₁₁: 12 {O(1)}
t₆₁₂: 1 {O(1)}
t₆₁₃: 11 {O(1)}
t₆₁₄: 1 {O(1)}
t₆₁₅: 12 {O(1)}
t₆₁₆: 1 {O(1)}
t₆₁₇: 3 {O(1)}
t₆₁₈: 1 {O(1)}
t₆₁₉: 4 {O(1)}
t₆₂₀: 1 {O(1)}
t₆₂₁: 3 {O(1)}
t₆₂₂: 1 {O(1)}
t₆₂₃: 4 {O(1)}
t₆₂₄: 1 {O(1)}
t₆₂₅: 8 {O(1)}
t₆₂₆: 1 {O(1)}
t₆₂₇: 1 {O(1)}
t₆₂₈: 1 {O(1)}
t₆₂₉: 9 {O(1)}
t₆₃₀: 1 {O(1)}
t₆₃₁: 8 {O(1)}
t₆₃₂: 1 {O(1)}
t₆₃₃: 9 {O(1)}
t₆₃₄: 1 {O(1)}
t₆₃₅: 9 {O(1)}
t₆₃₆: 1 {O(1)}
t₆₃₇: 10 {O(1)}
t₆₃₈: 1 {O(1)}
t₆₃₉: 9 {O(1)}
t₆₄₀: 1 {O(1)}
t₆₄₁: 10 {O(1)}
t₆₄₂: 1 {O(1)}
t₆₄₃: 24 {O(1)}
t₆₄₄: 1 {O(1)}
t₆₄₅: 25 {O(1)}
t₆₄₆: 1 {O(1)}
t₆₄₇: 24 {O(1)}
t₆₄₈: 1 {O(1)}
t₆₄₉: 3 {O(1)}
t₆₅₀: 1 {O(1)}
t₆₅₁: 25 {O(1)}
t₆₅₂: 1 {O(1)}
t₆₅₃: 4 {O(1)}
t₆₅₄: 1 {O(1)}
t₆₅₅: 5 {O(1)}
t₆₅₆: 1 {O(1)}
t₆₅₇: 4 {O(1)}
t₆₅₈: 1 {O(1)}
t₆₅₉: 5 {O(1)}
t₆₆₀: 1 {O(1)}
t₆₆₁: 6 {O(1)}
t₆₆₂: 1 {O(1)}
t₆₆₃: 6 {O(1)}
t₆₆₄: 1 {O(1)}
t₆₆₅: 6 {O(1)}
t₆₆₆: 1 {O(1)}
t₆₆₇: 4 {O(1)}
t₆₆₈: 1 {O(1)}
t₆₆₉: 6 {O(1)}
t₆₇₀: 1 {O(1)}
t₆₇₁: 10 {O(1)}
t₆₇₂: 1 {O(1)}
t₆₇₃: 11 {O(1)}
t₆₇₄: 1 {O(1)}
t₆₇₅: 10 {O(1)}
t₆₇₆: 1 {O(1)}
t₆₇₇: 11 {O(1)}
t₆₇₈: 1 {O(1)}
t₆₇₉: 5 {O(1)}
t₆₈₀: 1 {O(1)}
t₆₈₁: 6 {O(1)}
t₆₈₂: 1 {O(1)}
t₆₈₃: 5 {O(1)}
t₆₈₄: 1 {O(1)}
t₆₈₅: 6 {O(1)}
t₆₈₆: 1 {O(1)}
t₆₈₇: 1 {O(1)}
t₆₈₈: 1 {O(1)}
t₆₈₉: 3 {O(1)}
t₆₉₀: 1 {O(1)}
t₆₉₁: 1 {O(1)}
t₆₉₂: 1 {O(1)}
t₆₉₃: 1 {O(1)}
t₆₉₄: 1 {O(1)}
t₆₉₅: 1 {O(1)}
t₆₉₆: 1 {O(1)}
t₆₉₇: 1 {O(1)}
t₆₉₈: 1 {O(1)}
t₆₉₉: 1 {O(1)}
t₇₀₀: 1 {O(1)}
t₇₀₁: 1 {O(1)}
t₇₀₂: 1 {O(1)}
t₇₀₃: 1 {O(1)}
t₇₀₄: 1 {O(1)}
t₇₀₅: 5 {O(1)}
t₇₀₆: 1 {O(1)}
t₇₀₇: 4 {O(1)}
t₇₀₈: 1 {O(1)}
t₇₀₉: 5 {O(1)}
t₇₁₀: 1 {O(1)}
t₇₁₁: 4 {O(1)}
t₇₁₂: 1 {O(1)}
t₇₁₃: 4 {O(1)}
t₇₁₄: 1 {O(1)}
t₇₁₅: 5 {O(1)}
t₇₁₆: 1 {O(1)}
t₇₁₇: 6 {O(1)}
t₇₁₈: 1 {O(1)}
t₇₁₉: 5 {O(1)}
t₇₂₀: 1 {O(1)}
t₇₂₁: 6 {O(1)}
t₇₂₂: 1 {O(1)}
t₇₂₃: 10 {O(1)}
t₇₂₄: 1 {O(1)}
t₇₂₅: 11 {O(1)}
t₇₂₆: 1 {O(1)}
t₇₂₇: 10 {O(1)}
t₇₂₈: 1 {O(1)}
t₇₂₉: 11 {O(1)}
t₇₃₀: 1 {O(1)}
t₇₃₁: 5 {O(1)}
t₇₃₂: 1 {O(1)}
t₇₃₃: 1 {O(1)}
t₇₃₄: 1 {O(1)}
t₇₃₅: 5 {O(1)}
t₇₃₆: 1 {O(1)}
t₇₃₇: 5 {O(1)}
t₇₃₈: 1 {O(1)}
t₇₃₉: 5 {O(1)}
t₇₄₀: 1 {O(1)}
t₇₄₁: 6 {O(1)}
t₇₄₂: 1 {O(1)}
t₇₄₃: 7 {O(1)}
t₇₄₄: 1 {O(1)}
t₇₄₅: 6 {O(1)}
t₇₄₆: 1 {O(1)}
t₇₄₇: 7 {O(1)}
t₇₄₈: 1 {O(1)}
t₇₄₉: 8 {O(1)}
t₇₅₀: 1 {O(1)}
t₇₅₁: 8 {O(1)}
t₇₅₂: 1 {O(1)}
t₇₅₃: 8 {O(1)}
t₇₅₄: 1 {O(1)}
t₇₅₅: 5 {O(1)}
t₇₅₆: 1 {O(1)}
t₇₅₇: 8 {O(1)}
t₇₅₈: 1 {O(1)}
t₇₅₉: 9 {O(1)}
t₇₆₀: 1 {O(1)}
t₇₆₁: 10 {O(1)}
t₇₆₂: 1 {O(1)}
t₇₆₃: 9 {O(1)}
t₇₆₄: 1 {O(1)}
t₇₆₅: 10 {O(1)}
t₇₆₆: 1 {O(1)}
t₇₆₇: 11 {O(1)}
t₇₆₈: 1 {O(1)}
t₇₆₉: 13 {O(1)}
t₇₇₀: 1 {O(1)}
t₇₇₁: 11 {O(1)}
t₇₇₂: 1 {O(1)}
t₇₇₃: 13 {O(1)}
t₇₇₄: 1 {O(1)}
t₇₇₅: 4 {O(1)}
t₇₇₆: 1 {O(1)}
t₇₇₇: 1 {O(1)}
t₇₇₈: 1 {O(1)}
t₇₇₉: 5 {O(1)}
t₇₈₀: 1 {O(1)}
t₇₈₁: 4 {O(1)}
t₇₈₂: 1 {O(1)}
t₇₈₃: 5 {O(1)}
t₇₈₄: 1 {O(1)}
t₇₈₅: 6 {O(1)}
t₇₈₆: 1 {O(1)}
t₇₈₇: 7 {O(1)}
t₇₈₈: 1 {O(1)}
t₇₈₉: 6 {O(1)}
t₇₉₀: 1 {O(1)}
t₇₉₁: 7 {O(1)}
t₇₉₂: 1 {O(1)}
t₇₉₃: 9 {O(1)}
t₇₉₄: 1 {O(1)}
t₇₉₅: 10 {O(1)}
t₇₉₆: 1 {O(1)}
t₇₉₇: 9 {O(1)}
t₇₉₈: 1 {O(1)}
t₇₉₉: 5 {O(1)}
t₈₀₀: 1 {O(1)}
t₈₀₁: 10 {O(1)}
t₈₀₂: 1 {O(1)}
t₈₀₃: 25 {O(1)}
t₈₀₄: 1 {O(1)}
t₈₀₅: 26 {O(1)}
t₈₀₆: 1 {O(1)}
t₈₀₇: 25 {O(1)}
t₈₀₈: 1 {O(1)}
t₈₀₉: 26 {O(1)}
t₈₁₀: 1 {O(1)}
t₈₁₁: 5 {O(1)}
t₈₁₂: 1 {O(1)}
t₈₁₃: 6 {O(1)}
t₈₁₄: 1 {O(1)}
t₈₁₅: 5 {O(1)}
t₈₁₆: 1 {O(1)}
t₈₁₇: 6 {O(1)}
t₈₁₈: 1 {O(1)}
t₈₁₉: 7 {O(1)}
t₈₂₀: 1 {O(1)}
t₈₂₁: 1 {O(1)}
t₈₂₂: 1 {O(1)}
t₈₂₃: 8 {O(1)}
t₈₂₄: 1 {O(1)}
t₈₂₅: 7 {O(1)}
t₈₂₆: 1 {O(1)}
t₈₂₇: 8 {O(1)}
t₈₂₈: 1 {O(1)}
t₈₂₉: 9 {O(1)}
t₈₃₀: 1 {O(1)}
t₈₃₁: 8 {O(1)}
t₈₃₂: 1 {O(1)}
t₈₃₃: 9 {O(1)}
t₈₃₄: 1 {O(1)}
t₈₃₅: 8 {O(1)}
t₈₃₆: 1 {O(1)}
t₈₃₇: 9 {O(1)}
t₈₃₈: 1 {O(1)}
t₈₃₉: 10 {O(1)}
t₈₄₀: 1 {O(1)}
t₈₄₁: 9 {O(1)}
t₈₄₂: 1 {O(1)}

Sizebounds

t₆₀₂, X₁: 2 {O(1)}
t₆₀₂, X₂: 0 {O(1)}
t₆₀₃, X₁: 2 {O(1)}
t₆₀₃, X₂: 3 {O(1)}
t₆₀₄, X₁: 2 {O(1)}
t₆₀₄, X₂: 0 {O(1)}
t₆₀₅, X₁: 2 {O(1)}
t₆₀₅, X₂: 2 {O(1)}
t₆₀₆, X₁: 2 {O(1)}
t₆₀₆, X₂: 3 {O(1)}
t₆₀₇, X₁: 2 {O(1)}
t₆₀₇, X₂: 6 {O(1)}
t₆₀₈, X₁: 2 {O(1)}
t₆₀₈, X₂: 9 {O(1)}
t₆₀₉, X₁: 2 {O(1)}
t₆₀₉, X₂: 7 {O(1)}
t₆₁₀, X₁: 2 {O(1)}
t₆₁₀, X₂: 9 {O(1)}
t₆₁₁, X₁: 2 {O(1)}
t₆₁₁, X₂: 7 {O(1)}
t₆₁₂, X₁: 2 {O(1)}
t₆₁₂, X₂: 9 {O(1)}
t₆₁₃, X₁: 2 {O(1)}
t₆₁₃, X₂: 7 {O(1)}
t₆₁₄, X₁: 2 {O(1)}
t₆₁₄, X₂: 9 {O(1)}
t₆₁₅, X₁: 2 {O(1)}
t₆₁₅, X₂: 7 {O(1)}
t₆₁₆, X₁: 2 {O(1)}
t₆₁₆, X₂: 0 {O(1)}
t₆₁₇, X₁: 2 {O(1)}
t₆₁₇, X₂: 4 {O(1)}
t₆₁₈, X₁: 2 {O(1)}
t₆₁₈, X₂: 0 {O(1)}
t₆₁₉, X₁: 2 {O(1)}
t₆₁₉, X₂: 5 {O(1)}
t₆₂₀, X₁: 2 {O(1)}
t₆₂₀, X₂: 0 {O(1)}
t₆₂₁, X₁: 2 {O(1)}
t₆₂₁, X₂: 4 {O(1)}
t₆₂₂, X₁: 2 {O(1)}
t₆₂₂, X₂: 0 {O(1)}
t₆₂₃, X₁: 2 {O(1)}
t₆₂₃, X₂: 5 {O(1)}
t₆₂₄, X₁: 2 {O(1)}
t₆₂₄, X₂: 1 {O(1)}
t₆₂₅, X₁: 2 {O(1)}
t₆₂₅, X₂: 6 {O(1)}
t₆₂₆, X₁: 2 {O(1)}
t₆₂₆, X₂: 1 {O(1)}
t₆₂₇, X₁: 2 {O(1)}
t₆₂₇, X₂: 2 {O(1)}
t₆₂₈, X₁: 2 {O(1)}
t₆₂₈, X₂: 3 {O(1)}
t₆₂₉, X₁: 2 {O(1)}
t₆₂₉, X₂: 7 {O(1)}
t₆₃₀, X₁: 2 {O(1)}
t₆₃₀, X₂: 1 {O(1)}
t₆₃₁, X₁: 2 {O(1)}
t₆₃₁, X₂: 6 {O(1)}
t₆₃₂, X₁: 2 {O(1)}
t₆₃₂, X₂: 1 {O(1)}
t₆₃₃, X₁: 2 {O(1)}
t₆₃₃, X₂: 7 {O(1)}
t₆₃₄, X₁: 2 {O(1)}
t₆₃₄, X₂: 2 {O(1)}
t₆₃₅, X₁: 2 {O(1)}
t₆₃₅, X₂: 8 {O(1)}
t₆₃₆, X₁: 2 {O(1)}
t₆₃₆, X₂: 2 {O(1)}
t₆₃₇, X₁: 2 {O(1)}
t₆₃₇, X₂: 9 {O(1)}
t₆₃₈, X₁: 2 {O(1)}
t₆₃₈, X₂: 2 {O(1)}
t₆₃₉, X₁: 2 {O(1)}
t₆₃₉, X₂: 8 {O(1)}
t₆₄₀, X₁: 2 {O(1)}
t₆₄₀, X₂: 2 {O(1)}
t₆₄₁, X₁: 2 {O(1)}
t₆₄₁, X₂: 9 {O(1)}
t₆₄₂, X₁: 2 {O(1)}
t₆₄₂, X₂: 16 {O(1)}
t₆₄₃, X₁: 2 {O(1)}
t₆₄₃, X₂: 14 {O(1)}
t₆₄₄, X₁: 2 {O(1)}
t₆₄₄, X₂: 16 {O(1)}
t₆₄₅, X₁: 2 {O(1)}
t₆₄₅, X₂: 14 {O(1)}
t₆₄₆, X₁: 2 {O(1)}
t₆₄₆, X₂: 16 {O(1)}
t₆₄₇, X₁: 2 {O(1)}
t₆₄₇, X₂: 14 {O(1)}
t₆₄₈, X₁: 2 {O(1)}
t₆₄₈, X₂: 16 {O(1)}
t₆₄₉, X₁: 2 {O(1)}
t₆₄₉, X₂: 2 {O(1)}
t₆₅₀, X₁: 2 {O(1)}
t₆₅₀, X₂: 4 {O(1)}
t₆₅₁, X₁: 2 {O(1)}
t₆₅₁, X₂: 14 {O(1)}
t₆₅₂, X₁: 2 {O(1)}
t₆₅₂, X₂: 14 {O(1)}
t₆₅₃, X₁: 2 {O(1)}
t₆₅₃, X₂: 3 {O(1)}
t₆₅₄, X₁: 2 {O(1)}
t₆₅₄, X₂: 4 {O(1)}
t₆₅₅, X₁: 2 {O(1)}
t₆₅₅, X₂: 3 {O(1)}
t₆₅₆, X₁: 2 {O(1)}
t₆₅₆, X₂: 4 {O(1)}
t₆₅₇, X₁: 2 {O(1)}
t₆₅₇, X₂: 3 {O(1)}
t₆₅₈, X₁: 2 {O(1)}
t₆₅₈, X₂: 4 {O(1)}
t₆₅₉, X₁: 2 {O(1)}
t₆₅₉, X₂: 3 {O(1)}
t₆₆₀, X₁: 2 {O(1)}
t₆₆₀, X₂: 5 {O(1)}
t₆₆₁, X₁: 2 {O(1)}
t₆₆₁, X₂: 4 {O(1)}
t₆₆₂, X₁: 2 {O(1)}
t₆₆₂, X₂: 5 {O(1)}
t₆₆₃, X₁: 2 {O(1)}
t₆₆₃, X₂: 4 {O(1)}
t₆₆₄, X₁: 2 {O(1)}
t₆₆₄, X₂: 5 {O(1)}
t₆₆₅, X₁: 2 {O(1)}
t₆₆₅, X₂: 4 {O(1)}
t₆₆₆, X₁: 2 {O(1)}
t₆₆₆, X₂: 5 {O(1)}
t₆₆₇, X₁: 2 {O(1)}
t₆₆₇, X₂: 4 {O(1)}
t₆₆₈, X₁: 2 {O(1)}
t₆₆₈, X₂: 0 {O(1)}
t₆₆₉, X₁: 2 {O(1)}
t₆₆₉, X₂: 4 {O(1)}
t₆₇₀, X₁: 2 {O(1)}
t₆₇₀, X₂: 6 {O(1)}
t₆₇₁, X₁: 2 {O(1)}
t₆₇₁, X₂: 5 {O(1)}
t₆₇₂, X₁: 2 {O(1)}
t₆₇₂, X₂: 6 {O(1)}
t₆₇₃, X₁: 2 {O(1)}
t₆₇₃, X₂: 5 {O(1)}
t₆₇₄, X₁: 2 {O(1)}
t₆₇₄, X₂: 6 {O(1)}
t₆₇₅, X₁: 2 {O(1)}
t₆₇₅, X₂: 5 {O(1)}
t₆₇₆, X₁: 2 {O(1)}
t₆₇₆, X₂: 6 {O(1)}
t₆₇₇, X₁: 2 {O(1)}
t₆₇₇, X₂: 5 {O(1)}
t₆₇₈, X₁: 2 {O(1)}
t₆₇₈, X₂: 0 {O(1)}
t₆₇₉, X₁: 2 {O(1)}
t₆₇₉, X₂: 4 {O(1)}
t₆₈₀, X₁: 2 {O(1)}
t₆₈₀, X₂: 0 {O(1)}
t₆₈₁, X₁: 2 {O(1)}
t₆₈₁, X₂: 5 {O(1)}
t₆₈₂, X₁: 2 {O(1)}
t₆₈₂, X₂: 0 {O(1)}
t₆₈₃, X₁: 2 {O(1)}
t₆₈₃, X₂: 4 {O(1)}
t₆₈₄, X₁: 2 {O(1)}
t₆₈₄, X₂: 0 {O(1)}
t₆₈₅, X₁: 2 {O(1)}
t₆₈₅, X₂: 5 {O(1)}
t₆₈₆, X₁: 2 {O(1)}
t₆₈₆, X₂: 1 {O(1)}
t₆₈₇, X₁: 2 {O(1)}
t₆₈₇, X₂: 3 {O(1)}
t₆₈₈, X₁: 2 {O(1)}
t₆₈₈, X₂: 1 {O(1)}
t₆₈₉, X₁: 2 {O(1)}
t₆₈₉, X₂: 3 {O(1)}
t₆₉₀, X₁: 2 {O(1)}
t₆₉₀, X₂: 0 {O(1)}
t₆₉₁, X₁: 2 {O(1)}
t₆₉₁, X₂: 4 {O(1)}
t₆₉₂, X₁: 2 {O(1)}
t₆₉₂, X₂: 1 {O(1)}
t₆₉₃, X₁: 2 {O(1)}
t₆₉₃, X₂: 3 {O(1)}
t₆₉₄, X₁: 2 {O(1)}
t₆₉₄, X₂: 1 {O(1)}
t₆₉₅, X₁: 2 {O(1)}
t₆₉₅, X₂: 4 {O(1)}
t₆₉₆, X₁: 2 {O(1)}
t₆₉₆, X₂: 3 {O(1)}
t₆₉₇, X₁: 2 {O(1)}
t₆₉₇, X₂: 1 {O(1)}
t₆₉₈, X₁: 2 {O(1)}
t₆₉₈, X₂: 3 {O(1)}
t₆₉₉, X₁: 2 {O(1)}
t₆₉₉, X₂: 1 {O(1)}
t₇₀₀, X₁: 2 {O(1)}
t₇₀₀, X₂: 3 {O(1)}
t₇₀₁, X₁: 2 {O(1)}
t₇₀₁, X₂: 1 {O(1)}
t₇₀₂, X₁: 2 {O(1)}
t₇₀₂, X₂: 3 {O(1)}
t₇₀₃, X₁: 2 {O(1)}
t₇₀₃, X₂: 1 {O(1)}
t₇₀₄, X₁: 2 {O(1)}
t₇₀₄, X₂: 4 {O(1)}
t₇₀₅, X₁: 2 {O(1)}
t₇₀₅, X₂: 2 {O(1)}
t₇₀₆, X₁: 2 {O(1)}
t₇₀₆, X₂: 4 {O(1)}
t₇₀₇, X₁: 2 {O(1)}
t₇₀₇, X₂: 2 {O(1)}
t₇₀₈, X₁: 2 {O(1)}
t₇₀₈, X₂: 4 {O(1)}
t₇₀₉, X₁: 2 {O(1)}
t₇₀₉, X₂: 2 {O(1)}
t₇₁₀, X₁: 2 {O(1)}
t₇₁₀, X₂: 4 {O(1)}
t₇₁₁, X₁: 2 {O(1)}
t₇₁₁, X₂: 4 {O(1)}
t₇₁₂, X₁: 2 {O(1)}
t₇₁₂, X₂: 1 {O(1)}
t₇₁₃, X₁: 2 {O(1)}
t₇₁₃, X₂: 2 {O(1)}
t₇₁₄, X₁: 2 {O(1)}
t₇₁₄, X₂: 5 {O(1)}
t₇₁₅, X₁: 2 {O(1)}
t₇₁₅, X₂: 3 {O(1)}
t₇₁₆, X₁: 2 {O(1)}
t₇₁₆, X₂: 5 {O(1)}
t₇₁₇, X₁: 2 {O(1)}
t₇₁₇, X₂: 3 {O(1)}
t₇₁₈, X₁: 2 {O(1)}
t₇₁₈, X₂: 5 {O(1)}
t₇₁₉, X₁: 2 {O(1)}
t₇₁₉, X₂: 3 {O(1)}
t₇₂₀, X₁: 2 {O(1)}
t₇₂₀, X₂: 5 {O(1)}
t₇₂₁, X₁: 2 {O(1)}
t₇₂₁, X₂: 3 {O(1)}
t₇₂₂, X₁: 2 {O(1)}
t₇₂₂, X₂: 6 {O(1)}
t₇₂₃, X₁: 2 {O(1)}
t₇₂₃, X₂: 5 {O(1)}
t₇₂₄, X₁: 2 {O(1)}
t₇₂₄, X₂: 6 {O(1)}
t₇₂₅, X₁: 2 {O(1)}
t₇₂₅, X₂: 6 {O(1)}
t₇₂₆, X₁: 2 {O(1)}
t₇₂₆, X₂: 6 {O(1)}
t₇₂₇, X₁: 2 {O(1)}
t₇₂₇, X₂: 5 {O(1)}
t₇₂₈, X₁: 2 {O(1)}
t₇₂₈, X₂: 6 {O(1)}
t₇₂₉, X₁: 2 {O(1)}
t₇₂₉, X₂: 6 {O(1)}
t₇₃₀, X₁: 2 {O(1)}
t₇₃₀, X₂: 5 {O(1)}
t₇₃₁, X₁: 2 {O(1)}
t₇₃₁, X₂: 4 {O(1)}
t₇₃₂, X₁: 2 {O(1)}
t₇₃₂, X₂: 5 {O(1)}
t₇₃₃, X₁: 2 {O(1)}
t₇₃₃, X₂: 2 {O(1)}
t₇₃₄, X₁: 2 {O(1)}
t₇₃₄, X₂: 1 {O(1)}
t₇₃₅, X₁: 2 {O(1)}
t₇₃₅, X₂: 4 {O(1)}
t₇₃₆, X₁: 2 {O(1)}
t₇₃₆, X₂: 5 {O(1)}
t₇₃₇, X₁: 2 {O(1)}
t₇₃₇, X₂: 4 {O(1)}
t₇₃₈, X₁: 2 {O(1)}
t₇₃₈, X₂: 5 {O(1)}
t₇₃₉, X₁: 2 {O(1)}
t₇₃₉, X₂: 4 {O(1)}
t₇₄₀, X₁: 2 {O(1)}
t₇₄₀, X₂: 6 {O(1)}
t₇₄₁, X₁: 2 {O(1)}
t₇₄₁, X₂: 5 {O(1)}
t₇₄₂, X₁: 2 {O(1)}
t₇₄₂, X₂: 6 {O(1)}
t₇₄₃, X₁: 2 {O(1)}
t₇₄₃, X₂: 5 {O(1)}
t₇₄₄, X₁: 2 {O(1)}
t₇₄₄, X₂: 6 {O(1)}
t₇₄₅, X₁: 2 {O(1)}
t₇₄₅, X₂: 5 {O(1)}
t₇₄₆, X₁: 2 {O(1)}
t₇₄₆, X₂: 6 {O(1)}
t₇₄₇, X₁: 2 {O(1)}
t₇₄₇, X₂: 5 {O(1)}
t₇₄₈, X₁: 2 {O(1)}
t₇₄₈, X₂: 7 {O(1)}
t₇₄₉, X₁: 2 {O(1)}
t₇₄₉, X₂: 6 {O(1)}
t₇₅₀, X₁: 2 {O(1)}
t₇₅₀, X₂: 7 {O(1)}
t₇₅₁, X₁: 2 {O(1)}
t₇₅₁, X₂: 6 {O(1)}
t₇₅₂, X₁: 2 {O(1)}
t₇₅₂, X₂: 7 {O(1)}
t₇₅₃, X₁: 2 {O(1)}
t₇₅₃, X₂: 6 {O(1)}
t₇₅₄, X₁: 2 {O(1)}
t₇₅₄, X₂: 7 {O(1)}
t₇₅₅, X₁: 2 {O(1)}
t₇₅₅, X₂: 3 {O(1)}
t₇₅₆, X₁: 2 {O(1)}
t₇₅₆, X₂: 1 {O(1)}
t₇₅₇, X₁: 2 {O(1)}
t₇₅₇, X₂: 6 {O(1)}
t₇₅₈, X₁: 2 {O(1)}
t₇₅₈, X₂: 8 {O(1)}
t₇₅₉, X₁: 2 {O(1)}
t₇₅₉, X₂: 7 {O(1)}
t₇₆₀, X₁: 2 {O(1)}
t₇₆₀, X₂: 8 {O(1)}
t₇₆₁, X₁: 2 {O(1)}
t₇₆₁, X₂: 7 {O(1)}
t₇₆₂, X₁: 2 {O(1)}
t₇₆₂, X₂: 8 {O(1)}
t₇₆₃, X₁: 2 {O(1)}
t₇₆₃, X₂: 7 {O(1)}
t₇₆₄, X₁: 2 {O(1)}
t₇₆₄, X₂: 8 {O(1)}
t₇₆₅, X₁: 2 {O(1)}
t₇₆₅, X₂: 7 {O(1)}
t₇₆₆, X₁: 2 {O(1)}
t₇₆₆, X₂: 9 {O(1)}
t₇₆₇, X₁: 2 {O(1)}
t₇₆₇, X₂: 8 {O(1)}
t₇₆₈, X₁: 2 {O(1)}
t₇₆₈, X₂: 9 {O(1)}
t₇₆₉, X₁: 2 {O(1)}
t₇₆₉, X₂: 8 {O(1)}
t₇₇₀, X₁: 2 {O(1)}
t₇₇₀, X₂: 9 {O(1)}
t₇₇₁, X₁: 2 {O(1)}
t₇₇₁, X₂: 8 {O(1)}
t₇₇₂, X₁: 2 {O(1)}
t₇₇₂, X₂: 9 {O(1)}
t₇₇₃, X₁: 2 {O(1)}
t₇₇₃, X₂: 8 {O(1)}
t₇₇₄, X₁: 2 {O(1)}
t₇₇₄, X₂: 0 {O(1)}
t₇₇₅, X₁: 2 {O(1)}
t₇₇₅, X₂: 3 {O(1)}
t₇₇₆, X₁: 2 {O(1)}
t₇₇₆, X₂: 0 {O(1)}
t₇₇₇, X₁: 2 {O(1)}
t₇₇₇, X₂: 2 {O(1)}
t₇₇₈, X₁: 2 {O(1)}
t₇₇₈, X₂: 1 {O(1)}
t₇₇₉, X₁: 2 {O(1)}
t₇₇₉, X₂: 4 {O(1)}
t₇₈₀, X₁: 2 {O(1)}
t₇₈₀, X₂: 0 {O(1)}
t₇₈₁, X₁: 2 {O(1)}
t₇₈₁, X₂: 3 {O(1)}
t₇₈₂, X₁: 2 {O(1)}
t₇₈₂, X₂: 0 {O(1)}
t₇₈₃, X₁: 2 {O(1)}
t₇₈₃, X₂: 4 {O(1)}
t₇₈₄, X₁: 2 {O(1)}
t₇₈₄, X₂: 1 {O(1)}
t₇₈₅, X₁: 2 {O(1)}
t₇₈₅, X₂: 5 {O(1)}
t₇₈₆, X₁: 2 {O(1)}
t₇₈₆, X₂: 1 {O(1)}
t₇₈₇, X₁: 2 {O(1)}
t₇₈₇, X₂: 6 {O(1)}
t₇₈₈, X₁: 2 {O(1)}
t₇₈₈, X₂: 1 {O(1)}
t₇₈₉, X₁: 2 {O(1)}
t₇₈₉, X₂: 5 {O(1)}
t₇₉₀, X₁: 2 {O(1)}
t₇₉₀, X₂: 1 {O(1)}
t₇₉₁, X₁: 2 {O(1)}
t₇₉₁, X₂: 6 {O(1)}
t₇₉₂, X₁: 2 {O(1)}
t₇₉₂, X₂: 2 {O(1)}
t₇₉₃, X₁: 2 {O(1)}
t₇₉₃, X₂: 7 {O(1)}
t₇₉₄, X₁: 2 {O(1)}
t₇₉₄, X₂: 2 {O(1)}
t₇₉₅, X₁: 2 {O(1)}
t₇₉₅, X₂: 8 {O(1)}
t₇₉₆, X₁: 2 {O(1)}
t₇₉₆, X₂: 2 {O(1)}
t₇₉₇, X₁: 2 {O(1)}
t₇₉₇, X₂: 7 {O(1)}
t₇₉₈, X₁: 2 {O(1)}
t₇₉₈, X₂: 2 {O(1)}
t₇₉₉, X₁: 2 {O(1)}
t₇₉₉, X₂: 3 {O(1)}
t₈₀₀, X₁: 2 {O(1)}
t₈₀₀, X₂: 3 {O(1)}
t₈₀₁, X₁: 2 {O(1)}
t₈₀₁, X₂: 8 {O(1)}
t₈₀₂, X₁: 2 {O(1)}
t₈₀₂, X₂: 16 {O(1)}
t₈₀₃, X₁: 2 {O(1)}
t₈₀₃, X₂: 15 {O(1)}
t₈₀₄, X₁: 2 {O(1)}
t₈₀₄, X₂: 16 {O(1)}
t₈₀₅, X₁: 2 {O(1)}
t₈₀₅, X₂: 15 {O(1)}
t₈₀₆, X₁: 2 {O(1)}
t₈₀₆, X₂: 16 {O(1)}
t₈₀₇, X₁: 2 {O(1)}
t₈₀₇, X₂: 15 {O(1)}
t₈₀₈, X₁: 2 {O(1)}
t₈₀₈, X₂: 16 {O(1)}
t₈₀₉, X₁: 2 {O(1)}
t₈₀₉, X₂: 15 {O(1)}
t₈₁₀, X₁: 2 {O(1)}
t₈₁₀, X₂: 5 {O(1)}
t₈₁₁, X₁: 2 {O(1)}
t₈₁₁, X₂: 3 {O(1)}
t₈₁₂, X₁: 2 {O(1)}
t₈₁₂, X₂: 5 {O(1)}
t₈₁₃, X₁: 2 {O(1)}
t₈₁₃, X₂: 3 {O(1)}
t₈₁₄, X₁: 2 {O(1)}
t₈₁₄, X₂: 5 {O(1)}
t₈₁₅, X₁: 2 {O(1)}
t₈₁₅, X₂: 3 {O(1)}
t₈₁₆, X₁: 2 {O(1)}
t₈₁₆, X₂: 5 {O(1)}
t₈₁₇, X₁: 2 {O(1)}
t₈₁₇, X₂: 3 {O(1)}
t₈₁₈, X₁: 2 {O(1)}
t₈₁₈, X₂: 6 {O(1)}
t₈₁₉, X₁: 2 {O(1)}
t₈₁₉, X₂: 4 {O(1)}
t₈₂₀, X₁: 2 {O(1)}
t₈₂₀, X₂: 6 {O(1)}
t₈₂₁, X₁: 2 {O(1)}
t₈₂₁, X₂: 2 {O(1)}
t₈₂₂, X₁: 2 {O(1)}
t₈₂₂, X₂: 3 {O(1)}
t₈₂₃, X₁: 2 {O(1)}
t₈₂₃, X₂: 4 {O(1)}
t₈₂₄, X₁: 2 {O(1)}
t₈₂₄, X₂: 6 {O(1)}
t₈₂₅, X₁: 2 {O(1)}
t₈₂₅, X₂: 4 {O(1)}
t₈₂₆, X₁: 2 {O(1)}
t₈₂₆, X₂: 6 {O(1)}
t₈₂₇, X₁: 2 {O(1)}
t₈₂₇, X₂: 4 {O(1)}
t₈₂₈, X₁: 2 {O(1)}
t₈₂₈, X₂: 7 {O(1)}
t₈₂₉, X₁: 2 {O(1)}
t₈₂₉, X₂: 5 {O(1)}
t₈₃₀, X₁: 2 {O(1)}
t₈₃₀, X₂: 7 {O(1)}
t₈₃₁, X₁: 2 {O(1)}
t₈₃₁, X₂: 5 {O(1)}
t₈₃₂, X₁: 2 {O(1)}
t₈₃₂, X₂: 7 {O(1)}
t₈₃₃, X₁: 2 {O(1)}
t₈₃₃, X₂: 5 {O(1)}
t₈₃₄, X₁: 2 {O(1)}
t₈₃₄, X₂: 7 {O(1)}
t₈₃₅, X₁: 2 {O(1)}
t₈₃₅, X₂: 5 {O(1)}
t₈₃₆, X₁: 2 {O(1)}
t₈₃₆, X₂: 8 {O(1)}
t₈₃₇, X₁: 2 {O(1)}
t₈₃₇, X₂: 6 {O(1)}
t₈₃₈, X₁: 2 {O(1)}
t₈₃₈, X₂: 8 {O(1)}
t₈₃₉, X₁: 2 {O(1)}
t₈₃₉, X₂: 6 {O(1)}
t₈₄₀, X₁: 2 {O(1)}
t₈₄₀, X₂: 8 {O(1)}
t₈₄₁, X₁: 2 {O(1)}
t₈₄₁, X₂: 6 {O(1)}
t₈₄₂, X₁: 2 {O(1)}
t₈₄₂, X₂: 8 {O(1)}