Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < X₆
t₁₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₄, X₈) :|: X₆ ≤ X₃
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈)
t₂₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇)
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ ≤ X₆+X₇
t₁₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆+X₇ < X₈
t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈)
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇, X₈)

Preprocessing

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l11

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l6

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l19

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l23

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location l7

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l20

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l21

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location l5

Found invariant X₂ ≤ X₆ for location l13

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l22

Found invariant X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l8

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l10

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l9

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < X₆ ∧ X₂ ≤ X₆
t₁₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₄, X₈) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈)
t₂₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁

MPRF for transition t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l11 [X₃-X₆ ]
l22 [X₃+1-X₆ ]
l21 [X₃+1-X₆ ]
l6 [X₃+1-X₆ ]
l7 [X₃+1-X₆ ]
l5 [X₃+1-X₆ ]
l20 [X₃+1-X₆ ]
l8 [X₃+1-X₆ ]
l10 [X₃+1-X₆ ]
l9 [X₃-X₆ ]
l13 [X₃+1-X₆ ]

MPRF for transition t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l11 [X₃+2-X₁ ]
l22 [X₃+1-X₆ ]
l21 [X₃+1-X₆ ]
l6 [X₃+1-X₆ ]
l7 [X₃+1-X₆ ]
l5 [X₃+1-X₆ ]
l20 [X₃+1-X₆ ]
l8 [X₃+1-X₆ ]
l10 [X₃+1-X₆ ]
l9 [X₃+1-X₁ ]
l13 [X₃+1-X₆ ]

MPRF for transition t₁₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₄, X₈) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l11 [X₃+1-X₁ ]
l22 [X₃-X₆ ]
l21 [X₃-X₆ ]
l6 [X₃-X₆ ]
l7 [X₃-X₆ ]
l5 [X₃-X₆ ]
l20 [X₃-X₆ ]
l8 [X₃-X₆ ]
l10 [X₃-X₆ ]
l9 [X₃+1-X₁ ]
l13 [X₃+1-X₆ ]

MPRF for transition t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l11 [X₃-X₆ ]
l22 [X₃+1-X₆ ]
l21 [X₃+1-X₆ ]
l6 [X₃+1-X₆ ]
l7 [X₃+1-X₆ ]
l5 [X₃+1-X₆ ]
l20 [X₃+1-X₆ ]
l8 [X₃+1-X₆ ]
l10 [X₃-X₆ ]
l9 [X₃+1-X₁ ]
l13 [X₃+1-X₆ ]

MPRF for transition t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l11 [X₃+1-X₆ ]
l22 [X₃+1-X₆ ]
l21 [X₃+1-X₆ ]
l6 [X₃+1-X₆ ]
l7 [X₃+1-X₆ ]
l5 [X₃+1-X₆ ]
l20 [X₃+1-X₆ ]
l8 [X₃+1-X₆ ]
l10 [X₃+1-X₆ ]
l9 [X₃+1-X₆ ]
l13 [X₃+1-X₆ ]

MPRF for transition t₁₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅-X₇ ]
l9 [X₅-X₇ ]
l13 [X₅+1-X₄ ]
l22 [X₅-X₇ ]
l21 [X₅-X₇ ]
l6 [X₅-X₇ ]
l7 [X₅+1-X₀ ]
l5 [X₅+1-X₀ ]
l20 [X₅+1-X₇ ]
l8 [X₅+1-X₇ ]
l10 [X₅-X₇ ]

MPRF for transition t₁₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅-X₇ ]
l9 [X₅-X₇ ]
l13 [X₅+1-X₄ ]
l22 [X₅+1-X₇ ]
l21 [X₅+1-X₇ ]
l6 [X₅-X₇ ]
l7 [X₅+1-X₀ ]
l5 [X₅+1-X₀ ]
l20 [X₅+1-X₇ ]
l8 [X₅+1-X₇ ]
l10 [X₅-X₇ ]

MPRF for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅-X₇ ]
l9 [X₅-X₇ ]
l13 [X₅+1-X₄ ]
l22 [X₅+1-X₇ ]
l21 [X₅+1-X₇ ]
l6 [X₅+1-X₇ ]
l7 [X₅+1-X₇ ]
l5 [X₅+2-X₀ ]
l20 [X₅+1-X₇ ]
l8 [X₅+1-X₇ ]
l10 [X₅-X₇ ]

MPRF for transition t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅-X₇ ]
l9 [X₅-X₇ ]
l13 [X₅+1-X₄ ]
l22 [X₅+1-X₇ ]
l21 [X₅+1-X₇ ]
l6 [X₅+1-X₇ ]
l7 [X₅-X₇ ]
l5 [X₅+1-X₀ ]
l20 [X₅+1-X₇ ]
l8 [X₅+1-X₇ ]
l10 [X₅-X₇ ]

MPRF for transition t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅-X₇ ]
l9 [X₅-X₇ ]
l13 [X₅+1-X₄ ]
l22 [X₅+1-X₇ ]
l21 [X₅+1-X₇ ]
l6 [X₅+1-X₇ ]
l7 [X₅+2-X₀ ]
l5 [X₅+1-X₀ ]
l20 [X₅+1-X₇ ]
l8 [X₅+1-X₇ ]
l10 [X₅-X₇ ]

MPRF for transition t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅-X₇ ]
l9 [X₅-X₇ ]
l13 [X₅+1-X₄ ]
l22 [X₅-X₇ ]
l21 [X₅-X₇ ]
l6 [X₅-X₇ ]
l7 [X₅+1-X₀ ]
l5 [X₅+1-X₀ ]
l20 [X₅-X₇ ]
l8 [X₅+1-X₇ ]
l10 [X₅-X₇ ]

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l11

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l6

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l19

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l23

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location l7

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l20

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l21

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location l5

Found invariant X₂ ≤ X₆ for location l13

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l22

Found invariant X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l8

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l10

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l9

MPRF for transition t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₂⋅X₄⋅X₄+2⋅X₂⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₃⋅X₄⋅X₄+2⋅X₃⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₃⋅X₄⋅X₄+4⋅X₂⋅X₃⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₃⋅X₄⋅X₅+12⋅X₂⋅X₃⋅X₄+12⋅X₂⋅X₃⋅X₅+12⋅X₂⋅X₄⋅X₄+12⋅X₃⋅X₄⋅X₄+20⋅X₂⋅X₄⋅X₅+20⋅X₃⋅X₄⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₂⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₅⋅X₅+8⋅X₃⋅X₅⋅X₅+16⋅X₄⋅X₄+23⋅X₂⋅X₅+23⋅X₃⋅X₅+24⋅X₄⋅X₅+27⋅X₂⋅X₄+27⋅X₃⋅X₄+4⋅X₂⋅X₂+4⋅X₃⋅X₃+8⋅X₂⋅X₃+8⋅X₅⋅X₅+15⋅X₃+16⋅X₂+22⋅X₅+31⋅X₄+X₈+15 {O(n^4)}

MPRF:

l11 [X₂+X₄+1-X₈ ]
l20 [X₃+2⋅X₇+2-X₆ ]
l22 [X₃+X₇+1-X₈ ]
l21 [X₃+X₇+2-X₈ ]
l6 [X₃+X₇+2-X₈ ]
l7 [2⋅X₀+X₃-X₇-X₈ ]
l5 [2⋅X₀+X₆-X₇-X₈ ]
l8 [X₂+X₇+1-X₈ ]
l10 [X₂+X₇+1-X₈ ]
l9 [X₂+X₄+1-X₈ ]
l13 [X₂+X₄+1-X₈ ]

Time-Bound by TWN-Loops:

TWN-Loops: t₁₈ 16⋅X₂⋅X₃⋅X₄⋅X₅+4⋅X₂⋅X₂⋅X₄⋅X₄+4⋅X₂⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₄⋅X₄+4⋅X₃⋅X₃⋅X₅⋅X₅+8⋅X₂⋅X₂⋅X₄⋅X₅+8⋅X₂⋅X₃⋅X₄⋅X₄+8⋅X₂⋅X₃⋅X₅⋅X₅+8⋅X₃⋅X₃⋅X₄⋅X₅+12⋅X₃⋅X₃⋅X₄+12⋅X₃⋅X₃⋅X₅+16⋅X₂⋅X₂⋅X₄+16⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₅⋅X₅+16⋅X₃⋅X₅⋅X₅+24⋅X₂⋅X₄⋅X₄+24⋅X₃⋅X₄⋅X₄+28⋅X₂⋅X₃⋅X₄+28⋅X₂⋅X₃⋅X₅+40⋅X₂⋅X₄⋅X₅+40⋅X₃⋅X₄⋅X₅+12⋅X₂⋅X₂+16⋅X₅⋅X₅+20⋅X₂⋅X₃+32⋅X₄⋅X₄+48⋅X₃⋅X₅+48⋅X₄⋅X₅+56⋅X₂⋅X₅+56⋅X₃⋅X₄+64⋅X₂⋅X₄+8⋅X₃⋅X₃+32⋅X₃+40⋅X₂+48⋅X₅+64⋅X₄+32 {O(n^4)}

relevant size-bounds w.r.t. t₁₅:
X₆: 2⋅X₂+X₃+1 {O(n)}
X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
X₈: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₃+2⋅X₅+3⋅X₂+4⋅X₄+3 {O(n^2)}
Runtime-bound of t₁₅: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}
Results in: 16⋅X₂⋅X₃⋅X₄⋅X₅+4⋅X₂⋅X₂⋅X₄⋅X₄+4⋅X₂⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₄⋅X₄+4⋅X₃⋅X₃⋅X₅⋅X₅+8⋅X₂⋅X₂⋅X₄⋅X₅+8⋅X₂⋅X₃⋅X₄⋅X₄+8⋅X₂⋅X₃⋅X₅⋅X₅+8⋅X₃⋅X₃⋅X₄⋅X₅+12⋅X₃⋅X₃⋅X₄+12⋅X₃⋅X₃⋅X₅+16⋅X₂⋅X₂⋅X₄+16⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₅⋅X₅+16⋅X₃⋅X₅⋅X₅+24⋅X₂⋅X₄⋅X₄+24⋅X₃⋅X₄⋅X₄+28⋅X₂⋅X₃⋅X₄+28⋅X₂⋅X₃⋅X₅+40⋅X₂⋅X₄⋅X₅+40⋅X₃⋅X₄⋅X₅+12⋅X₂⋅X₂+16⋅X₅⋅X₅+20⋅X₂⋅X₃+32⋅X₄⋅X₄+48⋅X₃⋅X₅+48⋅X₄⋅X₅+56⋅X₂⋅X₅+56⋅X₃⋅X₄+64⋅X₂⋅X₄+8⋅X₃⋅X₃+32⋅X₃+40⋅X₂+48⋅X₅+64⋅X₄+32 {O(n^4)}

16⋅X₂⋅X₃⋅X₄⋅X₅+4⋅X₂⋅X₂⋅X₄⋅X₄+4⋅X₂⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₄⋅X₄+4⋅X₃⋅X₃⋅X₅⋅X₅+8⋅X₂⋅X₂⋅X₄⋅X₅+8⋅X₂⋅X₃⋅X₄⋅X₄+8⋅X₂⋅X₃⋅X₅⋅X₅+8⋅X₃⋅X₃⋅X₄⋅X₅+12⋅X₃⋅X₃⋅X₄+12⋅X₃⋅X₃⋅X₅+16⋅X₂⋅X₂⋅X₄+16⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₅⋅X₅+16⋅X₃⋅X₅⋅X₅+24⋅X₂⋅X₄⋅X₄+24⋅X₃⋅X₄⋅X₄+28⋅X₂⋅X₃⋅X₄+28⋅X₂⋅X₃⋅X₅+40⋅X₂⋅X₄⋅X₅+40⋅X₃⋅X₄⋅X₅+12⋅X₂⋅X₂+16⋅X₅⋅X₅+20⋅X₂⋅X₃+32⋅X₄⋅X₄+48⋅X₃⋅X₅+48⋅X₄⋅X₅+56⋅X₂⋅X₅+56⋅X₃⋅X₄+64⋅X₂⋅X₄+8⋅X₃⋅X₃+32⋅X₃+40⋅X₂+48⋅X₅+64⋅X₄+32 {O(n^4)}

Analysing control-flow refined program

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l11

Found invariant 1+X₆ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 for location n_l5___1

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l5___5

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l21___12

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l19

Found invariant X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l20___13

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l6___10

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l7___6

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l23

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l22___8

Found invariant 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 for location n_l7___2

Found invariant X₇ ≤ X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l20___3

Found invariant X₂ ≤ X₆ for location l13

Found invariant X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l8

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l21___9

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l6___7

Found invariant X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l8___4

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l10

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l9

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l22___11

knowledge_propagation leads to new time bound X₂+X₃+1 {O(n)} for transition t₄₃₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃

knowledge_propagation leads to new time bound X₂+X₃+1 {O(n)} for transition t₄₂₀: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃

MPRF for transition t₄₂₁: n_l20___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₀ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀ {O(n^2)}

MPRF:

l11 [X₅-X₀ ]
l8 [X₅-X₀ ]
n_l20___13 [X₅+X₇-X₀-X₄ ]
l9 [X₅-X₀ ]
l13 [X₅-X₀ ]
n_l21___12 [X₅-X₇ ]
n_l22___11 [X₅-X₇ ]
n_l22___8 [X₅-X₇ ]
n_l21___9 [X₅-X₇ ]
n_l6___10 [X₅-X₇ ]
n_l6___7 [X₅-X₇ ]
n_l7___2 [X₅-X₇ ]
n_l5___1 [X₅-X₇ ]
n_l7___6 [X₅+1-X₀ ]
n_l5___5 [X₅+1-X₀ ]
n_l20___3 [X₅+1-X₀ ]
n_l8___4 [X₅+1-X₇ ]
l10 [X₅-X₀ ]

MPRF for transition t₄₂₂: n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l22___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}

MPRF:

l11 [0 ]
l8 [0 ]
n_l20___13 [X₇-X₄ ]
l9 [0 ]
l13 [0 ]
n_l21___12 [X₅+X₈+1-X₆ ]
n_l22___11 [X₅-X₇ ]
n_l22___8 [X₅-X₇ ]
n_l21___9 [X₅-X₇ ]
n_l6___10 [X₅-X₇ ]
n_l6___7 [X₅-X₇ ]
n_l7___2 [X₅-X₇ ]
n_l5___1 [X₅+1-X₀ ]
n_l7___6 [X₅+1-X₀ ]
n_l5___5 [X₅+1-X₀ ]
n_l20___3 [X₅+1-X₀ ]
n_l8___4 [X₅+1-X₇ ]
l10 [0 ]

MPRF for transition t₄₂₃: n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l6___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}

MPRF:

l11 [0 ]
l8 [0 ]
n_l20___13 [X₇-X₄ ]
l9 [0 ]
l13 [0 ]
n_l21___12 [X₅+X₈+1-X₆ ]
n_l22___11 [X₅+X₈-X₆ ]
n_l22___8 [X₅-X₇ ]
n_l21___9 [X₅-X₇ ]
n_l6___10 [X₅-X₇ ]
n_l6___7 [X₅-X₇ ]
n_l7___2 [X₅-X₇ ]
n_l5___1 [X₅+1-X₀ ]
n_l7___6 [X₅-X₇ ]
n_l5___5 [X₅+1-X₀ ]
n_l20___3 [X₅+1-X₇ ]
n_l8___4 [X₅+1-X₇ ]
l10 [0 ]

MPRF for transition t₄₂₅: n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₂+X₃+X₅+1 {O(n^2)}

MPRF:

l11 [0 ]
l8 [0 ]
n_l20___13 [X₇-X₄ ]
l9 [0 ]
l13 [0 ]
n_l21___12 [X₅+1-X₇ ]
n_l22___11 [X₅+1-X₇ ]
n_l22___8 [X₅+1-X₇ ]
n_l21___9 [X₅+1-X₇ ]
n_l6___10 [X₅-X₇ ]
n_l6___7 [X₅-X₇ ]
n_l7___2 [X₅-X₇ ]
n_l5___1 [X₅-X₇ ]
n_l7___6 [X₅+1-X₀ ]
n_l5___5 [X₅+1-X₀ ]
n_l20___3 [X₅+1-X₇ ]
n_l8___4 [X₅+1-X₀ ]
l10 [0 ]

MPRF for transition t₄₂₆: n_l22___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₂ ≤ X₆ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₆ ≤ X₃ ∧ X₈ ≤ X₆ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+4⋅X₄+X₂+X₃+1 {O(n^2)}

MPRF:

l11 [X₅-X₄ ]
l8 [X₅-X₇ ]
n_l20___13 [X₅-X₄ ]
l9 [X₅-X₄ ]
l13 [X₅-X₄ ]
n_l21___12 [2⋅X₅+1-X₄-X₇ ]
n_l22___11 [2⋅X₅+X₈+1-X₄-X₆ ]
n_l22___8 [2⋅X₅-X₄-X₇ ]
n_l21___9 [2⋅X₅-X₄-X₇ ]
n_l6___10 [2⋅X₅-X₄-X₇ ]
n_l6___7 [2⋅X₅-X₄-X₇ ]
n_l7___2 [2⋅X₅-X₄-X₇ ]
n_l5___1 [2⋅X₅+1-X₀-X₄ ]
n_l7___6 [2⋅X₅+1-X₀-X₄ ]
n_l5___5 [2⋅X₅+1-X₀-X₄ ]
n_l20___3 [2⋅X₅+1-X₄-X₇ ]
n_l8___4 [2⋅X₅+1-X₀-X₄ ]
l10 [X₅-X₄ ]

MPRF for transition t₄₂₈: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₀ < 1 ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₈ ≤ X₆+1 ∧ 1+X₆ ≤ X₀+X₈ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ 1+X₆ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}

MPRF:

l11 [-X₅ ]
l8 [-X₅ ]
n_l20___13 [X₇-X₄-X₅ ]
l9 [-X₅ ]
l13 [-X₅ ]
n_l21___12 [X₈+1-X₆ ]
n_l22___11 [X₈-X₆ ]
n_l22___8 [-X₇ ]
n_l21___9 [-X₇ ]
n_l6___10 [X₈+1-X₆ ]
n_l6___7 [-X₇ ]
n_l7___2 [X₀-2⋅X₇ ]
n_l5___1 [1-X₇ ]
n_l7___6 [1-X₀ ]
n_l5___5 [1-X₀ ]
n_l20___3 [1-X₇ ]
n_l8___4 [1-X₇ ]
l10 [-X₅ ]

MPRF for transition t₄₂₉: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₆ < 1+X₈ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅+1-X₀ ]
l8 [X₄+X₅+1-X₀-X₇ ]
n_l20___13 [X₅+1-X₀ ]
l9 [X₅+1-X₀ ]
l13 [X₅+1-X₀ ]
n_l21___12 [X₅+1-X₇ ]
n_l22___11 [X₅+1-X₇ ]
n_l22___8 [X₅+1-X₇ ]
n_l21___9 [X₅+1-X₇ ]
n_l6___10 [X₅-X₇ ]
n_l6___7 [X₅+1-X₇ ]
n_l7___2 [X₅-X₇ ]
n_l5___1 [X₅+1-X₀ ]
n_l7___6 [X₅+1-X₇ ]
n_l5___5 [X₅+2-X₀ ]
n_l20___3 [X₅+1-X₇ ]
n_l8___4 [X₅+1-X₇ ]
l10 [X₅+1-X₀ ]

MPRF for transition t₄₃₀: n_l6___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___2(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2⋅X₇ < 0 ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

12⋅X₂⋅X₃+4⋅X₃⋅X₃+6⋅X₂⋅X₄+6⋅X₃⋅X₄+8⋅X₂⋅X₂+10⋅X₃+14⋅X₂+2⋅X₀+8⋅X₄+8 {O(n^2)}

MPRF:

l11 [2-2⋅X₀-2⋅X₄ ]
l8 [2-2⋅X₀-2⋅X₄ ]
n_l20___13 [2⋅X₄+2-2⋅X₀-4⋅X₇ ]
l9 [2-2⋅X₀-2⋅X₄ ]
l13 [2-2⋅X₀-2⋅X₄ ]
n_l21___12 [2⋅X₈+2-2⋅X₄-2⋅X₆ ]
n_l22___11 [-2⋅X₄-2⋅X₇ ]
n_l22___8 [-2⋅X₄-2⋅X₇ ]
n_l21___9 [-2⋅X₄-2⋅X₇ ]
n_l6___10 [2-2⋅X₄-2⋅X₇ ]
n_l6___7 [-2⋅X₄-2⋅X₇ ]
n_l7___2 [-2⋅X₄-2⋅X₇ ]
n_l5___1 [2-2⋅X₀-2⋅X₄ ]
n_l7___6 [2-2⋅X₀-2⋅X₄ ]
n_l5___5 [2-2⋅X₀-2⋅X₄ ]
n_l20___3 [2-2⋅X₄-2⋅X₇ ]
n_l8___4 [2-2⋅X₄-2⋅X₇ ]
l10 [2-2⋅X₀-2⋅X₄ ]

MPRF for transition t₄₃₁: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___6(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₆+X₇ < X₈ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}

MPRF:

l11 [0 ]
l8 [0 ]
n_l20___13 [X₇-X₄ ]
l9 [0 ]
l13 [0 ]
n_l21___12 [X₅+X₈+1-X₆ ]
n_l22___11 [X₅+X₈+1-X₆ ]
n_l22___8 [X₅+1-X₇ ]
n_l21___9 [X₅+1-X₇ ]
n_l6___10 [X₅+X₈-X₆ ]
n_l6___7 [X₅+1-X₇ ]
n_l7___2 [X₅+X₈-X₆ ]
n_l5___1 [X₅+X₈-X₆ ]
n_l7___6 [X₅+1-X₀ ]
n_l5___5 [X₅+1-X₀ ]
n_l20___3 [X₅+1-X₇ ]
n_l8___4 [X₅+1-X₀ ]
l10 [0 ]

MPRF for transition t₄₃₂: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀-1, X₈) :|: X₀ < 1 ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₈ ≤ X₆+1 ∧ 1+X₆ ≤ X₀+X₈ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+2⋅X₄+4⋅X₃+6⋅X₂+X₀+2 {O(n^2)}

MPRF:

l11 [-X₀ ]
l8 [-X₀ ]
n_l20___13 [X₇-X₀-X₄ ]
l9 [-X₀ ]
l13 [-X₀ ]
n_l21___12 [X₈-X₆ ]
n_l22___11 [X₈-X₆-1 ]
n_l22___8 [-X₇-1 ]
n_l21___9 [-X₇-1 ]
n_l6___10 [X₆-2⋅X₇-X₈ ]
n_l6___7 [-X₇-1 ]
n_l7___2 [1-X₀ ]
n_l5___1 [-X₀ ]
n_l7___6 [-X₀ ]
n_l5___5 [-X₀ ]
n_l20___3 [-X₇ ]
n_l8___4 [-X₇ ]
l10 [-X₀ ]

MPRF for transition t₄₃₃: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀-1, X₈) :|: X₀ ≤ 1+X₅ ∧ X₀+X₆ < 1+X₈ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅+1-X₀ ]
l8 [X₅+1-X₀ ]
n_l20___13 [X₅+X₇+1-X₀-X₄ ]
l9 [X₅+1-X₀ ]
l13 [X₅+1-X₀ ]
n_l21___12 [X₅+1-X₇ ]
n_l22___11 [X₅+1-X₇ ]
n_l22___8 [X₅+1-X₇ ]
n_l21___9 [X₅+1-X₇ ]
n_l6___10 [X₅-X₇ ]
n_l6___7 [X₅+1-X₇ ]
n_l7___2 [X₅-X₇ ]
n_l5___1 [X₅-X₇ ]
n_l7___6 [X₅+2-X₀ ]
n_l5___5 [X₅+1-X₀ ]
n_l20___3 [X₅+1-X₀ ]
n_l8___4 [X₅+1-X₇ ]
l10 [X₅+1-X₀ ]

MPRF for transition t₄₃₅: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l20___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+4⋅X₃+6⋅X₂+X₀+2 {O(n^2)}

MPRF:

l11 [X₅-X₀ ]
l8 [X₅-X₀ ]
n_l20___13 [X₅+X₇-X₀-X₄ ]
l9 [X₅-X₀ ]
l13 [X₅-X₀ ]
n_l21___12 [X₅+X₈-X₆ ]
n_l22___11 [X₅-X₇ ]
n_l22___8 [X₅-X₇ ]
n_l21___9 [X₅-X₇ ]
n_l6___10 [X₅-X₇ ]
n_l6___7 [X₅-X₇ ]
n_l7___2 [X₅-X₇ ]
n_l5___1 [X₅+1-X₀ ]
n_l7___6 [X₅-X₇ ]
n_l5___5 [X₅+1-X₀ ]
n_l20___3 [X₅-X₀ ]
n_l8___4 [X₅+1-X₇ ]
l10 [X₅-X₀ ]

MPRF for transition t₄₄₇: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l11 [X₃-X₆ ]
l8 [X₃+1-X₆ ]
l9 [X₃-X₆ ]
l13 [X₃+1-X₆ ]
n_l20___13 [X₃+1-X₆ ]
n_l21___12 [X₃+2⋅X₆+1-3⋅X₇-3⋅X₈ ]
n_l22___11 [X₃+2⋅X₆+1-3⋅X₇-3⋅X₈ ]
n_l22___8 [X₃+1-X₆ ]
n_l21___9 [X₃+1-X₆ ]
n_l6___10 [X₃+1-X₆ ]
n_l6___7 [X₃+1-X₆ ]
n_l7___2 [X₃+1-X₆ ]
n_l5___1 [X₃+1-X₆ ]
n_l7___6 [X₃+1-X₆ ]
n_l5___5 [X₃+1-X₆ ]
n_l20___3 [X₃+1-X₆ ]
n_l8___4 [X₃+1-X₆ ]
l10 [X₃-X₆ ]

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l11

Found invariant 1+X₆ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 for location n_l5___1

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l5___5

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l21___12

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l19

Found invariant X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l20___13

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l6___10

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l7___6

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l23

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l22___8

Found invariant 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 for location n_l7___2

Found invariant X₇ ≤ X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l20___3

Found invariant X₂ ≤ X₆ for location l13

Found invariant X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l8

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l21___9

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l6___7

Found invariant X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l8___4

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l10

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l9

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l22___11

MPRF for transition t₄₂₄: n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l22___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

16⋅X₂⋅X₂⋅X₂⋅X₂+16⋅X₂⋅X₂⋅X₂⋅X₄+16⋅X₂⋅X₃⋅X₃⋅X₅+2⋅X₂⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃⋅X₅+24⋅X₂⋅X₃⋅X₃⋅X₃+32⋅X₂⋅X₃⋅X₃⋅X₄+4⋅X₂⋅X₂⋅X₄⋅X₄+4⋅X₂⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₃⋅X₅+4⋅X₃⋅X₃⋅X₄⋅X₄+4⋅X₃⋅X₃⋅X₄⋅X₅+40⋅X₂⋅X₂⋅X₃⋅X₄+48⋅X₂⋅X₂⋅X₂⋅X₃+52⋅X₂⋅X₂⋅X₃⋅X₃+8⋅X₂⋅X₂⋅X₂⋅X₅+8⋅X₂⋅X₃⋅X₄⋅X₄+8⋅X₂⋅X₃⋅X₄⋅X₅+8⋅X₃⋅X₃⋅X₃⋅X₄+X₂⋅X₂⋅X₅⋅X₅+X₃⋅X₃⋅X₅⋅X₅+108⋅X₂⋅X₃⋅X₄+112⋅X₂⋅X₃⋅X₃+154⋅X₂⋅X₂⋅X₃+16⋅X₂⋅X₄⋅X₄+16⋅X₂⋅X₄⋅X₅+16⋅X₃⋅X₄⋅X₄+16⋅X₃⋅X₄⋅X₅+2⋅X₀⋅X₂⋅X₄+2⋅X₀⋅X₃⋅X₃+2⋅X₀⋅X₃⋅X₄+21⋅X₃⋅X₃⋅X₅+26⋅X₃⋅X₃⋅X₃+33⋅X₂⋅X₂⋅X₅+4⋅X₀⋅X₂⋅X₂+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₅⋅X₅+42⋅X₃⋅X₃⋅X₄+54⋅X₂⋅X₃⋅X₅+6⋅X₀⋅X₂⋅X₃+66⋅X₂⋅X₂⋅X₄+68⋅X₂⋅X₂⋅X₂+X₀⋅X₂⋅X₅+X₀⋅X₃⋅X₅+11⋅X₀⋅X₂+12⋅X₄⋅X₄+148⋅X₂⋅X₃+16⋅X₄⋅X₅+2⋅X₀⋅X₅+34⋅X₃⋅X₅+4⋅X₅⋅X₅+42⋅X₂⋅X₅+54⋅X₃⋅X₃+57⋅X₃⋅X₄+6⋅X₀⋅X₄+73⋅X₂⋅X₄+9⋅X₀⋅X₃+98⋅X₂⋅X₂+16⋅X₅+24⋅X₄+46⋅X₃+5⋅X₀+60⋅X₂+12 {O(n^4)}

MPRF:

l11 [2⋅X₃+X₄+X₅-2⋅X₆ ]
l10 [2⋅X₃+X₄+X₅-2⋅X₆ ]
l8 [2⋅X₃+X₅+X₇-2⋅X₆ ]
l9 [2⋅X₃+X₄+X₅-2⋅X₆ ]
l13 [2⋅X₃+X₄+X₅-2⋅X₆ ]
n_l20___13 [2⋅X₃+X₅+X₇-2⋅X₆ ]
n_l20___3 [2⋅X₃+X₅+X₇-2⋅X₆ ]
n_l21___12 [2⋅X₃+X₅+X₇-2⋅X₆ ]
n_l22___11 [2⋅X₃+X₅-X₆-X₈ ]
n_l22___8 [2⋅X₃+X₅-X₆-X₈ ]
n_l21___9 [2⋅X₃+X₅+1-X₆-X₈ ]
n_l8___4 [2⋅X₃+X₄-X₆-X₈ ]
n_l6___10 [2⋅X₃+X₆-X₇-3⋅X₈ ]
n_l6___7 [2⋅X₃+X₅-X₆-X₈ ]
n_l7___2 [2⋅X₃+X₄+X₆-2⋅X₇-3⋅X₈ ]
n_l5___1 [2⋅X₃+X₄+X₆+2-2⋅X₀-3⋅X₈ ]
n_l7___6 [2⋅X₃+X₅+2⋅X₇+2-2⋅X₀-X₆-X₈ ]
n_l5___5 [2⋅X₃+X₄-X₆-X₈ ]

MPRF for transition t₄₂₇: n_l22___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₃⋅X₃+15⋅X₃⋅X₅+18⋅X₂⋅X₂+19⋅X₂⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+30⋅X₂⋅X₃+4⋅X₄⋅X₅+4⋅X₅⋅X₅+6⋅X₂⋅X₄+6⋅X₃⋅X₄+10⋅X₅+12⋅X₃+14⋅X₂+2⋅X₄+X₀+3 {O(n^3)}

MPRF:

l11 [X₃+2⋅X₅-X₆ ]
l10 [X₃+2⋅X₅-X₆ ]
l8 [X₃+2⋅X₅-X₆ ]
l9 [X₃+2⋅X₅-X₆ ]
l13 [X₃+2⋅X₅-X₆ ]
n_l20___13 [X₃+2⋅X₅-X₆ ]
n_l20___3 [X₃+2⋅X₅-X₆ ]
n_l21___12 [X₃+2⋅X₅-X₆ ]
n_l22___11 [X₃+X₅-X₈ ]
n_l22___8 [X₃+X₅+1-X₈ ]
n_l21___9 [X₃+X₅+1-X₈ ]
n_l8___4 [X₃+X₅-X₈ ]
n_l6___10 [X₃+2⋅X₅-X₇-X₈ ]
n_l6___7 [X₃+X₅-X₈ ]
n_l7___2 [X₃+2⋅X₅-X₇-X₈ ]
n_l5___1 [X₃+2⋅X₅-X₇-X₈ ]
n_l7___6 [X₃+X₅+X₇+1-X₀-X₈ ]
n_l5___5 [X₃+X₅-X₈ ]

knowledge_propagation leads to new time bound 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₃⋅X₃+17⋅X₃⋅X₅+18⋅X₂⋅X₂+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+21⋅X₂⋅X₅+30⋅X₂⋅X₃+4⋅X₄⋅X₅+4⋅X₅⋅X₅+9⋅X₂⋅X₄+9⋅X₃⋅X₄+13⋅X₃+13⋅X₅+15⋅X₂+6⋅X₄+X₀+4 {O(n^3)} for transition t₄₂₄: n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l22___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃

CFR: Improvement to new bound with the following program:

new bound:

12⋅X₃⋅X₃⋅X₅+16⋅X₂⋅X₂⋅X₂+16⋅X₂⋅X₃⋅X₄+20⋅X₂⋅X₂⋅X₅+32⋅X₂⋅X₃⋅X₃+32⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₅⋅X₅+40⋅X₂⋅X₂⋅X₃+8⋅X₂⋅X₂⋅X₄+8⋅X₂⋅X₄⋅X₅+8⋅X₃⋅X₃⋅X₃+8⋅X₃⋅X₃⋅X₄+8⋅X₃⋅X₄⋅X₅+108⋅X₂⋅X₃+4⋅X₀⋅X₂+4⋅X₀⋅X₃+4⋅X₀⋅X₅+40⋅X₃⋅X₃+42⋅X₃⋅X₅+44⋅X₂⋅X₄+44⋅X₃⋅X₄+50⋅X₂⋅X₅+68⋅X₂⋅X₂+8⋅X₄⋅X₅+8⋅X₅⋅X₅+39⋅X₅+40⋅X₄+75⋅X₃+9⋅X₀+95⋅X₂+45 {O(n^3)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l23, l3, l4, l8, l9, n_l20___13, n_l20___3, n_l21___12, n_l21___9, n_l22___11, n_l22___8, n_l5___1, n_l5___5, n_l6___10, n_l6___7, n_l7___2, n_l7___6, n_l8___4
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < X₆ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆
t₁₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₄, X₈) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈)
t₂₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₄₃₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁
t₄₂₀: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₄₂₁: n_l20___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₀ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₄₂₂: n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l22___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₄₂₃: n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l6___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₄₂₄: n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l22___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₄₂₅: n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₄₂₆: n_l22___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₂ ≤ X₆ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₆ ≤ X₃ ∧ X₈ ≤ X₆ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₄₂₇: n_l22___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₄₂₈: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₀ < 1 ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₈ ≤ X₆+1 ∧ 1+X₆ ≤ X₀+X₈ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ 1+X₆ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0
t₄₂₉: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₆ < 1+X₈ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₄₃₀: n_l6___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___2(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2⋅X₇ < 0 ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₄₃₁: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___6(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₆+X₇ < X₈ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₄₃₂: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀-1, X₈) :|: X₀ < 1 ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₈ ≤ X₆+1 ∧ 1+X₆ ≤ X₀+X₈ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0
t₄₃₃: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀-1, X₈) :|: X₀ ≤ 1+X₅ ∧ X₀+X₆ < 1+X₈ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₄₄₇: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₄₃₅: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l20___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃

All Bounds

Timebounds

Overall timebound:12⋅X₃⋅X₃⋅X₅+16⋅X₂⋅X₂⋅X₂+16⋅X₂⋅X₃⋅X₄+20⋅X₂⋅X₂⋅X₅+32⋅X₂⋅X₃⋅X₃+32⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₅⋅X₅+40⋅X₂⋅X₂⋅X₃+8⋅X₂⋅X₂⋅X₄+8⋅X₂⋅X₄⋅X₅+8⋅X₃⋅X₃⋅X₃+8⋅X₃⋅X₃⋅X₄+8⋅X₃⋅X₄⋅X₅+108⋅X₂⋅X₃+4⋅X₀⋅X₂+4⋅X₀⋅X₃+4⋅X₀⋅X₅+40⋅X₃⋅X₃+42⋅X₃⋅X₅+44⋅X₂⋅X₄+44⋅X₃⋅X₄+50⋅X₂⋅X₅+68⋅X₂⋅X₂+8⋅X₄⋅X₅+8⋅X₅⋅X₅+39⋅X₅+40⋅X₄+75⋅X₃+9⋅X₀+95⋅X₂+58 {O(n^3)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₂: X₂+X₃+1 {O(n)}
t₂₃: X₂+X₃+1 {O(n)}
t₅: 1 {O(1)}
t₁₁: X₂+X₃+1 {O(n)}
t₁₂: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₂₅: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₄: X₂+X₃+1 {O(n)}
t₄₃₄: X₂+X₃+1 {O(n)}
t₂₄: X₂+X₃+1 {O(n)}
t₄₂₀: X₂+X₃+1 {O(n)}
t₄₂₁: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀ {O(n^2)}
t₄₂₂: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₃: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₄: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₃⋅X₃+17⋅X₃⋅X₅+18⋅X₂⋅X₂+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+21⋅X₂⋅X₅+30⋅X₂⋅X₃+4⋅X₄⋅X₅+4⋅X₅⋅X₅+9⋅X₂⋅X₄+9⋅X₃⋅X₄+13⋅X₃+13⋅X₅+15⋅X₂+6⋅X₄+X₀+4 {O(n^3)}
t₄₂₅: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₂+X₃+X₅+1 {O(n^2)}
t₄₂₆: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+4⋅X₄+X₂+X₃+1 {O(n^2)}
t₄₂₇: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₃⋅X₃+15⋅X₃⋅X₅+18⋅X₂⋅X₂+19⋅X₂⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+30⋅X₂⋅X₃+4⋅X₄⋅X₅+4⋅X₅⋅X₅+6⋅X₂⋅X₄+6⋅X₃⋅X₄+10⋅X₅+12⋅X₃+14⋅X₂+2⋅X₄+X₀+3 {O(n^3)}
t₄₂₈: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₉: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀+X₂+X₃+2 {O(n^2)}
t₄₃₀: 12⋅X₂⋅X₃+4⋅X₃⋅X₃+6⋅X₂⋅X₄+6⋅X₃⋅X₄+8⋅X₂⋅X₂+10⋅X₃+14⋅X₂+2⋅X₀+8⋅X₄+8 {O(n^2)}
t₄₃₁: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}
t₄₃₂: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+2⋅X₄+4⋅X₃+6⋅X₂+X₀+2 {O(n^2)}
t₄₃₃: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀+X₂+X₃+2 {O(n^2)}
t₄₃₅: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+4⋅X₃+6⋅X₂+X₀+2 {O(n^2)}
t₄₄₇: X₂+X₃+1 {O(n)}

Costbounds

Overall costbound: 12⋅X₃⋅X₃⋅X₅+16⋅X₂⋅X₂⋅X₂+16⋅X₂⋅X₃⋅X₄+20⋅X₂⋅X₂⋅X₅+32⋅X₂⋅X₃⋅X₃+32⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₅⋅X₅+40⋅X₂⋅X₂⋅X₃+8⋅X₂⋅X₂⋅X₄+8⋅X₂⋅X₄⋅X₅+8⋅X₃⋅X₃⋅X₃+8⋅X₃⋅X₃⋅X₄+8⋅X₃⋅X₄⋅X₅+108⋅X₂⋅X₃+4⋅X₀⋅X₂+4⋅X₀⋅X₃+4⋅X₀⋅X₅+40⋅X₃⋅X₃+42⋅X₃⋅X₅+44⋅X₂⋅X₄+44⋅X₃⋅X₄+50⋅X₂⋅X₅+68⋅X₂⋅X₂+8⋅X₄⋅X₅+8⋅X₅⋅X₅+39⋅X₅+40⋅X₄+75⋅X₃+9⋅X₀+95⋅X₂+58 {O(n^3)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₂: X₂+X₃+1 {O(n)}
t₂₃: X₂+X₃+1 {O(n)}
t₅: 1 {O(1)}
t₁₁: X₂+X₃+1 {O(n)}
t₁₂: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₂₅: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₄: X₂+X₃+1 {O(n)}
t₄₃₄: X₂+X₃+1 {O(n)}
t₂₄: X₂+X₃+1 {O(n)}
t₄₂₀: X₂+X₃+1 {O(n)}
t₄₂₁: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀ {O(n^2)}
t₄₂₂: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₃: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₄: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₃⋅X₃+17⋅X₃⋅X₅+18⋅X₂⋅X₂+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+21⋅X₂⋅X₅+30⋅X₂⋅X₃+4⋅X₄⋅X₅+4⋅X₅⋅X₅+9⋅X₂⋅X₄+9⋅X₃⋅X₄+13⋅X₃+13⋅X₅+15⋅X₂+6⋅X₄+X₀+4 {O(n^3)}
t₄₂₅: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₂+X₃+X₅+1 {O(n^2)}
t₄₂₆: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+4⋅X₄+X₂+X₃+1 {O(n^2)}
t₄₂₇: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₃⋅X₃+15⋅X₃⋅X₅+18⋅X₂⋅X₂+19⋅X₂⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+30⋅X₂⋅X₃+4⋅X₄⋅X₅+4⋅X₅⋅X₅+6⋅X₂⋅X₄+6⋅X₃⋅X₄+10⋅X₅+12⋅X₃+14⋅X₂+2⋅X₄+X₀+3 {O(n^3)}
t₄₂₈: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₉: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀+X₂+X₃+2 {O(n^2)}
t₄₃₀: 12⋅X₂⋅X₃+4⋅X₃⋅X₃+6⋅X₂⋅X₄+6⋅X₃⋅X₄+8⋅X₂⋅X₂+10⋅X₃+14⋅X₂+2⋅X₀+8⋅X₄+8 {O(n^2)}
t₄₃₁: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}
t₄₃₂: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+2⋅X₄+4⋅X₃+6⋅X₂+X₀+2 {O(n^2)}
t₄₃₃: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀+X₂+X₃+2 {O(n^2)}
t₄₃₅: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+4⋅X₃+6⋅X₂+X₀+2 {O(n^2)}
t₄₄₇: X₂+X₃+1 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₂₂, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₂₂, X₁: 2⋅X₂+X₃+1 {O(n)}
t₂₂, X₂: X₂ {O(n)}
t₂₂, X₃: X₃ {O(n)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: 2⋅X₂+X₃+1 {O(n)}
t₂₂, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₂, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₂⋅X₄+12⋅X₃⋅X₄+18⋅X₃⋅X₃+18⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+22⋅X₂⋅X₅+30⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+48⋅X₂⋅X₃+13⋅X₅+26⋅X₄+33⋅X₃+47⋅X₂+X₀+X₈+20 {O(n^3)}
t₂₃, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₂₃, X₁: 2⋅X₂+X₃+1 {O(n)}
t₂₃, X₂: X₂ {O(n)}
t₂₃, X₃: X₃ {O(n)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: 2⋅X₂+X₃+1 {O(n)}
t₂₃, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₃, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₂⋅X₄+12⋅X₃⋅X₄+18⋅X₃⋅X₃+18⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+22⋅X₂⋅X₅+30⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+48⋅X₂⋅X₃+13⋅X₅+26⋅X₄+33⋅X₃+47⋅X₂+X₀+X₈+20 {O(n^3)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₁₁, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₁₁, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₁, X₇: 2⋅X₄ {O(n)}
t₁₁, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₂⋅X₄+12⋅X₃⋅X₄+18⋅X₃⋅X₃+18⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+22⋅X₂⋅X₅+30⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+48⋅X₂⋅X₃+13⋅X₅+26⋅X₄+33⋅X₃+47⋅X₂+X₀+X₈+20 {O(n^3)}
t₁₂, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₀+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₂, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₂, X₂: 2⋅X₂ {O(n)}
t₁₂, X₃: 2⋅X₃ {O(n)}
t₁₂, X₄: 2⋅X₄ {O(n)}
t₁₂, X₅: 2⋅X₅ {O(n)}
t₁₂, X₆: 3⋅X₂+X₃+1 {O(n)}
t₁₂, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+X₇+2 {O(n^2)}
t₁₂, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₂⋅X₄+12⋅X₃⋅X₄+18⋅X₃⋅X₃+18⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+22⋅X₂⋅X₅+30⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+48⋅X₂⋅X₃+13⋅X₅+2⋅X₈+26⋅X₄+33⋅X₃+47⋅X₂+X₀+20 {O(n^3)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₈, X₈: X₈ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₉, X₈: X₈ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₂ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₀, X₈: X₈ {O(n)}
t₂₅, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₀+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₅, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₂₅, X₂: 2⋅X₂ {O(n)}
t₂₅, X₃: 2⋅X₃ {O(n)}
t₂₅, X₄: 2⋅X₄ {O(n)}
t₂₅, X₅: 2⋅X₅ {O(n)}
t₂₅, X₆: 3⋅X₂+X₃+1 {O(n)}
t₂₅, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+X₇+2 {O(n^2)}
t₂₅, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₂⋅X₄+12⋅X₃⋅X₄+18⋅X₃⋅X₃+18⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+22⋅X₂⋅X₅+30⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+48⋅X₂⋅X₃+13⋅X₅+2⋅X₈+26⋅X₄+33⋅X₃+47⋅X₂+X₀+20 {O(n^3)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₁₄, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₁₄, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₄, X₇: 2⋅X₄ {O(n)}
t₁₄, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₂⋅X₄+12⋅X₃⋅X₄+18⋅X₃⋅X₃+18⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+22⋅X₂⋅X₅+30⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+48⋅X₂⋅X₃+13⋅X₅+26⋅X₄+33⋅X₃+47⋅X₂+X₀+X₈+20 {O(n^3)}
t₄₃₄, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₄₃₄, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₄₃₄, X₂: X₂ {O(n)}
t₄₃₄, X₃: X₃ {O(n)}
t₄₃₄, X₄: X₄ {O(n)}
t₄₃₄, X₅: X₅ {O(n)}
t₄₃₄, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₃₄, X₇: 2⋅X₄ {O(n)}
t₄₃₄, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₂⋅X₄+12⋅X₃⋅X₄+18⋅X₃⋅X₃+18⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+22⋅X₂⋅X₅+30⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+48⋅X₂⋅X₃+13⋅X₅+26⋅X₄+33⋅X₃+47⋅X₂+X₀+X₈+20 {O(n^3)}
t₂₄, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₂₄, X₁: 2⋅X₂+X₃+1 {O(n)}
t₂₄, X₂: X₂ {O(n)}
t₂₄, X₃: X₃ {O(n)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: X₅ {O(n)}
t₂₄, X₆: 2⋅X₂+X₃+1 {O(n)}
t₂₄, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₄, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₂⋅X₄+12⋅X₃⋅X₄+18⋅X₃⋅X₃+18⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+22⋅X₂⋅X₅+30⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+48⋅X₂⋅X₃+13⋅X₅+26⋅X₄+33⋅X₃+47⋅X₂+X₀+X₈+20 {O(n^3)}
t₄₂₀, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₄₂₀, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₄₂₀, X₂: X₂ {O(n)}
t₄₂₀, X₃: X₃ {O(n)}
t₄₂₀, X₄: X₄ {O(n)}
t₄₂₀, X₅: X₅ {O(n)}
t₄₂₀, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₂₀, X₇: 2⋅X₄ {O(n)}
t₄₂₀, X₈: 2⋅X₂+2⋅X₄+X₃+1 {O(n)}
t₄₂₁, X₀: 12⋅X₂⋅X₃+2⋅X₂⋅X₅+2⋅X₃⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₃+4⋅X₃⋅X₄+8⋅X₂⋅X₂+10⋅X₃+12⋅X₄+14⋅X₂+2⋅X₅+6 {O(n^2)}
t₄₂₁, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₂₁, X₂: X₂ {O(n)}
t₄₂₁, X₃: X₃ {O(n)}
t₄₂₁, X₄: X₄ {O(n)}
t₄₂₁, X₅: X₅ {O(n)}
t₄₂₁, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₂₁, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₁, X₈: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+6⋅X₃+6⋅X₄+9⋅X₂+X₅+4 {O(n^2)}
t₄₂₂, X₀: 12⋅X₂⋅X₃+3⋅X₂⋅X₅+3⋅X₃⋅X₅+4⋅X₃⋅X₃+5⋅X₂⋅X₄+5⋅X₃⋅X₄+8⋅X₂⋅X₂+11⋅X₃+15⋅X₂+16⋅X₄+4⋅X₅+X₀+8 {O(n^2)}
t₄₂₂, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₂₂, X₂: X₂ {O(n)}
t₄₂₂, X₃: X₃ {O(n)}
t₄₂₂, X₄: X₄ {O(n)}
t₄₂₂, X₅: X₅ {O(n)}
t₄₂₂, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₂₂, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₂, X₈: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+11⋅X₂+7⋅X₃+8⋅X₄+X₅+5 {O(n^2)}
t₄₂₃, X₀: 12⋅X₂⋅X₃+3⋅X₂⋅X₅+3⋅X₃⋅X₅+4⋅X₃⋅X₃+5⋅X₂⋅X₄+5⋅X₃⋅X₄+8⋅X₂⋅X₂+11⋅X₃+15⋅X₂+16⋅X₄+4⋅X₅+X₀+8 {O(n^2)}
t₄₂₃, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₂₃, X₂: X₂ {O(n)}
t₄₂₃, X₃: X₃ {O(n)}
t₄₂₃, X₄: X₄ {O(n)}
t₄₂₃, X₅: X₅ {O(n)}
t₄₂₃, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₂₃, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₃, X₈: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+11⋅X₂+7⋅X₃+8⋅X₄+X₅+5 {O(n^2)}
t₄₂₄, X₀: 12⋅X₂⋅X₃+3⋅X₂⋅X₅+3⋅X₃⋅X₅+4⋅X₃⋅X₃+5⋅X₂⋅X₄+5⋅X₃⋅X₄+8⋅X₂⋅X₂+11⋅X₃+15⋅X₂+16⋅X₄+4⋅X₅+X₀+8 {O(n^2)}
t₄₂₄, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₂₄, X₂: X₂ {O(n)}
t₄₂₄, X₃: X₃ {O(n)}
t₄₂₄, X₄: X₄ {O(n)}
t₄₂₄, X₅: X₅ {O(n)}
t₄₂₄, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₂₄, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₄, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+14⋅X₃⋅X₃+16⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+20⋅X₂⋅X₅+22⋅X₂⋅X₂+36⋅X₂⋅X₃+4⋅X₄⋅X₅+4⋅X₅⋅X₅+8⋅X₂⋅X₄+8⋅X₃⋅X₄+10⋅X₄+11⋅X₅+19⋅X₃+25⋅X₂+X₀+9 {O(n^3)}
t₄₂₅, X₀: 10⋅X₂⋅X₄+10⋅X₃⋅X₄+16⋅X₂⋅X₂+24⋅X₂⋅X₃+6⋅X₂⋅X₅+6⋅X₃⋅X₅+8⋅X₃⋅X₃+2⋅X₀+22⋅X₃+30⋅X₂+32⋅X₄+8⋅X₅+16 {O(n^2)}
t₄₂₅, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₂₅, X₂: X₂ {O(n)}
t₄₂₅, X₃: X₃ {O(n)}
t₄₂₅, X₄: X₄ {O(n)}
t₄₂₅, X₅: X₅ {O(n)}
t₄₂₅, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₂₅, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₅, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+10⋅X₂⋅X₄+10⋅X₃⋅X₄+16⋅X₃⋅X₃+17⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+21⋅X₂⋅X₅+26⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+42⋅X₂⋅X₃+12⋅X₅+18⋅X₄+26⋅X₃+36⋅X₂+X₀+15 {O(n^3)}
t₄₂₆, X₀: 12⋅X₂⋅X₃+3⋅X₂⋅X₅+3⋅X₃⋅X₅+4⋅X₃⋅X₃+5⋅X₂⋅X₄+5⋅X₃⋅X₄+8⋅X₂⋅X₂+11⋅X₃+15⋅X₂+16⋅X₄+4⋅X₅+X₀+8 {O(n^2)}
t₄₂₆, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₂₆, X₂: X₂ {O(n)}
t₄₂₆, X₃: X₃ {O(n)}
t₄₂₆, X₄: X₄ {O(n)}
t₄₂₆, X₅: X₅ {O(n)}
t₄₂₆, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₂₆, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₆, X₈: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+11⋅X₂+7⋅X₃+8⋅X₄+X₅+6 {O(n^2)}
t₄₂₇, X₀: 12⋅X₂⋅X₃+3⋅X₂⋅X₅+3⋅X₃⋅X₅+4⋅X₃⋅X₃+5⋅X₂⋅X₄+5⋅X₃⋅X₄+8⋅X₂⋅X₂+11⋅X₃+15⋅X₂+16⋅X₄+4⋅X₅+X₀+8 {O(n^2)}
t₄₂₇, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₂₇, X₂: X₂ {O(n)}
t₄₂₇, X₃: X₃ {O(n)}
t₄₂₇, X₄: X₄ {O(n)}
t₄₂₇, X₅: X₅ {O(n)}
t₄₂₇, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₂₇, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₇, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+14⋅X₃⋅X₃+16⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+20⋅X₂⋅X₅+22⋅X₂⋅X₂+36⋅X₂⋅X₃+4⋅X₄⋅X₅+4⋅X₅⋅X₅+8⋅X₂⋅X₄+8⋅X₃⋅X₄+10⋅X₄+11⋅X₅+19⋅X₃+25⋅X₂+X₀+9 {O(n^3)}
t₄₂₈, X₀: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₈, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₂₈, X₂: X₂ {O(n)}
t₄₂₈, X₃: X₃ {O(n)}
t₄₂₈, X₄: X₄ {O(n)}
t₄₂₈, X₅: X₅ {O(n)}
t₄₂₈, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₂₈, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₈, X₈: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+11⋅X₂+7⋅X₃+8⋅X₄+X₅+5 {O(n^2)}
t₄₂₉, X₀: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₉, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₂₉, X₂: X₂ {O(n)}
t₄₂₉, X₃: X₃ {O(n)}
t₄₂₉, X₄: X₄ {O(n)}
t₄₂₉, X₅: X₅ {O(n)}
t₄₂₉, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₂₉, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₂₉, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+10⋅X₂⋅X₄+10⋅X₃⋅X₄+16⋅X₃⋅X₃+17⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+21⋅X₂⋅X₅+26⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+42⋅X₂⋅X₃+12⋅X₅+18⋅X₄+26⋅X₃+36⋅X₂+X₀+15 {O(n^3)}
t₄₃₀, X₀: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₃₀, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₃₀, X₂: X₂ {O(n)}
t₄₃₀, X₃: X₃ {O(n)}
t₄₃₀, X₄: X₄ {O(n)}
t₄₃₀, X₅: X₅ {O(n)}
t₄₃₀, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₃₀, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₃₀, X₈: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+11⋅X₂+7⋅X₃+8⋅X₄+X₅+5 {O(n^2)}
t₄₃₁, X₀: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₃₁, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₃₁, X₂: X₂ {O(n)}
t₄₃₁, X₃: X₃ {O(n)}
t₄₃₁, X₄: X₄ {O(n)}
t₄₃₁, X₅: X₅ {O(n)}
t₄₃₁, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₃₁, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₃₁, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+10⋅X₂⋅X₄+10⋅X₃⋅X₄+16⋅X₃⋅X₃+17⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+21⋅X₂⋅X₅+26⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+42⋅X₂⋅X₃+12⋅X₅+18⋅X₄+26⋅X₃+36⋅X₂+X₀+15 {O(n^3)}
t₄₃₂, X₀: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₃₂, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₃₂, X₂: X₂ {O(n)}
t₄₃₂, X₃: X₃ {O(n)}
t₄₃₂, X₄: X₄ {O(n)}
t₄₃₂, X₅: X₅ {O(n)}
t₄₃₂, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₃₂, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+4 {O(n^2)}
t₄₃₂, X₈: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+11⋅X₂+7⋅X₃+8⋅X₄+X₅+5 {O(n^2)}
t₄₃₃, X₀: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₃₃, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₃₃, X₂: X₂ {O(n)}
t₄₃₃, X₃: X₃ {O(n)}
t₄₃₃, X₄: X₄ {O(n)}
t₄₃₃, X₅: X₅ {O(n)}
t₄₃₃, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₃₃, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+4 {O(n^2)}
t₄₃₃, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+10⋅X₂⋅X₄+10⋅X₃⋅X₄+16⋅X₃⋅X₃+17⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+21⋅X₂⋅X₅+26⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+42⋅X₂⋅X₃+12⋅X₅+18⋅X₄+26⋅X₃+36⋅X₂+X₀+15 {O(n^3)}
t₄₃₅, X₀: 12⋅X₂⋅X₃+2⋅X₂⋅X₅+2⋅X₃⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₃+4⋅X₃⋅X₄+8⋅X₂⋅X₂+10⋅X₃+12⋅X₄+14⋅X₂+2⋅X₅+6 {O(n^2)}
t₄₃₅, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₄₃₅, X₂: X₂ {O(n)}
t₄₃₅, X₃: X₃ {O(n)}
t₄₃₅, X₄: X₄ {O(n)}
t₄₃₅, X₅: X₅ {O(n)}
t₄₃₅, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₃₅, X₇: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+5⋅X₃+6⋅X₄+7⋅X₂+X₅+3 {O(n^2)}
t₄₃₅, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₂⋅X₄+12⋅X₃⋅X₄+18⋅X₃⋅X₃+18⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+22⋅X₂⋅X₅+30⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+48⋅X₂⋅X₃+13⋅X₅+26⋅X₄+33⋅X₃+47⋅X₂+X₀+20 {O(n^3)}
t₄₄₇, X₀: 12⋅X₂⋅X₃+2⋅X₂⋅X₅+2⋅X₃⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₃+4⋅X₃⋅X₄+8⋅X₂⋅X₂+10⋅X₃+12⋅X₄+14⋅X₂+2⋅X₅+6 {O(n^2)}
t₄₄₇, X₁: 4⋅X₁+4⋅X₃+8⋅X₂+4 {O(n)}
t₄₄₇, X₂: X₂ {O(n)}
t₄₄₇, X₃: X₃ {O(n)}
t₄₄₇, X₄: X₄ {O(n)}
t₄₄₇, X₅: X₅ {O(n)}
t₄₄₇, X₆: 2⋅X₂+X₃+1 {O(n)}
t₄₄₇, X₇: 12⋅X₂⋅X₃+2⋅X₂⋅X₅+2⋅X₃⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₃+4⋅X₃⋅X₄+8⋅X₂⋅X₂+10⋅X₃+12⋅X₄+14⋅X₂+2⋅X₅+6 {O(n^2)}
t₄₄₇, X₈: 10⋅X₂⋅X₂⋅X₅+16⋅X₂⋅X₃⋅X₃+16⋅X₂⋅X₃⋅X₅+2⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₅⋅X₅+20⋅X₂⋅X₂⋅X₃+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₄⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₂⋅X₃⋅X₄+12⋅X₂⋅X₄+12⋅X₃⋅X₄+18⋅X₃⋅X₃+18⋅X₃⋅X₅+2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₀⋅X₅+22⋅X₂⋅X₅+30⋅X₂⋅X₂+4⋅X₄⋅X₅+4⋅X₅⋅X₅+48⋅X₂⋅X₃+13⋅X₅+26⋅X₄+33⋅X₃+47⋅X₂+X₀+20 {O(n^3)}