Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆, X₇)
t₂₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₅
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₃, X₅, X₅, X₇) :|: X₅ < X₃
t₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₇, X₄, 0, X₆, X₇)
t₁₄: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇) :|: X₁ ≤ 0
t₁₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, nondef_0, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄-1, X₅, X₀-1, X₇)
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₆+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆+1
t₁₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₆+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+1 < X₄
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₄, X₄, X₂, X₆, X₇)

Preprocessing

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l11

Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₃ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₅ for location l19

Found invariant X₃ ≤ X₇ ∧ 0 ≤ X₅ for location l12

Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l17

Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7

Found invariant X₃ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₅ for location l20

Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l8

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l10

Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l16

Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l18

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l9

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₅ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₅
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₃, X₅, X₅, X₇) :|: X₅ < X₃ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₅
t₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₇, X₄, 0, X₆, X₇)
t₁₄: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇) :|: X₁ ≤ 0 ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, nondef_0, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₅
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄-1, X₅, X₀-1, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₆+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆+1 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₆+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+1 < X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₄, X₄, X₂, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

MPRF for transition t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₄-X₅ ]
l18 [X₀+X₃-X₅-X₆ ]
l16 [X₃+1-X₅ ]
l6 [X₀+X₃-X₅-X₆ ]
l7 [X₀+X₃-X₅-X₆ ]
l5 [X₀+X₃-X₅-X₆ ]
l17 [X₃+1-X₅ ]
l8 [X₃+1-X₅ ]
l10 [X₄+1-X₅ ]
l9 [X₄+1-X₂ ]
l12 [X₃+1-X₅ ]

MPRF for transition t₂₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₆+2-X₅ ]
l18 [X₀+X₄-X₅-X₆ ]
l16 [X₄+1-X₅ ]
l6 [X₄-X₅ ]
l7 [X₄-X₅ ]
l5 [X₄-X₅ ]
l17 [X₄+1-X₅ ]
l8 [X₄+1-X₅ ]
l10 [X₆+2-X₅ ]
l9 [X₄+X₆+2-X₀-X₂ ]
l12 [X₃+1-X₅ ]

MPRF for transition t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₃, X₅, X₅, X₇) :|: X₅ < X₃ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₅ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l11 [X₄-X₂ ]
l18 [X₄-X₅-1 ]
l16 [X₄-X₅-1 ]
l6 [X₄-X₅-1 ]
l7 [X₄-X₅-1 ]
l5 [X₄-X₅-1 ]
l17 [X₄-X₅-1 ]
l8 [X₄-X₅-1 ]
l10 [X₄-X₅-1 ]
l9 [X₄-X₂ ]
l12 [X₃-X₅ ]

MPRF for transition t₁₄: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₀-1 ]
l18 [X₄-1 ]
l16 [X₄-1 ]
l6 [X₄-2 ]
l7 [X₄+2⋅X₆-2⋅X₀ ]
l5 [X₄-2 ]
l17 [X₄-1 ]
l8 [X₄-1 ]
l10 [X₆ ]
l9 [X₀-1 ]
l12 [X₃-1 ]

MPRF for transition t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄-1, X₅, X₀-1, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₆ ]
l18 [X₄-1 ]
l16 [X₄-1 ]
l6 [X₀+X₄-X₆-2 ]
l7 [X₀+X₄-X₆-2 ]
l5 [X₄-1 ]
l17 [X₄-1 ]
l8 [X₄-1 ]
l10 [X₆ ]
l9 [X₀-1 ]
l12 [X₃-1 ]

MPRF for transition t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₄+X₆-X₀ ]
l18 [X₄-1 ]
l16 [X₄-1 ]
l6 [X₄-1 ]
l7 [X₄-2 ]
l5 [X₄-2 ]
l17 [X₄-1 ]
l8 [X₄-1 ]
l10 [X₆ ]
l9 [X₄+X₆-X₀ ]
l12 [X₃-1 ]

MPRF for transition t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l11 [X₀ ]
l18 [X₄ ]
l16 [X₄ ]
l6 [X₀+X₄-X₆-1 ]
l7 [X₄ ]
l5 [X₄-1 ]
l17 [X₄ ]
l8 [X₄ ]
l10 [X₄ ]
l9 [X₄ ]
l12 [X₃ ]

MPRF for transition t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₆+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆+1 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₀+X₇-X₅-X₆-1 ]
l18 [X₀+X₇-X₅-X₆ ]
l16 [2⋅X₀+X₇-X₅-2⋅X₆-1 ]
l6 [X₇+1-X₅ ]
l7 [X₇+1-X₅ ]
l5 [X₇+1-X₅ ]
l17 [X₇+1-X₅ ]
l8 [X₇+1-X₅ ]
l10 [X₇-X₅ ]
l9 [X₄+X₇-X₂-X₆ ]
l12 [X₇+1-X₅ ]

MPRF for transition t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₄, X₄, X₂, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l11 [X₄+X₇-X₂-X₆ ]
l18 [X₇-X₅ ]
l16 [X₇-X₅ ]
l6 [X₇-X₅ ]
l7 [X₇-X₅ ]
l5 [X₇-X₅ ]
l17 [X₇-X₅ ]
l8 [X₇-X₅ ]
l10 [X₄+X₇-X₅-X₆-1 ]
l9 [X₄+X₇-X₂-X₆ ]
l12 [X₇-X₅ ]

MPRF for transition t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇) :|: X₁ ≤ 0 ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇ {O(n^2)}

MPRF:

l11 [0 ]
l9 [0 ]
l12 [X₃ ]
l18 [X₄-X₀ ]
l16 [X₄-X₆-1 ]
l6 [X₄-X₆-1 ]
l7 [X₄-X₆-1 ]
l5 [X₄-X₀ ]
l17 [X₄-X₀ ]
l8 [X₄-X₆-1 ]
l10 [0 ]

MPRF for transition t₁₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+3⋅X₇ {O(n^2)}

MPRF:

l11 [2⋅X₀+X₇-2⋅X₆-2 ]
l9 [2⋅X₄+X₇-2⋅X₂-2⋅X₆ ]
l12 [X₃+X₇-X₅ ]
l18 [X₄+X₇-X₆-2 ]
l16 [X₄+X₇-X₀-1 ]
l6 [X₄+X₆+X₇-2⋅X₀ ]
l7 [X₄+X₆+X₇-2⋅X₀ ]
l5 [X₄+X₇-X₀-1 ]
l17 [X₄+X₇-X₆-1 ]
l8 [X₄+X₇-X₆-1 ]
l10 [X₄+X₇-X₆-1 ]

MPRF for transition t₁₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, nondef_0, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇ {O(n^2)}

MPRF:

l11 [X₄-X₀ ]
l9 [X₄-X₀ ]
l12 [X₃ ]
l18 [X₄+1-X₀ ]
l16 [X₄-X₀ ]
l6 [X₄-X₀ ]
l7 [X₄-X₀ ]
l5 [X₄-X₀ ]
l17 [X₄-X₆ ]
l8 [X₄-X₆ ]
l10 [2⋅X₄-X₀-X₆ ]

MPRF for transition t₁₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₆+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+1 < X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

X₇⋅X₇+X₇ {O(n^2)}

MPRF:

l11 [0 ]
l9 [0 ]
l12 [X₃ ]
l18 [X₄-X₀ ]
l16 [X₄-X₀ ]
l6 [X₄-X₀ ]
l7 [X₄-X₀ ]
l5 [X₄-X₀ ]
l17 [X₄-X₀ ]
l8 [X₄-X₆ ]
l10 [0 ]

Analysing control-flow refined program

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l11

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ 4 ≤ X₀+X₇ ∧ 2+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l18___2

Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l18___9

Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l16___8

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ 4 ≤ X₀+X₇ ∧ 2+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l17___3

Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3+X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 3+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 3+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 3+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₀ for location n_l17___6

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2+X₁ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l8___7

Found invariant X₃ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₅ for location l19

Found invariant X₃ ≤ X₇ ∧ 0 ≤ X₅ for location l12

Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7

Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l17___10

Found invariant X₃ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₅ for location l20

Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 3+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₀ for location n_l16___4

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l8

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l9

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ 2+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l16___1

Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3+X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 3+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 3+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 3+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₀ for location n_l18___5

knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₃₂₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___3(X₆+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₀ ≤ 1+X₆ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₄ ∧ 1+X₄ ≤ X₃ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ 1+X₆ < X₄ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃

knowledge_propagation leads to new time bound 2⋅X₇+1 {O(n)} for transition t₃₂₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___10(X₆+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ 1+X₆ < X₄ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃

knowledge_propagation leads to new time bound 2⋅X₇+1 {O(n)} for transition t₃₁₇: n_l17___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___9(X₀, X₁, X₂, X₃, X₄, X₅, X₀-1, X₇) :|: X₃ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₀ < X₄ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₇ ∧ X₄ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₃₁₈: n_l17___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___2(X₀, X₁, X₂, X₃, X₄, X₅, X₀-1, X₇) :|: X₃ ≤ X₇ ∧ 1+X₄ ≤ X₃ ∧ X₀ < X₄ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₇ ∧ X₄ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ 4 ≤ X₀+X₇ ∧ 2+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₃₂₀: n_l18___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___1(X₀, NoDet0, X₂, X₃, Arg4_P, Arg5_P, X₀-1, Arg7_P) :|: X₃ ≤ X₇ ∧ 1+X₄ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ X₃ ≤ Arg7_P ∧ Arg4_P ≤ X₃ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg5_P ≤ X₀ ∧ 0 ≤ Arg5_P ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ 4 ≤ X₀+X₇ ∧ 2+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₇+1 {O(n)} for transition t₃₂₂: n_l18___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___8(X₀, NoDet0, X₂, X₃, Arg4_P, Arg5_P, X₀-1, Arg7_P) :|: X₃ ≤ X₇ ∧ X₄ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ X₃ ≤ Arg7_P ∧ Arg4_P ≤ X₃ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg5_P ≤ X₀ ∧ 0 ≤ Arg5_P ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₃₁₄: n_l16___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___7(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇) :|: X₃ ≤ X₇ ∧ 1+X₄ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ 2+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₃₃₂: n_l16___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ 2+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₇+1 {O(n)} for transition t₃₁₆: n_l16___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___7(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇) :|: X₃ ≤ X₇ ∧ X₄ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₇+1 {O(n)} for transition t₃₃₄: n_l16___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀

MPRF for transition t₃₁₅: n_l16___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___7(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇) :|: X₃ ≤ X₇ ∧ X₄ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 3+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₀ of depth 1:

new bound:

6⋅X₇⋅X₇+5⋅X₇+1 {O(n^2)}

MPRF:

l11 [0 ]
l7 [1 ]
l5 [0 ]
l8 [0 ]
l9 [0 ]
l12 [0 ]
n_l16___1 [X₄-1 ]
n_l16___8 [X₄ ]
l6 [1 ]
n_l17___10 [0 ]
n_l18___9 [0 ]
n_l17___3 [0 ]
n_l18___2 [0 ]
n_l18___5 [X₄-X₀ ]
n_l16___4 [X₄-X₀ ]
n_l17___6 [X₄-X₀ ]
n_l8___7 [X₄-X₆-1 ]
l10 [0 ]

MPRF for transition t₃₃₃: n_l16___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 3+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₆ ]
l7 [X₄+2⋅X₆-2⋅X₀ ]
l5 [X₄+2⋅X₆-2⋅X₀ ]
l8 [X₄-1 ]
l9 [X₆ ]
l12 [X₃-1 ]
l6 [X₄-2 ]
n_l17___10 [X₄-1 ]
n_l17___3 [X₄-1 ]
n_l18___2 [X₄-1 ]
n_l16___1 [X₄-1 ]
n_l18___5 [X₄-1 ]
n_l16___4 [X₄-1 ]
n_l18___9 [X₄-1 ]
n_l16___8 [X₄-1 ]
n_l17___6 [X₄-1 ]
n_l8___7 [X₄-1 ]
l10 [X₆ ]

MPRF for transition t₃₁₉: n_l17___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₀-1, X₇) :|: X₁ ≤ 0 ∧ X₃ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₀ < X₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₇ ∧ X₄ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3+X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 3+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 3+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 3+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+2⋅X₇ {O(n^2)}

MPRF:

l11 [X₃-X₄ ]
l7 [X₃-X₆-1 ]
l5 [X₃-X₆-1 ]
l8 [X₃-X₄ ]
l9 [X₃-X₀ ]
l12 [0 ]
n_l16___1 [X₃ ]
n_l16___8 [X₃ ]
l6 [X₃-X₆-1 ]
n_l17___10 [X₃-X₄ ]
n_l18___9 [X₃-X₄ ]
n_l17___3 [X₃-X₄ ]
n_l18___2 [X₃-X₄ ]
n_l18___5 [X₃-X₀ ]
n_l16___4 [X₃-X₀ ]
n_l17___6 [X₃-X₆ ]
n_l8___7 [X₃-X₆ ]
l10 [X₃-X₄ ]

MPRF for transition t₃₂₁: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___4(X₀, NoDet0, X₂, X₃, Arg4_P, Arg5_P, X₀-1, Arg7_P) :|: X₁ ≤ 0 ∧ X₃ ≤ X₇ ∧ X₄ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ X₃ ≤ Arg7_P ∧ Arg4_P ≤ X₃ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg5_P ≤ X₀ ∧ 0 ≤ Arg5_P ∧ X₀ ≤ X₆+1 ∧ 1+X₆ ≤ X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3+X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 3+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 3+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 3+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+4⋅X₇+1 {O(n^2)}

MPRF:

l11 [X₇-X₄-1 ]
l7 [X₇-X₀-1 ]
l5 [X₇-X₄ ]
l8 [X₇-X₄-1 ]
l9 [X₇-X₀-1 ]
l12 [X₇-X₃-1 ]
n_l16___1 [X₇ ]
n_l16___8 [X₇ ]
l6 [X₇-X₀-1 ]
n_l17___10 [X₀+X₇-X₄-X₆-2 ]
n_l18___9 [X₇-X₄-1 ]
n_l17___3 [X₇-X₄-1 ]
n_l18___2 [X₇-X₄-1 ]
n_l18___5 [X₇-X₀ ]
n_l16___4 [X₇-X₀-1 ]
n_l17___6 [X₇-X₆-1 ]
n_l8___7 [X₇-X₀-1 ]
l10 [X₇-X₄-1 ]

MPRF for transition t₃₂₅: n_l8___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___6(X₆+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1+X₅ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₇ ∧ X₁ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ 1+X₆ < X₄ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2+X₁ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+2⋅X₇ {O(n^2)}

MPRF:

l11 [0 ]
l7 [X₃-X₆-1 ]
l5 [X₃-X₆-1 ]
l8 [X₃-X₄ ]
l9 [0 ]
l12 [0 ]
n_l16___1 [X₃ ]
n_l16___8 [X₃ ]
l6 [X₃-X₆ ]
n_l17___10 [X₃-X₄ ]
n_l18___9 [X₃-X₄ ]
n_l17___3 [X₃-X₄ ]
n_l18___2 [X₃-X₄ ]
n_l18___5 [X₃+1-X₀ ]
n_l16___4 [X₃+1-X₀ ]
n_l17___6 [X₃-X₆ ]
n_l8___7 [X₃+1-X₆ ]
l10 [0 ]

MPRF for transition t₃₃₅: n_l8___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₆+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆+1 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2+X₁ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l11 [X₀-X₅-1 ]
l7 [X₃-X₅ ]
l5 [X₃-X₅ ]
l8 [X₃-X₅ ]
l9 [X₄-X₂ ]
l12 [X₃-X₅ ]
l6 [X₃-X₅ ]
n_l17___10 [X₃-X₅ ]
n_l17___3 [X₃-X₅ ]
n_l18___2 [X₃-X₅ ]
n_l16___1 [X₃-X₅ ]
n_l18___5 [X₃-X₅ ]
n_l16___4 [X₃-X₅ ]
n_l18___9 [X₃-X₅ ]
n_l16___8 [X₃-X₅ ]
n_l17___6 [X₃-X₅ ]
n_l8___7 [X₃-X₅ ]
l10 [X₆-X₅ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:6⋅X₇⋅X₇+15⋅X₇+16 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₁₉: X₇+1 {O(n)}
t₂₀: X₇+1 {O(n)}
t₈: X₇ {O(n)}
t₉: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₁₄: X₇+1 {O(n)}
t₁₅: X₇⋅X₇+X₇ {O(n^2)}
t₁₂: 3⋅X₇⋅X₇+3⋅X₇ {O(n^2)}
t₁₃: X₇⋅X₇+X₇ {O(n^2)}
t₂₂: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₈: X₇+1 {O(n)}
t₁₆: X₇+1 {O(n)}
t₁₇: X₇ {O(n)}
t₁₀: X₇⋅X₇+X₇ {O(n^2)}
t₁₁: X₇+1 {O(n)}
t₂₁: X₇ {O(n)}

Costbounds

Overall costbound: 6⋅X₇⋅X₇+15⋅X₇+16 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₁₉: X₇+1 {O(n)}
t₂₀: X₇+1 {O(n)}
t₈: X₇ {O(n)}
t₉: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₁₄: X₇+1 {O(n)}
t₁₅: X₇⋅X₇+X₇ {O(n^2)}
t₁₂: 3⋅X₇⋅X₇+3⋅X₇ {O(n^2)}
t₁₃: X₇⋅X₇+X₇ {O(n^2)}
t₂₂: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₈: X₇+1 {O(n)}
t₁₆: X₇+1 {O(n)}
t₁₇: X₇ {O(n)}
t₁₀: X₇⋅X₇+X₇ {O(n^2)}
t₁₁: X₇+1 {O(n)}
t₂₁: X₇ {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₁₉, X₀: 2⋅X₇⋅X₇+5⋅X₇+6 {O(n^2)}
t₁₉, X₂: X₇+1 {O(n)}
t₁₉, X₃: X₇ {O(n)}
t₁₉, X₄: 6⋅X₇ {O(n)}
t₁₉, X₅: X₇+1 {O(n)}
t₁₉, X₆: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₁₉, X₇: X₇ {O(n)}
t₂₀, X₀: 2⋅X₇⋅X₇+5⋅X₇+6 {O(n^2)}
t₂₀, X₂: X₇+1 {O(n)}
t₂₀, X₃: X₇ {O(n)}
t₂₀, X₄: 6⋅X₇ {O(n)}
t₂₀, X₅: X₇+1 {O(n)}
t₂₀, X₆: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₂₀, X₇: X₇ {O(n)}
t₈, X₀: 2⋅X₇⋅X₇+5⋅X₇+X₀+6 {O(n^2)}
t₈, X₂: X₂+X₇+1 {O(n)}
t₈, X₃: X₇ {O(n)}
t₈, X₄: 2⋅X₇ {O(n)}
t₈, X₅: X₇+1 {O(n)}
t₈, X₆: X₇+1 {O(n)}
t₈, X₇: X₇ {O(n)}
t₉, X₀: 2⋅X₇⋅X₇+5⋅X₇+X₀+6 {O(n^2)}
t₉, X₂: X₂+X₇+1 {O(n)}
t₉, X₃: 2⋅X₇ {O(n)}
t₉, X₄: 6⋅X₇+X₄ {O(n)}
t₉, X₅: X₇+1 {O(n)}
t₉, X₆: 2⋅X₇⋅X₇+5⋅X₇+X₆+3 {O(n^2)}
t₉, X₇: 2⋅X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₇ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: 0 {O(1)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₁₄, X₀: X₇⋅X₇+2⋅X₇+1 {O(n^2)}
t₁₄, X₂: X₂+X₇+1 {O(n)}
t₁₄, X₃: X₇ {O(n)}
t₁₄, X₄: 2⋅X₇ {O(n)}
t₁₄, X₅: X₇+1 {O(n)}
t₁₄, X₆: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₁₄, X₇: X₇ {O(n)}
t₁₅, X₀: X₇⋅X₇+2⋅X₇+1 {O(n^2)}
t₁₅, X₂: X₂+X₇+1 {O(n)}
t₁₅, X₃: X₇ {O(n)}
t₁₅, X₄: 2⋅X₇ {O(n)}
t₁₅, X₅: X₇+1 {O(n)}
t₁₅, X₆: X₇⋅X₇+2⋅X₇+1 {O(n^2)}
t₁₅, X₇: X₇ {O(n)}
t₁₂, X₀: X₇⋅X₇+2⋅X₇+1 {O(n^2)}
t₁₂, X₂: X₂+X₇+1 {O(n)}
t₁₂, X₃: X₇ {O(n)}
t₁₂, X₄: 2⋅X₇ {O(n)}
t₁₂, X₅: X₇+1 {O(n)}
t₁₂, X₆: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₁₂, X₇: X₇ {O(n)}
t₁₃, X₀: X₇⋅X₇+2⋅X₇+1 {O(n^2)}
t₁₃, X₂: X₂+X₇+1 {O(n)}
t₁₃, X₃: X₇ {O(n)}
t₁₃, X₄: 2⋅X₇ {O(n)}
t₁₃, X₅: X₇+1 {O(n)}
t₁₃, X₆: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₁₃, X₇: X₇ {O(n)}
t₂₂, X₀: 2⋅X₇⋅X₇+5⋅X₇+X₀+6 {O(n^2)}
t₂₂, X₂: X₂+X₇+1 {O(n)}
t₂₂, X₃: 2⋅X₇ {O(n)}
t₂₂, X₄: 6⋅X₇+X₄ {O(n)}
t₂₂, X₅: X₇+1 {O(n)}
t₂₂, X₆: 2⋅X₇⋅X₇+5⋅X₇+X₆+3 {O(n^2)}
t₂₂, X₇: 2⋅X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₁₈, X₀: X₇⋅X₇+2⋅X₇+1 {O(n^2)}
t₁₈, X₂: X₂+X₇+1 {O(n)}
t₁₈, X₃: X₇ {O(n)}
t₁₈, X₄: 2⋅X₇ {O(n)}
t₁₈, X₅: X₇+1 {O(n)}
t₁₈, X₆: X₇⋅X₇+2⋅X₇+1 {O(n^2)}
t₁₈, X₇: X₇ {O(n)}
t₁₆, X₀: X₇⋅X₇+2⋅X₇+1 {O(n^2)}
t₁₆, X₂: X₂+X₇+1 {O(n)}
t₁₆, X₃: X₇ {O(n)}
t₁₆, X₄: 2⋅X₇ {O(n)}
t₁₆, X₅: X₇+1 {O(n)}
t₁₆, X₆: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₁₆, X₇: X₇ {O(n)}
t₁₇, X₀: X₇⋅X₇+2⋅X₇+1 {O(n^2)}
t₁₇, X₂: X₂+X₇+1 {O(n)}
t₁₇, X₃: X₇ {O(n)}
t₁₇, X₄: 2⋅X₇ {O(n)}
t₁₇, X₅: X₇+1 {O(n)}
t₁₇, X₆: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₁₇, X₇: X₇ {O(n)}
t₁₀, X₀: X₇⋅X₇+2⋅X₇+1 {O(n^2)}
t₁₀, X₂: X₂+X₇+1 {O(n)}
t₁₀, X₃: X₇ {O(n)}
t₁₀, X₄: 2⋅X₇ {O(n)}
t₁₀, X₅: X₇+1 {O(n)}
t₁₀, X₆: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₁₀, X₇: X₇ {O(n)}
t₁₁, X₀: 2⋅X₇⋅X₇+5⋅X₇+6 {O(n^2)}
t₁₁, X₂: 3⋅X₂+3⋅X₇+3 {O(n)}
t₁₁, X₃: X₇ {O(n)}
t₁₁, X₄: 6⋅X₇ {O(n)}
t₁₁, X₅: X₇+1 {O(n)}
t₁₁, X₆: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₁₁, X₇: X₇ {O(n)}
t₂₁, X₀: 2⋅X₇⋅X₇+5⋅X₇+6 {O(n^2)}
t₂₁, X₂: X₇+1 {O(n)}
t₂₁, X₃: X₇ {O(n)}
t₂₁, X₄: 6⋅X₇ {O(n)}
t₂₁, X₅: X₇+1 {O(n)}
t₂₁, X₆: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₂₁, X₇: X₇ {O(n)}