Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₃, X₆, X₇) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0
t₁₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(nondef_0, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇)
t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆)
t₁₉: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇
t₁₈: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃
t₇: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆
t₈: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 0
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, nondef_1, X₃, X₄, X₅, X₆, X₇)
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1)
Preprocessing
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l11
Found invariant X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l6
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l15
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l19
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l12
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l17
Found invariant X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l7
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l13
Found invariant X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l8
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l10
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l16
Found invariant X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l18
Found invariant X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l4
Found invariant X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location l9
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₃, X₆, X₇) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(nondef_0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₉: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₈: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₇: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₈: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 0 ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, nondef_1, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
MPRF for transition t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l12 [X₄+1 ]
l10 [X₄+1 ]
l14 [X₄+1 ]
l16 [X₄ ]
l15 [X₄ ]
l17 [X₄ ]
l11 [X₄+1 ]
l13 [X₄ ]
l19 [X₄+1 ]
l4 [X₄+1 ]
l7 [X₁+1 ]
l8 [X₁+1 ]
l6 [X₁+1 ]
l9 [X₁+1 ]
l18 [X₄ ]
MPRF for transition t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l12 [X₄+1 ]
l10 [X₄+1 ]
l14 [X₄+1 ]
l16 [X₄ ]
l15 [X₁+1 ]
l17 [X₁+1 ]
l11 [X₄+1 ]
l13 [X₄+1 ]
l19 [X₄+1 ]
l4 [X₄+1 ]
l7 [X₁+1 ]
l8 [X₁+1 ]
l6 [X₁+1 ]
l9 [X₁+1 ]
l18 [X₁+1 ]
MPRF for transition t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l12 [X₄+1 ]
l10 [X₄+1 ]
l14 [X₄+1 ]
l16 [X₄+1 ]
l15 [X₁+2 ]
l17 [X₁+1 ]
l11 [X₄+1 ]
l13 [X₄+1 ]
l19 [X₄+1 ]
l4 [X₄+1 ]
l7 [X₄ ]
l8 [X₄ ]
l6 [X₁+1 ]
l9 [X₁+1 ]
l18 [X₄ ]
MPRF for transition t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l12 [X₄+1 ]
l10 [X₄+1 ]
l14 [X₄+1 ]
l16 [X₄+1 ]
l15 [X₄ ]
l17 [X₄ ]
l11 [X₄+1 ]
l13 [X₄+1 ]
l19 [X₄+1 ]
l4 [X₄+1 ]
l7 [X₄ ]
l8 [X₄ ]
l6 [X₁+1 ]
l9 [X₁+1 ]
l18 [X₄ ]
MPRF for transition t₁₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
2⋅X₃ {O(n)}
MPRF:
l12 [X₃+X₄ ]
l10 [X₃+X₄ ]
l14 [X₃+X₄ ]
l16 [X₃+X₄ ]
l15 [X₁+X₃+1 ]
l17 [X₁+X₃+1 ]
l11 [X₃+X₄ ]
l13 [X₃+X₄ ]
l19 [X₃+X₄ ]
l4 [X₃+X₄ ]
l7 [X₁+X₃ ]
l8 [X₁+X₃ ]
l6 [X₁+X₃ ]
l9 [X₁+X₃ ]
l18 [X₁+X₃ ]
MPRF for transition t₁₉: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
2⋅X₃+1 {O(n)}
MPRF:
l12 [X₃+X₄+1 ]
l10 [X₃+X₄+1 ]
l14 [X₃+X₄+1 ]
l16 [X₃+X₄+1 ]
l15 [X₃+X₄+1 ]
l17 [X₃+X₄+1 ]
l11 [X₃+X₄+1 ]
l13 [X₃+X₄+1 ]
l19 [X₃+X₄+1 ]
l4 [X₃+X₄+1 ]
l7 [X₁+X₃+2 ]
l8 [X₁+X₃+2 ]
l6 [X₁+X₃+2 ]
l9 [X₁+X₃+2 ]
l18 [X₃+X₄+1 ]
MPRF for transition t₈: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
2⋅X₃ {O(n)}
MPRF:
l12 [X₃+X₄ ]
l10 [X₃+X₄ ]
l14 [X₃+X₄ ]
l16 [X₃+X₄-1 ]
l15 [X₃+X₄-1 ]
l17 [X₃+X₄-1 ]
l11 [X₃+X₄ ]
l13 [X₃+X₄-1 ]
l19 [X₃+X₄ ]
l4 [X₃+X₄ ]
l7 [X₁+X₃ ]
l8 [X₁+X₃ ]
l6 [X₁+X₃ ]
l9 [X₁+X₃ ]
l18 [X₁+X₃ ]
MPRF for transition t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l12 [X₄ ]
l10 [X₄ ]
l14 [X₄ ]
l16 [X₄ ]
l15 [X₄ ]
l17 [X₄ ]
l11 [X₄ ]
l13 [X₄ ]
l19 [X₄ ]
l4 [X₄+1 ]
l7 [X₄ ]
l8 [X₄ ]
l6 [X₄ ]
l9 [X₄ ]
l18 [X₄ ]
MPRF for transition t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
2⋅X₃ {O(n)}
MPRF:
l12 [X₃+X₄ ]
l10 [X₃+X₄ ]
l14 [X₃+X₄ ]
l16 [X₃+X₄ ]
l15 [X₃+X₄ ]
l17 [X₃+X₄ ]
l11 [X₃+X₄ ]
l13 [X₃+X₄ ]
l19 [X₃+X₄ ]
l4 [X₃+X₄ ]
l7 [X₁+X₃+1 ]
l8 [X₁+X₃+1 ]
l6 [X₁+X₃+1 ]
l9 [X₁+X₃+1 ]
l18 [X₃+X₄ ]
Analysing control-flow refined program
Found invariant 1+X₆ ≤ X₅ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l19___5
Found invariant X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l6___2
Found invariant X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l8___3
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l15
Found invariant 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l10___2
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l8___8
Found invariant X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l9___1
Found invariant X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l19
Found invariant 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l11___4
Found invariant 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l12___3
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l11___9
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l12___8
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l14___6
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l17
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l13
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l6___7
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l7___9
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l9___6
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l16
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l18
Found invariant X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l4
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l10___7
Found invariant 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l14___1
Found invariant X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l7___4
Found invariant X₇ ≤ 1+X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l18___5
knowledge_propagation leads to new time bound 2⋅X₃ {O(n)} for transition t₂₄₅₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___9(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₂₄₂₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₂₄₂₀: n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₂₄₂₂: n_l12___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___7(NoDet0, X₁, X₂, Arg3_P, Arg4_P, X₅, Arg6_P, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ Arg4_P ≤ Arg3_P ∧ 0 ≤ Arg4_P ∧ 1 ≤ Arg3_P ∧ Arg6_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₃ {O(n)} for transition t₂₄₅₅: n_l7___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___8(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
knowledge_propagation leads to new time bound 2⋅X₃ {O(n)} for transition t₂₄₅₇: n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___7(X₀, Arg1_P, NoDet0, Arg3_P, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ 1+Arg1_P ∧ 1 ≤ Arg3_P ∧ Arg7_P ≤ Arg3_P ∧ Arg6_P ≤ Arg7_P ∧ Arg6_P ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg1_P+1 ∧ 1+Arg1_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg1_P+1 ≤ Arg4_P ∧ Arg4_P ≤ 1+Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₂₄₁₈: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₂₄₃₆: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₂₄₂₄: n_l14___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 < X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₃ {O(n)} for transition t₂₄₅₃: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___6(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 < X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
knowledge_propagation leads to new time bound 2⋅X₃ {O(n)} for transition t₂₄₆₉: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
knowledge_propagation leads to new time bound 2⋅X₃ {O(n)} for transition t₂₄₅₉: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___5(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇+1) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₅ ∧ 0 < X₂ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
MPRF for transition t₂₄₁₇: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
MPRF:
l16 [X₆ ]
l15 [X₆ ]
l17 [X₆ ]
l18 [X₇ ]
l19 [X₆ ]
n_l11___9 [X₅ ]
n_l12___3 [X₆+1 ]
n_l10___2 [X₆+1 ]
n_l12___8 [X₅ ]
n_l10___7 [X₆ ]
n_l14___1 [X₆ ]
n_l14___6 [X₅ ]
n_l11___4 [X₆+1 ]
n_l19___5 [X₆+1 ]
l13 [X₆ ]
n_l9___6 [X₆ ]
l4 [X₅ ]
n_l7___4 [X₃+1 ]
n_l7___9 [X₇ ]
n_l8___3 [X₃+1 ]
n_l6___2 [X₃+1 ]
n_l8___8 [X₇ ]
n_l6___7 [X₆ ]
n_l9___1 [X₃+1 ]
n_l18___5 [X₃+1 ]
MPRF for transition t₂₄₃₅: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l16 [X₁+1 ]
l15 [X₁+1 ]
l17 [X₁+1 ]
l18 [X₁+1 ]
l19 [X₄+1 ]
n_l11___9 [X₄+1 ]
n_l12___3 [X₄+1 ]
n_l10___2 [X₄+1 ]
n_l12___8 [X₄+1 ]
n_l10___7 [X₄+1 ]
n_l14___1 [X₄+1 ]
n_l14___6 [X₄+1 ]
n_l11___4 [X₄+1 ]
n_l19___5 [X₄+1 ]
l13 [X₄ ]
l4 [X₄+1 ]
n_l7___4 [X₁+1 ]
n_l7___9 [X₁+1 ]
n_l8___3 [X₁+1 ]
n_l6___2 [X₁+1 ]
n_l8___8 [X₁+1 ]
n_l6___7 [X₄ ]
n_l9___1 [X₁+1 ]
n_l9___6 [X₁+1 ]
n_l18___5 [X₁+1 ]
MPRF for transition t₂₄₁₉: n_l11___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
MPRF:
l16 [X₆ ]
l15 [X₆ ]
l17 [X₆ ]
l18 [X₇ ]
l19 [X₅ ]
n_l11___9 [X₆ ]
n_l12___3 [X₆ ]
n_l10___2 [X₆ ]
n_l12___8 [X₅ ]
n_l10___7 [X₆ ]
n_l14___1 [X₆ ]
n_l14___6 [X₅ ]
n_l11___4 [X₆+1 ]
n_l19___5 [X₆+1 ]
l13 [X₆ ]
n_l9___6 [2⋅X₇-X₃ ]
l4 [X₅ ]
n_l7___4 [X₃+1 ]
n_l7___9 [2⋅X₇-X₆ ]
n_l8___3 [X₃+1 ]
n_l6___2 [X₃+X₄-X₁ ]
n_l8___8 [2⋅X₇-X₆ ]
n_l6___7 [2⋅X₇-X₆ ]
n_l9___1 [X₃+1 ]
n_l18___5 [X₃+1 ]
MPRF for transition t₂₄₂₁: n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___2(NoDet0, X₁, X₂, Arg3_P, Arg4_P, X₅, Arg6_P, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ Arg4_P ≤ Arg3_P ∧ 0 ≤ Arg4_P ∧ 1 ≤ Arg3_P ∧ Arg6_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
MPRF:
l16 [X₆ ]
l15 [X₆ ]
l17 [X₆ ]
l18 [X₆ ]
l19 [X₆ ]
n_l11___9 [X₅ ]
n_l12___3 [X₆+1 ]
n_l10___2 [X₆ ]
n_l12___8 [X₆ ]
n_l10___7 [X₆ ]
n_l14___1 [X₆ ]
n_l14___6 [X₅ ]
n_l11___4 [X₆+1 ]
n_l19___5 [X₆+1 ]
l13 [X₆ ]
n_l9___6 [X₆ ]
l4 [X₅ ]
n_l7___4 [X₃+1 ]
n_l7___9 [X₆ ]
n_l8___3 [X₃+1 ]
n_l6___2 [X₃+1 ]
n_l8___8 [X₆ ]
n_l6___7 [X₆ ]
n_l9___1 [X₃+1 ]
n_l18___5 [X₃+1 ]
MPRF for transition t₂₄₂₃: n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
MPRF:
l16 [X₆ ]
l15 [X₆ ]
l17 [X₆ ]
l18 [X₇ ]
l19 [X₅ ]
n_l11___9 [X₆ ]
n_l12___3 [X₆+1 ]
n_l10___2 [X₆+1 ]
n_l12___8 [X₅ ]
n_l10___7 [X₆ ]
n_l14___1 [X₆+1 ]
n_l14___6 [X₅ ]
n_l11___4 [X₆+1 ]
n_l19___5 [X₆+1 ]
l13 [X₆ ]
n_l9___6 [X₆ ]
l4 [X₅ ]
n_l7___4 [X₃+1 ]
n_l7___9 [X₇ ]
n_l8___3 [X₃+1 ]
n_l6___2 [X₃+X₄-X₁ ]
n_l8___8 [X₇ ]
n_l6___7 [X₆ ]
n_l9___1 [X₃+1 ]
n_l18___5 [X₃+1 ]
MPRF for transition t₂₄₅₁: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___4(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₇ ∧ X₇ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ 1+X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
12⋅X₃⋅X₃+29⋅X₃+6 {O(n^2)}
MPRF:
l16 [10⋅X₃+2⋅X₄-X₆ ]
l15 [10⋅X₃+2⋅X₄-X₆ ]
l17 [10⋅X₃+2⋅X₄-X₆ ]
l18 [10⋅X₃+2⋅X₄-X₆ ]
l19 [10⋅X₃+2⋅X₄+2-X₅ ]
n_l14___6 [10⋅X₃+2⋅X₄+2-X₅ ]
n_l11___9 [10⋅X₃+2⋅X₄+2-X₆ ]
n_l12___3 [10⋅X₃+2⋅X₄+2 ]
n_l10___2 [10⋅X₃+2⋅X₄+2 ]
n_l12___8 [10⋅X₃+2⋅X₄+2-X₅ ]
n_l10___7 [10⋅X₃+2⋅X₄+2-X₆ ]
n_l14___1 [10⋅X₃+2⋅X₄+2 ]
n_l11___4 [10⋅X₃+2⋅X₄+2 ]
n_l19___5 [10⋅X₃+2⋅X₄+2 ]
l13 [10⋅X₃+2⋅X₄-X₆ ]
l4 [10⋅X₃+2⋅X₄+2-X₅ ]
n_l7___4 [2⋅X₁+10⋅X₃+2-X₇ ]
n_l7___9 [2⋅X₁+10⋅X₃+2-X₆ ]
n_l8___3 [2⋅X₁+10⋅X₃+2-X₇ ]
n_l6___2 [2⋅X₁+10⋅X₃+2-X₇ ]
n_l8___8 [2⋅X₁+10⋅X₃+2-X₆ ]
n_l6___7 [2⋅X₁+10⋅X₃+2-X₇ ]
n_l9___1 [2⋅X₁+10⋅X₃+2-X₇ ]
n_l9___6 [2⋅X₁+10⋅X₃+2-X₇ ]
n_l18___5 [X₁+10⋅X₃+X₄+2-X₇ ]
MPRF for transition t₂₄₆₇: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ 1+X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l16 [X₄+1 ]
l15 [X₄+1 ]
l17 [X₄+1 ]
l18 [X₄+1 ]
l19 [X₄+1 ]
n_l11___9 [X₄+1 ]
n_l12___3 [X₄+1 ]
n_l10___2 [X₄+1 ]
n_l12___8 [X₄+1 ]
n_l10___7 [X₄+1 ]
n_l14___1 [X₄+1 ]
n_l14___6 [X₄+1 ]
n_l11___4 [X₄+1 ]
n_l19___5 [X₄+1 ]
l13 [X₄+1 ]
l4 [X₄+1 ]
n_l7___4 [X₁+2 ]
n_l7___9 [X₁+2 ]
n_l8___3 [X₁+2 ]
n_l6___2 [X₁+2 ]
n_l8___8 [X₁+2 ]
n_l6___7 [2⋅X₄-X₁ ]
n_l9___1 [X₁+2 ]
n_l9___6 [X₁+2 ]
n_l18___5 [X₄+1 ]
MPRF for transition t₂₄₂₆: n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+5⋅X₃ {O(n^2)}
MPRF:
l16 [X₆ ]
l15 [X₆ ]
l17 [X₆ ]
l18 [X₆ ]
l19 [X₆ ]
n_l11___9 [X₅ ]
n_l12___3 [X₆ ]
n_l10___2 [X₆ ]
n_l12___8 [X₆ ]
n_l10___7 [X₅ ]
n_l14___1 [X₆ ]
n_l14___6 [X₆ ]
n_l11___4 [X₆ ]
n_l19___5 [X₆+1 ]
l13 [X₆ ]
n_l9___6 [X₇ ]
l4 [X₅ ]
n_l7___4 [X₃+2 ]
n_l7___9 [X₆ ]
n_l8___3 [X₃+2 ]
n_l6___2 [X₃+2⋅X₄-2⋅X₁ ]
n_l8___8 [X₆ ]
n_l6___7 [X₆ ]
n_l9___1 [X₃+2 ]
n_l18___5 [X₃+2 ]
MPRF for transition t₂₄₃₄: n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₃+1 {O(n)}
MPRF:
l16 [2⋅X₁+2⋅X₃-X₄ ]
l15 [2⋅X₁+2⋅X₃-X₄ ]
l17 [2⋅X₁+2⋅X₃-X₄ ]
l18 [2⋅X₁+2⋅X₃-X₄ ]
l19 [2⋅X₃+X₄-1 ]
n_l11___9 [2⋅X₃+X₄-1 ]
n_l12___3 [2⋅X₃+X₄-1 ]
n_l10___2 [2⋅X₃+X₄-1 ]
n_l12___8 [2⋅X₃+X₄-1 ]
n_l10___7 [2⋅X₃+X₄-1 ]
n_l14___1 [2⋅X₃+X₄-1 ]
n_l14___6 [2⋅X₃+X₄-1 ]
n_l11___4 [2⋅X₃+X₄-1 ]
n_l19___5 [2⋅X₃+X₄-1 ]
l13 [2⋅X₃+X₄-2 ]
l4 [2⋅X₃+X₄-1 ]
n_l7___4 [X₁+2⋅X₃-1 ]
n_l7___9 [X₁+2⋅X₃-1 ]
n_l8___3 [X₁+2⋅X₃-1 ]
n_l6___2 [2⋅X₃+X₄-2 ]
n_l8___8 [X₁+2⋅X₃-1 ]
n_l6___7 [3⋅X₁+2⋅X₃+1-2⋅X₄ ]
n_l9___1 [X₁+2⋅X₃-1 ]
n_l9___6 [X₁+2⋅X₃-1 ]
n_l18___5 [2⋅X₁+2⋅X₃-X₄ ]
MPRF for transition t₂₄₅₂: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___1(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 < X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
5⋅X₃⋅X₃+14⋅X₃+4 {O(n^2)}
MPRF:
l16 [3⋅X₃+2⋅X₄-X₆ ]
l15 [3⋅X₃+2⋅X₄-X₆ ]
l17 [3⋅X₃+2⋅X₄-X₆ ]
l18 [3⋅X₃+2⋅X₄-X₆ ]
l19 [3⋅X₃+2⋅X₄+1-X₅ ]
n_l14___6 [3⋅X₃+2⋅X₄+1-X₆ ]
n_l11___9 [3⋅X₃+2⋅X₄+1-X₅ ]
n_l12___3 [3⋅X₃+2⋅X₄+1 ]
n_l10___2 [3⋅X₃+2⋅X₄+1 ]
n_l12___8 [3⋅X₃+2⋅X₄+1-X₆ ]
n_l10___7 [3⋅X₃+2⋅X₄+1-X₆ ]
n_l14___1 [3⋅X₃+2⋅X₄+1 ]
n_l11___4 [3⋅X₃+2⋅X₄+1 ]
n_l19___5 [3⋅X₃+2⋅X₄+1 ]
l13 [3⋅X₃+2⋅X₄-X₆ ]
l4 [3⋅X₃+2⋅X₄+1-X₅ ]
n_l7___4 [2⋅X₁+3⋅X₃+2-X₇ ]
n_l7___9 [2⋅X₁+3⋅X₃+2-X₆ ]
n_l8___3 [2⋅X₁+3⋅X₃+2-X₇ ]
n_l6___2 [2⋅X₁+3⋅X₃+2-X₇ ]
n_l8___8 [2⋅X₁+3⋅X₃+1-X₆ ]
n_l6___7 [2⋅X₁+3⋅X₃+1-X₆ ]
n_l9___1 [3⋅X₃+2⋅X₄-X₇-1 ]
n_l9___6 [2⋅X₁+3⋅X₃+1-X₆ ]
n_l18___5 [2⋅X₁+3⋅X₃+2-X₇ ]
MPRF for transition t₂₄₆₈: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l16 [X₄+1 ]
l15 [X₄+1 ]
l17 [X₄+1 ]
l18 [X₄+1 ]
l19 [X₄+1 ]
n_l11___9 [X₄+1 ]
n_l12___3 [X₄+1 ]
n_l10___2 [X₄+1 ]
n_l12___8 [X₄+1 ]
n_l10___7 [X₄+1 ]
n_l14___1 [X₄+1 ]
n_l14___6 [X₄+1 ]
n_l11___4 [X₄+1 ]
n_l19___5 [X₄+1 ]
l13 [X₄+1 ]
l4 [X₄+1 ]
n_l7___4 [X₁+2 ]
n_l7___9 [X₁+2 ]
n_l8___3 [X₁+2 ]
n_l6___2 [X₁+2 ]
n_l8___8 [X₁+2 ]
n_l6___7 [X₄+1 ]
n_l9___1 [X₄+1 ]
n_l9___6 [X₁+2 ]
n_l18___5 [X₁+2 ]
MPRF for transition t₂₄₅₄: n_l7___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___3(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
3⋅X₃⋅X₃+8⋅X₃+1 {O(n^2)}
MPRF:
l16 [2⋅X₃+X₄-X₆-1 ]
l15 [2⋅X₃+X₄-X₆-1 ]
l17 [2⋅X₃+X₄-X₆-1 ]
l18 [2⋅X₃+X₄-X₆-1 ]
l19 [2⋅X₃+X₄-X₅ ]
n_l14___6 [2⋅X₃+X₄-X₅ ]
n_l11___9 [2⋅X₃+X₄-X₅ ]
n_l12___3 [2⋅X₃+X₄ ]
n_l10___2 [2⋅X₃+X₄ ]
n_l12___8 [2⋅X₃+X₄-X₆ ]
n_l10___7 [2⋅X₃+X₄-X₅ ]
n_l14___1 [2⋅X₃+X₄ ]
n_l11___4 [2⋅X₃+X₄ ]
n_l19___5 [2⋅X₃+X₄ ]
l13 [2⋅X₃+X₄-X₆-1 ]
l4 [2⋅X₃+X₄-X₅ ]
n_l7___4 [X₁+2⋅X₃+1-X₇ ]
n_l7___9 [X₁+2⋅X₃+X₇-2⋅X₆ ]
n_l8___3 [X₁+2⋅X₃-X₇ ]
n_l6___2 [X₁+2⋅X₃-X₇ ]
n_l8___8 [X₁+2⋅X₃+X₇-2⋅X₆ ]
n_l6___7 [X₁+2⋅X₃-X₇ ]
n_l9___1 [X₁+2⋅X₃-X₇ ]
n_l9___6 [X₁+2⋅X₃-X₇ ]
n_l18___5 [X₁+2⋅X₃+1-X₇ ]
MPRF for transition t₂₄₅₆: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___2(X₀, Arg1_P, NoDet0, Arg3_P, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ 1+Arg1_P ∧ 1 ≤ Arg3_P ∧ Arg7_P ≤ Arg3_P ∧ Arg6_P ≤ Arg7_P ∧ Arg6_P ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg1_P+1 ∧ 1+Arg1_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg1_P+1 ≤ Arg4_P ∧ Arg4_P ≤ 1+Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
3⋅X₃⋅X₃+9⋅X₃+3 {O(n^2)}
MPRF:
l16 [X₁+2⋅X₃+1-X₆ ]
l15 [X₁+2⋅X₃+1-X₆ ]
l17 [X₁+2⋅X₃+1-X₆ ]
l18 [X₁+2⋅X₃+1-X₆ ]
l19 [2⋅X₃+X₄+1-X₅ ]
n_l14___6 [2⋅X₃+X₄+1-X₅ ]
n_l11___9 [2⋅X₃+X₄+1-X₆ ]
n_l12___3 [2⋅X₃+X₄+1 ]
n_l10___2 [2⋅X₃+X₄+1 ]
n_l12___8 [2⋅X₃+X₄+1-X₅ ]
n_l10___7 [2⋅X₃+X₄+1-X₅ ]
n_l14___1 [2⋅X₃+X₄+1 ]
n_l11___4 [2⋅X₃+X₄+1 ]
n_l19___5 [2⋅X₃+X₄+1 ]
l13 [2⋅X₃+X₄-X₆ ]
l4 [2⋅X₃+X₄+1-X₅ ]
n_l7___4 [X₁+2⋅X₃+2-X₇ ]
n_l7___9 [X₁+2⋅X₃+1-X₆ ]
n_l8___3 [X₁+2⋅X₃+2-X₇ ]
n_l6___2 [X₁+2⋅X₃+1-X₇ ]
n_l8___8 [X₁+2⋅X₃+1-X₆ ]
n_l6___7 [2⋅X₃+X₄-X₆ ]
n_l9___1 [X₁+2⋅X₃+1-X₇ ]
n_l9___6 [X₁+2⋅X₃+1-X₇ ]
n_l18___5 [2⋅X₃+X₄+1-X₇ ]
MPRF for transition t₂₄₅₈: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___5(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇+1) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 0 < X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
4⋅X₃⋅X₃+12⋅X₃+4 {O(n^2)}
MPRF:
l16 [2⋅X₃+2⋅X₄-X₆ ]
l15 [2⋅X₃+2⋅X₄-X₆ ]
l17 [2⋅X₃+2⋅X₄-X₆ ]
l18 [2⋅X₃+2⋅X₄-X₆-1 ]
l19 [2⋅X₃+2⋅X₄+1-X₅ ]
n_l14___6 [2⋅X₃+2⋅X₄+1-X₅ ]
n_l11___9 [2⋅X₃+2⋅X₄+1-X₆ ]
n_l12___3 [2⋅X₃+2⋅X₄+1 ]
n_l10___2 [2⋅X₃+2⋅X₄+1 ]
n_l12___8 [2⋅X₃+2⋅X₄+1-X₅ ]
n_l10___7 [2⋅X₃+2⋅X₄+1-X₅ ]
n_l14___1 [2⋅X₃+2⋅X₄+1 ]
n_l11___4 [2⋅X₃+2⋅X₄+1 ]
n_l19___5 [2⋅X₃+2⋅X₄+1 ]
l13 [2⋅X₃+2⋅X₄-X₆ ]
l4 [2⋅X₃+2⋅X₄+1-X₅ ]
n_l7___4 [2⋅X₃+2⋅X₄-X₇ ]
n_l7___9 [2⋅X₁+2⋅X₃+1-X₆ ]
n_l8___3 [2⋅X₁+2⋅X₃+2-X₇ ]
n_l6___2 [2⋅X₁+2⋅X₃+2-X₇ ]
n_l8___8 [2⋅X₁+2⋅X₃+1-X₆ ]
n_l6___7 [X₁+2⋅X₃+X₄-X₆ ]
n_l9___1 [2⋅X₁+2⋅X₃+2-X₇ ]
n_l9___6 [2⋅X₁+2⋅X₃+1-X₆ ]
n_l18___5 [2⋅X₁+2⋅X₃+2-X₇ ]
CFR: Improvement to new bound with the following program:
new bound:
37⋅X₃⋅X₃+123⋅X₃+33 {O(n^2)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: Arg1_P, Arg3_P, Arg4_P, Arg5_P, Arg6_P, Arg7_P, NoDet0
Locations: l0, l1, l13, l15, l16, l17, l18, l19, l2, l20, l3, l4, l5, n_l10___2, n_l10___7, n_l11___4, n_l11___9, n_l12___3, n_l12___8, n_l14___1, n_l14___6, n_l18___5, n_l19___5, n_l6___2, n_l6___7, n_l7___4, n_l7___9, n_l8___3, n_l8___8, n_l9___1, n_l9___6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₃, X₆, X₇) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₉: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₅₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___9(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₈: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₂₄₂₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 0 ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₄₃₅: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₂₄₁₇: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₂₄₃₆: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₂₄₁₈: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₂₄₁₉: n_l11___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₄₂₀: n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₂₄₂₁: n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___2(NoDet0, X₁, X₂, Arg3_P, Arg4_P, X₅, Arg6_P, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ Arg4_P ≤ Arg3_P ∧ 0 ≤ Arg4_P ∧ 1 ≤ Arg3_P ∧ Arg6_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₄₂₂: n_l12___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___7(NoDet0, X₁, X₂, Arg3_P, Arg4_P, X₅, Arg6_P, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ Arg4_P ≤ Arg3_P ∧ 0 ≤ Arg4_P ∧ 1 ≤ Arg3_P ∧ Arg6_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₂₄₂₃: n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₄₂₄: n_l14___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 < X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₄₆₇: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ 1+X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₄₅₁: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___4(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₇ ∧ X₇ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ 1+X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₄₃₄: n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₄₂₆: n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₄₆₈: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₅₂: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___1(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 < X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₆₉: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₅₃: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___6(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 < X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₅₄: n_l7___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___3(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₄₅₅: n_l7___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___8(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₅₆: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___2(X₀, Arg1_P, NoDet0, Arg3_P, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ 1+Arg1_P ∧ 1 ≤ Arg3_P ∧ Arg7_P ≤ Arg3_P ∧ Arg6_P ≤ Arg7_P ∧ Arg6_P ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg1_P+1 ∧ 1+Arg1_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg1_P+1 ≤ Arg4_P ∧ Arg4_P ≤ 1+Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₄₅₇: n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___7(X₀, Arg1_P, NoDet0, Arg3_P, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ 1+Arg1_P ∧ 1 ≤ Arg3_P ∧ Arg7_P ≤ Arg3_P ∧ Arg6_P ≤ Arg7_P ∧ Arg6_P ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg1_P+1 ∧ 1+Arg1_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg1_P+1 ≤ Arg4_P ∧ Arg4_P ≤ 1+Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₅₈: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___5(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇+1) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 0 < X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₄₅₉: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___5(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇+1) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₅ ∧ 0 < X₂ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
All Bounds
Timebounds
Overall timebound:37⋅X₃⋅X₃+123⋅X₃+40 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₄: X₃+1 {O(n)}
t₁₆: X₃+1 {O(n)}
t₁₅: X₃+1 {O(n)}
t₁₇: 2⋅X₃ {O(n)}
t₁₉: 2⋅X₃+1 {O(n)}
t₂₄₅₀: 2⋅X₃ {O(n)}
t₈: 2⋅X₃ {O(n)}
t₂₄₂₅: X₃+1 {O(n)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: X₃+1 {O(n)}
t₆: 1 {O(1)}
t₂₅: 1 {O(1)}
t₂₄₁₇: 2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₂₄₃₅: X₃+1 {O(n)}
t₂₄₁₈: X₃+1 {O(n)}
t₂₄₃₆: X₃+1 {O(n)}
t₂₄₁₉: 2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₂₄₂₀: X₃+1 {O(n)}
t₂₄₂₁: 2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₂₄₂₂: X₃+1 {O(n)}
t₂₄₂₃: 2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₂₄₂₄: X₃+1 {O(n)}
t₂₄₅₁: 12⋅X₃⋅X₃+29⋅X₃+6 {O(n^2)}
t₂₄₆₇: X₃+1 {O(n)}
t₂₄₂₆: 2⋅X₃⋅X₃+5⋅X₃ {O(n^2)}
t₂₄₃₄: 3⋅X₃+1 {O(n)}
t₂₄₅₂: 5⋅X₃⋅X₃+14⋅X₃+4 {O(n^2)}
t₂₄₆₈: X₃+1 {O(n)}
t₂₄₅₃: 2⋅X₃ {O(n)}
t₂₄₆₉: 2⋅X₃ {O(n)}
t₂₄₅₄: 3⋅X₃⋅X₃+8⋅X₃+1 {O(n^2)}
t₂₄₅₅: 2⋅X₃ {O(n)}
t₂₄₅₆: 3⋅X₃⋅X₃+9⋅X₃+3 {O(n^2)}
t₂₄₅₇: 2⋅X₃ {O(n)}
t₂₄₅₈: 4⋅X₃⋅X₃+12⋅X₃+4 {O(n^2)}
t₂₄₅₉: 2⋅X₃ {O(n)}
Costbounds
Overall costbound: 37⋅X₃⋅X₃+123⋅X₃+40 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₄: X₃+1 {O(n)}
t₁₆: X₃+1 {O(n)}
t₁₅: X₃+1 {O(n)}
t₁₇: 2⋅X₃ {O(n)}
t₁₉: 2⋅X₃+1 {O(n)}
t₂₄₅₀: 2⋅X₃ {O(n)}
t₈: 2⋅X₃ {O(n)}
t₂₄₂₅: X₃+1 {O(n)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: X₃+1 {O(n)}
t₆: 1 {O(1)}
t₂₅: 1 {O(1)}
t₂₄₁₇: 2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₂₄₃₅: X₃+1 {O(n)}
t₂₄₁₈: X₃+1 {O(n)}
t₂₄₃₆: X₃+1 {O(n)}
t₂₄₁₉: 2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₂₄₂₀: X₃+1 {O(n)}
t₂₄₂₁: 2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₂₄₂₂: X₃+1 {O(n)}
t₂₄₂₃: 2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₂₄₂₄: X₃+1 {O(n)}
t₂₄₅₁: 12⋅X₃⋅X₃+29⋅X₃+6 {O(n^2)}
t₂₄₆₇: X₃+1 {O(n)}
t₂₄₂₆: 2⋅X₃⋅X₃+5⋅X₃ {O(n^2)}
t₂₄₃₄: 3⋅X₃+1 {O(n)}
t₂₄₅₂: 5⋅X₃⋅X₃+14⋅X₃+4 {O(n^2)}
t₂₄₆₈: X₃+1 {O(n)}
t₂₄₅₃: 2⋅X₃ {O(n)}
t₂₄₆₉: 2⋅X₃ {O(n)}
t₂₄₅₄: 3⋅X₃⋅X₃+8⋅X₃+1 {O(n^2)}
t₂₄₅₅: 2⋅X₃ {O(n)}
t₂₄₅₆: 3⋅X₃⋅X₃+9⋅X₃+3 {O(n^2)}
t₂₄₅₇: 2⋅X₃ {O(n)}
t₂₄₅₈: 4⋅X₃⋅X₃+12⋅X₃+4 {O(n^2)}
t₂₄₅₉: 2⋅X₃ {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₃ {O(n)}
t₄, X₅: X₃ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₁₄, X₁: X₃+1 {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: 4⋅X₃+4 {O(n)}
t₁₄, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₁₄, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₁₄, X₇: 100⋅X₃⋅X₃+375⋅X₃+5⋅X₇+150 {O(n^2)}
t₁₆, X₁: X₃+1 {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: 4⋅X₃+4 {O(n)}
t₁₆, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₁₆, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₁₆, X₇: 100⋅X₃⋅X₃+375⋅X₃+5⋅X₇+150 {O(n^2)}
t₁₅, X₁: X₃+1 {O(n)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₄: 4⋅X₃+4 {O(n)}
t₁₅, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₁₅, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₁₅, X₇: 100⋅X₃⋅X₃+375⋅X₃+5⋅X₇+150 {O(n^2)}
t₁₇, X₁: X₃+1 {O(n)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: 4⋅X₃+4 {O(n)}
t₁₇, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₁₇, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₁₇, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₁₉, X₁: X₃+1 {O(n)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: X₃+1 {O(n)}
t₁₉, X₅: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₁₉, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₁₉, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₀, X₁: X₃+1 {O(n)}
t₂₄₅₀, X₃: X₃ {O(n)}
t₂₄₅₀, X₄: X₃+2 {O(n)}
t₂₄₅₀, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₂₄₅₀, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₀, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₈, X₁: 5⋅X₃+X₁+5 {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₃+1 {O(n)}
t₈, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₈, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₈, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₂₅, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₄₂₅, X₃: X₃ {O(n)}
t₂₄₂₅, X₄: X₃+1 {O(n)}
t₂₄₂₅, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₂₄₂₅, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₂₅, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₅, X₁: 5⋅X₃+X₁+5 {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₃+1 {O(n)}
t₅, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₅, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₅, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₆, X₁: 5⋅X₃+5 {O(n)}
t₆, X₃: 4⋅X₃ {O(n)}
t₆, X₄: 1 {O(1)}
t₆, X₅: 16⋅X₃⋅X₃+60⋅X₃+24 {O(n^2)}
t₆, X₆: 20⋅X₃⋅X₃+75⋅X₃+30 {O(n^2)}
t₆, X₇: 20⋅X₃⋅X₃+75⋅X₃+30 {O(n^2)}
t₂₅, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₅, X₃: 5⋅X₃ {O(n)}
t₂₅, X₄: X₄+1 {O(n)}
t₂₅, X₅: 16⋅X₃⋅X₃+60⋅X₃+X₅+24 {O(n^2)}
t₂₅, X₆: 20⋅X₃⋅X₃+75⋅X₃+X₆+30 {O(n^2)}
t₂₅, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₁₇, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₄₁₇, X₃: X₃ {O(n)}
t₂₄₁₇, X₄: X₃+1 {O(n)}
t₂₄₁₇, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₂₄₁₇, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₁₇, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₃₅, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₄₃₅, X₃: X₃ {O(n)}
t₂₄₃₅, X₄: X₃+1 {O(n)}
t₂₄₃₅, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₂₄₃₅, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₃₅, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₁₈, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₄₁₈, X₃: X₃ {O(n)}
t₂₄₁₈, X₄: X₃+1 {O(n)}
t₂₄₁₈, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₂₄₁₈, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₁₈, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₃₆, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₄₃₆, X₃: X₃ {O(n)}
t₂₄₃₆, X₄: X₃+1 {O(n)}
t₂₄₃₆, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₂₄₃₆, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₃₆, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₁₉, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₄₁₉, X₃: X₃ {O(n)}
t₂₄₁₉, X₄: X₃+1 {O(n)}
t₂₄₁₉, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₂₄₁₉, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₁₉, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₂₀, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₄₂₀, X₃: X₃ {O(n)}
t₂₄₂₀, X₄: X₃+1 {O(n)}
t₂₄₂₀, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₂₄₂₀, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₂₀, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₂₁, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₄₂₁, X₃: X₃ {O(n)}
t₂₄₂₁, X₄: X₃+1 {O(n)}
t₂₄₂₁, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₂₄₂₁, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₂₁, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₂₂, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₄₂₂, X₃: X₃ {O(n)}
t₂₄₂₂, X₄: X₃+1 {O(n)}
t₂₄₂₂, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₂₄₂₂, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₂₂, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₂₃, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₄₂₃, X₃: X₃ {O(n)}
t₂₄₂₃, X₄: X₃+1 {O(n)}
t₂₄₂₃, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₂₄₂₃, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₂₃, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₂₄, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₄₂₄, X₃: X₃ {O(n)}
t₂₄₂₄, X₄: X₃+1 {O(n)}
t₂₄₂₄, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₂₄₂₄, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₂₄, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₅₁, X₁: X₃+1 {O(n)}
t₂₄₅₁, X₃: X₃ {O(n)}
t₂₄₅₁, X₄: 2⋅X₃+4 {O(n)}
t₂₄₅₁, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₂₄₅₁, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₁, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₆₇, X₁: 2⋅X₃+2 {O(n)}
t₂₄₆₇, X₃: X₃ {O(n)}
t₂₄₆₇, X₄: X₃+1 {O(n)}
t₂₄₆₇, X₅: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₆₇, X₆: 8⋅X₃⋅X₃+30⋅X₃+12 {O(n^2)}
t₂₄₆₇, X₇: 8⋅X₃⋅X₃+30⋅X₃+12 {O(n^2)}
t₂₄₂₆, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₄₂₆, X₃: X₃ {O(n)}
t₂₄₂₆, X₄: X₃+1 {O(n)}
t₂₄₂₆, X₅: 16⋅X₃⋅X₃+61⋅X₃+24 {O(n^2)}
t₂₄₂₆, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₂₆, X₇: 20⋅X₃⋅X₃+75⋅X₃+X₇+30 {O(n^2)}
t₂₄₃₄, X₁: 10⋅X₃+2⋅X₁+10 {O(n)}
t₂₄₃₄, X₃: X₃ {O(n)}
t₂₄₃₄, X₄: X₃+1 {O(n)}
t₂₄₃₄, X₅: 32⋅X₃⋅X₃+122⋅X₃+48 {O(n^2)}
t₂₄₃₄, X₆: 1 {O(1)}
t₂₄₃₄, X₇: 40⋅X₃⋅X₃+150⋅X₃+2⋅X₇+60 {O(n^2)}
t₂₄₅₂, X₁: X₃+1 {O(n)}
t₂₄₅₂, X₃: X₃ {O(n)}
t₂₄₅₂, X₄: X₃+2 {O(n)}
t₂₄₅₂, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₂₄₅₂, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₂, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₆₈, X₁: X₃+1 {O(n)}
t₂₄₆₈, X₃: X₃ {O(n)}
t₂₄₆₈, X₄: X₃+1 {O(n)}
t₂₄₆₈, X₅: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₆₈, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₆₈, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₃, X₁: X₃+1 {O(n)}
t₂₄₅₃, X₃: X₃ {O(n)}
t₂₄₅₃, X₄: X₃+2 {O(n)}
t₂₄₅₃, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₂₄₅₃, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₃, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₆₉, X₁: X₃+1 {O(n)}
t₂₄₆₉, X₃: X₃ {O(n)}
t₂₄₆₉, X₄: X₃+1 {O(n)}
t₂₄₆₉, X₅: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₆₉, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₆₉, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₄, X₁: X₃+1 {O(n)}
t₂₄₅₄, X₃: X₃ {O(n)}
t₂₄₅₄, X₄: X₃+2 {O(n)}
t₂₄₅₄, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₂₄₅₄, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₄, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₅, X₁: X₃+1 {O(n)}
t₂₄₅₅, X₃: X₃ {O(n)}
t₂₄₅₅, X₄: X₃+2 {O(n)}
t₂₄₅₅, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₂₄₅₅, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₅, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₆, X₁: X₃+1 {O(n)}
t₂₄₅₆, X₃: X₃ {O(n)}
t₂₄₅₆, X₄: X₃+2 {O(n)}
t₂₄₅₆, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₂₄₅₆, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₆, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₇, X₁: X₃+1 {O(n)}
t₂₄₅₇, X₃: X₃ {O(n)}
t₂₄₅₇, X₄: X₃+2 {O(n)}
t₂₄₅₇, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₂₄₅₇, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₇, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₈, X₁: X₃+1 {O(n)}
t₂₄₅₈, X₃: X₃ {O(n)}
t₂₄₅₈, X₄: X₃+2 {O(n)}
t₂₄₅₈, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₂₄₅₈, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₈, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₉, X₁: X₃+1 {O(n)}
t₂₄₅₉, X₃: X₃ {O(n)}
t₂₄₅₉, X₄: X₃+2 {O(n)}
t₂₄₅₉, X₅: 80⋅X₃⋅X₃+305⋅X₃+120 {O(n^2)}
t₂₄₅₉, X₆: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}
t₂₄₅₉, X₇: 4⋅X₃⋅X₃+15⋅X₃+6 {O(n^2)}