Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
t₁₆: l10(X₀, X₁, X₂, X₃) → l8(X₀, nondef_0, X₂, X₃)
t₂₀: l11(X₀, X₁, X₂, X₃) → l29(X₀, X₁, X₂, X₃)
t₅: l12(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃)
t₆: l13(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃)
t₇: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃)
t₈: l15(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃)
t₉: l16(X₀, X₁, X₂, X₃) → l17(X₀, X₁, X₂, X₃)
t₁₀: l17(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃)
t₄₃: l18(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀)
t₃₂: l19(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀)
t₁: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₂₄: l20(X₀, X₁, X₂, X₃) → l21(X₀, X₁, X₂, X₃) :|: 1 ≤ X₁
t₂₃: l20(X₀, X₁, X₂, X₃) → l28(X₀, X₁, X₂, X₃) :|: X₁ < 1
t₃₀: l21(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃) :|: X₁ < 1
t₃₁: l21(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃) :|: 1 < X₁
t₂₉: l21(X₀, X₁, X₂, X₃) → l19(X₀, X₁, X₂, X₃) :|: X₁ ≤ 1 ∧ 1 ≤ X₁
t₃₈: l22(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀)
t₃₃: l23(X₀, X₁, X₂, X₃) → l24(X₀, X₁, X₂, X₃) :|: X₁ < 3
t₃₄: l23(X₀, X₁, X₂, X₃) → l26(X₀, X₁, X₂, X₃) :|: 3 ≤ X₁
t₃₆: l24(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃) :|: X₁ < 2
t₃₇: l24(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃) :|: 2 < X₁
t₃₅: l24(X₀, X₁, X₂, X₃) → l22(X₀, X₁, X₂, X₃) :|: X₁ ≤ 2 ∧ 2 ≤ X₁
t₄₂: l25(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀)
t₄₀: l26(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃) :|: X₁ < 3
t₄₁: l26(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃) :|: 3 < X₁
t₃₉: l26(X₀, X₁, X₂, X₃) → l25(X₀, X₁, X₂, X₃) :|: X₁ ≤ 3 ∧ 3 ≤ X₁
t₂₈: l27(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀)
t₂₆: l28(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃) :|: X₁ < 0
t₂₇: l28(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃) :|: 0 < X₁
t₂₅: l28(X₀, X₁, X₂, X₃) → l27(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₂₁: l29(X₀, X₁, X₂, X₃) → l20(X₀, X₁, X₂, X₃) :|: X₁ < 2
t₂₂: l29(X₀, X₁, X₂, X₃) → l23(X₀, X₁, X₂, X₃) :|: 2 ≤ X₁
t₂: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₄₄: l30(X₀, X₁, X₂, X₃) → l31(X₀, X₁, X₂, X₃)
t₄: l4(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃)
t₁₄: l5(X₀, X₁, X₂, X₃) → l30(X₀, X₁, X₂, X₃) :|: X₂ ≤ X₃
t₁₃: l5(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₃ < X₂
t₁₁: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₁₂: l7(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 0)
t₁₇: l8(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁ ∧ X₁ ≤ 3
t₁₈: l8(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: X₁ < 0
t₁₉: l8(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 3 < X₁
t₁₅: l9(X₀, X₁, X₂, X₃) → l10(X₃+1, X₁, X₂, X₃)

Preprocessing

Cut unsatisfiable transition t₃₀: l21→l18

Cut unsatisfiable transition t₃₇: l24→l18

Cut unsatisfiable transition t₄₀: l26→l18

Cut unsatisfiable transition t₂₇: l28→l18

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l25

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l27

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ 2+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l24

Found invariant 0 ≤ X₃ ∧ X₂ ≤ X₃ for location l31

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l19

Found invariant 0 ≤ X₃ ∧ X₂ ≤ X₃ for location l30

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l26

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l29

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l23

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l28

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l20

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l21

Found invariant 0 ≤ X₃ for location l5

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ 2+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l22

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l8

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ 0 for location l18

Found invariant 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l9

Cut unsatisfiable transition t₄₃: l18→l5

Cut unsatisfiable transition t₃₁: l21→l18

Cut unsatisfiable transition t₃₆: l24→l18

Cut unsatisfiable transition t₄₁: l26→l18

Cut unsatisfiable transition t₂₆: l28→l18

Cut unreachable locations [l18] from the program graph

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
t₁₆: l10(X₀, X₁, X₂, X₃) → l8(X₀, nondef_0, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀
t₂₀: l11(X₀, X₁, X₂, X₃) → l29(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅: l12(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃)
t₆: l13(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃)
t₇: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃)
t₈: l15(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃)
t₉: l16(X₀, X₁, X₂, X₃) → l17(X₀, X₁, X₂, X₃)
t₁₀: l17(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃)
t₃₂: l19(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₂₄: l20(X₀, X₁, X₂, X₃) → l21(X₀, X₁, X₂, X₃) :|: 1 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₃: l20(X₀, X₁, X₂, X₃) → l28(X₀, X₁, X₂, X₃) :|: X₁ < 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₉: l21(X₀, X₁, X₂, X₃) → l19(X₀, X₁, X₂, X₃) :|: X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₈: l22(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ 2+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₃: l23(X₀, X₁, X₂, X₃) → l24(X₀, X₁, X₂, X₃) :|: X₁ < 3 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₄: l23(X₀, X₁, X₂, X₃) → l26(X₀, X₁, X₂, X₃) :|: 3 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₅: l24(X₀, X₁, X₂, X₃) → l22(X₀, X₁, X₂, X₃) :|: X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ 2+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₂: l25(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₉: l26(X₀, X₁, X₂, X₃) → l25(X₀, X₁, X₂, X₃) :|: X₁ ≤ 3 ∧ 3 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₈: l27(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₅: l28(X₀, X₁, X₂, X₃) → l27(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₁: l29(X₀, X₁, X₂, X₃) → l20(X₀, X₁, X₂, X₃) :|: X₁ < 2 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₂: l29(X₀, X₁, X₂, X₃) → l23(X₀, X₁, X₂, X₃) :|: 2 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₄₄: l30(X₀, X₁, X₂, X₃) → l31(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ X₂ ≤ X₃
t₄: l4(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃)
t₁₄: l5(X₀, X₁, X₂, X₃) → l30(X₀, X₁, X₂, X₃) :|: X₂ ≤ X₃ ∧ 0 ≤ X₃
t₁₃: l5(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₃ < X₂ ∧ 0 ≤ X₃
t₁₁: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₁₂: l7(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 0)
t₁₇: l8(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁ ∧ X₁ ≤ 3 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₈: l8(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: X₁ < 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₉: l8(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 3 < X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₅: l9(X₀, X₁, X₂, X₃) → l10(X₃+1, X₁, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂

MPRF for transition t₁₆: l10(X₀, X₁, X₂, X₃) → l8(X₀, nondef_0, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₀ ]
l19 [X₂-X₀ ]
l24 [X₂-X₀ ]
l22 [X₂-X₃-1 ]
l26 [X₂-X₀ ]
l25 [X₂-X₀ ]
l28 [X₂-X₀ ]
l27 [X₂-X₀ ]
l20 [X₂-X₀ ]
l29 [X₂-X₀ ]
l23 [X₂-X₀ ]
l11 [X₂-X₀ ]
l8 [X₂-X₃-1 ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂-X₃ ]

MPRF for transition t₂₀: l11(X₀, X₁, X₂, X₃) → l29(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₀ ]
l19 [X₂-X₀ ]
l24 [X₂-X₀ ]
l22 [X₂-X₀ ]
l26 [X₂-X₀ ]
l25 [X₂-X₀ ]
l28 [X₂-X₀ ]
l27 [X₂-X₀ ]
l20 [X₂-X₀ ]
l29 [X₂-X₀ ]
l23 [X₂-X₃-1 ]
l11 [X₂+1-X₀ ]
l8 [X₂+1-X₀ ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂-X₃ ]

MPRF for transition t₃₂: l19(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₃ ]
l19 [X₂+1-X₀ ]
l24 [X₂-X₀ ]
l22 [X₂-X₀ ]
l26 [X₂-X₀ ]
l25 [X₂-X₀ ]
l28 [X₂-X₀ ]
l27 [X₂-X₀ ]
l20 [X₁+X₂-X₀ ]
l29 [X₀+X₂-2⋅X₃-1 ]
l23 [X₂-X₀ ]
l11 [X₀+X₂-2⋅X₃-1 ]
l8 [X₀+X₂-2⋅X₃-1 ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₀+X₂-2⋅X₃-1 ]

MPRF for transition t₂₃: l20(X₀, X₁, X₂, X₃) → l28(X₀, X₁, X₂, X₃) :|: X₁ < 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₀ ]
l19 [X₂-X₀ ]
l24 [X₂-X₀ ]
l22 [X₂-X₀ ]
l26 [X₂-X₀ ]
l25 [X₂-X₀ ]
l28 [X₂-X₀ ]
l27 [X₂-X₀ ]
l20 [X₂+1-X₀ ]
l29 [X₂-X₃ ]
l23 [X₁+X₂-X₃-3 ]
l11 [X₂-X₃ ]
l8 [X₂-X₃ ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂+1-X₀ ]

MPRF for transition t₂₄: l20(X₀, X₁, X₂, X₃) → l21(X₀, X₁, X₂, X₃) :|: 1 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₀ ]
l19 [X₂-X₀ ]
l24 [X₂-X₀ ]
l22 [X₂-X₀ ]
l26 [X₂-X₀ ]
l25 [X₂-X₀ ]
l28 [X₂-X₀ ]
l27 [X₂-X₀ ]
l20 [X₂+1-X₀ ]
l29 [X₂-X₃ ]
l23 [X₂-X₀ ]
l11 [X₂-X₃ ]
l8 [X₂-X₃ ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂-X₃ ]

MPRF for transition t₂₉: l21(X₀, X₁, X₂, X₃) → l19(X₀, X₁, X₂, X₃) :|: X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₃ ]
l19 [X₂-X₃-1 ]
l24 [X₂-X₀ ]
l22 [X₂-X₀ ]
l26 [X₂-X₃ ]
l25 [X₂-X₃ ]
l28 [X₂-X₃ ]
l27 [X₂-X₀ ]
l20 [X₂-X₃ ]
l29 [X₂-X₃ ]
l23 [X₂-X₃ ]
l11 [X₂-X₃ ]
l8 [X₂-X₃ ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂-X₃ ]

MPRF for transition t₃₈: l22(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ 2+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₃-1 ]
l19 [X₂-X₀ ]
l24 [2⋅X₀+X₂-X₁-3⋅X₃ ]
l22 [X₂+1-X₀ ]
l26 [X₂+3-X₀-X₁ ]
l25 [X₂-X₀ ]
l28 [X₂-X₀ ]
l27 [X₂-X₀ ]
l20 [X₂-X₀ ]
l29 [2⋅X₀+X₂-3⋅X₃-2 ]
l23 [2⋅X₀+X₂-X₁-3⋅X₃ ]
l11 [2⋅X₀+X₂-3⋅X₃-2 ]
l8 [X₂-X₃ ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂-X₃ ]

MPRF for transition t₃₃: l23(X₀, X₁, X₂, X₃) → l24(X₀, X₁, X₂, X₃) :|: X₁ < 3 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₀ ]
l19 [X₂-X₀ ]
l24 [X₂-X₃-1 ]
l22 [X₁+X₂-X₃-3 ]
l26 [X₂-X₃ ]
l25 [X₂-X₃ ]
l28 [X₂-X₀ ]
l27 [X₂-X₀ ]
l20 [X₂-X₃ ]
l29 [X₀+X₂-2⋅X₃-1 ]
l23 [X₂-X₃ ]
l11 [X₀+X₂-2⋅X₃-1 ]
l8 [X₀+X₂-2⋅X₃-1 ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₀+X₂-2⋅X₃-1 ]

MPRF for transition t₃₄: l23(X₀, X₁, X₂, X₃) → l26(X₀, X₁, X₂, X₃) :|: 3 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₃-1 ]
l19 [X₂-X₃-1 ]
l24 [X₂-X₃ ]
l22 [X₂-X₃ ]
l26 [X₂-X₀ ]
l25 [X₂-X₀ ]
l28 [X₂-X₀ ]
l27 [X₂-X₀ ]
l20 [X₂-X₃-1 ]
l29 [X₀+X₂-2⋅X₃-1 ]
l23 [X₂+1-X₀ ]
l11 [X₀+X₂-2⋅X₃-1 ]
l8 [X₀+X₂-2⋅X₃-1 ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₀+X₂-2⋅X₃-1 ]

MPRF for transition t₃₅: l24(X₀, X₁, X₂, X₃) → l22(X₀, X₁, X₂, X₃) :|: X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ 2+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

9⋅X₂+3 {O(n)}

MPRF:

l21 [9⋅X₂+3⋅X₃-12⋅X₀ ]
l19 [9⋅X₂+3⋅X₃-12⋅X₀ ]
l24 [9⋅X₂+3-9⋅X₀ ]
l22 [9⋅X₂+2-9⋅X₀ ]
l26 [9⋅X₂-9⋅X₀ ]
l25 [9⋅X₂-9⋅X₀-X₁ ]
l28 [9⋅X₂+3⋅X₃-12⋅X₀ ]
l27 [9⋅X₂+3⋅X₃-12⋅X₀ ]
l20 [9⋅X₂+3⋅X₃-12⋅X₀ ]
l29 [3⋅X₁+9⋅X₂-9⋅X₃-12 ]
l23 [9⋅X₂+3-9⋅X₀ ]
l11 [3⋅X₁+9⋅X₂+3⋅X₃-12⋅X₀ ]
l8 [9⋅X₂+3⋅X₃+9-12⋅X₀ ]
l5 [9⋅X₂-9⋅X₃-3 ]
l9 [9⋅X₂-9⋅X₃-3 ]
l10 [9⋅X₂+3⋅X₃+9-12⋅X₀ ]

MPRF for transition t₄₂: l25(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₃ ]
l19 [X₂-X₃ ]
l24 [X₂-X₃ ]
l22 [X₂-X₃ ]
l26 [X₂-X₃ ]
l25 [X₂-X₃ ]
l28 [X₂-X₃ ]
l27 [X₂-X₃ ]
l20 [X₂-X₃ ]
l29 [X₂+1-X₀ ]
l23 [X₂-X₃ ]
l11 [X₂-X₃ ]
l8 [X₂-X₃ ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂+1-X₀ ]

MPRF for transition t₃₉: l26(X₀, X₁, X₂, X₃) → l25(X₀, X₁, X₂, X₃) :|: X₁ ≤ 3 ∧ 3 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂ {O(n)}

MPRF:

l21 [2⋅X₂+1-X₀-X₁ ]
l19 [2⋅X₂-X₁-X₃ ]
l24 [2⋅X₂+X₃+2-2⋅X₀ ]
l22 [X₁+2⋅X₂+X₃-2⋅X₀ ]
l26 [2⋅X₂+X₃+2-2⋅X₀ ]
l25 [2⋅X₂+X₃+1-2⋅X₀ ]
l28 [2⋅X₂-X₀ ]
l27 [2⋅X₂-X₃-1 ]
l20 [2⋅X₂-X₀ ]
l29 [3⋅X₀+2⋅X₂-4⋅X₃-3 ]
l23 [2⋅X₂-X₃ ]
l11 [3⋅X₀+2⋅X₂-4⋅X₃-3 ]
l8 [2⋅X₂-X₃ ]
l5 [2⋅X₂-X₃ ]
l9 [2⋅X₂-X₃ ]
l10 [2⋅X₂-X₃ ]

MPRF for transition t₂₈: l27(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₀+X₂-X₁-2⋅X₃ ]
l19 [X₀+X₂-X₁-2⋅X₃ ]
l24 [X₂-X₃ ]
l22 [X₂-X₃ ]
l26 [X₂-X₃ ]
l25 [X₂-X₀ ]
l28 [X₀+X₂-2⋅X₃-1 ]
l27 [X₂+1-X₀ ]
l20 [X₀+X₂-2⋅X₃-1 ]
l29 [X₀+X₂-2⋅X₃-1 ]
l23 [X₂-X₃ ]
l11 [X₀+X₂-2⋅X₃-1 ]
l8 [X₂-X₃ ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂+1-X₀ ]

MPRF for transition t₂₅: l28(X₀, X₁, X₂, X₃) → l27(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₀ ]
l19 [X₂-X₀ ]
l24 [X₂-X₀ ]
l22 [X₂-X₀ ]
l26 [X₂+3-X₀-X₁ ]
l25 [X₂-X₀ ]
l28 [X₂+1-X₀ ]
l27 [X₂-X₀ ]
l20 [X₂+1-X₀ ]
l29 [X₂+1-X₀ ]
l23 [X₂+2-X₁-X₃ ]
l11 [X₂+1-X₀ ]
l8 [X₂-X₃ ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂-X₃ ]

MPRF for transition t₂₁: l29(X₀, X₁, X₂, X₃) → l20(X₀, X₁, X₂, X₃) :|: X₁ < 2 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₀ ]
l19 [X₂-X₀ ]
l24 [X₂-X₀ ]
l22 [X₂-X₀ ]
l26 [X₂-X₀ ]
l25 [X₂-X₀ ]
l28 [X₂-X₀ ]
l27 [X₂-X₀ ]
l20 [X₂-X₀ ]
l29 [X₂+1-X₀ ]
l23 [X₂-X₃ ]
l11 [X₂+1-X₀ ]
l8 [X₂+1-X₀ ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂-X₃ ]

MPRF for transition t₂₂: l29(X₀, X₁, X₂, X₃) → l23(X₀, X₁, X₂, X₃) :|: 2 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 2+X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₀ ]
l19 [X₂-X₀ ]
l24 [X₂-X₀ ]
l22 [X₂-X₀ ]
l26 [X₂-X₀ ]
l25 [X₂-X₀ ]
l28 [X₂-X₀ ]
l27 [X₂-X₀ ]
l20 [X₂-X₀ ]
l29 [X₂+1-X₀ ]
l23 [X₂-X₀ ]
l11 [X₂+1-X₀ ]
l8 [X₂+1-X₀ ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂-X₃ ]

MPRF for transition t₁₃: l5(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₃ < X₂ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₀ ]
l19 [X₂+1-X₀-X₁ ]
l24 [X₂-X₃-1 ]
l22 [X₂-X₃-1 ]
l26 [X₂-X₀ ]
l25 [X₂-X₀ ]
l28 [X₂-X₀ ]
l27 [X₂-X₀ ]
l20 [X₂-X₃-1 ]
l29 [X₂-X₀ ]
l23 [X₂-X₃-1 ]
l11 [X₂-X₀ ]
l8 [X₂-X₃-1 ]
l5 [X₂-X₃ ]
l9 [X₂-X₃-1 ]
l10 [X₂-X₃-1 ]

MPRF for transition t₁₇: l8(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁ ∧ X₁ ≤ 3 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₁-X₃ ]
l19 [X₂-X₀ ]
l24 [X₂-X₀ ]
l22 [X₂-X₀ ]
l26 [X₂-X₀ ]
l25 [X₂-X₀ ]
l28 [X₂-X₀ ]
l27 [X₂-X₀ ]
l20 [X₂-X₃-1 ]
l29 [X₂-X₀ ]
l23 [X₂-X₃-1 ]
l11 [X₂-X₀ ]
l8 [X₂+1-X₀ ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂-X₃ ]

MPRF for transition t₁₈: l8(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: X₁ < 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l21 [X₂-X₃ ]
l19 [X₂-X₃ ]
l24 [X₁+X₂-X₃-3 ]
l22 [X₂-X₃-1 ]
l26 [X₂+2-X₁-X₃ ]
l25 [X₂-X₀ ]
l28 [X₂-X₃ ]
l27 [X₂-X₀ ]
l20 [X₂-X₃ ]
l29 [X₂-X₃ ]
l23 [X₂-X₀ ]
l11 [X₂-X₃ ]
l8 [X₂+1-X₀ ]
l5 [X₂-X₃ ]
l9 [X₂-X₃ ]
l10 [X₂+1-X₀ ]

MPRF for transition t₁₉: l8(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 3 < X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂ {O(n)}

MPRF:

l21 [2⋅X₂-2⋅X₃ ]
l19 [2⋅X₂-2⋅X₃ ]
l24 [2⋅X₂-2⋅X₀ ]
l22 [2⋅X₂-X₁-2⋅X₃ ]
l26 [2⋅X₂-2⋅X₀ ]
l25 [2⋅X₂-2⋅X₃-2 ]
l28 [2⋅X₂-2⋅X₃ ]
l27 [2⋅X₂-2⋅X₀ ]
l20 [2⋅X₂-2⋅X₃ ]
l29 [2⋅X₂+2-2⋅X₀ ]
l23 [2⋅X₂-2⋅X₀ ]
l11 [2⋅X₂+2-2⋅X₀ ]
l8 [2⋅X₂+2-2⋅X₀ ]
l5 [2⋅X₂-2⋅X₃ ]
l9 [2⋅X₂-2⋅X₃ ]
l10 [2⋅X₂+2-2⋅X₀ ]

MPRF for transition t₁₅: l9(X₀, X₁, X₂, X₃) → l10(X₃+1, X₁, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:

new bound:

3⋅X₂ {O(n)}

MPRF:

l21 [3⋅X₂-3⋅X₀ ]
l19 [3⋅X₂-3⋅X₀ ]
l24 [3⋅X₂-X₁-3⋅X₃ ]
l22 [3⋅X₂-3⋅X₃-2 ]
l26 [3⋅X₂-X₁-3⋅X₃ ]
l25 [3⋅X₂-X₁-3⋅X₃ ]
l28 [3⋅X₂-3⋅X₀ ]
l27 [3⋅X₂-3⋅X₀ ]
l20 [3⋅X₂-3⋅X₀ ]
l29 [3⋅X₂-3⋅X₃-2 ]
l23 [3⋅X₂-X₁-3⋅X₃ ]
l11 [3⋅X₂-2⋅X₀-X₃ ]
l8 [3⋅X₂-3⋅X₃-2 ]
l5 [3⋅X₂-3⋅X₃ ]
l9 [3⋅X₂-3⋅X₃ ]
l10 [3⋅X₂-3⋅X₃-2 ]

All Bounds

Timebounds

Overall timebound:33⋅X₂+18 {O(n)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₁₆: X₂ {O(n)}
t₂₀: X₂ {O(n)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₃₂: X₂ {O(n)}
t₁: 1 {O(1)}
t₂₃: X₂ {O(n)}
t₂₄: X₂ {O(n)}
t₂₉: X₂ {O(n)}
t₃₈: X₂ {O(n)}
t₃₃: X₂ {O(n)}
t₃₄: X₂ {O(n)}
t₃₅: 9⋅X₂+3 {O(n)}
t₄₂: X₂ {O(n)}
t₃₉: 2⋅X₂ {O(n)}
t₂₈: X₂ {O(n)}
t₂₅: X₂ {O(n)}
t₂₁: X₂ {O(n)}
t₂₂: X₂ {O(n)}
t₂: 1 {O(1)}
t₄₄: 1 {O(1)}
t₄: 1 {O(1)}
t₁₃: X₂ {O(n)}
t₁₄: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₁₇: X₂ {O(n)}
t₁₈: X₂ {O(n)}
t₁₉: 2⋅X₂ {O(n)}
t₁₅: 3⋅X₂ {O(n)}

Costbounds

Overall costbound: 33⋅X₂+18 {O(n)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₁₆: X₂ {O(n)}
t₂₀: X₂ {O(n)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₃₂: X₂ {O(n)}
t₁: 1 {O(1)}
t₂₃: X₂ {O(n)}
t₂₄: X₂ {O(n)}
t₂₉: X₂ {O(n)}
t₃₈: X₂ {O(n)}
t₃₃: X₂ {O(n)}
t₃₄: X₂ {O(n)}
t₃₅: 9⋅X₂+3 {O(n)}
t₄₂: X₂ {O(n)}
t₃₉: 2⋅X₂ {O(n)}
t₂₈: X₂ {O(n)}
t₂₅: X₂ {O(n)}
t₂₁: X₂ {O(n)}
t₂₂: X₂ {O(n)}
t₂: 1 {O(1)}
t₄₄: 1 {O(1)}
t₄: 1 {O(1)}
t₁₃: X₂ {O(n)}
t₁₄: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₁₇: X₂ {O(n)}
t₁₈: X₂ {O(n)}
t₁₉: 2⋅X₂ {O(n)}
t₁₅: 3⋅X₂ {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₁₆, X₀: 3⋅X₂ {O(n)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: 3⋅X₂ {O(n)}
t₂₀, X₀: 3⋅X₂ {O(n)}
t₂₀, X₁: 3 {O(1)}
t₂₀, X₂: X₂ {O(n)}
t₂₀, X₃: 3⋅X₂ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₃₂, X₀: 3⋅X₂ {O(n)}
t₃₂, X₁: 1 {O(1)}
t₃₂, X₂: X₂ {O(n)}
t₃₂, X₃: 3⋅X₂ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂₃, X₀: 3⋅X₂ {O(n)}
t₂₃, X₁: 0 {O(1)}
t₂₃, X₂: X₂ {O(n)}
t₂₃, X₃: 3⋅X₂ {O(n)}
t₂₄, X₀: 3⋅X₂ {O(n)}
t₂₄, X₁: 1 {O(1)}
t₂₄, X₂: X₂ {O(n)}
t₂₄, X₃: 3⋅X₂ {O(n)}
t₂₉, X₀: 3⋅X₂ {O(n)}
t₂₉, X₁: 1 {O(1)}
t₂₉, X₂: X₂ {O(n)}
t₂₉, X₃: 3⋅X₂ {O(n)}
t₃₈, X₀: 3⋅X₂ {O(n)}
t₃₈, X₁: 2 {O(1)}
t₃₈, X₂: X₂ {O(n)}
t₃₈, X₃: 3⋅X₂ {O(n)}
t₃₃, X₀: 3⋅X₂ {O(n)}
t₃₃, X₁: 2 {O(1)}
t₃₃, X₂: X₂ {O(n)}
t₃₃, X₃: 3⋅X₂ {O(n)}
t₃₄, X₀: 3⋅X₂ {O(n)}
t₃₄, X₁: 3 {O(1)}
t₃₄, X₂: X₂ {O(n)}
t₃₄, X₃: 3⋅X₂ {O(n)}
t₃₅, X₀: 3⋅X₂ {O(n)}
t₃₅, X₁: 2 {O(1)}
t₃₅, X₂: X₂ {O(n)}
t₃₅, X₃: 3⋅X₂ {O(n)}
t₄₂, X₀: 3⋅X₂ {O(n)}
t₄₂, X₁: 3 {O(1)}
t₄₂, X₂: X₂ {O(n)}
t₄₂, X₃: 3⋅X₂ {O(n)}
t₃₉, X₀: 3⋅X₂ {O(n)}
t₃₉, X₁: 3 {O(1)}
t₃₉, X₂: X₂ {O(n)}
t₃₉, X₃: 3⋅X₂ {O(n)}
t₂₈, X₀: 3⋅X₂ {O(n)}
t₂₈, X₁: 0 {O(1)}
t₂₈, X₂: X₂ {O(n)}
t₂₈, X₃: 3⋅X₂ {O(n)}
t₂₅, X₀: 3⋅X₂ {O(n)}
t₂₅, X₁: 0 {O(1)}
t₂₅, X₂: X₂ {O(n)}
t₂₅, X₃: 3⋅X₂ {O(n)}
t₂₁, X₀: 3⋅X₂ {O(n)}
t₂₁, X₁: 1 {O(1)}
t₂₁, X₂: X₂ {O(n)}
t₂₁, X₃: 3⋅X₂ {O(n)}
t₂₂, X₀: 3⋅X₂ {O(n)}
t₂₂, X₁: 3 {O(1)}
t₂₂, X₂: X₂ {O(n)}
t₂₂, X₃: 3⋅X₂ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₄₄, X₀: 18⋅X₂+X₀ {O(n)}
t₄₄, X₂: 7⋅X₂ {O(n)}
t₄₄, X₃: 18⋅X₂ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₁₃, X₀: 18⋅X₂+X₀ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: 3⋅X₂ {O(n)}
t₁₄, X₀: 18⋅X₂+X₀ {O(n)}
t₁₄, X₂: 7⋅X₂ {O(n)}
t₁₄, X₃: 18⋅X₂ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: 0 {O(1)}
t₁₇, X₀: 3⋅X₂ {O(n)}
t₁₇, X₁: 3 {O(1)}
t₁₇, X₂: X₂ {O(n)}
t₁₇, X₃: 3⋅X₂ {O(n)}
t₁₈, X₀: 3⋅X₂ {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: 3⋅X₂ {O(n)}
t₁₉, X₀: 3⋅X₂ {O(n)}
t₁₉, X₂: X₂ {O(n)}
t₁₉, X₃: 3⋅X₂ {O(n)}
t₁₅, X₀: 3⋅X₂ {O(n)}
t₁₅, X₂: X₂ {O(n)}
t₁₅, X₃: 3⋅X₂ {O(n)}