Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₂
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, nondef_1, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l21(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉) :|: 0 ≤ X₃
t₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ < 0
t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉)
t₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₈, X₉, X₅, X₆, X₇, X₈, X₉)
t₁₃: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₀
t₁₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 0
t₁₁: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l17(nondef_0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l21(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉)
t₉: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₅
t₁₀: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < 0
t₂₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₃-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉)
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ X₇
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₇ < X₆

Preprocessing

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l11

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ for location l6

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l19

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l12

Found invariant X₃ ≤ X₈ ∧ 1+X₃ ≤ 0 for location l23

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l17

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l7

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l20

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ for location l21

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l5

Found invariant X₃ ≤ X₈ for location l13

Found invariant X₃ ≤ X₈ ∧ 1+X₃ ≤ 0 for location l22

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l8

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l10

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l18

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l9

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₂ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, nondef_1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l21(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉) :|: 0 ≤ X₃ ∧ X₃ ≤ X₈
t₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ < 0 ∧ X₃ ≤ X₈
t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₈, X₉, X₅, X₆, X₇, X₈, X₉)
t₁₃: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₁₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₁₁: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₁₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l17(nondef_0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l21(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₉: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₅ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃
t₁₀: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃
t₂₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 1+X₃ ≤ 0
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₃-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₇ < X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁

MPRF for transition t₂₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l12 [2⋅X₃-X₁ ]
l10 [X₃+1 ]
l14 [2⋅X₃-X₁ ]
l19 [X₃+1 ]
l17 [X₃+1 ]
l20 [X₃+1 ]
l18 [X₃+1 ]
l21 [X₃+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₁+2 ]
l8 [X₁+2 ]
l11 [2⋅X₃-X₁ ]
l9 [2⋅X₃-X₁ ]
l13 [X₃+1 ]

MPRF for transition t₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l21(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉) :|: 0 ≤ X₃ ∧ X₃ ≤ X₈ of depth 1:

new bound:

X₈+2 {O(n)}

MPRF:

l12 [X₃+1 ]
l10 [X₃+1 ]
l14 [X₃+1 ]
l19 [X₃+1 ]
l17 [X₃+1 ]
l20 [X₃+1 ]
l18 [X₃+1 ]
l21 [X₃+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₃+1 ]
l8 [X₁+2 ]
l11 [2⋅X₃-X₁ ]
l9 [2⋅X₃-X₁ ]
l13 [X₃+2 ]

MPRF for transition t₁₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l12 [X₁+1 ]
l10 [X₁+1 ]
l14 [X₁+1 ]
l19 [X₃+1 ]
l17 [X₃+1 ]
l20 [X₃+1 ]
l18 [X₃+1 ]
l21 [X₃+1 ]
l6 [X₃ ]
l7 [X₁+1 ]
l5 [X₁+1 ]
l8 [X₁+1 ]
l11 [X₁+1 ]
l9 [X₁+1 ]
l13 [X₃+1 ]

MPRF for transition t₁₀: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l12 [X₃ ]
l10 [X₃ ]
l14 [X₃ ]
l19 [X₃+1 ]
l17 [X₃+1 ]
l20 [X₃+1 ]
l18 [X₃+1 ]
l21 [X₃+1 ]
l6 [X₃ ]
l7 [X₃ ]
l5 [X₃ ]
l8 [X₃ ]
l11 [X₃ ]
l9 [X₃ ]
l13 [X₃+1 ]

MPRF for transition t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l12 [X₁+1 ]
l10 [X₁+1 ]
l14 [X₁+1 ]
l19 [X₃+1 ]
l17 [X₃+1 ]
l20 [X₃+1 ]
l18 [X₃+1 ]
l21 [X₃+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₁+2 ]
l8 [X₁+1 ]
l11 [X₁+1 ]
l9 [X₁+1 ]
l13 [X₃+1 ]

MPRF for transition t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₃-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

2⋅X₈+1 {O(n)}

MPRF:

l12 [X₃+X₈ ]
l10 [X₃+X₈ ]
l14 [X₃+X₈ ]
l19 [X₃+X₈+1 ]
l17 [X₃+X₈+1 ]
l20 [X₃+X₈+1 ]
l18 [X₃+X₈+1 ]
l21 [X₃+X₈+1 ]
l6 [X₃+X₈+1 ]
l7 [X₃+X₈ ]
l5 [X₃+X₈ ]
l8 [X₃+X₈ ]
l11 [X₃+X₈ ]
l9 [X₃+X₈ ]
l13 [X₃+X₈+1 ]

MPRF for transition t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l12 [X₁+1 ]
l10 [X₁+1 ]
l14 [X₁+1 ]
l19 [X₃+1 ]
l17 [X₃+1 ]
l20 [X₃+1 ]
l18 [X₃+1 ]
l21 [X₃+1 ]
l6 [X₃+1 ]
l7 [X₁+2 ]
l5 [X₁+1 ]
l8 [X₁+1 ]
l11 [X₁+1 ]
l9 [X₁+1 ]
l13 [X₃+1 ]

MPRF for transition t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l12 [X₃ ]
l10 [X₃ ]
l14 [X₃ ]
l19 [X₃+1 ]
l17 [X₃+1 ]
l20 [X₃+1 ]
l18 [X₃+1 ]
l21 [X₃+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₃+1 ]
l8 [X₃+1 ]
l11 [X₃ ]
l9 [X₃ ]
l13 [X₃+1 ]

MPRF for transition t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₇ < X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l12 [2⋅X₃-X₁ ]
l10 [2⋅X₃-X₁ ]
l14 [X₃+1 ]
l19 [X₃+1 ]
l17 [X₃+1 ]
l20 [X₃+1 ]
l18 [X₃+1 ]
l21 [X₃+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₃+1 ]
l8 [X₃+1 ]
l11 [2⋅X₃-X₁ ]
l9 [X₃+1 ]
l13 [X₃+1 ]

Analysing control-flow refined program

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l19___3

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location n_l18___9

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location n_l17___7

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ for location l6

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l10___2

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l20___1

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l12___3

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l11___4

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location n_l17___2

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l11___9

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l12___8

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l14___6

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l20___6

Found invariant X₃ ≤ X₈ ∧ 1+X₃ ≤ 0 for location l23

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l7

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃ for location l21

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l5

Found invariant 0 ≤ X₈ ∧ 0 ≤ 1+X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l21___5

Found invariant X₃ ≤ X₈ for location l13

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l8

Found invariant X₃ ≤ X₈ ∧ 1+X₃ ≤ 0 for location l22

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l9

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l10___7

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l14___1

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ 1+X₇ ∧ X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l9___5

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l18___4

Found invariant 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location n_l19___8

knowledge_propagation leads to new time bound X₈+2 {O(n)} for transition t₂₄₆₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l18___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃

knowledge_propagation leads to new time bound X₈+1 {O(n)} for transition t₂₄₃₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l11___9(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₁ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁

knowledge_propagation leads to new time bound X₈+1 {O(n)} for transition t₂₄₂₉: n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l12___8(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ X₇ ∧ X₃ ≤ X₈ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₁ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁

knowledge_propagation leads to new time bound X₈+1 {O(n)} for transition t₂₄₃₁: n_l12___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l10___7(X₀, Arg1_P, NoDet0, Arg3_P, X₄, Arg5_P, Arg6_P, Arg7_P, Arg8_P, X₉) :|: X₃ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ Arg5_P ≤ X₄ ∧ Arg3_P ≤ Arg8_P ∧ Arg6_P ≤ Arg7_P ∧ Arg5_P ≤ Arg6_P ∧ 0 ≤ Arg3_P ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg1_P+1 ≤ Arg3_P ∧ Arg3_P ≤ 1+Arg1_P ∧ X₁+1 ≤ Arg3_P ∧ Arg3_P ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁

knowledge_propagation leads to new time bound X₈+2 {O(n)} for transition t₂₄₆₂: n_l18___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l19___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃

knowledge_propagation leads to new time bound X₈+2 {O(n)} for transition t₂₄₆₄: n_l19___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l17___7(NoDet0, X₁, X₂, Arg3_P, Arg4_P, Arg5_P, X₆, X₇, Arg8_P, X₉) :|: X₃ ≤ X₈ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ Arg3_P ≤ Arg8_P ∧ Arg5_P ≤ Arg4_P ∧ 0 ≤ Arg5_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃

knowledge_propagation leads to new time bound X₈+1 {O(n)} for transition t₂₄₂₇: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l14___6(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ 0 < X₂ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁

knowledge_propagation leads to new time bound X₈+1 {O(n)} for transition t₂₄₄₅: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁

knowledge_propagation leads to new time bound X₈+1 {O(n)} for transition t₂₄₃₃: n_l14___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l9___5(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆+1, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₄ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁

knowledge_propagation leads to new time bound X₈+2 {O(n)} for transition t₂₄₆₀: n_l17___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 < X₀ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃

knowledge_propagation leads to new time bound X₈+2 {O(n)} for transition t₂₄₇₈: n_l17___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃

knowledge_propagation leads to new time bound X₈+2 {O(n)} for transition t₂₄₆₆: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l21___5(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ 0 < X₀ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀

MPRF for transition t₂₄₂₆: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l14___1(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ 0 < X₂ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

X₇⋅X₈+X₈⋅X₈+3⋅X₇+4⋅X₈+X₉+3 {O(n^2)}

MPRF:

l21 [X₃+X₇+1-X₅ ]
l7 [X₃+X₇-X₅ ]
l5 [X₃+X₇-X₅ ]
l8 [X₃+X₇-X₅ ]
l9 [X₃+X₇-X₆ ]
n_l11___9 [X₁+X₇+1-X₅ ]
n_l12___3 [X₃+X₇+1-X₆ ]
n_l10___2 [X₃+X₇+1-X₆ ]
n_l12___8 [X₃+X₇-X₆ ]
n_l10___7 [X₁+X₇+1-X₆ ]
n_l14___1 [X₁+X₇+1-X₆ ]
n_l14___6 [X₃+X₇-X₅ ]
n_l20___6 [X₃+X₇+1-X₄ ]
n_l18___9 [X₃+X₇+1-X₅ ]
n_l19___3 [X₇+X₈+1 ]
n_l17___2 [X₇+X₈+1 ]
n_l19___8 [X₃+X₇+1-X₅ ]
n_l17___7 [X₃+X₇+1-X₄ ]
n_l20___1 [X₇+X₈+1 ]
n_l18___4 [X₇+X₈+1 ]
n_l21___5 [X₇+X₈+1 ]
l6 [X₃+X₇-X₅ ]
n_l11___4 [X₁+X₇+2-X₆ ]
n_l9___5 [X₃+X₇+1-X₆ ]
l13 [X₃+X₇+1-X₄ ]

MPRF for transition t₂₄₄₄: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l21 [X₃+1 ]
l7 [2⋅X₃-X₁ ]
l5 [2⋅X₃-X₁ ]
l8 [2⋅X₃-X₁ ]
l9 [2⋅X₃-X₁ ]
n_l11___9 [X₁+2 ]
n_l12___3 [X₁+2 ]
n_l10___2 [X₃+1 ]
n_l12___8 [X₁+2 ]
n_l10___7 [2⋅X₃-X₁ ]
n_l14___1 [X₃+1 ]
n_l14___6 [X₃+X₆+1-X₅ ]
n_l18___9 [X₃+1 ]
n_l19___3 [X₃+1 ]
n_l17___2 [X₃+1 ]
n_l19___8 [X₃+1 ]
n_l17___7 [X₃+X₅+1-X₄ ]
n_l20___1 [X₃+1 ]
n_l20___6 [X₃+X₅+1-X₄ ]
n_l18___4 [X₃+1 ]
n_l21___5 [X₃+1 ]
l6 [X₃+1 ]
n_l11___4 [X₁+2 ]
n_l9___5 [X₁+2 ]
l13 [X₃+1 ]

MPRF for transition t₂₄₂₈: n_l11___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l12___3(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₁ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

X₇⋅X₈+X₈⋅X₈+3⋅X₇+4⋅X₈+X₉+3 {O(n^2)}

MPRF:

l21 [X₃+X₇+1-X₄ ]
l7 [X₃+X₇-X₅ ]
l5 [X₃+X₇-X₅ ]
l8 [X₃+X₇-X₅ ]
l9 [X₃+X₇-X₅ ]
n_l11___9 [X₁+X₇+1-X₆ ]
n_l12___3 [X₁+X₇+1-X₆ ]
n_l10___2 [X₁+X₇+1-X₆ ]
n_l12___8 [X₁+X₇+1-X₅ ]
n_l10___7 [X₃+X₇-X₆ ]
n_l14___1 [X₁+X₇+1-X₆ ]
n_l14___6 [X₁+X₇+1-X₅ ]
n_l20___6 [X₃+X₇+1-X₅ ]
n_l18___9 [X₃+X₇+1-X₄ ]
n_l19___3 [X₇+X₈+1 ]
n_l17___2 [X₇+X₈+1 ]
n_l19___8 [X₃+X₇+1-X₄ ]
n_l17___7 [X₃+X₇+1-X₅ ]
n_l20___1 [X₇+X₈+1 ]
n_l18___4 [X₇+X₈+1 ]
n_l21___5 [X₇+X₈+1 ]
l6 [X₃+X₇-X₅ ]
n_l11___4 [X₁+X₇+2-X₆ ]
n_l9___5 [X₁+X₇+2-X₆ ]
l13 [X₃+X₇+1-X₄ ]

MPRF for transition t₂₄₃₀: n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l10___2(X₀, Arg1_P, NoDet0, Arg3_P, X₄, Arg5_P, Arg6_P, Arg7_P, Arg8_P, X₉) :|: X₅ ≤ X₄ ∧ X₃ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ Arg5_P ≤ X₄ ∧ Arg3_P ≤ Arg8_P ∧ Arg6_P ≤ Arg7_P ∧ Arg5_P ≤ Arg6_P ∧ 0 ≤ Arg3_P ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg1_P+1 ≤ Arg3_P ∧ Arg3_P ≤ 1+Arg1_P ∧ X₁+1 ≤ Arg3_P ∧ Arg3_P ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

X₇⋅X₈+X₈⋅X₈+3⋅X₇+4⋅X₈+X₉+3 {O(n^2)}

MPRF:

l21 [X₃+X₇+1-X₅ ]
l7 [X₃+X₇-X₅ ]
l5 [X₃+X₇-X₅ ]
l8 [X₃+X₇-X₅ ]
l9 [X₃+X₇-X₆ ]
n_l11___9 [X₃+X₇-X₅ ]
n_l12___3 [X₃+X₇+1-X₆ ]
n_l10___2 [X₃+X₇-X₆ ]
n_l12___8 [X₁+X₇+1-X₆ ]
n_l10___7 [X₃+X₇-X₆ ]
n_l14___1 [X₁+X₇+1-X₆ ]
n_l14___6 [X₁+X₇+1-X₅ ]
n_l20___6 [X₃+X₇+1-X₄ ]
n_l18___9 [X₃+X₇+1-X₅ ]
n_l19___3 [X₇+X₈+1 ]
n_l17___2 [X₇+X₈+1 ]
n_l19___8 [X₃+X₇+1-X₅ ]
n_l17___7 [X₃+X₇+1-X₄ ]
n_l20___1 [X₇+X₈+1 ]
n_l18___4 [X₇+X₈+1 ]
n_l21___5 [X₇+X₈+1 ]
l6 [X₃+X₇-X₅ ]
n_l11___4 [X₁+X₇+2-X₆ ]
n_l9___5 [X₁+X₇+2-X₆ ]
l13 [X₃+X₇+1-X₄ ]

MPRF for transition t₂₄₃₂: n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l9___5(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆+1, X₇, X₈, X₉) :|: X₅ ≤ X₄ ∧ X₃ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

X₇⋅X₈+X₈⋅X₈+3⋅X₇+4⋅X₈+X₉+3 {O(n^2)}

MPRF:

l21 [X₃+X₇+1-X₅ ]
l7 [X₃+X₇-X₅ ]
l5 [X₃+X₇-X₅ ]
l8 [X₃+X₇-X₅ ]
l9 [X₃+X₇-X₆ ]
n_l11___9 [X₁+X₇+1-X₆ ]
n_l12___3 [X₁+X₇+2-X₆ ]
n_l10___2 [X₁+X₇+2-X₆ ]
n_l12___8 [X₁+X₇+1-X₅ ]
n_l10___7 [X₃+X₇-X₅ ]
n_l14___1 [X₁+X₇+2-X₆ ]
n_l14___6 [X₁+X₇+1-X₆ ]
n_l20___6 [X₃+X₇+1-X₄ ]
n_l18___9 [X₃+X₇+1-X₅ ]
n_l19___3 [X₇+X₈+1 ]
n_l17___2 [X₇+X₈+1 ]
n_l19___8 [X₃+X₇+1-X₅ ]
n_l17___7 [X₃+X₇+1-X₄ ]
n_l20___1 [X₇+X₈+1 ]
n_l18___4 [X₇+X₈+1 ]
n_l21___5 [X₇+X₈+1 ]
l6 [X₃+X₇-X₅ ]
n_l11___4 [X₃+X₇+1-X₆ ]
n_l9___5 [X₃+X₇+1-X₆ ]
l13 [X₃+X₇+1-X₄ ]

MPRF for transition t₂₄₅₉: n_l17___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l20___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 < X₀ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

2⋅X₈⋅X₈+X₇⋅X₈+8⋅X₈+X₇+X₉+5 {O(n^2)}

MPRF:

l21 [2⋅X₃+X₄+1 ]
l7 [3⋅X₃+X₅-X₁ ]
l5 [3⋅X₃+X₅-X₁ ]
l8 [3⋅X₃+X₅-X₁ ]
l9 [3⋅X₃+X₆-X₁ ]
n_l14___6 [2⋅X₁+X₅+3 ]
n_l11___9 [2⋅X₁+X₅+3 ]
n_l12___3 [2⋅X₁+X₇+2 ]
n_l10___2 [2⋅X₃+X₇ ]
n_l12___8 [2⋅X₃+X₅+1 ]
n_l10___7 [3⋅X₃+X₆-X₁ ]
n_l14___1 [2⋅X₁+X₇+2 ]
n_l18___9 [2⋅X₃+X₄+1 ]
n_l19___3 [2⋅X₃+X₅+2 ]
n_l17___2 [2⋅X₃+X₅+2 ]
n_l19___8 [2⋅X₃+X₅+1 ]
n_l17___7 [2⋅X₃+X₅+1 ]
n_l20___1 [2⋅X₃+X₅+1 ]
n_l20___6 [2⋅X₃+X₄+1 ]
n_l18___4 [2⋅X₃+X₅+2 ]
n_l21___5 [2⋅X₃+X₅+2 ]
l6 [2⋅X₃+X₅+1 ]
n_l11___4 [2⋅X₁+X₇+2 ]
n_l9___5 [2⋅X₁+X₇+2 ]
l13 [2⋅X₃+X₄+1 ]

MPRF for transition t₂₄₇₇: n_l17___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l21 [X₃+1 ]
l7 [X₃ ]
l5 [X₃ ]
l8 [X₃ ]
l9 [X₃ ]
n_l11___9 [X₁+1 ]
n_l12___3 [X₃ ]
n_l10___2 [X₃ ]
n_l12___8 [X₁+1 ]
n_l10___7 [X₃ ]
n_l14___1 [X₁+1 ]
n_l14___6 [X₁+1 ]
n_l18___9 [X₃+1 ]
n_l19___3 [X₃+1 ]
n_l17___2 [X₃+1 ]
n_l19___8 [X₃+1 ]
n_l17___7 [X₃+1 ]
n_l20___1 [X₃+1 ]
n_l20___6 [X₃+1 ]
n_l18___4 [X₃+1 ]
n_l21___5 [X₃+1 ]
l6 [X₃ ]
n_l11___4 [X₁+1 ]
n_l9___5 [X₁+1 ]
l13 [X₃+1 ]

MPRF for transition t₂₄₆₁: n_l18___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l19___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₈⋅X₈+X₇⋅X₈+5⋅X₈+X₇+X₉+1 {O(n^2)}

MPRF:

l21 [X₄+2⋅X₈ ]
l7 [X₅+2⋅X₈ ]
l5 [X₅+2⋅X₈ ]
l8 [X₅+2⋅X₈ ]
l9 [X₅+2⋅X₈ ]
n_l14___6 [2⋅X₁+X₆+2 ]
n_l11___9 [X₅+2⋅X₈ ]
n_l12___3 [X₇+2⋅X₈+1 ]
n_l10___2 [X₇+2⋅X₈+1 ]
n_l12___8 [X₅+2⋅X₈ ]
n_l10___7 [X₆+2⋅X₈ ]
n_l14___1 [X₇+2⋅X₈+1 ]
n_l18___9 [X₅+2⋅X₈ ]
n_l19___3 [X₅+2⋅X₈ ]
n_l17___2 [X₅+2⋅X₈ ]
n_l19___8 [X₄+2⋅X₈ ]
n_l17___7 [X₄+2⋅X₈ ]
n_l20___1 [X₅+2⋅X₈ ]
n_l20___6 [X₅+2⋅X₈ ]
n_l18___4 [X₅+2⋅X₈+1 ]
n_l21___5 [X₅+2⋅X₈+1 ]
l6 [X₅+2⋅X₈ ]
n_l11___4 [X₇+2⋅X₈+1 ]
n_l9___5 [X₇+2⋅X₈+1 ]
l13 [X₄+2⋅X₈ ]

MPRF for transition t₂₄₆₃: n_l19___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l17___2(NoDet0, X₁, X₂, Arg3_P, Arg4_P, Arg5_P, X₆, X₇, Arg8_P, X₉) :|: X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ Arg3_P ≤ Arg8_P ∧ Arg5_P ≤ Arg4_P ∧ 0 ≤ Arg5_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₈⋅X₈+X₇⋅X₈+7⋅X₈+X₇+X₉+3 {O(n^2)}

MPRF:

l21 [2⋅X₃+X₅ ]
l7 [2⋅X₁+X₅+2 ]
l5 [2⋅X₁+X₅+2 ]
l8 [2⋅X₁+X₅+2 ]
l9 [2⋅X₁+X₅+2 ]
n_l14___6 [2⋅X₁+X₆+2 ]
n_l11___9 [2⋅X₁+X₆+2 ]
n_l12___3 [2⋅X₁+X₇+1 ]
n_l10___2 [2⋅X₃+X₇-1 ]
n_l12___8 [2⋅X₃+X₅ ]
n_l10___7 [2⋅X₁+X₆+2 ]
n_l14___1 [2⋅X₁+X₇+1 ]
n_l18___9 [2⋅X₃+X₄ ]
n_l19___3 [2⋅X₃+X₅+1 ]
n_l17___2 [2⋅X₃+X₅ ]
n_l19___8 [2⋅X₃+X₅ ]
n_l17___7 [2⋅X₃+X₅ ]
n_l20___1 [2⋅X₃+X₅ ]
n_l20___6 [2⋅X₃+X₄ ]
n_l18___4 [2⋅X₃+X₅+1 ]
n_l21___5 [2⋅X₃+X₅+1 ]
l6 [2⋅X₃+X₅ ]
n_l11___4 [2⋅X₁+X₇+1 ]
n_l9___5 [2⋅X₁+X₇+1 ]
l13 [2⋅X₃+X₄ ]

MPRF for transition t₂₄₆₅: n_l20___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l21___5(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ 0 < X₀ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

10⋅X₈⋅X₈+X₇⋅X₈+26⋅X₈+X₇+X₉+16 {O(n^2)}

MPRF:

l21 [2⋅X₃+2⋅X₅+2-X₄ ]
l7 [2⋅X₃+X₅+2 ]
l5 [2⋅X₃+X₅+2 ]
l8 [2⋅X₃+X₅+2 ]
l9 [2⋅X₃+X₅+2 ]
n_l14___6 [3⋅X₁+X₆+5-X₃ ]
n_l11___9 [4⋅X₃+X₅-2⋅X₁ ]
n_l12___3 [2⋅X₁+X₇+2⋅X₈+4 ]
n_l10___2 [2⋅X₃+X₇+2⋅X₈+2 ]
n_l12___8 [2⋅X₁+X₅+4 ]
n_l10___7 [2⋅X₃+X₆+2 ]
n_l14___1 [2⋅X₁+X₇+2⋅X₈+4 ]
n_l18___9 [2⋅X₃+3⋅X₅+2-2⋅X₄ ]
n_l19___3 [2⋅X₃+X₅+3 ]
n_l17___2 [2⋅X₃+X₅+3 ]
n_l19___8 [2⋅X₃+3⋅X₅+2-2⋅X₄ ]
n_l17___7 [2⋅X₃+X₅+2 ]
n_l20___1 [2⋅X₃+X₅+3 ]
n_l20___6 [2⋅X₃+X₄+2 ]
n_l18___4 [2⋅X₃+X₅+3 ]
n_l21___5 [2⋅X₃+X₅+3 ]
l6 [2⋅X₃+X₅+2 ]
n_l11___4 [2⋅X₃+X₇+2⋅X₈+2 ]
n_l9___5 [5⋅X₃+X₇+2⋅X₈-3⋅X₁-1 ]
l13 [2⋅X₃+X₄+2 ]

MPRF for transition t₂₄₆₈: n_l21___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l18___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₅ ∧ 1+X₅ ≤ X₄ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ 1+X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

5⋅X₈⋅X₈+X₇⋅X₈+12⋅X₈+X₇+X₉+2 {O(n^2)}

MPRF:

l21 [3⋅X₃+X₅+2⋅X₈ ]
l7 [3⋅X₃+X₅+2⋅X₈ ]
l5 [3⋅X₃+X₅+2⋅X₈ ]
l8 [3⋅X₁+X₅+2⋅X₈+3 ]
l9 [3⋅X₃+X₅+2⋅X₈ ]
n_l14___6 [2⋅X₁+X₅+2⋅X₈+2 ]
n_l11___9 [3⋅X₁+X₅+2⋅X₈+3 ]
n_l12___3 [2⋅X₁+X₇+3⋅X₈ ]
n_l10___2 [2⋅X₁+X₇+3⋅X₈ ]
n_l12___8 [3⋅X₃+X₆+2⋅X₈ ]
n_l10___7 [3⋅X₃+X₅+2⋅X₈ ]
n_l14___1 [2⋅X₁+X₇+3⋅X₈ ]
n_l18___9 [3⋅X₃+X₅+2⋅X₈ ]
n_l19___3 [3⋅X₃+X₅+2⋅X₈ ]
n_l17___2 [3⋅X₃+X₅+2⋅X₈ ]
n_l19___8 [3⋅X₃+X₅+2⋅X₈ ]
n_l17___7 [3⋅X₃+X₅+2⋅X₈ ]
n_l20___1 [3⋅X₃+X₅+2⋅X₈ ]
n_l20___6 [3⋅X₃+X₄+2⋅X₈ ]
n_l18___4 [3⋅X₃+X₅+2⋅X₈ ]
n_l21___5 [3⋅X₃+X₅+2⋅X₈+1 ]
l6 [3⋅X₃+X₅+2⋅X₈ ]
n_l11___4 [2⋅X₁+X₇+3⋅X₈ ]
n_l9___5 [2⋅X₁+X₇+3⋅X₈ ]
l13 [3⋅X₃+X₄+2⋅X₈ ]

MPRF for transition t₂₄₇₆: n_l21___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ 1+X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l21 [X₃+1 ]
l7 [X₁+1 ]
l5 [X₁+1 ]
l8 [X₁+1 ]
l9 [X₃ ]
n_l11___9 [X₁+1 ]
n_l12___3 [X₃ ]
n_l10___2 [X₃ ]
n_l12___8 [X₁+1 ]
n_l10___7 [X₃ ]
n_l14___1 [X₁+1 ]
n_l14___6 [X₁+1 ]
n_l18___9 [X₃+1 ]
n_l19___3 [X₃+1 ]
n_l17___2 [X₃+1 ]
n_l19___8 [X₃+1 ]
n_l17___7 [X₃+1 ]
n_l20___1 [X₃+1 ]
n_l20___6 [X₃+X₅+1-X₄ ]
n_l18___4 [X₃+1 ]
n_l21___5 [X₃+1 ]
l6 [X₃ ]
n_l11___4 [X₁+1 ]
n_l9___5 [X₁+1 ]
l13 [X₃+1 ]

MPRF for transition t₂₄₃₅: n_l9___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l11___4(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₁ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ 1+X₇ ∧ X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

X₇⋅X₈+X₈⋅X₈+3⋅X₇+5⋅X₈+X₉+6 {O(n^2)}

MPRF:

l21 [X₃+X₇+2-X₅ ]
l7 [X₃+X₇+1-X₅ ]
l5 [X₃+X₇+1-X₅ ]
l8 [X₃+X₇+1-X₅ ]
l9 [2⋅X₃+X₇-X₁-X₆ ]
n_l11___9 [X₁+X₇+2-X₆ ]
n_l12___3 [X₃+X₇+1-X₆ ]
n_l10___2 [X₃+X₇+1-X₆ ]
n_l12___8 [X₃+X₇+1-X₅ ]
n_l10___7 [2⋅X₃+X₇-X₁-X₆ ]
n_l14___1 [X₁+X₇+2-X₆ ]
n_l14___6 [X₃+X₇+1-X₅ ]
n_l20___6 [X₃+X₇+2-X₄ ]
n_l18___9 [X₃+X₇+2-X₅ ]
n_l19___3 [X₇+X₈+2 ]
n_l17___2 [X₇+X₈+2 ]
n_l19___8 [X₃+X₇+2-X₅ ]
n_l17___7 [X₃+X₇+2-X₄ ]
n_l20___1 [X₇+X₈+2 ]
n_l18___4 [X₇+X₈+2 ]
n_l21___5 [X₇+X₈+2 ]
l6 [X₃+X₇+1-X₅ ]
n_l11___4 [X₁+X₇+2-X₆ ]
n_l9___5 [X₁+X₇+3-X₆ ]
l13 [X₃+X₇+2-X₄ ]

MPRF for transition t₂₄₄₃: n_l9___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₇ < X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ 1+X₇ ∧ X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l21 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₁+2 ]
l8 [X₁+2 ]
l9 [2⋅X₃-X₁ ]
n_l11___9 [X₁+2 ]
n_l12___3 [X₁+2 ]
n_l10___2 [X₁+2 ]
n_l12___8 [X₃+1 ]
n_l10___7 [2⋅X₃-X₁ ]
n_l14___1 [X₁+2 ]
n_l14___6 [X₃+1 ]
n_l18___9 [X₃+1 ]
n_l19___3 [X₃+1 ]
n_l17___2 [X₃+1 ]
n_l19___8 [X₃+1 ]
n_l17___7 [X₃+X₅+1-X₄ ]
n_l20___1 [X₃+1 ]
n_l20___6 [X₃+X₅+1-X₄ ]
n_l18___4 [X₃+1 ]
n_l21___5 [X₃+1 ]
l6 [X₃+1 ]
n_l11___4 [X₁+2 ]
n_l9___5 [X₁+2 ]
l13 [X₃+1 ]

CFR: Improvement to new bound with the following program:

new bound:

10⋅X₇⋅X₈+26⋅X₈⋅X₈+10⋅X₉+103⋅X₈+20⋅X₇+75 {O(n^2)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: Arg1_P, Arg3_P, Arg4_P, Arg5_P, Arg6_P, Arg7_P, Arg8_P, NoDet0
Locations: l0, l1, l13, l15, l16, l2, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9, n_l10___2, n_l10___7, n_l11___4, n_l11___9, n_l12___3, n_l12___8, n_l14___1, n_l14___6, n_l17___2, n_l17___7, n_l18___4, n_l18___9, n_l19___3, n_l19___8, n_l20___1, n_l20___6, n_l21___5, n_l9___5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l21(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉) :|: 0 ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₃ ≤ X₈
t₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ < 0 ∧ X₃ ≤ X₈ ∧ X₃ ≤ X₈
t₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₈, X₉, X₅, X₆, X₇, X₈, X₉)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₀: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃
t₂₄₆₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l18___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃
t₂₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 1+X₃ ≤ 0 ∧ X₃ ≤ X₈ ∧ 1+X₃ ≤ 0
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₃-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉) :|: 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₇ < X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₃₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l11___9(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₁ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₄₄: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₂₆: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l14___1(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ 0 < X₂ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₄₅: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₂₇: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l14___6(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ 0 < X₂ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₂₈: n_l11___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l12___3(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₁ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₄₂₉: n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l12___8(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ X₇ ∧ X₃ ≤ X₈ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₁ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₃₀: n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l10___2(X₀, Arg1_P, NoDet0, Arg3_P, X₄, Arg5_P, Arg6_P, Arg7_P, Arg8_P, X₉) :|: X₅ ≤ X₄ ∧ X₃ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ Arg5_P ≤ X₄ ∧ Arg3_P ≤ Arg8_P ∧ Arg6_P ≤ Arg7_P ∧ Arg5_P ≤ Arg6_P ∧ 0 ≤ Arg3_P ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg1_P+1 ≤ Arg3_P ∧ Arg3_P ≤ 1+Arg1_P ∧ X₁+1 ≤ Arg3_P ∧ Arg3_P ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₄₃₁: n_l12___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l10___7(X₀, Arg1_P, NoDet0, Arg3_P, X₄, Arg5_P, Arg6_P, Arg7_P, Arg8_P, X₉) :|: X₃ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ Arg5_P ≤ X₄ ∧ Arg3_P ≤ Arg8_P ∧ Arg6_P ≤ Arg7_P ∧ Arg5_P ≤ Arg6_P ∧ 0 ≤ Arg3_P ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg1_P+1 ≤ Arg3_P ∧ Arg3_P ≤ 1+Arg1_P ∧ X₁+1 ≤ Arg3_P ∧ Arg3_P ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄₃₂: n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l9___5(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆+1, X₇, X₈, X₉) :|: X₅ ≤ X₄ ∧ X₃ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ 1+X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₄₃₃: n_l14___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l9___5(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆+1, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ X₅ ≤ X₇ ∧ X₅ ≤ X₄ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₄₇₇: n_l17___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₂₄₅₉: n_l17___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l20___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 < X₀ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₂₄₇₈: n_l17___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₂₄₆₀: n_l17___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 < X₀ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₂₄₆₁: n_l18___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l19___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₄₆₂: n_l18___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l19___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₂₄₆₃: n_l19___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l17___2(NoDet0, X₁, X₂, Arg3_P, Arg4_P, Arg5_P, X₆, X₇, Arg8_P, X₉) :|: X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ Arg3_P ≤ Arg8_P ∧ Arg5_P ≤ Arg4_P ∧ 0 ≤ Arg5_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₄₆₄: n_l19___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l17___7(NoDet0, X₁, X₂, Arg3_P, Arg4_P, Arg5_P, X₆, X₇, Arg8_P, X₉) :|: X₃ ≤ X₈ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ Arg3_P ≤ Arg8_P ∧ Arg5_P ≤ Arg4_P ∧ 0 ≤ Arg5_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₂₄₆₅: n_l20___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l21___5(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ 0 < X₀ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₄₆₆: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l21___5(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ 0 < X₀ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₄₇₆: n_l21___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₈ ∧ 0 ≤ 1+X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₄₆₈: n_l21___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l18___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₅ ∧ 1+X₅ ≤ X₄ ∧ X₃ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₈ ∧ 0 ≤ 1+X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₄₄₃: n_l9___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₁, X₆, X₅, X₆, X₇, X₈, X₉) :|: X₇ < X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ 1+X₇ ∧ X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₄₃₅: n_l9___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l11___4(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₁ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ 1+X₁ ≤ X₈ ∧ X₅ ≤ X₄ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₈ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ 1+X₁+X₈ ∧ 1+X₁ ≤ X₈ ∧ X₆ ≤ 1+X₇ ∧ X₅ ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁

All Bounds

Timebounds

Overall timebound:10⋅X₇⋅X₈+26⋅X₈⋅X₈+10⋅X₉+103⋅X₈+20⋅X₇+84 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₇: X₈+2 {O(n)}
t₈: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₁: 1 {O(1)}
t₁₀: X₈+1 {O(n)}
t₂₄₆₇: X₈+2 {O(n)}
t₂₇: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₈: X₈+1 {O(n)}
t₁₆: 2⋅X₈+1 {O(n)}
t₁₇: X₈+1 {O(n)}
t₁₉: X₈+1 {O(n)}
t₂₁: X₈+1 {O(n)}
t₂₄₃₄: X₈+1 {O(n)}
t₂₄₂₆: X₇⋅X₈+X₈⋅X₈+3⋅X₇+4⋅X₈+X₉+3 {O(n^2)}
t₂₄₄₄: X₈+1 {O(n)}
t₂₄₂₇: X₈+1 {O(n)}
t₂₄₄₅: X₈+1 {O(n)}
t₂₄₂₈: X₇⋅X₈+X₈⋅X₈+3⋅X₇+4⋅X₈+X₉+3 {O(n^2)}
t₂₄₂₉: X₈+1 {O(n)}
t₂₄₃₀: X₇⋅X₈+X₈⋅X₈+3⋅X₇+4⋅X₈+X₉+3 {O(n^2)}
t₂₄₃₁: X₈+1 {O(n)}
t₂₄₃₂: X₇⋅X₈+X₈⋅X₈+3⋅X₇+4⋅X₈+X₉+3 {O(n^2)}
t₂₄₃₃: X₈+1 {O(n)}
t₂₄₅₉: 2⋅X₈⋅X₈+X₇⋅X₈+8⋅X₈+X₇+X₉+5 {O(n^2)}
t₂₄₇₇: X₈+1 {O(n)}
t₂₄₆₀: X₈+2 {O(n)}
t₂₄₇₈: X₈+2 {O(n)}
t₂₄₆₁: 2⋅X₈⋅X₈+X₇⋅X₈+5⋅X₈+X₇+X₉+1 {O(n^2)}
t₂₄₆₂: X₈+2 {O(n)}
t₂₄₆₃: 2⋅X₈⋅X₈+X₇⋅X₈+7⋅X₈+X₇+X₉+3 {O(n^2)}
t₂₄₆₄: X₈+2 {O(n)}
t₂₄₆₅: 10⋅X₈⋅X₈+X₇⋅X₈+26⋅X₈+X₇+X₉+16 {O(n^2)}
t₂₄₆₆: X₈+2 {O(n)}
t₂₄₆₈: 5⋅X₈⋅X₈+X₇⋅X₈+12⋅X₈+X₇+X₉+2 {O(n^2)}
t₂₄₇₆: X₈+1 {O(n)}
t₂₄₃₅: X₇⋅X₈+X₈⋅X₈+3⋅X₇+5⋅X₈+X₉+6 {O(n^2)}
t₂₄₄₃: X₈+1 {O(n)}

Costbounds

Overall costbound: 10⋅X₇⋅X₈+26⋅X₈⋅X₈+10⋅X₉+103⋅X₈+20⋅X₇+84 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₇: X₈+2 {O(n)}
t₈: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₁: 1 {O(1)}
t₁₀: X₈+1 {O(n)}
t₂₄₆₇: X₈+2 {O(n)}
t₂₇: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₈: X₈+1 {O(n)}
t₁₆: 2⋅X₈+1 {O(n)}
t₁₇: X₈+1 {O(n)}
t₁₉: X₈+1 {O(n)}
t₂₁: X₈+1 {O(n)}
t₂₄₃₄: X₈+1 {O(n)}
t₂₄₂₆: X₇⋅X₈+X₈⋅X₈+3⋅X₇+4⋅X₈+X₉+3 {O(n^2)}
t₂₄₄₄: X₈+1 {O(n)}
t₂₄₂₇: X₈+1 {O(n)}
t₂₄₄₅: X₈+1 {O(n)}
t₂₄₂₈: X₇⋅X₈+X₈⋅X₈+3⋅X₇+4⋅X₈+X₉+3 {O(n^2)}
t₂₄₂₉: X₈+1 {O(n)}
t₂₄₃₀: X₇⋅X₈+X₈⋅X₈+3⋅X₇+4⋅X₈+X₉+3 {O(n^2)}
t₂₄₃₁: X₈+1 {O(n)}
t₂₄₃₂: X₇⋅X₈+X₈⋅X₈+3⋅X₇+4⋅X₈+X₉+3 {O(n^2)}
t₂₄₃₃: X₈+1 {O(n)}
t₂₄₅₉: 2⋅X₈⋅X₈+X₇⋅X₈+8⋅X₈+X₇+X₉+5 {O(n^2)}
t₂₄₇₇: X₈+1 {O(n)}
t₂₄₆₀: X₈+2 {O(n)}
t₂₄₇₈: X₈+2 {O(n)}
t₂₄₆₁: 2⋅X₈⋅X₈+X₇⋅X₈+5⋅X₈+X₇+X₉+1 {O(n^2)}
t₂₄₆₂: X₈+2 {O(n)}
t₂₄₆₃: 2⋅X₈⋅X₈+X₇⋅X₈+7⋅X₈+X₇+X₉+3 {O(n^2)}
t₂₄₆₄: X₈+2 {O(n)}
t₂₄₆₅: 10⋅X₈⋅X₈+X₇⋅X₈+26⋅X₈+X₇+X₉+16 {O(n^2)}
t₂₄₆₆: X₈+2 {O(n)}
t₂₄₆₈: 5⋅X₈⋅X₈+X₇⋅X₈+12⋅X₈+X₇+X₉+2 {O(n^2)}
t₂₄₇₆: X₈+1 {O(n)}
t₂₄₃₅: X₇⋅X₈+X₈⋅X₈+3⋅X₇+5⋅X₈+X₉+6 {O(n^2)}
t₂₄₄₃: X₈+1 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₉ {O(n)}
t₇, X₁: 5⋅X₈+X₁+5 {O(n)}
t₇, X₃: X₈+1 {O(n)}
t₇, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₇, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₇, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₈, X₁: 5⋅X₈+X₁+5 {O(n)}
t₈, X₃: 5⋅X₈+4 {O(n)}
t₈, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₈, X₅: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₅+30 {O(n^2)}
t₈, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₈, X₇: 5⋅X₇ {O(n)}
t₈, X₈: 5⋅X₈ {O(n)}
t₈, X₉: 5⋅X₉ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₈ {O(n)}
t₆, X₄: X₉ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁₀, X₁: 5⋅X₈+X₁+5 {O(n)}
t₁₀, X₃: X₈+1 {O(n)}
t₁₀, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₁₀, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₁₀, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₁₀, X₇: X₇ {O(n)}
t₁₀, X₈: X₈ {O(n)}
t₁₀, X₉: X₉ {O(n)}
t₂₄₆₇, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₄₆₇, X₃: X₈+1 {O(n)}
t₂₄₆₇, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₄₆₇, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₆₇, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₄₆₇, X₇: X₇ {O(n)}
t₂₄₆₇, X₈: X₈ {O(n)}
t₂₄₆₇, X₉: X₉ {O(n)}
t₂₇, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₇, X₃: 5⋅X₈+4 {O(n)}
t₂₇, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₇, X₅: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₅+30 {O(n^2)}
t₂₇, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₇, X₇: 5⋅X₇ {O(n)}
t₂₇, X₈: 5⋅X₈ {O(n)}
t₂₇, X₉: 5⋅X₉ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₁₈, X₁: X₈+1 {O(n)}
t₁₈, X₃: 4⋅X₈+4 {O(n)}
t₁₈, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₁₈, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₁₈, X₆: 25⋅X₇⋅X₈+25⋅X₈⋅X₈+125⋅X₈+5⋅X₆+50⋅X₉+75⋅X₇+150 {O(n^2)}
t₁₈, X₇: X₇ {O(n)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₉ {O(n)}
t₁₆, X₁: X₈+1 {O(n)}
t₁₆, X₃: 4⋅X₈+4 {O(n)}
t₁₆, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₁₆, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₁₆, X₆: 25⋅X₇⋅X₈+25⋅X₈⋅X₈+125⋅X₈+5⋅X₆+50⋅X₉+75⋅X₇+150 {O(n^2)}
t₁₆, X₇: X₇ {O(n)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₉ {O(n)}
t₁₇, X₁: X₈+1 {O(n)}
t₁₇, X₃: 4⋅X₈+4 {O(n)}
t₁₇, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₁₇, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₁₇, X₆: 25⋅X₇⋅X₈+25⋅X₈⋅X₈+125⋅X₈+5⋅X₆+50⋅X₉+75⋅X₇+150 {O(n^2)}
t₁₇, X₇: X₇ {O(n)}
t₁₇, X₈: X₈ {O(n)}
t₁₇, X₉: X₉ {O(n)}
t₁₉, X₁: X₈+1 {O(n)}
t₁₉, X₃: 4⋅X₈+4 {O(n)}
t₁₉, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₁₉, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₁₉, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₁₉, X₇: X₇ {O(n)}
t₁₉, X₈: X₈ {O(n)}
t₁₉, X₉: X₉ {O(n)}
t₂₁, X₁: X₈+1 {O(n)}
t₂₁, X₃: X₈+1 {O(n)}
t₂₁, X₄: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₁, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₁, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₁, X₇: X₇ {O(n)}
t₂₁, X₈: X₈ {O(n)}
t₂₁, X₉: X₉ {O(n)}
t₂₄₃₄, X₁: X₈+1 {O(n)}
t₂₄₃₄, X₃: X₈+2 {O(n)}
t₂₄₃₄, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₂₄₃₄, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₃₄, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₃₄, X₇: X₇ {O(n)}
t₂₄₃₄, X₈: X₈ {O(n)}
t₂₄₃₄, X₉: X₉ {O(n)}
t₂₄₂₆, X₁: X₈+1 {O(n)}
t₂₄₂₆, X₃: X₈+2 {O(n)}
t₂₄₂₆, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₂₄₂₆, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₂₆, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₂₆, X₇: X₇ {O(n)}
t₂₄₂₆, X₈: X₈ {O(n)}
t₂₄₂₆, X₉: X₉ {O(n)}
t₂₄₄₄, X₁: X₈+1 {O(n)}
t₂₄₄₄, X₃: X₈+1 {O(n)}
t₂₄₄₄, X₄: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₄₄, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₄₄, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₄₄, X₇: X₇ {O(n)}
t₂₄₄₄, X₈: X₈ {O(n)}
t₂₄₄₄, X₉: X₉ {O(n)}
t₂₄₂₇, X₁: X₈+1 {O(n)}
t₂₄₂₇, X₃: X₈+2 {O(n)}
t₂₄₂₇, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₂₄₂₇, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₂₇, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₂₇, X₇: X₇ {O(n)}
t₂₄₂₇, X₈: X₈ {O(n)}
t₂₄₂₇, X₉: X₉ {O(n)}
t₂₄₄₅, X₁: X₈+1 {O(n)}
t₂₄₄₅, X₃: X₈+1 {O(n)}
t₂₄₄₅, X₄: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₄₅, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₄₅, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₄₅, X₇: X₇ {O(n)}
t₂₄₄₅, X₈: X₈ {O(n)}
t₂₄₄₅, X₉: X₉ {O(n)}
t₂₄₂₈, X₁: X₈+1 {O(n)}
t₂₄₂₈, X₃: X₈+2 {O(n)}
t₂₄₂₈, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₂₄₂₈, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₂₈, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₂₈, X₇: X₇ {O(n)}
t₂₄₂₈, X₈: X₈ {O(n)}
t₂₄₂₈, X₉: X₉ {O(n)}
t₂₄₂₉, X₁: X₈+1 {O(n)}
t₂₄₂₉, X₃: X₈+2 {O(n)}
t₂₄₂₉, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₂₄₂₉, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₂₉, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₂₉, X₇: X₇ {O(n)}
t₂₄₂₉, X₈: X₈ {O(n)}
t₂₄₂₉, X₉: X₉ {O(n)}
t₂₄₃₀, X₁: X₈+1 {O(n)}
t₂₄₃₀, X₃: X₈+2 {O(n)}
t₂₄₃₀, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₂₄₃₀, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₃₀, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₃₀, X₇: X₇ {O(n)}
t₂₄₃₀, X₈: X₈ {O(n)}
t₂₄₃₀, X₉: X₉ {O(n)}
t₂₄₃₁, X₁: X₈+1 {O(n)}
t₂₄₃₁, X₃: X₈+2 {O(n)}
t₂₄₃₁, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₂₄₃₁, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₃₁, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₃₁, X₇: X₇ {O(n)}
t₂₄₃₁, X₈: X₈ {O(n)}
t₂₄₃₁, X₉: X₉ {O(n)}
t₂₄₃₂, X₁: X₈+1 {O(n)}
t₂₄₃₂, X₃: X₈+2 {O(n)}
t₂₄₃₂, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₂₄₃₂, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₃₂, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₃₂, X₇: X₇ {O(n)}
t₂₄₃₂, X₈: X₈ {O(n)}
t₂₄₃₂, X₉: X₉ {O(n)}
t₂₄₃₃, X₁: X₈+1 {O(n)}
t₂₄₃₃, X₃: X₈+2 {O(n)}
t₂₄₃₃, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₂₄₃₃, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₃₃, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₃₃, X₇: X₇ {O(n)}
t₂₄₃₃, X₈: X₈ {O(n)}
t₂₄₃₃, X₉: X₉ {O(n)}
t₂₄₅₉, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₄₅₉, X₃: X₈+1 {O(n)}
t₂₄₅₉, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₄₅₉, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₅₉, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₄₅₉, X₇: X₇ {O(n)}
t₂₄₅₉, X₈: X₈ {O(n)}
t₂₄₅₉, X₉: X₉ {O(n)}
t₂₄₇₇, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₄₇₇, X₃: X₈+1 {O(n)}
t₂₄₇₇, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₄₇₇, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₇₇, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₄₇₇, X₇: X₇ {O(n)}
t₂₄₇₇, X₈: X₈ {O(n)}
t₂₄₇₇, X₉: X₉ {O(n)}
t₂₄₆₀, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₄₆₀, X₃: X₈+1 {O(n)}
t₂₄₆₀, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₄₆₀, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₆₀, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₄₆₀, X₇: X₇ {O(n)}
t₂₄₆₀, X₈: X₈ {O(n)}
t₂₄₆₀, X₉: X₉ {O(n)}
t₂₄₇₈, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₄₇₈, X₃: X₈+1 {O(n)}
t₂₄₇₈, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₄₇₈, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₇₈, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₄₇₈, X₇: X₇ {O(n)}
t₂₄₇₈, X₈: X₈ {O(n)}
t₂₄₇₈, X₉: X₉ {O(n)}
t₂₄₆₁, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₄₆₁, X₃: X₈+1 {O(n)}
t₂₄₆₁, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₄₆₁, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₆₁, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₄₆₁, X₇: X₇ {O(n)}
t₂₄₆₁, X₈: X₈ {O(n)}
t₂₄₆₁, X₉: X₉ {O(n)}
t₂₄₆₂, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₄₆₂, X₃: X₈+1 {O(n)}
t₂₄₆₂, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₄₆₂, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₆₂, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₄₆₂, X₇: X₇ {O(n)}
t₂₄₆₂, X₈: X₈ {O(n)}
t₂₄₆₂, X₉: X₉ {O(n)}
t₂₄₆₃, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₄₆₃, X₃: X₈+1 {O(n)}
t₂₄₆₃, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₄₆₃, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₆₃, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₄₆₃, X₇: X₇ {O(n)}
t₂₄₆₃, X₈: X₈ {O(n)}
t₂₄₆₃, X₉: X₉ {O(n)}
t₂₄₆₄, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₄₆₄, X₃: X₈+1 {O(n)}
t₂₄₆₄, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₄₆₄, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₆₄, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₄₆₄, X₇: X₇ {O(n)}
t₂₄₆₄, X₈: X₈ {O(n)}
t₂₄₆₄, X₉: X₉ {O(n)}
t₂₄₆₅, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₄₆₅, X₃: X₈+1 {O(n)}
t₂₄₆₅, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₄₆₅, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₆₅, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₄₆₅, X₇: X₇ {O(n)}
t₂₄₆₅, X₈: X₈ {O(n)}
t₂₄₆₅, X₉: X₉ {O(n)}
t₂₄₆₆, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₄₆₆, X₃: X₈+1 {O(n)}
t₂₄₆₆, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₄₆₆, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₆₆, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₄₆₆, X₇: X₇ {O(n)}
t₂₄₆₆, X₈: X₈ {O(n)}
t₂₄₆₆, X₉: X₉ {O(n)}
t₂₄₆₈, X₁: 5⋅X₈+X₁+5 {O(n)}
t₂₄₆₈, X₃: X₈+1 {O(n)}
t₂₄₆₈, X₄: 4⋅X₇⋅X₈+4⋅X₈⋅X₈+12⋅X₇+20⋅X₈+9⋅X₉+24 {O(n^2)}
t₂₄₆₈, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₆₈, X₆: 5⋅X₇⋅X₈+5⋅X₈⋅X₈+10⋅X₉+15⋅X₇+25⋅X₈+X₆+30 {O(n^2)}
t₂₄₆₈, X₇: X₇ {O(n)}
t₂₄₆₈, X₈: X₈ {O(n)}
t₂₄₆₈, X₉: X₉ {O(n)}
t₂₄₇₆, X₁: 10⋅X₈+2⋅X₁+10 {O(n)}
t₂₄₇₆, X₃: X₈+1 {O(n)}
t₂₄₇₆, X₄: 8⋅X₇⋅X₈+8⋅X₈⋅X₈+18⋅X₉+24⋅X₇+40⋅X₈+48 {O(n^2)}
t₂₄₇₆, X₅: 1 {O(1)}
t₂₄₇₆, X₆: 10⋅X₇⋅X₈+10⋅X₈⋅X₈+2⋅X₆+20⋅X₉+30⋅X₇+50⋅X₈+60 {O(n^2)}
t₂₄₇₆, X₇: X₇ {O(n)}
t₂₄₇₆, X₈: X₈ {O(n)}
t₂₄₇₆, X₉: X₉ {O(n)}
t₂₄₃₅, X₁: X₈+1 {O(n)}
t₂₄₃₅, X₃: 2⋅X₈+4 {O(n)}
t₂₄₃₅, X₄: 20⋅X₇⋅X₈+20⋅X₈⋅X₈+100⋅X₈+45⋅X₉+60⋅X₇+120 {O(n^2)}
t₂₄₃₅, X₅: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₃₅, X₆: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₃₅, X₇: X₇ {O(n)}
t₂₄₃₅, X₈: X₈ {O(n)}
t₂₄₃₅, X₉: X₉ {O(n)}
t₂₄₄₃, X₁: 2⋅X₈+2 {O(n)}
t₂₄₄₃, X₃: X₈+1 {O(n)}
t₂₄₄₃, X₄: X₇⋅X₈+X₈⋅X₈+2⋅X₉+3⋅X₇+5⋅X₈+6 {O(n^2)}
t₂₄₄₃, X₅: 2⋅X₇⋅X₈+2⋅X₈⋅X₈+10⋅X₈+4⋅X₉+6⋅X₇+12 {O(n^2)}
t₂₄₄₃, X₆: 2⋅X₇⋅X₈+2⋅X₈⋅X₈+10⋅X₈+4⋅X₉+6⋅X₇+12 {O(n^2)}
t₂₄₄₃, X₇: X₇ {O(n)}
t₂₄₄₃, X₈: X₈ {O(n)}
t₂₄₄₃, X₉: X₉ {O(n)}