Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4
Transitions:
t₉: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₂, X₂, X₄, X₄, X₀)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₃ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₅, X₄, X₅) :|: 1 ≤ X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₅-1, X₄, X₅) :|: 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₀: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₅, X₄, X₅) :|: X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅

Preprocessing

Cut unsatisfiable transition t₃: l1→l3

Cut unsatisfiable transition t₈: l2→l2

Found invariant X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2

Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1

Found invariant X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l4

Found invariant X₅ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4
Transitions:
t₉: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₂, X₂, X₄, X₄, X₀)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₅, X₄, X₅) :|: 1 ≤ X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₅-1, X₄, X₅) :|: 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₀: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₅, X₄, X₅) :|: X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂

MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀ {O(n)}

MPRF:

l2 [X₃ ]
l1 [X₃ ]

MPRF for transition t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀+1 {O(n)}

MPRF:

l2 [X₃+1 ]
l1 [X₃ ]

Found invariant X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2

Found invariant X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1

Found invariant X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l4

Found invariant X₅ ≤ 1 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 1 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 2 ∧ X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ X₀ ≤ 1+X₃ ∧ X₀ ≤ 1 for location l3

Found invariant X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2

Found invariant X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2+X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1

Found invariant X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l4

Found invariant X₅ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₄ 40⋅X₀⋅X₀+4⋅X₂+44⋅X₀+24 {O(n^2)}

TWN-Loops:

entry: t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₅, X₄, X₅) :|: 1 ≤ X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
results in twn-loop: twn:Inv: [X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀,X₁-1,X₂,X₃,X₄,X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
entry: t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀,X₁-1,X₂,X₃,X₄,X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
order: [X₀; X₁; X₂; X₃; X₅]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂
X₃: X₃
X₅: X₅

Termination: true
Formula:

X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1

Stabilization-Threshold for: 0 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: 1+X₁
M: 0
N: 1
Bound: 2⋅X₁+4 {O(n)}

relevant size-bounds w.r.t. t₁:
X₁: X₂ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 4⋅X₂+12 {O(n)}

order: [X₀; X₁; X₂; X₃; X₅]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂
X₃: X₃
X₅: X₅

Termination: true
Formula:

X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1

Stabilization-Threshold for: 0 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: 1+X₁
M: 0
N: 1
Bound: 2⋅X₁+4 {O(n)}

relevant size-bounds w.r.t. t₇:
X₁: 5⋅X₀ {O(n)}
Runtime-bound of t₇: 2⋅X₀+1 {O(n)}
Results in: 40⋅X₀⋅X₀+44⋅X₀+12 {O(n^2)}

40⋅X₀⋅X₀+4⋅X₂+44⋅X₀+24 {O(n^2)}

Analysing control-flow refined program

Found invariant X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2

Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1

Found invariant X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l4

Found invariant X₅ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₀ for location l3

Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___1

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₀+1 {O(n)} for transition t₇₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___1(X₀, X₁-1, X₂, X₃, X₄, X₀) :|: 1 ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___1(X₀, X₁-1, X₂, X₃, X₄, X₀) :|: X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₇₂: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___1(X₀, X₁-1, X₂, X₃, X₄, X₀) :|: X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

10⋅X₀⋅X₀+5⋅X₀+X₂ {O(n^2)}

MPRF:

l1 [X₁ ]
n_l1___1 [X₁+1 ]
l2 [0 ]

MPRF for transition t₇₇: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

6⋅X₀ {O(n)}

MPRF:

l1 [X₀+X₃-X₅ ]
n_l1___1 [X₃ ]
l2 [X₀+X₃-X₁ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:40⋅X₀⋅X₀+4⋅X₂+48⋅X₀+30 {O(n^2)}
t₉: 1 {O(1)}
t₄: 40⋅X₀⋅X₀+4⋅X₂+44⋅X₀+24 {O(n^2)}
t₅: 2⋅X₀ {O(n)}
t₆: 1 {O(1)}
t₇: 2⋅X₀+1 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}

Costbounds

Overall costbound: 40⋅X₀⋅X₀+4⋅X₂+48⋅X₀+30 {O(n^2)}
t₉: 1 {O(1)}
t₄: 40⋅X₀⋅X₀+4⋅X₂+44⋅X₀+24 {O(n^2)}
t₅: 2⋅X₀ {O(n)}
t₆: 1 {O(1)}
t₇: 2⋅X₀+1 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}

Sizebounds

t₉, X₀: X₀ {O(n)}
t₉, X₁: X₂ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₄ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₀ {O(n)}
t₄, X₀: 3⋅X₀ {O(n)}
t₄, X₁: 5⋅X₀+X₂ {O(n)}
t₄, X₂: 3⋅X₂ {O(n)}
t₄, X₃: 3⋅X₀ {O(n)}
t₄, X₄: 3⋅X₄ {O(n)}
t₄, X₅: 3⋅X₀ {O(n)}
t₅, X₀: 3⋅X₀ {O(n)}
t₅, X₁: 4⋅X₀ {O(n)}
t₅, X₂: 3⋅X₂ {O(n)}
t₅, X₃: 3⋅X₀ {O(n)}
t₅, X₄: 3⋅X₄ {O(n)}
t₅, X₅: 3⋅X₀ {O(n)}
t₆, X₀: 4⋅X₀ {O(n)}
t₆, X₁: 5⋅X₀ {O(n)}
t₆, X₂: 4⋅X₂ {O(n)}
t₆, X₃: 0 {O(1)}
t₆, X₄: 4⋅X₄ {O(n)}
t₆, X₅: 4⋅X₀ {O(n)}
t₇, X₀: 3⋅X₀ {O(n)}
t₇, X₁: 5⋅X₀ {O(n)}
t₇, X₂: 3⋅X₂ {O(n)}
t₇, X₃: 3⋅X₀ {O(n)}
t₇, X₄: 3⋅X₄ {O(n)}
t₇, X₅: 3⋅X₀ {O(n)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₂ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₀ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₀ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₂ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₀ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₀ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₀ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₀ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₀ {O(n)}