Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: F
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄)
t₉: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁
t₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃
t₁₀: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: F+1 ≤ 0
t₁₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ F
t₁₂: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₁₃: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃+1, X₄)
t₁₄: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₀-1, X₃)
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₂, X₄) :|: F+1 ≤ 0
t₆: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₂, X₄) :|: 1 ≤ F
t₇: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₀, X₂)
t₁₅: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₃, X₁, X₄-1, X₃, X₄)
t₂: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₀ ∧ 0 ≤ X₂
t₃: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ 0
t₄: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0
t₁₆: l8(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄)
t₁: l9(X₀, X₁, X₂, X₃, X₄) → l7(X₁, X₁, 0, X₃, X₄)

Preprocessing

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l2

Found invariant 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l6

Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l7

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l8

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1

Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l10

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: F
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄)
t₉: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₀: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: F+1 ≤ 0 ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ F ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₂: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₃: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₄: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₀-1, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₂, X₄) :|: F+1 ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₂, X₄) :|: 1 ≤ F ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₀, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₅: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₃, X₁, X₄-1, X₃, X₄) :|: 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₂: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁
t₃: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁
t₄: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁
t₁₆: l8(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ 1+X₂ ∧ X₀ ≤ X₁
t₁: l9(X₀, X₁, X₂, X₃, X₄) → l7(X₁, X₁, 0, X₃, X₄)

MPRF for transition t₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l2 [X₀+1 ]
l3 [X₀+1 ]
l4 [X₀ ]
l1 [X₀+1 ]
l6 [X₃+1 ]
l7 [X₀+1 ]
l5 [X₀+1 ]

MPRF for transition t₁₂: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l2 [X₀+1 ]
l3 [X₀+1 ]
l4 [X₀ ]
l1 [X₀+1 ]
l6 [X₃+1 ]
l7 [X₀+1 ]
l5 [X₀+1 ]

MPRF for transition t₁₄: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₀-1, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l2 [X₀+1 ]
l3 [X₀+1 ]
l4 [X₀+1 ]
l1 [X₀+1 ]
l6 [X₃+1 ]
l7 [X₀+1 ]
l5 [X₀+1 ]

MPRF for transition t₅: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₂, X₄) :|: F+1 ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l2 [X₀ ]
l3 [X₀ ]
l4 [X₀ ]
l1 [X₀ ]
l6 [X₃+1 ]
l7 [X₀+1 ]
l5 [X₀+1 ]

MPRF for transition t₆: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₂, X₄) :|: 1 ≤ F ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

l2 [X₀ ]
l3 [X₀ ]
l4 [X₀ ]
l1 [X₀ ]
l6 [X₃+1 ]
l7 [X₀+1 ]
l5 [X₀+1 ]

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l8

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l10

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l8

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l10

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l2

Found invariant X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l6

Found invariant X₂ ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l7

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5

Found invariant X₂ ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l8

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1

Found invariant X₂ ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l10

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l3

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l8

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l10

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

MPRF for transition t₉: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

4⋅X₁⋅X₁+12⋅X₁+5 {O(n^2)}

MPRF:

l2 [3⋅X₀+X₁-X₃ ]
l4 [3⋅X₀+X₁-X₃ ]
l3 [3⋅X₀+X₁-X₃ ]
l1 [3⋅X₀+X₁+1-X₃ ]
l6 [3⋅X₀+X₁+1 ]
l7 [3⋅X₀+X₁+1 ]
l5 [3⋅X₀+X₁+1 ]

MPRF for transition t₁₀: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: F+1 ≤ 0 ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁⋅X₁+11⋅X₁+8 {O(n^2)}

MPRF:

l2 [X₀+X₁+2-X₃ ]
l4 [X₀+X₁+2-X₃ ]
l3 [X₀+X₁+1-X₃ ]
l1 [X₀+X₁+2-X₃ ]
l6 [X₁+X₃+2 ]
l7 [X₀+X₁+2 ]
l5 [X₀+X₁+2 ]

MPRF for transition t₁₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ F ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₁⋅X₁+7⋅X₁+5 {O(n^2)}

MPRF:

l2 [X₀+X₁+2-X₃ ]
l4 [X₀+X₁+2-X₃ ]
l3 [X₀+X₁+1-X₃ ]
l1 [X₀+X₁+2-X₃ ]
l6 [X₀+X₁+2 ]
l7 [X₀+X₁+2 ]
l5 [X₀+X₁+2 ]

MPRF for transition t₁₃: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₁⋅X₁+6⋅X₁+3 {O(n^2)}

MPRF:

l2 [X₀+X₁+1-X₃ ]
l4 [X₀+X₁+1-X₃ ]
l3 [X₀+X₁+1-X₃ ]
l1 [X₀+X₁+1-X₃ ]
l6 [X₀+X₁+1 ]
l7 [X₀+X₁+1 ]
l5 [X₀+X₁+1 ]

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l8

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l10

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l8

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l10

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l2

Found invariant X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l6

Found invariant X₂ ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l7

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5

Found invariant X₂ ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l8

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1

Found invariant X₂ ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l10

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l3

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l8

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l10

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

MPRF for transition t₇: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₀, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+10⋅X₁+5 {O(n^3)}

MPRF:

l2 [1 ]
l4 [1 ]
l3 [1 ]
l1 [1 ]
l6 [X₄ ]
l7 [X₂+1 ]
l5 [X₂+1 ]

MPRF for transition t₁₅: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₃, X₁, X₄-1, X₃, X₄) :|: 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+11⋅X₁+6 {O(n^3)}

MPRF:

l2 [1 ]
l4 [1 ]
l3 [1 ]
l1 [1 ]
l6 [X₄+1 ]
l7 [X₂+1 ]
l5 [X₂+1 ]

MPRF for transition t₂: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+11⋅X₁+7 {O(n^3)}

MPRF:

l2 [1 ]
l4 [1 ]
l3 [1 ]
l1 [1 ]
l6 [X₄+1 ]
l7 [X₂+2 ]
l5 [X₂+1 ]

Analysing control-flow refined program

Cut unsatisfiable transition t₄: l7→l8

Cut unsatisfiable transition t₇₄₉: n_l1___9→l4

Cut unsatisfiable transition t₇₄₂: n_l7___11→l8

Cut unsatisfiable transition t₇₄₃: n_l7___23→l8

Cut unsatisfiable transition t₇₃₉: n_l7___3→l8

Cut unsatisfiable transition t₇₄₁: n_l7___7→l8

Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l2___15

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l5___1

Found invariant X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l6___24

Found invariant X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l6___5

Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l1___9

Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l2___19

Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l4___17

Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l6___12

Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l1___21

Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l7___3

Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l4___13

Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l5___10

Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l5___2

Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l5___6

Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l7

Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l3___14

Found invariant X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l1___16

Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ for location n_l7___23

Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l8

Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l5___22

Found invariant X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l6___8

Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l10

Found invariant X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4

Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ for location n_l7___11

Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l7___7

Found invariant X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l6___20

Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 2+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ for location n_l7___4

Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l3___18

Cut unsatisfiable transition t₇₄₈: n_l1___21→l4

MPRF for transition t₆₉₀: l4(X₀, X₁, X₂, X₃, X₄) → n_l6___24(X₀, X₁, X₂, X₀-1, X₃) :|: X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁+3 {O(n)}

MPRF:

l4 [X₀+1 ]
n_l2___15 [X₀+1 ]
n_l2___19 [X₀+1 ]
n_l3___14 [X₀+1 ]
n_l3___18 [X₀+1 ]
n_l1___16 [X₀+1 ]
n_l4___13 [X₀+1 ]
n_l4___17 [X₀+1 ]
n_l1___21 [X₀+1 ]
n_l1___9 [X₀+1 ]
n_l6___12 [X₀+1 ]
n_l6___20 [X₀+1 ]
n_l6___24 [X₀ ]
n_l6___5 [X₀+1 ]
n_l6___8 [X₀+1 ]
n_l7___11 [X₀+1 ]
n_l7___23 [X₃+X₄-X₁ ]
n_l5___22 [X₃+1 ]
n_l7___3 [X₀+1 ]
n_l5___2 [X₃+1 ]
n_l7___4 [X₀+1 ]
n_l5___10 [X₃+1 ]
n_l7___7 [X₀+1 ]
n_l5___6 [X₃+1 ]

MPRF for transition t₇₄₇: n_l1___16(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁+3 {O(n)}

MPRF:

l4 [X₀ ]
n_l2___15 [X₀+1 ]
n_l2___19 [X₀+1 ]
n_l3___14 [X₀+1 ]
n_l3___18 [X₀+1 ]
n_l1___16 [X₀+1 ]
n_l4___13 [X₀+1 ]
n_l4___17 [X₀ ]
n_l1___21 [X₀+1 ]
n_l1___9 [X₀+1 ]
n_l6___12 [X₀+1 ]
n_l6___20 [X₀+1 ]
n_l6___24 [X₀+X₄-X₁-1 ]
n_l6___5 [X₀ ]
n_l6___8 [X₀+1 ]
n_l7___11 [X₀+1 ]
n_l7___23 [X₃+X₄-X₁ ]
n_l5___22 [X₃+1 ]
n_l7___3 [X₀+1 ]
n_l5___2 [X₃+1 ]
n_l7___4 [X₀+1 ]
n_l5___10 [X₃+1 ]
n_l7___7 [X₀+1 ]
n_l5___6 [X₃+1 ]

MPRF for transition t₆₇₈: n_l1___21(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁ {O(n)}

MPRF:

l4 [X₀+X₃-X₁-1 ]
n_l2___15 [X₀ ]
n_l2___19 [X₀ ]
n_l3___14 [X₀ ]
n_l3___18 [X₀ ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀ ]
n_l1___21 [X₀+1 ]
n_l1___9 [X₀ ]
n_l6___12 [X₀ ]
n_l6___20 [X₀+1 ]
n_l6___24 [X₀+X₄-X₁-1 ]
n_l6___5 [X₀ ]
n_l6___8 [X₃ ]
n_l7___11 [X₀ ]
n_l7___23 [X₃+X₄-X₁ ]
n_l5___22 [X₃+1 ]
n_l7___3 [X₃+1 ]
n_l5___2 [X₃+1 ]
n_l7___4 [X₀ ]
n_l5___10 [X₃ ]
n_l7___7 [X₃ ]
n_l5___6 [X₃ ]

MPRF for transition t₆₇₉: n_l1___9(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁+3 {O(n)}

MPRF:

l4 [X₀ ]
n_l2___15 [X₀ ]
n_l2___19 [X₀ ]
n_l3___14 [X₀ ]
n_l3___18 [X₀ ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀ ]
n_l1___21 [X₀ ]
n_l1___9 [X₀+1 ]
n_l6___12 [X₃+1 ]
n_l6___20 [X₀ ]
n_l6___24 [X₀ ]
n_l6___5 [X₀ ]
n_l6___8 [X₀+1 ]
n_l7___11 [X₃+1 ]
n_l7___23 [X₀ ]
n_l5___22 [X₃ ]
n_l7___3 [X₃ ]
n_l5___2 [X₃ ]
n_l7___4 [X₀+1 ]
n_l5___10 [X₃+1 ]
n_l7___7 [X₀+1 ]
n_l5___6 [X₃+1 ]

MPRF for transition t₆₈₂: n_l2___15(X₀, X₁, X₂, X₃, X₄) → n_l4___13(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁+3 {O(n)}

MPRF:

l4 [X₀ ]
n_l2___15 [X₀+1 ]
n_l2___19 [X₀+1 ]
n_l3___14 [X₀+1 ]
n_l3___18 [X₀+1 ]
n_l1___16 [X₀+1 ]
n_l4___13 [X₀ ]
n_l4___17 [X₀ ]
n_l1___21 [X₀+1 ]
n_l1___9 [X₀+1 ]
n_l6___12 [X₃+1 ]
n_l6___20 [X₀+1 ]
n_l6___24 [X₀ ]
n_l6___5 [X₀ ]
n_l6___8 [X₀+1 ]
n_l7___11 [X₀+1 ]
n_l7___23 [X₀+1 ]
n_l5___22 [X₀+1 ]
n_l7___3 [X₀+1 ]
n_l5___2 [X₃+1 ]
n_l7___4 [X₀+1 ]
n_l5___10 [X₃+1 ]
n_l7___7 [X₃+1 ]
n_l5___6 [X₃+1 ]

MPRF for transition t₆₈₃: n_l2___19(X₀, X₁, X₂, X₃, X₄) → n_l3___18(X₀, X₁, Arg2_P, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ Arg2_P ∧ X₃ ≤ X₁ ∧ Arg2_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁+3 {O(n)}

MPRF:

l4 [X₀ ]
n_l2___15 [X₀ ]
n_l2___19 [X₀+1 ]
n_l3___14 [X₀ ]
n_l3___18 [X₀ ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀+1 ]
n_l1___21 [X₀+1 ]
n_l1___9 [X₀+1 ]
n_l6___12 [X₃+1 ]
n_l6___20 [X₀+1 ]
n_l6___24 [X₀ ]
n_l6___5 [X₀+1 ]
n_l6___8 [X₀+1 ]
n_l7___11 [X₀+1 ]
n_l7___23 [X₀+1 ]
n_l5___22 [X₃+1 ]
n_l7___3 [X₀+1 ]
n_l5___2 [X₃+1 ]
n_l7___4 [X₃+1 ]
n_l5___10 [X₃+1 ]
n_l7___7 [X₃+1 ]
n_l5___6 [X₃+1 ]

MPRF for transition t₆₈₄: n_l2___19(X₀, X₁, X₂, X₃, X₄) → n_l3___18(X₀, X₁, Arg2_P, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ Arg2_P ∧ X₃ ≤ X₁ ∧ Arg2_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁+3 {O(n)}

MPRF:

l4 [X₀ ]
n_l2___15 [X₀ ]
n_l2___19 [X₀+1 ]
n_l3___14 [X₀ ]
n_l3___18 [X₀ ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀+1 ]
n_l1___21 [X₀+1 ]
n_l1___9 [X₀+1 ]
n_l6___12 [X₃+1 ]
n_l6___20 [X₀+1 ]
n_l6___24 [X₀ ]
n_l6___5 [X₀+1 ]
n_l6___8 [X₀+1 ]
n_l7___11 [X₃+1 ]
n_l7___23 [X₀+1 ]
n_l5___22 [X₃+1 ]
n_l7___3 [X₀+1 ]
n_l5___2 [X₃+1 ]
n_l7___4 [X₀+1 ]
n_l5___10 [X₃+1 ]
n_l7___7 [X₃+1 ]
n_l5___6 [X₃+1 ]

MPRF for transition t₆₈₅: n_l2___19(X₀, X₁, X₂, X₃, X₄) → n_l4___17(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁+3 {O(n)}

MPRF:

l4 [X₀+X₃-X₁ ]
n_l2___15 [X₀+1 ]
n_l2___19 [X₀+1 ]
n_l3___14 [X₀+1 ]
n_l3___18 [X₀+1 ]
n_l1___16 [X₀+1 ]
n_l4___13 [X₀+1 ]
n_l4___17 [X₀ ]
n_l1___21 [X₀+1 ]
n_l1___9 [X₀+1 ]
n_l6___12 [X₃+1 ]
n_l6___20 [X₀+1 ]
n_l6___24 [X₀+X₄-X₁ ]
n_l6___5 [X₃+1 ]
n_l6___8 [X₀+1 ]
n_l7___11 [X₀+1 ]
n_l7___23 [X₃+X₄-X₁ ]
n_l5___22 [X₃+1 ]
n_l7___3 [X₀+1 ]
n_l5___2 [X₃+1 ]
n_l7___4 [X₀+1 ]
n_l5___10 [X₃+1 ]
n_l7___7 [X₀+1 ]
n_l5___6 [X₃+1 ]

MPRF for transition t₆₈₇: n_l3___18(X₀, X₁, X₂, X₃, X₄) → n_l1___16(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁+3 {O(n)}

MPRF:

l4 [X₀ ]
n_l2___15 [X₀ ]
n_l2___19 [X₀+1 ]
n_l3___14 [X₀ ]
n_l3___18 [X₀+1 ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀ ]
n_l1___21 [X₀+1 ]
n_l1___9 [X₀+1 ]
n_l6___12 [X₃+1 ]
n_l6___20 [X₀+1 ]
n_l6___24 [X₀ ]
n_l6___5 [X₀ ]
n_l6___8 [X₀+1 ]
n_l7___11 [X₃+1 ]
n_l7___23 [X₀+1 ]
n_l5___22 [X₃+1 ]
n_l7___3 [X₀+1 ]
n_l5___2 [X₃+1 ]
n_l7___4 [X₀+1 ]
n_l5___10 [X₃+1 ]
n_l7___7 [X₃+1 ]
n_l5___6 [X₃+1 ]

MPRF for transition t₆₈₈: n_l4___13(X₀, X₁, X₂, X₃, X₄) → n_l6___12(X₀, X₁, X₂, X₀-1, X₃) :|: X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

6⋅X₁ {O(n)}

MPRF:

l4 [X₀+X₁ ]
n_l2___15 [X₀+X₁ ]
n_l2___19 [X₀+X₁ ]
n_l3___14 [X₀+X₁ ]
n_l3___18 [X₀+X₁ ]
n_l1___16 [X₀+X₁ ]
n_l4___13 [X₀+X₁ ]
n_l4___17 [X₀+X₁ ]
n_l1___21 [X₀+X₁ ]
n_l1___9 [X₀+X₁ ]
n_l6___12 [X₁+X₃ ]
n_l6___20 [X₀+X₁ ]
n_l6___24 [X₀+X₁ ]
n_l6___5 [X₀+X₁ ]
n_l6___8 [X₀+X₁ ]
n_l7___11 [X₁+X₃ ]
n_l7___23 [X₀+X₁ ]
n_l5___22 [X₁+X₃ ]
n_l7___3 [X₀+X₁ ]
n_l5___2 [X₁+X₃ ]
n_l7___4 [X₀+X₁ ]
n_l5___10 [X₁+X₃ ]
n_l7___7 [X₀+X₁ ]
n_l5___6 [X₁+X₃ ]

MPRF for transition t₆₈₉: n_l4___17(X₀, X₁, X₂, X₃, X₄) → n_l6___5(X₀, X₁, X₂, X₀-1, X₃) :|: X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁+3 {O(n)}

MPRF:

l4 [X₀ ]
n_l2___15 [X₀ ]
n_l2___19 [X₀+1 ]
n_l3___14 [X₀ ]
n_l3___18 [X₀ ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀+1 ]
n_l1___21 [X₀+1 ]
n_l1___9 [X₀+1 ]
n_l6___12 [X₃+1 ]
n_l6___20 [X₀+1 ]
n_l6___24 [X₀ ]
n_l6___5 [X₀ ]
n_l6___8 [X₀+1 ]
n_l7___11 [X₃+1 ]
n_l7___23 [X₀+1 ]
n_l5___22 [X₃+1 ]
n_l7___3 [X₃+1 ]
n_l5___2 [X₃+1 ]
n_l7___4 [X₀+1 ]
n_l5___10 [X₃+1 ]
n_l7___7 [X₀+1 ]
n_l5___6 [X₃+1 ]

MPRF for transition t₆₉₄: n_l5___10(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁ {O(n)}

MPRF:

l4 [X₀ ]
n_l2___15 [X₀ ]
n_l2___19 [X₀ ]
n_l3___14 [X₀ ]
n_l3___18 [X₀ ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀ ]
n_l1___21 [X₀ ]
n_l1___9 [X₀ ]
n_l6___12 [X₃+1 ]
n_l6___20 [X₃ ]
n_l6___24 [X₀ ]
n_l6___5 [X₀ ]
n_l6___8 [X₃ ]
n_l7___11 [X₃+1 ]
n_l7___23 [X₃ ]
n_l5___22 [X₃ ]
n_l7___3 [X₃ ]
n_l5___2 [X₃ ]
n_l7___4 [X₀+1 ]
n_l5___10 [X₃+1 ]
n_l7___7 [X₃ ]
n_l5___6 [X₃ ]

MPRF for transition t₆₉₅: n_l5___10(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁ {O(n)}

MPRF:

l4 [X₀ ]
n_l2___15 [X₀ ]
n_l2___19 [X₀ ]
n_l3___14 [X₀ ]
n_l3___18 [X₀ ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀ ]
n_l1___21 [X₀ ]
n_l1___9 [X₀ ]
n_l6___12 [X₃+1 ]
n_l6___20 [X₀ ]
n_l6___24 [X₀ ]
n_l6___5 [X₀ ]
n_l6___8 [X₀ ]
n_l7___11 [X₀+1 ]
n_l7___23 [X₃ ]
n_l5___22 [X₃ ]
n_l7___3 [X₃ ]
n_l5___2 [X₃ ]
n_l7___4 [X₀+1 ]
n_l5___10 [X₃+1 ]
n_l7___7 [X₃ ]
n_l5___6 [X₃ ]

MPRF for transition t₆₉₆: n_l5___10(X₀, X₁, X₂, X₃, X₄) → n_l6___8(X₀, X₁, X₂, X₀, X₂) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁ {O(n)}

MPRF:

l4 [X₀ ]
n_l2___15 [X₀ ]
n_l2___19 [X₀+X₃-X₂ ]
n_l3___14 [X₀ ]
n_l3___18 [X₀ ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀ ]
n_l1___21 [X₀ ]
n_l1___9 [X₀ ]
n_l6___12 [X₃+1 ]
n_l6___20 [X₀+1 ]
n_l6___24 [X₀ ]
n_l6___5 [X₃+1 ]
n_l6___8 [X₃ ]
n_l7___11 [X₃+1 ]
n_l7___23 [X₀+1 ]
n_l5___22 [X₃+1 ]
n_l7___3 [X₀+1 ]
n_l5___2 [X₃+1 ]
n_l7___4 [X₀+1 ]
n_l5___10 [X₃+1 ]
n_l7___7 [X₃ ]
n_l5___6 [X₃ ]

MPRF for transition t₆₉₇: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l1___21(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: 1 ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

6⋅X₁ {O(n)}

MPRF:

l4 [X₀+X₃-2 ]
n_l2___15 [X₀+X₁-1 ]
n_l2___19 [X₀+X₁-1 ]
n_l3___14 [X₀+X₁-1 ]
n_l3___18 [X₀+X₁-1 ]
n_l1___16 [X₀+X₁-1 ]
n_l4___13 [X₀+X₁-1 ]
n_l4___17 [X₀+X₁-1 ]
n_l1___21 [X₀+X₁+X₃-X₄ ]
n_l1___9 [X₀+X₁ ]
n_l6___12 [X₀+X₁-1 ]
n_l6___20 [X₀+X₁ ]
n_l6___24 [X₀+X₄-2 ]
n_l6___5 [X₀+X₁-1 ]
n_l6___8 [X₀+X₁ ]
n_l7___11 [X₁+X₃ ]
n_l7___23 [X₂+X₃ ]
n_l5___22 [X₁+X₃ ]
n_l7___3 [X₀+X₁+X₂+1-X₄ ]
n_l5___2 [X₁+X₂+X₃+1-X₄ ]
n_l7___4 [X₀+X₁ ]
n_l5___10 [X₁+X₃ ]
n_l7___7 [X₁+X₃ ]
n_l5___6 [X₁+X₃ ]

MPRF for transition t₆₉₈: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l1___21(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: 1 ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁ {O(n)}

MPRF:

l4 [X₀ ]
n_l2___15 [X₀ ]
n_l2___19 [X₀ ]
n_l3___14 [X₀ ]
n_l3___18 [X₀ ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀ ]
n_l1___21 [X₀ ]
n_l1___9 [X₀ ]
n_l6___12 [X₀ ]
n_l6___20 [X₀+1 ]
n_l6___24 [X₀ ]
n_l6___5 [X₀ ]
n_l6___8 [X₀ ]
n_l7___11 [X₀ ]
n_l7___23 [X₀+1 ]
n_l5___22 [X₃+1 ]
n_l7___3 [X₃+1 ]
n_l5___2 [X₃+1 ]
n_l7___4 [X₃ ]
n_l5___10 [X₃ ]
n_l7___7 [X₃ ]
n_l5___6 [X₃ ]

MPRF for transition t₇₀₀: n_l5___22(X₀, X₁, X₂, X₃, X₄) → n_l1___21(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁ {O(n)}

MPRF:

l4 [X₀+X₃-X₁-1 ]
n_l2___15 [X₀ ]
n_l2___19 [X₀ ]
n_l3___14 [X₀ ]
n_l3___18 [X₀ ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀ ]
n_l1___21 [X₀ ]
n_l1___9 [X₀ ]
n_l6___12 [X₀ ]
n_l6___20 [X₀ ]
n_l6___24 [X₀+X₄-X₁-1 ]
n_l6___5 [X₀ ]
n_l6___8 [X₀ ]
n_l7___11 [X₀ ]
n_l7___23 [X₀+X₄-X₁ ]
n_l5___22 [X₃+1 ]
n_l7___3 [X₀ ]
n_l5___2 [X₃ ]
n_l7___4 [X₀ ]
n_l5___10 [X₃ ]
n_l7___7 [X₀ ]
n_l5___6 [X₃ ]

MPRF for transition t₇₀₁: n_l5___22(X₀, X₁, X₂, X₃, X₄) → n_l1___21(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁ {O(n)}

MPRF:

l4 [X₀+X₃-X₁-1 ]
n_l2___15 [X₀ ]
n_l2___19 [X₀ ]
n_l3___14 [X₀ ]
n_l3___18 [X₀ ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀ ]
n_l1___21 [X₀ ]
n_l1___9 [X₀ ]
n_l6___12 [X₀ ]
n_l6___20 [X₀ ]
n_l6___24 [X₀+X₄-X₁-1 ]
n_l6___5 [X₀ ]
n_l6___8 [X₃ ]
n_l7___11 [X₀ ]
n_l7___23 [X₃+X₄-X₁ ]
n_l5___22 [X₀+1 ]
n_l7___3 [X₀ ]
n_l5___2 [X₃ ]
n_l7___4 [X₃ ]
n_l5___10 [X₃ ]
n_l7___7 [X₃ ]
n_l5___6 [X₃ ]

MPRF for transition t₇₀₂: n_l5___22(X₀, X₁, X₂, X₃, X₄) → n_l6___20(X₀, X₁, X₂, X₀, X₂) :|: 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₁ {O(n)}

MPRF:

l4 [X₀+X₃-X₁-1 ]
n_l2___15 [X₀ ]
n_l2___19 [X₀ ]
n_l3___14 [X₀ ]
n_l3___18 [X₀ ]
n_l1___16 [X₀ ]
n_l4___13 [X₀ ]
n_l4___17 [X₀ ]
n_l1___21 [X₀ ]
n_l1___9 [X₀ ]
n_l6___12 [X₀ ]
n_l6___20 [X₀ ]
n_l6___24 [X₃+X₄-X₁ ]
n_l6___5 [X₀ ]
n_l6___8 [X₀ ]
n_l7___11 [X₀ ]
n_l7___23 [X₂+X₃+1-X₁ ]
n_l5___22 [X₃+1 ]
n_l7___3 [X₀ ]
n_l5___2 [X₃ ]
n_l7___4 [X₀ ]
n_l5___10 [X₃ ]
n_l7___7 [X₀ ]
n_l5___6 [X₃ ]

MPRF for transition t₇₀₃: n_l5___6(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₄ ≤ 1+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

6⋅X₁+2 {O(n)}

MPRF:

l4 [X₀+2⋅X₁-X₃ ]
n_l2___15 [X₀+X₁-1 ]
n_l2___19 [X₀+X₁-1 ]
n_l3___14 [X₀+X₁-1 ]
n_l3___18 [X₀+X₁-1 ]
n_l1___16 [X₀+X₁-1 ]
n_l4___13 [X₀+X₁-1 ]
n_l4___17 [X₀+X₁-1 ]
n_l1___21 [X₀+X₁ ]
n_l1___9 [X₀+X₁-1 ]
n_l6___12 [X₁+X₃ ]
n_l6___20 [X₀+X₁ ]
n_l6___24 [X₀+2⋅X₁-X₄ ]
n_l6___5 [X₀+X₁-1 ]
n_l6___8 [X₀+X₁ ]
n_l7___11 [X₁+X₃ ]
n_l7___23 [2⋅X₁+X₃+1-X₄ ]
n_l5___22 [X₃+X₄-1 ]
n_l7___3 [X₀+X₁ ]
n_l5___2 [X₁+X₃ ]
n_l7___4 [X₀+X₁ ]
n_l5___10 [X₁+X₃ ]
n_l7___7 [X₁+X₃ ]
n_l5___6 [X₁+X₃ ]

MPRF for transition t₇₀₄: n_l5___6(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₄ ≤ 1+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

6⋅X₁+2 {O(n)}

MPRF:

l4 [X₀+2⋅X₁-X₃ ]
n_l2___15 [X₀+X₁-1 ]
n_l2___19 [X₀+X₁-1 ]
n_l3___14 [X₀+X₁-1 ]
n_l3___18 [X₀+X₁-1 ]
n_l1___16 [X₀+X₁-1 ]
n_l4___13 [X₀+X₁-1 ]
n_l4___17 [X₀+X₁-1 ]
n_l1___21 [X₀+X₁ ]
n_l1___9 [X₀+X₁-1 ]
n_l6___12 [X₀+X₁-1 ]
n_l6___20 [X₀+X₁ ]
n_l6___24 [X₀+2⋅X₁-X₄ ]
n_l6___5 [X₀+X₁-1 ]
n_l6___8 [X₀+X₁ ]
n_l7___11 [X₁+X₃ ]
n_l7___23 [2⋅X₁+X₃+1-X₄ ]
n_l5___22 [X₃+X₄-1 ]
n_l7___3 [X₀+X₁ ]
n_l5___2 [X₁+X₃ ]
n_l7___4 [X₀+X₁ ]
n_l5___10 [X₁+X₃ ]
n_l7___7 [X₁+X₃ ]
n_l5___6 [X₁+X₃ ]

All Bounds

Timebounds

Overall timebound:6⋅X₁⋅X₁⋅X₁+35⋅X₁⋅X₁+73⋅X₁+49 {O(n^3)}
t₀: 1 {O(1)}
t₈: X₁+1 {O(n)}
t₉: 4⋅X₁⋅X₁+12⋅X₁+5 {O(n^2)}
t₁₀: 3⋅X₁⋅X₁+11⋅X₁+8 {O(n^2)}
t₁₁: 2⋅X₁⋅X₁+7⋅X₁+5 {O(n^2)}
t₁₂: X₁+1 {O(n)}
t₁₃: 2⋅X₁⋅X₁+6⋅X₁+3 {O(n^2)}
t₁₄: X₁+1 {O(n)}
t₅: X₁+1 {O(n)}
t₆: X₁+1 {O(n)}
t₇: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+10⋅X₁+5 {O(n^3)}
t₁₅: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+11⋅X₁+6 {O(n^3)}
t₂: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+11⋅X₁+7 {O(n^3)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁: 1 {O(1)}

Costbounds

Overall costbound: 6⋅X₁⋅X₁⋅X₁+35⋅X₁⋅X₁+73⋅X₁+49 {O(n^3)}
t₀: 1 {O(1)}
t₈: X₁+1 {O(n)}
t₉: 4⋅X₁⋅X₁+12⋅X₁+5 {O(n^2)}
t₁₀: 3⋅X₁⋅X₁+11⋅X₁+8 {O(n^2)}
t₁₁: 2⋅X₁⋅X₁+7⋅X₁+5 {O(n^2)}
t₁₂: X₁+1 {O(n)}
t₁₃: 2⋅X₁⋅X₁+6⋅X₁+3 {O(n^2)}
t₁₄: X₁+1 {O(n)}
t₅: X₁+1 {O(n)}
t₆: X₁+1 {O(n)}
t₇: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+10⋅X₁+5 {O(n^3)}
t₁₅: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+11⋅X₁+6 {O(n^3)}
t₂: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+11⋅X₁+7 {O(n^3)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₈, X₀: X₁+1 {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: 8⋅X₁⋅X₁+24⋅X₁+16 {O(n^2)}
t₈, X₃: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₈, X₄: 16⋅X₁⋅X₁+4⋅X₄+48⋅X₁+32 {O(n^2)}
t₉, X₀: X₁+1 {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: 4⋅X₁⋅X₁+12⋅X₁+8 {O(n^2)}
t₉, X₃: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₉, X₄: 8⋅X₁⋅X₁+2⋅X₄+24⋅X₁+16 {O(n^2)}
t₁₀, X₀: X₁+1 {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: 4⋅X₁⋅X₁+12⋅X₁+8 {O(n^2)}
t₁₀, X₃: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₁₀, X₄: 8⋅X₁⋅X₁+2⋅X₄+24⋅X₁+16 {O(n^2)}
t₁₁, X₀: X₁+1 {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: 4⋅X₁⋅X₁+12⋅X₁+8 {O(n^2)}
t₁₁, X₃: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₁₁, X₄: 8⋅X₁⋅X₁+2⋅X₄+24⋅X₁+16 {O(n^2)}
t₁₂, X₀: X₁+1 {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: 4⋅X₁⋅X₁+12⋅X₁+8 {O(n^2)}
t₁₂, X₃: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₁₂, X₄: 8⋅X₁⋅X₁+2⋅X₄+24⋅X₁+16 {O(n^2)}
t₁₃, X₀: X₁+1 {O(n)}
t₁₃, X₁: X₁ {O(n)}
t₁₃, X₂: 4⋅X₁⋅X₁+12⋅X₁+8 {O(n^2)}
t₁₃, X₃: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₁₃, X₄: 8⋅X₁⋅X₁+2⋅X₄+24⋅X₁+16 {O(n^2)}
t₁₄, X₀: X₁+1 {O(n)}
t₁₄, X₁: X₁ {O(n)}
t₁₄, X₂: 12⋅X₁⋅X₁+36⋅X₁+24 {O(n^2)}
t₁₄, X₃: 2⋅X₁+4 {O(n)}
t₁₄, X₄: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₅, X₀: X₁+1 {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₅, X₃: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₅, X₄: 4⋅X₁⋅X₁+12⋅X₁+X₄+8 {O(n^2)}
t₆, X₀: X₁+1 {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₆, X₃: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₆, X₄: 4⋅X₁⋅X₁+12⋅X₁+X₄+8 {O(n^2)}
t₇, X₀: X₁+1 {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₇, X₃: X₁+1 {O(n)}
t₇, X₄: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₁₅, X₀: X₁+1 {O(n)}
t₁₅, X₁: X₁ {O(n)}
t₁₅, X₂: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₁₅, X₃: 3⋅X₁+5 {O(n)}
t₁₅, X₄: 4⋅X₁⋅X₁+12⋅X₁+8 {O(n^2)}
t₂, X₀: X₁+1 {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₂, X₃: 3⋅X₁+X₃+5 {O(n)}
t₂, X₄: 4⋅X₁⋅X₁+12⋅X₁+X₄+8 {O(n^2)}
t₃, X₀: 2⋅X₁+1 {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: 2⋅X₁⋅X₁+6⋅X₁+4 {O(n^2)}
t₃, X₃: 3⋅X₁+X₃+5 {O(n)}
t₃, X₄: 4⋅X₁⋅X₁+12⋅X₁+X₄+8 {O(n^2)}
t₄, X₀: X₁+1 {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: 1 {O(1)}
t₄, X₃: 3⋅X₁+5 {O(n)}
t₄, X₄: 4⋅X₁⋅X₁+12⋅X₁+8 {O(n^2)}
t₁₆, X₀: 3⋅X₁+2 {O(n)}
t₁₆, X₁: 3⋅X₁ {O(n)}
t₁₆, X₂: 2⋅X₁⋅X₁+6⋅X₁+5 {O(n^2)}
t₁₆, X₃: 6⋅X₁+X₃+10 {O(n)}
t₁₆, X₄: 8⋅X₁⋅X₁+24⋅X₁+X₄+16 {O(n^2)}
t₁, X₀: X₁ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: 0 {O(1)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}