Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈
Temp_Vars: T
Locations: l0, l1, l2, l3, l4
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l1(3, T, 3, 1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l1(X₀, X₁, X₂, T, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₄+1 ≤ X₂
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l2(X₀, X₁, X₂, X₃, X₄, X₀, 0, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₃, X₃, T) :|: X₂ ≤ X₄
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, T, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₆+1 ≤ X₅
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₀, 0, 1, X₁₁, X₁₂, X₇, X₇, T, X₁₆, X₁₇, X₁₈) :|: X₅ ≤ X₆
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, T, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₉+1 ≤ X₈
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₀, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₈ ≤ X₉
Preprocessing
Eliminate variables {T,X₁,X₃,X₇,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈} that do not contribute to the problem
Found invariant X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location l2
Found invariant X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 3+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 3+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location l1
Found invariant X₉ ≤ 3 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 6 ∧ X₉ ≤ X₆ ∧ X₆+X₉ ≤ 6 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 6 ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 6 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 6 ∧ X₉ ≤ X₀ ∧ X₀+X₉ ≤ 6 ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 6 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 6 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 6 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 3 ∧ X₈ ≤ X₆ ∧ X₆+X₈ ≤ 6 ∧ X₈ ≤ X₅ ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 6 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 6 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 6 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 6 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 6 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 3 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 6 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location l4
Found invariant X₉ ≤ 3 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 6 ∧ X₉ ≤ X₆ ∧ X₆+X₉ ≤ 6 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 6 ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 6 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 6 ∧ X₉ ≤ X₀ ∧ X₀+X₉ ≤ 6 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ 3 ≤ X₆+X₉ ∧ X₆ ≤ 3+X₉ ∧ 3 ≤ X₅+X₉ ∧ X₅ ≤ 3+X₉ ∧ 3 ≤ X₄+X₉ ∧ X₄ ≤ 3+X₉ ∧ 3 ≤ X₂+X₉ ∧ X₂ ≤ 3+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₈ ≤ X₆ ∧ X₆+X₈ ≤ 6 ∧ X₈ ≤ X₅ ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 6 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 6 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 6 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 6 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 6 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 3 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 6 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₂, X₄, X₅, X₆, X₈, X₉
Temp_Vars:
Locations: l0, l1, l2, l3, l4
Transitions:
t₁₇: l0(X₀, X₂, X₄, X₅, X₆, X₈, X₉) → l1(3, 3, 0, X₅, X₆, X₈, X₉)
t₁₈: l1(X₀, X₂, X₄, X₅, X₆, X₈, X₉) → l1(X₀, X₂, X₄+1, X₅, X₆, X₈, X₉) :|: X₄+1 ≤ X₂ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 3+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 3+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀
t₁₉: l1(X₀, X₂, X₄, X₅, X₆, X₈, X₉) → l2(X₀, X₂, X₄, X₀, 0, X₈, X₉) :|: X₂ ≤ X₄ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 3+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 3+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀
t₂₀: l2(X₀, X₂, X₄, X₅, X₆, X₈, X₉) → l2(X₀, X₂, X₄, X₅, X₆+1, X₈, X₉) :|: X₆+1 ≤ X₅ ∧ X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀
t₂₁: l2(X₀, X₂, X₄, X₅, X₆, X₈, X₉) → l3(X₀, X₂, X₄, X₅, X₆, X₀, 0) :|: X₅ ≤ X₆ ∧ X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀
t₂₂: l3(X₀, X₂, X₄, X₅, X₆, X₈, X₉) → l3(X₀, X₂, X₄, X₅, X₆, X₈, X₉+1) :|: X₉+1 ≤ X₈ ∧ X₉ ≤ 3 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 6 ∧ X₉ ≤ X₆ ∧ X₆+X₉ ≤ 6 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 6 ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 6 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 6 ∧ X₉ ≤ X₀ ∧ X₀+X₉ ≤ 6 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ 3 ≤ X₆+X₉ ∧ X₆ ≤ 3+X₉ ∧ 3 ≤ X₅+X₉ ∧ X₅ ≤ 3+X₉ ∧ 3 ≤ X₄+X₉ ∧ X₄ ≤ 3+X₉ ∧ 3 ≤ X₂+X₉ ∧ X₂ ≤ 3+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₈ ≤ X₆ ∧ X₆+X₈ ≤ 6 ∧ X₈ ≤ X₅ ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 6 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 6 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 6 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 6 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 6 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 3 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 6 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀
t₂₃: l3(X₀, X₂, X₄, X₅, X₆, X₈, X₉) → l4(X₀, X₂, X₄, X₅, X₆, X₈, X₉) :|: X₈ ≤ X₉ ∧ X₉ ≤ 3 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 6 ∧ X₉ ≤ X₆ ∧ X₆+X₉ ≤ 6 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 6 ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 6 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 6 ∧ X₉ ≤ X₀ ∧ X₀+X₉ ≤ 6 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ 3 ≤ X₆+X₉ ∧ X₆ ≤ 3+X₉ ∧ 3 ≤ X₅+X₉ ∧ X₅ ≤ 3+X₉ ∧ 3 ≤ X₄+X₉ ∧ X₄ ≤ 3+X₉ ∧ 3 ≤ X₂+X₉ ∧ X₂ ≤ 3+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₈ ≤ X₆ ∧ X₆+X₈ ≤ 6 ∧ X₈ ≤ X₅ ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 6 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 6 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 6 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 6 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 6 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 3 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 6 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀
MPRF for transition t₁₈: l1(X₀, X₂, X₄, X₅, X₆, X₈, X₉) → l1(X₀, X₂, X₄+1, X₅, X₆, X₈, X₉) :|: X₄+1 ≤ X₂ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 3+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 3+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ of depth 1:
new bound:
4 {O(1)}
MPRF:
l1 [X₀+1-X₄ ]
MPRF for transition t₂₀: l2(X₀, X₂, X₄, X₅, X₆, X₈, X₉) → l2(X₀, X₂, X₄, X₅, X₆+1, X₈, X₉) :|: X₆+1 ≤ X₅ ∧ X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ of depth 1:
new bound:
4 {O(1)}
MPRF:
l2 [4-X₆ ]
MPRF for transition t₂₂: l3(X₀, X₂, X₄, X₅, X₆, X₈, X₉) → l3(X₀, X₂, X₄, X₅, X₆, X₈, X₉+1) :|: X₉+1 ≤ X₈ ∧ X₉ ≤ 3 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 6 ∧ X₉ ≤ X₆ ∧ X₆+X₉ ≤ 6 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 6 ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 6 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 6 ∧ X₉ ≤ X₀ ∧ X₀+X₉ ≤ 6 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ 3 ≤ X₆+X₉ ∧ X₆ ≤ 3+X₉ ∧ 3 ≤ X₅+X₉ ∧ X₅ ≤ 3+X₉ ∧ 3 ≤ X₄+X₉ ∧ X₄ ≤ 3+X₉ ∧ 3 ≤ X₂+X₉ ∧ X₂ ≤ 3+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₈ ≤ X₆ ∧ X₆+X₈ ≤ 6 ∧ X₈ ≤ X₅ ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 6 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 6 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 6 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 6 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 6 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 3 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 6 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ of depth 1:
new bound:
6 {O(1)}
MPRF:
l3 [2⋅X₅-X₉ ]
All Bounds
Timebounds
Overall timebound:18 {O(1)}
t₁₇: 1 {O(1)}
t₁₈: 4 {O(1)}
t₁₉: 1 {O(1)}
t₂₀: 4 {O(1)}
t₂₁: 1 {O(1)}
t₂₂: 6 {O(1)}
t₂₃: 1 {O(1)}
Costbounds
Overall costbound: 18 {O(1)}
t₁₇: 1 {O(1)}
t₁₈: 4 {O(1)}
t₁₉: 1 {O(1)}
t₂₀: 4 {O(1)}
t₂₁: 1 {O(1)}
t₂₂: 6 {O(1)}
t₂₃: 1 {O(1)}
Sizebounds
t₁₇, X₀: 3 {O(1)}
t₁₇, X₂: 3 {O(1)}
t₁₇, X₄: 0 {O(1)}
t₁₇, X₅: X₅ {O(n)}
t₁₇, X₆: X₆ {O(n)}
t₁₇, X₈: X₈ {O(n)}
t₁₇, X₉: X₉ {O(n)}
t₁₈, X₀: 3 {O(1)}
t₁₈, X₂: 3 {O(1)}
t₁₈, X₄: 3 {O(1)}
t₁₈, X₅: X₅ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₉ {O(n)}
t₁₉, X₀: 3 {O(1)}
t₁₉, X₂: 3 {O(1)}
t₁₉, X₄: 3 {O(1)}
t₁₉, X₅: 3 {O(1)}
t₁₉, X₆: 0 {O(1)}
t₁₉, X₈: X₈ {O(n)}
t₁₉, X₉: X₉ {O(n)}
t₂₀, X₀: 3 {O(1)}
t₂₀, X₂: 3 {O(1)}
t₂₀, X₄: 3 {O(1)}
t₂₀, X₅: 3 {O(1)}
t₂₀, X₆: 3 {O(1)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₉ {O(n)}
t₂₁, X₀: 3 {O(1)}
t₂₁, X₂: 3 {O(1)}
t₂₁, X₄: 3 {O(1)}
t₂₁, X₅: 3 {O(1)}
t₂₁, X₆: 3 {O(1)}
t₂₁, X₈: 3 {O(1)}
t₂₁, X₉: 0 {O(1)}
t₂₂, X₀: 3 {O(1)}
t₂₂, X₂: 3 {O(1)}
t₂₂, X₄: 3 {O(1)}
t₂₂, X₅: 3 {O(1)}
t₂₂, X₆: 3 {O(1)}
t₂₂, X₈: 3 {O(1)}
t₂₂, X₉: 3 {O(1)}
t₂₃, X₀: 3 {O(1)}
t₂₃, X₂: 3 {O(1)}
t₂₃, X₄: 3 {O(1)}
t₂₃, X₅: 3 {O(1)}
t₂₃, X₆: 3 {O(1)}
t₂₃, X₈: 3 {O(1)}
t₂₃, X₉: 3 {O(1)}