Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: K
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₁₈: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₂, X₂, X₄, X₄, X₆, X₆, X₈, X₈, X₀)
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, 1+X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, 1+X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₅ ≤ 3 ∧ 3 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₁₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅+1 ≤ 0 ∧ X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 4 ≤ X₅ ∧ X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 2 ≤ X₇+X₃+X₁ ∧ X₁+2 ≤ X₇+X₃ ∧ X₃ ≤ X₇+X₁ ∧ X₃+X₁ ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀+X₃+X₁ ∧ X₁+2 ≤ X₀+X₃ ∧ X₃ ≤ X₀+X₁ ∧ X₃+X₁ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇+X₃+X₁ ∧ X₁ ≤ X₇+X₃ ∧ X₃+2 ≤ X₇+X₁ ∧ X₃+X₁+2 ≤ X₇ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₀+X₃+X₁ ∧ X₁ ≤ X₀+X₃ ∧ X₃+2 ≤ X₀+X₁ ∧ X₃+X₁+2 ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 2 ≤ X₇+X₃+X₁ ∧ X₁ ≤ X₇+X₃ ∧ X₃+2 ≤ X₇+X₁ ∧ X₃+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀+X₃+X₁ ∧ X₁ ≤ X₀+X₃ ∧ X₃+2 ≤ X₀+X₁ ∧ X₃+X₁ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇+X₃+X₁ ∧ X₁+2 ≤ X₇+X₃ ∧ X₃ ≤ X₇+X₁ ∧ X₃+X₁+2 ≤ X₇ ∧ X₅ ≤ 3 ∧ 3 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₀+X₃+X₁ ∧ X₁+2 ≤ X₀+X₃ ∧ X₃ ≤ X₀+X₁ ∧ X₃+X₁+2 ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 3 ∧ 3 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₀+X₃+X₁ ∧ X₁+1 ≤ X₀+X₃ ∧ X₃+1 ≤ X₀+X₁ ∧ X₃+X₁+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, 0, X₂, 0, X₄, K, X₆, 1, X₈, X₉) :|: 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
t₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, 0, X₂, 0, X₄, X₅, X₆, 0, X₈, X₉) :|: X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉
Preprocessing
Found invariant X₉ ≤ X₇ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₀ ≤ X₇ for location l2
Found invariant X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₅+X₉ ∧ X₅ ≤ 2+X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 0 ≤ X₁+X₉ ∧ 2+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ 2+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 2+X₀ ∧ 3 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7
Found invariant X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 3 ≤ X₅+X₉ ∧ X₅ ≤ 1+X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l8
Found invariant X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1
Found invariant X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Found invariant X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: K
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₁₈: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₂, X₂, X₄, X₄, X₆, X₆, X₈, X₈, X₀)
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, 1+X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, 1+X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₅ ≤ 3 ∧ 3 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅+1 ≤ 0 ∧ X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 4 ≤ X₅ ∧ X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 2 ≤ X₇+X₃+X₁ ∧ X₁+2 ≤ X₇+X₃ ∧ X₃ ≤ X₇+X₁ ∧ X₃+X₁ ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀+X₃+X₁ ∧ X₁+2 ≤ X₀+X₃ ∧ X₃ ≤ X₀+X₁ ∧ X₃+X₁ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇+X₃+X₁ ∧ X₁ ≤ X₇+X₃ ∧ X₃+2 ≤ X₇+X₁ ∧ X₃+X₁+2 ≤ X₇ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₀+X₃+X₁ ∧ X₁ ≤ X₀+X₃ ∧ X₃+2 ≤ X₀+X₁ ∧ X₃+X₁+2 ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 2 ≤ X₇+X₃+X₁ ∧ X₁ ≤ X₇+X₃ ∧ X₃+2 ≤ X₇+X₁ ∧ X₃+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 3 ≤ X₅+X₉ ∧ X₅ ≤ 1+X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀+X₃+X₁ ∧ X₁ ≤ X₀+X₃ ∧ X₃+2 ≤ X₀+X₁ ∧ X₃+X₁ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 3 ≤ X₅+X₉ ∧ X₅ ≤ 1+X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇+X₃+X₁ ∧ X₁+2 ≤ X₇+X₃ ∧ X₃ ≤ X₇+X₁ ∧ X₃+X₁+2 ≤ X₇ ∧ X₅ ≤ 3 ∧ 3 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₅+X₉ ∧ X₅ ≤ 2+X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 0 ≤ X₁+X₉ ∧ 2+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ 2+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 2+X₀ ∧ 3 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₀+X₃+X₁ ∧ X₁+2 ≤ X₀+X₃ ∧ X₃ ≤ X₀+X₁ ∧ X₃+X₁+2 ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 3 ∧ 3 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₅+X₉ ∧ X₅ ≤ 2+X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 0 ≤ X₁+X₉ ∧ 2+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ 2+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 2+X₀ ∧ 3 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₀+X₃+X₁ ∧ X₁+1 ≤ X₀+X₃ ∧ X₃+1 ≤ X₀+X₁ ∧ X₃+X₁+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, 0, X₂, 0, X₄, K, X₆, 1, X₈, X₉) :|: 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, 0, X₂, 0, X₄, X₅, X₆, 0, X₈, X₉) :|: X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
MPRF for transition t₁₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅+1 ≤ 0 ∧ X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF:
l3 [X₉+1-X₇ ]
l4 [X₀+1-X₇ ]
l5 [X₉+1-X₇ ]
l6 [X₉+1-X₇ ]
l7 [X₀-X₇ ]
l1 [X₉+1-X₇ ]
MPRF for transition t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 4 ≤ X₅ ∧ X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF:
l3 [X₉+1-X₇ ]
l4 [X₀+X₅-X₇ ]
l5 [X₉+1-X₇ ]
l6 [X₉+1-X₇ ]
l7 [X₀-X₇ ]
l1 [X₉+1-X₇ ]
MPRF for transition t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, 1+X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF:
l3 [X₉-X₇ ]
l4 [X₉-X₇ ]
l5 [X₉-X₇ ]
l6 [X₉-X₇ ]
l7 [X₉-X₇ ]
l1 [X₉+1-X₇ ]
MPRF for transition t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF:
l3 [X₉-X₇ ]
l4 [X₀-X₇ ]
l5 [X₀-X₇ ]
l6 [X₀-X₇ ]
l7 [X₀-X₇ ]
l1 [X₀+1-X₇ ]
MPRF for transition t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, 1+X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF:
l3 [X₉+1-X₇ ]
l4 [X₀+X₅-X₇ ]
l5 [X₀-X₇ ]
l6 [X₀-X₇ ]
l7 [X₉-X₇ ]
l1 [X₀+1-X₇ ]
MPRF for transition t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₇ ≤ X₀ ∧ X₅ ≤ 3 ∧ 3 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF:
l3 [X₉+1-X₇ ]
l4 [X₀+X₅-X₇ ]
l5 [X₀+1-X₇ ]
l6 [X₉-X₇ ]
l7 [X₉-X₇ ]
l1 [X₀+1-X₇ ]
MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 2 ≤ X₇+X₃+X₁ ∧ X₁+2 ≤ X₇+X₃ ∧ X₃ ≤ X₇+X₁ ∧ X₃+X₁ ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF:
l3 [X₀+1-X₇ ]
l4 [X₀-X₇ ]
l5 [X₀-X₇ ]
l6 [X₀-X₇ ]
l7 [X₉-X₇ ]
l1 [X₀+1-X₇ ]
MPRF for transition t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇+X₃+X₁ ∧ X₁ ≤ X₇+X₃ ∧ X₃+2 ≤ X₇+X₁ ∧ X₃+X₁+2 ≤ X₇ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀+1 {O(n)}
MPRF:
l3 [2⋅X₀+X₃-X₇-1 ]
l4 [2⋅X₀+X₃+1-X₇ ]
l5 [2⋅X₀+X₃-X₇ ]
l6 [2⋅X₀+X₃-X₇ ]
l7 [X₃+2⋅X₉-X₇ ]
l1 [2⋅X₀+X₃-X₇ ]
MPRF for transition t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 2 ≤ X₇+X₃+X₁ ∧ X₁ ≤ X₇+X₃ ∧ X₃+2 ≤ X₇+X₁ ∧ X₃+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 3 ≤ X₅+X₉ ∧ X₅ ≤ 1+X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀+1 {O(n)}
MPRF:
l3 [2⋅X₉-X₁-X₇ ]
l4 [2⋅X₉-X₁-X₇ ]
l5 [2⋅X₉+1-X₁-X₇ ]
l6 [2⋅X₉-X₁-X₇-1 ]
l7 [2⋅X₀-X₁-X₇ ]
l1 [2⋅X₉-X₁-X₇ ]
MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇+X₃+X₁ ∧ X₁+2 ≤ X₇+X₃ ∧ X₃ ≤ X₇+X₁ ∧ X₃+X₁+2 ≤ X₇ ∧ X₅ ≤ 3 ∧ 3 ≤ X₅ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₅+X₉ ∧ X₅ ≤ 2+X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 0 ≤ X₁+X₉ ∧ 2+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ 2+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 2+X₀ ∧ 3 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF:
l3 [X₉+1-X₇ ]
l4 [X₉+1-X₇ ]
l5 [X₉-X₇ ]
l6 [X₉+1-X₇ ]
l7 [X₀-X₇ ]
l1 [X₉+1-X₇ ]
MPRF for transition t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, X₄, K, X₆, 1+X₇, X₈, X₉) :|: X₇+1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇+X₃+X₁ ∧ X₁+1 ≤ X₇+X₃ ∧ X₃+1 ≤ X₇+X₁ ∧ X₃+X₁+1 ≤ X₇ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF:
l3 [X₀-X₇ ]
l4 [X₀-X₇ ]
l5 [X₀-X₇ ]
l6 [X₀-X₇ ]
l7 [X₀+1-X₇ ]
l1 [X₀+1-X₇ ]
All Bounds
Timebounds
Overall timebound:13⋅X₀+28 {O(n)}
t₁₈: 1 {O(1)}
t₁₂: X₀+2 {O(n)}
t₁₃: X₀+2 {O(n)}
t₁₄: X₀+2 {O(n)}
t₁₅: X₀+2 {O(n)}
t₁₆: X₀+2 {O(n)}
t₁₇: X₀+2 {O(n)}
t₄: 1 {O(1)}
t₅: X₀+2 {O(n)}
t₆: 1 {O(1)}
t₇: 2⋅X₀+1 {O(n)}
t₈: 1 {O(1)}
t₉: 2⋅X₀+1 {O(n)}
t₁₀: 1 {O(1)}
t₁₁: X₀+2 {O(n)}
t₂: 1 {O(1)}
t₃: X₀+2 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
Costbounds
Overall costbound: 13⋅X₀+28 {O(n)}
t₁₈: 1 {O(1)}
t₁₂: X₀+2 {O(n)}
t₁₃: X₀+2 {O(n)}
t₁₄: X₀+2 {O(n)}
t₁₅: X₀+2 {O(n)}
t₁₆: X₀+2 {O(n)}
t₁₇: X₀+2 {O(n)}
t₄: 1 {O(1)}
t₅: X₀+2 {O(n)}
t₆: 1 {O(1)}
t₇: 2⋅X₀+1 {O(n)}
t₈: 1 {O(1)}
t₉: 2⋅X₀+1 {O(n)}
t₁₀: 1 {O(1)}
t₁₁: X₀+2 {O(n)}
t₂: 1 {O(1)}
t₃: X₀+2 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
Sizebounds
t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₂ {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: X₄ {O(n)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: X₆ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₇: X₈ {O(n)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₀ {O(n)}
t₁₂, X₀: 6⋅X₀ {O(n)}
t₁₂, X₁: 2⋅X₀+4 {O(n)}
t₁₂, X₂: 6⋅X₂ {O(n)}
t₁₂, X₃: 2⋅X₀+4 {O(n)}
t₁₂, X₄: 6⋅X₄ {O(n)}
t₁₂, X₆: 6⋅X₆ {O(n)}
t₁₂, X₇: 7⋅X₀+14 {O(n)}
t₁₂, X₈: 6⋅X₈ {O(n)}
t₁₂, X₉: 6⋅X₀ {O(n)}
t₁₃, X₀: 6⋅X₀ {O(n)}
t₁₃, X₁: 2⋅X₀+4 {O(n)}
t₁₃, X₂: 6⋅X₂ {O(n)}
t₁₃, X₃: 2⋅X₀+4 {O(n)}
t₁₃, X₄: 6⋅X₄ {O(n)}
t₁₃, X₆: 6⋅X₆ {O(n)}
t₁₃, X₇: 7⋅X₀+14 {O(n)}
t₁₃, X₈: 6⋅X₈ {O(n)}
t₁₃, X₉: 6⋅X₀ {O(n)}
t₁₄, X₀: 6⋅X₀ {O(n)}
t₁₄, X₁: 2⋅X₀+4 {O(n)}
t₁₄, X₂: 6⋅X₂ {O(n)}
t₁₄, X₃: 2⋅X₀+4 {O(n)}
t₁₄, X₄: 6⋅X₄ {O(n)}
t₁₄, X₅: 0 {O(1)}
t₁₄, X₆: 6⋅X₆ {O(n)}
t₁₄, X₇: 7⋅X₀+14 {O(n)}
t₁₄, X₈: 6⋅X₈ {O(n)}
t₁₄, X₉: 6⋅X₀ {O(n)}
t₁₅, X₀: 6⋅X₀ {O(n)}
t₁₅, X₁: 2⋅X₀+4 {O(n)}
t₁₅, X₂: 6⋅X₂ {O(n)}
t₁₅, X₃: 2⋅X₀+4 {O(n)}
t₁₅, X₄: 6⋅X₄ {O(n)}
t₁₅, X₅: 1 {O(1)}
t₁₅, X₆: 6⋅X₆ {O(n)}
t₁₅, X₇: 7⋅X₀+14 {O(n)}
t₁₅, X₈: 6⋅X₈ {O(n)}
t₁₅, X₉: 6⋅X₀ {O(n)}
t₁₆, X₀: 6⋅X₀ {O(n)}
t₁₆, X₁: 2⋅X₀+4 {O(n)}
t₁₆, X₂: 6⋅X₂ {O(n)}
t₁₆, X₃: 2⋅X₀+4 {O(n)}
t₁₆, X₄: 6⋅X₄ {O(n)}
t₁₆, X₅: 2 {O(1)}
t₁₆, X₆: 6⋅X₆ {O(n)}
t₁₆, X₇: 7⋅X₀+14 {O(n)}
t₁₆, X₈: 6⋅X₈ {O(n)}
t₁₆, X₉: 6⋅X₀ {O(n)}
t₁₇, X₀: 6⋅X₀ {O(n)}
t₁₇, X₁: 2⋅X₀+4 {O(n)}
t₁₇, X₂: 6⋅X₂ {O(n)}
t₁₇, X₃: 2⋅X₀+4 {O(n)}
t₁₇, X₄: 6⋅X₄ {O(n)}
t₁₇, X₅: 3 {O(1)}
t₁₇, X₆: 6⋅X₆ {O(n)}
t₁₇, X₇: 7⋅X₀+14 {O(n)}
t₁₇, X₈: 6⋅X₈ {O(n)}
t₁₇, X₉: 6⋅X₀ {O(n)}
t₄, X₀: 6⋅X₀ {O(n)}
t₄, X₁: 2⋅X₀+4 {O(n)}
t₄, X₂: 6⋅X₂ {O(n)}
t₄, X₃: 2⋅X₀+4 {O(n)}
t₄, X₄: 6⋅X₄ {O(n)}
t₄, X₅: 0 {O(1)}
t₄, X₆: 6⋅X₆ {O(n)}
t₄, X₇: 7⋅X₀+14 {O(n)}
t₄, X₈: 6⋅X₈ {O(n)}
t₄, X₉: 6⋅X₀ {O(n)}
t₅, X₀: 6⋅X₀ {O(n)}
t₅, X₁: 2⋅X₀+4 {O(n)}
t₅, X₂: 6⋅X₂ {O(n)}
t₅, X₃: 2⋅X₀+4 {O(n)}
t₅, X₄: 6⋅X₄ {O(n)}
t₅, X₆: 6⋅X₆ {O(n)}
t₅, X₇: 7⋅X₀+14 {O(n)}
t₅, X₈: 6⋅X₈ {O(n)}
t₅, X₉: 6⋅X₀ {O(n)}
t₆, X₀: 6⋅X₀ {O(n)}
t₆, X₁: 2⋅X₀+4 {O(n)}
t₆, X₂: 6⋅X₂ {O(n)}
t₆, X₃: 2⋅X₀+4 {O(n)}
t₆, X₄: 6⋅X₄ {O(n)}
t₆, X₅: 1 {O(1)}
t₆, X₆: 6⋅X₆ {O(n)}
t₆, X₇: 7⋅X₀+14 {O(n)}
t₆, X₈: 6⋅X₈ {O(n)}
t₆, X₉: 6⋅X₀ {O(n)}
t₇, X₀: 6⋅X₀ {O(n)}
t₇, X₁: 2⋅X₀+4 {O(n)}
t₇, X₂: 6⋅X₂ {O(n)}
t₇, X₃: 2⋅X₀+4 {O(n)}
t₇, X₄: 6⋅X₄ {O(n)}
t₇, X₆: 6⋅X₆ {O(n)}
t₇, X₇: 7⋅X₀+14 {O(n)}
t₇, X₈: 6⋅X₈ {O(n)}
t₇, X₉: 6⋅X₀ {O(n)}
t₈, X₀: 6⋅X₀ {O(n)}
t₈, X₁: 2⋅X₀+4 {O(n)}
t₈, X₂: 6⋅X₂ {O(n)}
t₈, X₃: 2⋅X₀+4 {O(n)}
t₈, X₄: 6⋅X₄ {O(n)}
t₈, X₅: 2 {O(1)}
t₈, X₆: 6⋅X₆ {O(n)}
t₈, X₇: 7⋅X₀+14 {O(n)}
t₈, X₈: 6⋅X₈ {O(n)}
t₈, X₉: 6⋅X₀ {O(n)}
t₉, X₀: 6⋅X₀ {O(n)}
t₉, X₁: 2⋅X₀+4 {O(n)}
t₉, X₂: 6⋅X₂ {O(n)}
t₉, X₃: 2⋅X₀+4 {O(n)}
t₉, X₄: 6⋅X₄ {O(n)}
t₉, X₆: 6⋅X₆ {O(n)}
t₉, X₇: 7⋅X₀+14 {O(n)}
t₉, X₈: 6⋅X₈ {O(n)}
t₉, X₉: 6⋅X₀ {O(n)}
t₁₀, X₀: 6⋅X₀ {O(n)}
t₁₀, X₁: 2⋅X₀+4 {O(n)}
t₁₀, X₂: 6⋅X₂ {O(n)}
t₁₀, X₃: 2⋅X₀+4 {O(n)}
t₁₀, X₄: 6⋅X₄ {O(n)}
t₁₀, X₅: 3 {O(1)}
t₁₀, X₆: 6⋅X₆ {O(n)}
t₁₀, X₇: 7⋅X₀+14 {O(n)}
t₁₀, X₈: 6⋅X₈ {O(n)}
t₁₀, X₉: 6⋅X₀ {O(n)}
t₁₁, X₀: 6⋅X₀ {O(n)}
t₁₁, X₁: 2⋅X₀+4 {O(n)}
t₁₁, X₂: 6⋅X₂ {O(n)}
t₁₁, X₃: 2⋅X₀+4 {O(n)}
t₁₁, X₄: 6⋅X₄ {O(n)}
t₁₁, X₆: 6⋅X₆ {O(n)}
t₁₁, X₇: 7⋅X₀+14 {O(n)}
t₁₁, X₈: 6⋅X₈ {O(n)}
t₁₁, X₉: 6⋅X₀ {O(n)}
t₂, X₀: 12⋅X₀ {O(n)}
t₂, X₁: 4⋅X₀+8 {O(n)}
t₂, X₂: 12⋅X₂ {O(n)}
t₂, X₃: 4⋅X₀+8 {O(n)}
t₂, X₄: 12⋅X₄ {O(n)}
t₂, X₆: 12⋅X₆ {O(n)}
t₂, X₇: 14⋅X₀+28 {O(n)}
t₂, X₈: 12⋅X₈ {O(n)}
t₂, X₉: 12⋅X₀ {O(n)}
t₃, X₀: 6⋅X₀ {O(n)}
t₃, X₁: 2⋅X₀+4 {O(n)}
t₃, X₂: 6⋅X₂ {O(n)}
t₃, X₃: 2⋅X₀+4 {O(n)}
t₃, X₄: 6⋅X₄ {O(n)}
t₃, X₆: 6⋅X₆ {O(n)}
t₃, X₇: 7⋅X₀+14 {O(n)}
t₃, X₈: 6⋅X₈ {O(n)}
t₃, X₉: 6⋅X₀ {O(n)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: 0 {O(1)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: 0 {O(1)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₆ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: 0 {O(1)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₀ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: 0 {O(1)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: 0 {O(1)}
t₁, X₄: X₄ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: 1 {O(1)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₀ {O(n)}