Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef_1, nondef_2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₂-1, X₂, X₃, X₄, X₅, X₆)
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃
t₂₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: nondef_1 ≤ nondef_2
t₁₆: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: nondef_2 < nondef_1
t₂₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < 0
t₂₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅
t₂₀: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₉: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆)
t₁₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, 1)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, 0, X₄, 0, X₆) :|: 0 < X₂
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₀, X₃, X₄, X₅, X₆)
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₁, X₃, X₄, X₅, X₆)

Preprocessing

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l6

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l15

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l19

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l12

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l17

Found invariant X₆ ≤ 1+X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l20

Found invariant 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l21

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l5

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l13

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l22

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l8

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l10

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l16

Found invariant 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l18

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l4

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l14

Cut unsatisfiable transition t₂₁: l19→l10

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef_1, nondef_2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₁₄: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀
t₁₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: nondef_1 ≤ nondef_2 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₆: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: nondef_2 < nondef_1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂₀: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₉: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₆ ≤ 1+X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, 1) :|: 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, 0, X₄, 0, X₆) :|: 0 < X₂ ∧ X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₂₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₄+2 {O(n)}

MPRF:

l11 [2⋅X₂+X₄-X₃-2 ]
l18 [X₀+X₂ ]
l19 [X₂+X₄-1 ]
l10 [X₃+X₄-1 ]
l21 [X₀+X₂ ]
l20 [X₂+X₄-1 ]
l16 [X₂+X₄-1 ]
l9 [2⋅X₁+X₄-X₃ ]
l4 [X₂+X₄-1 ]

MPRF for transition t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₄+3 {O(n)}

MPRF:

l11 [X₀+X₁+2 ]
l18 [X₂+X₄ ]
l19 [X₀+2⋅X₂+1-X₃ ]
l10 [X₀+2⋅X₂+1-X₃ ]
l21 [X₀+X₂+1 ]
l20 [X₀+X₂+1 ]
l16 [X₀+X₂+1 ]
l9 [X₀+X₁+1 ]
l4 [X₀+X₂+1 ]

MPRF for transition t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄+2 {O(n)}

MPRF:

l11 [X₃ ]
l18 [X₂+1 ]
l19 [X₂ ]
l10 [X₃ ]
l21 [X₂+1 ]
l20 [X₂+1 ]
l16 [X₂+1 ]
l9 [X₃ ]
l4 [X₂+1 ]

MPRF for transition t₂₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄+2 {O(n)}

MPRF:

l11 [X₁+X₄-X₀ ]
l18 [X₂+X₄-X₀ ]
l19 [X₂+1 ]
l10 [X₃ ]
l21 [X₂+X₄-X₀ ]
l20 [X₂+1 ]
l16 [X₂+X₄-X₀ ]
l9 [X₁+X₄-X₀ ]
l4 [X₂+X₄-X₀ ]

MPRF for transition t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, 0, X₄, 0, X₆) :|: 0 < X₂ ∧ X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF:

l11 [X₀+X₃-X₄ ]
l18 [X₂-1 ]
l19 [X₀+X₂-X₄ ]
l10 [X₀+X₂-X₄ ]
l21 [X₂-1 ]
l20 [X₂-1 ]
l16 [X₂-1 ]
l9 [X₁+X₃-X₂ ]
l4 [X₂ ]

MPRF for transition t₂₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄+5 {O(n)}

MPRF:

l11 [2⋅X₀+2⋅X₂+2-X₃ ]
l18 [X₂+2⋅X₄ ]
l19 [2⋅X₀+2⋅X₂+2-X₃ ]
l10 [2⋅X₀+2⋅X₂+2-X₃ ]
l21 [X₂+2⋅X₄ ]
l20 [2⋅X₀+X₂+2 ]
l16 [2⋅X₀+X₂+2 ]
l9 [2⋅X₀+X₁+3 ]
l4 [2⋅X₀+X₂+2 ]

MPRF for transition t₁₄: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄⋅X₄+12⋅X₄+12 {O(n^2)}

MPRF:

l11 [X₄-X₂ ]
l9 [X₀-X₂ ]
l18 [X₀-X₃ ]
l19 [X₄-X₃ ]
l10 [X₄-X₂ ]
l21 [X₀-X₃ ]
l20 [X₀-X₃ ]
l4 [X₀+1 ]
l16 [X₀+1-X₃ ]

MPRF for transition t₁₆: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: nondef_2 < nondef_1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

6⋅X₄⋅X₄+18⋅X₄+12 {O(n^2)}

MPRF:

l11 [2⋅X₀-X₁-X₅ ]
l9 [2⋅X₀-X₁-X₅ ]
l18 [2⋅X₀-X₃ ]
l19 [2⋅X₀-X₃ ]
l10 [2⋅X₀+1-X₃-X₅ ]
l21 [2⋅X₀-X₃-1 ]
l20 [2⋅X₄-X₃-3 ]
l4 [2⋅X₀ ]
l16 [2⋅X₀-X₃ ]

MPRF for transition t₁₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: nondef_1 ≤ nondef_2 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄⋅X₄+12⋅X₄+12 {O(n^2)}

MPRF:

l11 [0 ]
l9 [0 ]
l18 [X₂+1-X₃ ]
l19 [0 ]
l10 [0 ]
l21 [X₂-X₃ ]
l20 [X₂-X₃ ]
l4 [X₂+1 ]
l16 [X₂+1-X₃ ]

MPRF for transition t₁₉: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₆ ≤ 1+X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}

MPRF:

l11 [X₀-X₂-X₅ ]
l9 [X₀-X₃-X₅ ]
l18 [2⋅X₀+1-X₃-X₄ ]
l19 [2⋅X₀-X₃-X₄ ]
l10 [X₀-X₂-X₅ ]
l21 [2⋅X₀+1-X₃-X₄ ]
l20 [X₀-X₃ ]
l4 [2⋅X₀+1-X₄ ]
l16 [2⋅X₀+1-X₃-X₄ ]

MPRF for transition t₁₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, 1) :|: 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

6⋅X₄⋅X₄+18⋅X₄+12 {O(n^2)}

MPRF:

l11 [X₃-X₅ ]
l9 [X₂-X₅ ]
l18 [2⋅X₂-X₃-1 ]
l19 [X₂-1 ]
l10 [X₃-X₅ ]
l21 [2⋅X₂-X₃-1 ]
l20 [2⋅X₂-X₃-2 ]
l4 [2⋅X₂ ]
l16 [2⋅X₂-X₃-1 ]

Analysing control-flow refined program

Cut unsatisfiable transition t₁₅: l16→l19

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11

Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l18___9

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l6

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l16___6

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l15

Found invariant X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 1 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₃+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l20___1

Found invariant X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location n_l20___4

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l19

Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l20___8

Found invariant X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location n_l20___2

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l12

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l17

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l5

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l13

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l22

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l8

Found invariant X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location n_l21___3

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l10

Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l16

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l4

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l14

Found invariant X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location n_l18___5

Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l21___7

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₂₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l18___9(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 0 ≤ X₅ ∧ X₃ < X₂ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ < X₂ ∧ 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₃₂: n_l18___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l20___8(X₀, X₁, X₂, Arg3_P, X₀+1, Arg5_P, Arg6_P) :|: 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₃ < X₂ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ 1+Arg3_P ≤ X₂ ∧ Arg5_P ≤ Arg3_P ∧ 0 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg5_P ≤ Arg6_P ∧ Arg6_P ≤ Arg5_P ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₃₃: n_l18___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l21___7(X₀, X₁, X₂, Arg3_P, X₀+1, Arg5_P, X₆) :|: 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₃ < X₂ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ 1+Arg3_P ≤ X₂ ∧ Arg5_P ≤ Arg3_P ∧ 0 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₃₇: n_l20___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l16___6(X₀, X₁, X₂, X₃+1, X₀+1, X₆, X₆) :|: X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₃₉: n_l21___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l20___1(X₀, X₁, X₂, X₃, X₀+1, X₅, 1) :|: X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₃₄: n_l20___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l16___6(X₀, X₁, X₂, X₃+1, X₀+1, X₆, X₆) :|: X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 1 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₃+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

MPRF for transition t₃₂₉: n_l16___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l18___5(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ X₅ ≤ X₃ ∧ X₃ < X₂ ∧ 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₄⋅X₄+7⋅X₄+X₁+5 {O(n^2)}

MPRF:

l11 [1 ]
l10 [1 ]
l16 [X₂-X₁ ]
l9 [X₂-X₁ ]
l4 [X₂-X₁ ]
l19 [2⋅X₂+1-2⋅X₃ ]
n_l18___5 [X₂-X₃ ]
n_l20___8 [X₂-X₁ ]
n_l18___9 [X₂-X₁ ]
n_l21___7 [X₂-X₁ ]
n_l20___1 [X₂-X₃ ]
n_l20___4 [X₂-X₃ ]
n_l16___6 [X₂+1-X₃ ]
n_l21___3 [X₂-X₃ ]
n_l20___2 [X₂-X₃ ]

MPRF for transition t₃₄₇: n_l16___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF:

l11 [X₂-1 ]
l10 [X₃-1 ]
l16 [X₂ ]
l9 [X₃-1 ]
l4 [X₂ ]
l19 [X₂-1 ]
n_l18___5 [X₂ ]
n_l18___9 [X₂ ]
n_l20___4 [X₂ ]
n_l20___8 [X₂ ]
n_l16___6 [X₂ ]
n_l21___3 [X₂ ]
n_l20___2 [X₂ ]
n_l21___7 [X₂ ]
n_l20___1 [X₂ ]

MPRF for transition t₃₃₀: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l20___4(X₀, X₁, X₂, Arg3_P, X₀+1, Arg5_P, Arg6_P) :|: X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃ ∧ X₃ < X₂ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₂ ≤ X₀ ∧ 1+Arg3_P ≤ X₂ ∧ Arg5_P ≤ Arg3_P ∧ 0 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg5_P ≤ Arg6_P ∧ Arg6_P ≤ Arg5_P ∧ X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₄⋅X₄+6⋅X₄+X₁+4 {O(n^2)}

MPRF:

l11 [0 ]
l10 [0 ]
l16 [X₂-X₁ ]
l9 [0 ]
l4 [X₂-X₁ ]
l19 [0 ]
n_l18___5 [X₂-X₃ ]
n_l20___8 [X₂-X₁ ]
n_l18___9 [X₂-X₁ ]
n_l21___7 [X₂-X₁ ]
n_l20___1 [X₂-X₃ ]
n_l20___4 [X₂-X₃-1 ]
n_l16___6 [X₂-X₃ ]
n_l21___3 [X₂-X₃ ]
n_l20___2 [X₂-X₃-1 ]

MPRF for transition t₃₃₁: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l21___3(X₀, X₁, X₂, Arg3_P, X₀+1, Arg5_P, X₆) :|: X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃ ∧ X₃ < X₂ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₂ ≤ X₀ ∧ 1+Arg3_P ≤ X₂ ∧ Arg5_P ≤ Arg3_P ∧ 0 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

4⋅X₄⋅X₄+10⋅X₄+7 {O(n^2)}

MPRF:

l11 [X₀+X₂-X₄-X₆ ]
l10 [X₀+X₃-X₄-X₆ ]
l16 [-X₂ ]
l9 [X₀+X₃-X₄-X₅ ]
l4 [-1 ]
l19 [X₀+X₂-X₄-X₆ ]
n_l18___5 [2⋅X₂-X₃-1 ]
n_l20___8 [-X₂ ]
n_l18___9 [-X₂ ]
n_l21___7 [-X₂ ]
n_l20___1 [2⋅X₂ ]
n_l20___4 [2⋅X₂+X₄-X₀-X₃-2 ]
n_l16___6 [2⋅X₂-X₃-1 ]
n_l21___3 [2⋅X₂-X₃-2 ]
n_l20___2 [2⋅X₂-X₃-2 ]

MPRF for transition t₃₃₅: n_l20___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l16___6(X₀, X₁, X₂, X₃+1, X₀+1, X₆, X₆) :|: X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₄⋅X₄+7⋅X₄+5 {O(n^2)}

MPRF:

l11 [1-X₀-X₂ ]
l10 [1-X₀-X₃ ]
l16 [-X₀-X₂ ]
l9 [-X₀-X₁ ]
l4 [-X₀-X₂ ]
l19 [1-X₀-X₃ ]
n_l18___5 [X₂-X₃ ]
n_l20___8 [-X₀-X₂ ]
n_l18___9 [-X₀-X₂ ]
n_l21___7 [-X₀-X₂ ]
n_l20___1 [X₂ ]
n_l20___4 [X₂-X₃-1 ]
n_l16___6 [X₂-X₃ ]
n_l21___3 [X₂-X₃ ]
n_l20___2 [X₂-X₃ ]

MPRF for transition t₃₃₆: n_l20___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l16___6(X₀, X₁, X₂, X₃+1, X₀+1, X₆, X₆) :|: X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

4⋅X₄⋅X₄+13⋅X₄+X₁+11 {O(n^2)}

MPRF:

l11 [X₀-2 ]
l10 [X₀-2 ]
l16 [X₀+X₂-X₁-2 ]
l9 [X₀-2 ]
l4 [X₀+X₂-X₁-2 ]
l19 [X₀-2 ]
n_l18___5 [X₀+X₂-X₃-2 ]
n_l20___8 [X₀+X₂-X₁-2 ]
n_l18___9 [X₀+X₂-X₁-2 ]
n_l21___7 [X₀+X₂-X₁-2 ]
n_l20___1 [X₀+X₂-X₃ ]
n_l20___4 [X₀+X₂-X₃-2 ]
n_l16___6 [X₀+X₂-X₃-2 ]
n_l21___3 [X₀+X₂-X₃-2 ]
n_l20___2 [X₀+X₂-X₃-2 ]

MPRF for transition t₃₃₈: n_l21___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l20___2(X₀, X₁, X₂, X₃, X₀+1, X₅, 1) :|: X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}

MPRF:

l11 [0 ]
l10 [0 ]
l16 [0 ]
l9 [0 ]
l4 [0 ]
l19 [2⋅X₃-2⋅X₂ ]
n_l18___5 [X₂-X₃ ]
n_l20___8 [0 ]
n_l18___9 [0 ]
n_l21___7 [0 ]
n_l20___1 [X₂-X₃ ]
n_l20___4 [X₂-X₃ ]
n_l16___6 [X₂-X₃ ]
n_l21___3 [X₂-X₃ ]
n_l20___2 [X₂-X₃-1 ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:27⋅X₄⋅X₄+99⋅X₄+96 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₃: 2⋅X₄+2 {O(n)}
t₂₄: 2⋅X₄+3 {O(n)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₄: 3⋅X₄⋅X₄+12⋅X₄+12 {O(n^2)}
t₁₅: X₄+2 {O(n)}
t₂₆: 1 {O(1)}
t₁₆: 6⋅X₄⋅X₄+18⋅X₄+12 {O(n^2)}
t₁₇: 3⋅X₄⋅X₄+12⋅X₄+12 {O(n^2)}
t₂₀: 1 {O(1)}
t₂₂: 3⋅X₄+2 {O(n)}
t₁: 1 {O(1)}
t₁₉: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₈: 6⋅X₄⋅X₄+18⋅X₄+12 {O(n^2)}
t₂: 1 {O(1)}
t₁₂: X₄+1 {O(n)}
t₁₃: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₂₅: 3⋅X₄+5 {O(n)}

Costbounds

Overall costbound: 27⋅X₄⋅X₄+99⋅X₄+96 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₃: 2⋅X₄+2 {O(n)}
t₂₄: 2⋅X₄+3 {O(n)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₄: 3⋅X₄⋅X₄+12⋅X₄+12 {O(n^2)}
t₁₅: X₄+2 {O(n)}
t₂₆: 1 {O(1)}
t₁₆: 6⋅X₄⋅X₄+18⋅X₄+12 {O(n^2)}
t₁₇: 3⋅X₄⋅X₄+12⋅X₄+12 {O(n^2)}
t₂₀: 1 {O(1)}
t₂₂: 3⋅X₄+2 {O(n)}
t₁: 1 {O(1)}
t₁₉: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₈: 6⋅X₄⋅X₄+18⋅X₄+12 {O(n^2)}
t₂: 1 {O(1)}
t₁₂: X₄+1 {O(n)}
t₁₃: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₂₅: 3⋅X₄+5 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₂₃, X₀: X₄+1 {O(n)}
t₂₃, X₁: X₄+1 {O(n)}
t₂₃, X₂: X₄+1 {O(n)}
t₂₃, X₃: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₂₃, X₆: 9⋅X₄⋅X₄+27⋅X₄+19 {O(n^2)}
t₂₄, X₀: X₄+1 {O(n)}
t₂₄, X₁: X₄+1 {O(n)}
t₂₄, X₂: X₄+1 {O(n)}
t₂₄, X₃: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₂₄, X₆: 9⋅X₄⋅X₄+27⋅X₄+19 {O(n^2)}
t₆, X₀: X₄+1 {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₇, X₀: X₄+1 {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₈, X₀: X₄+1 {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₉, X₀: X₄+1 {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₁₄, X₀: X₄+1 {O(n)}
t₁₄, X₁: X₁+X₄+1 {O(n)}
t₁₄, X₂: X₄+1 {O(n)}
t₁₄, X₃: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₄, X₆: 18⋅X₄⋅X₄+54⋅X₄+X₆+38 {O(n^2)}
t₁₅, X₀: X₄+1 {O(n)}
t₁₅, X₁: X₁+X₄+1 {O(n)}
t₁₅, X₂: X₄+1 {O(n)}
t₁₅, X₃: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₅, X₆: 9⋅X₄⋅X₄+27⋅X₄+19 {O(n^2)}
t₂₆, X₀: 3⋅X₄+3 {O(n)}
t₂₆, X₁: 2⋅X₁+2⋅X₄+2 {O(n)}
t₂₆, X₂: 3⋅X₄+3 {O(n)}
t₂₆, X₃: 18⋅X₄⋅X₄+54⋅X₄+X₃+36 {O(n^2)}
t₂₆, X₄: 3⋅X₄ {O(n)}
t₂₆, X₅: 9⋅X₄⋅X₄+27⋅X₄+X₅+18 {O(n^2)}
t₂₆, X₆: 18⋅X₄⋅X₄+54⋅X₄+X₆+38 {O(n^2)}
t₁₆, X₀: X₄+1 {O(n)}
t₁₆, X₁: X₁+X₄+1 {O(n)}
t₁₆, X₂: X₄+1 {O(n)}
t₁₆, X₃: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₆, X₆: 18⋅X₄⋅X₄+54⋅X₄+X₆+38 {O(n^2)}
t₁₇, X₀: X₄+1 {O(n)}
t₁₇, X₁: X₁+X₄+1 {O(n)}
t₁₇, X₂: X₄+1 {O(n)}
t₁₇, X₃: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₇, X₆: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₂₀, X₀: X₄+1 {O(n)}
t₂₀, X₁: X₁+X₄+1 {O(n)}
t₂₀, X₂: X₄+1 {O(n)}
t₂₀, X₃: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: 0 {O(1)}
t₂₀, X₆: 9⋅X₄⋅X₄+27⋅X₄+19 {O(n^2)}
t₂₂, X₀: X₄+1 {O(n)}
t₂₂, X₁: X₁+X₄+1 {O(n)}
t₂₂, X₂: X₄+1 {O(n)}
t₂₂, X₃: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₂₂, X₆: 9⋅X₄⋅X₄+27⋅X₄+19 {O(n^2)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁₉, X₀: X₄+1 {O(n)}
t₁₉, X₁: X₁+X₄+1 {O(n)}
t₁₉, X₂: X₄+1 {O(n)}
t₁₉, X₃: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₉, X₆: 9⋅X₄⋅X₄+27⋅X₄+19 {O(n^2)}
t₁₈, X₀: X₄+1 {O(n)}
t₁₈, X₁: X₁+X₄+1 {O(n)}
t₁₈, X₂: X₄+1 {O(n)}
t₁₈, X₃: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₁₈, X₆: 1 {O(1)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₁₂, X₀: X₄+1 {O(n)}
t₁₂, X₁: X₁+X₄+1 {O(n)}
t₁₂, X₂: X₄+1 {O(n)}
t₁₂, X₃: 0 {O(1)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: 0 {O(1)}
t₁₂, X₆: 9⋅X₄⋅X₄+27⋅X₄+X₆+19 {O(n^2)}
t₁₃, X₀: 2⋅X₄+2 {O(n)}
t₁₃, X₁: X₁+X₄+1 {O(n)}
t₁₃, X₂: 2⋅X₄+2 {O(n)}
t₁₃, X₃: 9⋅X₄⋅X₄+27⋅X₄+X₃+18 {O(n^2)}
t₁₃, X₄: 2⋅X₄ {O(n)}
t₁₃, X₅: 9⋅X₄⋅X₄+27⋅X₄+X₅+18 {O(n^2)}
t₁₃, X₆: 9⋅X₄⋅X₄+27⋅X₄+X₆+19 {O(n^2)}
t₁₀, X₀: X₄+1 {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₁, X₀: X₄+1 {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₄+1 {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₄, X₀: X₄+1 {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₅, X₀: X₄+1 {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₂₅, X₀: X₄+1 {O(n)}
t₂₅, X₁: X₄+1 {O(n)}
t₂₅, X₂: X₄+1 {O(n)}
t₂₅, X₃: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₂₅, X₄: X₄ {O(n)}
t₂₅, X₅: 9⋅X₄⋅X₄+27⋅X₄+18 {O(n^2)}
t₂₅, X₆: 9⋅X₄⋅X₄+27⋅X₄+19 {O(n^2)}