Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 1 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 1
t₁₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₆-X₀, X₂, X₃, X₄, X₅, X₆)
t₁₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₀
t₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₅
t₁₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0
t₁₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆
t₂₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅-X₀, X₆)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: 1 < X₄
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₀, X₅, X₂)
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₁₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₆, X₃, X₄, X₅, X₆) :|: X₅ < 0
t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₆, X₃, X₄, X₅, X₆) :|: 0 < X₅

Preprocessing

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l11

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l6

Found invariant X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l12

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l7

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l13

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l8

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l10

Found invariant X₄ ≤ X₃ for location l4

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l9

Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 1 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 1
t₁₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₆-X₀, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₀ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0 ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃
t₁₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃
t₂₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃
t₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅-X₀, X₆) :|: X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: 1 < X₄ ∧ X₄ ≤ X₃
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ X₄ ≤ X₃
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₀, X₅, X₂) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₆, X₃, X₄, X₅, X₆) :|: X₅ < 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₆, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃

MPRF for transition t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₀ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

l11 [3⋅X₀+1-2⋅X₄ ]
l10 [3⋅X₀+1-2⋅X₄ ]
l14 [X₄-1 ]
l12 [X₀ ]
l4 [X₄-1 ]
l8 [3⋅X₀+1-2⋅X₄ ]
l6 [3⋅X₀+1-2⋅X₄ ]
l9 [3⋅X₀+1-2⋅X₄ ]
l7 [3⋅X₀+1-2⋅X₄ ]

MPRF for transition t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: 1 < X₄ ∧ X₄ ≤ X₃ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

l11 [3⋅X₀+1-2⋅X₄ ]
l10 [3⋅X₀+1-2⋅X₄ ]
l14 [X₄-2 ]
l12 [X₄-2 ]
l4 [X₄-1 ]
l8 [3⋅X₀+1-2⋅X₄ ]
l6 [X₀-1 ]
l9 [3⋅X₀+1-2⋅X₄ ]
l7 [3⋅X₀+1-2⋅X₄ ]

MPRF for transition t₁₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ of depth 1:

new bound:

X₃ {O(n)}

MPRF:

l11 [X₄ ]
l10 [X₄ ]
l14 [X₀+1 ]
l12 [X₄ ]
l4 [X₄ ]
l8 [X₄-1 ]
l6 [X₄-1 ]
l9 [X₄ ]
l7 [X₄-1 ]

MPRF for transition t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₆, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ of depth 1:

new bound:

X₃ {O(n)}

MPRF:

l11 [2⋅X₀+2-X₄ ]
l10 [X₄ ]
l14 [X₄ ]
l12 [X₄ ]
l4 [X₄ ]
l8 [X₀ ]
l6 [X₀ ]
l9 [X₀+1 ]
l7 [X₀ ]

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l11

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l6

Found invariant X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l12

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l7

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l13

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l8

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l10

Found invariant X₄ ≤ X₃ for location l4

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l9

Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l14

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l11

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l6

Found invariant X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l12

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l7

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l13

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l8

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l10

Found invariant X₄ ≤ X₃ for location l4

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l9

Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l14

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₆-X₀, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₆, X₃, X₄, X₅, X₆) :|: X₅ < 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃

knowledge_propagation leads to new time bound 3⋅X₃+1 {O(n)} for transition t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃

knowledge_propagation leads to new time bound 3⋅X₃+1 {O(n)} for transition t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃

knowledge_propagation leads to new time bound 3⋅X₃+1 {O(n)} for transition t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₀, X₅, X₂) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃

MPRF for transition t₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

30⋅X₃⋅X₃+14⋅X₃+2 {O(n^2)}

MPRF:

l11 [X₃-4⋅X₀-X₄ ]
l9 [X₃-4⋅X₀-X₄ ]
l10 [X₃-4⋅X₀-X₄ ]
l14 [X₃+X₅-X₀-X₄ ]
l12 [X₃+X₅+1-X₀-X₄ ]
l4 [2⋅X₃+2-2⋅X₄ ]
l7 [2⋅X₃+2⋅X₄-4⋅X₀ ]
l8 [2⋅X₃+2⋅X₄-4⋅X₀ ]
l6 [2⋅X₃+2-2⋅X₀ ]

MPRF for transition t₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅-X₀, X₆) :|: X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

18⋅X₃⋅X₃+12⋅X₃ {O(n^2)}

MPRF:

l11 [X₀+4⋅X₃+X₅-2⋅X₄ ]
l9 [X₀+4⋅X₃+X₅-2⋅X₄ ]
l10 [X₀+4⋅X₃+X₅-2⋅X₄ ]
l14 [4⋅X₃+X₅-3 ]
l12 [X₀+4⋅X₃+X₅-4 ]
l4 [5⋅X₃+X₄ ]
l7 [X₀+5⋅X₃ ]
l8 [X₀+5⋅X₃ ]
l6 [X₀+5⋅X₃ ]

Analysing control-flow refined program

Cut unsatisfiable transition t₈: l12→l10

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l11

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l6

Found invariant X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l14___3

Found invariant 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l12___2

Found invariant X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l12

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l7

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l13

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l8

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l10

Found invariant X₄ ≤ X₃ for location l4

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l9

Found invariant 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l14___1

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₆₅₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___3(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: X₅ ≤ X₃ ∧ X₀ ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₆₅₇: n_l14___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___2(X₀, X₁, X₂, X₃, X₀+1, X₅-X₀, X₆) :|: X₅ ≤ X₃ ∧ X₀ ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀

MPRF for transition t₆₅₄: n_l12___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___1(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: X₅ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ X₀+X₅ ≤ X₃ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

5⋅X₃⋅X₃+7⋅X₃+2 {O(n^2)}

MPRF:

l11 [-X₀ ]
n_l14___3 [-X₀-2 ]
l12 [-X₄-1 ]
l4 [-X₄-1 ]
l8 [-X₄ ]
l6 [-X₄ ]
l9 [-X₀ ]
l7 [-X₄ ]
l10 [X₄+X₅-X₀ ]
n_l14___1 [X₃+2⋅X₅+2-2⋅X₀ ]
n_l12___2 [X₃+2⋅X₅+1 ]

MPRF for transition t₆₆₁: n_l12___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₀ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

l11 [X₀-1 ]
l12 [X₄-1 ]
l4 [X₄-1 ]
l8 [X₀-1 ]
l6 [X₀-1 ]
l9 [X₀-1 ]
l7 [X₄-2 ]
l10 [X₀-1 ]
n_l14___1 [X₀ ]
n_l14___3 [X₀ ]
n_l12___2 [X₀ ]

MPRF for transition t₆₅₆: n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___2(X₀, X₁, X₂, X₃, X₀+1, X₅-X₀, X₆) :|: X₀+X₅ ≤ X₃ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₃⋅X₃+3⋅X₃ {O(n^2)}

MPRF:

l11 [0 ]
n_l14___3 [0 ]
l12 [0 ]
l4 [0 ]
l8 [0 ]
l6 [0 ]
l9 [0 ]
l7 [0 ]
l10 [X₀+X₅ ]
n_l14___1 [X₅+1 ]
n_l12___2 [X₀+X₅ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:48⋅X₃⋅X₃+42⋅X₃+20 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₀: X₃+1 {O(n)}
t₁₁: X₃+1 {O(n)}
t₇: 30⋅X₃⋅X₃+14⋅X₃+2 {O(n^2)}
t₈: X₃+1 {O(n)}
t₁₈: 1 {O(1)}
t₁₉: 1 {O(1)}
t₂₀: 1 {O(1)}
t₉: 18⋅X₃⋅X₃+12⋅X₃ {O(n^2)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: X₃+1 {O(n)}
t₆: 1 {O(1)}
t₂₁: 1 {O(1)}
t₁₇: 3⋅X₃+1 {O(n)}
t₁₅: 3⋅X₃+1 {O(n)}
t₁₆: 3⋅X₃+1 {O(n)}
t₁₂: X₃ {O(n)}
t₁₃: X₃+1 {O(n)}
t₁₄: X₃ {O(n)}

Costbounds

Overall costbound: 48⋅X₃⋅X₃+42⋅X₃+20 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₀: X₃+1 {O(n)}
t₁₁: X₃+1 {O(n)}
t₇: 30⋅X₃⋅X₃+14⋅X₃+2 {O(n^2)}
t₈: X₃+1 {O(n)}
t₁₈: 1 {O(1)}
t₁₉: 1 {O(1)}
t₂₀: 1 {O(1)}
t₉: 18⋅X₃⋅X₃+12⋅X₃ {O(n^2)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: X₃+1 {O(n)}
t₆: 1 {O(1)}
t₂₁: 1 {O(1)}
t₁₇: 3⋅X₃+1 {O(n)}
t₁₅: 3⋅X₃+1 {O(n)}
t₁₆: 3⋅X₃+1 {O(n)}
t₁₂: X₃ {O(n)}
t₁₃: X₃+1 {O(n)}
t₁₄: X₃ {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₃ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₃ {O(n)}
t₁₀, X₀: X₃ {O(n)}
t₁₀, X₁: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₀, X₂: X₃⋅X₃+3⋅X₃+X₂ {O(n^2)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: 2⋅X₃ {O(n)}
t₁₀, X₅: 2⋅X₃ {O(n)}
t₁₀, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₁, X₀: X₃ {O(n)}
t₁₁, X₁: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₁, X₂: X₃⋅X₃+3⋅X₃+X₂ {O(n^2)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: 2⋅X₃ {O(n)}
t₁₁, X₅: 2⋅X₃ {O(n)}
t₁₁, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₇, X₀: X₃ {O(n)}
t₇, X₁: 3⋅X₃⋅X₃+9⋅X₃+X₁ {O(n^2)}
t₇, X₂: X₃⋅X₃+3⋅X₃+X₂ {O(n^2)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: 2⋅X₃ {O(n)}
t₇, X₅: 2⋅X₃ {O(n)}
t₇, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₈, X₀: X₃ {O(n)}
t₈, X₁: 3⋅X₃⋅X₃+9⋅X₃+X₁ {O(n^2)}
t₈, X₂: X₃⋅X₃+3⋅X₃+X₂ {O(n^2)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: 2⋅X₃ {O(n)}
t₈, X₅: 2⋅X₃ {O(n)}
t₈, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₈, X₀: X₃ {O(n)}
t₁₈, X₁: 3⋅X₃⋅X₃+9⋅X₃ {O(n^2)}
t₁₈, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₄: X₃ {O(n)}
t₁₈, X₅: 4⋅X₃ {O(n)}
t₁₈, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₉, X₀: X₃ {O(n)}
t₁₉, X₁: 3⋅X₃⋅X₃+9⋅X₃ {O(n^2)}
t₁₉, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: X₃ {O(n)}
t₁₉, X₅: 4⋅X₃ {O(n)}
t₁₉, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₂₀, X₀: X₃ {O(n)}
t₂₀, X₁: 3⋅X₃⋅X₃+9⋅X₃ {O(n^2)}
t₂₀, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₄: X₃ {O(n)}
t₂₀, X₅: 4⋅X₃ {O(n)}
t₂₀, X₆: 0 {O(1)}
t₉, X₀: X₃ {O(n)}
t₉, X₁: 3⋅X₃⋅X₃+9⋅X₃+X₁ {O(n^2)}
t₉, X₂: X₃⋅X₃+3⋅X₃+X₂ {O(n^2)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: 2⋅X₃ {O(n)}
t₉, X₅: 2⋅X₃ {O(n)}
t₉, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₅, X₀: X₃ {O(n)}
t₅, X₁: 3⋅X₃⋅X₃+9⋅X₃+X₁ {O(n^2)}
t₅, X₂: X₃⋅X₃+3⋅X₃+X₂ {O(n^2)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 2⋅X₃ {O(n)}
t₅, X₅: 2⋅X₃ {O(n)}
t₅, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₆, X₀: X₃ {O(n)}
t₆, X₁: 3⋅X₃⋅X₃+9⋅X₃ {O(n^2)}
t₆, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₃ {O(n)}
t₆, X₅: 4⋅X₃ {O(n)}
t₆, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₂₁, X₀: 3⋅X₃+X₀ {O(n)}
t₂₁, X₁: 9⋅X₃⋅X₃+27⋅X₃+X₁ {O(n^2)}
t₂₁, X₂: 3⋅X₃⋅X₃+9⋅X₃+X₂ {O(n^2)}
t₂₁, X₃: 4⋅X₃ {O(n)}
t₂₁, X₄: 3⋅X₃+X₄ {O(n)}
t₂₁, X₅: 12⋅X₃+X₅ {O(n)}
t₂₁, X₆: 2⋅X₃⋅X₃+6⋅X₃+X₆ {O(n^2)}
t₁₇, X₀: X₃ {O(n)}
t₁₇, X₁: 3⋅X₃⋅X₃+9⋅X₃ {O(n^2)}
t₁₇, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: X₃ {O(n)}
t₁₇, X₅: 4⋅X₃ {O(n)}
t₁₇, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅, X₀: X₃ {O(n)}
t₁₅, X₁: 3⋅X₃⋅X₃+9⋅X₃ {O(n^2)}
t₁₅, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₄: 6⋅X₃ {O(n)}
t₁₅, X₅: 4⋅X₃ {O(n)}
t₁₅, X₆: 3⋅X₃⋅X₃+9⋅X₃ {O(n^2)}
t₁₆, X₀: X₃ {O(n)}
t₁₆, X₁: 3⋅X₃⋅X₃+9⋅X₃ {O(n^2)}
t₁₆, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: 6⋅X₃ {O(n)}
t₁₆, X₅: 4⋅X₃ {O(n)}
t₁₆, X₆: 3⋅X₃⋅X₃+9⋅X₃ {O(n^2)}
t₁₂, X₀: X₃ {O(n)}
t₁₂, X₁: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₂, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: 2⋅X₃ {O(n)}
t₁₂, X₅: 0 {O(1)}
t₁₂, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₃, X₀: X₃ {O(n)}
t₁₃, X₁: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₃, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: 2⋅X₃ {O(n)}
t₁₃, X₅: 2⋅X₃ {O(n)}
t₁₃, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₄, X₀: X₃ {O(n)}
t₁₄, X₁: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₄, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: 2⋅X₃ {O(n)}
t₁₄, X₅: 2⋅X₃ {O(n)}
t₁₄, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}