Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ < X₁₁
t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈
t₃₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ 0
t₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₉
t₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ ≤ 0
t₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₉, X₁₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₀
t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₁, X₆, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₆: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ < 0
t₁₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₂
t₁₄: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₅: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, nondef_0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄
t₁₀: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0
t₁₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₄-1, X₂, X₃, X₄, X₅, X₅+1, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₃: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0
t₂₂: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇
t₃₀: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₄: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₇-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₆-1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₆
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₁, X₆, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 0
t₂₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁)
Preprocessing
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l11
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l25
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l27
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l24
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l6
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l15
Found invariant X₉ ≤ 0 for location l19
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l26
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l29
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l12
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l23
Found invariant X₉ ≤ 0 for location l17
Found invariant 1 ≤ X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l28
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l7
Found invariant 1 ≤ X₉ for location l21
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l5
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l13
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l22
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l8
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l10
Found invariant X₉ ≤ 0 for location l18
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l9
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₂₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₂₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ < X₁₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₃₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0
t₃₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0
t₃₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0
t₃₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ 0
t₃₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ 0
t₃₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ 0
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ 0
t₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₉
t₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ ≤ 0 ∧ 1 ≤ X₉
t₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₉, X₁₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₀ ∧ 1 ≤ X₉
t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₁, X₆, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
t₁₆: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ < 0 ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
t₁₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₂ ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
t₁₄: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
t₁₅: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, nondef_0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
t₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀
t₁₀: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀
t₁₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₄-1, X₂, X₃, X₄, X₅, X₅+1, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀
t₂₃: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀
t₂₂: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀
t₃₀: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀
t₂₄: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₇-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₆-1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₁, X₆, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 0 ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
t₂₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
MPRF for transition t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₁, X₆, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ of depth 1:
new bound:
X₉ {O(n)}
MPRF:
l24 [X₄ ]
l22 [X₁+1 ]
l26 [X₄ ]
l6 [X₁+1 ]
l7 [X₁+1 ]
l5 [X₁+1 ]
l23 [X₄ ]
l8 [X₄ ]
l25 [X₄ ]
MPRF for transition t₁₄: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ of depth 1:
new bound:
2⋅X₉+X₁₀ {O(n)}
MPRF:
l24 [2⋅X₁+X₆ ]
l22 [2⋅X₁+X₆ ]
l26 [2⋅X₄+X₅ ]
l6 [2⋅X₁+X₆ ]
l7 [2⋅X₁+X₆ ]
l5 [2⋅X₁+X₆ ]
l23 [2⋅X₁+X₆+1 ]
l8 [2⋅X₁+X₆+1 ]
l25 [2⋅X₄+X₅ ]
MPRF for transition t₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ of depth 1:
new bound:
X₉+1 {O(n)}
MPRF:
l24 [X₄ ]
l22 [X₄ ]
l26 [X₄ ]
l6 [X₄ ]
l7 [X₄ ]
l5 [X₄ ]
l23 [X₁+1 ]
l8 [X₄ ]
l25 [X₄+1 ]
MPRF for transition t₁₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₄-1, X₂, X₃, X₄, X₅, X₅+1, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ of depth 1:
new bound:
X₉+1 {O(n)}
MPRF:
l24 [X₄ ]
l22 [X₄ ]
l26 [X₄+1 ]
l6 [X₄ ]
l7 [X₄ ]
l5 [X₄ ]
l23 [X₄ ]
l8 [X₄ ]
l25 [X₄+1 ]
MPRF for transition t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ of depth 1:
new bound:
2⋅X₉+X₁₀+1 {O(n)}
MPRF:
l24 [2⋅X₁+X₆-1 ]
l22 [2⋅X₁+X₆-1 ]
l26 [2⋅X₄+X₅-1 ]
l6 [2⋅X₄+X₆-3 ]
l7 [X₁+X₃+X₄-1 ]
l5 [X₁+X₃+X₄-1 ]
l23 [2⋅X₁+X₆-1 ]
l8 [X₁+X₄+X₆-1 ]
l25 [2⋅X₄+X₅-1 ]
MPRF for transition t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₁, X₆, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 0 ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ of depth 1:
new bound:
X₉ {O(n)}
MPRF:
l24 [X₄ ]
l22 [X₄ ]
l26 [X₄ ]
l6 [X₄ ]
l7 [X₄ ]
l5 [X₁+1 ]
l23 [X₄ ]
l8 [X₁+1 ]
l25 [X₄ ]
knowledge_propagation leads to new time bound 2⋅X₉+X₁₀ {O(n)} for transition t₁₅: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, nondef_0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₉+X₁₀ {O(n)} for transition t₁₆: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ < 0 ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₉+X₁₀ {O(n)} for transition t₁₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₂ ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀+4⋅X₉ {O(n)} for transition t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₆-1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀+4⋅X₉ {O(n)} for transition t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀+4⋅X₉ {O(n)} for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁
MPRF for transition t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
10⋅X₉+6⋅X₁₀+2 {O(n)}
MPRF:
l11 [X₀+1 ]
l10 [X₇ ]
l27 [X₇ ]
l29 [X₇ ]
l9 [X₇ ]
l12 [X₇ ]
MPRF for transition t₂₂: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ of depth 1:
new bound:
10⋅X₉+6⋅X₁₀+2 {O(n)}
MPRF:
l11 [2⋅X₀+1-X₇ ]
l10 [2⋅X₀+1-X₇ ]
l27 [X₇ ]
l29 [X₇-1 ]
l9 [2⋅X₀+1-X₇ ]
l12 [2⋅X₀+1-X₇ ]
MPRF for transition t₂₄: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₇-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ of depth 1:
new bound:
10⋅X₉+6⋅X₁₀+3 {O(n)}
MPRF:
l11 [X₇ ]
l10 [X₇ ]
l27 [X₇+1 ]
l29 [X₇+1 ]
l9 [X₇ ]
l12 [X₇ ]
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l11
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l25
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l27
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l24
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l6
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l15
Found invariant X₉ ≤ 0 for location l19
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l26
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l29
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l12
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l23
Found invariant X₉ ≤ 0 for location l17
Found invariant 1 ≤ X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l28
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l7
Found invariant 1 ≤ X₉ for location l21
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l5
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l13
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l22
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l8
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l10
Found invariant X₉ ≤ 0 for location l18
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l9
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l14
Time-Bound by TWN-Loops:
TWN-Loops: t₂₇ 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
TWN-Loops:
entry: t₂₄: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₇-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀
results in twn-loop: twn:Inv: [1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) -> (X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈+1,X₉,X₁₀,X₁₁) :|: X₈ < X₁₁
order: [X₀; X₄; X₅; X₇; X₈; X₉; X₁₀; X₁₁]
closed-form:
X₀: X₀
X₄: X₄
X₅: X₅
X₇: X₇
X₈: X₈ + [[n != 0]] * n^1
X₉: X₉
X₁₀: X₁₀
X₁₁: X₁₁
Termination: true
Formula:
1 < 0
∨ X₈ < X₁₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₈ < X₁₁
alphas_abs: X₈+X₁₁
M: 0
N: 1
Bound: 2⋅X₁₁+2⋅X₈+2 {O(n)}
relevant size-bounds w.r.t. t₂₄:
X₈: 0 {O(1)}
X₁₁: 2⋅X₁₁ {O(n)}
Runtime-bound of t₂₄: 10⋅X₉+6⋅X₁₀+3 {O(n)}
Results in: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
Time-Bound by TWN-Loops:
TWN-Loops: t₂₈ 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
relevant size-bounds w.r.t. t₂₄:
X₈: 0 {O(1)}
X₁₁: 2⋅X₁₁ {O(n)}
Runtime-bound of t₂₄: 10⋅X₉+6⋅X₁₀+3 {O(n)}
Results in: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
Time-Bound by TWN-Loops:
TWN-Loops: t₂₅ 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
relevant size-bounds w.r.t. t₂₄:
X₈: 0 {O(1)}
X₁₁: 2⋅X₁₁ {O(n)}
Runtime-bound of t₂₄: 10⋅X₉+6⋅X₁₀+3 {O(n)}
Results in: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
Time-Bound by TWN-Loops:
TWN-Loops: t₂₉ 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
relevant size-bounds w.r.t. t₂₄:
X₈: 0 {O(1)}
X₁₁: 2⋅X₁₁ {O(n)}
Runtime-bound of t₂₄: 10⋅X₉+6⋅X₁₀+3 {O(n)}
Results in: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
Analysing control-flow refined program
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l25
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l27
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l24
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l10___3
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l6
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l15
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l9___1
Found invariant X₉ ≤ 0 for location l19
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l26
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l11___2
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l29
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l23
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ 1+X₈ ≤ X₅ ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₀ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l12
Found invariant X₉ ≤ 0 for location l17
Found invariant 1 ≤ X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l28
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l7
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ 1+X₈ ≤ X₅ ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l11___6
Found invariant 1 ≤ X₉ for location l21
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l5
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l13
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l8
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ X₆ ≤ 1+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₁ for location l22
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l12___4
Found invariant X₉ ≤ 0 for location l18
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ 1+X₈ ≤ X₅ ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l10___7
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ 1+X₈ ≤ X₅ ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l9___5
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l14
knowledge_propagation leads to new time bound 10⋅X₉+6⋅X₁₀+3 {O(n)} for transition t₄₄₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l10___7(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₀+1, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 0 ≤ X₈ ∧ 1+X₀ ≤ X₅ ∧ 0 ≤ X₀ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 1+X₀ ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁₀ ∧ X₈ < X₁₁ ∧ 1+X₀ ≤ X₅ ∧ 0 ≤ X₈ ∧ 1 ≤ X₉ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ 1+X₈ ≤ X₅ ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₀ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 10⋅X₉+6⋅X₁₀+3 {O(n)} for transition t₄₄₂: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l11___6(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₀+1, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1+X₀ ≤ X₅ ∧ 0 ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ 1+X₈ ≤ X₅ ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 10⋅X₉+6⋅X₁₀+3 {O(n)} for transition t₄₄₄: n_l11___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l9___5(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₀+1, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1+X₀ ≤ X₅ ∧ 0 ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ 1+X₈ ≤ X₅ ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 10⋅X₉+6⋅X₁₀+3 {O(n)} for transition t₄₄₈: n_l9___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___4(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₀+1, X₈+1, X₉, X₁₀, X₁₁) :|: 1 ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1+X₀ ≤ X₅ ∧ 0 ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ 1+X₈ ≤ X₅ ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
MPRF for transition t₄₄₁: n_l10___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l11___2(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₀+1, X₈, X₉, X₁₀, X₁₁) :|: X₈ < X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈ ∧ 1+X₀ ≤ X₅ ∧ 0 ≤ X₀ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+10⋅X₉+14⋅X₁₁+6⋅X₁₀+3 {O(n^2)}
MPRF:
l29 [X₁₁ ]
l12 [X₁₁ ]
n_l10___7 [X₁₁ ]
n_l11___2 [2⋅X₁₁-X₈-1 ]
n_l11___6 [X₁₁ ]
n_l9___5 [X₁₁ ]
n_l10___3 [2⋅X₁₁-X₈ ]
l27 [X₁₁ ]
n_l9___1 [X₀+2⋅X₁₁-X₇-X₈ ]
n_l12___4 [2⋅X₁₁-X₈ ]
MPRF for transition t₄₄₃: n_l11___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l9___1(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₀+1, X₈, X₉, X₁₀, X₁₁) :|: 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈ ∧ 1+X₀ ≤ X₅ ∧ 0 ≤ X₀ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+10⋅X₉+14⋅X₁₁+6⋅X₁₀+3 {O(n^2)}
MPRF:
l29 [X₁₁ ]
l12 [X₁₁ ]
n_l10___7 [X₁₁ ]
n_l11___2 [2⋅X₁₁-X₈ ]
n_l11___6 [X₁₁ ]
n_l9___5 [X₁₁ ]
n_l10___3 [2⋅X₁₁-X₈ ]
l27 [X₁₁ ]
n_l9___1 [2⋅X₁₁-X₈-1 ]
n_l12___4 [2⋅X₁₁-X₈ ]
MPRF for transition t₄₄₅: n_l12___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l10___3(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₀+1, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 0 ≤ X₈ ∧ 1+X₀ ≤ X₅ ∧ 0 ≤ X₀ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₀ ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁₀ ∧ X₈ ≤ X₁₁ ∧ X₈ < X₁₁ ∧ 1+X₀ ≤ X₅ ∧ 0 ≤ X₈ ∧ 1 ≤ X₉ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
12⋅X₁₀⋅X₁₁+20⋅X₁₁⋅X₉+12⋅X₁₀+20⋅X₉+6⋅X₁₁+6 {O(n^2)}
MPRF:
l29 [0 ]
l12 [0 ]
n_l10___7 [0 ]
n_l11___2 [X₁₁-X₈ ]
n_l11___6 [0 ]
n_l9___5 [0 ]
n_l10___3 [X₁₁-X₈ ]
l27 [0 ]
n_l9___1 [X₁₁-X₈ ]
n_l12___4 [X₁₁+1-X₈ ]
MPRF for transition t₄₅₄: n_l12___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
10⋅X₉+6⋅X₁₀+2 {O(n)}
MPRF:
l29 [X₇ ]
l12 [X₇ ]
n_l10___7 [X₇ ]
n_l11___2 [X₇ ]
n_l11___6 [X₇ ]
n_l10___3 [X₇ ]
l27 [X₇ ]
n_l9___1 [X₀+1 ]
n_l9___5 [X₀+1 ]
n_l12___4 [X₇ ]
MPRF for transition t₄₄₇: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___4(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₀+1, X₈+1, X₉, X₁₀, X₁₁) :|: 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈ ∧ 1+X₀ ≤ X₅ ∧ 0 ≤ X₀ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₀+1 ≤ X₇ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
12⋅X₁₀⋅X₁₁+20⋅X₁₁⋅X₉+10⋅X₉+6⋅X₁₀+6⋅X₁₁+3 {O(n^2)}
MPRF:
l29 [0 ]
l12 [0 ]
n_l10___7 [0 ]
n_l11___2 [X₁₁-X₈ ]
n_l11___6 [0 ]
n_l9___5 [0 ]
n_l10___3 [X₁₁-X₈ ]
l27 [0 ]
n_l9___1 [X₁₁-X₈ ]
n_l12___4 [X₁₁-X₈ ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:160⋅X₁₁⋅X₉+96⋅X₁₀⋅X₁₁+125⋅X₁₀+216⋅X₉+48⋅X₁₁+76 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₇: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₈: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₅: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₆: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₃₃: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₆: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₁: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₁₆: 2⋅X₉+X₁₀ {O(n)}
t₁₇: 2⋅X₉+X₁₀ {O(n)}
t₁₈: X₉ {O(n)}
t₁₄: 2⋅X₉+X₁₀ {O(n)}
t₁₅: 2⋅X₉+X₁₀ {O(n)}
t₉: X₉+1 {O(n)}
t₁₀: 1 {O(1)}
t₁₁: X₉+1 {O(n)}
t₂₂: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₃: 1 {O(1)}
t₃₀: 1 {O(1)}
t₂₄: 10⋅X₉+6⋅X₁₀+3 {O(n)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₂₁: 2⋅X₁₀+4⋅X₉ {O(n)}
t₁₉: 2⋅X₁₀+4⋅X₉ {O(n)}
t₂₀: 2⋅X₁₀+4⋅X₉ {O(n)}
t₁₂: 2⋅X₉+X₁₀+1 {O(n)}
t₁₃: X₉ {O(n)}
t₂₉: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
Costbounds
Overall costbound: 160⋅X₁₁⋅X₉+96⋅X₁₀⋅X₁₁+125⋅X₁₀+216⋅X₉+48⋅X₁₁+76 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₇: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₈: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₅: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₆: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₃₃: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₆: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₁: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₁₆: 2⋅X₉+X₁₀ {O(n)}
t₁₇: 2⋅X₉+X₁₀ {O(n)}
t₁₈: X₉ {O(n)}
t₁₄: 2⋅X₉+X₁₀ {O(n)}
t₁₅: 2⋅X₉+X₁₀ {O(n)}
t₉: X₉+1 {O(n)}
t₁₀: 1 {O(1)}
t₁₁: X₉+1 {O(n)}
t₂₂: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₃: 1 {O(1)}
t₃₀: 1 {O(1)}
t₂₄: 10⋅X₉+6⋅X₁₀+3 {O(n)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₂₁: 2⋅X₁₀+4⋅X₉ {O(n)}
t₁₉: 2⋅X₁₀+4⋅X₉ {O(n)}
t₂₀: 2⋅X₁₀+4⋅X₉ {O(n)}
t₁₂: 2⋅X₉+X₁₀+1 {O(n)}
t₁₃: X₉ {O(n)}
t₂₉: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₉ {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₂₇, X₀: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₇, X₁: 3⋅X₉ {O(n)}
t₂₇, X₃: 12⋅X₁₀+2⋅X₃+20⋅X₉+4 {O(n)}
t₂₇, X₄: 0 {O(1)}
t₂₇, X₅: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₇, X₆: 15⋅X₉+9⋅X₁₀+3 {O(n)}
t₂₇, X₇: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₇, X₈: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₇, X₉: 2⋅X₉ {O(n)}
t₂₇, X₁₀: 2⋅X₁₀ {O(n)}
t₂₇, X₁₁: 2⋅X₁₁ {O(n)}
t₂₈, X₀: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₈, X₁: 3⋅X₉ {O(n)}
t₂₈, X₃: 12⋅X₁₀+2⋅X₃+20⋅X₉+4 {O(n)}
t₂₈, X₄: 0 {O(1)}
t₂₈, X₅: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₈, X₆: 15⋅X₉+9⋅X₁₀+3 {O(n)}
t₂₈, X₇: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₈, X₈: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₈, X₉: 2⋅X₉ {O(n)}
t₂₈, X₁₀: 2⋅X₁₀ {O(n)}
t₂₈, X₁₁: 2⋅X₁₁ {O(n)}
t₂₅, X₀: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₅, X₁: 3⋅X₉ {O(n)}
t₂₅, X₃: 12⋅X₁₀+2⋅X₃+20⋅X₉+4 {O(n)}
t₂₅, X₄: 0 {O(1)}
t₂₅, X₅: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₅, X₆: 15⋅X₉+9⋅X₁₀+3 {O(n)}
t₂₅, X₇: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₅, X₈: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₅, X₉: 2⋅X₉ {O(n)}
t₂₅, X₁₀: 2⋅X₁₀ {O(n)}
t₂₅, X₁₁: 2⋅X₁₁ {O(n)}
t₂₆, X₀: 12⋅X₁₀+20⋅X₉+4 {O(n)}
t₂₆, X₁: 3⋅X₉ {O(n)}
t₂₆, X₃: 12⋅X₁₀+2⋅X₃+20⋅X₉+4 {O(n)}
t₂₆, X₄: 0 {O(1)}
t₂₆, X₅: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₆, X₆: 15⋅X₉+9⋅X₁₀+3 {O(n)}
t₂₆, X₇: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₆, X₈: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₆, X₉: 2⋅X₉ {O(n)}
t₂₆, X₁₀: 2⋅X₁₀ {O(n)}
t₂₆, X₁₁: 2⋅X₁₁ {O(n)}
t₃₃, X₀: X₀ {O(n)}
t₃₃, X₁: X₁ {O(n)}
t₃₃, X₂: X₂ {O(n)}
t₃₃, X₃: X₃ {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₅: X₅ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₃, X₇: X₇ {O(n)}
t₃₃, X₈: X₈ {O(n)}
t₃₃, X₉: X₉ {O(n)}
t₃₃, X₁₀: X₁₀ {O(n)}
t₃₃, X₁₁: X₁₁ {O(n)}
t₃₁, X₀: X₀ {O(n)}
t₃₁, X₁: X₁ {O(n)}
t₃₁, X₂: X₂ {O(n)}
t₃₁, X₃: X₃ {O(n)}
t₃₁, X₄: X₄ {O(n)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: X₇ {O(n)}
t₃₁, X₈: X₈ {O(n)}
t₃₁, X₉: X₉ {O(n)}
t₃₁, X₁₀: X₁₀ {O(n)}
t₃₁, X₁₁: X₁₁ {O(n)}
t₃₂, X₀: X₀ {O(n)}
t₃₂, X₁: X₁ {O(n)}
t₃₂, X₂: X₂ {O(n)}
t₃₂, X₃: X₃ {O(n)}
t₃₂, X₄: X₄ {O(n)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: X₆ {O(n)}
t₃₂, X₇: X₇ {O(n)}
t₃₂, X₈: X₈ {O(n)}
t₃₂, X₉: X₉ {O(n)}
t₃₂, X₁₀: X₁₀ {O(n)}
t₃₂, X₁₁: X₁₁ {O(n)}
t₃₆, X₀: X₀ {O(n)}
t₃₆, X₁: X₁ {O(n)}
t₃₆, X₂: X₂ {O(n)}
t₃₆, X₃: X₃ {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₅: X₅ {O(n)}
t₃₆, X₆: X₆ {O(n)}
t₃₆, X₇: X₇ {O(n)}
t₃₆, X₈: X₈ {O(n)}
t₃₆, X₉: X₉ {O(n)}
t₃₆, X₁₀: X₁₀ {O(n)}
t₃₆, X₁₁: X₁₁ {O(n)}
t₃₄, X₀: X₀ {O(n)}
t₃₄, X₁: X₁ {O(n)}
t₃₄, X₂: X₂ {O(n)}
t₃₄, X₃: X₃ {O(n)}
t₃₄, X₄: X₄ {O(n)}
t₃₄, X₅: X₅ {O(n)}
t₃₄, X₆: X₆ {O(n)}
t₃₄, X₇: X₇ {O(n)}
t₃₄, X₈: X₈ {O(n)}
t₃₄, X₉: X₉ {O(n)}
t₃₄, X₁₀: X₁₀ {O(n)}
t₃₄, X₁₁: X₁₁ {O(n)}
t₃₅, X₀: X₀ {O(n)}
t₃₅, X₁: X₁ {O(n)}
t₃₅, X₂: X₂ {O(n)}
t₃₅, X₃: X₃ {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₅, X₅: X₅ {O(n)}
t₃₅, X₆: X₆ {O(n)}
t₃₅, X₇: X₇ {O(n)}
t₃₅, X₈: X₈ {O(n)}
t₃₅, X₉: X₉ {O(n)}
t₃₅, X₁₀: X₁₀ {O(n)}
t₃₅, X₁₁: X₁₁ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₅, X₁₁: X₁₁ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₆, X₁₁: X₁₁ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₉ {O(n)}
t₇, X₅: X₁₀ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₇, X₁₁: X₁₁ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₈, X₈: X₈ {O(n)}
t₈, X₉: X₉ {O(n)}
t₈, X₁₀: X₁₀ {O(n)}
t₈, X₁₁: X₁₁ {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: X₉ {O(n)}
t₁₆, X₃: 10⋅X₉+6⋅X₁₀+X₃+2 {O(n)}
t₁₆, X₄: X₉ {O(n)}
t₁₆, X₅: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₆, X₆: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₆, X₇: X₇ {O(n)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₉ {O(n)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₁₆, X₁₁: X₁₁ {O(n)}
t₁₇, X₀: X₀ {O(n)}
t₁₇, X₁: X₉ {O(n)}
t₁₇, X₃: 10⋅X₉+6⋅X₁₀+X₃+2 {O(n)}
t₁₇, X₄: X₉ {O(n)}
t₁₇, X₅: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₇, X₆: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₇, X₇: X₇ {O(n)}
t₁₇, X₈: X₈ {O(n)}
t₁₇, X₉: X₉ {O(n)}
t₁₇, X₁₀: X₁₀ {O(n)}
t₁₇, X₁₁: X₁₁ {O(n)}
t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₉ {O(n)}
t₁₈, X₂: 0 {O(1)}
t₁₈, X₃: 10⋅X₉+6⋅X₁₀+X₃+2 {O(n)}
t₁₈, X₄: X₉ {O(n)}
t₁₈, X₅: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₈, X₆: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₈, X₇: X₇ {O(n)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₉ {O(n)}
t₁₈, X₁₀: X₁₀ {O(n)}
t₁₈, X₁₁: X₁₁ {O(n)}
t₁₄, X₀: X₀ {O(n)}
t₁₄, X₁: X₉ {O(n)}
t₁₄, X₃: 10⋅X₉+6⋅X₁₀+X₃+2 {O(n)}
t₁₄, X₄: X₉ {O(n)}
t₁₄, X₅: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₄, X₆: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₄, X₇: X₇ {O(n)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₄, X₁₁: X₁₁ {O(n)}
t₁₅, X₀: X₀ {O(n)}
t₁₅, X₁: X₉ {O(n)}
t₁₅, X₃: 10⋅X₉+6⋅X₁₀+X₃+2 {O(n)}
t₁₅, X₄: X₉ {O(n)}
t₁₅, X₅: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₅, X₆: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₅, X₇: X₇ {O(n)}
t₁₅, X₈: X₈ {O(n)}
t₁₅, X₉: X₉ {O(n)}
t₁₅, X₁₀: X₁₀ {O(n)}
t₁₅, X₁₁: X₁₁ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: 3⋅X₉+X₁ {O(n)}
t₉, X₃: 10⋅X₉+6⋅X₁₀+X₃+2 {O(n)}
t₉, X₄: X₉ {O(n)}
t₉, X₅: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₉, X₆: 15⋅X₉+9⋅X₁₀+X₆+3 {O(n)}
t₉, X₇: X₇ {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₉, X₁₁: X₁₁ {O(n)}
t₁₀, X₀: 2⋅X₀ {O(n)}
t₁₀, X₁: 3⋅X₉ {O(n)}
t₁₀, X₃: 12⋅X₁₀+2⋅X₃+20⋅X₉+4 {O(n)}
t₁₀, X₄: 0 {O(1)}
t₁₀, X₅: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₁₀, X₆: 15⋅X₉+9⋅X₁₀+3 {O(n)}
t₁₀, X₇: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₁₀, X₈: 2⋅X₈ {O(n)}
t₁₀, X₉: 2⋅X₉ {O(n)}
t₁₀, X₁₀: 2⋅X₁₀ {O(n)}
t₁₀, X₁₁: 2⋅X₁₁ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₉ {O(n)}
t₁₁, X₃: 10⋅X₉+6⋅X₁₀+X₃+2 {O(n)}
t₁₁, X₄: X₉ {O(n)}
t₁₁, X₅: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₁, X₆: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₁, X₇: X₇ {O(n)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₁, X₁₀: X₁₀ {O(n)}
t₁₁, X₁₁: X₁₁ {O(n)}
t₂₂, X₀: 12⋅X₁₀+2⋅X₀+20⋅X₉+4 {O(n)}
t₂₂, X₁: 3⋅X₉ {O(n)}
t₂₂, X₃: 12⋅X₁₀+2⋅X₃+20⋅X₉+4 {O(n)}
t₂₂, X₄: 0 {O(1)}
t₂₂, X₅: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₂, X₆: 15⋅X₉+9⋅X₁₀+3 {O(n)}
t₂₂, X₇: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₂, X₈: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+2⋅X₈+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₂, X₉: 2⋅X₉ {O(n)}
t₂₂, X₁₀: 2⋅X₁₀ {O(n)}
t₂₂, X₁₁: 2⋅X₁₁ {O(n)}
t₂₃, X₀: 12⋅X₁₀+2⋅X₀+20⋅X₉+4 {O(n)}
t₂₃, X₁: 6⋅X₉ {O(n)}
t₂₃, X₃: 24⋅X₁₀+4⋅X₃+40⋅X₉+8 {O(n)}
t₂₃, X₄: 0 {O(1)}
t₂₃, X₅: 12⋅X₁₀+20⋅X₉+4 {O(n)}
t₂₃, X₆: 18⋅X₁₀+30⋅X₉+6 {O(n)}
t₂₃, X₇: 12⋅X₁₀+20⋅X₉+4 {O(n)}
t₂₃, X₈: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+2⋅X₈+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₃, X₉: 4⋅X₉ {O(n)}
t₂₃, X₁₀: 4⋅X₁₀ {O(n)}
t₂₃, X₁₁: 4⋅X₁₁ {O(n)}
t₃₀, X₀: 12⋅X₁₀+2⋅X₀+20⋅X₉+4 {O(n)}
t₃₀, X₁: 6⋅X₉ {O(n)}
t₃₀, X₃: 24⋅X₁₀+4⋅X₃+40⋅X₉+8 {O(n)}
t₃₀, X₄: 0 {O(1)}
t₃₀, X₅: 12⋅X₁₀+20⋅X₉+4 {O(n)}
t₃₀, X₆: 18⋅X₁₀+30⋅X₉+6 {O(n)}
t₃₀, X₇: 12⋅X₁₀+20⋅X₉+4 {O(n)}
t₃₀, X₈: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+2⋅X₈+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₃₀, X₉: 4⋅X₉ {O(n)}
t₃₀, X₁₀: 4⋅X₁₀ {O(n)}
t₃₀, X₁₁: 4⋅X₁₁ {O(n)}
t₂₄, X₀: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₄, X₁: 3⋅X₉ {O(n)}
t₂₄, X₃: 12⋅X₁₀+2⋅X₃+20⋅X₉+4 {O(n)}
t₂₄, X₄: 0 {O(1)}
t₂₄, X₅: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₄, X₆: 15⋅X₉+9⋅X₁₀+3 {O(n)}
t₂₄, X₇: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₄, X₈: 0 {O(1)}
t₂₄, X₉: 2⋅X₉ {O(n)}
t₂₄, X₁₀: 2⋅X₁₀ {O(n)}
t₂₄, X₁₁: 2⋅X₁₁ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: X₁₀ {O(n)}
t₄, X₁₁: X₁₁ {O(n)}
t₂₁, X₀: X₀ {O(n)}
t₂₁, X₁: X₉ {O(n)}
t₂₁, X₃: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₂₁, X₄: X₉ {O(n)}
t₂₁, X₅: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₂₁, X₆: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₂₁, X₇: X₇ {O(n)}
t₂₁, X₈: X₈ {O(n)}
t₂₁, X₉: X₉ {O(n)}
t₂₁, X₁₀: X₁₀ {O(n)}
t₂₁, X₁₁: X₁₁ {O(n)}
t₁₉, X₀: X₀ {O(n)}
t₁₉, X₁: X₉ {O(n)}
t₁₉, X₃: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₉, X₄: X₉ {O(n)}
t₁₉, X₅: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₉, X₆: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₁₉, X₇: X₇ {O(n)}
t₁₉, X₈: X₈ {O(n)}
t₁₉, X₉: X₉ {O(n)}
t₁₉, X₁₀: X₁₀ {O(n)}
t₁₉, X₁₁: X₁₁ {O(n)}
t₂₀, X₀: X₀ {O(n)}
t₂₀, X₁: X₉ {O(n)}
t₂₀, X₃: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₂₀, X₄: X₉ {O(n)}
t₂₀, X₅: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₂₀, X₆: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₀, X₇: X₇ {O(n)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₉ {O(n)}
t₂₀, X₁₀: X₁₀ {O(n)}
t₂₀, X₁₁: X₁₁ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₉ {O(n)}
t₁₂, X₃: 10⋅X₉+6⋅X₁₀+X₃+2 {O(n)}
t₁₂, X₄: X₉ {O(n)}
t₁₂, X₅: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₂, X₆: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₂, X₇: X₇ {O(n)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₉ {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₂, X₁₁: X₁₁ {O(n)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: 2⋅X₉ {O(n)}
t₁₃, X₃: 10⋅X₉+6⋅X₁₀+X₃+2 {O(n)}
t₁₃, X₄: X₉ {O(n)}
t₁₃, X₅: 3⋅X₁₀+5⋅X₉+1 {O(n)}
t₁₃, X₆: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₁₃, X₇: X₇ {O(n)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₉ {O(n)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₁₃, X₁₁: X₁₁ {O(n)}
t₂₉, X₀: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₉, X₁: 3⋅X₉ {O(n)}
t₂₉, X₃: 12⋅X₁₀+2⋅X₃+20⋅X₉+4 {O(n)}
t₂₉, X₄: 0 {O(1)}
t₂₉, X₅: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₉, X₆: 15⋅X₉+9⋅X₁₀+3 {O(n)}
t₂₉, X₇: 10⋅X₉+6⋅X₁₀+2 {O(n)}
t₂₉, X₈: 24⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+12⋅X₁₁+24⋅X₁₀+40⋅X₉+12 {O(n^2)}
t₂₉, X₉: 2⋅X₉ {O(n)}
t₂₉, X₁₀: 2⋅X₁₀ {O(n)}
t₂₉, X₁₁: 2⋅X₁₁ {O(n)}