Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₅: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₀+1, X₄) :|: X₂ ≤ X₀
t₁₃: l2(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄)
t₁: l3(X₀, X₁, X₂, X₃, X₄) → l4(1, X₁, X₂, X₃, X₄)
t₂: l4(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, 1, X₃, X₄) :|: X₀ ≤ X₁
t₃: l4(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₀
t₈: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃
t₉: l5(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₄
t₁₀: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1)
t₁₁: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃+1, X₄)
t₆: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₁
t₇: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃
t₁₂: l9(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂+1, X₃, X₄)

Preprocessing

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l2

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l7

Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₀ for location l4

Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l9

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₅: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₀+1, X₄) :|: X₂ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₃: l2(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁: l3(X₀, X₁, X₂, X₃, X₄) → l4(1, X₁, X₂, X₃, X₄)
t₂: l4(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, 1, X₃, X₄) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀
t₃: l4(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₀ ∧ 1 ≤ X₀
t₈: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉: l5(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃+1, X₄) :|: X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₂: l9(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂+1, X₃, X₄) :|: X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁+1 {O(n)}

MPRF:

l4 [2⋅X₁-X₀ ]
l6 [2⋅X₁-X₀ ]
l7 [2⋅X₁-X₀ ]
l5 [2⋅X₁-X₀ ]
l8 [2⋅X₁-X₀ ]
l9 [2⋅X₁-X₀ ]
l1 [2⋅X₁-X₀ ]

MPRF for transition t₂: l4(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, 1, X₃, X₄) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁+2 {O(n)}

MPRF:

l4 [X₁+1-X₀ ]
l6 [X₁-X₀ ]
l7 [X₁-X₀ ]
l5 [X₁-X₀ ]
l8 [X₁-X₀ ]
l9 [X₁-X₀ ]
l1 [X₁-X₀ ]

MPRF for transition t₄: l1(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₀+1, X₄) :|: X₂ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁+4⋅X₁+4 {O(n^2)}

MPRF:

l4 [X₁-X₀ ]
l6 [X₁-X₂ ]
l7 [X₁-X₂ ]
l5 [X₁-X₂ ]
l8 [X₁-X₂ ]
l9 [X₁-X₂ ]
l1 [X₁+1-X₂ ]

MPRF for transition t₇: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁⋅X₁+5⋅X₁+2 {O(n^2)}

MPRF:

l4 [2⋅X₁-X₀ ]
l6 [2⋅X₁-X₂ ]
l7 [2⋅X₁+X₄-X₂-X₃-1 ]
l5 [2⋅X₁-X₂ ]
l8 [2⋅X₁-X₂ ]
l9 [2⋅X₁-X₂-1 ]
l1 [2⋅X₁-X₂ ]

MPRF for transition t₁₂: l9(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂+1, X₃, X₄) :|: X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁⋅X₁+8⋅X₁+8 {O(n^2)}

MPRF:

l4 [0 ]
l6 [X₀+1-X₂ ]
l7 [X₀+1-X₂ ]
l5 [X₀+1-X₂ ]
l8 [X₀+1-X₂ ]
l9 [X₀+1-X₂ ]
l1 [X₀+1-X₂ ]

MPRF for transition t₉: l5(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+9⋅X₁ {O(n^3)}

MPRF:

l4 [X₁ ]
l1 [X₁ ]
l6 [X₁+1-X₃ ]
l7 [X₁-X₃ ]
l5 [X₁+1-X₃ ]
l8 [X₁+1-X₃ ]
l9 [X₁+X₂-X₀-X₃ ]

MPRF for transition t₁₁: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃+1, X₄) :|: X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₁⋅X₁⋅X₁⋅X₁+40⋅X₁⋅X₁⋅X₁+134⋅X₁⋅X₁+186⋅X₁+88 {O(n^4)}

MPRF:

l4 [2⋅X₁ ]
l1 [2⋅X₁+X₂-X₀ ]
l6 [2⋅X₁+X₂-X₃-1 ]
l7 [2⋅X₁+X₂-X₃-1 ]
l5 [2⋅X₁+X₂-X₃-1 ]
l8 [2⋅X₁+X₂-X₃-1 ]
l9 [X₁+X₂-2 ]

MPRF for transition t₆: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

6⋅X₁⋅X₁⋅X₁+28⋅X₁⋅X₁+41⋅X₁+17 {O(n^3)}

MPRF:

l4 [X₁-X₀ ]
l1 [X₁-X₀ ]
l6 [X₁-X₃ ]
l7 [X₁-X₃ ]
l5 [X₁-X₃ ]
l8 [X₁+1-X₃ ]
l9 [0 ]

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l2

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l7

Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₀ for location l4

Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l9

knowledge_propagation leads to new time bound 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+9⋅X₁ {O(n^3)} for transition t₁₁: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃+1, X₄) :|: X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀

MPRF for transition t₈: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+136 {O(n^6)}

MPRF:

l4 [0 ]
l6 [X₃-X₄ ]
l5 [X₃+1-X₄ ]
l7 [0 ]
l8 [0 ]
l9 [0 ]
l1 [0 ]

MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+136 {O(n^6)}

MPRF:

l4 [0 ]
l6 [X₃+1-X₄ ]
l5 [X₃+1-X₄ ]
l7 [0 ]
l8 [0 ]
l9 [0 ]
l1 [0 ]

Analysing control-flow refined program

Cut unsatisfiable transition t₅: l1→l4

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___9

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l2

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l8___1

Found invariant X₄ ≤ 1+X₁ ∧ 4 ≤ X₄ ∧ 7 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l8___3

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___4

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l8___6

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___2

Found invariant X₄ ≤ 2 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___10

Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___8

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l8___14

Found invariant X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___13

Found invariant X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___11

Found invariant X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₀ for location l4

Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l7___7

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l9___12

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l9___5

knowledge_propagation leads to new time bound X₁+2 {O(n)} for transition t₃₇₄: l1(X₀, X₁, X₂, X₃, X₄) → n_l8___14(X₀, X₁, X₂, X₀+1, X₄) :|: X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₁+2 {O(n)} for transition t₃₈₅: n_l8___14(X₀, X₁, X₂, X₃, X₄) → n_l5___13(X₀, X₁, X₂, X₃, 1) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₁+2 {O(n)} for transition t₃₈₆: n_l8___14(X₀, X₁, X₂, X₃, X₄) → n_l9___12(X₀, X₁, X₂, X₁+1, X₄) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

MPRF for transition t₃₇₅: n_l1___2(X₀, X₁, X₂, X₃, X₄) → n_l8___1(X₀, X₁, X₂, X₀+1, X₄) :|: 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁+3⋅X₁+2 {O(n^2)}

MPRF:

l1 [0 ]
l4 [0 ]
n_l6___11 [0 ]
n_l5___10 [0 ]
n_l6___9 [0 ]
n_l5___8 [0 ]
n_l7___7 [0 ]
n_l8___1 [X₀-X₂ ]
n_l8___14 [0 ]
n_l8___3 [0 ]
n_l5___13 [0 ]
n_l8___6 [0 ]
n_l9___12 [X₁-X₂ ]
n_l1___2 [X₃-X₂ ]
n_l9___5 [0 ]
n_l1___4 [0 ]

MPRF for transition t₄₀₅: n_l1___2(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁+2 {O(n)}

MPRF:

l1 [X₁+1-X₀ ]
l4 [X₁+1-X₀ ]
n_l6___11 [X₁-X₀ ]
n_l5___10 [X₁-X₀ ]
n_l6___9 [X₁-X₀ ]
n_l5___8 [X₁-X₀ ]
n_l7___7 [X₁-X₀ ]
n_l8___1 [X₃-X₀ ]
n_l8___14 [X₁+X₂-X₀ ]
n_l8___3 [X₁+1-X₃ ]
n_l5___13 [X₁-X₀ ]
n_l8___6 [X₁-X₀ ]
n_l9___12 [X₃-X₁ ]
n_l1___2 [1 ]
n_l9___5 [X₁-X₀ ]
n_l1___4 [X₁-X₀ ]

MPRF for transition t₃₇₆: n_l1___4(X₀, X₁, X₂, X₃, X₄) → n_l8___3(X₀, X₁, X₂, X₀+1, X₄) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁+4⋅X₁+3 {O(n^2)}

MPRF:

l1 [X₁-X₀ ]
l4 [X₁-X₀ ]
n_l6___11 [X₁-X₂ ]
n_l5___10 [X₁-X₂ ]
n_l6___9 [X₁-X₂ ]
n_l5___8 [X₁-X₂ ]
n_l7___7 [X₁-X₂ ]
n_l8___1 [0 ]
n_l8___14 [X₁-X₀ ]
n_l8___3 [X₁-X₂ ]
n_l5___13 [X₁-X₂ ]
n_l8___6 [X₁-X₂ ]
n_l9___12 [0 ]
n_l1___2 [X₁-X₀ ]
n_l9___5 [X₁-X₂ ]
n_l1___4 [X₁+1-X₂ ]

MPRF for transition t₄₀₆: n_l1___4(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁+2 {O(n)}

MPRF:

l1 [X₁+1-X₀ ]
l4 [X₁+1-X₀ ]
n_l6___11 [X₁+X₄-X₀ ]
n_l5___10 [X₁+1-X₀ ]
n_l6___9 [X₁+1-X₀ ]
n_l5___8 [X₁+1-X₀ ]
n_l7___7 [X₁+1-X₀ ]
n_l8___1 [0 ]
n_l8___14 [X₁+1-X₀ ]
n_l8___3 [X₁+1-X₀ ]
n_l5___13 [X₁+1-X₀ ]
n_l8___6 [X₁+1-X₀ ]
n_l9___12 [0 ]
n_l1___2 [X₁+1-X₃ ]
n_l9___5 [X₁+1-X₀ ]
n_l1___4 [X₁+1-X₀ ]

MPRF for transition t₃₈₄: n_l8___1(X₀, X₁, X₂, X₃, X₄) → n_l9___12(X₀, X₁, X₂, X₁+1, X₄) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁+3⋅X₁+2 {O(n^2)}

MPRF:

l1 [0 ]
l4 [0 ]
n_l6___11 [0 ]
n_l5___10 [0 ]
n_l6___9 [0 ]
n_l5___8 [0 ]
n_l7___7 [0 ]
n_l8___1 [X₀+1-X₂ ]
n_l8___14 [0 ]
n_l8___3 [0 ]
n_l5___13 [0 ]
n_l8___6 [0 ]
n_l9___12 [X₁-X₂ ]
n_l1___2 [X₁+1-X₂ ]
n_l9___5 [0 ]
n_l1___4 [0 ]

MPRF for transition t₃₈₇: n_l8___3(X₀, X₁, X₂, X₃, X₄) → n_l5___13(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 4 ≤ X₄ ∧ 7 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁+4⋅X₁+4 {O(n^2)}

MPRF:

l1 [0 ]
l4 [0 ]
n_l6___11 [X₁-X₂-1 ]
n_l5___10 [X₁-X₂-1 ]
n_l6___9 [X₁-X₂-1 ]
n_l5___8 [X₁-X₂-1 ]
n_l7___7 [X₁-X₂-1 ]
n_l8___1 [0 ]
n_l8___14 [0 ]
n_l8___3 [X₄-X₂-1 ]
n_l5___13 [X₁-X₂-X₄ ]
n_l8___6 [X₁-X₂-1 ]
n_l9___12 [0 ]
n_l1___2 [0 ]
n_l9___5 [X₄-X₂-2 ]
n_l1___4 [X₄-X₂-1 ]

MPRF for transition t₃₈₉: n_l8___6(X₀, X₁, X₂, X₃, X₄) → n_l9___5(X₀, X₁, X₂, X₁+1, X₄) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁+5⋅X₁+6 {O(n^2)}

MPRF:

l1 [0 ]
l4 [0 ]
n_l6___11 [X₁+2⋅X₄-X₂ ]
n_l5___10 [X₁+2-X₂ ]
n_l6___9 [X₁+2-X₂ ]
n_l5___8 [X₁+2-X₂ ]
n_l7___7 [X₁+2-X₂ ]
n_l8___1 [0 ]
n_l8___14 [0 ]
n_l8___3 [X₁+2⋅X₃-2⋅X₀-X₂ ]
n_l5___13 [X₁+2-X₂ ]
n_l8___6 [X₁+2-X₂ ]
n_l9___12 [0 ]
n_l1___2 [0 ]
n_l9___5 [X₁+1-X₂ ]
n_l1___4 [X₁+2-X₂ ]

MPRF for transition t₃₉₀: n_l9___12(X₀, X₁, X₂, X₃, X₄) → n_l1___2(X₀, X₁, X₂+1, X₁+1, X₄) :|: X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁+5⋅X₁+5 {O(n^2)}

MPRF:

l1 [X₁-X₀ ]
l4 [X₁-X₀ ]
n_l6___11 [X₁-X₀ ]
n_l5___10 [X₁-X₀ ]
n_l6___9 [X₁-X₀ ]
n_l5___8 [X₁-X₀ ]
n_l7___7 [X₁-X₀ ]
n_l8___1 [X₁+1-X₂ ]
n_l8___14 [X₁-X₀ ]
n_l8___3 [X₁-X₀ ]
n_l5___13 [X₁-X₀ ]
n_l8___6 [X₁-X₀ ]
n_l9___12 [X₃-X₂ ]
n_l1___2 [X₁+1-X₂ ]
n_l9___5 [X₁-X₀ ]
n_l1___4 [X₁-X₀ ]

MPRF for transition t₃₉₁: n_l9___5(X₀, X₁, X₂, X₃, X₄) → n_l1___4(X₀, X₁, X₂+1, X₁+1, X₄) :|: 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁+4⋅X₁+3 {O(n^2)}

MPRF:

l1 [X₁-X₀ ]
l4 [X₁-X₀ ]
n_l6___11 [X₁-X₂ ]
n_l5___10 [X₁-X₂ ]
n_l6___9 [X₁-X₂ ]
n_l5___8 [X₁-X₂ ]
n_l7___7 [X₁-X₂ ]
n_l8___1 [0 ]
n_l8___14 [X₁-X₀ ]
n_l8___3 [X₁-X₂ ]
n_l5___13 [X₁-X₂ ]
n_l8___6 [X₁-X₂ ]
n_l9___12 [0 ]
n_l1___2 [0 ]
n_l9___5 [X₁-X₂ ]
n_l1___4 [X₁-X₂ ]

MPRF for transition t₃₇₇: n_l5___10(X₀, X₁, X₂, X₃, X₄) → n_l6___9(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₂ ≤ X₀ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁⋅X₁+4⋅X₁⋅X₁+4⋅X₁+1 {O(n^3)}

MPRF:

l1 [X₁-X₀ ]
n_l1___4 [X₁ ]
l4 [X₁-X₀ ]
n_l6___11 [X₁+X₄-X₃ ]
n_l5___10 [X₁+1-X₃ ]
n_l6___9 [X₁-X₃ ]
n_l5___8 [X₁-X₃ ]
n_l7___7 [X₁-X₃ ]
n_l8___1 [-1 ]
n_l8___14 [X₁-X₀ ]
n_l8___3 [X₁ ]
n_l5___13 [X₁+1-X₃ ]
n_l8___6 [X₁+1-X₃ ]
n_l9___5 [X₁-X₄ ]
n_l9___12 [-1 ]
n_l1___2 [X₁-X₃ ]

MPRF for transition t₃₇₈: n_l5___13(X₀, X₁, X₂, X₃, X₄) → n_l6___11(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁⋅X₁+4⋅X₁⋅X₁+4⋅X₁+1 {O(n^3)}

MPRF:

l1 [X₁-1 ]
n_l1___4 [X₁ ]
l4 [X₁-1 ]
n_l6___11 [X₁-X₃ ]
n_l5___10 [X₁-X₃ ]
n_l6___9 [X₁-X₃ ]
n_l5___8 [X₁-X₃ ]
n_l7___7 [X₁-X₃ ]
n_l8___1 [X₀-1 ]
n_l8___14 [X₁-X₂ ]
n_l8___3 [X₁ ]
n_l5___13 [X₁+1-X₃ ]
n_l8___6 [X₁+1-X₄ ]
n_l9___5 [X₁-X₄ ]
n_l9___12 [X₀+X₁-X₃ ]
n_l1___2 [X₁-1 ]

MPRF for transition t₃₈₀: n_l5___8(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃, X₃+1) :|: 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁⋅X₁+4⋅X₁⋅X₁+4⋅X₁ {O(n^3)}

MPRF:

l1 [X₁ ]
n_l1___4 [X₁ ]
l4 [X₁ ]
n_l6___11 [X₁+1-X₃ ]
n_l5___10 [X₁+1-X₃ ]
n_l6___9 [X₁+1-X₃ ]
n_l5___8 [X₁+1-X₃ ]
n_l7___7 [X₁-X₃ ]
n_l8___1 [X₁ ]
n_l8___14 [X₁ ]
n_l8___3 [X₁ ]
n_l5___13 [X₁+1-X₃ ]
n_l8___6 [X₁+1-X₄ ]
n_l9___5 [X₁-X₄ ]
n_l9___12 [X₀ ]
n_l1___2 [X₃-1 ]

MPRF for transition t₃₈₁: n_l6___11(X₀, X₁, X₂, X₃, X₄) → n_l5___10(X₀, X₁, X₂, X₃, X₄+1) :|: X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ X₀ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁⋅X₁+4⋅X₁⋅X₁+4⋅X₁ {O(n^3)}

MPRF:

l1 [X₁ ]
n_l1___4 [X₁ ]
l4 [X₁ ]
n_l6___11 [X₁+1-X₃ ]
n_l5___10 [X₁-X₃ ]
n_l6___9 [X₁-X₃ ]
n_l5___8 [X₁-X₃ ]
n_l7___7 [X₁-X₃ ]
n_l8___1 [X₁ ]
n_l8___14 [X₁ ]
n_l8___3 [X₁ ]
n_l5___13 [X₁+1-X₃ ]
n_l8___6 [X₁+1-X₃ ]
n_l9___5 [X₁-X₄ ]
n_l9___12 [X₁ ]
n_l1___2 [X₁ ]

MPRF for transition t₃₈₃: n_l7___7(X₀, X₁, X₂, X₃, X₄) → n_l8___6(X₀, X₁, X₂, X₃+1, X₃+1) :|: X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁⋅X₁⋅X₁⋅X₁+20⋅X₁⋅X₁⋅X₁+68⋅X₁⋅X₁+94⋅X₁+42 {O(n^4)}

MPRF:

l1 [2⋅X₁ ]
n_l1___4 [2⋅X₁+2⋅X₂-2⋅X₀ ]
l4 [2⋅X₁ ]
n_l6___11 [2⋅X₁-X₀-X₃ ]
n_l5___10 [2⋅X₁-X₀-X₃ ]
n_l6___9 [2⋅X₁-X₀-X₃ ]
n_l5___8 [2⋅X₁-X₀-X₃ ]
n_l7___7 [2⋅X₁-X₀-X₃ ]
n_l8___1 [2⋅X₀ ]
n_l8___14 [2⋅X₁ ]
n_l8___3 [2⋅X₁+2⋅X₂-2⋅X₀ ]
n_l5___13 [2⋅X₁-X₀-X₃ ]
n_l8___6 [2⋅X₁-X₀-X₃ ]
n_l9___5 [2⋅X₁-X₀-X₄ ]
n_l9___12 [2⋅X₀ ]
n_l1___2 [2⋅X₁ ]

MPRF for transition t₃₈₈: n_l8___6(X₀, X₁, X₂, X₃, X₄) → n_l5___13(X₀, X₁, X₂, X₃, 1) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁⋅X₁+4⋅X₁⋅X₁+4⋅X₁ {O(n^3)}

MPRF:

l1 [X₁ ]
n_l1___4 [X₁ ]
l4 [X₁ ]
n_l6___11 [X₁-X₃ ]
n_l5___10 [X₁-X₃ ]
n_l6___9 [X₁-X₃ ]
n_l5___8 [X₁-X₃ ]
n_l7___7 [X₁-X₃ ]
n_l8___1 [X₁ ]
n_l8___14 [X₁ ]
n_l8___3 [X₁ ]
n_l5___13 [X₁-X₃ ]
n_l8___6 [X₁+1-X₃ ]
n_l9___5 [X₁-X₄ ]
n_l9___12 [X₀ ]
n_l1___2 [X₀ ]

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___9

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l2

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l8___1

Found invariant X₄ ≤ 1+X₁ ∧ 4 ≤ X₄ ∧ 7 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l8___3

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___4

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l8___6

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___2

Found invariant X₄ ≤ 2 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___10

Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___8

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l8___14

Found invariant X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___13

Found invariant X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___11

Found invariant X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₀ for location l4

Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l7___7

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l9___12

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l9___5

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___9

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l2

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l8___1

Found invariant X₄ ≤ 1+X₁ ∧ 4 ≤ X₄ ∧ 7 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l8___3

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___4

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l8___6

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___2

Found invariant X₄ ≤ 2 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___10

Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___8

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l8___14

Found invariant X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___13

Found invariant X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___11

Found invariant X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₀ for location l4

Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l7___7

Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l9___12

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l9___5

knowledge_propagation leads to new time bound X₁⋅X₁⋅X₁+4⋅X₁⋅X₁+4⋅X₁ {O(n^3)} for transition t₃₈₃: n_l7___7(X₀, X₁, X₂, X₃, X₄) → n_l8___6(X₀, X₁, X₂, X₃+1, X₃+1) :|: X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀

MPRF for transition t₃₇₉: n_l5___8(X₀, X₁, X₂, X₃, X₄) → n_l6___9(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₂ ≤ X₀ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+28⋅X₁⋅X₁⋅X₁⋅X₁+61⋅X₁⋅X₁⋅X₁+85⋅X₁⋅X₁+56⋅X₁+3 {O(n^6)}

MPRF:

l1 [X₁ ]
n_l1___4 [X₁+1 ]
l4 [X₁ ]
n_l6___11 [X₁+X₃-X₀-X₄ ]
n_l5___10 [X₁+X₃-X₀-X₄-1 ]
n_l6___9 [X₁+X₃-X₀-X₄-1 ]
n_l5___8 [X₁+X₃-X₀-X₄ ]
n_l7___7 [X₁-X₀-1 ]
n_l8___1 [X₃-1 ]
n_l8___14 [X₁ ]
n_l8___3 [X₁+X₃-X₀ ]
n_l5___13 [X₁+X₃-X₀-X₄ ]
n_l8___6 [X₁+X₃-X₀-X₂-X₄ ]
n_l9___5 [X₁-X₀-X₂ ]
n_l9___12 [X₀ ]
n_l1___2 [X₀ ]

MPRF for transition t₃₈₂: n_l6___9(X₀, X₁, X₂, X₃, X₄) → n_l5___8(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+9⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+37⋅X₁⋅X₁⋅X₁⋅X₁+93⋅X₁⋅X₁⋅X₁+139⋅X₁⋅X₁+96⋅X₁+13 {O(n^6)}

MPRF:

l1 [X₁+1 ]
n_l1___4 [X₁+X₂ ]
l4 [X₁+1 ]
n_l6___11 [X₁+X₂+X₃-X₀-1 ]
n_l5___10 [X₁+X₂+X₃+1-X₀-X₄ ]
n_l6___9 [X₁+X₂+X₃+1-X₀-X₄ ]
n_l5___8 [X₁+X₂+X₃+1-X₀-X₄ ]
n_l7___7 [X₁+X₂-X₀ ]
n_l8___1 [X₀+1 ]
n_l8___14 [X₁+1 ]
n_l8___3 [X₁+X₂ ]
n_l5___13 [X₁+X₂+X₃-X₀-1 ]
n_l8___6 [X₁+X₂-X₀ ]
n_l9___5 [X₁+X₂-X₀ ]
n_l9___12 [X₁+1 ]
n_l1___2 [X₁+1 ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:24⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+208⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+768⋅X₁⋅X₁⋅X₁⋅X₁+1558⋅X₁⋅X₁⋅X₁+1835⋅X₁⋅X₁+1177⋅X₁+310 {O(n^6)}
t₀: 1 {O(1)}
t₄: X₁⋅X₁+4⋅X₁+4 {O(n^2)}
t₅: 2⋅X₁+1 {O(n)}
t₁₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁+2 {O(n)}
t₃: 1 {O(1)}
t₈: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+136 {O(n^6)}
t₉: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+9⋅X₁ {O(n^3)}
t₁₀: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+136 {O(n^6)}
t₁₁: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+9⋅X₁ {O(n^3)}
t₆: 6⋅X₁⋅X₁⋅X₁+28⋅X₁⋅X₁+41⋅X₁+17 {O(n^3)}
t₇: 2⋅X₁⋅X₁+5⋅X₁+2 {O(n^2)}
t₁₂: 2⋅X₁⋅X₁+8⋅X₁+8 {O(n^2)}

Costbounds

Overall costbound: 24⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+208⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+768⋅X₁⋅X₁⋅X₁⋅X₁+1558⋅X₁⋅X₁⋅X₁+1835⋅X₁⋅X₁+1177⋅X₁+310 {O(n^6)}
t₀: 1 {O(1)}
t₄: X₁⋅X₁+4⋅X₁+4 {O(n^2)}
t₅: 2⋅X₁+1 {O(n)}
t₁₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁+2 {O(n)}
t₃: 1 {O(1)}
t₈: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+136 {O(n^6)}
t₉: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+9⋅X₁ {O(n^3)}
t₁₀: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+136 {O(n^6)}
t₁₁: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+9⋅X₁ {O(n^3)}
t₆: 6⋅X₁⋅X₁⋅X₁+28⋅X₁⋅X₁+41⋅X₁+17 {O(n^3)}
t₇: 2⋅X₁⋅X₁+5⋅X₁+2 {O(n^2)}
t₁₂: 2⋅X₁⋅X₁+8⋅X₁+8 {O(n^2)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₄, X₀: 2⋅X₁+2 {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: 2⋅X₁⋅X₁+8⋅X₁+9 {O(n^2)}
t₄, X₃: 4⋅X₁+6 {O(n)}
t₄, X₄: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+X₄+137 {O(n^6)}
t₅, X₀: 2⋅X₁+2 {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: 2⋅X₁⋅X₁+8⋅X₁+9 {O(n^2)}
t₅, X₃: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+17⋅X₁+12 {O(n^3)}
t₅, X₄: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+X₄+137 {O(n^6)}
t₁₃, X₀: 2⋅X₁+3 {O(n)}
t₁₃, X₁: 2⋅X₁ {O(n)}
t₁₃, X₂: 2⋅X₁⋅X₁+8⋅X₁+X₂+9 {O(n^2)}
t₁₃, X₃: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+17⋅X₁+X₃+12 {O(n^3)}
t₁₃, X₄: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+2⋅X₄+549⋅X₁+137 {O(n^6)}
t₁, X₀: 1 {O(1)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₂, X₀: 2⋅X₁+2 {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: 1 {O(1)}
t₂, X₃: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+17⋅X₁+X₃+12 {O(n^3)}
t₂, X₄: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+X₄+137 {O(n^6)}
t₃, X₀: 2⋅X₁+3 {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: 2⋅X₁⋅X₁+8⋅X₁+X₂+9 {O(n^2)}
t₃, X₃: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+17⋅X₁+X₃+12 {O(n^3)}
t₃, X₄: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+2⋅X₄+549⋅X₁+137 {O(n^6)}
t₈, X₀: 2⋅X₁+2 {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: 2⋅X₁⋅X₁+8⋅X₁+9 {O(n^2)}
t₈, X₃: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+13⋅X₁+6 {O(n^3)}
t₈, X₄: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+137 {O(n^6)}
t₉, X₀: 2⋅X₁+2 {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: 2⋅X₁⋅X₁+8⋅X₁+9 {O(n^2)}
t₉, X₃: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+13⋅X₁+6 {O(n^3)}
t₉, X₄: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+137 {O(n^6)}
t₁₀, X₀: 2⋅X₁+2 {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: 2⋅X₁⋅X₁+8⋅X₁+9 {O(n^2)}
t₁₀, X₃: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+13⋅X₁+6 {O(n^3)}
t₁₀, X₄: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+137 {O(n^6)}
t₁₁, X₀: 2⋅X₁+2 {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: 2⋅X₁⋅X₁+8⋅X₁+9 {O(n^2)}
t₁₁, X₃: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+13⋅X₁+6 {O(n^3)}
t₁₁, X₄: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+137 {O(n^6)}
t₆, X₀: 2⋅X₁+2 {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: 2⋅X₁⋅X₁+8⋅X₁+9 {O(n^2)}
t₆, X₃: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+13⋅X₁+6 {O(n^3)}
t₆, X₄: 1 {O(1)}
t₇, X₀: 2⋅X₁+2 {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: 2⋅X₁⋅X₁+8⋅X₁+9 {O(n^2)}
t₇, X₃: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+17⋅X₁+12 {O(n^3)}
t₇, X₄: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+X₄+137 {O(n^6)}
t₁₂, X₀: 2⋅X₁+2 {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: 2⋅X₁⋅X₁+8⋅X₁+9 {O(n^2)}
t₁₂, X₃: 2⋅X₁⋅X₁⋅X₁+8⋅X₁⋅X₁+17⋅X₁+12 {O(n^3)}
t₁₂, X₄: 12⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+104⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+384⋅X₁⋅X₁⋅X₁⋅X₁+774⋅X₁⋅X₁⋅X₁+893⋅X₁⋅X₁+549⋅X₁+X₄+137 {O(n^6)}