Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₁₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₆-X₀, X₂, X₃, X₄, X₅, X₆)
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₁₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₀
t₁₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₅
t₁₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅-X₀, X₆)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ < 1
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: 1 < X₄
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₆, X₃, X₄, X₅, X₆) :|: X₅ < 0
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₆, X₃, X₄, X₅, X₆) :|: 0 < X₅
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₀, X₅, X₂)
Preprocessing
Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l11
Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l6
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l12
Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l7
Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l8
Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l10
Found invariant X₄ ≤ X₃ for location l4
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l9
Found invariant X₄ ≤ 1+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₁₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₆-X₀, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0 ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅-X₀, X₆) :|: X₄ ≤ 1+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ < 1 ∧ X₄ ≤ X₃
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: 1 < X₄ ∧ X₄ ≤ X₃
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₆, X₃, X₄, X₅, X₆) :|: X₅ < 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₆, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₀, X₅, X₂) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃
MPRF for transition t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: 1 < X₄ ∧ X₄ ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l10 [X₀-1 ]
l14 [X₀-1 ]
l12 [X₀-1 ]
l7 [X₀-1 ]
l8 [X₀-1 ]
l6 [2⋅X₀-X₄ ]
l9 [X₀-1 ]
l4 [X₄-1 ]
MPRF for transition t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
X₃ {O(n)}
MPRF:
l10 [2⋅X₀+2-X₄ ]
l14 [X₄ ]
l12 [X₄ ]
l7 [2⋅X₀+2-X₄ ]
l8 [X₀+1 ]
l6 [X₀ ]
l9 [X₀ ]
l4 [X₄ ]
MPRF for transition t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₆, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
X₃ {O(n)}
MPRF:
l10 [2⋅X₀+2-X₄ ]
l14 [X₄ ]
l12 [X₄ ]
l7 [2⋅X₀+2-X₄ ]
l8 [X₄ ]
l6 [X₄-1 ]
l9 [X₄-1 ]
l4 [X₄ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₁₂₉₆: l4→n_l12___16
Cut unsatisfiable transition t₁₂₉₈: n_l4___3→n_l12___16
Cut unsatisfiable transition t₁₃₂₇: n_l4___5→l11
Cut unreachable locations [n_l12___13; n_l12___16; n_l14___11; n_l14___14] from the program graph
Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l11
Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l14___2
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l4___3
Found invariant 1+X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l9___4
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 2+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀ for location n_l4___5
Found invariant 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l7___10
Found invariant 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l12___1
Found invariant X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l12___15
Found invariant 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l8___9
Found invariant 1+X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l6___7
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀ for location n_l6___8
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 2+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀ for location n_l9___6
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l4
Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l10___12
MPRF for transition t₁₂₈₅: n_l10___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___10(X₀, X₆-X₀, X₂, X₃, X₀+1, X₅, X₆) :|: X₄ ≤ X₃ ∧ 1+X₅ < X₄ ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₅ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃ {O(n)}
MPRF:
n_l10___12 [X₄-1 ]
n_l14___2 [X₀ ]
n_l12___1 [X₀ ]
n_l12___15 [X₀ ]
n_l7___10 [X₀-1 ]
n_l6___7 [X₀-1 ]
n_l8___9 [X₄-2 ]
n_l6___8 [X₀-1 ]
n_l9___4 [X₀-1 ]
n_l4___3 [X₀-1 ]
n_l9___6 [X₀-1 ]
n_l4___5 [X₄-1 ]
MPRF for transition t₁₂₈₆: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___12(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₄ ≤ X₃ ∧ 1 < X₄ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ X₅ < X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
n_l10___12 [X₀-1 ]
n_l14___2 [X₀ ]
n_l12___1 [X₀ ]
n_l12___15 [X₄-1 ]
n_l7___10 [X₀-1 ]
n_l6___7 [X₄-2 ]
n_l8___9 [X₆-X₁-1 ]
n_l6___8 [X₆-X₁-1 ]
n_l9___4 [X₀-1 ]
n_l4___3 [X₄-1 ]
n_l9___6 [X₆-X₁-1 ]
n_l4___5 [X₄-1 ]
MPRF for transition t₁₂₉₀: n_l12___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₄ ≤ X₃ ∧ 0 < X₅ ∧ 1 < X₄ ∧ X₀ ≤ X₅ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ X₅ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
n_l10___12 [X₀-1 ]
n_l14___2 [X₀-1 ]
n_l12___1 [X₀-1 ]
n_l12___15 [X₄-1 ]
n_l7___10 [X₀-1 ]
n_l6___7 [X₆-X₂-1 ]
n_l8___9 [X₆-X₁-1 ]
n_l6___8 [X₆-X₁-1 ]
n_l9___4 [X₀-1 ]
n_l4___3 [X₄-1 ]
n_l9___6 [X₆-X₁-1 ]
n_l4___5 [X₄-1 ]
MPRF for transition t₁₂₉₇: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₃ ∧ 0 < X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 1 < X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+2 {O(n)}
MPRF:
n_l10___12 [X₀-1 ]
n_l14___2 [X₀-1 ]
n_l12___1 [X₄-2 ]
n_l12___15 [X₄-2 ]
n_l7___10 [X₀-1 ]
n_l6___7 [X₀-1 ]
n_l8___9 [X₀-1 ]
n_l6___8 [X₀-1 ]
n_l9___4 [X₀-1 ]
n_l4___3 [X₀-1 ]
n_l9___6 [X₀-1 ]
n_l4___5 [X₄-1 ]
MPRF for transition t₁₂₉₉: n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₃ ∧ 0 < X₃ ∧ 1 < X₄ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 1 < X₄ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 2+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₃+2 {O(n)}
MPRF:
n_l10___12 [X₀-1 ]
n_l14___2 [X₀-1 ]
n_l12___1 [X₄-2 ]
n_l12___15 [X₄-2 ]
n_l7___10 [X₀-1 ]
n_l6___7 [X₄-2 ]
n_l8___9 [X₀-1 ]
n_l6___8 [X₀-1 ]
n_l9___4 [X₀-1 ]
n_l4___3 [X₄-1 ]
n_l9___6 [X₀-1 ]
n_l4___5 [X₄-1 ]
MPRF for transition t₁₃₀₀: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___4(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₅ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃ {O(n)}
MPRF:
n_l10___12 [X₃+X₄ ]
n_l14___2 [X₀+X₃+1 ]
n_l12___1 [X₀+X₃+1 ]
n_l12___15 [X₄+X₅ ]
n_l7___10 [X₀+X₃+1 ]
n_l6___7 [X₃+X₄ ]
n_l8___9 [X₀+X₃+1 ]
n_l6___8 [X₀+X₃ ]
n_l9___4 [X₀+X₃ ]
n_l4___3 [X₀+X₃ ]
n_l9___6 [X₀+X₃ ]
n_l4___5 [X₃+X₄ ]
MPRF for transition t₁₃₀₁: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___6(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 < X₅ ∧ X₀+X₁ ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ 1+X₅ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₃ {O(n)}
MPRF:
n_l10___12 [X₀+X₃ ]
n_l14___2 [X₀+X₃ ]
n_l12___1 [X₃+X₄-1 ]
n_l12___15 [X₀+X₅ ]
n_l7___10 [X₀+X₃ ]
n_l6___7 [X₀+X₃ ]
n_l8___9 [X₃+X₄-1 ]
n_l6___8 [X₃+X₄-1 ]
n_l9___4 [X₀+X₃ ]
n_l4___3 [X₃+X₄ ]
n_l9___6 [X₀+X₃-1 ]
n_l4___5 [X₀+X₃-1 ]
MPRF for transition t₁₃₀₂: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___9(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ 1+X₅ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
n_l10___12 [X₀ ]
n_l14___2 [X₄-1 ]
n_l12___1 [X₄-1 ]
n_l12___15 [X₄-1 ]
n_l7___10 [X₀ ]
n_l6___7 [X₀-1 ]
n_l8___9 [X₀-1 ]
n_l6___8 [X₆-X₁-1 ]
n_l9___4 [X₀-1 ]
n_l4___3 [X₀-1 ]
n_l9___6 [X₂-X₁-1 ]
n_l4___5 [X₄-1 ]
MPRF for transition t₁₃₀₃: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___7(X₀, X₁, X₁, X₃, X₀+1, 0, X₆) :|: 1+X₀ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃ {O(n)}
MPRF:
n_l10___12 [X₀+1 ]
n_l14___2 [X₄ ]
n_l12___1 [X₀+1 ]
n_l12___15 [X₄ ]
n_l7___10 [X₀+1 ]
n_l6___7 [X₀ ]
n_l8___9 [X₀+1 ]
n_l6___8 [X₆-X₁ ]
n_l9___4 [X₀ ]
n_l4___3 [X₄ ]
n_l9___6 [X₂-X₁ ]
n_l4___5 [X₄ ]
MPRF for transition t₁₃₀₄: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___8(X₀, X₁, X₆, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 < X₅ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
n_l10___12 [X₀+1 ]
n_l14___2 [X₀+1 ]
n_l12___1 [X₄ ]
n_l12___15 [X₀+1 ]
n_l7___10 [X₀+1 ]
n_l6___7 [X₀+1 ]
n_l8___9 [X₄ ]
n_l6___8 [X₀ ]
n_l9___4 [X₀+1 ]
n_l4___3 [X₄ ]
n_l9___6 [X₀ ]
n_l4___5 [X₄ ]
MPRF for transition t₁₃₀₅: n_l9___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___3(X₀, X₁, X₂, X₃, X₀, X₅, X₂) :|: 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
n_l10___12 [X₀ ]
n_l14___2 [X₀ ]
n_l12___1 [X₀ ]
n_l12___15 [X₄-1 ]
n_l7___10 [X₀ ]
n_l6___7 [X₀ ]
n_l8___9 [X₀ ]
n_l6___8 [X₀ ]
n_l9___4 [X₀ ]
n_l4___3 [X₀-1 ]
n_l9___6 [X₀ ]
n_l4___5 [X₄ ]
MPRF for transition t₁₃₀₆: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___5(X₀, X₁, X₂, X₃, X₀, X₅, X₂) :|: 1+X₀ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 < X₅ ∧ X₀+X₁ ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 2+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₃ {O(n)}
MPRF:
n_l10___12 [X₀ ]
n_l14___2 [X₀ ]
n_l12___1 [X₀ ]
n_l12___15 [X₀ ]
n_l7___10 [X₆-X₁ ]
n_l6___7 [X₀ ]
n_l8___9 [X₆-X₁ ]
n_l6___8 [X₂-X₁ ]
n_l9___4 [X₀ ]
n_l4___3 [X₄ ]
n_l9___6 [X₆-X₁ ]
n_l4___5 [X₄-1 ]
Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l11
Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l14___2
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l4___3
Found invariant 1+X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l9___4
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 2+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀ for location n_l4___5
Found invariant 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l7___10
Found invariant 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l12___1
Found invariant X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l12___15
Found invariant 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l8___9
Found invariant 1+X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l6___7
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀ for location n_l6___8
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 2+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀ for location n_l9___6
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l4
Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l10___12
Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l11
Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l14___2
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l4___3
Found invariant 1+X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l9___4
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 2+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀ for location n_l4___5
Found invariant 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l7___10
Found invariant 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l12___1
Found invariant X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l12___15
Found invariant 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l8___9
Found invariant 1+X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l6___7
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀ for location n_l6___8
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 2+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀ for location n_l9___6
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l4
Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l10___12
MPRF for transition t₁₂₈₇: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₄ ≤ X₃ ∧ 1 < X₄ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
MPRF:
n_l10___12 [X₃-X₀ ]
n_l14___2 [X₃+X₅-X₀-1 ]
n_l12___1 [X₃+X₅-1 ]
n_l4___3 [2⋅X₃-X₄ ]
n_l4___5 [2⋅X₃-X₄ ]
n_l12___15 [X₃+X₅-X₄ ]
n_l9___4 [0 ]
n_l9___6 [X₁+X₃-X₀-X₆ ]
n_l7___10 [X₃-X₀ ]
n_l6___7 [0 ]
n_l8___9 [X₃-X₄ ]
n_l6___8 [X₂+X₃-X₀-X₆-1 ]
MPRF for transition t₁₂₉₄: n_l14___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___1(X₀, X₁, X₂, X₃, X₀+1, X₅-X₀, X₆) :|: X₀ ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ 0 < X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
MPRF:
n_l10___12 [0 ]
n_l14___2 [X₅ ]
n_l12___1 [X₅ ]
n_l4___3 [X₃ ]
n_l4___5 [X₃ ]
n_l12___15 [X₅ ]
n_l9___4 [0 ]
n_l9___6 [0 ]
n_l7___10 [0 ]
n_l6___7 [0 ]
n_l8___9 [0 ]
n_l6___8 [0 ]
CFR: Improvement to new bound with the following program:
new bound:
8⋅X₃⋅X₃+22⋅X₃+9 {O(n^2)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l11, l13, l2, l3, l4, l5, n_l10___12, n_l12___1, n_l12___15, n_l14___2, n_l4___3, n_l4___5, n_l6___7, n_l6___8, n_l7___10, n_l8___9, n_l9___4, n_l9___6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0 ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₂₉₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₃ ∧ 0 < X₃ ∧ X₄ ≤ X₃ ∧ 1 < X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂₈₅: n_l10___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___10(X₀, X₆-X₀, X₂, X₃, X₀+1, X₅, X₆) :|: X₄ ≤ X₃ ∧ 1+X₅ < X₄ ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₅ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₂₈₆: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___12(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₄ ≤ X₃ ∧ 1 < X₄ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ X₅ < X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₂₈₇: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₄ ≤ X₃ ∧ 1 < X₄ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₂₉₀: n_l12___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₄ ≤ X₃ ∧ 0 < X₅ ∧ 1 < X₄ ∧ X₀ ≤ X₅ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ X₅ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₂₉₄: n_l14___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___1(X₀, X₁, X₂, X₃, X₀+1, X₅-X₀, X₆) :|: X₀ ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ 0 < X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₃₂₆: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀
t₁₂₉₇: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₃ ∧ 0 < X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 1 < X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀
t₁₂₉₉: n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₄-1, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₃ ∧ 0 < X₃ ∧ 1 < X₄ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 1 < X₄ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 2+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀
t₁₃₀₀: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___4(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₅ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀
t₁₃₀₁: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___6(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 < X₅ ∧ X₀+X₁ ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ 1+X₅ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀
t₁₃₀₂: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___9(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ 1+X₅ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₃₀₃: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___7(X₀, X₁, X₁, X₃, X₀+1, 0, X₆) :|: 1+X₀ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₃₀₄: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___8(X₀, X₁, X₆, X₃, X₀+1, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 < X₅ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₃₀₅: n_l9___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___3(X₀, X₁, X₂, X₃, X₀, X₅, X₂) :|: 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀
t₁₃₀₆: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___5(X₀, X₁, X₂, X₃, X₀, X₅, X₂) :|: 1+X₀ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 < X₅ ∧ X₀+X₁ ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ 1+X₀ ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ 2+X₁ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀
All Bounds
Timebounds
Overall timebound:8⋅X₃⋅X₃+22⋅X₃+21 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: 1 {O(1)}
t₁₂₉₅: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂₈₅: X₃ {O(n)}
t₁₂₈₆: X₃+1 {O(n)}
t₁₂₈₇: 6⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
t₁₂₉₀: X₃+1 {O(n)}
t₁₂₉₄: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₉₇: X₃+2 {O(n)}
t₁₃₂₆: 1 {O(1)}
t₁₂₉₉: X₃+2 {O(n)}
t₁₃₀₀: 2⋅X₃ {O(n)}
t₁₃₀₁: 2⋅X₃ {O(n)}
t₁₃₀₂: X₃+1 {O(n)}
t₁₃₀₃: X₃ {O(n)}
t₁₃₀₄: X₃+1 {O(n)}
t₁₃₀₅: X₃+1 {O(n)}
t₁₃₀₆: X₃ {O(n)}
Costbounds
Overall costbound: 8⋅X₃⋅X₃+22⋅X₃+21 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: 1 {O(1)}
t₁₂₉₅: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂₈₅: X₃ {O(n)}
t₁₂₈₆: X₃+1 {O(n)}
t₁₂₈₇: 6⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
t₁₂₉₀: X₃+1 {O(n)}
t₁₂₉₄: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₉₇: X₃+2 {O(n)}
t₁₃₂₆: 1 {O(1)}
t₁₂₉₉: X₃+2 {O(n)}
t₁₃₀₀: 2⋅X₃ {O(n)}
t₁₃₀₁: 2⋅X₃ {O(n)}
t₁₃₀₂: X₃+1 {O(n)}
t₁₃₀₃: X₃ {O(n)}
t₁₃₀₄: X₃+1 {O(n)}
t₁₃₀₅: X₃+1 {O(n)}
t₁₃₀₆: X₃ {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₃ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₃ {O(n)}
t₈, X₀: 1 {O(1)}
t₈, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₈, X₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: 1 {O(1)}
t₈, X₅: 0 {O(1)}
t₈, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₉, X₀: X₀+1 {O(n)}
t₉, X₁: X₃⋅X₃+2⋅X₃+X₁ {O(n^2)}
t₉, X₂: X₃⋅X₃+2⋅X₃+X₂ {O(n^2)}
t₉, X₃: 2⋅X₃ {O(n)}
t₉, X₄: 1 {O(1)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₀, X₀: 1 {O(1)}
t₁₀, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₀, X₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: 1 {O(1)}
t₁₀, X₅: 0 {O(1)}
t₁₀, X₆: 0 {O(1)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 1 {O(1)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₃ {O(n)}
t₁₂₉₅, X₀: X₃ {O(n)}
t₁₂₉₅, X₁: X₁ {O(n)}
t₁₂₉₅, X₂: X₂ {O(n)}
t₁₂₉₅, X₃: X₃ {O(n)}
t₁₂₉₅, X₄: X₃ {O(n)}
t₁₂₉₅, X₅: X₃ {O(n)}
t₁₂₉₅, X₆: X₃ {O(n)}
t₁₁, X₀: 2⋅X₀+3 {O(n)}
t₁₁, X₁: 3⋅X₃⋅X₃+2⋅X₁+6⋅X₃ {O(n^2)}
t₁₁, X₂: 3⋅X₃⋅X₃+2⋅X₂+6⋅X₃ {O(n^2)}
t₁₁, X₃: 5⋅X₃ {O(n)}
t₁₁, X₄: X₄+3 {O(n)}
t₁₁, X₅: 2⋅X₅ {O(n)}
t₁₁, X₆: 2⋅X₃⋅X₃+5⋅X₃+X₆ {O(n^2)}
t₁₂₈₅, X₀: X₃ {O(n)}
t₁₂₈₅, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₈₅, X₂: 2⋅X₃⋅X₃+4⋅X₃+X₂ {O(n^2)}
t₁₂₈₅, X₃: X₃ {O(n)}
t₁₂₈₅, X₄: X₃+1 {O(n)}
t₁₂₈₅, X₅: 3⋅X₃ {O(n)}
t₁₂₈₅, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₈₆, X₀: X₃ {O(n)}
t₁₂₈₆, X₁: 2⋅X₃⋅X₃+4⋅X₃+X₁ {O(n^2)}
t₁₂₈₆, X₂: 2⋅X₃⋅X₃+4⋅X₃+X₂ {O(n^2)}
t₁₂₈₆, X₃: X₃ {O(n)}
t₁₂₈₆, X₄: X₃+1 {O(n)}
t₁₂₈₆, X₅: 3⋅X₃ {O(n)}
t₁₂₈₆, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₈₇, X₀: X₃ {O(n)}
t₁₂₈₇, X₁: 2⋅X₃⋅X₃+4⋅X₃+X₁ {O(n^2)}
t₁₂₈₇, X₂: 2⋅X₃⋅X₃+4⋅X₃+X₂ {O(n^2)}
t₁₂₈₇, X₃: X₃ {O(n)}
t₁₂₈₇, X₄: X₃+1 {O(n)}
t₁₂₈₇, X₅: 3⋅X₃ {O(n)}
t₁₂₈₇, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₉₀, X₀: X₃ {O(n)}
t₁₂₉₀, X₁: 2⋅X₃⋅X₃+4⋅X₃+X₁ {O(n^2)}
t₁₂₉₀, X₂: 2⋅X₃⋅X₃+4⋅X₃+X₂ {O(n^2)}
t₁₂₉₀, X₃: X₃ {O(n)}
t₁₂₉₀, X₄: 3⋅X₃+3 {O(n)}
t₁₂₉₀, X₅: 3⋅X₃ {O(n)}
t₁₂₉₀, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₉₄, X₀: X₃ {O(n)}
t₁₂₉₄, X₁: 2⋅X₃⋅X₃+4⋅X₃+X₁ {O(n^2)}
t₁₂₉₄, X₂: 2⋅X₃⋅X₃+4⋅X₃+X₂ {O(n^2)}
t₁₂₉₄, X₃: X₃ {O(n)}
t₁₂₉₄, X₄: 2⋅X₃+2 {O(n)}
t₁₂₉₄, X₅: 3⋅X₃ {O(n)}
t₁₂₉₄, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₉₇, X₀: X₃ {O(n)}
t₁₂₉₇, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₉₇, X₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₉₇, X₃: X₃ {O(n)}
t₁₂₉₇, X₄: X₃ {O(n)}
t₁₂₉₇, X₅: X₃ {O(n)}
t₁₂₉₇, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₂₆, X₀: 1 {O(1)}
t₁₃₂₆, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₂₆, X₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₂₆, X₃: X₃ {O(n)}
t₁₃₂₆, X₄: 1 {O(1)}
t₁₃₂₆, X₅: 0 {O(1)}
t₁₃₂₆, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₉₉, X₀: X₃ {O(n)}
t₁₂₉₉, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₉₉, X₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂₉₉, X₃: X₃ {O(n)}
t₁₂₉₉, X₄: X₃ {O(n)}
t₁₂₉₉, X₅: X₃ {O(n)}
t₁₂₉₉, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₀, X₀: X₃ {O(n)}
t₁₃₀₀, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₀, X₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₀, X₃: X₃ {O(n)}
t₁₃₀₀, X₄: X₃+1 {O(n)}
t₁₃₀₀, X₅: 0 {O(1)}
t₁₃₀₀, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₁, X₀: X₃ {O(n)}
t₁₃₀₁, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₁, X₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₁, X₃: X₃ {O(n)}
t₁₃₀₁, X₄: X₃+1 {O(n)}
t₁₃₀₁, X₅: 3⋅X₃ {O(n)}
t₁₃₀₁, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₂, X₀: X₃ {O(n)}
t₁₃₀₂, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₂, X₂: 2⋅X₃⋅X₃+4⋅X₃+X₂ {O(n^2)}
t₁₃₀₂, X₃: X₃ {O(n)}
t₁₃₀₂, X₄: X₃+1 {O(n)}
t₁₃₀₂, X₅: 3⋅X₃ {O(n)}
t₁₃₀₂, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₃, X₀: X₃ {O(n)}
t₁₃₀₃, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₃, X₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₃, X₃: X₃ {O(n)}
t₁₃₀₃, X₄: X₃+1 {O(n)}
t₁₃₀₃, X₅: 0 {O(1)}
t₁₃₀₃, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₄, X₀: X₃ {O(n)}
t₁₃₀₄, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₄, X₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₄, X₃: X₃ {O(n)}
t₁₃₀₄, X₄: X₃+1 {O(n)}
t₁₃₀₄, X₅: 3⋅X₃ {O(n)}
t₁₃₀₄, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₅, X₀: X₃ {O(n)}
t₁₃₀₅, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₅, X₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₅, X₃: X₃ {O(n)}
t₁₃₀₅, X₄: X₃ {O(n)}
t₁₃₀₅, X₅: 0 {O(1)}
t₁₃₀₅, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₆, X₀: X₃ {O(n)}
t₁₃₀₆, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₆, X₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃₀₆, X₃: X₃ {O(n)}
t₁₃₀₆, X₄: X₃ {O(n)}
t₁₃₀₆, X₅: 3⋅X₃ {O(n)}
t₁₃₀₆, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}