Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: M, N
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(1, 12, 1, 1, M, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅+1 ≤ X₁
t₃₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₅
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0) :|: X₃+1 ≤ 0
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0) :|: 1 ≤ X₃
t₂₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, 0, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1) :|: X₃ ≤ 0 ∧ 0 ≤ X₃
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, 0, X₃, X₄, X₅+1, 0, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅+1 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂+1 ≤ 0 ∧ X₅+1 ≤ X₁
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₂ ∧ X₅+1 ≤ X₁
t₃₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₅
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, 1, X₃, X₄, X₅+1, 1, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ M ∧ N+1 ≤ X₁
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, 0, X₃, X₄, X₅+1, 0, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ M
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, 0, X₃, X₄, X₅+1, 0, X₇, X₈, X₉, X₁₀, X₁₁) :|: M+1 ≤ 0
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅+1, X₈, X₉, X₁₀, X₁₁) :|: 2+X₅ ≤ X₁
t₃₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₅+1
t₃₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₇
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, 0, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀+1 ≤ 0 ∧ X₇+1 ≤ X₁
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₀ ∧ X₇+1 ≤ X₁
t₃₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1) :|: X₁ ≤ X₅+1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, 0, X₄, X₅+1, X₆, X₇, X₈, M, 0, X₁₁) :|: 2+X₅ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, M, X₁₀, X₁₁) :|: X₃+1 ≤ 0 ∧ 2+X₅ ≤ X₁
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, M, X₁₀, X₁₁) :|: 1 ≤ X₃ ∧ 2+X₅ ≤ X₁
t₂₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂+1 ≤ 0 ∧ X₁ ≤ X₅+1
t₂₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₂ ∧ X₁ ≤ X₅+1
t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(1, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, 1, X₉, X₁₀, X₁₁) :|: N+1 ≤ M
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(1, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, 1, X₉, X₁₀, X₁₁)
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, 0, X₉, X₁₀, X₁₁)
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, 1, X₄, X₅+1, X₆, X₇, X₈, X₉, 1, X₁₁) :|: X₉+1 ≤ 0
t₂₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, 1, X₄, X₅+1, X₆, X₇, X₈, X₉, 1, X₁₁) :|: 1 ≤ X₉
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, 0, X₄, X₅+1, X₆, X₇, X₈, 0, 0, X₁₁) :|: X₉ ≤ 0 ∧ 0 ≤ X₉
t₂₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, 0, X₄, X₅+1, X₆, X₇, X₈, X₉, 0, X₁₁)
t₂₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀+1 ≤ 0
t₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₀
Preprocessing
Eliminate variables {X₄,X₆,X₈,X₁₀,X₁₁} that do not contribute to the problem
Found invariant 11 ≤ X₅ ∧ 11 ≤ X₃+X₅ ∧ 10+X₃ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ 10+X₂ ≤ X₅ ∧ 23 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 10+X₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l11
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l2
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l6
Found invariant X₇ ≤ 11 ∧ X₇ ≤ 11+X₅ ∧ X₅+X₇ ≤ 21 ∧ X₇ ≤ 10+X₃ ∧ X₃+X₇ ≤ 12 ∧ X₇ ≤ 11+X₂ ∧ X₂+X₇ ≤ 12 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 23 ∧ X₇ ≤ 20+X₀ ∧ X₀+X₇ ≤ 12 ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₅ ≤ 19+X₀ ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ 10+X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 0 ≤ 8+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 0 ≤ 9+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 21+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ 9+X₀ for location l7
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l5
Found invariant X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l8
Found invariant X₅ ≤ 12 ∧ X₅ ≤ 11+X₃ ∧ X₃+X₅ ≤ 13 ∧ X₅ ≤ 11+X₂ ∧ X₂+X₅ ≤ 13 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 24 ∧ X₅ ≤ 11+X₀ ∧ X₀+X₅ ≤ 13 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l1
Found invariant 11 ≤ X₅ ∧ 11 ≤ X₃+X₅ ∧ 10+X₃ ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10+X₂ ≤ X₅ ∧ 23 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 10+X₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l10
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l4
Found invariant 11 ≤ X₅ ∧ 11 ≤ X₃+X₅ ∧ 10+X₃ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ 10+X₂ ≤ X₅ ∧ 23 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 10+X₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l9
Found invariant X₅ ≤ 11 ∧ X₅ ≤ 10+X₃ ∧ X₃+X₅ ≤ 12 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 12 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 23 ∧ X₅ ≤ 10+X₀ ∧ X₀+X₅ ≤ 12 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l3
Cut unsatisfiable transition t₉₂: l11→l10
Cut unsatisfiable transition t₉₅: l2→l3
Cut unsatisfiable transition t₁₀₈: l6→l8
Cut unsatisfiable transition t₁₁₁: l6→l9
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₅, X₇, X₉
Temp_Vars: M, N
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₈₉: l0(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l1(1, 12, 1, 1, 0, X₇, X₉)
t₉₀: l1(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l1(X₀, X₁, X₂, X₃, X₅+1, X₇, X₉) :|: X₅+1 ≤ X₁ ∧ X₅ ≤ 12 ∧ X₅ ≤ 11+X₃ ∧ X₃+X₅ ≤ 13 ∧ X₅ ≤ 11+X₂ ∧ X₂+X₅ ≤ 13 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 24 ∧ X₅ ≤ 11+X₀ ∧ X₀+X₅ ≤ 13 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉₁: l1(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l2(X₀, X₁, X₂, X₃, 0, X₇, X₉) :|: X₁ ≤ X₅ ∧ X₅ ≤ 12 ∧ X₅ ≤ 11+X₃ ∧ X₃+X₅ ≤ 13 ∧ X₅ ≤ 11+X₂ ∧ X₂+X₅ ≤ 13 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 24 ∧ X₅ ≤ 11+X₀ ∧ X₀+X₅ ≤ 13 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉₃: l11(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l10(X₀, X₁, X₂, X₃, X₅, X₇, X₉) :|: 1 ≤ X₃ ∧ 11 ≤ X₅ ∧ 11 ≤ X₃+X₅ ∧ 10+X₃ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ 10+X₂ ≤ X₅ ∧ 23 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 10+X₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₉₄: l11(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l10(X₀, X₁, X₂, 0, X₅, X₇, X₉) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 11 ≤ X₅ ∧ 11 ≤ X₃+X₅ ∧ 10+X₃ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ 10+X₂ ≤ X₅ ∧ 23 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 10+X₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₉₇: l2(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l2(X₀, X₁, 0, X₃, X₅+1, X₇, X₉) :|: X₅+1 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉₆: l2(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l3(X₀, X₁, X₂, X₃, X₅, X₇, X₉) :|: 1 ≤ X₂ ∧ X₅+1 ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉₈: l2(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l4(X₀, X₁, X₂, X₃, 0, X₇, X₉) :|: X₁ ≤ X₅ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉₉: l3(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l2(X₀, X₁, 1, X₃, X₅+1, X₇, X₉) :|: 0 ≤ M ∧ N+1 ≤ X₁ ∧ X₅ ≤ 11 ∧ X₅ ≤ 10+X₃ ∧ X₃+X₅ ≤ 12 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 12 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 23 ∧ X₅ ≤ 10+X₀ ∧ X₀+X₅ ≤ 12 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₀₀: l3(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l2(X₀, X₁, 0, X₃, X₅+1, X₇, X₉) :|: 0 ≤ M ∧ X₅ ≤ 11 ∧ X₅ ≤ 10+X₃ ∧ X₃+X₅ ≤ 12 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 12 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 23 ∧ X₅ ≤ 10+X₀ ∧ X₀+X₅ ≤ 12 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₀₁: l3(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l2(X₀, X₁, 0, X₃, X₅+1, X₇, X₉) :|: M+1 ≤ 0 ∧ X₅ ≤ 11 ∧ X₅ ≤ 10+X₃ ∧ X₃+X₅ ≤ 12 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 12 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 23 ∧ X₅ ≤ 10+X₀ ∧ X₀+X₅ ≤ 12 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₀₂: l4(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l5(X₀, X₁, X₂, X₃, X₅, X₅+1, X₉) :|: 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₃: l4(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l6(X₀, X₁, X₂, X₃, 0, X₇, X₉) :|: X₁ ≤ X₅+1 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₇: l5(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l4(X₀, X₁, X₂, X₃, X₅+1, X₇, X₉) :|: X₁ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₆: l5(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l5(0, X₁, X₂, X₃, X₅, X₇+1, X₉) :|: X₇+1 ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₄: l5(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l7(X₀, X₁, X₂, X₃, X₅, X₇, X₉) :|: X₀+1 ≤ 0 ∧ X₇+1 ≤ X₁ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₅: l5(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l7(X₀, X₁, X₂, X₃, X₅, X₇, X₉) :|: 1 ≤ X₀ ∧ X₇+1 ≤ X₁ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₃: l6(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l10(X₀, X₁, 0, X₃, X₅, X₇, X₉) :|: X₁ ≤ X₅+1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₀: l6(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l6(X₀, X₁, X₂, 0, X₅+1, X₇, M) :|: 2+X₅ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₉: l6(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l8(X₀, X₁, X₂, X₃, X₅, X₇, M) :|: 1 ≤ X₃ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₂: l6(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l9(X₀, X₁, X₂, X₃, X₅, X₇, X₉) :|: 1 ≤ X₂ ∧ X₁ ≤ X₅+1 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₄: l7(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l5(1, X₁, X₂, X₃, X₅, X₇+1, X₉) :|: N+1 ≤ M ∧ X₇ ≤ 11 ∧ X₇ ≤ 11+X₅ ∧ X₅+X₇ ≤ 21 ∧ X₇ ≤ 10+X₃ ∧ X₃+X₇ ≤ 12 ∧ X₇ ≤ 11+X₂ ∧ X₂+X₇ ≤ 12 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 23 ∧ X₇ ≤ 20+X₀ ∧ X₀+X₇ ≤ 12 ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₅ ≤ 19+X₀ ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ 10+X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 0 ≤ 8+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 0 ≤ 9+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 21+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ 9+X₀
t₁₁₅: l7(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l5(1, X₁, X₂, X₃, X₅, X₇+1, X₉) :|: X₇ ≤ 11 ∧ X₇ ≤ 11+X₅ ∧ X₅+X₇ ≤ 21 ∧ X₇ ≤ 10+X₃ ∧ X₃+X₇ ≤ 12 ∧ X₇ ≤ 11+X₂ ∧ X₂+X₇ ≤ 12 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 23 ∧ X₇ ≤ 20+X₀ ∧ X₀+X₇ ≤ 12 ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₅ ≤ 19+X₀ ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ 10+X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 0 ≤ 8+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 0 ≤ 9+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 21+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ 9+X₀
t₁₁₆: l7(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l5(0, X₁, X₂, X₃, X₅, X₇+1, X₉) :|: X₇ ≤ 11 ∧ X₇ ≤ 11+X₅ ∧ X₅+X₇ ≤ 21 ∧ X₇ ≤ 10+X₃ ∧ X₃+X₇ ≤ 12 ∧ X₇ ≤ 11+X₂ ∧ X₂+X₇ ≤ 12 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 23 ∧ X₇ ≤ 20+X₀ ∧ X₀+X₇ ≤ 12 ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₅ ≤ 19+X₀ ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ 10+X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 0 ≤ 8+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 0 ≤ 9+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 21+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ 9+X₀
t₁₁₇: l8(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l6(X₀, X₁, X₂, 1, X₅+1, X₇, X₉) :|: X₉+1 ≤ 0 ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₈: l8(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l6(X₀, X₁, X₂, 1, X₅+1, X₇, X₉) :|: 1 ≤ X₉ ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₉: l8(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l6(X₀, X₁, X₂, 0, X₅+1, X₇, 0) :|: X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₂₀: l8(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l6(X₀, X₁, X₂, 0, X₅+1, X₇, X₉) :|: X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₂₃: l9(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l10(0, X₁, X₂, X₃, X₅, X₇, X₉) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 11 ≤ X₅ ∧ 11 ≤ X₃+X₅ ∧ 10+X₃ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ 10+X₂ ≤ X₅ ∧ 23 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 10+X₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₂₁: l9(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l11(X₀, X₁, X₂, X₃, X₅, X₇, X₉) :|: X₀+1 ≤ 0 ∧ 11 ≤ X₅ ∧ 11 ≤ X₃+X₅ ∧ 10+X₃ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ 10+X₂ ≤ X₅ ∧ 23 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 10+X₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₂₂: l9(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l11(X₀, X₁, X₂, X₃, X₅, X₇, X₉) :|: 1 ≤ X₀ ∧ 11 ≤ X₅ ∧ 11 ≤ X₃+X₅ ∧ 10+X₃ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ 10+X₂ ≤ X₅ ∧ 23 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 10+X₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
MPRF for transition t₉₀: l1(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l1(X₀, X₁, X₂, X₃, X₅+1, X₇, X₉) :|: X₅+1 ≤ X₁ ∧ X₅ ≤ 12 ∧ X₅ ≤ 11+X₃ ∧ X₃+X₅ ≤ 13 ∧ X₅ ≤ 11+X₂ ∧ X₂+X₅ ≤ 13 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 24 ∧ X₅ ≤ 11+X₀ ∧ X₀+X₅ ≤ 13 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
13 {O(1)}
MPRF:
l1 [X₁+1-X₅ ]
MPRF for transition t₉₆: l2(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l3(X₀, X₁, X₂, X₃, X₅, X₇, X₉) :|: 1 ≤ X₂ ∧ X₅+1 ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
12 {O(1)}
MPRF:
l3 [X₁-X₅-1 ]
l2 [X₁-X₅ ]
MPRF for transition t₉₇: l2(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l2(X₀, X₁, 0, X₃, X₅+1, X₇, X₉) :|: X₅+1 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
12 {O(1)}
MPRF:
l3 [X₁-X₅ ]
l2 [X₁-X₅ ]
MPRF for transition t₉₉: l3(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l2(X₀, X₁, 1, X₃, X₅+1, X₇, X₉) :|: 0 ≤ M ∧ N+1 ≤ X₁ ∧ X₅ ≤ 11 ∧ X₅ ≤ 10+X₃ ∧ X₃+X₅ ≤ 12 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 12 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 23 ∧ X₅ ≤ 10+X₀ ∧ X₀+X₅ ≤ 12 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
12 {O(1)}
MPRF:
l3 [12-X₅ ]
l2 [12-X₅ ]
MPRF for transition t₁₀₀: l3(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l2(X₀, X₁, 0, X₃, X₅+1, X₇, X₉) :|: 0 ≤ M ∧ X₅ ≤ 11 ∧ X₅ ≤ 10+X₃ ∧ X₃+X₅ ≤ 12 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 12 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 23 ∧ X₅ ≤ 10+X₀ ∧ X₀+X₅ ≤ 12 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
3 {O(1)}
MPRF:
l3 [X₂ ]
l2 [X₀+X₂-1 ]
MPRF for transition t₁₀₁: l3(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l2(X₀, X₁, 0, X₃, X₅+1, X₇, X₉) :|: M+1 ≤ 0 ∧ X₅ ≤ 11 ∧ X₅ ≤ 10+X₃ ∧ X₃+X₅ ≤ 12 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 12 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 23 ∧ X₅ ≤ 10+X₀ ∧ X₀+X₅ ≤ 12 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
3 {O(1)}
MPRF:
l3 [X₂ ]
l2 [X₀+X₂-1 ]
MPRF for transition t₁₀₂: l4(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l5(X₀, X₁, X₂, X₃, X₅, X₅+1, X₉) :|: 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
13 {O(1)}
MPRF:
l4 [X₁-X₅-1 ]
l7 [10-X₅ ]
l5 [X₁-X₅-2 ]
knowledge_propagation leads to new time bound 13 {O(1)} for transition t₁₀₄: l5(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l7(X₀, X₁, X₂, X₃, X₅, X₇, X₉) :|: X₀+1 ≤ 0 ∧ X₇+1 ≤ X₁ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
MPRF for transition t₁₀₅: l5(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l7(X₀, X₁, X₂, X₃, X₅, X₇, X₉) :|: 1 ≤ X₀ ∧ X₇+1 ≤ X₁ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
299 {O(1)}
MPRF:
l4 [X₁-X₇ ]
l7 [X₁-X₇-1 ]
l5 [X₁-X₇ ]
MPRF for transition t₁₀₆: l5(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l5(0, X₁, X₂, X₃, X₅, X₇+1, X₉) :|: X₇+1 ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
299 {O(1)}
MPRF:
l4 [X₁-X₇ ]
l7 [X₁-X₇ ]
l5 [X₁-X₇ ]
MPRF for transition t₁₀₇: l5(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l4(X₀, X₁, X₂, X₃, X₅+1, X₇, X₉) :|: X₁ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
13 {O(1)}
MPRF:
l4 [6-2⋅X₀-6⋅X₅ ]
l7 [1 ]
l5 [1 ]
MPRF for transition t₁₁₄: l7(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l5(1, X₁, X₂, X₃, X₅, X₇+1, X₉) :|: N+1 ≤ M ∧ X₇ ≤ 11 ∧ X₇ ≤ 11+X₅ ∧ X₅+X₇ ≤ 21 ∧ X₇ ≤ 10+X₃ ∧ X₃+X₇ ≤ 12 ∧ X₇ ≤ 11+X₂ ∧ X₂+X₇ ≤ 12 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 23 ∧ X₇ ≤ 20+X₀ ∧ X₀+X₇ ≤ 12 ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₅ ≤ 19+X₀ ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ 10+X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 0 ≤ 8+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 0 ≤ 9+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 21+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ 9+X₀ of depth 1:
new bound:
299 {O(1)}
MPRF:
l4 [-X₇ ]
l7 [12-X₇ ]
l5 [12-X₇ ]
MPRF for transition t₁₁₅: l7(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l5(1, X₁, X₂, X₃, X₅, X₇+1, X₉) :|: X₇ ≤ 11 ∧ X₇ ≤ 11+X₅ ∧ X₅+X₇ ≤ 21 ∧ X₇ ≤ 10+X₃ ∧ X₃+X₇ ≤ 12 ∧ X₇ ≤ 11+X₂ ∧ X₂+X₇ ≤ 12 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 23 ∧ X₇ ≤ 20+X₀ ∧ X₀+X₇ ≤ 12 ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₅ ≤ 19+X₀ ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ 10+X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 0 ≤ 8+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 0 ≤ 9+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 21+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ 9+X₀ of depth 1:
new bound:
299 {O(1)}
MPRF:
l4 [-X₇ ]
l7 [12-X₇ ]
l5 [12-X₇ ]
MPRF for transition t₁₁₆: l7(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l5(0, X₁, X₂, X₃, X₅, X₇+1, X₉) :|: X₇ ≤ 11 ∧ X₇ ≤ 11+X₅ ∧ X₅+X₇ ≤ 21 ∧ X₇ ≤ 10+X₃ ∧ X₃+X₇ ≤ 12 ∧ X₇ ≤ 11+X₂ ∧ X₂+X₇ ≤ 12 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 23 ∧ X₇ ≤ 20+X₀ ∧ X₀+X₇ ≤ 12 ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 13 ≤ X₁+X₇ ∧ X₁ ≤ 11+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₅ ≤ 19+X₀ ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ 10+X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 0 ≤ 8+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 0 ≤ 9+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 21+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ 9+X₀ of depth 1:
new bound:
140 {O(1)}
MPRF:
l4 [10⋅X₀ ]
l7 [10 ]
l5 [10⋅X₀ ]
MPRF for transition t₁₀₉: l6(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l8(X₀, X₁, X₂, X₃, X₅, X₇, M) :|: 1 ≤ X₃ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
13 {O(1)}
MPRF:
l8 [X₁-X₅-2 ]
l6 [X₁-X₅-1 ]
MPRF for transition t₁₁₀: l6(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l6(X₀, X₁, X₂, 0, X₅+1, X₇, M) :|: 2+X₅ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
12 {O(1)}
MPRF:
l8 [X₁-X₅ ]
l6 [X₁-X₅ ]
MPRF for transition t₁₁₇: l8(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l6(X₀, X₁, X₂, 1, X₅+1, X₇, X₉) :|: X₉+1 ≤ 0 ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
11 {O(1)}
MPRF:
l8 [11-X₅ ]
l6 [11⋅X₃-X₅ ]
MPRF for transition t₁₁₈: l8(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l6(X₀, X₁, X₂, 1, X₅+1, X₇, X₉) :|: 1 ≤ X₉ ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
11 {O(1)}
MPRF:
l8 [11-X₅ ]
l6 [11⋅X₃-X₅ ]
MPRF for transition t₁₁₉: l8(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l6(X₀, X₁, X₂, 0, X₅+1, X₇, 0) :|: X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
1 {O(1)}
MPRF:
l8 [1 ]
l6 [X₃ ]
MPRF for transition t₁₂₀: l8(X₀, X₁, X₂, X₃, X₅, X₇, X₉) → l6(X₀, X₁, X₂, 0, X₅+1, X₇, X₉) :|: X₅ ≤ 10 ∧ X₅ ≤ 9+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ 10+X₂ ∧ X₂+X₅ ≤ 11 ∧ 2+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 22 ∧ X₀+X₅ ≤ 11 ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 12 ≤ X₁+X₅ ∧ X₁ ≤ 12+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
1 {O(1)}
MPRF:
l8 [1 ]
l6 [X₃ ]
All Bounds
Timebounds
Overall timebound:1490 {O(1)}
t₈₉: 1 {O(1)}
t₉₀: 13 {O(1)}
t₉₁: 1 {O(1)}
t₉₃: 1 {O(1)}
t₉₄: 1 {O(1)}
t₉₆: 12 {O(1)}
t₉₇: 12 {O(1)}
t₉₈: 1 {O(1)}
t₉₉: 12 {O(1)}
t₁₀₀: 3 {O(1)}
t₁₀₁: 3 {O(1)}
t₁₀₂: 13 {O(1)}
t₁₀₃: 1 {O(1)}
t₁₀₄: 13 {O(1)}
t₁₀₅: 299 {O(1)}
t₁₀₆: 299 {O(1)}
t₁₀₇: 13 {O(1)}
t₁₀₉: 13 {O(1)}
t₁₁₀: 12 {O(1)}
t₁₁₂: 1 {O(1)}
t₁₁₃: 1 {O(1)}
t₁₁₄: 299 {O(1)}
t₁₁₅: 299 {O(1)}
t₁₁₆: 140 {O(1)}
t₁₁₇: 11 {O(1)}
t₁₁₈: 11 {O(1)}
t₁₁₉: 1 {O(1)}
t₁₂₀: 1 {O(1)}
t₁₂₁: 1 {O(1)}
t₁₂₂: 1 {O(1)}
t₁₂₃: 1 {O(1)}
Costbounds
Overall costbound: 1490 {O(1)}
t₈₉: 1 {O(1)}
t₉₀: 13 {O(1)}
t₉₁: 1 {O(1)}
t₉₃: 1 {O(1)}
t₉₄: 1 {O(1)}
t₉₆: 12 {O(1)}
t₉₇: 12 {O(1)}
t₉₈: 1 {O(1)}
t₉₉: 12 {O(1)}
t₁₀₀: 3 {O(1)}
t₁₀₁: 3 {O(1)}
t₁₀₂: 13 {O(1)}
t₁₀₃: 1 {O(1)}
t₁₀₄: 13 {O(1)}
t₁₀₅: 299 {O(1)}
t₁₀₆: 299 {O(1)}
t₁₀₇: 13 {O(1)}
t₁₀₉: 13 {O(1)}
t₁₁₀: 12 {O(1)}
t₁₁₂: 1 {O(1)}
t₁₁₃: 1 {O(1)}
t₁₁₄: 299 {O(1)}
t₁₁₅: 299 {O(1)}
t₁₁₆: 140 {O(1)}
t₁₁₇: 11 {O(1)}
t₁₁₈: 11 {O(1)}
t₁₁₉: 1 {O(1)}
t₁₂₀: 1 {O(1)}
t₁₂₁: 1 {O(1)}
t₁₂₂: 1 {O(1)}
t₁₂₃: 1 {O(1)}
Sizebounds
t₈₉, X₀: 1 {O(1)}
t₈₉, X₁: 12 {O(1)}
t₈₉, X₂: 1 {O(1)}
t₈₉, X₃: 1 {O(1)}
t₈₉, X₅: 0 {O(1)}
t₈₉, X₇: X₇ {O(n)}
t₈₉, X₉: X₉ {O(n)}
t₉₀, X₀: 1 {O(1)}
t₉₀, X₁: 12 {O(1)}
t₉₀, X₂: 1 {O(1)}
t₉₀, X₃: 1 {O(1)}
t₉₀, X₅: 12 {O(1)}
t₉₀, X₇: X₇ {O(n)}
t₉₀, X₉: X₉ {O(n)}
t₉₁, X₀: 1 {O(1)}
t₉₁, X₁: 12 {O(1)}
t₉₁, X₂: 1 {O(1)}
t₉₁, X₃: 1 {O(1)}
t₉₁, X₅: 0 {O(1)}
t₉₁, X₇: X₇ {O(n)}
t₉₁, X₉: X₉ {O(n)}
t₉₃, X₀: 13 {O(1)}
t₉₃, X₁: 12 {O(1)}
t₉₃, X₂: 1 {O(1)}
t₉₃, X₃: 1 {O(1)}
t₉₃, X₅: 110 {O(1)}
t₉₃, X₇: 576 {O(1)}
t₉₄, X₀: 13 {O(1)}
t₉₄, X₁: 12 {O(1)}
t₉₄, X₂: 1 {O(1)}
t₉₄, X₃: 0 {O(1)}
t₉₄, X₅: 110 {O(1)}
t₉₄, X₇: 576 {O(1)}
t₉₆, X₀: 1 {O(1)}
t₉₆, X₁: 12 {O(1)}
t₉₆, X₂: 1 {O(1)}
t₉₆, X₃: 1 {O(1)}
t₉₆, X₅: 11 {O(1)}
t₉₆, X₇: X₇ {O(n)}
t₉₆, X₉: X₉ {O(n)}
t₉₇, X₀: 1 {O(1)}
t₉₇, X₁: 12 {O(1)}
t₉₇, X₂: 0 {O(1)}
t₉₇, X₃: 1 {O(1)}
t₉₇, X₅: 12 {O(1)}
t₉₇, X₇: 2⋅X₇ {O(n)}
t₉₇, X₉: 2⋅X₉ {O(n)}
t₉₈, X₀: 1 {O(1)}
t₉₈, X₁: 12 {O(1)}
t₉₈, X₂: 1 {O(1)}
t₉₈, X₃: 1 {O(1)}
t₉₈, X₅: 0 {O(1)}
t₉₈, X₇: 5⋅X₇ {O(n)}
t₉₈, X₉: 5⋅X₉ {O(n)}
t₉₉, X₀: 1 {O(1)}
t₉₉, X₁: 12 {O(1)}
t₉₉, X₂: 1 {O(1)}
t₉₉, X₃: 1 {O(1)}
t₉₉, X₅: 12 {O(1)}
t₉₉, X₇: X₇ {O(n)}
t₉₉, X₉: X₉ {O(n)}
t₁₀₀, X₀: 1 {O(1)}
t₁₀₀, X₁: 12 {O(1)}
t₁₀₀, X₂: 0 {O(1)}
t₁₀₀, X₃: 1 {O(1)}
t₁₀₀, X₅: 12 {O(1)}
t₁₀₀, X₇: X₇ {O(n)}
t₁₀₀, X₉: X₉ {O(n)}
t₁₀₁, X₀: 1 {O(1)}
t₁₀₁, X₁: 12 {O(1)}
t₁₀₁, X₂: 0 {O(1)}
t₁₀₁, X₃: 1 {O(1)}
t₁₀₁, X₅: 12 {O(1)}
t₁₀₁, X₇: X₇ {O(n)}
t₁₀₁, X₉: X₉ {O(n)}
t₁₀₂, X₀: 9 {O(1)}
t₁₀₂, X₁: 12 {O(1)}
t₁₀₂, X₂: 1 {O(1)}
t₁₀₂, X₃: 1 {O(1)}
t₁₀₂, X₅: 10 {O(1)}
t₁₀₂, X₇: 11 {O(1)}
t₁₀₂, X₉: 5⋅X₉ {O(n)}
t₁₀₃, X₀: 2 {O(1)}
t₁₀₃, X₁: 12 {O(1)}
t₁₀₃, X₂: 1 {O(1)}
t₁₀₃, X₃: 1 {O(1)}
t₁₀₃, X₅: 0 {O(1)}
t₁₀₃, X₇: 48 {O(1)}
t₁₀₃, X₉: 5⋅X₉ {O(n)}
t₁₀₄, X₀: 9 {O(1)}
t₁₀₄, X₁: 12 {O(1)}
t₁₀₄, X₂: 1 {O(1)}
t₁₀₄, X₃: 1 {O(1)}
t₁₀₄, X₅: 10 {O(1)}
t₁₀₄, X₇: 11 {O(1)}
t₁₀₄, X₉: 5⋅X₉ {O(n)}
t₁₀₅, X₀: 1 {O(1)}
t₁₀₅, X₁: 12 {O(1)}
t₁₀₅, X₂: 1 {O(1)}
t₁₀₅, X₃: 1 {O(1)}
t₁₀₅, X₅: 10 {O(1)}
t₁₀₅, X₇: 11 {O(1)}
t₁₀₅, X₉: 5⋅X₉ {O(n)}
t₁₀₆, X₀: 0 {O(1)}
t₁₀₆, X₁: 12 {O(1)}
t₁₀₆, X₂: 1 {O(1)}
t₁₀₆, X₃: 1 {O(1)}
t₁₀₆, X₅: 10 {O(1)}
t₁₀₆, X₇: 12 {O(1)}
t₁₀₆, X₉: 5⋅X₉ {O(n)}
t₁₀₇, X₀: 2 {O(1)}
t₁₀₇, X₁: 12 {O(1)}
t₁₀₇, X₂: 1 {O(1)}
t₁₀₇, X₃: 1 {O(1)}
t₁₀₇, X₅: 44 {O(1)}
t₁₀₇, X₇: 48 {O(1)}
t₁₀₇, X₉: 5⋅X₉ {O(n)}
t₁₀₉, X₀: 2 {O(1)}
t₁₀₉, X₁: 12 {O(1)}
t₁₀₉, X₂: 1 {O(1)}
t₁₀₉, X₃: 1 {O(1)}
t₁₀₉, X₅: 10 {O(1)}
t₁₀₉, X₇: 48 {O(1)}
t₁₁₀, X₀: 4 {O(1)}
t₁₁₀, X₁: 12 {O(1)}
t₁₁₀, X₂: 1 {O(1)}
t₁₁₀, X₃: 0 {O(1)}
t₁₁₀, X₅: 11 {O(1)}
t₁₁₀, X₇: 96 {O(1)}
t₁₁₂, X₀: 12 {O(1)}
t₁₁₂, X₁: 12 {O(1)}
t₁₁₂, X₂: 1 {O(1)}
t₁₁₂, X₃: 1 {O(1)}
t₁₁₂, X₅: 55 {O(1)}
t₁₁₂, X₇: 288 {O(1)}
t₁₁₃, X₀: 12 {O(1)}
t₁₁₃, X₁: 12 {O(1)}
t₁₁₃, X₂: 0 {O(1)}
t₁₁₃, X₃: 1 {O(1)}
t₁₁₃, X₅: 55 {O(1)}
t₁₁₃, X₇: 288 {O(1)}
t₁₁₄, X₀: 1 {O(1)}
t₁₁₄, X₁: 12 {O(1)}
t₁₁₄, X₂: 1 {O(1)}
t₁₁₄, X₃: 1 {O(1)}
t₁₁₄, X₅: 10 {O(1)}
t₁₁₄, X₇: 12 {O(1)}
t₁₁₄, X₉: 5⋅X₉ {O(n)}
t₁₁₅, X₀: 1 {O(1)}
t₁₁₅, X₁: 12 {O(1)}
t₁₁₅, X₂: 1 {O(1)}
t₁₁₅, X₃: 1 {O(1)}
t₁₁₅, X₅: 10 {O(1)}
t₁₁₅, X₇: 12 {O(1)}
t₁₁₅, X₉: 5⋅X₉ {O(n)}
t₁₁₆, X₀: 0 {O(1)}
t₁₁₆, X₁: 12 {O(1)}
t₁₁₆, X₂: 1 {O(1)}
t₁₁₆, X₃: 1 {O(1)}
t₁₁₆, X₅: 10 {O(1)}
t₁₁₆, X₇: 12 {O(1)}
t₁₁₆, X₉: 5⋅X₉ {O(n)}
t₁₁₇, X₀: 2 {O(1)}
t₁₁₇, X₁: 12 {O(1)}
t₁₁₇, X₂: 1 {O(1)}
t₁₁₇, X₃: 1 {O(1)}
t₁₁₇, X₅: 11 {O(1)}
t₁₁₇, X₇: 48 {O(1)}
t₁₁₈, X₀: 2 {O(1)}
t₁₁₈, X₁: 12 {O(1)}
t₁₁₈, X₂: 1 {O(1)}
t₁₁₈, X₃: 1 {O(1)}
t₁₁₈, X₅: 11 {O(1)}
t₁₁₈, X₇: 48 {O(1)}
t₁₁₉, X₀: 2 {O(1)}
t₁₁₉, X₁: 12 {O(1)}
t₁₁₉, X₂: 1 {O(1)}
t₁₁₉, X₃: 0 {O(1)}
t₁₁₉, X₅: 11 {O(1)}
t₁₁₉, X₇: 48 {O(1)}
t₁₁₉, X₉: 0 {O(1)}
t₁₂₀, X₀: 2 {O(1)}
t₁₂₀, X₁: 12 {O(1)}
t₁₂₀, X₂: 1 {O(1)}
t₁₂₀, X₃: 0 {O(1)}
t₁₂₀, X₅: 11 {O(1)}
t₁₂₀, X₇: 48 {O(1)}
t₁₂₁, X₀: 12 {O(1)}
t₁₂₁, X₁: 12 {O(1)}
t₁₂₁, X₂: 1 {O(1)}
t₁₂₁, X₃: 1 {O(1)}
t₁₂₁, X₅: 55 {O(1)}
t₁₂₁, X₇: 288 {O(1)}
t₁₂₂, X₀: 1 {O(1)}
t₁₂₂, X₁: 12 {O(1)}
t₁₂₂, X₂: 1 {O(1)}
t₁₂₂, X₃: 1 {O(1)}
t₁₂₂, X₅: 55 {O(1)}
t₁₂₂, X₇: 288 {O(1)}
t₁₂₃, X₀: 0 {O(1)}
t₁₂₃, X₁: 12 {O(1)}
t₁₂₃, X₂: 1 {O(1)}
t₁₂₃, X₃: 1 {O(1)}
t₁₂₃, X₅: 55 {O(1)}
t₁₂₃, X₇: 288 {O(1)}