Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₇-X₂, X₄, X₅, X₆, X₇)
t₂₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₂, X₃, X₇)
t₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₅
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 2
t₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₄, X₄, X₇)
t₁₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇
t₁₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₅-1, X₁, X₂, X₃, X₄, X₅, X₆, X₆+X₅-1)
t₂₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, nondef_0, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₀-1, X₃, X₄, X₅, X₆, X₇)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1)

Preprocessing

Found invariant X₅ ≤ X₄ ∧ X₅ ≤ 2+X₂ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ for location l11

Found invariant 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l6

Found invariant X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l19

Found invariant X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 2+X₂ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ for location l12

Found invariant 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l7

Found invariant X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₄ for location l20

Found invariant X₅ ≤ 1 ∧ X₅ ≤ X₄ for location l21

Found invariant 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l5

Found invariant X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 2+X₂ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ for location l13

Found invariant X₅ ≤ 1 ∧ X₅ ≤ X₄ for location l22

Found invariant X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l8

Found invariant X₅ ≤ X₄ ∧ X₅ ≤ 2+X₂ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9

Found invariant X₅ ≤ X₄ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₇-X₂, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₄ ∧ X₅ ≤ 2+X₂ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀
t₂₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₄ ∧ X₅ ≤ 2+X₂ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀
t₂₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 2+X₂ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀
t₂₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₂, X₃, X₇) :|: X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 2+X₂ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀
t₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₅ ∧ X₅ ≤ X₄
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 2 ∧ X₅ ≤ X₄
t₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₄, X₄, X₇)
t₁₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₀ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₅-1, X₁, X₂, X₃, X₄, X₅, X₆, X₆+X₅-1) :|: X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₄
t₂₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ 1 ∧ X₅ ≤ X₄
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, nondef_0, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₀-1, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₇-X₂, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₄ ∧ X₅ ≤ 2+X₂ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄ {O(n)}

MPRF:

l10 [X₀ ]
l12 [X₀-1 ]
l13 [X₂ ]
l14 [X₅ ]
l20 [X₅-1 ]
l6 [X₀ ]
l7 [X₀ ]
l5 [X₅-1 ]
l8 [X₀ ]
l11 [X₀ ]
l9 [X₀ ]
l19 [X₅-1 ]

MPRF for transition t₂₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₄ ∧ X₅ ≤ 2+X₂ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄ {O(n)}

MPRF:

l10 [X₂ ]
l12 [X₂ ]
l13 [X₂ ]
l14 [X₅ ]
l20 [X₅ ]
l6 [X₅ ]
l7 [X₀+1 ]
l5 [X₀+1 ]
l8 [X₅ ]
l11 [X₂+2 ]
l9 [X₀+1 ]
l19 [X₅ ]

MPRF for transition t₂₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 2+X₂ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₄+2 {O(n)}

MPRF:

l10 [2⋅X₂+2 ]
l12 [2⋅X₂+2 ]
l13 [2⋅X₀-4 ]
l14 [2⋅X₅-2 ]
l20 [2⋅X₅-2 ]
l6 [2⋅X₀ ]
l7 [2⋅X₀ ]
l5 [2⋅X₅-2 ]
l8 [2⋅X₀ ]
l11 [2⋅X₂+2 ]
l9 [2⋅X₅-2 ]
l19 [2⋅X₀ ]

MPRF for transition t₂₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₂, X₃, X₇) :|: X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 2+X₂ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄ {O(n)}

MPRF:

l10 [X₀ ]
l12 [X₀ ]
l13 [X₂+1 ]
l14 [X₅ ]
l20 [X₅ ]
l6 [X₅ ]
l7 [X₅ ]
l5 [X₅ ]
l8 [X₅ ]
l11 [X₀ ]
l9 [X₅ ]
l19 [X₅ ]

MPRF for transition t₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₅ ∧ X₅ ≤ X₄ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF:

l10 [X₅-2 ]
l12 [X₅-2 ]
l13 [X₂ ]
l14 [X₅-1 ]
l20 [X₅-2 ]
l6 [2⋅X₀-X₅ ]
l7 [2⋅X₀-X₅ ]
l5 [X₅-2 ]
l8 [X₅-2 ]
l11 [X₅-2 ]
l9 [2⋅X₀-X₅ ]
l19 [2⋅X₀-X₅ ]

MPRF for transition t₁₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄ {O(n)}

MPRF:

l10 [2⋅X₀+X₇-X₅ ]
l12 [2⋅X₀+X₃-2 ]
l13 [2⋅X₀+X₃-2 ]
l14 [2⋅X₅+X₆ ]
l20 [2⋅X₅+X₆ ]
l6 [X₅+X₇ ]
l7 [X₅+X₇ ]
l5 [X₅+X₇ ]
l8 [X₅+X₇ ]
l11 [2⋅X₀+X₇-X₅ ]
l9 [X₅+X₇ ]
l19 [X₅+X₇+1 ]

MPRF for transition t₁₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₀ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄ {O(n)}

MPRF:

l10 [X₀+X₅-X₂-3 ]
l12 [X₀+X₅-X₂-3 ]
l13 [X₀-1 ]
l14 [X₅ ]
l20 [X₅ ]
l6 [X₅ ]
l7 [X₅ ]
l5 [X₅ ]
l8 [X₅-2 ]
l11 [X₀+X₅-X₂-3 ]
l9 [X₅ ]
l19 [X₅ ]

MPRF for transition t₁₁: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₅-1, X₁, X₂, X₃, X₄, X₅, X₆, X₆+X₅-1) :|: X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₄ of depth 1:

new bound:

X₄+2 {O(n)}

MPRF:

l10 [X₅ ]
l12 [X₅ ]
l13 [X₅ ]
l14 [X₅+2 ]
l20 [X₅+2 ]
l6 [X₀+1 ]
l7 [X₅ ]
l5 [X₀+1 ]
l8 [X₅ ]
l11 [X₅ ]
l9 [X₀+1 ]
l19 [X₀+1 ]

MPRF for transition t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄+1 {O(n)}

MPRF:

l10 [2⋅X₇+3-X₅ ]
l12 [2⋅X₂+2⋅X₃+3-X₅ ]
l13 [2⋅X₂+2⋅X₃+3-X₅ ]
l14 [X₅+2⋅X₆+1 ]
l20 [X₅+2⋅X₆+1 ]
l6 [2⋅X₅+2⋅X₇-3⋅X₀ ]
l7 [2⋅X₅+2⋅X₇-3⋅X₀ ]
l5 [2⋅X₇+2-X₀ ]
l8 [2⋅X₇+2-X₀ ]
l11 [2⋅X₇+3-X₅ ]
l9 [2⋅X₇-X₀ ]
l19 [2⋅X₇+3-X₅ ]

MPRF for transition t₁₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₄ {O(n)}

MPRF:

l10 [2⋅X₂ ]
l12 [2⋅X₂ ]
l13 [2⋅X₂ ]
l14 [2⋅X₅ ]
l20 [2⋅X₅ ]
l6 [X₀+X₅-1 ]
l7 [X₀+X₅-1 ]
l5 [2⋅X₀ ]
l8 [2⋅X₀-1 ]
l11 [2⋅X₂ ]
l9 [2⋅X₀ ]
l19 [2⋅X₀ ]

MPRF for transition t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄ {O(n)}

MPRF:

l10 [X₅+X₇-2 ]
l12 [X₂+X₃+X₅-2 ]
l13 [X₂+X₃+X₅-2 ]
l14 [2⋅X₅+X₆ ]
l20 [2⋅X₅+X₆ ]
l6 [X₅+X₇-1 ]
l7 [X₅+X₇-2 ]
l5 [X₀+X₇-1 ]
l8 [X₀+X₇-1 ]
l11 [X₅+X₇-2 ]
l9 [X₀+X₇-1 ]
l19 [X₅+X₇-1 ]

MPRF for transition t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, nondef_0, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₄+2 {O(n)}

MPRF:

l10 [X₀+X₄+X₇-3 ]
l12 [2⋅X₀+X₃+X₄-4 ]
l13 [2⋅X₀+X₃+X₄-4 ]
l14 [X₄+2⋅X₅+X₆-2 ]
l20 [X₄+2⋅X₅+X₆-2 ]
l6 [X₄+X₅+X₇-3 ]
l7 [2⋅X₀+X₄+X₇-X₅-1 ]
l5 [2⋅X₀+X₄+X₇-X₅-2 ]
l8 [X₀+X₄+X₇-3 ]
l11 [X₀+X₄+X₇-3 ]
l9 [2⋅X₀+X₄+X₇-X₅-2 ]
l19 [X₄+X₅+X₇-3 ]

MPRF for transition t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₀-1, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF:

l10 [X₀-2 ]
l12 [X₀-2 ]
l13 [X₀-2 ]
l14 [X₅-1 ]
l20 [X₅-1 ]
l6 [X₀ ]
l7 [X₀ ]
l5 [X₀ ]
l8 [X₀ ]
l11 [X₀-2 ]
l9 [X₀ ]
l19 [X₀ ]

MPRF for transition t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄+1 {O(n)}

MPRF:

l10 [X₅+2⋅X₇-X₀-X₂-2 ]
l12 [X₂+2⋅X₃+X₅-X₀-2 ]
l13 [X₂+2⋅X₃+X₅-X₀-2 ]
l14 [X₅+2⋅X₆-1 ]
l20 [X₅+2⋅X₆-1 ]
l6 [2⋅X₇-X₀ ]
l7 [2⋅X₇-X₀ ]
l5 [2⋅X₇-X₀ ]
l8 [2⋅X₇-X₀ ]
l11 [2⋅X₇-X₀ ]
l9 [2⋅X₇-X₀ ]
l19 [2⋅X₇-X₀ ]

All Bounds

Timebounds

Overall timebound:27⋅X₄+21 {O(n)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₁: X₄ {O(n)}
t₂₀: X₄ {O(n)}
t₂₂: 2⋅X₄+2 {O(n)}
t₂₃: X₄ {O(n)}
t₉: X₄+1 {O(n)}
t₁₀: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₁₂: 3⋅X₄ {O(n)}
t₁₃: X₄ {O(n)}
t₁: 1 {O(1)}
t₁₁: X₄+2 {O(n)}
t₂₄: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₆: 3⋅X₄+1 {O(n)}
t₁₇: 2⋅X₄ {O(n)}
t₁₄: 3⋅X₄ {O(n)}
t₁₅: 4⋅X₄+2 {O(n)}
t₁₉: X₄+1 {O(n)}
t₁₈: 3⋅X₄+1 {O(n)}

Costbounds

Overall costbound: 27⋅X₄+21 {O(n)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₁: X₄ {O(n)}
t₂₀: X₄ {O(n)}
t₂₂: 2⋅X₄+2 {O(n)}
t₂₃: X₄ {O(n)}
t₉: X₄+1 {O(n)}
t₁₀: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₁₂: 3⋅X₄ {O(n)}
t₁₃: X₄ {O(n)}
t₁: 1 {O(1)}
t₁₁: X₄+2 {O(n)}
t₂₄: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₆: 3⋅X₄+1 {O(n)}
t₁₇: 2⋅X₄ {O(n)}
t₁₄: 3⋅X₄ {O(n)}
t₁₅: 4⋅X₄+2 {O(n)}
t₁₉: X₄+1 {O(n)}
t₁₈: 3⋅X₄+1 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₂₁, X₀: 2⋅X₄ {O(n)}
t₂₁, X₂: X₄ {O(n)}
t₂₁, X₃: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: 3⋅X₄ {O(n)}
t₂₁, X₆: 6⋅X₄⋅X₄+15⋅X₄ {O(n^2)}
t₂₁, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₂₀, X₀: 2⋅X₄ {O(n)}
t₂₀, X₂: X₄ {O(n)}
t₂₀, X₃: 6⋅X₄⋅X₄+15⋅X₄+3⋅X₃ {O(n^2)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: 3⋅X₄ {O(n)}
t₂₀, X₆: 6⋅X₄⋅X₄+15⋅X₄ {O(n^2)}
t₂₀, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₂₂, X₀: 2⋅X₄ {O(n)}
t₂₂, X₂: X₄ {O(n)}
t₂₂, X₃: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: 3⋅X₄ {O(n)}
t₂₂, X₆: 6⋅X₄⋅X₄+15⋅X₄ {O(n^2)}
t₂₂, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₂₃, X₀: 2⋅X₄ {O(n)}
t₂₃, X₂: X₄ {O(n)}
t₂₃, X₃: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: X₄ {O(n)}
t₂₃, X₆: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₂₃, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₉, X₀: 2⋅X₄+X₀ {O(n)}
t₉, X₂: X₂+X₄ {O(n)}
t₉, X₃: 2⋅X₄⋅X₄+5⋅X₄+X₃ {O(n^2)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₄ {O(n)}
t₉, X₆: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₉, X₇: 2⋅X₄⋅X₄+5⋅X₄+X₇ {O(n^2)}
t₁₀, X₀: 2⋅X₄+X₀ {O(n)}
t₁₀, X₂: X₂+X₄ {O(n)}
t₁₀, X₃: 2⋅X₄⋅X₄+5⋅X₄+X₃ {O(n^2)}
t₁₀, X₄: 2⋅X₄ {O(n)}
t₁₀, X₅: 2⋅X₄ {O(n)}
t₁₀, X₆: 2⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₁₀, X₇: 2⋅X₄⋅X₄+5⋅X₄+X₇ {O(n^2)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₄ {O(n)}
t₈, X₆: X₄ {O(n)}
t₈, X₇: X₇ {O(n)}
t₁₂, X₀: X₄ {O(n)}
t₁₂, X₂: X₂+X₄ {O(n)}
t₁₂, X₃: 2⋅X₄⋅X₄+5⋅X₄+X₃ {O(n^2)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₄ {O(n)}
t₁₂, X₆: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₂, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₃, X₀: X₄ {O(n)}
t₁₃, X₂: 2⋅X₂+2⋅X₄ {O(n)}
t₁₃, X₃: 4⋅X₄⋅X₄+10⋅X₄+2⋅X₃ {O(n^2)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: 2⋅X₄ {O(n)}
t₁₃, X₆: 4⋅X₄⋅X₄+10⋅X₄ {O(n^2)}
t₁₃, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁₁, X₀: X₄ {O(n)}
t₁₁, X₂: X₂+X₄ {O(n)}
t₁₁, X₃: 2⋅X₄⋅X₄+5⋅X₄+X₃ {O(n^2)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₄ {O(n)}
t₁₁, X₆: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₁, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₂₄, X₀: 2⋅X₄+X₀ {O(n)}
t₂₄, X₂: X₂+X₄ {O(n)}
t₂₄, X₃: 2⋅X₄⋅X₄+5⋅X₄+X₃ {O(n^2)}
t₂₄, X₄: 2⋅X₄ {O(n)}
t₂₄, X₅: 2⋅X₄ {O(n)}
t₂₄, X₆: 2⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₄, X₇: 2⋅X₄⋅X₄+5⋅X₄+X₇ {O(n^2)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₁₆, X₀: X₄ {O(n)}
t₁₆, X₂: X₂+X₄ {O(n)}
t₁₆, X₃: 2⋅X₄⋅X₄+5⋅X₄+X₃ {O(n^2)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: X₄ {O(n)}
t₁₆, X₆: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₆, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₇, X₀: X₄ {O(n)}
t₁₇, X₂: X₂+X₄ {O(n)}
t₁₇, X₃: 2⋅X₄⋅X₄+5⋅X₄+X₃ {O(n^2)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₄ {O(n)}
t₁₇, X₆: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₇, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₄, X₀: X₄ {O(n)}
t₁₄, X₂: X₂+X₄ {O(n)}
t₁₄, X₃: 2⋅X₄⋅X₄+5⋅X₄+X₃ {O(n^2)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: X₄ {O(n)}
t₁₄, X₆: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₄, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₅, X₀: X₄ {O(n)}
t₁₅, X₂: X₂+X₄ {O(n)}
t₁₅, X₃: 2⋅X₄⋅X₄+5⋅X₄+X₃ {O(n^2)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: X₄ {O(n)}
t₁₅, X₆: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₅, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₉, X₀: 2⋅X₄ {O(n)}
t₁₉, X₂: X₄ {O(n)}
t₁₉, X₃: 6⋅X₄⋅X₄+15⋅X₄+3⋅X₃ {O(n^2)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: 3⋅X₄ {O(n)}
t₁₉, X₆: 6⋅X₄⋅X₄+15⋅X₄ {O(n^2)}
t₁₉, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₈, X₀: X₄ {O(n)}
t₁₈, X₂: X₂+X₄ {O(n)}
t₁₈, X₃: 2⋅X₄⋅X₄+5⋅X₄+X₃ {O(n^2)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: X₄ {O(n)}
t₁₈, X₆: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₈, X₇: 2⋅X₄⋅X₄+5⋅X₄ {O(n^2)}