Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1, nondef_2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₅, X₆, X₃, X₄, X₅, X₆, X₇)
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁
t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0
t₁₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: nondef_0 ≤ 0 ∧ 0 ≤ nondef_0
t₁₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: nondef_0 < 0
t₁₃: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: 0 < nondef_0
t₂₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁-1, X₄, X₃, X₄, X₅, X₆, X₇)
t₂₂: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₂+1, X₅, X₆, X₇) :|: nondef_2 < 0
t₂₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₂+1, X₅, X₆, X₇) :|: 0 < nondef_2
t₂₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₇, X₅, X₆, X₇) :|: nondef_2 ≤ 0 ∧ 0 ≤ nondef_2
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₀, X₄, X₅, X₆, X₇)
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₃-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: nondef_1 ≤ 0 ∧ 0 ≤ nondef_1
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₃ ≤ 0
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: nondef_1 < 0 ∧ 0 < X₃
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < nondef_1 ∧ 0 < X₃
t₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)

Preprocessing

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l6

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ for location l15

Found invariant X₁ ≤ X₅ ∧ X₁ ≤ 0 for location l19

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ for location l17

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ for location l8

Found invariant X₁ ≤ X₅ ∧ X₁ ≤ 0 for location l16

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ for location l18

Found invariant X₁ ≤ X₅ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1, nondef_2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₅, X₆, X₃, X₄, X₅, X₆, X₇)
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₁ ≤ X₅
t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₁ ≤ X₅
t₁₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: nondef_0 ≤ 0 ∧ 0 ≤ nondef_0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁
t₁₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: nondef_0 < 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁
t₁₃: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: 0 < nondef_0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁
t₂₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₅ ∧ X₁ ≤ 0
t₂₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁-1, X₄, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁
t₂₂: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₂+1, X₅, X₆, X₇) :|: nondef_2 < 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁
t₂₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₂+1, X₅, X₆, X₇) :|: 0 < nondef_2 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁
t₂₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₇, X₅, X₆, X₇) :|: nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₀, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₃-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: nondef_1 < 0 ∧ 0 < X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < nondef_1 ∧ 0 < X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁
t₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)

MPRF for transition t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₁ ≤ X₅ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF:

l15 [X₁ ]
l14 [X₁+1 ]
l18 [X₁ ]
l7 [X₁ ]
l5 [X₁ ]
l6 [X₁ ]
l8 [X₁ ]
l17 [X₁ ]

MPRF for transition t₁₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: nondef_0 < 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF:

l15 [X₁+1 ]
l14 [X₁+1 ]
l18 [X₁+1 ]
l7 [X₁ ]
l5 [X₁ ]
l6 [X₁ ]
l8 [X₁ ]
l17 [X₁ ]

MPRF for transition t₁₃: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: 0 < nondef_0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF:

l15 [X₁+1 ]
l14 [X₁+1 ]
l18 [X₁+1 ]
l7 [X₁ ]
l5 [X₁ ]
l6 [X₁ ]
l8 [X₁ ]
l17 [X₁ ]

MPRF for transition t₁₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: nondef_0 ≤ 0 ∧ 0 ≤ nondef_0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l15 [X₁ ]
l14 [X₁ ]
l18 [X₁-1 ]
l7 [X₁ ]
l5 [X₁ ]
l6 [X₁ ]
l8 [X₁ ]
l17 [X₁-1 ]

MPRF for transition t₂₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁-1, X₄, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l15 [X₁ ]
l14 [X₁ ]
l18 [X₁ ]
l7 [X₁ ]
l5 [X₁ ]
l6 [X₁ ]
l8 [X₁ ]
l17 [X₁ ]

MPRF for transition t₂₂: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₂+1, X₅, X₆, X₇) :|: nondef_2 < 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l15 [X₁ ]
l14 [X₁ ]
l18 [X₁ ]
l7 [X₁ ]
l5 [X₁ ]
l6 [X₁ ]
l8 [X₁ ]
l17 [X₁-1 ]

MPRF for transition t₂₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₂+1, X₅, X₆, X₇) :|: 0 < nondef_2 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l15 [X₁ ]
l14 [X₁ ]
l18 [X₁ ]
l7 [X₁ ]
l5 [X₁ ]
l6 [X₁ ]
l8 [X₁ ]
l17 [X₁-1 ]

MPRF for transition t₂₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₇, X₅, X₆, X₇) :|: nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l15 [X₁ ]
l14 [X₁ ]
l18 [X₁ ]
l7 [X₁ ]
l5 [X₁ ]
l6 [X₁ ]
l8 [X₁ ]
l17 [X₁-1 ]

MPRF for transition t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF:

l15 [X₁+1 ]
l14 [X₁+1 ]
l18 [X₁ ]
l7 [X₁+1 ]
l5 [X₁+1 ]
l6 [X₁+1 ]
l8 [X₁+1 ]
l17 [X₁ ]

MPRF for transition t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l15 [X₁ ]
l14 [X₁ ]
l18 [X₁ ]
l7 [X₁ ]
l5 [X₁ ]
l6 [X₁ ]
l8 [X₁ ]
l17 [X₁-1 ]

MPRF for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₀, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}

MPRF:

l15 [X₁+X₂ ]
l14 [X₁+X₂ ]
l18 [X₁+X₂ ]
l7 [X₀+X₁ ]
l5 [X₀+X₁ ]
l6 [X₁+X₃-1 ]
l8 [X₁+X₃-1 ]
l17 [X₁+X₄-1 ]

MPRF for transition t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₃-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}

MPRF:

l15 [X₁+X₂ ]
l14 [X₁+X₂ ]
l18 [X₁+X₂ ]
l7 [X₀+X₁ ]
l5 [X₀+X₁ ]
l6 [X₁+X₃ ]
l8 [X₁+X₃ ]
l17 [X₁+X₄-1 ]

MPRF for transition t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}

MPRF:

l15 [X₁+X₂ ]
l14 [X₁+X₂ ]
l18 [X₁+X₂ ]
l7 [X₀+X₁ ]
l5 [X₀+X₁-1 ]
l6 [X₁+X₃-1 ]
l8 [X₁+X₃-1 ]
l17 [X₁+X₄-1 ]

MPRF for transition t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: nondef_1 < 0 ∧ 0 < X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}

MPRF:

l15 [X₁+X₂ ]
l14 [X₁+X₂ ]
l18 [X₁+X₂ ]
l7 [X₁+X₃-2 ]
l5 [X₁+X₃-2 ]
l6 [X₁+X₃-2 ]
l8 [X₁+X₃-1 ]
l17 [X₁+X₄-1 ]

MPRF for transition t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < nondef_1 ∧ 0 < X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}

MPRF:

l15 [X₁+X₂ ]
l14 [X₁+X₂ ]
l18 [X₁+X₂ ]
l7 [X₁+X₃-2 ]
l5 [X₁+X₃-2 ]
l6 [X₁+X₃-2 ]
l8 [X₁+X₃-1 ]
l17 [X₁+X₄-1 ]

Analysing control-flow refined program

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___3

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___1

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ for location l15

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___5

Found invariant X₁ ≤ X₅ ∧ X₁ ≤ 0 for location l19

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___6

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ for location l17

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___2

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁ for location l8

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location n_l6___7

Found invariant 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l8___4

Found invariant X₁ ≤ X₅ ∧ X₁ ≤ 0 for location l16

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₁ for location l18

Found invariant X₁ ≤ X₅ for location l14

knowledge_propagation leads to new time bound 2⋅X₅+2 {O(n)} for transition t₃₅₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___7(X₀, X₁, X₂, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₁ ≤ Arg5_P ∧ Arg3_P ≤ X₂ ∧ 0 < Arg3_P ∧ 1 ≤ X₁ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound 2⋅X₅+2 {O(n)} for transition t₃₅₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___7(X₀, X₁, X₂, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₁ ≤ Arg5_P ∧ Arg3_P ≤ X₂ ∧ 0 < Arg3_P ∧ 1 ≤ X₁ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound 4⋅X₅+4 {O(n)} for transition t₃₄₇: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___6(X₃-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₅ ∧ 0 < X₂ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound 4⋅X₅+4 {O(n)} for transition t₃₄₉: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___5(X₀, X₁, X₂, X₀+1, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₅ ∧ 1 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound 4⋅X₅+4 {O(n)} for transition t₃₄₅: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___4(X₀, X₁, X₂, X₀, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₅ ∧ 1 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀

MPRF for transition t₃₄₄: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___4(X₀, X₁, X₂, X₀, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

4⋅X₅⋅X₆+4⋅X₅⋅X₇+8⋅X₅⋅X₅+4⋅X₆+4⋅X₇+8⋅X₅ {O(n^2)}

MPRF:

l15 [0 ]
l14 [0 ]
l18 [0 ]
l8 [0 ]
n_l5___5 [X₀ ]
n_l6___7 [0 ]
n_l7___6 [0 ]
n_l7___2 [X₃ ]
n_l5___1 [X₀+1 ]
n_l6___3 [X₃ ]
n_l8___4 [X₃ ]
l17 [0 ]

MPRF for transition t₃₄₆: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___2(X₃-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₅⋅X₆+4⋅X₅⋅X₇+8⋅X₅⋅X₅+4⋅X₆+4⋅X₇+8⋅X₅ {O(n^2)}

MPRF:

l15 [0 ]
l14 [0 ]
l18 [0 ]
l8 [0 ]
n_l5___5 [X₀ ]
n_l6___7 [0 ]
n_l7___6 [0 ]
n_l7___2 [X₃-1 ]
n_l5___1 [X₃-1 ]
n_l6___3 [X₃ ]
n_l8___4 [X₀ ]
l17 [0 ]

MPRF for transition t₃₄₈: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___1(X₀, X₁, X₂, X₀+1, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

4⋅X₅⋅X₆+4⋅X₅⋅X₇+8⋅X₅⋅X₅+4⋅X₆+4⋅X₇+8⋅X₅ {O(n^2)}

MPRF:

l15 [0 ]
l14 [0 ]
l18 [0 ]
l8 [0 ]
n_l5___5 [X₀ ]
n_l6___7 [0 ]
n_l7___6 [0 ]
n_l7___2 [X₃ ]
n_l5___1 [X₀ ]
n_l6___3 [X₀ ]
n_l8___4 [X₃ ]
l17 [0 ]

MPRF for transition t₃₅₀: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___3(X₀, X₁, X₂, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₅ ∧ X₁ ≤ Arg5_P ∧ Arg3_P ≤ X₂ ∧ 0 < Arg3_P ∧ 1 ≤ X₁ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

4⋅X₅⋅X₆+4⋅X₅⋅X₇+8⋅X₅⋅X₅+12⋅X₅+4⋅X₆+4⋅X₇+4 {O(n^2)}

MPRF:

l15 [0 ]
l14 [0 ]
l18 [0 ]
l8 [0 ]
n_l5___5 [X₀+1 ]
n_l6___7 [0 ]
n_l7___6 [0 ]
n_l7___2 [X₀+1 ]
n_l5___1 [X₀+1 ]
n_l6___3 [X₃ ]
n_l8___4 [X₀+1 ]
l17 [0 ]

MPRF for transition t₃₅₁: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___3(X₀, X₁, X₂, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₅ ∧ X₁ ≤ Arg5_P ∧ Arg3_P ≤ X₂ ∧ 0 < Arg3_P ∧ 1 ≤ X₁ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

4⋅X₅⋅X₆+4⋅X₅⋅X₇+8⋅X₅⋅X₅+12⋅X₅+4⋅X₆+4⋅X₇+4 {O(n^2)}

MPRF:

l15 [0 ]
l14 [0 ]
l18 [0 ]
l8 [0 ]
n_l5___5 [X₀+1 ]
n_l6___7 [0 ]
n_l7___6 [0 ]
n_l7___2 [X₀+1 ]
n_l5___1 [X₀+1 ]
n_l6___3 [X₃ ]
n_l8___4 [X₀+1 ]
l17 [0 ]

MPRF for transition t₃₆₂: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l15 [X₁ ]
l14 [X₁ ]
l18 [X₁-1 ]
l8 [X₁ ]
n_l6___7 [X₁ ]
n_l7___2 [X₁+X₃-X₀-1 ]
n_l5___1 [X₁ ]
n_l7___6 [X₁ ]
n_l5___5 [X₁ ]
n_l6___3 [X₁ ]
n_l8___4 [X₁ ]
l17 [X₁-1 ]

MPRF for transition t₃₆₃: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l15 [X₁ ]
l14 [X₁ ]
l18 [X₁ ]
l8 [X₁ ]
n_l6___7 [X₁ ]
n_l7___2 [X₁+X₃-X₀-1 ]
n_l5___1 [X₁ ]
n_l7___6 [X₁ ]
n_l5___5 [X₁ ]
n_l6___3 [X₁ ]
n_l8___4 [X₁ ]
l17 [X₁-1 ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:5⋅X₅⋅X₅+5⋅X₅⋅X₇+20⋅X₅+5⋅X₆+16 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: X₅+1 {O(n)}
t₁₁: 1 {O(1)}
t₁₂: X₅+1 {O(n)}
t₁₃: X₅+1 {O(n)}
t₁₄: X₅ {O(n)}
t₂₆: 1 {O(1)}
t₂₅: X₅ {O(n)}
t₂₂: X₅ {O(n)}
t₂₃: X₅ {O(n)}
t₂₄: X₅ {O(n)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₂₁: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₁₉: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₂₀: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₁₅: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₁₆: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₁₇: X₅+1 {O(n)}
t₁₈: X₅ {O(n)}
t₅: 1 {O(1)}

Costbounds

Overall costbound: 5⋅X₅⋅X₅+5⋅X₅⋅X₇+20⋅X₅+5⋅X₆+16 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: X₅+1 {O(n)}
t₁₁: 1 {O(1)}
t₁₂: X₅+1 {O(n)}
t₁₃: X₅+1 {O(n)}
t₁₄: X₅ {O(n)}
t₂₆: 1 {O(1)}
t₂₅: X₅ {O(n)}
t₂₂: X₅ {O(n)}
t₂₃: X₅ {O(n)}
t₂₄: X₅ {O(n)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₂₁: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₁₉: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₂₀: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₁₅: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₁₆: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₁₇: X₅+1 {O(n)}
t₁₈: X₅ {O(n)}
t₅: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₅ {O(n)}
t₉, X₂: X₆ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₁₀, X₀: 2⋅X₆+2⋅X₇+4⋅X₅+X₀ {O(n)}
t₁₀, X₁: X₅ {O(n)}
t₁₀, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₁₀, X₃: 12⋅X₅+6⋅X₆+6⋅X₇+X₃ {O(n)}
t₁₀, X₄: 4⋅X₆+5⋅X₇+8⋅X₅+X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₁, X₀: 2⋅X₀+2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₁₁, X₁: 2⋅X₅ {O(n)}
t₁₁, X₂: 2⋅X₅+2⋅X₆+X₇ {O(n)}
t₁₁, X₃: 12⋅X₅+2⋅X₃+6⋅X₆+6⋅X₇ {O(n)}
t₁₁, X₄: 4⋅X₆+5⋅X₇+8⋅X₅+X₄ {O(n)}
t₁₁, X₅: 2⋅X₅ {O(n)}
t₁₁, X₆: 2⋅X₆ {O(n)}
t₁₁, X₇: 2⋅X₇ {O(n)}
t₁₂, X₀: 2⋅X₆+2⋅X₇+4⋅X₅+X₀ {O(n)}
t₁₂, X₁: X₅ {O(n)}
t₁₂, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₁₂, X₃: 2⋅X₅+X₆+X₇ {O(n)}
t₁₂, X₄: 4⋅X₆+5⋅X₇+8⋅X₅+X₄ {O(n)}
t₁₂, X₅: X₅ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₇ {O(n)}
t₁₃, X₀: 2⋅X₆+2⋅X₇+4⋅X₅+X₀ {O(n)}
t₁₃, X₁: X₅ {O(n)}
t₁₃, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₁₃, X₃: 2⋅X₅+X₆+X₇ {O(n)}
t₁₃, X₄: 4⋅X₆+5⋅X₇+8⋅X₅+X₄ {O(n)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁₃, X₇: X₇ {O(n)}
t₁₄, X₀: 2⋅X₆+2⋅X₇+4⋅X₅+X₀ {O(n)}
t₁₄, X₁: X₅ {O(n)}
t₁₄, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₁₄, X₃: 12⋅X₅+6⋅X₆+6⋅X₇+X₃ {O(n)}
t₁₄, X₄: 4⋅X₆+5⋅X₇+8⋅X₅+X₄ {O(n)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: X₇ {O(n)}
t₂₆, X₀: 2⋅X₀+2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₂₆, X₁: 2⋅X₅ {O(n)}
t₂₆, X₂: 2⋅X₅+2⋅X₆+X₇ {O(n)}
t₂₆, X₃: 12⋅X₅+2⋅X₃+6⋅X₆+6⋅X₇ {O(n)}
t₂₆, X₄: 4⋅X₆+5⋅X₇+8⋅X₅+X₄ {O(n)}
t₂₆, X₅: 2⋅X₅ {O(n)}
t₂₆, X₆: 2⋅X₆ {O(n)}
t₂₆, X₇: 2⋅X₇ {O(n)}
t₂₅, X₀: 2⋅X₆+2⋅X₇+4⋅X₅+X₀ {O(n)}
t₂₅, X₁: X₅ {O(n)}
t₂₅, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₂₅, X₃: 12⋅X₅+6⋅X₆+6⋅X₇+X₃ {O(n)}
t₂₅, X₄: 4⋅X₆+5⋅X₇+8⋅X₅ {O(n)}
t₂₅, X₅: X₅ {O(n)}
t₂₅, X₆: X₆ {O(n)}
t₂₅, X₇: X₇ {O(n)}
t₂₂, X₀: 2⋅X₆+2⋅X₇+4⋅X₅+X₀ {O(n)}
t₂₂, X₁: X₅ {O(n)}
t₂₂, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₂₂, X₃: 12⋅X₅+6⋅X₆+6⋅X₇+X₃ {O(n)}
t₂₂, X₄: 2⋅X₅+X₆+X₇ {O(n)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₇: X₇ {O(n)}
t₂₃, X₀: 2⋅X₆+2⋅X₇+4⋅X₅+X₀ {O(n)}
t₂₃, X₁: X₅ {O(n)}
t₂₃, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₂₃, X₃: 12⋅X₅+6⋅X₆+6⋅X₇+X₃ {O(n)}
t₂₃, X₄: 2⋅X₅+X₆+X₇ {O(n)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₇: X₇ {O(n)}
t₂₄, X₀: 2⋅X₆+2⋅X₇+4⋅X₅+X₀ {O(n)}
t₂₄, X₁: X₅ {O(n)}
t₂₄, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₂₄, X₃: 12⋅X₅+6⋅X₆+6⋅X₇+X₃ {O(n)}
t₂₄, X₄: X₇ {O(n)}
t₂₄, X₅: X₅ {O(n)}
t₂₄, X₆: X₆ {O(n)}
t₂₄, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₂₁, X₀: 2⋅X₅+X₆+X₇ {O(n)}
t₂₁, X₁: X₅ {O(n)}
t₂₁, X₂: 4⋅X₆+4⋅X₇+8⋅X₅ {O(n)}
t₂₁, X₃: 2⋅X₅+X₆+X₇ {O(n)}
t₂₁, X₄: 16⋅X₆+20⋅X₇+32⋅X₅+4⋅X₄ {O(n)}
t₂₁, X₅: X₅ {O(n)}
t₂₁, X₆: X₆ {O(n)}
t₂₁, X₇: X₇ {O(n)}
t₁₉, X₀: 2⋅X₅+X₆+X₇ {O(n)}
t₁₉, X₁: X₅ {O(n)}
t₁₉, X₂: 4⋅X₆+4⋅X₇+8⋅X₅ {O(n)}
t₁₉, X₃: 2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₁₉, X₄: 16⋅X₆+20⋅X₇+32⋅X₅+4⋅X₄ {O(n)}
t₁₉, X₅: X₅ {O(n)}
t₁₉, X₆: X₆ {O(n)}
t₁₉, X₇: X₇ {O(n)}
t₂₀, X₀: 2⋅X₅+X₆+X₇ {O(n)}
t₂₀, X₁: X₅ {O(n)}
t₂₀, X₂: 4⋅X₆+4⋅X₇+8⋅X₅ {O(n)}
t₂₀, X₃: 2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₂₀, X₄: 16⋅X₆+20⋅X₇+32⋅X₅+4⋅X₄ {O(n)}
t₂₀, X₅: X₅ {O(n)}
t₂₀, X₆: X₆ {O(n)}
t₂₀, X₇: X₇ {O(n)}
t₁₅, X₀: 10⋅X₅+2⋅X₀+5⋅X₆+5⋅X₇ {O(n)}
t₁₅, X₁: X₅ {O(n)}
t₁₅, X₂: 4⋅X₆+4⋅X₇+8⋅X₅ {O(n)}
t₁₅, X₃: 2⋅X₅+X₆+X₇ {O(n)}
t₁₅, X₄: 16⋅X₆+20⋅X₇+32⋅X₅+4⋅X₄ {O(n)}
t₁₅, X₅: X₅ {O(n)}
t₁₅, X₆: X₆ {O(n)}
t₁₅, X₇: X₇ {O(n)}
t₁₆, X₀: 10⋅X₅+2⋅X₀+5⋅X₆+5⋅X₇ {O(n)}
t₁₆, X₁: X₅ {O(n)}
t₁₆, X₂: 4⋅X₆+4⋅X₇+8⋅X₅ {O(n)}
t₁₆, X₃: 2⋅X₅+X₆+X₇ {O(n)}
t₁₆, X₄: 16⋅X₆+20⋅X₇+32⋅X₅+4⋅X₄ {O(n)}
t₁₆, X₅: X₅ {O(n)}
t₁₆, X₆: X₆ {O(n)}
t₁₆, X₇: X₇ {O(n)}
t₁₇, X₀: 2⋅X₆+2⋅X₇+4⋅X₅+X₀ {O(n)}
t₁₇, X₁: X₅ {O(n)}
t₁₇, X₂: 12⋅X₅+6⋅X₆+6⋅X₇ {O(n)}
t₁₇, X₃: 3⋅X₆+3⋅X₇+6⋅X₅ {O(n)}
t₁₇, X₄: 2⋅X₅+X₆+X₇ {O(n)}
t₁₇, X₅: X₅ {O(n)}
t₁₇, X₆: X₆ {O(n)}
t₁₇, X₇: X₇ {O(n)}
t₁₈, X₀: 2⋅X₆+2⋅X₇+4⋅X₅+X₀ {O(n)}
t₁₈, X₁: X₅ {O(n)}
t₁₈, X₂: 12⋅X₅+6⋅X₆+6⋅X₇ {O(n)}
t₁₈, X₃: 3⋅X₆+3⋅X₇+6⋅X₅ {O(n)}
t₁₈, X₄: 2⋅X₅+X₆+X₇ {O(n)}
t₁₈, X₅: X₅ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₇: X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}