Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃+1 ≤ X₁
t₂: l1(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃
t₇: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₂
t₉: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃)
t₁₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, X₃+1)
t₄: l5(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: E+1 ≤ 0
t₅: l5(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 1 ≤ E
t₆: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃)
t₁₁: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₁: l7(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁

Preprocessing

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l4

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃+1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₂: l1(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, X₃+1) :|: 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄: l5(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: E+1 ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅: l5(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 1 ≤ E ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁: l7(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁

Analysing control-flow refined program

Cut unsatisfiable transition t₂: l1→l6

Cut unsatisfiable transition t₅₁₆: n_l1___9→l6

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___7

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___9

Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___4

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l3___6

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___11

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___8

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___2

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___5

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___12

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___1

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___10

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___3

MPRF for transition t₄₈₆: n_l1___4(X₀, X₁, X₂, X₃) → n_l5___3(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀+2⋅X₁ {O(n)}

MPRF:

n_l3___1 [X₀+X₁-X₃ ]
n_l3___6 [X₀+X₁-X₃ ]
n_l1___9 [X₀+X₁-X₃ ]
n_l4___5 [X₁+X₂-X₃ ]
n_l1___4 [X₀+X₁+1-X₃ ]
n_l5___3 [X₀+X₁-X₃ ]
n_l2___2 [X₀+X₁-X₃ ]
n_l5___8 [X₀+X₁-X₃ ]
n_l2___7 [X₀+X₁-X₃ ]

MPRF for transition t₄₈₉: n_l2___2(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁+1 {O(n)}

MPRF:

n_l3___1 [X₁-X₃-1 ]
n_l3___6 [X₁-X₃-1 ]
n_l1___9 [X₁-X₃-1 ]
n_l4___5 [X₁-X₃-1 ]
n_l1___4 [X₁-X₃ ]
n_l5___3 [X₁-X₃ ]
n_l2___2 [X₁-X₃ ]
n_l5___8 [X₁-X₃-1 ]
n_l2___7 [X₁-X₃-1 ]

MPRF for transition t₄₉₁: n_l2___7(X₀, X₁, X₂, X₃) → n_l4___5(X₀, X₁, X₀, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF:

n_l3___1 [X₁-X₃ ]
n_l3___6 [X₁-X₃ ]
n_l1___9 [X₁-X₃ ]
n_l4___5 [X₁-X₃-1 ]
n_l1___4 [X₁-X₃ ]
n_l5___3 [X₁-X₃ ]
n_l2___2 [X₁-X₃ ]
n_l5___8 [X₁-X₃ ]
n_l2___7 [X₁-X₃ ]

MPRF for transition t₄₉₂: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀+2⋅X₁+1 {O(n)}

MPRF:

n_l3___1 [X₀+X₁-X₃ ]
n_l3___6 [X₀+X₁-X₃-1 ]
n_l1___9 [X₀+X₁-X₃-1 ]
n_l4___5 [X₁+X₂-X₃-1 ]
n_l1___4 [X₀+X₁-X₃ ]
n_l5___3 [X₀+X₁-X₃ ]
n_l2___2 [X₀+X₁-X₃ ]
n_l5___8 [X₀+X₁-X₃-1 ]
n_l2___7 [X₀+X₁-X₃-1 ]

MPRF for transition t₄₉₅: n_l4___5(X₀, X₁, X₂, X₃) → n_l1___4(X₀, X₁, 0, X₃+1) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF:

n_l3___1 [X₁-X₃ ]
n_l3___6 [X₁-X₃ ]
n_l1___9 [X₁-X₃ ]
n_l4___5 [X₁-X₃ ]
n_l1___4 [X₁-X₃ ]
n_l5___3 [X₁-X₃ ]
n_l2___2 [X₁-X₃ ]
n_l5___8 [X₁-X₃ ]
n_l2___7 [X₁-X₃ ]

MPRF for transition t₄₉₈: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF:

n_l3___1 [X₁-X₃ ]
n_l3___6 [X₁-X₃ ]
n_l1___9 [X₁-X₃ ]
n_l4___5 [X₁-X₃ ]
n_l1___4 [X₁+1-X₃ ]
n_l5___3 [X₁+1-X₃ ]
n_l2___2 [X₁-X₃ ]
n_l5___8 [X₁-X₃ ]
n_l2___7 [X₁-X₃ ]

MPRF for transition t₄₉₉: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF:

n_l3___1 [X₁-X₃ ]
n_l3___6 [X₁-X₃ ]
n_l1___9 [X₁-X₃ ]
n_l4___5 [X₁-X₃ ]
n_l1___4 [X₁+1-X₃ ]
n_l5___3 [X₁+1-X₃ ]
n_l2___2 [X₁-X₃ ]
n_l5___8 [X₁-X₃ ]
n_l2___7 [X₁-X₃ ]

MPRF for transition t₄₈₇: n_l1___9(X₀, X₁, X₂, X₃) → n_l5___8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₀⋅X₁+2⋅X₀+2 {O(n^2)}

MPRF:

n_l5___3 [0 ]
n_l2___2 [X₀ ]
n_l3___1 [X₀ ]
n_l3___6 [X₀-X₂ ]
n_l1___9 [X₀+1-X₂ ]
n_l4___5 [0 ]
n_l1___4 [0 ]
n_l5___8 [X₀-X₂ ]
n_l2___7 [X₀-X₂ ]

MPRF for transition t₄₉₀: n_l2___7(X₀, X₁, X₂, X₃) → n_l3___6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

16⋅X₀⋅X₁+4⋅X₀+1 {O(n^2)}

MPRF:

n_l5___3 [X₀ ]
n_l2___2 [2⋅X₀ ]
n_l3___1 [2⋅X₀ ]
n_l3___6 [2⋅X₀-X₂-1 ]
n_l1___9 [2⋅X₀-X₂ ]
n_l4___5 [X₂ ]
n_l1___4 [X₀ ]
n_l5___8 [2⋅X₀-X₂ ]
n_l2___7 [2⋅X₀-X₂ ]

MPRF for transition t₄₉₄: n_l3___6(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

8⋅X₀⋅X₁+2⋅X₀+1 {O(n^2)}

MPRF:

n_l5___3 [0 ]
n_l2___2 [X₀ ]
n_l3___1 [X₀ ]
n_l3___6 [X₀-X₂ ]
n_l1___9 [X₀-X₂ ]
n_l4___5 [0 ]
n_l1___4 [0 ]
n_l5___8 [X₀-X₂ ]
n_l2___7 [X₀-X₂ ]

MPRF for transition t₅₀₀: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₀⋅X₁+2⋅X₀+2 {O(n^2)}

MPRF:

n_l5___3 [0 ]
n_l2___2 [X₀ ]
n_l3___1 [X₀ ]
n_l3___6 [X₀-X₂ ]
n_l1___9 [X₀+1-X₂ ]
n_l4___5 [0 ]
n_l1___4 [0 ]
n_l5___8 [X₀+1-X₂ ]
n_l2___7 [X₀-X₂ ]

MPRF for transition t₅₀₁: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₀⋅X₁+2⋅X₀+2 {O(n^2)}

MPRF:

n_l5___3 [0 ]
n_l2___2 [X₀ ]
n_l3___1 [X₀ ]
n_l3___6 [X₀-X₂ ]
n_l1___9 [X₀+1-X₂ ]
n_l4___5 [0 ]
n_l1___4 [0 ]
n_l5___8 [X₀+1-X₂ ]
n_l2___7 [X₀-X₂ ]

CFR: Improvement to new bound with the following program:

new bound:

48⋅X₀⋅X₁+14⋅X₁+16⋅X₀+10 {O(n^2)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: Arg2_P
Locations: l0, l1, l6, l7, l8, n_l1___4, n_l1___9, n_l2___11, n_l2___2, n_l2___7, n_l3___1, n_l3___10, n_l3___6, n_l4___5, n_l5___12, n_l5___3, n_l5___8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₄₈₅: l1(X₀, X₁, X₂, X₃) → n_l5___12(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁: l7(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁
t₅₁₅: n_l1___4(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₈₆: n_l1___4(X₀, X₁, X₂, X₃) → n_l5___3(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₈₇: n_l1___9(X₀, X₁, X₂, X₃) → n_l5___8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₈₈: n_l2___11(X₀, X₁, X₂, X₃) → n_l3___10(X₀, X₁, X₂, X₃) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₈₉: n_l2___2(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₀: n_l2___7(X₀, X₁, X₂, X₃) → n_l3___6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₁: n_l2___7(X₀, X₁, X₂, X₃) → n_l4___5(X₀, X₁, X₀, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₂: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₃: n_l3___10(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₄: n_l3___6(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀
t₄₉₅: n_l4___5(X₀, X₁, X₂, X₃) → n_l1___4(X₀, X₁, 0, X₃+1) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅₁₇: n_l5___12(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₆: n_l5___12(X₀, X₁, X₂, X₃) → n_l2___11(X₀, X₁, Arg2_P, X₃) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₇: n_l5___12(X₀, X₁, X₂, X₃) → n_l2___11(X₀, X₁, Arg2_P, X₃) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅₁₈: n_l5___3(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₈: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₉: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅₁₉: n_l5___8(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅₀₀: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅₀₁: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:48⋅X₀⋅X₁+14⋅X₁+16⋅X₀+22 {O(n^2)}
t₀: 1 {O(1)}
t₄₈₅: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁: 1 {O(1)}
t₄₈₆: 2⋅X₀+2⋅X₁ {O(n)}
t₅₁₅: 1 {O(1)}
t₄₈₇: 8⋅X₀⋅X₁+2⋅X₀+2 {O(n^2)}
t₄₈₈: 1 {O(1)}
t₄₈₉: 2⋅X₁+1 {O(n)}
t₄₉₀: 16⋅X₀⋅X₁+4⋅X₀+1 {O(n^2)}
t₄₉₁: 2⋅X₁ {O(n)}
t₄₉₂: 2⋅X₀+2⋅X₁+1 {O(n)}
t₄₉₃: 1 {O(1)}
t₄₉₄: 8⋅X₀⋅X₁+2⋅X₀+1 {O(n^2)}
t₄₉₅: 2⋅X₁ {O(n)}
t₄₉₆: 1 {O(1)}
t₄₉₇: 1 {O(1)}
t₅₁₇: 1 {O(1)}
t₄₉₈: 2⋅X₁ {O(n)}
t₄₉₉: 2⋅X₁ {O(n)}
t₅₁₈: 1 {O(1)}
t₅₀₀: 8⋅X₀⋅X₁+2⋅X₀+2 {O(n^2)}
t₅₀₁: 8⋅X₀⋅X₁+2⋅X₀+2 {O(n^2)}
t₅₁₉: 1 {O(1)}

Costbounds

Overall costbound: 48⋅X₀⋅X₁+14⋅X₁+16⋅X₀+22 {O(n^2)}
t₀: 1 {O(1)}
t₄₈₅: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁: 1 {O(1)}
t₄₈₆: 2⋅X₀+2⋅X₁ {O(n)}
t₅₁₅: 1 {O(1)}
t₄₈₇: 8⋅X₀⋅X₁+2⋅X₀+2 {O(n^2)}
t₄₈₈: 1 {O(1)}
t₄₈₉: 2⋅X₁+1 {O(n)}
t₄₉₀: 16⋅X₀⋅X₁+4⋅X₀+1 {O(n^2)}
t₄₉₁: 2⋅X₁ {O(n)}
t₄₉₂: 2⋅X₀+2⋅X₁+1 {O(n)}
t₄₉₃: 1 {O(1)}
t₄₉₄: 8⋅X₀⋅X₁+2⋅X₀+1 {O(n^2)}
t₄₉₅: 2⋅X₁ {O(n)}
t₄₉₆: 1 {O(1)}
t₄₉₇: 1 {O(1)}
t₅₁₇: 1 {O(1)}
t₄₉₈: 2⋅X₁ {O(n)}
t₄₉₉: 2⋅X₁ {O(n)}
t₅₁₈: 1 {O(1)}
t₅₀₀: 8⋅X₀⋅X₁+2⋅X₀+2 {O(n^2)}
t₅₀₁: 8⋅X₀⋅X₁+2⋅X₀+2 {O(n^2)}
t₅₁₉: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₄₈₅, X₀: X₀ {O(n)}
t₄₈₅, X₁: X₁ {O(n)}
t₄₈₅, X₂: 0 {O(1)}
t₄₈₅, X₃: 0 {O(1)}
t₁₁, X₀: 7⋅X₀ {O(n)}
t₁₁, X₁: 7⋅X₁ {O(n)}
t₁₁, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₁₁, X₃: 6⋅X₁ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: 0 {O(1)}
t₁, X₃: 0 {O(1)}
t₄₈₆, X₀: 2⋅X₀ {O(n)}
t₄₈₆, X₁: 2⋅X₁ {O(n)}
t₄₈₆, X₂: 0 {O(1)}
t₄₈₆, X₃: 2⋅X₁ {O(n)}
t₅₁₅, X₀: 2⋅X₀ {O(n)}
t₅₁₅, X₁: 2⋅X₁ {O(n)}
t₅₁₅, X₂: 0 {O(1)}
t₅₁₅, X₃: 2⋅X₁ {O(n)}
t₄₈₇, X₀: 2⋅X₀ {O(n)}
t₄₈₇, X₁: 2⋅X₁ {O(n)}
t₄₈₇, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₄₈₇, X₃: 2⋅X₁ {O(n)}
t₄₈₈, X₀: 2⋅X₀ {O(n)}
t₄₈₈, X₁: 2⋅X₁ {O(n)}
t₄₈₈, X₂: 0 {O(1)}
t₄₈₈, X₃: 0 {O(1)}
t₄₈₉, X₀: 2⋅X₀ {O(n)}
t₄₈₉, X₁: 2⋅X₁ {O(n)}
t₄₈₉, X₂: 0 {O(1)}
t₄₈₉, X₃: 2⋅X₁ {O(n)}
t₄₉₀, X₀: 2⋅X₀ {O(n)}
t₄₉₀, X₁: 2⋅X₁ {O(n)}
t₄₉₀, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₄₉₀, X₃: 2⋅X₁ {O(n)}
t₄₉₁, X₀: 2⋅X₀ {O(n)}
t₄₉₁, X₁: 2⋅X₁ {O(n)}
t₄₉₁, X₂: 4⋅X₀ {O(n)}
t₄₉₁, X₃: 2⋅X₁ {O(n)}
t₄₉₂, X₀: 2⋅X₀ {O(n)}
t₄₉₂, X₁: 2⋅X₁ {O(n)}
t₄₉₂, X₂: 1 {O(1)}
t₄₉₂, X₃: 2⋅X₁ {O(n)}
t₄₉₃, X₀: 2⋅X₀ {O(n)}
t₄₉₃, X₁: 2⋅X₁ {O(n)}
t₄₉₃, X₂: 1 {O(1)}
t₄₉₃, X₃: 0 {O(1)}
t₄₉₄, X₀: 2⋅X₀ {O(n)}
t₄₉₄, X₁: 2⋅X₁ {O(n)}
t₄₉₄, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₄₉₄, X₃: 2⋅X₁ {O(n)}
t₄₉₅, X₀: 2⋅X₀ {O(n)}
t₄₉₅, X₁: 2⋅X₁ {O(n)}
t₄₉₅, X₂: 0 {O(1)}
t₄₉₅, X₃: 2⋅X₁ {O(n)}
t₄₉₆, X₀: X₀ {O(n)}
t₄₉₆, X₁: X₁ {O(n)}
t₄₉₆, X₂: 0 {O(1)}
t₄₉₆, X₃: 0 {O(1)}
t₄₉₇, X₀: X₀ {O(n)}
t₄₉₇, X₁: X₁ {O(n)}
t₄₉₇, X₂: 0 {O(1)}
t₄₉₇, X₃: 0 {O(1)}
t₅₁₇, X₀: X₀ {O(n)}
t₅₁₇, X₁: X₁ {O(n)}
t₅₁₇, X₂: 0 {O(1)}
t₅₁₇, X₃: 0 {O(1)}
t₄₉₈, X₀: 2⋅X₀ {O(n)}
t₄₉₈, X₁: 2⋅X₁ {O(n)}
t₄₉₈, X₂: 0 {O(1)}
t₄₉₈, X₃: 2⋅X₁ {O(n)}
t₄₉₉, X₀: 2⋅X₀ {O(n)}
t₄₉₉, X₁: 2⋅X₁ {O(n)}
t₄₉₉, X₂: 0 {O(1)}
t₄₉₉, X₃: 2⋅X₁ {O(n)}
t₅₁₈, X₀: 2⋅X₀ {O(n)}
t₅₁₈, X₁: 2⋅X₁ {O(n)}
t₅₁₈, X₂: 0 {O(1)}
t₅₁₈, X₃: 2⋅X₁ {O(n)}
t₅₀₀, X₀: 2⋅X₀ {O(n)}
t₅₀₀, X₁: 2⋅X₁ {O(n)}
t₅₀₀, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₅₀₀, X₃: 2⋅X₁ {O(n)}
t₅₀₁, X₀: 2⋅X₀ {O(n)}
t₅₀₁, X₁: 2⋅X₁ {O(n)}
t₅₀₁, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₅₀₁, X₃: 2⋅X₁ {O(n)}
t₅₁₉, X₀: 2⋅X₀ {O(n)}
t₅₁₉, X₁: 2⋅X₁ {O(n)}
t₅₁₉, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₅₁₉, X₃: 2⋅X₁ {O(n)}