Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, 0, 1, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 ≤ X₂ ∧ 1 ≤ X₃
t₃₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ ≤ X₆
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₆+1 ≤ X₃ ∧ X₆ ≤ 0
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₆+1 ≤ X₃ ∧ 1 ≤ X₆
t₂₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₁₆ ∧ X₂ ≤ 0 ∧ X₄ ≤ 0
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₁₆ ∧ X₂ ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, 0, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₂
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 0, X₁₅, X₁₆) :|: 0 ≤ X₁₆ ∧ 1 ≤ X₁₄ ∧ X₁₆ ≤ 1
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 1, X₁₅, X₁₆) :|: 0 ≤ X₁₆ ∧ X₁₄ ≤ 0 ∧ X₁₆ ≤ 1
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ 0
t₂₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 3, X₁₆) :|: 1 ≤ X₁
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₁, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 ≤ X₈ ∧ X₃ ≤ X₆+1 ∧ X₈ ≤ 1
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0, X₁₁, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 ≤ X₈ ∧ 2+X₆ ≤ X₃ ∧ X₈ ≤ 1
t₃₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, 0, X₁₂, X₁₃, X₁₄, X₁₅, 1) :|: 1 ≤ X₁₁ ∧ X₅ ≤ X₃ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆
t₃₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, 1, X₁₂, X₁₃, X₁₄, X₁₅, 1) :|: X₁₁ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆
t₃₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 ≤ X₈ ∧ X₈ ≤ 1 ∧ X₁₆ ≤ 0 ∧ X₅ ≤ X₃
t₃₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 ≤ X₈ ∧ X₈ ≤ 1 ∧ 2 ≤ X₁₆ ∧ X₅ ≤ X₃
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₈ ∧ X₂ ≤ 0 ∧ X₄ ≤ 0
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₈ ∧ X₂ ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l6(X₀, X₁, X₂, X₃, 0, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l6(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₂
t₃₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ X₃ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l7(X₇, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 1, X₁₀, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₁₂ ∧ 1 ≤ X₈
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l7(X₇, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 1, X₁₀, X₁₀, X₁₅, X₁₆) :|: X₁₂ ≤ 0 ∧ 1 ≤ X₈
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 ≤ X₁₆ ∧ X₁₄+1 ≤ X₁₃ ∧ X₁₆ ≤ 1
t₂₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 ≤ X₁₆ ∧ 1+X₁₃ ≤ X₁₄ ∧ X₁₆ ≤ 1
t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₃, X₁₅, X₁₆) :|: X₀+1 ≤ 0 ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₃, X₁₅, X₁₆) :|: 1 ≤ X₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₃, X₁₅, X₁₆) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, 0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1, X₁₆) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁+1 ≤ 0
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₁
t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 2, X₁₆) :|: X₁ ≤ 0 ∧ X₀ ≤ 0
t₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₀
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₁ ∧ X₀ ≤ 0
Preprocessing
Eliminate variables {X₁₅} that do not contribute to the problem
Found invariant X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 for location l11
Found invariant X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l2
Found invariant X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ for location l6
Found invariant X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ X₄ ≤ 1+X₉ ∧ 2 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₂+X₉ ∧ X₁₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 2 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l12
Found invariant X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 for location l7
Found invariant X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ for location l5
Found invariant X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 for location l8
Found invariant X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l1
Found invariant X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 for location l10
Found invariant X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 2+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 for location l4
Found invariant X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l9
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 2 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ 2+X₇ ∧ 2 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l3
Cut unsatisfiable transition t₈₈: l12→l11
Cut unsatisfiable transition t₉₃: l4→l5
Cut unsatisfiable transition t₁₀₉: l8→l9
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₇₈: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l1(X₀, X₁, X₂, X₃, 0, 1, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 0 ≤ X₂ ∧ 1 ≤ X₃
t₈₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₇₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: X₆+1 ≤ X₃ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₈₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: X₆+1 ≤ X₃ ∧ 1 ≤ X₆ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₈₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₁₆ ∧ X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₈₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₁₆ ∧ X₂ ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₈₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l4(X₀, X₁, X₂, X₃, 0, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 2 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₈₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₂ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₈₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 0, X₁₆) :|: 0 ≤ X₁₆ ∧ 1 ≤ X₁₄ ∧ X₁₆ ≤ 1 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₈₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 1, X₁₆) :|: 0 ≤ X₁₆ ∧ X₁₄ ≤ 0 ∧ X₁₆ ≤ 1 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₈₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₁ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ X₄ ≤ 1+X₉ ∧ 2 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₂+X₉ ∧ X₁₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 2 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
t₉₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₁, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 0 ≤ X₈ ∧ X₃ ≤ X₆+1 ∧ X₈ ≤ 1 ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 2 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ 2+X₇ ∧ 2 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₉₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0, X₁₁, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 0 ≤ X₈ ∧ 2+X₆ ≤ X₃ ∧ X₈ ≤ 1 ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 2 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ 2+X₇ ∧ 2 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₉₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, 0, X₁₂, X₁₃, X₁₄, 1) :|: 1 ≤ X₁₁ ∧ X₅ ≤ X₃ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 2+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₉₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, 1, X₁₂, X₁₃, X₁₄, 1) :|: X₁₁ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 2+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₉₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 0 ≤ X₈ ∧ X₈ ≤ 1 ∧ X₁₆ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 2+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₉₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₈ ∧ X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁
t₉₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₈ ∧ X₂ ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁
t₉₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l6(X₀, X₁, X₂, X₃, 0, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 2 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁
t₉₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l6(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₂ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁
t₁₀₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: X₅ ≤ X₃ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁
t₁₀₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l7(X₇, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 1, X₁₀, X₁₄, X₁₆) :|: 1 ≤ X₁₂ ∧ 1 ≤ X₈ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁
t₁₀₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l7(X₇, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 1, X₁₀, X₁₀, X₁₆) :|: X₁₂ ≤ 0 ∧ 1 ≤ X₈ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁
t₁₀₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 0 ≤ X₁₆ ∧ X₁₄+1 ≤ X₁₃ ∧ X₁₆ ≤ 1 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₁₀₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 0 ≤ X₁₆ ∧ 1+X₁₃ ≤ X₁₄ ∧ X₁₆ ≤ 1 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₁₀₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₃, X₁₆) :|: X₀+1 ≤ 0 ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₁₀₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₃, X₁₆) :|: 1 ≤ X₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₁₀₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l9(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₃, X₁₆) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₁₀₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l11(X₀, 0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₁₁₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₁ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1
t₁₁₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₀ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₁ ∧ X₀ ≤ 0 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: X₆+1 ≤ X₃ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂
MPRF for transition t₈₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: X₆+1 ≤ X₃ ∧ 1 ≤ X₆ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
X₃ {O(n)}
MPRF:
l3 [X₃-X₆-1 ]
l4 [X₃-X₆-1 ]
l1 [X₃-X₆ ]
l6 [X₃-X₆-1 ]
l5 [X₃-X₆-1 ]
l7 [X₃-X₆-1 ]
l10 [X₃-X₆-1 ]
l8 [X₃-X₆-1 ]
l11 [X₃-X₆-X₈ ]
l9 [X₃-X₆-1 ]
l12 [X₁+X₃-X₆-X₈-1 ]
MPRF for transition t₈₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₁₆ ∧ X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
X₃ {O(n)}
MPRF:
l3 [X₃-X₆ ]
l4 [X₃-X₆-X₁₆ ]
l1 [X₃-X₆ ]
l6 [X₃-X₆ ]
l5 [X₃-X₆ ]
l7 [X₃-X₆ ]
l10 [X₃-X₆ ]
l8 [X₃-X₆ ]
l11 [X₃-X₆ ]
l9 [X₃-X₆ ]
l12 [X₃+2⋅X₈-X₆-2⋅X₁₂ ]
MPRF for transition t₈₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₁₆ ∧ X₂ ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
X₃ {O(n)}
MPRF:
l3 [X₃-X₆ ]
l4 [X₃-X₆-X₁₆ ]
l1 [X₃-X₆ ]
l6 [X₃-X₆ ]
l5 [X₃-X₆ ]
l7 [X₃-X₆ ]
l10 [X₃-X₆ ]
l8 [X₃-X₆ ]
l11 [X₃-X₆ ]
l9 [X₃-X₆ ]
l12 [X₃-X₆ ]
MPRF for transition t₈₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l4(X₀, X₁, X₂, X₃, 0, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 2 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
2⋅X₁₆+2⋅X₃+X₂+2 {O(n)}
MPRF:
l3 [X₂+2⋅X₃+X₄+2⋅X₁₆-2⋅X₆-2 ]
l4 [X₂+2⋅X₃+X₄-2⋅X₆-2 ]
l1 [X₂+2⋅X₃+X₄+2⋅X₁₆-2⋅X₆-2 ]
l6 [X₂+2⋅X₃+X₄+2⋅X₁₆-2⋅X₆-X₈-2 ]
l5 [X₂+2⋅X₃+X₄+2⋅X₁₆-2⋅X₆-2 ]
l7 [X₂+2⋅X₃+X₄+2⋅X₁₆-2⋅X₆-3 ]
l10 [X₂+2⋅X₃+X₄+2⋅X₁₆-2⋅X₆-3 ]
l8 [X₂+2⋅X₃+X₄+2⋅X₁₆-2⋅X₆-3 ]
l11 [X₂+2⋅X₃+X₄+2⋅X₁₆-2⋅X₆-3 ]
l9 [X₂+2⋅X₃+X₄+2⋅X₁₆-2⋅X₆-3 ]
l12 [X₂+2⋅X₃+X₄+2⋅X₁₆-2⋅X₆-3 ]
MPRF for transition t₈₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₂ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
X₂ {O(n)}
MPRF:
l3 [X₂ ]
l4 [X₂ ]
l1 [X₂ ]
l6 [X₂ ]
l5 [X₂ ]
l7 [X₂ ]
l10 [X₂ ]
l8 [X₂ ]
l11 [X₂ ]
l9 [X₂ ]
l12 [X₂ ]
MPRF for transition t₈₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 0, X₁₆) :|: 0 ≤ X₁₆ ∧ 1 ≤ X₁₄ ∧ X₁₆ ≤ 1 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
2⋅X₂+3⋅X₃+X₈ {O(n)}
MPRF:
l3 [2⋅X₂+3⋅X₃+X₄+X₈-3⋅X₆ ]
l4 [2⋅X₂+3⋅X₃+X₄+1-3⋅X₆-3⋅X₁₆ ]
l1 [2⋅X₂+3⋅X₃+X₄+X₈-3⋅X₆ ]
l6 [2⋅X₂+3⋅X₃+X₄-3⋅X₆ ]
l5 [2⋅X₂+3⋅X₃+X₄+X₈-3⋅X₆ ]
l7 [2⋅X₂+3⋅X₃+X₄-3⋅X₆ ]
l10 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-1 ]
l8 [2⋅X₂+3⋅X₃+X₄+2-3⋅X₆-2⋅X₁₂ ]
l11 [2⋅X₂+3⋅X₃+X₄-3⋅X₆ ]
l9 [2⋅X₂+3⋅X₃+X₄+2⋅X₈+2⋅X₉-2⋅X₁-3⋅X₆-2⋅X₁₂ ]
l12 [2⋅X₂+3⋅X₃+X₄+2⋅X₉-3⋅X₆-2 ]
MPRF for transition t₈₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 1, X₁₆) :|: 0 ≤ X₁₆ ∧ X₁₄ ≤ 0 ∧ X₁₆ ≤ 1 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
17⋅X₃+2⋅X₂+6 {O(n)}
MPRF:
l3 [2⋅X₂+17⋅X₃-2⋅X₄-6⋅X₅ ]
l4 [2⋅X₂+17⋅X₃-2⋅X₄-6⋅X₅ ]
l1 [2⋅X₂+17⋅X₃-2⋅X₄-6⋅X₅ ]
l6 [2⋅X₂+17⋅X₃+2-2⋅X₄-6⋅X₅ ]
l5 [2⋅X₂+17⋅X₃-2⋅X₄-6⋅X₅ ]
l7 [2⋅X₂+17⋅X₃+2⋅X₈-2⋅X₄-6⋅X₅ ]
l10 [2⋅X₂+17⋅X₃-2⋅X₄-6⋅X₅-2 ]
l8 [2⋅X₂+17⋅X₃+2⋅X₈-2⋅X₄-6⋅X₅ ]
l11 [2⋅X₂+17⋅X₃+2⋅X₈-2⋅X₄-6⋅X₅ ]
l9 [2⋅X₂+17⋅X₃+2⋅X₁₂-2⋅X₄-6⋅X₅ ]
l12 [2⋅X₂+17⋅X₃+2⋅X₇+2-2⋅X₀-2⋅X₄-6⋅X₅ ]
MPRF for transition t₈₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₁ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ X₄ ≤ 1+X₉ ∧ 2 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₂+X₉ ∧ X₁₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 2 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
4⋅X₂+8⋅X₃+13 {O(n)}
MPRF:
l3 [4⋅X₂+8⋅X₃+7-X₄-6⋅X₅-2⋅X₆ ]
l4 [4⋅X₂+8⋅X₃+7-X₄-6⋅X₅-2⋅X₆-2⋅X₁₆ ]
l1 [4⋅X₂+8⋅X₃+7-X₄-6⋅X₅-2⋅X₆ ]
l6 [4⋅X₂+8⋅X₃+3⋅X₈+4⋅X₉+2-2⋅X₄-6⋅X₅-2⋅X₆ ]
l5 [4⋅X₂+8⋅X₃+3⋅X₈+4⋅X₉-X₄-6⋅X₅-2⋅X₆ ]
l7 [4⋅X₂+8⋅X₃+4⋅X₉+5⋅X₁₂-2⋅X₄-6⋅X₅-2⋅X₆ ]
l10 [4⋅X₂+8⋅X₃+5-2⋅X₄-6⋅X₅-2⋅X₆ ]
l8 [4⋅X₂+8⋅X₃+4⋅X₉+5-2⋅X₄-6⋅X₅-2⋅X₆ ]
l11 [4⋅X₂+8⋅X₃+5-2⋅X₄-6⋅X₅-2⋅X₆ ]
l9 [4⋅X₁+4⋅X₂+8⋅X₃+5⋅X₁₂-2⋅X₄-6⋅X₅-2⋅X₆ ]
l12 [4⋅X₂+8⋅X₃+11⋅X₉+9-2⋅X₄-6⋅X₅-2⋅X₆-11⋅X₈ ]
MPRF for transition t₉₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₁, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 0 ≤ X₈ ∧ X₃ ≤ X₆+1 ∧ X₈ ≤ 1 ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 2 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ 2+X₇ ∧ 2 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
2⋅X₂+6⋅X₃+11 {O(n)}
MPRF:
l3 [2⋅X₂+6⋅X₃+5-2⋅X₄-6⋅X₅ ]
l4 [2⋅X₂+6⋅X₃+X₈+4-2⋅X₄-6⋅X₅ ]
l1 [2⋅X₂+6⋅X₃+5-2⋅X₄-6⋅X₅ ]
l6 [2⋅X₂+6⋅X₃+7-2⋅X₄-6⋅X₅-X₉ ]
l5 [2⋅X₂+6⋅X₃+5-2⋅X₄-6⋅X₅-X₉ ]
l7 [2⋅X₂+6⋅X₃+7-2⋅X₄-6⋅X₅-X₉ ]
l10 [2⋅X₂+6⋅X₃+3-2⋅X₄-6⋅X₅ ]
l8 [2⋅X₂+6⋅X₃+4-X₁-2⋅X₄-6⋅X₅ ]
l11 [2⋅X₂+6⋅X₃+3-2⋅X₄-6⋅X₅ ]
l9 [2⋅X₂+6⋅X₃+2⋅X₇+8⋅X₁₂-2⋅X₀-2⋅X₄-6⋅X₅-X₈-4⋅X₉ ]
l12 [X₁+2⋅X₂+6⋅X₃+3-2⋅X₄-6⋅X₅-X₈ ]
MPRF for transition t₉₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0, X₁₁, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 0 ≤ X₈ ∧ 2+X₆ ≤ X₃ ∧ X₈ ≤ 1 ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 2 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ 2+X₇ ∧ 2 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l3 [X₃-X₆-1 ]
l4 [X₃-X₆-2 ]
l1 [X₃-X₆-1 ]
l6 [X₃-X₆-2 ]
l5 [X₃-X₆-2 ]
l7 [X₃-X₆-2 ]
l10 [X₃-X₆-2 ]
l8 [X₃+2⋅X₈-X₆-2⋅X₁₂-2 ]
l11 [X₃-X₆-2⋅X₁₂ ]
l9 [X₃+2⋅X₈-X₆-4 ]
l12 [X₃-X₆-2⋅X₁₂ ]
MPRF for transition t₉₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 0 ≤ X₈ ∧ X₈ ≤ 1 ∧ X₁₆ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 2+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
2⋅X₂+2⋅X₃+3⋅X₁₆+2 {O(n)}
MPRF:
l3 [2⋅X₂+2⋅X₃+X₄+3⋅X₁₆-2⋅X₆-2 ]
l4 [2⋅X₂+2⋅X₃+X₄-2⋅X₆-1 ]
l1 [2⋅X₂+2⋅X₃+X₄+3⋅X₁₆-2⋅X₆-2 ]
l6 [2⋅X₂+2⋅X₃+X₄+3⋅X₁₆-2⋅X₆-X₈-2 ]
l5 [2⋅X₂+2⋅X₃+X₄+3⋅X₁₆-2⋅X₆-2 ]
l7 [2⋅X₂+2⋅X₃+X₄+3⋅X₁₆-2⋅X₆-3 ]
l10 [2⋅X₂+2⋅X₃+X₄+3⋅X₁₆-2⋅X₆-3 ]
l8 [2⋅X₂+2⋅X₃+X₄+3⋅X₁₆-2⋅X₆-3 ]
l11 [2⋅X₂+2⋅X₃+X₄+3⋅X₁₆-2⋅X₆-3 ]
l9 [2⋅X₂+2⋅X₃+X₄+3⋅X₁₆-2⋅X₆-3 ]
l12 [2⋅X₂+2⋅X₃+X₄+3⋅X₁₆-2⋅X₆-3 ]
MPRF for transition t₉₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, 0, X₁₂, X₁₃, X₁₄, 1) :|: 1 ≤ X₁₁ ∧ X₅ ≤ X₃ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 2+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
X₃ {O(n)}
MPRF:
l3 [X₃-X₆ ]
l4 [X₃-X₆ ]
l1 [X₃-X₆ ]
l6 [X₃-X₆ ]
l5 [X₃-X₆ ]
l7 [X₃-X₆ ]
l10 [X₃-X₆ ]
l8 [X₃-X₆ ]
l11 [X₃-X₆ ]
l9 [X₃-X₆ ]
l12 [X₃-X₆ ]
MPRF for transition t₉₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, 1, X₁₂, X₁₃, X₁₄, 1) :|: X₁₁ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ 1+X₁₆ ∧ X₁₆+X₉ ≤ 2 ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ 1+X₁₆ ∧ X₁₆+X₈ ≤ 2 ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₁₆ ∧ X₁₆+X₇ ≤ 2 ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ X₁₆ ≤ 1+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 2+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₆+X₅ ∧ X₁₆ ≤ X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 2+X₁₆ ∧ X₁₆+X₄ ≤ 3 ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₆+X₄ ∧ X₁₆ ≤ 1+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₆+X₃ ∧ X₁₆ ≤ X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₆+X₂ ∧ X₁₆ ≤ 1+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₆ ≤ 1 ∧ X₁₆ ≤ X₁₂ ∧ X₁₂+X₁₆ ≤ 2 ∧ X₁₆ ≤ 1+X₁ ∧ X₁+X₁₆ ≤ 2 ∧ X₀+X₁₆ ≤ 2 ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₂+X₁₆ ∧ X₁₂ ≤ 1+X₁₆ ∧ 0 ≤ X₁+X₁₆ ∧ X₁ ≤ 1+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
X₃ {O(n)}
MPRF:
l3 [X₃-X₆ ]
l4 [X₃-X₆ ]
l1 [X₃-X₆ ]
l6 [X₃-X₆ ]
l5 [X₃-X₆ ]
l7 [X₃-X₆ ]
l10 [X₃-X₆ ]
l8 [X₃-X₆ ]
l11 [X₃-X₆ ]
l9 [X₃-X₆ ]
l12 [X₃-X₆ ]
MPRF for transition t₉₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₈ ∧ X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ of depth 1:
new bound:
2⋅X₃+X₂+1 {O(n)}
MPRF:
l3 [X₂+2⋅X₃-X₅-X₆ ]
l4 [X₀+X₂+2⋅X₃-X₅-X₆-X₇-X₁₆ ]
l1 [X₂+2⋅X₃-X₅-X₆ ]
l6 [X₂+2⋅X₃-X₅-X₆-X₈ ]
l5 [X₂+2⋅X₃-X₅-X₆ ]
l7 [X₂+2⋅X₃-X₅-X₆-1 ]
l10 [X₂+2⋅X₃-X₅-X₆-X₈ ]
l8 [X₂+2⋅X₃-X₅-X₆-1 ]
l11 [X₂+2⋅X₃-X₅-X₆-1 ]
l9 [X₂+2⋅X₃+X₇-X₀-X₅-X₆-1 ]
l12 [X₂+2⋅X₃+X₇+X₉-X₀-X₅-X₆-X₈-1 ]
MPRF for transition t₉₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₈ ∧ X₂ ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ of depth 1:
new bound:
2⋅X₂+7⋅X₃+6 {O(n)}
MPRF:
l3 [2⋅X₂+7⋅X₃+2-2⋅X₄-4⋅X₅ ]
l4 [2⋅X₂+7⋅X₃+2-2⋅X₄-4⋅X₅ ]
l1 [2⋅X₂+7⋅X₃+2-2⋅X₄-4⋅X₅ ]
l6 [2⋅X₂+7⋅X₃+2-2⋅X₄-4⋅X₅ ]
l5 [2⋅X₂+7⋅X₃+2-2⋅X₄-4⋅X₅ ]
l7 [2⋅X₂+7⋅X₃+2-2⋅X₄-4⋅X₅ ]
l10 [2⋅X₂+7⋅X₃-X₄-4⋅X₅ ]
l8 [2⋅X₂+7⋅X₃+2⋅X₈-2⋅X₄-4⋅X₅ ]
l11 [2⋅X₂+7⋅X₃-X₄-4⋅X₅ ]
l9 [2⋅X₂+7⋅X₃+2⋅X₈-2⋅X₄-4⋅X₅ ]
l12 [2⋅X₂+7⋅X₃+2⋅X₇-2⋅X₀-X₄-4⋅X₅ ]
MPRF for transition t₉₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l6(X₀, X₁, X₂, X₃, 0, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 2 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ of depth 1:
new bound:
2⋅X₂+2⋅X₈+4⋅X₃ {O(n)}
MPRF:
l3 [2⋅X₂+4⋅X₃+2⋅X₄+2⋅X₈-4⋅X₆ ]
l4 [2⋅X₂+4⋅X₃+2⋅X₄+X₇+2-X₀-4⋅X₆-4⋅X₁₆ ]
l1 [2⋅X₂+4⋅X₃+2⋅X₄+2⋅X₈-4⋅X₆ ]
l6 [2⋅X₂+4⋅X₃+2⋅X₄-4⋅X₆ ]
l5 [2⋅X₂+4⋅X₃+2⋅X₄+2⋅X₈-4⋅X₆ ]
l7 [2⋅X₂+4⋅X₃+2⋅X₄-4⋅X₆ ]
l10 [2⋅X₂+4⋅X₃+2⋅X₄-4⋅X₆ ]
l8 [2⋅X₂+4⋅X₃+2⋅X₄-4⋅X₆ ]
l11 [2⋅X₂+4⋅X₃+2⋅X₄-4⋅X₆ ]
l9 [2⋅X₂+4⋅X₃+2⋅X₄-4⋅X₆ ]
l12 [2⋅X₂+4⋅X₃+2⋅X₄-4⋅X₆ ]
MPRF for transition t₉₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l6(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₂ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ of depth 1:
new bound:
2⋅X₃+X₂ {O(n)}
MPRF:
l3 [X₂+2⋅X₃ ]
l4 [X₂+2⋅X₃+X₇-X₀ ]
l1 [X₂+2⋅X₃ ]
l6 [X₂+2⋅X₃ ]
l5 [X₂+2⋅X₃ ]
l7 [X₂+2⋅X₃ ]
l10 [X₂+2⋅X₃ ]
l8 [X₂+2⋅X₃ ]
l11 [X₂+2⋅X₃ ]
l9 [X₂+2⋅X₃ ]
l12 [X₂+2⋅X₃ ]
MPRF for transition t₁₀₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l7(X₇, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 1, X₁₀, X₁₄, X₁₆) :|: 1 ≤ X₁₂ ∧ 1 ≤ X₈ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ of depth 1:
new bound:
2⋅X₂+3⋅X₃+X₈ {O(n)}
MPRF:
l3 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₈ ]
l4 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3⋅X₁₆-1 ]
l1 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₈ ]
l6 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-2⋅X₈ ]
l5 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₈ ]
l7 [X₀+2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₇-3⋅X₈ ]
l10 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3 ]
l8 [X₀+2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₇-3⋅X₈ ]
l11 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3 ]
l9 [X₀+2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₇-3⋅X₈ ]
l12 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₁₂-2 ]
MPRF for transition t₁₀₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l7(X₇, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 1, X₁₀, X₁₀, X₁₆) :|: X₁₂ ≤ 0 ∧ 1 ≤ X₈ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ of depth 1:
new bound:
4⋅X₃+X₂+1 {O(n)}
MPRF:
l3 [X₂+4⋅X₃-X₅-X₆ ]
l4 [X₂+4⋅X₃-X₅-X₆-X₁₆ ]
l1 [X₂+4⋅X₃-X₅-X₆ ]
l6 [X₂+4⋅X₃-X₅-X₆ ]
l5 [X₂+4⋅X₃-X₅-X₆ ]
l7 [X₂+4⋅X₃-X₅-X₆-X₁₂ ]
l10 [X₂+4⋅X₃-X₅-X₆-X₁₂ ]
l8 [X₂+4⋅X₃-X₅-X₆-X₁₂ ]
l11 [X₂+4⋅X₃-X₅-X₆-1 ]
l9 [X₂+4⋅X₃-X₅-X₆-X₁₂ ]
l12 [X₂+4⋅X₃-X₅-X₆-1 ]
MPRF for transition t₁₀₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: X₅ ≤ X₃ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 0 ≤ X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ 2+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ of depth 1:
new bound:
X₂+X₃+1 {O(n)}
MPRF:
l3 [X₂+X₃-X₅ ]
l4 [X₂+X₃-X₅ ]
l1 [X₂+X₃-X₅ ]
l6 [X₂+X₃+1-X₅-X₈ ]
l5 [X₂+X₃-X₅ ]
l7 [X₂+X₃-X₅ ]
l10 [X₂+X₃-X₅ ]
l8 [X₂+X₃-X₅ ]
l11 [X₂+X₃-X₅ ]
l9 [X₂+X₃-X₅ ]
l12 [X₂+X₃-X₅ ]
MPRF for transition t₁₀₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₃, X₁₆) :|: X₀+1 ≤ 0 ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
2⋅X₂+3⋅X₃+X₈ {O(n)}
MPRF:
l3 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₈ ]
l4 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3⋅X₁₆-1 ]
l1 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₈ ]
l6 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-2⋅X₈ ]
l5 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₈ ]
l7 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-2 ]
l10 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3 ]
l8 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3 ]
l11 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3 ]
l9 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3 ]
l12 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3 ]
MPRF for transition t₁₀₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₃, X₁₆) :|: 1 ≤ X₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
3⋅X₃+X₂+8 {O(n)}
MPRF:
l3 [X₂+3⋅X₃+5-X₄-3⋅X₅ ]
l4 [X₂+3⋅X₃+5-X₄-3⋅X₅ ]
l1 [X₂+3⋅X₃+5-X₄-3⋅X₅ ]
l6 [X₂+3⋅X₃+6-X₄-3⋅X₅ ]
l5 [X₂+3⋅X₃+5-X₄-3⋅X₅ ]
l7 [X₂+3⋅X₃+6-X₄-3⋅X₅ ]
l10 [X₂+3⋅X₃+X₁₂+3-X₄-3⋅X₅ ]
l8 [X₂+3⋅X₃+5-X₄-3⋅X₅ ]
l11 [X₂+3⋅X₃+4-X₄-3⋅X₅ ]
l9 [X₂+3⋅X₃+4⋅X₉+4-3⋅X₁-X₄-3⋅X₅ ]
l12 [4⋅X₁+X₂+3⋅X₃+4-X₄-3⋅X₅-4⋅X₁₂ ]
MPRF for transition t₁₀₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l9(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₃, X₁₆) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
4⋅X₂+6⋅X₃+3 {O(n)}
MPRF:
l3 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-3 ]
l4 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-6⋅X₁₆-3 ]
l1 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-3 ]
l6 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-2⋅X₈-3 ]
l5 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-3 ]
l7 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-5 ]
l10 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-7 ]
l8 [4⋅X₂+6⋅X₃+X₄-6⋅X₆-5 ]
l11 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-7⋅X₈ ]
l9 [4⋅X₂+6⋅X₃+2⋅X₄+X₇-X₀-6⋅X₆-7 ]
l12 [4⋅X₂+6⋅X₃+2⋅X₄+X₇+X₉+X₁₂-X₀-X₁-6⋅X₆-8⋅X₈ ]
MPRF for transition t₁₀₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 0 ≤ X₁₆ ∧ X₁₄+1 ≤ X₁₃ ∧ X₁₆ ≤ 1 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
2⋅X₂+3⋅X₃ {O(n)}
MPRF:
l3 [2⋅X₂+3⋅X₃+X₄-3⋅X₆ ]
l4 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3⋅X₁₆ ]
l1 [2⋅X₂+3⋅X₃+X₄-3⋅X₆ ]
l6 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₈ ]
l5 [2⋅X₂+3⋅X₃+X₄-3⋅X₆ ]
l7 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-1 ]
l10 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-2 ]
l8 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-1 ]
l11 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-2 ]
l9 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-1 ]
l12 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-2 ]
MPRF for transition t₁₀₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 0 ≤ X₁₆ ∧ 1+X₁₃ ≤ X₁₄ ∧ X₁₆ ≤ 1 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
3⋅X₃+X₂+8 {O(n)}
MPRF:
l3 [X₂+3⋅X₃+5-X₄-3⋅X₅ ]
l4 [X₂+3⋅X₃+5-X₄-3⋅X₅ ]
l1 [X₂+3⋅X₃+5-X₄-3⋅X₅ ]
l6 [X₂+3⋅X₃+6-X₄-3⋅X₅ ]
l5 [X₂+3⋅X₃+5-X₄-3⋅X₅ ]
l7 [X₂+3⋅X₃+6-X₄-3⋅X₅ ]
l10 [X₂+3⋅X₃+4-X₄-3⋅X₅ ]
l8 [X₂+3⋅X₃+6⋅X₁₂-X₄-3⋅X₅ ]
l11 [X₂+3⋅X₃+4-3⋅X₅ ]
l9 [X₂+3⋅X₃+6⋅X₁₂+4-3⋅X₅-6⋅X₈ ]
l12 [6⋅X₁+X₂+3⋅X₃+4-3⋅X₅-6⋅X₈ ]
MPRF for transition t₁₀₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l11(X₀, 0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
2⋅X₂+3⋅X₃+X₈ {O(n)}
MPRF:
l3 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₈ ]
l4 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3⋅X₁₆-1 ]
l1 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₈ ]
l6 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-2⋅X₈ ]
l5 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-X₈ ]
l7 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-2⋅X₈ ]
l10 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3⋅X₁₂ ]
l8 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-2 ]
l11 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-3 ]
l9 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-2⋅X₈ ]
l12 [2⋅X₂+3⋅X₃+X₄-3⋅X₆-2⋅X₈ ]
MPRF for transition t₁₁₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₁ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
4⋅X₂+6⋅X₃+3 {O(n)}
MPRF:
l3 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-3 ]
l4 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-6⋅X₁₆-3 ]
l1 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-3 ]
l6 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-2⋅X₈-3 ]
l5 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-3 ]
l7 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-5⋅X₁₂ ]
l10 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-7 ]
l8 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-5 ]
l11 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-7 ]
l9 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-7 ]
l12 [4⋅X₂+6⋅X₃+2⋅X₄-6⋅X₆-7 ]
MPRF for transition t₁₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₀ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
3⋅X₃+X₂+8 {O(n)}
MPRF:
l3 [X₂+3⋅X₃+5-X₄-3⋅X₅ ]
l4 [X₂+3⋅X₃+5⋅X₁₂-X₄-3⋅X₅ ]
l1 [X₂+3⋅X₃+5-X₄-3⋅X₅ ]
l6 [X₂+3⋅X₃+6-X₄-3⋅X₅ ]
l5 [X₂+3⋅X₃+5-X₄-3⋅X₅ ]
l7 [X₂+3⋅X₃+6⋅X₈-X₄-3⋅X₅ ]
l10 [X₂+3⋅X₃+4⋅X₈-X₄-3⋅X₅ ]
l8 [X₂+3⋅X₃+6⋅X₈-X₄-3⋅X₅ ]
l11 [X₂+3⋅X₃+4⋅X₈-X₄-3⋅X₅ ]
l9 [X₂+3⋅X₃+6-X₄-3⋅X₅ ]
l12 [X₂+3⋅X₃+4-X₄-3⋅X₅ ]
MPRF for transition t₁₁₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
5⋅X₂+8⋅X₃+4 {O(n)}
MPRF:
l3 [5⋅X₂+8⋅X₃+X₄+1-3⋅X₅-5⋅X₆ ]
l4 [5⋅X₂+8⋅X₃+X₄+1-3⋅X₅-5⋅X₆-5⋅X₁₆ ]
l1 [5⋅X₂+8⋅X₃+X₄+1-3⋅X₅-5⋅X₆ ]
l6 [5⋅X₂+8⋅X₃+X₄-3⋅X₅-5⋅X₆ ]
l5 [5⋅X₂+8⋅X₃+X₄+X₈-3⋅X₅-5⋅X₆ ]
l7 [5⋅X₂+8⋅X₃+X₄-3⋅X₅-5⋅X₆ ]
l10 [5⋅X₂+8⋅X₃-3⋅X₅-5⋅X₆-2⋅X₈ ]
l8 [5⋅X₂+8⋅X₃-X₄-3⋅X₅-5⋅X₆ ]
l11 [5⋅X₂+8⋅X₃-3⋅X₅-5⋅X₆-2 ]
l9 [5⋅X₂+8⋅X₃-3⋅X₅-5⋅X₆-2⋅X₉ ]
l12 [5⋅X₂+8⋅X₃-3⋅X₅-5⋅X₆-2 ]
MPRF for transition t₁₁₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆) :|: 1 ≤ X₁ ∧ X₀ ≤ 0 ∧ X₉ ≤ 1 ∧ X₉ ≤ X₈ ∧ X₈+X₉ ≤ 2 ∧ X₇+X₉ ≤ 2 ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₅ ∧ X₉ ≤ 1+X₄ ∧ X₄+X₉ ≤ 3 ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₂ ∧ X₁₂+X₉ ≤ 2 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₀+X₉ ≤ 2 ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ X₈ ≤ 1+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ 2+X₉ ∧ 2 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ X₁₂ ≤ 1+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 1 ∧ X₇+X₈ ≤ 2 ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ X₅ ∧ X₈ ≤ 1+X₄ ∧ X₄+X₈ ≤ 3 ∧ X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ X₈ ≤ X₁₂ ∧ X₁₂+X₈ ≤ 2 ∧ X₈ ≤ 1+X₁ ∧ X₁+X₈ ≤ 2 ∧ X₀+X₈ ≤ 2 ∧ 1 ≤ X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ X₁₂ ≤ X₈ ∧ 1 ≤ X₁+X₈ ∧ X₁ ≤ X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ X₃ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ X₁₂ ∧ X₁₂+X₇ ≤ 2 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 2 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 2 ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 2+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ X₁₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₂+X₅ ∧ X₁₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₁₂ ∧ X₁₂+X₄ ≤ 3 ∧ X₄ ≤ 2+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 3 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁₂+X₄ ∧ X₁₂ ≤ 1+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₂+X₃ ∧ X₁₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ X₁₂ ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁₄ ≤ X₁₃ ∧ X₁₄ ≤ X₁₁ ∧ X₁₄ ≤ X₁₀ ∧ X₁₃ ≤ X₁₄ ∧ X₁₁ ≤ X₁₄ ∧ X₁₀ ≤ X₁₄ ∧ X₁₃ ≤ X₁₁ ∧ X₁₃ ≤ X₁₀ ∧ X₁₁ ≤ X₁₃ ∧ X₁₀ ≤ X₁₃ ∧ X₁₂ ≤ 1 ∧ X₁₂ ≤ 1+X₁ ∧ X₁+X₁₂ ≤ 2 ∧ X₀+X₁₂ ≤ 2 ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₀ ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
3⋅X₃+X₂+1 {O(n)}
MPRF:
l3 [X₂+3⋅X₃-X₅-2⋅X₆ ]
l4 [X₂+3⋅X₃-X₅-2⋅X₆-X₁₆ ]
l1 [X₂+3⋅X₃-X₅-2⋅X₆ ]
l6 [X₂+3⋅X₃+1-X₅-2⋅X₆-X₈ ]
l5 [X₂+3⋅X₃-X₅-2⋅X₆ ]
l7 [X₂+3⋅X₃-X₅-2⋅X₆ ]
l10 [X₂+3⋅X₃-X₅-2⋅X₆-X₉ ]
l8 [X₂+3⋅X₃-X₅-2⋅X₆ ]
l11 [X₂+3⋅X₃-X₁-X₅-2⋅X₆ ]
l9 [X₂+3⋅X₃-X₅-2⋅X₆ ]
l12 [X₂+3⋅X₃-X₅-2⋅X₆-1 ]
All Bounds
Timebounds
Overall timebound:108⋅X₃+47⋅X₂+5⋅X₁₆+6⋅X₈+82 {O(n)}
t₇₈: 1 {O(1)}
t₇₉: 1 {O(1)}
t₈₀: X₃ {O(n)}
t₈₁: 1 {O(1)}
t₈₂: X₃ {O(n)}
t₈₃: X₃ {O(n)}
t₈₄: 2⋅X₁₆+2⋅X₃+X₂+2 {O(n)}
t₈₅: X₂ {O(n)}
t₈₆: 2⋅X₂+3⋅X₃+X₈ {O(n)}
t₈₇: 17⋅X₃+2⋅X₂+6 {O(n)}
t₈₉: 4⋅X₂+8⋅X₃+13 {O(n)}
t₉₀: 2⋅X₂+6⋅X₃+11 {O(n)}
t₉₁: X₃+1 {O(n)}
t₉₂: 2⋅X₂+2⋅X₃+3⋅X₁₆+2 {O(n)}
t₉₄: X₃ {O(n)}
t₉₅: X₃ {O(n)}
t₉₆: 2⋅X₃+X₂+1 {O(n)}
t₉₇: 2⋅X₂+7⋅X₃+6 {O(n)}
t₉₈: 2⋅X₂+2⋅X₈+4⋅X₃ {O(n)}
t₉₉: 2⋅X₃+X₂ {O(n)}
t₁₀₀: 2⋅X₂+3⋅X₃+X₈ {O(n)}
t₁₀₁: 4⋅X₃+X₂+1 {O(n)}
t₁₀₂: X₂+X₃+1 {O(n)}
t₁₀₃: 2⋅X₂+3⋅X₃+X₈ {O(n)}
t₁₀₄: 3⋅X₃+X₂+8 {O(n)}
t₁₀₅: 4⋅X₂+6⋅X₃+3 {O(n)}
t₁₀₆: 2⋅X₂+3⋅X₃ {O(n)}
t₁₀₇: 3⋅X₃+X₂+8 {O(n)}
t₁₀₈: 2⋅X₂+3⋅X₃+X₈ {O(n)}
t₁₁₀: 4⋅X₂+6⋅X₃+3 {O(n)}
t₁₁₁: 3⋅X₃+X₂+8 {O(n)}
t₁₁₂: 5⋅X₂+8⋅X₃+4 {O(n)}
t₁₁₃: 3⋅X₃+X₂+1 {O(n)}
Costbounds
Overall costbound: 108⋅X₃+47⋅X₂+5⋅X₁₆+6⋅X₈+82 {O(n)}
t₇₈: 1 {O(1)}
t₇₉: 1 {O(1)}
t₈₀: X₃ {O(n)}
t₈₁: 1 {O(1)}
t₈₂: X₃ {O(n)}
t₈₃: X₃ {O(n)}
t₈₄: 2⋅X₁₆+2⋅X₃+X₂+2 {O(n)}
t₈₅: X₂ {O(n)}
t₈₆: 2⋅X₂+3⋅X₃+X₈ {O(n)}
t₈₇: 17⋅X₃+2⋅X₂+6 {O(n)}
t₈₉: 4⋅X₂+8⋅X₃+13 {O(n)}
t₉₀: 2⋅X₂+6⋅X₃+11 {O(n)}
t₉₁: X₃+1 {O(n)}
t₉₂: 2⋅X₂+2⋅X₃+3⋅X₁₆+2 {O(n)}
t₉₄: X₃ {O(n)}
t₉₅: X₃ {O(n)}
t₉₆: 2⋅X₃+X₂+1 {O(n)}
t₉₇: 2⋅X₂+7⋅X₃+6 {O(n)}
t₉₈: 2⋅X₂+2⋅X₈+4⋅X₃ {O(n)}
t₉₉: 2⋅X₃+X₂ {O(n)}
t₁₀₀: 2⋅X₂+3⋅X₃+X₈ {O(n)}
t₁₀₁: 4⋅X₃+X₂+1 {O(n)}
t₁₀₂: X₂+X₃+1 {O(n)}
t₁₀₃: 2⋅X₂+3⋅X₃+X₈ {O(n)}
t₁₀₄: 3⋅X₃+X₂+8 {O(n)}
t₁₀₅: 4⋅X₂+6⋅X₃+3 {O(n)}
t₁₀₆: 2⋅X₂+3⋅X₃ {O(n)}
t₁₀₇: 3⋅X₃+X₂+8 {O(n)}
t₁₀₈: 2⋅X₂+3⋅X₃+X₈ {O(n)}
t₁₁₀: 4⋅X₂+6⋅X₃+3 {O(n)}
t₁₁₁: 3⋅X₃+X₂+8 {O(n)}
t₁₁₂: 5⋅X₂+8⋅X₃+4 {O(n)}
t₁₁₃: 3⋅X₃+X₂+1 {O(n)}
Sizebounds
t₇₈, X₀: X₀ {O(n)}
t₇₈, X₁: X₁ {O(n)}
t₇₈, X₂: X₂ {O(n)}
t₇₈, X₃: X₃ {O(n)}
t₇₈, X₄: 0 {O(1)}
t₇₈, X₅: 1 {O(1)}
t₇₈, X₆: 0 {O(1)}
t₇₈, X₇: X₇ {O(n)}
t₇₈, X₈: X₈ {O(n)}
t₇₈, X₉: X₉ {O(n)}
t₇₈, X₁₀: X₁₀ {O(n)}
t₇₈, X₁₁: X₁₁ {O(n)}
t₇₈, X₁₂: X₁₂ {O(n)}
t₇₈, X₁₃: X₁₃ {O(n)}
t₇₈, X₁₄: X₁₄ {O(n)}
t₇₈, X₁₆: X₁₆ {O(n)}
t₇₉, X₀: X₀ {O(n)}
t₇₉, X₁: X₁ {O(n)}
t₇₉, X₂: X₂ {O(n)}
t₇₉, X₃: X₃ {O(n)}
t₇₉, X₄: 1 {O(1)}
t₇₉, X₅: 1 {O(1)}
t₇₉, X₆: 0 {O(1)}
t₇₉, X₇: 1 {O(1)}
t₇₉, X₈: X₈ {O(n)}
t₇₉, X₉: X₉ {O(n)}
t₇₉, X₁₀: X₁₀ {O(n)}
t₇₉, X₁₁: X₁₁ {O(n)}
t₇₉, X₁₂: X₁₂ {O(n)}
t₇₉, X₁₃: X₁₃ {O(n)}
t₇₉, X₁₄: X₁₄ {O(n)}
t₇₉, X₁₆: X₁₆ {O(n)}
t₈₀, X₀: 3568 {O(1)}
t₈₀, X₁: 2 {O(1)}
t₈₀, X₂: 2⋅X₂ {O(n)}
t₈₀, X₃: 2⋅X₃ {O(n)}
t₈₀, X₄: 2 {O(1)}
t₈₀, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₈₀, X₆: 2⋅X₃ {O(n)}
t₈₀, X₇: 0 {O(1)}
t₈₀, X₈: 2 {O(1)}
t₈₀, X₉: 2 {O(1)}
t₈₀, X₁₀: 160⋅X₁₁+160 {O(n)}
t₈₀, X₁₁: 1 {O(1)}
t₈₀, X₁₂: 2 {O(1)}
t₈₀, X₁₃: 8704⋅X₁₁+8704 {O(n)}
t₈₀, X₁₄: 2⋅X₁₄+4 {O(n)}
t₈₀, X₁₆: 2 {O(1)}
t₈₁, X₀: 3568 {O(1)}
t₈₁, X₁: 2 {O(1)}
t₈₁, X₂: 4⋅X₂ {O(n)}
t₈₁, X₃: 4⋅X₃ {O(n)}
t₈₁, X₄: 2 {O(1)}
t₈₁, X₅: 12⋅X₃+4⋅X₁₆+4⋅X₈+6⋅X₂+8 {O(n)}
t₈₁, X₆: 4⋅X₃ {O(n)}
t₈₁, X₇: 220 {O(1)}
t₈₁, X₈: 2 {O(1)}
t₈₁, X₉: 2 {O(1)}
t₈₁, X₁₀: 160⋅X₁₁+160 {O(n)}
t₈₁, X₁₁: 1 {O(1)}
t₈₁, X₁₂: 2 {O(1)}
t₈₁, X₁₃: 8704⋅X₁₁+8704 {O(n)}
t₈₁, X₁₄: 4⋅X₁₄+8 {O(n)}
t₈₁, X₁₆: 2 {O(1)}
t₈₂, X₀: 446 {O(1)}
t₈₂, X₁: 1 {O(1)}
t₈₂, X₂: 0 {O(1)}
t₈₂, X₃: 2⋅X₃ {O(n)}
t₈₂, X₄: 1 {O(1)}
t₈₂, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₈₂, X₆: 2⋅X₃ {O(n)}
t₈₂, X₇: 44 {O(1)}
t₈₂, X₈: 1 {O(1)}
t₈₂, X₉: 1 {O(1)}
t₈₂, X₁₀: 32⋅X₁₁+32 {O(n)}
t₈₂, X₁₁: 32⋅X₁₁+32 {O(n)}
t₈₂, X₁₂: 1 {O(1)}
t₈₂, X₁₃: 1088⋅X₁₁+1088 {O(n)}
t₈₂, X₁₄: 2⋅X₁₄+4 {O(n)}
t₈₂, X₁₆: 1 {O(1)}
t₈₃, X₀: 446 {O(1)}
t₈₃, X₁: 1 {O(1)}
t₈₃, X₂: 0 {O(1)}
t₈₃, X₃: 2⋅X₃ {O(n)}
t₈₃, X₄: 2 {O(1)}
t₈₃, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₈₃, X₆: 2⋅X₃ {O(n)}
t₈₃, X₇: 44 {O(1)}
t₈₃, X₈: 1 {O(1)}
t₈₃, X₉: 1 {O(1)}
t₈₃, X₁₀: 32⋅X₁₁+32 {O(n)}
t₈₃, X₁₁: 32⋅X₁₁+32 {O(n)}
t₈₃, X₁₂: 1 {O(1)}
t₈₃, X₁₃: 1088⋅X₁₁+1088 {O(n)}
t₈₃, X₁₄: 2⋅X₁₄+4 {O(n)}
t₈₃, X₁₆: 1 {O(1)}
t₈₄, X₀: 446 {O(1)}
t₈₄, X₁: 1 {O(1)}
t₈₄, X₂: 0 {O(1)}
t₈₄, X₃: 2⋅X₃ {O(n)}
t₈₄, X₄: 0 {O(1)}
t₈₄, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₈₄, X₆: 2⋅X₃ {O(n)}
t₈₄, X₇: 11 {O(1)}
t₈₄, X₈: 1 {O(1)}
t₈₄, X₉: 1 {O(1)}
t₈₄, X₁₀: 8⋅X₁₁+8 {O(n)}
t₈₄, X₁₁: 8⋅X₁₁+8 {O(n)}
t₈₄, X₁₂: 1 {O(1)}
t₈₄, X₁₃: 1088⋅X₁₁+1088 {O(n)}
t₈₄, X₁₄: 2⋅X₁₄+4 {O(n)}
t₈₄, X₁₆: 1 {O(1)}
t₈₅, X₀: 446 {O(1)}
t₈₅, X₁: 1 {O(1)}
t₈₅, X₂: 2⋅X₂ {O(n)}
t₈₅, X₃: 2⋅X₃ {O(n)}
t₈₅, X₄: 2 {O(1)}
t₈₅, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₈₅, X₆: 2⋅X₃ {O(n)}
t₈₅, X₇: 11 {O(1)}
t₈₅, X₈: 1 {O(1)}
t₈₅, X₉: 1 {O(1)}
t₈₅, X₁₀: 8⋅X₁₁+8 {O(n)}
t₈₅, X₁₁: 8⋅X₁₁+8 {O(n)}
t₈₅, X₁₂: 1 {O(1)}
t₈₅, X₁₃: 1088⋅X₁₁+1088 {O(n)}
t₈₅, X₁₄: 2⋅X₁₄+4 {O(n)}
t₈₅, X₁₆: 1 {O(1)}
t₈₆, X₀: 179 {O(1)}
t₈₆, X₁: 1 {O(1)}
t₈₆, X₂: 2⋅X₂ {O(n)}
t₈₆, X₃: 2⋅X₃ {O(n)}
t₈₆, X₄: 2 {O(1)}
t₈₆, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₈₆, X₆: 2⋅X₃ {O(n)}
t₈₆, X₇: 11 {O(1)}
t₈₆, X₈: 1 {O(1)}
t₈₆, X₉: 1 {O(1)}
t₈₆, X₁₀: 8⋅X₁₁+8 {O(n)}
t₈₆, X₁₁: 8⋅X₁₁+8 {O(n)}
t₈₆, X₁₂: 1 {O(1)}
t₈₆, X₁₃: 512⋅X₁₁+512 {O(n)}
t₈₆, X₁₄: 0 {O(1)}
t₈₆, X₁₆: 1 {O(1)}
t₈₇, X₀: 179 {O(1)}
t₈₇, X₁: 1 {O(1)}
t₈₇, X₂: 2⋅X₂ {O(n)}
t₈₇, X₃: 2⋅X₃ {O(n)}
t₈₇, X₄: 2 {O(1)}
t₈₇, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₈₇, X₆: 2⋅X₃ {O(n)}
t₈₇, X₇: 11 {O(1)}
t₈₇, X₈: 1 {O(1)}
t₈₇, X₉: 1 {O(1)}
t₈₇, X₁₀: 8⋅X₁₁+8 {O(n)}
t₈₇, X₁₁: 8⋅X₁₁+8 {O(n)}
t₈₇, X₁₂: 1 {O(1)}
t₈₇, X₁₃: 512⋅X₁₁+512 {O(n)}
t₈₇, X₁₄: 1 {O(1)}
t₈₇, X₁₆: 1 {O(1)}
t₈₉, X₀: 90 {O(1)}
t₈₉, X₁: 1 {O(1)}
t₈₉, X₂: 2⋅X₂ {O(n)}
t₈₉, X₃: 2⋅X₃ {O(n)}
t₈₉, X₄: 2 {O(1)}
t₈₉, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₈₉, X₆: 2⋅X₃ {O(n)}
t₈₉, X₇: 11 {O(1)}
t₈₉, X₈: 1 {O(1)}
t₈₉, X₉: 1 {O(1)}
t₈₉, X₁₀: 8⋅X₁₁+8 {O(n)}
t₈₉, X₁₁: 8⋅X₁₁+8 {O(n)}
t₈₉, X₁₂: 1 {O(1)}
t₈₉, X₁₃: 320⋅X₁₁+320 {O(n)}
t₈₉, X₁₄: 320⋅X₁₁+320 {O(n)}
t₈₉, X₁₆: 120⋅X₁₆+240 {O(n)}
t₉₀, X₀: X₀+3568 {O(n)}
t₉₀, X₁: X₁+2 {O(n)}
t₉₀, X₂: 2⋅X₂ {O(n)}
t₉₀, X₃: 2⋅X₃ {O(n)}
t₉₀, X₄: 2 {O(1)}
t₉₀, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₉₀, X₆: 2⋅X₃ {O(n)}
t₉₀, X₇: 1 {O(1)}
t₉₀, X₈: 1 {O(1)}
t₉₀, X₉: 1 {O(1)}
t₉₀, X₁₀: X₁₁+1 {O(n)}
t₉₀, X₁₁: X₁₁+1 {O(n)}
t₉₀, X₁₂: X₁₂+2 {O(n)}
t₉₀, X₁₃: 8704⋅X₁₁+X₁₃+8704 {O(n)}
t₉₀, X₁₄: 2⋅X₁₄+4 {O(n)}
t₉₀, X₁₆: X₁₆+2 {O(n)}
t₉₁, X₀: X₀+3568 {O(n)}
t₉₁, X₁: X₁+2 {O(n)}
t₉₁, X₂: 2⋅X₂ {O(n)}
t₉₁, X₃: 2⋅X₃ {O(n)}
t₉₁, X₄: 2 {O(1)}
t₉₁, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₉₁, X₆: 2⋅X₃ {O(n)}
t₉₁, X₇: 1 {O(1)}
t₉₁, X₈: 1 {O(1)}
t₉₁, X₉: 0 {O(1)}
t₉₁, X₁₀: X₁₁+1 {O(n)}
t₉₁, X₁₁: X₁₁+1 {O(n)}
t₉₁, X₁₂: X₁₂+2 {O(n)}
t₉₁, X₁₃: 8704⋅X₁₁+X₁₃+8704 {O(n)}
t₉₁, X₁₄: 2⋅X₁₄+4 {O(n)}
t₉₁, X₁₆: X₁₆+2 {O(n)}
t₉₂, X₀: 892 {O(1)}
t₉₂, X₁: 1 {O(1)}
t₉₂, X₂: 2⋅X₂ {O(n)}
t₉₂, X₃: 2⋅X₃ {O(n)}
t₉₂, X₄: 2 {O(1)}
t₉₂, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₉₂, X₆: 2⋅X₃ {O(n)}
t₉₂, X₇: 11 {O(1)}
t₉₂, X₈: 1 {O(1)}
t₉₂, X₉: 1 {O(1)}
t₉₂, X₁₀: 8⋅X₁₁+8 {O(n)}
t₉₂, X₁₁: 8⋅X₁₁+8 {O(n)}
t₉₂, X₁₂: 1 {O(1)}
t₉₂, X₁₃: 2176⋅X₁₁+2176 {O(n)}
t₉₂, X₁₄: 2⋅X₁₄+4 {O(n)}
t₉₂, X₁₆: 0 {O(1)}
t₉₄, X₀: 1784 {O(1)}
t₉₄, X₁: 1 {O(1)}
t₉₄, X₂: 2⋅X₂ {O(n)}
t₉₄, X₃: 2⋅X₃ {O(n)}
t₉₄, X₄: 2 {O(1)}
t₉₄, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₉₄, X₆: 2⋅X₃ {O(n)}
t₉₄, X₇: 110 {O(1)}
t₉₄, X₈: 1 {O(1)}
t₉₄, X₉: 1 {O(1)}
t₉₄, X₁₀: 80⋅X₁₁+80 {O(n)}
t₉₄, X₁₁: 0 {O(1)}
t₉₄, X₁₂: 1 {O(1)}
t₉₄, X₁₃: 4352⋅X₁₁+4352 {O(n)}
t₉₄, X₁₄: 2⋅X₁₄+4 {O(n)}
t₉₄, X₁₆: 1 {O(1)}
t₉₅, X₀: 1784 {O(1)}
t₉₅, X₁: 1 {O(1)}
t₉₅, X₂: 2⋅X₂ {O(n)}
t₉₅, X₃: 2⋅X₃ {O(n)}
t₉₅, X₄: 2 {O(1)}
t₉₅, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₉₅, X₆: 2⋅X₃ {O(n)}
t₉₅, X₇: 110 {O(1)}
t₉₅, X₈: 1 {O(1)}
t₉₅, X₉: 1 {O(1)}
t₉₅, X₁₀: 80⋅X₁₁+80 {O(n)}
t₉₅, X₁₁: 1 {O(1)}
t₉₅, X₁₂: 1 {O(1)}
t₉₅, X₁₃: 4352⋅X₁₁+4352 {O(n)}
t₉₅, X₁₄: 2⋅X₁₄+4 {O(n)}
t₉₅, X₁₆: 1 {O(1)}
t₉₆, X₀: 2⋅X₀+8028 {O(n)}
t₉₆, X₁: 2⋅X₁+5 {O(n)}
t₉₆, X₂: 0 {O(1)}
t₉₆, X₃: 2⋅X₃ {O(n)}
t₉₆, X₄: 1 {O(1)}
t₉₆, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₉₆, X₆: 2⋅X₃ {O(n)}
t₉₆, X₇: 11 {O(1)}
t₉₆, X₈: 1 {O(1)}
t₉₆, X₉: 1 {O(1)}
t₉₆, X₁₀: 8⋅X₁₁+8 {O(n)}
t₉₆, X₁₁: 8⋅X₁₁+8 {O(n)}
t₉₆, X₁₂: 2⋅X₁₂+5 {O(n)}
t₉₆, X₁₃: 19584⋅X₁₁+2⋅X₁₃+19584 {O(n)}
t₉₆, X₁₄: 2⋅X₁₄+4 {O(n)}
t₉₆, X₁₆: 2⋅X₁₆+4 {O(n)}
t₉₇, X₀: 2⋅X₀+8028 {O(n)}
t₉₇, X₁: 2⋅X₁+5 {O(n)}
t₉₇, X₂: 0 {O(1)}
t₉₇, X₃: 2⋅X₃ {O(n)}
t₉₇, X₄: 2 {O(1)}
t₉₇, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₉₇, X₆: 2⋅X₃ {O(n)}
t₉₇, X₇: 11 {O(1)}
t₉₇, X₈: 1 {O(1)}
t₉₇, X₉: 1 {O(1)}
t₉₇, X₁₀: 8⋅X₁₁+8 {O(n)}
t₉₇, X₁₁: 8⋅X₁₁+8 {O(n)}
t₉₇, X₁₂: 2⋅X₁₂+5 {O(n)}
t₉₇, X₁₃: 19584⋅X₁₁+2⋅X₁₃+19584 {O(n)}
t₉₇, X₁₄: 2⋅X₁₄+4 {O(n)}
t₉₇, X₁₆: 2⋅X₁₆+4 {O(n)}
t₉₈, X₀: 4⋅X₀+16056 {O(n)}
t₉₈, X₁: 4⋅X₁+10 {O(n)}
t₉₈, X₂: 0 {O(1)}
t₉₈, X₃: 2⋅X₃ {O(n)}
t₉₈, X₄: 0 {O(1)}
t₉₈, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₉₈, X₆: 2⋅X₃ {O(n)}
t₉₈, X₇: 11 {O(1)}
t₉₈, X₈: 1 {O(1)}
t₉₈, X₉: 1 {O(1)}
t₉₈, X₁₀: 8⋅X₁₁+8 {O(n)}
t₉₈, X₁₁: 8⋅X₁₁+8 {O(n)}
t₉₈, X₁₂: 4⋅X₁₂+10 {O(n)}
t₉₈, X₁₃: 39168⋅X₁₁+4⋅X₁₃+39168 {O(n)}
t₉₈, X₁₄: 2⋅X₁₄+4 {O(n)}
t₉₈, X₁₆: 4⋅X₁₆+8 {O(n)}
t₉₉, X₀: 4⋅X₀+16056 {O(n)}
t₉₉, X₁: 4⋅X₁+10 {O(n)}
t₉₉, X₂: 2⋅X₂ {O(n)}
t₉₉, X₃: 2⋅X₃ {O(n)}
t₉₉, X₄: 2 {O(1)}
t₉₉, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₉₉, X₆: 2⋅X₃ {O(n)}
t₉₉, X₇: 11 {O(1)}
t₉₉, X₈: 1 {O(1)}
t₉₉, X₉: 1 {O(1)}
t₉₉, X₁₀: 8⋅X₁₁+8 {O(n)}
t₉₉, X₁₁: 8⋅X₁₁+8 {O(n)}
t₉₉, X₁₂: 4⋅X₁₂+10 {O(n)}
t₉₉, X₁₃: 39168⋅X₁₁+4⋅X₁₃+39168 {O(n)}
t₉₉, X₁₄: 2⋅X₁₄+4 {O(n)}
t₉₉, X₁₆: 4⋅X₁₆+8 {O(n)}
t₁₀₀, X₀: 44 {O(1)}
t₁₀₀, X₁: 1 {O(1)}
t₁₀₀, X₂: 2⋅X₂ {O(n)}
t₁₀₀, X₃: 2⋅X₃ {O(n)}
t₁₀₀, X₄: 2 {O(1)}
t₁₀₀, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₀₀, X₆: 2⋅X₃ {O(n)}
t₁₀₀, X₇: 11 {O(1)}
t₁₀₀, X₈: 1 {O(1)}
t₁₀₀, X₉: 1 {O(1)}
t₁₀₀, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₀₀, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₀₀, X₁₂: 1 {O(1)}
t₁₀₀, X₁₃: 32⋅X₁₁+32 {O(n)}
t₁₀₀, X₁₄: 2⋅X₁₄+4 {O(n)}
t₁₀₀, X₁₆: 12⋅X₁₆+24 {O(n)}
t₁₀₁, X₀: 44 {O(1)}
t₁₀₁, X₁: 1 {O(1)}
t₁₀₁, X₂: 2⋅X₂ {O(n)}
t₁₀₁, X₃: 2⋅X₃ {O(n)}
t₁₀₁, X₄: 2 {O(1)}
t₁₀₁, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₀₁, X₆: 2⋅X₃ {O(n)}
t₁₀₁, X₇: 11 {O(1)}
t₁₀₁, X₈: 1 {O(1)}
t₁₀₁, X₉: 1 {O(1)}
t₁₀₁, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₀₁, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₀₁, X₁₂: 1 {O(1)}
t₁₀₁, X₁₃: 32⋅X₁₁+32 {O(n)}
t₁₀₁, X₁₄: 32⋅X₁₁+32 {O(n)}
t₁₀₁, X₁₆: 12⋅X₁₆+24 {O(n)}
t₁₀₂, X₀: 4⋅X₀+16056 {O(n)}
t₁₀₂, X₁: 4⋅X₁+10 {O(n)}
t₁₀₂, X₂: 2⋅X₂ {O(n)}
t₁₀₂, X₃: 2⋅X₃ {O(n)}
t₁₀₂, X₄: 2 {O(1)}
t₁₀₂, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₀₂, X₆: 2⋅X₃ {O(n)}
t₁₀₂, X₇: 11 {O(1)}
t₁₀₂, X₈: 0 {O(1)}
t₁₀₂, X₉: 1 {O(1)}
t₁₀₂, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₀₂, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₀₂, X₁₂: 4⋅X₁₂+10 {O(n)}
t₁₀₂, X₁₃: 39168⋅X₁₁+4⋅X₁₃+39168 {O(n)}
t₁₀₂, X₁₄: 2⋅X₁₄+4 {O(n)}
t₁₀₂, X₁₆: 4⋅X₁₆+8 {O(n)}
t₁₀₃, X₀: 88 {O(1)}
t₁₀₃, X₁: 1 {O(1)}
t₁₀₃, X₂: 2⋅X₂ {O(n)}
t₁₀₃, X₃: 2⋅X₃ {O(n)}
t₁₀₃, X₄: 2 {O(1)}
t₁₀₃, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₀₃, X₆: 2⋅X₃ {O(n)}
t₁₀₃, X₇: 11 {O(1)}
t₁₀₃, X₈: 1 {O(1)}
t₁₀₃, X₉: 1 {O(1)}
t₁₀₃, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₀₃, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₀₃, X₁₂: 1 {O(1)}
t₁₀₃, X₁₃: 64⋅X₁₁+64 {O(n)}
t₁₀₃, X₁₄: 64⋅X₁₁+64 {O(n)}
t₁₀₃, X₁₆: 24⋅X₁₆+48 {O(n)}
t₁₀₄, X₀: 1 {O(1)}
t₁₀₄, X₁: 1 {O(1)}
t₁₀₄, X₂: 2⋅X₂ {O(n)}
t₁₀₄, X₃: 2⋅X₃ {O(n)}
t₁₀₄, X₄: 2 {O(1)}
t₁₀₄, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₀₄, X₆: 2⋅X₃ {O(n)}
t₁₀₄, X₇: 1 {O(1)}
t₁₀₄, X₈: 1 {O(1)}
t₁₀₄, X₉: 1 {O(1)}
t₁₀₄, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₀₄, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₀₄, X₁₂: 1 {O(1)}
t₁₀₄, X₁₃: 64⋅X₁₁+64 {O(n)}
t₁₀₄, X₁₄: 64⋅X₁₁+64 {O(n)}
t₁₀₄, X₁₆: 24⋅X₁₆+48 {O(n)}
t₁₀₅, X₀: 0 {O(1)}
t₁₀₅, X₁: 1 {O(1)}
t₁₀₅, X₂: 2⋅X₂ {O(n)}
t₁₀₅, X₃: 2⋅X₃ {O(n)}
t₁₀₅, X₄: 2 {O(1)}
t₁₀₅, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₀₅, X₆: 2⋅X₃ {O(n)}
t₁₀₅, X₇: 0 {O(1)}
t₁₀₅, X₈: 1 {O(1)}
t₁₀₅, X₉: 1 {O(1)}
t₁₀₅, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₀₅, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₀₅, X₁₂: 1 {O(1)}
t₁₀₅, X₁₃: 64⋅X₁₁+64 {O(n)}
t₁₀₅, X₁₄: 64⋅X₁₁+64 {O(n)}
t₁₀₅, X₁₆: 24⋅X₁₆+48 {O(n)}
t₁₀₆, X₀: 44 {O(1)}
t₁₀₆, X₁: 1 {O(1)}
t₁₀₆, X₂: 2⋅X₂ {O(n)}
t₁₀₆, X₃: 2⋅X₃ {O(n)}
t₁₀₆, X₄: 2 {O(1)}
t₁₀₆, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₀₆, X₆: 2⋅X₃ {O(n)}
t₁₀₆, X₇: 11 {O(1)}
t₁₀₆, X₈: 1 {O(1)}
t₁₀₆, X₉: 1 {O(1)}
t₁₀₆, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₀₆, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₀₆, X₁₂: 1 {O(1)}
t₁₀₆, X₁₃: 32⋅X₁₁+32 {O(n)}
t₁₀₆, X₁₄: 2⋅X₁₄+4 {O(n)}
t₁₀₆, X₁₆: 1 {O(1)}
t₁₀₇, X₀: 44 {O(1)}
t₁₀₇, X₁: 1 {O(1)}
t₁₀₇, X₂: 2⋅X₂ {O(n)}
t₁₀₇, X₃: 2⋅X₃ {O(n)}
t₁₀₇, X₄: 2 {O(1)}
t₁₀₇, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₀₇, X₆: 2⋅X₃ {O(n)}
t₁₀₇, X₇: 11 {O(1)}
t₁₀₇, X₈: 1 {O(1)}
t₁₀₇, X₉: 1 {O(1)}
t₁₀₇, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₀₇, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₀₇, X₁₂: 1 {O(1)}
t₁₀₇, X₁₃: 32⋅X₁₁+32 {O(n)}
t₁₀₇, X₁₄: 2⋅X₁₄+4 {O(n)}
t₁₀₇, X₁₆: 1 {O(1)}
t₁₀₈, X₀: 89 {O(1)}
t₁₀₈, X₁: 0 {O(1)}
t₁₀₈, X₂: 2⋅X₂ {O(n)}
t₁₀₈, X₃: 2⋅X₃ {O(n)}
t₁₀₈, X₄: 2 {O(1)}
t₁₀₈, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₀₈, X₆: 2⋅X₃ {O(n)}
t₁₀₈, X₇: 11 {O(1)}
t₁₀₈, X₈: 1 {O(1)}
t₁₀₈, X₉: 0 {O(1)}
t₁₀₈, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₀₈, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₀₈, X₁₂: 1 {O(1)}
t₁₀₈, X₁₃: 128⋅X₁₁+128 {O(n)}
t₁₀₈, X₁₄: 128⋅X₁₁+128 {O(n)}
t₁₀₈, X₁₆: 48⋅X₁₆+96 {O(n)}
t₁₁₀, X₀: 89 {O(1)}
t₁₁₀, X₁: 1 {O(1)}
t₁₁₀, X₂: 2⋅X₂ {O(n)}
t₁₁₀, X₃: 2⋅X₃ {O(n)}
t₁₁₀, X₄: 2 {O(1)}
t₁₁₀, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₁₀, X₆: 2⋅X₃ {O(n)}
t₁₁₀, X₇: 11 {O(1)}
t₁₁₀, X₈: 1 {O(1)}
t₁₁₀, X₉: 1 {O(1)}
t₁₁₀, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₁₀, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₁₀, X₁₂: 1 {O(1)}
t₁₁₀, X₁₃: 128⋅X₁₁+128 {O(n)}
t₁₁₀, X₁₄: 128⋅X₁₁+128 {O(n)}
t₁₁₀, X₁₆: 48⋅X₁₆+96 {O(n)}
t₁₁₁, X₀: 1 {O(1)}
t₁₁₁, X₁: 1 {O(1)}
t₁₁₁, X₂: 2⋅X₂ {O(n)}
t₁₁₁, X₃: 2⋅X₃ {O(n)}
t₁₁₁, X₄: 2 {O(1)}
t₁₁₁, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₁₁, X₆: 2⋅X₃ {O(n)}
t₁₁₁, X₇: 1 {O(1)}
t₁₁₁, X₈: 1 {O(1)}
t₁₁₁, X₉: 1 {O(1)}
t₁₁₁, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₁₁, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₁₁, X₁₂: 1 {O(1)}
t₁₁₁, X₁₃: 128⋅X₁₁+128 {O(n)}
t₁₁₁, X₁₄: 128⋅X₁₁+128 {O(n)}
t₁₁₁, X₁₆: 48⋅X₁₆+96 {O(n)}
t₁₁₂, X₀: 0 {O(1)}
t₁₁₂, X₁: 0 {O(1)}
t₁₁₂, X₂: 2⋅X₂ {O(n)}
t₁₁₂, X₃: 2⋅X₃ {O(n)}
t₁₁₂, X₄: 2 {O(1)}
t₁₁₂, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₁₂, X₆: 2⋅X₃ {O(n)}
t₁₁₂, X₇: 0 {O(1)}
t₁₁₂, X₈: 1 {O(1)}
t₁₁₂, X₉: 0 {O(1)}
t₁₁₂, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₁₂, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₁₂, X₁₂: 1 {O(1)}
t₁₁₂, X₁₃: 64⋅X₁₁+64 {O(n)}
t₁₁₂, X₁₄: 64⋅X₁₁+64 {O(n)}
t₁₁₂, X₁₆: 24⋅X₁₆+48 {O(n)}
t₁₁₃, X₀: 89 {O(1)}
t₁₁₃, X₁: 1 {O(1)}
t₁₁₃, X₂: 2⋅X₂ {O(n)}
t₁₁₃, X₃: 2⋅X₃ {O(n)}
t₁₁₃, X₄: 2 {O(1)}
t₁₁₃, X₅: 2⋅X₁₆+2⋅X₈+3⋅X₂+6⋅X₃+4 {O(n)}
t₁₁₃, X₆: 2⋅X₃ {O(n)}
t₁₁₃, X₇: 11 {O(1)}
t₁₁₃, X₈: 1 {O(1)}
t₁₁₃, X₉: 1 {O(1)}
t₁₁₃, X₁₀: 8⋅X₁₁+8 {O(n)}
t₁₁₃, X₁₁: 8⋅X₁₁+8 {O(n)}
t₁₁₃, X₁₂: 1 {O(1)}
t₁₁₃, X₁₃: 192⋅X₁₁+192 {O(n)}
t₁₁₃, X₁₄: 192⋅X₁₁+192 {O(n)}
t₁₁₃, X₁₆: 72⋅X₁₆+144 {O(n)}