Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃)
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀
t₅: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁+1
t₁₅: l10(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, 2⋅X₂+2)
t₁₆: l11(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃)
t₁₇: l11(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₀, X₃)
t₁₈: l12(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃, X₃)
t₂: l13(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2
t₁: l13(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 3 ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁
t₇: l2(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₁+3+2⋅X₂ ≤ X₀
t₁₉: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃)
t₆: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, 0, X₃)
t₂₀: l5(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃)
t₃: l6(X₀, X₁, X₂, X₃) → l1(X₀, 0, X₂, X₃)
t₁₃: l7(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃)
t₁₂: l7(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₁₄: l8(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, 2⋅X₂+1)
t₁₀: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₁+4+2⋅X₂ ≤ X₀
t₁₁: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁
t₉: l9(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀
Preprocessing
Cut unsatisfiable transition t₁₁: l9→l7
Found invariant 0 ≤ X₁ for location l11
Found invariant 0 ≤ X₁ for location l2
Found invariant 3 ≤ X₀ for location l6
Found invariant 0 ≤ X₁ for location l12
Found invariant 0 ≤ X₁ for location l7
Found invariant 0 ≤ X₁ for location l8
Found invariant 0 ≤ X₁ for location l1
Found invariant 0 ≤ X₁ for location l10
Found invariant 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l4
Found invariant 0 ≤ X₁ for location l9
Found invariant 0 ≤ X₁ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃)
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁
t₅: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁+1 ∧ 0 ≤ X₁
t₁₅: l10(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, 2⋅X₂+2) :|: 0 ≤ X₁
t₁₆: l11(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁
t₁₇: l11(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₀, X₃) :|: 0 ≤ X₁
t₁₈: l12(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃, X₃) :|: 0 ≤ X₁
t₂: l13(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2
t₁: l13(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 3 ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₁
t₇: l2(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₁
t₁₉: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: 0 ≤ X₁
t₆: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, 0, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₂₀: l5(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃)
t₃: l6(X₀, X₁, X₂, X₃) → l1(X₀, 0, X₂, X₃) :|: 3 ≤ X₀
t₁₃: l7(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁
t₁₂: l7(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁
t₁₄: l8(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, 2⋅X₂+1) :|: 0 ≤ X₁
t₁₀: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₁
t₉: l9(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀ ∧ 0 ≤ X₁
MPRF for transition t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF:
l12 [X₀-X₁ ]
l3 [X₀-X₁ ]
l1 [X₀+1-X₁ ]
l4 [X₀-X₁ ]
l2 [X₀-X₁ ]
l10 [X₀-X₁ ]
l11 [X₀-X₁ ]
l8 [X₀-X₁ ]
l9 [X₀-X₁ ]
l7 [X₀-X₁ ]
MPRF for transition t₆: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, 0, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF:
l12 [X₀-X₁-2 ]
l3 [X₀-X₁-2 ]
l1 [X₀-X₁-1 ]
l4 [X₀-X₁-1 ]
l2 [X₀-X₁-2 ]
l10 [X₀-X₁-2 ]
l11 [X₀-X₁-2 ]
l8 [X₀-X₁-2 ]
l9 [X₀-X₁-2 ]
l7 [X₀-X₁-2 ]
MPRF for transition t₈: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₁ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF:
l4 [0 ]
l12 [1 ]
l2 [1 ]
l3 [0 ]
l1 [0 ]
l10 [1 ]
l11 [1 ]
l8 [1 ]
l9 [1 ]
l7 [1 ]
MPRF for transition t₁₉: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: 0 ≤ X₁ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF:
l4 [0 ]
l12 [1 ]
l2 [1 ]
l3 [1 ]
l1 [0 ]
l10 [1 ]
l11 [1 ]
l8 [1 ]
l9 [1 ]
l7 [1 ]
Analysing control-flow refined program
Cut unsatisfiable transition t₂₉₉₄: n_l2___13→l3
Cut unsatisfiable transition t₂₉₉₅: n_l2___14→l3
Cut unsatisfiable transition t₂₉₉₈: n_l2___6→l3
Found invariant 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l8___17
Found invariant 5+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 8+X₂+X₃ ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 5+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 8+X₀+X₃ ≤ 0 ∧ 3+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 3+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 6+X₀+X₂ ≤ 0 ∧ 0 ≤ 3+X₁+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l2___6
Found invariant X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l11___36
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l9___41
Found invariant 3 ≤ X₀ for location l6
Found invariant 6+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 10+X₂+X₃ ≤ 0 ∧ 6+X₃ ≤ X₁ ∧ 6+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 10+X₀+X₃ ≤ 0 ∧ 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l2___14
Found invariant X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ for location n_l2___34
Found invariant X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁ for location n_l8___28
Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l11___4
Found invariant 2+X₃ ≤ X₀ ∧ 0 ≤ X₁ for location n_l12___22
Found invariant X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l12___35
Found invariant 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 3+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l7___20
Found invariant 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l8___39
Found invariant X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁ for location n_l9___32
Found invariant X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ for location n_l9___21
Found invariant 5+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 8+X₂+X₃ ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 5+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 8+X₀+X₃ ≤ 0 ∧ 3+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 3+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 6+X₀+X₂ ≤ 0 ∧ 0 ≤ 3+X₁+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l12___7
Found invariant 0 ≤ X₁ for location l1
Found invariant 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l4
Found invariant 0 ≤ X₁ for location n_l11___25
Found invariant 5+X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 10+X₂+X₃ ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 5+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 8+X₀+X₃ ≤ 0 ∧ X₂ ≤ X₃ ∧ 5+X₂ ≤ 0 ∧ 5+X₂ ≤ X₁ ∧ 5+X₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l9___12
Found invariant 0 ≤ X₁ for location l3
Found invariant 5+X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 10+X₂+X₃ ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 5+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 8+X₀+X₃ ≤ 0 ∧ X₂ ≤ X₃ ∧ 5+X₂ ≤ 0 ∧ 5+X₂ ≤ X₁ ∧ 5+X₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l2___13
Found invariant 3+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 6+X₀+X₂ ≤ 0 ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l8___19
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l2
Found invariant 0 ≤ X₁ for location n_l11___27
Found invariant X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁ for location n_l10___29
Found invariant 7+X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 11+X₂+X₃ ≤ 0 ∧ 7+X₃ ≤ X₁ ∧ 7+X₁+X₃ ≤ 0 ∧ 3+X₃ ≤ X₀ ∧ 11+X₀+X₃ ≤ 0 ∧ 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l11___10
Found invariant 0 ≤ X₁ for location n_l11___23
Found invariant 0 ≤ X₁ for location n_l12___24
Found invariant 6+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 10+X₂+X₃ ≤ 0 ∧ 6+X₃ ≤ X₁ ∧ 6+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 10+X₀+X₃ ≤ 0 ∧ 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l9___11
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l8___37
Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l12___3
Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l11___2
Found invariant 5+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 8+X₂+X₃ ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 5+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 8+X₀+X₃ ≤ 0 ∧ 3+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 3+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 6+X₀+X₂ ≤ 0 ∧ 0 ≤ 3+X₁+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l11___8
Found invariant 0 ≤ X₁ for location n_l8___30
Found invariant 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l10___18
Found invariant 6+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 10+X₂+X₃ ≤ 0 ∧ 6+X₃ ≤ X₁ ∧ 6+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 10+X₀+X₃ ≤ 0 ∧ 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l11___16
Found invariant X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁ for location n_l2___33
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l7___40
Found invariant X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁ for location n_l7___31
Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l12___1
Found invariant 6+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 10+X₂+X₃ ≤ 0 ∧ 6+X₃ ≤ X₁ ∧ 6+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 10+X₀+X₃ ≤ 0 ∧ 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l12___15
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l10___38
Found invariant 0 ≤ X₁ for location n_l12___26
Found invariant 5+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 8+X₂+X₃ ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 5+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 8+X₀+X₃ ≤ 0 ∧ 3+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 3+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 6+X₀+X₂ ≤ 0 ∧ 0 ≤ 3+X₁+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l9___5
Found invariant 7+X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 11+X₂+X₃ ≤ 0 ∧ 7+X₃ ≤ X₁ ∧ 7+X₁+X₃ ≤ 0 ∧ 3+X₃ ≤ X₀ ∧ 11+X₀+X₃ ≤ 0 ∧ 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l12___9
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₅₅: l2(X₀, X₁, X₂, X₃) → n_l9___41(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 2+X₁ ≤ X₀ ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₇₅: n_l9___41(X₀, X₁, X₂, X₃) → n_l7___40(X₀, X₁, X₂, X₃) :|: 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₁+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₇₆: n_l9___41(X₀, X₁, X₂, X₃) → n_l8___39(X₀, X₁, Arg2_P, X₃) :|: 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁+2⋅X₂+3 ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ X₀ ≤ X₁+2⋅Arg2_P+3 ∧ 3+X₁+2⋅Arg2_P ≤ X₀ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₆₁: n_l7___40(X₀, X₁, X₂, X₃) → n_l10___38(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₆₂: n_l7___40(X₀, X₁, X₂, X₃) → n_l8___37(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₆₇: n_l8___37(X₀, X₁, X₂, X₃) → n_l11___4(X₀, X₁, X₂, 2⋅X₂+1) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₆₈: n_l8___39(X₀, X₁, X₂, X₃) → n_l11___2(X₀, X₁, X₂, 2⋅X₂+1) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+3 ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₂₃: n_l10___38(X₀, X₁, X₂, X₃) → n_l11___36(X₀, X₁, X₂, 2⋅X₂+2) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₂₈: n_l11___2(X₀, X₁, X₂, X₃) → n_l12___1(X₀, X₁, X₂, X₃) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+3 ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₂₉: n_l11___2(X₀, X₁, X₂, X₃) → n_l2___34(X₀, X₁, X₀, X₃) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+3 ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₃₆: n_l11___36(X₀, X₁, X₂, X₃) → n_l12___35(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₃₇: n_l11___36(X₀, X₁, X₂, X₃) → n_l2___34(X₀, X₁, X₀, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₃₈: n_l11___4(X₀, X₁, X₂, X₃) → n_l12___3(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₃₉: n_l11___4(X₀, X₁, X₂, X₃) → n_l2___34(X₀, X₁, X₀, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₄₂: n_l12___1(X₀, X₁, X₂, X₃) → n_l2___33(X₀, X₁, X₃, X₃) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+3 ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₄₇: n_l12___3(X₀, X₁, X₂, X₃) → n_l2___33(X₀, X₁, X₃, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₄₈: n_l12___35(X₀, X₁, X₂, X₃) → n_l2___33(X₀, X₁, X₃, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
MPRF for transition t₂₉₉₆: n_l2___33(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁ of depth 1:
new bound:
6⋅X₀⋅X₀+28⋅X₀+26 {O(n^2)}
MPRF:
n_l9___41 [4 ]
l1 [4 ]
l4 [4 ]
l2 [4 ]
n_l11___16 [5 ]
n_l11___27 [5 ]
n_l11___36 [5 ]
n_l12___1 [3⋅X₁+14-3⋅X₀ ]
n_l12___15 [5 ]
n_l12___22 [5 ]
n_l12___24 [5 ]
n_l12___26 [5 ]
n_l12___3 [5⋅X₃ ]
n_l12___35 [2⋅X₃+1 ]
n_l12___7 [5 ]
n_l12___9 [5 ]
n_l2___13 [5 ]
n_l2___14 [5 ]
n_l2___33 [5 ]
n_l2___34 [5 ]
l3 [4 ]
n_l2___6 [5 ]
n_l10___18 [2⋅X₂+5-2⋅X₀ ]
n_l10___29 [5 ]
n_l10___38 [5 ]
n_l7___40 [5 ]
n_l8___17 [5 ]
n_l11___10 [5 ]
n_l11___8 [5 ]
n_l8___28 [5 ]
n_l11___25 [5 ]
n_l11___23 [5 ]
n_l8___37 [5 ]
n_l11___4 [5⋅X₃ ]
n_l8___39 [3⋅X₁+14-3⋅X₀ ]
n_l11___2 [3⋅X₁+14-3⋅X₀ ]
n_l9___11 [5 ]
n_l9___12 [X₃+5-X₂ ]
n_l7___20 [2⋅X₂+5-2⋅X₀ ]
n_l9___21 [5 ]
n_l7___31 [5 ]
n_l9___32 [5 ]
n_l8___30 [5 ]
n_l9___5 [4⋅X₁+4⋅X₂+17 ]
n_l8___19 [2⋅X₀+5-2⋅X₂ ]
MPRF for transition t₂₉₉₇: n_l2___34(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
2⋅X₀+2 {O(n)}
MPRF:
n_l9___41 [0 ]
l1 [0 ]
l4 [0 ]
l2 [0 ]
n_l11___16 [1 ]
n_l11___27 [2⋅X₂+3-X₃ ]
n_l11___36 [X₃-1 ]
n_l12___1 [X₀-X₁-2⋅X₃ ]
n_l12___15 [1 ]
n_l12___22 [1 ]
n_l12___24 [1 ]
n_l12___26 [2⋅X₂+3-X₃ ]
n_l12___3 [X₃ ]
n_l12___35 [X₃-1 ]
n_l12___7 [1 ]
n_l12___9 [1 ]
n_l2___13 [X₂+1-X₃ ]
n_l2___14 [1 ]
n_l2___33 [1 ]
n_l2___34 [1 ]
l3 [0 ]
n_l2___6 [1 ]
n_l10___18 [1 ]
n_l10___29 [1 ]
n_l10___38 [1 ]
n_l7___40 [1 ]
n_l8___17 [1 ]
n_l11___10 [1 ]
n_l11___8 [X₀+X₁+4 ]
n_l8___28 [1 ]
n_l11___25 [1 ]
n_l11___23 [1 ]
n_l8___37 [1 ]
n_l11___4 [1 ]
n_l8___39 [1 ]
n_l11___2 [X₀-X₁-2 ]
n_l9___11 [1 ]
n_l9___12 [2⋅X₂+1-2⋅X₃ ]
n_l7___20 [1 ]
n_l9___21 [1 ]
n_l7___31 [1 ]
n_l9___32 [1 ]
n_l8___30 [1 ]
n_l9___5 [X₂+1-X₀ ]
n_l8___19 [X₀+X₁+4 ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₄: X₀+1 {O(n)}
t₅: 1 {O(1)}
t₁₅: inf {Infinity}
t₁₆: inf {Infinity}
t₁₇: inf {Infinity}
t₁₈: inf {Infinity}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₇: inf {Infinity}
t₈: X₀+1 {O(n)}
t₁₉: X₀+1 {O(n)}
t₆: X₀+1 {O(n)}
t₂₀: 1 {O(1)}
t₃: 1 {O(1)}
t₁₂: inf {Infinity}
t₁₃: inf {Infinity}
t₁₄: inf {Infinity}
t₉: inf {Infinity}
t₁₀: inf {Infinity}
Costbounds
Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₄: X₀+1 {O(n)}
t₅: 1 {O(1)}
t₁₅: inf {Infinity}
t₁₆: inf {Infinity}
t₁₇: inf {Infinity}
t₁₈: inf {Infinity}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₇: inf {Infinity}
t₈: X₀+1 {O(n)}
t₁₉: X₀+1 {O(n)}
t₆: X₀+1 {O(n)}
t₂₀: 1 {O(1)}
t₃: 1 {O(1)}
t₁₂: inf {Infinity}
t₁₃: inf {Infinity}
t₁₄: inf {Infinity}
t₉: inf {Infinity}
t₁₀: inf {Infinity}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₀+1 {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₀+1 {O(n)}
t₁₅, X₀: X₀ {O(n)}
t₁₅, X₁: X₀+1 {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: X₀+1 {O(n)}
t₁₇, X₀: X₀ {O(n)}
t₁₇, X₁: X₀+1 {O(n)}
t₁₇, X₂: 2⋅X₀ {O(n)}
t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₀+1 {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₀+1 {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₀+1 {O(n)}
t₁₉, X₀: X₀ {O(n)}
t₁₉, X₁: X₀+1 {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₀+1 {O(n)}
t₆, X₂: 0 {O(1)}
t₂₀, X₀: 2⋅X₀ {O(n)}
t₂₀, X₁: X₀+X₁+1 {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: 0 {O(1)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₀+1 {O(n)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₀+1 {O(n)}
t₁₄, X₀: X₀ {O(n)}
t₁₄, X₁: X₀+1 {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₀+1 {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₀+1 {O(n)}