Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E, F, G
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃)
t₅₂: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+1)
t₄₃: l10(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁+1
t₄₂: l10(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀
t₅₈: l11(X₀, X₁, X₂, X₃) → l19(X₀, X₁, X₂, X₃)
t₄₁: l12(X₀, X₁, X₂, X₃) → l10(X₀, 0, X₂, X₃)
t₆: l13(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃) :|: 1 ≤ X₂
t₅: l13(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₇: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₈: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E
t₉: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: X₂+2 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₁₀: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₁: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E
t₁₂: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂+2 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₁₃: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₄: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₅: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₁₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₇: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₈: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₁₉: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₀: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₂₁: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ F ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₂: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₂₃: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₂₄: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₅: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₂₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E
t₂₇: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ X₂+2 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₈: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ F ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₂₉: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ X₂+2 ≤ 0 ∧ G ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂+1 ≤ 2⋅G ∧ 2⋅G ≤ 2+X₂
t₃₀: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ X₂+2 ≤ 0 ∧ G ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅G ∧ 2⋅G ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₁: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₂: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₃₃: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ F ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₄: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₅: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: X₂+2 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₃₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: X₂+2 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₇: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ F ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₃₈: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: X₂+2 ≤ 0 ∧ F ≤ 0 ∧ G ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅G ∧ 2⋅G ≤ 2+X₂
t₃₉: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: X₂+2 ≤ 0 ∧ F ≤ 0 ∧ G ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅G ∧ 2⋅G ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₄₀: l16(X₀, X₁, X₂, X₃) → l17(X₀, X₁+1, X₂, X₃)
t₄: l17(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁
t₃: l17(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₁, X₃) :|: 1+X₁ ≤ X₀
t₂: l18(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2
t₁: l18(X₀, X₁, X₂, X₃) → l17(X₀, 1, X₂, X₃) :|: 3 ≤ X₀
t₅₃: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+2)
t₄₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀
t₄₈: l3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁+4+2⋅X₂ ≤ X₀
t₄₉: l3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁
t₅₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₅₁: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₅₄: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃)
t₅₅: l5(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₀, X₃)
t₅₆: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₃, X₃)
t₄₅: l7(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁+3+2⋅X₂ ≤ X₀
t₄₆: l7(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁
t₅₇: l8(X₀, X₁, X₂, X₃) → l10(X₀, X₁+1, X₂, X₃)
t₄₄: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, 0, X₃)
Cut unsatisfiable transition t₇: l14→l15
Cut unsatisfiable transition t₉: l14→l15
Cut unsatisfiable transition t₁₀: l14→l16
Cut unsatisfiable transition t₁₂: l14→l16
Cut unsatisfiable transition t₁₄: l15→l13
Cut unsatisfiable transition t₁₅: l15→l13
Cut unsatisfiable transition t₁₆: l15→l13
Cut unsatisfiable transition t₁₇: l15→l13
Cut unsatisfiable transition t₁₈: l15→l13
Cut unsatisfiable transition t₁₉: l15→l13
Cut unsatisfiable transition t₂₀: l15→l13
Cut unsatisfiable transition t₂₁: l15→l13
Cut unsatisfiable transition t₂₂: l15→l13
Cut unsatisfiable transition t₂₃: l15→l13
Cut unsatisfiable transition t₂₄: l15→l13
Cut unsatisfiable transition t₂₅: l15→l13
Cut unsatisfiable transition t₂₇: l15→l13
Cut unsatisfiable transition t₂₈: l15→l13
Cut unsatisfiable transition t₂₉: l15→l13
Cut unsatisfiable transition t₃₀: l15→l13
Cut unsatisfiable transition t₃₁: l15→l13
Cut unsatisfiable transition t₃₂: l15→l13
Cut unsatisfiable transition t₃₃: l15→l13
Cut unsatisfiable transition t₃₄: l15→l13
Cut unsatisfiable transition t₃₅: l15→l13
Cut unsatisfiable transition t₃₆: l15→l13
Cut unsatisfiable transition t₃₇: l15→l13
Cut unsatisfiable transition t₃₈: l15→l13
Cut unsatisfiable transition t₄₉: l3→l4
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l2
Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l6
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l15
Found invariant X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location l12
Found invariant X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l7
Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l13
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l8
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l1
Found invariant 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l16
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l4
Found invariant 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l9
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l3
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l14
Cut unsatisfiable transition t₁₃: l15→l13
Cut unsatisfiable transition t₃₉: l15→l13
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E, F, G
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃)
t₅₂: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+1) :|: 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₃: l10(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₂: l10(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₈: l11(X₀, X₁, X₂, X₃) → l19(X₀, X₁, X₂, X₃)
t₄₁: l12(X₀, X₁, X₂, X₃) → l10(X₀, 0, X₂, X₃) :|: X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀
t₆: l13(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃) :|: 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅: l13(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₈: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₁₁: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₀: l16(X₀, X₁, X₂, X₃) → l17(X₀, X₁+1, X₂, X₃) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄: l17(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₃: l17(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₁, X₃) :|: 1+X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂: l18(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2
t₁: l18(X₀, X₁, X₂, X₃) → l17(X₀, 1, X₂, X₃) :|: 3 ≤ X₀
t₅₃: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+2) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
t₄₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₈: l3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
t₅₁: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
t₅₄: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₅: l5(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₀, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₆: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₃, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₅: l7(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₆: l7(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₇: l8(X₀, X₁, X₂, X₃) → l10(X₀, X₁+1, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₄: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, 0, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
Cut unsatisfiable transition t₄: l17→l12
Found invariant 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l16___2
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l2
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l14___9
Found invariant 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l13___6
Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l6
Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l17___1
Found invariant 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l15___3
Found invariant 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l14___5
Found invariant 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location l12
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l15___8
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l16___7
Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l7
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l13___10
Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5
Found invariant X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l16___4
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l8
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l1
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l4
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l9
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l3
Cut unsatisfiable transition t₄₃: l10→l11
Cut unsatisfiable transition t₄₁₉₆: n_l10___20→n_l9___23
Cut unsatisfiable transition t₄₂₆₆: n_l10___24→l11
Found invariant 2+X₃ ≤ X₀ ∧ 4 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 3+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l6___3
Found invariant X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l2___7
Found invariant 3+X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 9 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l6___5
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l1___18
Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l6___28
Found invariant X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___26
Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 9 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l5___6
Found invariant X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location l12
Found invariant X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l1___8
Found invariant 4 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 3+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l5___4
Found invariant 2+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___27
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l4___30
Found invariant X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l9___34
Found invariant X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10
Found invariant X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l10___24
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l14
Found invariant X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ 3 ≤ X₀ for location n_l8___21
Found invariant 4+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l1___12
Found invariant 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 8 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l6___9
Found invariant X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l7___14
Found invariant 2+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l8___19
Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l5___16
Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l5___29
Found invariant X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l6___1
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l15
Found invariant X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l9___23
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___32
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___33
Found invariant 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location n_l10___20
Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l5___10
Found invariant X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l5___2
Found invariant X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l2___17
Found invariant 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___22
Found invariant X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l8___25
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l13
Found invariant X₃ ≤ X₂ ∧ 4+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 4+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 6 ≤ X₀+X₂ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l3___13
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l16
Found invariant 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l1___31
Found invariant X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l4___11
Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l6___15
Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₅₂: inf {Infinity}
t₄₂: inf {Infinity}
t₄₃: 1 {O(1)}
t₅₈: 1 {O(1)}
t₄₁: 1 {O(1)}
t₅: inf {Infinity}
t₆: inf {Infinity}
t₈: inf {Infinity}
t₁₁: inf {Infinity}
t₂₆: inf {Infinity}
t₄₀: inf {Infinity}
t₃: inf {Infinity}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅₃: inf {Infinity}
t₄₇: inf {Infinity}
t₄₈: inf {Infinity}
t₅₀: inf {Infinity}
t₅₁: inf {Infinity}
t₅₄: inf {Infinity}
t₅₅: inf {Infinity}
t₅₆: inf {Infinity}
t₄₅: inf {Infinity}
t₄₆: inf {Infinity}
t₅₇: inf {Infinity}
t₄₄: inf {Infinity}
Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₅₂: inf {Infinity}
t₄₂: inf {Infinity}
t₄₃: 1 {O(1)}
t₅₈: 1 {O(1)}
t₄₁: 1 {O(1)}
t₅: inf {Infinity}
t₆: inf {Infinity}
t₈: inf {Infinity}
t₁₁: inf {Infinity}
t₂₆: inf {Infinity}
t₄₀: inf {Infinity}
t₃: inf {Infinity}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅₃: inf {Infinity}
t₄₇: inf {Infinity}
t₄₈: inf {Infinity}
t₅₀: inf {Infinity}
t₅₁: inf {Infinity}
t₅₄: inf {Infinity}
t₅₅: inf {Infinity}
t₅₆: inf {Infinity}
t₄₅: inf {Infinity}
t₄₆: inf {Infinity}
t₅₇: inf {Infinity}
t₄₄: inf {Infinity}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₅₂, X₀: X₀ {O(n)}
t₄₂, X₀: X₀ {O(n)}
t₄₃, X₀: X₀ {O(n)}
t₅₈, X₀: 2⋅X₀ {O(n)}
t₄₁, X₀: X₀ {O(n)}
t₄₁, X₁: 0 {O(1)}
t₄₁, X₃: X₃ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₂: 0 {O(1)}
t₅, X₃: X₃ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₃: X₃ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₃: X₃ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₂₆, X₀: X₀ {O(n)}
t₂₆, X₃: X₃ {O(n)}
t₄₀, X₀: X₀ {O(n)}
t₄₀, X₃: X₃ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₃: X₃ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₃: X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: 1 {O(1)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₅₃, X₀: X₀ {O(n)}
t₄₇, X₀: X₀ {O(n)}
t₄₈, X₀: X₀ {O(n)}
t₅₀, X₀: X₀ {O(n)}
t₅₁, X₀: X₀ {O(n)}
t₅₄, X₀: X₀ {O(n)}
t₅₅, X₀: X₀ {O(n)}
t₅₅, X₂: 2⋅X₀ {O(n)}
t₅₆, X₀: X₀ {O(n)}
t₄₅, X₀: X₀ {O(n)}
t₄₆, X₀: X₀ {O(n)}
t₅₇, X₀: X₀ {O(n)}
t₄₄, X₀: X₀ {O(n)}
t₄₄, X₂: 0 {O(1)}