Initial Problem

Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₆: l0(X₀, X₁) → l3(X₀, X₁)
t₂: l1(X₀, X₁) → l1(X₀-1, X₁) :|: 1 ≤ X₀
t₃: l1(X₀, X₁) → l3(X₀, X₁) :|: X₀ ≤ 0
t₄: l2(X₀, X₁) → l2(X₀, X₁-1) :|: 1 ≤ X₁
t₅: l2(X₀, X₁) → l3(X₀, X₁) :|: X₁ ≤ 0
t₀: l3(X₀, X₁) → l1(X₀, X₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₀
t₁: l3(X₀, X₁) → l2(X₀, X₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁

Preprocessing

Found invariant 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l1

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₆: l0(X₀, X₁) → l3(X₀, X₁)
t₂: l1(X₀, X₁) → l1(X₀-1, X₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃: l1(X₀, X₁) → l3(X₀, X₁) :|: X₀ ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄: l2(X₀, X₁) → l2(X₀, X₁-1) :|: 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅: l2(X₀, X₁) → l3(X₀, X₁) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₀: l3(X₀, X₁) → l1(X₀, X₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₀
t₁: l3(X₀, X₁) → l2(X₀, X₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₀: l3(X₀, X₁) → l1(X₀, X₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁: l3(X₀, X₁) → l2(X₀, X₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁

Found invariant 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l1

Time-Bound by TWN-Loops:

TWN-Loops: t₂ 2⋅X₀+4 {O(n)}

TWN-Loops:

entry: t₀: l3(X₀, X₁) → l1(X₀, X₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₀
results in twn-loop: twn:Inv: [1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀] , (X₀,X₁) -> (X₀-1,X₁) :|: 1 ≤ X₀
order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * -1 * n^1
X₁: X₁

Termination: true
Formula:

1 < 0
∨ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1

Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}

relevant size-bounds w.r.t. t₀:
X₀: X₀ {O(n)}
Runtime-bound of t₀: 1 {O(1)}
Results in: 2⋅X₀+4 {O(n)}

2⋅X₀+4 {O(n)}

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l3

Found invariant 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1

Time-Bound by TWN-Loops:

TWN-Loops: t₃ 12⋅X₀+30 {O(n)}

TWN-Loops:

entry: t₂: l1(X₀, X₁) → l1(X₀-1, X₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
results in twn-loop: twn:Inv: [1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀] , (X₀,X₁) -> (X₀,X₁) :|: X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₀
entry: t₆: l0(X₀, X₁) → l3(X₀, X₁)
results in twn-loop: twn:Inv: [1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀] , (X₀,X₁) -> (X₀,X₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ 0
order: [X₀; X₁]
closed-form:
X₀: X₀
X₁: X₁

Termination: true
Formula:

X₁+1 < X₀ ∧ 1 < X₁ ∧ 1 < X₀ ∧ X₀ < 0
∨ X₁+1 < X₀ ∧ 1 < X₁ ∧ 1 < X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ X₁+1 < X₀ ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 0
∨ X₁+1 < X₀ ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ X₁+1 < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀ ∧ X₀ < 0
∨ X₁+1 < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ X₁+1 < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 0
∨ X₁+1 < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 < X₁ ∧ 1 < X₀ ∧ X₀ < 0
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 < X₁ ∧ 1 < X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 0
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀ ∧ X₀ < 0
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 0
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀

relevant size-bounds w.r.t. t₂:
Runtime-bound of t₂: 2⋅X₀+4 {O(n)}
Results in: 12⋅X₀+24 {O(n)}

order: [X₀; X₁]
closed-form:
X₀: X₀
X₁: X₁

Termination: true
Formula:

X₀ < 0 ∧ X₁+1 < X₀ ∧ 1 < X₁ ∧ 1 < X₀
∨ X₀ < 0 ∧ X₁+1 < X₀ ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₀ < 0 ∧ X₁+1 < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀
∨ X₀ < 0 ∧ X₁+1 < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₀ < 0 ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 < X₁ ∧ 1 < X₀
∨ X₀ < 0 ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₀ < 0 ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀
∨ X₀ < 0 ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁+1 < X₀ ∧ 1 < X₁ ∧ 1 < X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁+1 < X₀ ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁+1 < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁+1 < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 < X₁ ∧ 1 < X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1

relevant size-bounds w.r.t. t₆:
Runtime-bound of t₆: 1 {O(1)}
Results in: 6 {O(1)}

12⋅X₀+30 {O(n)}

Found invariant 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l1

Time-Bound by TWN-Loops:

TWN-Loops: t₄ 2⋅X₁+4 {O(n)}

TWN-Loops:

entry: t₁: l3(X₀, X₁) → l2(X₀, X₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁
results in twn-loop: twn:Inv: [0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁) -> (X₀,X₁-1) :|: 1 ≤ X₁
order: [X₀; X₁]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1

Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}

relevant size-bounds w.r.t. t₁:
X₁: X₁ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₁+4 {O(n)}

2⋅X₁+4 {O(n)}

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l3

Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l1

Time-Bound by TWN-Loops:

TWN-Loops: t₅ 12⋅X₁+30 {O(n)}

TWN-Loops:

entry: t₄: l2(X₀, X₁) → l2(X₀, X₁-1) :|: 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁) -> (X₀,X₁) :|: X₁ ≤ 0 ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁
entry: t₆: l0(X₀, X₁) → l3(X₀, X₁)
results in twn-loop: twn:Inv: [0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁) -> (X₀,X₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₁ ≤ 0
order: [X₀; X₁]
closed-form:
X₀: X₀
X₁: X₁

Termination: true
Formula:

X₀ < X₁ ∧ 1 < X₁ ∧ 1 < X₀ ∧ X₁ < 0
∨ X₀ < X₁ ∧ 1 < X₁ ∧ 1 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ X₀ < X₁ ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₁ < 0
∨ X₀ < X₁ ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ X₀ < X₁ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀ ∧ X₁ < 0
∨ X₀ < X₁ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ X₀ < X₁ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₁ < 0
∨ X₀ < X₁ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 < X₁ ∧ 1 < X₀ ∧ X₁ < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 < X₁ ∧ 1 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₁ < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀ ∧ X₁ < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₁ < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁

relevant size-bounds w.r.t. t₄:
Runtime-bound of t₄: 2⋅X₁+4 {O(n)}
Results in: 12⋅X₁+24 {O(n)}

order: [X₀; X₁]
closed-form:
X₀: X₀
X₁: X₁

Termination: true
Formula:

X₁ < 0 ∧ X₀ < X₁ ∧ 1 < X₁ ∧ 1 < X₀
∨ X₁ < 0 ∧ X₀ < X₁ ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 0 ∧ X₀ < X₁ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀
∨ X₁ < 0 ∧ X₀ < X₁ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 0 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 < X₁ ∧ 1 < X₀
∨ X₁ < 0 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 0 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀
∨ X₁ < 0 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < X₁ ∧ 1 < X₁ ∧ 1 < X₀
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < X₁ ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < X₁ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < X₁ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 < X₁ ∧ 1 < X₀
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1

relevant size-bounds w.r.t. t₆:
Runtime-bound of t₆: 1 {O(1)}
Results in: 6 {O(1)}

12⋅X₁+30 {O(n)}

All Bounds

Timebounds

Overall timebound:14⋅X₀+14⋅X₁+71 {O(n)}
t₆: 1 {O(1)}
t₂: 2⋅X₀+4 {O(n)}
t₃: 12⋅X₀+30 {O(n)}
t₄: 2⋅X₁+4 {O(n)}
t₅: 12⋅X₁+30 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}

Costbounds

Overall costbound: 14⋅X₀+14⋅X₁+71 {O(n)}
t₆: 1 {O(1)}
t₂: 2⋅X₀+4 {O(n)}
t₃: 12⋅X₀+30 {O(n)}
t₄: 2⋅X₁+4 {O(n)}
t₅: 12⋅X₁+30 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}

Sizebounds

t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₃, X₀: 0 {O(1)}
t₃, X₁: X₁ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: 0 {O(1)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}