Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l6(X₀, X₁, X₂)
t₄: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: 1 ≤ X₂
t₅: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₂ ≤ 0
t₆: l2(X₀, X₁, X₂) → l1(X₀, X₁, X₂-1)
t₇: l3(X₀, X₁, X₂) → l4(X₀, X₁-1, X₂)
t₂: l4(X₀, X₁, X₂) → l1(X₀, X₁, X₀) :|: 1 ≤ X₁
t₃: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ 0
t₈: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂)
t₁: l6(X₀, X₁, X₂) → l4(X₁, X₀, X₂)
Preprocessing
Found invariant X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₁ ≤ 0 for location l7
Found invariant X₁ ≤ 0 for location l5
Found invariant X₂ ≤ X₀ ∧ 1 ≤ X₁ for location l1
Found invariant X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l6(X₀, X₁, X₂)
t₄: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁
t₅: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁
t₆: l2(X₀, X₁, X₂) → l1(X₀, X₁, X₂-1) :|: X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l3(X₀, X₁, X₂) → l4(X₀, X₁-1, X₂) :|: X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁
t₂: l4(X₀, X₁, X₂) → l1(X₀, X₁, X₀) :|: 1 ≤ X₁
t₃: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ 0
t₈: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: X₁ ≤ 0
t₁: l6(X₀, X₁, X₂) → l4(X₁, X₀, X₂)
Analysing control-flow refined program
Found invariant 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l2___6
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___2
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___4
Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___7
Found invariant X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ for location n_l1___10
Found invariant X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___3
Found invariant X₁ ≤ 0 for location l7
Found invariant X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___9
Found invariant X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l3___8
Found invariant X₁ ≤ 0 for location l5
Found invariant X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___1
Found invariant 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l2___6
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___2
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___4
Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___7
Found invariant X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ for location n_l1___10
Found invariant X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___3
Found invariant X₁ ≤ 0 for location l7
Found invariant X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___9
Found invariant X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l3___8
Found invariant X₁ ≤ 0 for location l5
Found invariant X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___1
Time-Bound by TWN-Loops:
TWN-Loops: t₁₉₅ 4⋅X₀+14 {O(n)}
TWN-Loops:
entry: t₁₉₇: n_l1___10(X₀, X₁, X₂) → n_l3___8(X₀, X₁, X₂) :|: 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
results in twn-loop: twn:Inv: [X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₀+1 ≤ X₁ ∧ X₀ ≤ 0 ∧ X₀ ≤ 0 ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 0 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0] , (X₀,X₁,X₂) -> (X₀,X₁-1,X₀) :|: X₀ ≤ 0 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ 0 ∧ X₀ ≤ 0 ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ 0 ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ 0 ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ 0 ∧ 2 ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 ≤ X₁ ∧ 0 ≤ 0 ∧ 2 ≤ X₁ ∧ X₀ ≤ 0
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: [[n == 0]] * X₂ + [[n != 0]] * X₀
Termination: true
Formula:
X₀ < 0 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ < 0 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < X₁ ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 0 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ < 0 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 0 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₁ ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 < 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 < 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 2⋅X₀ ≤ 0 ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀
Stabilization-Threshold for: 2 ≤ X₁
alphas_abs: 2+X₁
M: 0
N: 1
Bound: 2⋅X₁+6 {O(n)}
Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: 1+X₁
M: 0
N: 1
Bound: 2⋅X₁+4 {O(n)}
relevant size-bounds w.r.t. t₁₉₇:
X₁: X₀ {O(n)}
Runtime-bound of t₁₉₇: 1 {O(1)}
Results in: 4⋅X₀+14 {O(n)}
4⋅X₀+14 {O(n)}
Time-Bound by TWN-Loops:
TWN-Loops: t₂₀₄ 4⋅X₀+14 {O(n)}
relevant size-bounds w.r.t. t₁₉₇:
X₁: X₀ {O(n)}
Runtime-bound of t₁₉₇: 1 {O(1)}
Results in: 4⋅X₀+14 {O(n)}
4⋅X₀+14 {O(n)}
Time-Bound by TWN-Loops:
TWN-Loops: t₂₀₆ 4⋅X₀+14 {O(n)}
relevant size-bounds w.r.t. t₁₉₇:
X₁: X₀ {O(n)}
Runtime-bound of t₁₉₇: 1 {O(1)}
Results in: 4⋅X₀+14 {O(n)}
4⋅X₀+14 {O(n)}
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₄: inf {Infinity}
t₅: inf {Infinity}
t₆: inf {Infinity}
t₇: inf {Infinity}
t₂: inf {Infinity}
t₃: 1 {O(1)}
t₈: 1 {O(1)}
t₁: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₄: inf {Infinity}
t₅: inf {Infinity}
t₆: inf {Infinity}
t₇: inf {Infinity}
t₂: inf {Infinity}
t₃: 1 {O(1)}
t₈: 1 {O(1)}
t₁: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₄, X₀: X₁ {O(n)}
t₄, X₁: X₀ {O(n)}
t₄, X₂: 2⋅X₁ {O(n)}
t₅, X₀: X₁ {O(n)}
t₅, X₁: X₀ {O(n)}
t₅, X₂: 4⋅X₁ {O(n)}
t₆, X₀: X₁ {O(n)}
t₆, X₁: X₀ {O(n)}
t₆, X₂: 2⋅X₁ {O(n)}
t₇, X₀: X₁ {O(n)}
t₇, X₁: X₀ {O(n)}
t₇, X₂: 4⋅X₁ {O(n)}
t₂, X₀: X₁ {O(n)}
t₂, X₁: X₀ {O(n)}
t₂, X₂: 2⋅X₁ {O(n)}
t₃, X₀: 2⋅X₁ {O(n)}
t₃, X₁: 2⋅X₀ {O(n)}
t₃, X₂: 4⋅X₁+X₂ {O(n)}
t₈, X₀: 2⋅X₁ {O(n)}
t₈, X₁: 2⋅X₀ {O(n)}
t₈, X₂: 4⋅X₁+X₂ {O(n)}
t₁, X₀: X₁ {O(n)}
t₁, X₁: X₀ {O(n)}
t₁, X₂: X₂ {O(n)}