Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆
Temp_Vars: B1, C1, D1, E1, F1, G1, H1, I1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₅ ≤ 50
t₃₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 51 ≤ X₅
t₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₂ ≤ X₀
t₃₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂
t₃₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂+1, X₃, B1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₄₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l13(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆+B1, B1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀
t₃₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₃
t₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, B1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₅ ≤ 3
t₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 4 ≤ X₅
t₄₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₃
t₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l15(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀
t₁₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1-C1, D1, E1, F1, G1, H1, I1, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₈ ≤ X₉ ∧ D1+X₁₁+1 ≤ E1
t₁₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1-C1, D1, E1, F1, G1, H1, I1, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₈ ≤ X₉ ∧ 1+E1 ≤ D1+X₁₁
t₂₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, C1, C1+X₁₁, D1, X₂₀, X₂₁, X₂₂, E1, F1, G1, H1) :|: 1+X₈ ≤ X₉
t₁₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₈
t₁₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, C1, D1, E1, F1) :|: 0 ≤ X₂₀
t₂₁: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, X₁₇, X₁₈, -X₁₉, X₂₀, X₂₁, X₂₂, C1, D1, E1, F1) :|: X₂₀+1 ≤ 0
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₂ ≤ X₀
t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂ ∧ X₆+1 ≤ 0
t₃₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂ ∧ 1 ≤ X₆
t₃₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁ ≤ X₃
t₃₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₁
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₀
t₂₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₁
t₃₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₁
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁ ≤ X₂
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₀
t₂₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₁
t₃₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₃
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, D1, B1, C1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀ ∧ X₅ ≤ 4
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, G1, B1, C1, D1, D1+C1, E1, F1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ E1+C1+1 ≤ F1
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, G1, B1, C1, D1, D1+C1, E1, F1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1+F1 ≤ E1+C1
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, F1, B1, C1, D1, E1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ D1+C1+1 ≤ E1
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, F1, B1, C1, D1, E1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1+E1 ≤ D1+C1
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, B1, C1, D1, D1+C1, E1, E1+C1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀ ∧ 5 ≤ X₅
t₂₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₂₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀

Preprocessing

Cut unsatisfiable transition t₃: l11→l11

Cut unsatisfiable transition t₂₅: l7→l7

Eliminate variables {H1,I1,X₄,X₇,X₁₀,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆} that do not contribute to the problem

Found invariant 1+X₀ ≤ X₂ for location l11

Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant X₂ ≤ X₀ for location l15

Found invariant 1 ≤ 0 for location l17

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l13

Found invariant 1 ≤ 0 for location l8

Found invariant 1+X₀ ≤ X₂ for location l1

Found invariant 1 ≤ 0 for location l10

Found invariant 1 ≤ 0 for location l16

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l9

Found invariant 1+X₀ ≤ X₂ for location l3

Found invariant 1 ≤ 0 for location l14

Cut unsatisfiable transition t₉₅: l10→l8

Cut unsatisfiable transition t₉₆: l10→l9

Cut unsatisfiable transition t₁₀₀: l13→l13

Cut unsatisfiable transition t₁₀₁: l13→l2

Cut unsatisfiable transition t₁₀₂: l14→l10

Cut unsatisfiable transition t₁₀₃: l14→l10

Cut unsatisfiable transition t₁₀₆: l16→l8

Cut unsatisfiable transition t₁₀₇: l16→l17

Cut unsatisfiable transition t₁₀₈: l16→l17

Cut unsatisfiable transition t₁₀₉: l16→l6

Cut unsatisfiable transition t₁₁₀: l17→l6

Cut unsatisfiable transition t₁₁₁: l17→l6

Cut unsatisfiable transition t₁₁₂: l2→l13

Cut unsatisfiable transition t₁₁₃: l2→l14

Cut unsatisfiable transition t₁₁₄: l2→l14

Cut unsatisfiable transition t₁₁₆: l4→l4

Cut unsatisfiable transition t₁₁₇: l4→l5

Cut unsatisfiable transition t₁₁₈: l5→l5

Cut unsatisfiable transition t₁₁₉: l5→l7

Cut unsatisfiable transition t₁₂₀: l6→l6

Cut unsatisfiable transition t₁₂₁: l6→l4

Cut unsatisfiable transition t₁₂₂: l7→l8

Cut unsatisfiable transition t₁₂₃: l8→l8

Cut unsatisfiable transition t₁₂₄: l8→l16

Cut unsatisfiable transition t₁₂₅: l8→l16

Cut unsatisfiable transition t₁₂₆: l8→l16

Cut unsatisfiable transition t₁₂₇: l8→l16

Cut unsatisfiable transition t₁₂₈: l8→l16

Cut unsatisfiable transition t₁₂₉: l8→l10

Cut unsatisfiable transition t₁₃₀: l9→l9

Cut unsatisfiable transition t₁₃₁: l9→l1

Cut unreachable locations [l10; l13; l14; l16; l17; l4; l5; l6; l7; l8; l9] from the program graph

Eliminate variables {X₁,X₈,X₉,X₁₁,X₂₀} that do not contribute to the problem

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₂, X₃, X₅, X₆
Temp_Vars:
Locations: l0, l1, l11, l12, l15, l2, l3
Transitions:
t₂₃₇: l0(X₀, X₂, X₃, X₅, X₆) → l12(X₀, X₂, X₃, X₅, X₆)
t₂₃₈: l1(X₀, X₂, X₃, X₅, X₆) → l2(X₀, X₂, X₃, X₅, 0) :|: X₅ ≤ 50 ∧ 1+X₀ ≤ X₂
t₂₃₉: l1(X₀, X₂, X₃, X₅, X₆) → l3(X₀, X₂, X₃, X₅, X₆) :|: 51 ≤ X₅ ∧ 1+X₀ ≤ X₂
t₂₄₀: l11(X₀, X₂, X₃, X₅, X₆) → l1(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₂₄₂: l12(X₀, X₂, X₃, X₅, X₆) → l11(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂
t₂₄₁: l12(X₀, X₂, X₃, X₅, X₆) → l15(X₀, X₂, X₃, X₅, X₆) :|: X₂ ≤ X₀
t₂₄₄: l15(X₀, X₂, X₃, X₅, X₆) → l12(X₀, X₂+1, X₃, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
t₂₄₃: l15(X₀, X₂, X₃, X₅, X₆) → l15(X₀, X₂, X₃+1, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₂ ≤ X₀
t₂₄₅: l2(X₀, X₂, X₃, X₅, X₆) → l3(X₀, X₂, X₃, X₅, 0) :|: X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂

Analysing control-flow refined program

Found invariant 1+X₀ ≤ X₂ for location l11

Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l2

Found invariant X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ for location n_l12___3

Found invariant X₂ ≤ X₀ for location n_l15___4

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ for location n_l15___2

Found invariant 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location n_l15___1

Found invariant 1+X₀ ≤ X₂ for location l1

Found invariant 1+X₀ ≤ X₂ for location l3

Found invariant 1+X₀ ≤ X₂ for location l11

Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l2

Found invariant X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ for location n_l12___3

Found invariant X₂ ≤ X₀ for location n_l15___4

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ for location n_l15___2

Found invariant 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location n_l15___1

Found invariant 1+X₀ ≤ X₂ for location l1

Found invariant 1+X₀ ≤ X₂ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₃₂₆ 4⋅X₀+4⋅X₃+13 {O(n)}

TWN-Loops:

entry: t₃₂₈: n_l15___4(X₀, X₂, X₃, X₅, X₆) → n_l15___2(X₀, X₂, X₃+1, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀
results in twn-loop: twn:Inv: [X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀] , (X₀,X₂,X₃,X₅,X₆) -> (X₀,X₂,X₃+1,X₅,X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀
order: [X₀; X₂; X₃]
closed-form:
X₀: X₀
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1

Termination: true
Formula:

X₂ < X₀ ∧ 1 < 0
∨ X₂ < X₀ ∧ 1 < 0 ∧ X₃ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃
∨ X₂ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₂ < X₀ ∧ X₃ < X₀ ∧ X₃ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃
∨ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0
∨ X₂ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0 ∧ X₃ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₃ < X₀ ∧ X₃ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃

Stabilization-Threshold for: X₃ ≤ X₀
alphas_abs: X₀+X₃
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₃+2 {O(n)}
Stabilization-Threshold for: X₃ ≤ 1+X₀
alphas_abs: 1+X₀+X₃
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₃+4 {O(n)}

relevant size-bounds w.r.t. t₃₂₈:
X₀: X₀ {O(n)}
X₃: X₃+1 {O(n)}
Runtime-bound of t₃₂₈: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₃+13 {O(n)}

4⋅X₀+4⋅X₃+13 {O(n)}

Found invariant 1+X₀ ≤ X₂ for location l11

Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l2

Found invariant X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ for location n_l12___3

Found invariant X₂ ≤ X₀ for location n_l15___4

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ for location n_l15___2

Found invariant 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location n_l15___1

Found invariant 1+X₀ ≤ X₂ for location l1

Found invariant 1+X₀ ≤ X₂ for location l3

Found invariant 1+X₀ ≤ X₂ for location l11

Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l2

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ for location n_l12___3

Found invariant X₂ ≤ X₀ for location n_l15___4

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ for location n_l15___2

Found invariant X₃ ≤ 1+X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location n_l15___1

Found invariant 1+X₀ ≤ X₂ for location l1

Found invariant 1+X₀ ≤ X₂ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₃₂₂ 12⋅X₀+12⋅X₂+30 {O(n)}

TWN-Loops:

entry: t₃₂₇: n_l15___4(X₀, X₂, X₃, X₅, X₆) → n_l12___3(X₀, X₂+1, X₃, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
results in twn-loop: twn:Inv: [X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀] , (X₀,X₂,X₃,X₅,X₆) -> (X₀,X₂+1,X₃,X₅,X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃
entry: t₃₂₅: n_l15___2(X₀, X₂, X₃, X₅, X₆) → n_l12___3(X₀, X₂+1, X₃, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀
results in twn-loop: twn:Inv: [X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀] , (X₀,X₂,X₃,X₅,X₆) -> (X₀,X₂+1,X₃,X₅,X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃
order: [X₀; X₂; X₃]
closed-form:
X₀: X₀
X₂: X₂ + [[n != 0]] * n^1
X₃: X₃

Termination: true
Formula:

1+X₀ < X₃ ∧ 1 < 0
∨ 1+X₀ < X₃ ∧ 1 < 0 ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ < X₃ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1+X₀ < X₃ ∧ X₂ < X₀ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₃ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0
∨ 1+X₀ < X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0 ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ < X₀ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂

Stabilization-Threshold for: X₂ ≤ X₀
alphas_abs: X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+2 {O(n)}
Stabilization-Threshold for: X₂ ≤ 1+X₀
alphas_abs: 1+X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}

relevant size-bounds w.r.t. t₃₂₇:
X₀: X₀ {O(n)}
X₂: X₂+1 {O(n)}
Runtime-bound of t₃₂₇: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₂+13 {O(n)}

order: [X₀; X₂; X₃]
closed-form:
X₀: X₀
X₂: X₂ + [[n != 0]] * n^1
X₃: X₃

Termination: true
Formula:

1+X₀ < X₃ ∧ 1 < 0
∨ 1+X₀ < X₃ ∧ 1 < 0 ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ < X₃ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1+X₀ < X₃ ∧ X₂ < X₀ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₃ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0
∨ 1+X₀ < X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0 ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ < X₀ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂

Stabilization-Threshold for: X₂ ≤ X₀
alphas_abs: X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+2 {O(n)}
Stabilization-Threshold for: X₂ ≤ 1+X₀
alphas_abs: 1+X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}

relevant size-bounds w.r.t. t₃₂₅:
X₀: 2⋅X₀ {O(n)}
X₂: 2⋅X₂+2 {O(n)}
Runtime-bound of t₃₂₅: 1 {O(1)}
Results in: 8⋅X₀+8⋅X₂+17 {O(n)}

12⋅X₀+12⋅X₂+30 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₃₂₄ 12⋅X₀+12⋅X₂+30 {O(n)}

relevant size-bounds w.r.t. t₃₂₇:
X₀: X₀ {O(n)}
X₂: X₂+1 {O(n)}
Runtime-bound of t₃₂₇: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₂+13 {O(n)}

relevant size-bounds w.r.t. t₃₂₅:
X₀: 2⋅X₀ {O(n)}
X₂: 2⋅X₂+2 {O(n)}
Runtime-bound of t₃₂₅: 1 {O(1)}
Results in: 8⋅X₀+8⋅X₂+17 {O(n)}

12⋅X₀+12⋅X₂+30 {O(n)}

CFR: Improvement to new bound with the following program:

new bound:

24⋅X₂+28⋅X₀+4⋅X₃+73 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₂, X₃, X₅, X₆
Temp_Vars:
Locations: l0, l1, l11, l12, l2, l3, n_l12___3, n_l15___1, n_l15___2, n_l15___4
Transitions:
t₂₃₇: l0(X₀, X₂, X₃, X₅, X₆) → l12(X₀, X₂, X₃, X₅, X₆)
t₂₃₈: l1(X₀, X₂, X₃, X₅, X₆) → l2(X₀, X₂, X₃, X₅, 0) :|: X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₂₃₉: l1(X₀, X₂, X₃, X₅, X₆) → l3(X₀, X₂, X₃, X₅, X₆) :|: 51 ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₂₄₀: l11(X₀, X₂, X₃, X₅, X₆) → l1(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₂₄₂: l12(X₀, X₂, X₃, X₅, X₆) → l11(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂
t₃₂₃: l12(X₀, X₂, X₃, X₅, X₆) → n_l15___4(X₀, X₂, X₃, X₅, X₆) :|: X₂ ≤ X₀
t₂₄₅: l2(X₀, X₂, X₃, X₅, X₆) → l3(X₀, X₂, X₃, X₅, 0) :|: X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂
t₃₃₅: n_l12___3(X₀, X₂, X₃, X₅, X₆) → l11(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀
t₃₂₂: n_l12___3(X₀, X₂, X₃, X₅, X₆) → n_l15___1(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀
t₃₂₄: n_l15___1(X₀, X₂, X₃, X₅, X₆) → n_l12___3(X₀, X₂+1, X₃, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
t₃₂₅: n_l15___2(X₀, X₂, X₃, X₅, X₆) → n_l12___3(X₀, X₂+1, X₃, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀
t₃₂₆: n_l15___2(X₀, X₂, X₃, X₅, X₆) → n_l15___2(X₀, X₂, X₃+1, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀
t₃₂₇: n_l15___4(X₀, X₂, X₃, X₅, X₆) → n_l12___3(X₀, X₂+1, X₃, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
t₃₂₈: n_l15___4(X₀, X₂, X₃, X₅, X₆) → n_l15___2(X₀, X₂, X₃+1, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀

All Bounds

Timebounds

Overall timebound:24⋅X₂+28⋅X₀+4⋅X₃+84 {O(n)}
t₂₃₇: 1 {O(1)}
t₂₃₈: 1 {O(1)}
t₂₃₉: 1 {O(1)}
t₂₄₀: 1 {O(1)}
t₂₄₂: 1 {O(1)}
t₃₂₃: 1 {O(1)}
t₂₄₅: 1 {O(1)}
t₃₂₂: 12⋅X₀+12⋅X₂+30 {O(n)}
t₃₃₅: 1 {O(1)}
t₃₂₄: 12⋅X₀+12⋅X₂+30 {O(n)}
t₃₂₅: 1 {O(1)}
t₃₂₆: 4⋅X₀+4⋅X₃+13 {O(n)}
t₃₂₇: 1 {O(1)}
t₃₂₈: 1 {O(1)}

Costbounds

Overall costbound: 24⋅X₂+28⋅X₀+4⋅X₃+84 {O(n)}
t₂₃₇: 1 {O(1)}
t₂₃₈: 1 {O(1)}
t₂₃₉: 1 {O(1)}
t₂₄₀: 1 {O(1)}
t₂₄₂: 1 {O(1)}
t₃₂₃: 1 {O(1)}
t₂₄₅: 1 {O(1)}
t₃₂₂: 12⋅X₀+12⋅X₂+30 {O(n)}
t₃₃₅: 1 {O(1)}
t₃₂₄: 12⋅X₀+12⋅X₂+30 {O(n)}
t₃₂₅: 1 {O(1)}
t₃₂₆: 4⋅X₀+4⋅X₃+13 {O(n)}
t₃₂₇: 1 {O(1)}
t₃₂₈: 1 {O(1)}

Sizebounds

t₂₃₇, X₀: X₀ {O(n)}
t₂₃₇, X₂: X₂ {O(n)}
t₂₃₇, X₃: X₃ {O(n)}
t₂₃₇, X₅: X₅ {O(n)}
t₂₃₇, X₆: X₆ {O(n)}
t₂₃₈, X₀: 7⋅X₀ {O(n)}
t₂₃₈, X₂: 12⋅X₀+19⋅X₂+36 {O(n)}
t₂₃₈, X₃: 15⋅X₃+8⋅X₀+30 {O(n)}
t₂₃₈, X₅: 7⋅X₅ {O(n)}
t₂₃₈, X₆: 0 {O(1)}
t₂₃₉, X₀: 7⋅X₀ {O(n)}
t₂₃₉, X₂: 12⋅X₀+19⋅X₂+36 {O(n)}
t₂₃₉, X₃: 15⋅X₃+8⋅X₀+30 {O(n)}
t₂₃₉, X₅: 7⋅X₅ {O(n)}
t₂₃₉, X₆: 7⋅X₆ {O(n)}
t₂₄₀, X₀: 7⋅X₀ {O(n)}
t₂₄₀, X₂: 12⋅X₀+19⋅X₂+36 {O(n)}
t₂₄₀, X₃: 15⋅X₃+8⋅X₀+30 {O(n)}
t₂₄₀, X₅: 7⋅X₅ {O(n)}
t₂₄₀, X₆: 7⋅X₆ {O(n)}
t₂₄₂, X₀: X₀ {O(n)}
t₂₄₂, X₂: X₂ {O(n)}
t₂₄₂, X₃: X₃ {O(n)}
t₂₄₂, X₅: X₅ {O(n)}
t₂₄₂, X₆: X₆ {O(n)}
t₃₂₃, X₀: X₀ {O(n)}
t₃₂₃, X₂: X₂ {O(n)}
t₃₂₃, X₃: X₃ {O(n)}
t₃₂₃, X₅: X₅ {O(n)}
t₃₂₃, X₆: X₆ {O(n)}
t₂₄₅, X₀: 7⋅X₀ {O(n)}
t₂₄₅, X₂: 12⋅X₀+19⋅X₂+36 {O(n)}
t₂₄₅, X₃: 15⋅X₃+8⋅X₀+30 {O(n)}
t₂₄₅, X₅: 7⋅X₅ {O(n)}
t₂₄₅, X₆: 0 {O(1)}
t₃₂₂, X₀: 3⋅X₀ {O(n)}
t₃₂₂, X₂: 12⋅X₀+15⋅X₂+33 {O(n)}
t₃₂₂, X₃: 4⋅X₀+7⋅X₃+15 {O(n)}
t₃₂₂, X₅: 3⋅X₅ {O(n)}
t₃₂₂, X₆: 3⋅X₆ {O(n)}
t₃₃₅, X₀: 6⋅X₀ {O(n)}
t₃₃₅, X₂: 12⋅X₀+18⋅X₂+36 {O(n)}
t₃₃₅, X₃: 14⋅X₃+8⋅X₀+30 {O(n)}
t₃₃₅, X₅: 6⋅X₅ {O(n)}
t₃₃₅, X₆: 6⋅X₆ {O(n)}
t₃₂₄, X₀: 3⋅X₀ {O(n)}
t₃₂₄, X₂: 12⋅X₀+15⋅X₂+33 {O(n)}
t₃₂₄, X₃: 4⋅X₀+7⋅X₃+15 {O(n)}
t₃₂₄, X₅: 3⋅X₅ {O(n)}
t₃₂₄, X₆: 3⋅X₆ {O(n)}
t₃₂₅, X₀: 2⋅X₀ {O(n)}
t₃₂₅, X₂: 2⋅X₂+2 {O(n)}
t₃₂₅, X₃: 4⋅X₀+6⋅X₃+15 {O(n)}
t₃₂₅, X₅: 2⋅X₅ {O(n)}
t₃₂₅, X₆: 2⋅X₆ {O(n)}
t₃₂₆, X₀: X₀ {O(n)}
t₃₂₆, X₂: X₂ {O(n)}
t₃₂₆, X₃: 4⋅X₀+5⋅X₃+14 {O(n)}
t₃₂₆, X₅: X₅ {O(n)}
t₃₂₆, X₆: X₆ {O(n)}
t₃₂₇, X₀: X₀ {O(n)}
t₃₂₇, X₂: X₂+1 {O(n)}
t₃₂₇, X₃: X₃ {O(n)}
t₃₂₇, X₅: X₅ {O(n)}
t₃₂₇, X₆: X₆ {O(n)}
t₃₂₈, X₀: X₀ {O(n)}
t₃₂₈, X₂: X₂ {O(n)}
t₃₂₈, X₃: X₃+1 {O(n)}
t₃₂₈, X₅: X₅ {O(n)}
t₃₂₈, X₆: X₆ {O(n)}