Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₁₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₂, X₂, X₀, X₅, X₅, X₇, X₇)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄-1, X₅, X₆-1, X₇) :|: 2 ≤ X₆ ∧ 2 ≤ X₄ ∧ 1 ≤ X₆ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ X₀ ∧ X₆+X₄ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 0, X₅, X₆-1, X₇) :|: 2 ≤ X₆ ∧ X₄ ≤ 1 ∧ 1 ≤ X₆ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ X₀ ∧ X₆+X₄ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₄, X₂, X₃, 1+X₄, X₅, X₆-1, X₇) :|: 2 ≤ X₆ ∧ X₄+2 ≤ X₀ ∧ 1 ≤ X₆ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ X₀ ∧ X₆+X₄ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₄, X₂, X₃, 0, X₅, X₆-1, X₇) :|: 2 ≤ X₆ ∧ X₀ ≤ X₄+1 ∧ 1 ≤ X₆ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ X₀ ∧ X₆+X₄ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄-1, X₅, X₆-1, X₇) :|: 2 ≤ X₄ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₅, X₆-1, X₇) :|: X₄ ≤ 1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₄, X₂, X₃, 1+X₄, X₅, X₆-1, X₇) :|: X₄+2 ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₁₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₄, X₂, X₃, 0, X₅, X₆-1, X₇) :|: 1 ≤ X₀ ∧ 2 ≤ X₀ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₄+1 ≤ X₀ ∧ X₀ ≤ X₄+1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 0, X₅, X₃-1, X₇) :|: 2 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, 0, X₂, X₃, 1, X₅, X₃-1, X₇) :|: 2 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆
t₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₅, X₃, X₇) :|: X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₅, X₃-1, X₇) :|: X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, 0, X₂, X₃, 0, X₅, X₃-1, X₇) :|: X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆
Cut unsatisfiable transition t₁₁: l1→l1
Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l2
Found invariant 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀ for location l1
Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l3
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₁₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₂, X₂, X₀, X₅, X₅, X₇, X₇)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄-1, X₅, X₆-1, X₇) :|: 2 ≤ X₆ ∧ 2 ≤ X₄ ∧ 1 ≤ X₆ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ X₀ ∧ X₆+X₄ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 0, X₅, X₆-1, X₇) :|: 2 ≤ X₆ ∧ X₄ ≤ 1 ∧ 1 ≤ X₆ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ X₀ ∧ X₆+X₄ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₄, X₂, X₃, 1+X₄, X₅, X₆-1, X₇) :|: 2 ≤ X₆ ∧ X₄+2 ≤ X₀ ∧ 1 ≤ X₆ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ X₀ ∧ X₆+X₄ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄-1, X₅, X₆-1, X₇) :|: 2 ≤ X₄ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₅, X₆-1, X₇) :|: X₄ ≤ 1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₄, X₂, X₃, 1+X₄, X₅, X₆-1, X₇) :|: X₄+2 ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀
t₁₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₄, X₂, X₃, 0, X₅, X₆-1, X₇) :|: 1 ≤ X₀ ∧ 2 ≤ X₀ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₄+1 ≤ X₀ ∧ X₀ ≤ X₄+1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 0, X₅, X₃-1, X₇) :|: 2 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, 0, X₂, X₃, 1, X₅, X₃-1, X₇) :|: 2 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₅, X₃, X₇) :|: X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₅, X₃-1, X₇) :|: X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, 0, X₂, X₃, 0, X₅, X₃-1, X₇) :|: X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
Cut unsatisfiable transition t₆: l1→l2
Cut unsatisfiable transition t₂₃₅: n_l1___1→l2
Cut unsatisfiable transition t₂₅₃: n_l1___1→l2
Cut unsatisfiable transition t₂₇₁: n_l1___1→l2
Cut unsatisfiable transition t₂₄₈: n_l1___2→l2
Cut unsatisfiable transition t₂₃₇: n_l1___3→l2
Cut unsatisfiable transition t₂₄₉: n_l1___3→l2
Cut unsatisfiable transition t₂₅₅: n_l1___3→l2
Cut unsatisfiable transition t₂₇₃: n_l1___3→l2
Cut unsatisfiable transition t₂₃₂: n_l1___4→l2
Cut unsatisfiable transition t₂₅₀: n_l1___4→l2
Cut unsatisfiable transition t₂₆₈: n_l1___4→l2
Cut unsatisfiable transition t₂₃₃: n_l1___5→l2
Cut unsatisfiable transition t₂₅₁: n_l1___5→l2
Cut unsatisfiable transition t₂₆₉: n_l1___5→l2
Cut unsatisfiable transition t₂₃₄: n_l1___6→l2
Cut unsatisfiable transition t₂₅₂: n_l1___6→l2
Cut unsatisfiable transition t₂₇₀: n_l1___6→l2
Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l2
Found invariant 2+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₃ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₀ for location n_l1___6
Found invariant 3+X₆ ≤ X₃ ∧ 3+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 5 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ 3+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ 3+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 4 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₁ ≤ X₃ ∧ 8 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l1___4
Found invariant 3+X₆ ≤ X₃ ∧ 3+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 5 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 3+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 4 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 3+X₁ ≤ X₃ ∧ 8 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l1___2
Found invariant 4+X₆ ≤ X₃ ∧ 4+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ 6 ≤ X₀+X₆ ∧ 2+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 7 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 7 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 3+X₁ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l1___3
Found invariant 2+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ 2+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ 2+X₆ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ 2+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___5
Found invariant 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ 1+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀ for location l1
Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l3
Found invariant 2+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___1
Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l2
Found invariant 2+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₃ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₀ for location n_l1___6
Found invariant 3+X₆ ≤ X₃ ∧ 3+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 5 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ 3+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ 3+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 4 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₁ ≤ X₃ ∧ 8 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l1___4
Found invariant 4+X₆ ≤ X₃ ∧ 4+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 6 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ 6 ≤ X₀+X₆ ∧ 3+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 3+X₁ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l1___2
Found invariant 4+X₆ ≤ X₃ ∧ 4+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ 6 ≤ X₀+X₆ ∧ 2+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 7 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 7 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 3+X₁ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l1___3
Found invariant 2+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ 2+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ 2+X₆ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ 2+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___5
Found invariant 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ 1+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀ for location l1
Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l3
Found invariant 3+X₆ ≤ X₃ ∧ 3+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 5 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 4 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 8 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l1___1
Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l2
Found invariant 2+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₃ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₀ for location n_l1___6
Found invariant 3+X₆ ≤ X₃ ∧ 3+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 5 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ 3+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ 3+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 4 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₁ ≤ X₃ ∧ 8 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l1___4
Found invariant 4+X₆ ≤ X₃ ∧ 4+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 6 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ 6 ≤ X₀+X₆ ∧ 3+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 3+X₁ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l1___2
Found invariant 4+X₆ ≤ X₃ ∧ 4+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ 6 ≤ X₀+X₆ ∧ 2+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 7 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 7 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 3+X₁ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l1___3
Found invariant 2+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ 2+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ 2+X₆ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ 2+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___5
Found invariant 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ 1+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀ for location l1
Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l3
Found invariant 3+X₆ ≤ X₃ ∧ 3+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 5 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 4 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 8 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l1___1
Overall timebound:inf {Infinity}
t₁₃: 1 {O(1)}
t₅: inf {Infinity}
t₆: 1 {O(1)}
t₇: inf {Infinity}
t₈: 1 {O(1)}
t₉: inf {Infinity}
t₁₀: 1 {O(1)}
t₁₂: 1 {O(1)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
Overall costbound: inf {Infinity}
t₁₃: 1 {O(1)}
t₅: inf {Infinity}
t₆: 1 {O(1)}
t₇: inf {Infinity}
t₈: 1 {O(1)}
t₉: inf {Infinity}
t₁₀: 1 {O(1)}
t₁₂: 1 {O(1)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₂ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₀ {O(n)}
t₁₃, X₄: X₅ {O(n)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: X₇ {O(n)}
t₁₃, X₇: X₇ {O(n)}
t₅, X₀: 4⋅X₀ {O(n)}
t₅, X₂: 4⋅X₂ {O(n)}
t₅, X₃: 4⋅X₀ {O(n)}
t₅, X₅: 4⋅X₅ {O(n)}
t₅, X₆: 4⋅X₀ {O(n)}
t₅, X₇: 4⋅X₇ {O(n)}
t₆, X₀: 8⋅X₀ {O(n)}
t₆, X₂: 8⋅X₂ {O(n)}
t₆, X₃: 8⋅X₀ {O(n)}
t₆, X₅: 8⋅X₅ {O(n)}
t₆, X₆: 0 {O(1)}
t₆, X₇: 8⋅X₇ {O(n)}
t₇, X₀: 4⋅X₀ {O(n)}
t₇, X₂: 4⋅X₂ {O(n)}
t₇, X₃: 4⋅X₀ {O(n)}
t₇, X₄: 0 {O(1)}
t₇, X₅: 4⋅X₅ {O(n)}
t₇, X₆: 4⋅X₀ {O(n)}
t₇, X₇: 4⋅X₇ {O(n)}
t₈, X₀: 14⋅X₀ {O(n)}
t₈, X₂: 14⋅X₂ {O(n)}
t₈, X₃: 14⋅X₀ {O(n)}
t₈, X₄: 0 {O(1)}
t₈, X₅: 14⋅X₅ {O(n)}
t₈, X₆: 0 {O(1)}
t₈, X₇: 14⋅X₇ {O(n)}
t₉, X₀: 4⋅X₀ {O(n)}
t₉, X₂: 4⋅X₂ {O(n)}
t₉, X₃: 4⋅X₀ {O(n)}
t₉, X₅: 4⋅X₅ {O(n)}
t₉, X₆: 4⋅X₀ {O(n)}
t₉, X₇: 4⋅X₇ {O(n)}
t₁₀, X₀: 13⋅X₀ {O(n)}
t₁₀, X₂: 13⋅X₂ {O(n)}
t₁₀, X₃: 13⋅X₀ {O(n)}
t₁₀, X₅: 13⋅X₅ {O(n)}
t₁₀, X₆: 0 {O(1)}
t₁₀, X₇: 13⋅X₇ {O(n)}
t₁₂, X₀: 5⋅X₀ {O(n)}
t₁₂, X₂: 5⋅X₂ {O(n)}
t₁₂, X₃: 5⋅X₀ {O(n)}
t₁₂, X₄: 0 {O(1)}
t₁₂, X₅: 5⋅X₅ {O(n)}
t₁₂, X₆: 0 {O(1)}
t₁₂, X₇: 5⋅X₇ {O(n)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₂ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₀ {O(n)}
t₀, X₄: 0 {O(1)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₀ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₂ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₀ {O(n)}
t₁, X₄: 0 {O(1)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₀ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: 1 {O(1)}
t₂, X₁: X₂ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: 1 {O(1)}
t₂, X₄: 0 {O(1)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: 0 {O(1)}
t₂, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: 0 {O(1)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₀ {O(n)}
t₃, X₄: 1 {O(1)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₀ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄, X₀: 1 {O(1)}
t₄, X₁: 0 {O(1)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: 1 {O(1)}
t₄, X₄: 0 {O(1)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: 0 {O(1)}
t₄, X₇: X₇ {O(n)}