Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃)
t₆: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 1 ≤ X₃
t₅: l1(X₀, X₁, X₂, X₃) → l4(X₂, X₃, X₂, X₃) :|: X₃ ≤ 0
t₇: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: E+1 ≤ 0
t₈: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 1 ≤ E
t₉: l2(X₀, X₁, X₂, X₃) → l4(X₂, X₃, X₂, X₃)
t₁₀: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 1, X₃-1)
t₂: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, X₁) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₃: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ 0
t₄: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: 2 ≤ X₀
t₁₁: l5(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₁: l6(X₀, X₁, X₂, X₃) → l4(1, X₀, X₂, X₃)
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l2
Found invariant X₀ ≤ 0 ∧ 0 ≤ X₀ for location l7
Found invariant X₀ ≤ 0 ∧ 0 ≤ X₀ for location l5
Found invariant X₃ ≤ X₁ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l1
Found invariant X₀ ≤ 1 ∧ 0 ≤ X₀ for location l4
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l3
Cut unsatisfiable transition t₄: l4→l5
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃)
t₆: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₅: l1(X₀, X₁, X₂, X₃) → l4(X₂, X₃, X₂, X₃) :|: X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₇: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: E+1 ≤ 0 ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 1 ≤ E ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉: l2(X₀, X₁, X₂, X₃) → l4(X₂, X₃, X₂, X₃) :|: X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₀: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 1, X₃-1) :|: X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₂: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, X₁) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
t₃: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
t₁₁: l5(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₁: l6(X₀, X₁, X₂, X₃) → l4(1, X₀, X₂, X₃)
Cut unsatisfiable transition t₃: l4→l5
Cut unsatisfiable transition t₃₉₁: n_l4___10→n_l1___1
Cut unsatisfiable transition t₄₁₀: n_l4___3→l5
Cut unsatisfiable transition t₄₁₁: n_l4___5→l5
Cut unsatisfiable transition t₃₉₅: n_l4___8→n_l1___2
Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___12
Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___6
Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___4
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___3
Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___7
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___2
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___11
Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 0 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___5
Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l7
Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l5
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___9
Found invariant X₀ ≤ 1 ∧ 1 ≤ X₀ for location l4
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l4___8
Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 0 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___1
Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l4___10
Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₅: inf {Infinity}
t₆: inf {Infinity}
t₇: inf {Infinity}
t₈: inf {Infinity}
t₉: inf {Infinity}
t₁₀: inf {Infinity}
t₂: inf {Infinity}
t₃: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁: 1 {O(1)}
Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₅: inf {Infinity}
t₆: inf {Infinity}
t₇: inf {Infinity}
t₈: inf {Infinity}
t₉: inf {Infinity}
t₁₀: inf {Infinity}
t₂: inf {Infinity}
t₃: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁: 1 {O(1)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₅, X₀: 1 {O(1)}
t₅, X₁: 2⋅X₀ {O(n)}
t₅, X₂: 1 {O(1)}
t₅, X₃: 4⋅X₀ {O(n)}
t₆, X₀: 1 {O(1)}
t₆, X₁: 2⋅X₀ {O(n)}
t₆, X₂: 1 {O(1)}
t₆, X₃: 2⋅X₀ {O(n)}
t₇, X₀: 1 {O(1)}
t₇, X₁: 2⋅X₀ {O(n)}
t₇, X₂: 1 {O(1)}
t₇, X₃: 2⋅X₀ {O(n)}
t₈, X₀: 1 {O(1)}
t₈, X₁: 2⋅X₀ {O(n)}
t₈, X₂: 1 {O(1)}
t₈, X₃: 2⋅X₀ {O(n)}
t₉, X₀: 1 {O(1)}
t₉, X₁: 2⋅X₀ {O(n)}
t₉, X₂: 1 {O(1)}
t₉, X₃: 2⋅X₀ {O(n)}
t₁₀, X₀: 1 {O(1)}
t₁₀, X₁: 2⋅X₀ {O(n)}
t₁₀, X₂: 1 {O(1)}
t₁₀, X₃: 2⋅X₀ {O(n)}
t₂, X₀: 1 {O(1)}
t₂, X₁: 2⋅X₀ {O(n)}
t₂, X₂: 0 {O(1)}
t₂, X₃: 2⋅X₀ {O(n)}
t₃, X₀: 0 {O(1)}
t₃, X₁: 4⋅X₀ {O(n)}
t₃, X₂: 2 {O(1)}
t₃, X₃: 6⋅X₀ {O(n)}
t₁₁, X₀: 0 {O(1)}
t₁₁, X₁: 4⋅X₀ {O(n)}
t₁₁, X₂: 2 {O(1)}
t₁₁, X₃: 6⋅X₀ {O(n)}
t₁, X₀: 1 {O(1)}
t₁, X₁: X₀ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}