Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃
Temp_Vars: O, P
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, 3, P, 0, 0, 3, P, 2, X₁₂, X₁₃) :|: P ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, 3, P, 0, 0, 3, P, 2, X₁₂, X₁₃) :|: P ≤ 7 ∧ 5 ≤ P
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂+1, X₂+1, X₄+1, X₄+1, 3, 4, 1, 0, 3, 4, 2, X₁₂, X₁₃)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, 0, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, 0, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 7, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 7, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 3, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 3, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(0, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 0, P, 4, 3, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 6, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 6, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 6, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, P, O, 0, 0, P, O, 2, X₁₂, X₁₃) :|: 1 ≤ X₁₂ ∧ X₄+1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ X₂+1 ≤ X₁₃ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 1 ≤ X₇
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, P, O, 0, 0, P, O, 2, X₁₂, X₁₃) :|: 1 ≤ X₁₂ ∧ X₄+1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ X₂+1 ≤ X₁₃ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 1 ≤ X₇
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 0, 0, P, 4, 2, X₁₂, X₁₃) :|: X₄+2 ≤ X₁₂ ∧ X₂+2 ≤ X₁₃ ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ P ≤ 7 ∧ 1 ≤ P
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 7, X₁₂, X₁₃) :|: X₁₂ ≤ X₄ ∧ X₁₃ ≤ X₂ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₂₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 7, X₁₂, X₁₃) :|: X₁₂ ≤ X₄ ∧ X₁₃ ≤ X₂ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(0, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 0, P, 4, 7, X₁₂, X₁₃) :|: X₁₂ ≤ X₄+1 ∧ X₁₃ ≤ X₂+1 ∧ P ≤ 7 ∧ 1 ≤ P
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 7, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(P, X₂, X₂, X₄, X₄, O, 2, 0, P, O, 2, 4, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(P, X₂, X₂, X₄, X₄, O, 7, 1, P, O, 7, 4, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₇ ≤ 1 ∧ 1 ≤ X₇

Preprocessing

Eliminate variables {X₀,X₁,X₃,X₅,X₆,X₈,X₉,X₁₀,X₁₁} that do not contribute to the problem

Found invariant X₇ ≤ 1 ∧ 0 ≤ X₇ for location l2

Found invariant X₇ ≤ 1 ∧ 0 ≤ X₇ for location l6

Found invariant X₇ ≤ 1 ∧ 0 ≤ X₇ for location l5

Found invariant X₇ ≤ 1 ∧ 0 ≤ X₇ for location l4

Found invariant X₇ ≤ 1 ∧ 0 ≤ X₇ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₂, X₄, X₇, X₁₂, X₁₃
Temp_Vars: O, P
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₅₄: l0(X₂, X₄, X₇, X₁₂, X₁₃) → l1(X₂, X₄, X₇, X₁₂, X₁₃)
t₅₈: l1(X₂, X₄, X₇, X₁₂, X₁₃) → l2(X₂, X₄, 0, X₁₂, X₁₃) :|: P ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P
t₅₉: l1(X₂, X₄, X₇, X₁₂, X₁₃) → l2(X₂, X₄, 0, X₁₂, X₁₃) :|: P ≤ 7 ∧ 5 ≤ P
t₆₀: l1(X₂, X₄, X₇, X₁₂, X₁₃) → l2(X₂+1, X₄+1, 1, X₁₂, X₁₃)
t₅₅: l1(X₂, X₄, X₇, X₁₂, X₁₃) → l3(X₂, X₄, 0, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₅₆: l1(X₂, X₄, X₇, X₁₂, X₁₃) → l3(X₂, X₄, 0, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₅₇: l1(X₂, X₄, X₇, X₁₂, X₁₃) → l3(X₂+1, X₄+1, 1, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₆₁: l2(X₂, X₄, X₇, X₁₂, X₁₃) → l3(X₂, X₄, X₇, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₆₂: l2(X₂, X₄, X₇, X₁₂, X₁₃) → l3(X₂, X₄, X₇, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₆₃: l2(X₂, X₄, X₇, X₁₂, X₁₃) → l3(X₂+1, X₄+1, 1, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₆₄: l2(X₂, X₄, X₇, X₁₂, X₁₃) → l4(X₂, X₄, X₇, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₆₅: l2(X₂, X₄, X₇, X₁₂, X₁₃) → l4(X₂, X₄, X₇, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₆₆: l2(X₂, X₄, X₇, X₁₂, X₁₃) → l4(X₂+1, X₄+1, 1, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₆₇: l4(X₂, X₄, X₇, X₁₂, X₁₃) → l6(X₂, X₄, X₇, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₆₈: l4(X₂, X₄, X₇, X₁₂, X₁₃) → l6(X₂, X₄, X₇, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₆₉: l4(X₂, X₄, X₇, X₁₂, X₁₃) → l6(X₂+1, X₄+1, 1, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₇₀: l5(X₂, X₄, X₇, X₁₂, X₁₃) → l2(X₂, X₄, 0, X₁₂, X₁₃) :|: 1 ≤ X₁₂ ∧ X₄+1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ X₂+1 ≤ X₁₃ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₇₁: l5(X₂, X₄, X₇, X₁₂, X₁₃) → l2(X₂, X₄, 0, X₁₂, X₁₃) :|: 1 ≤ X₁₂ ∧ X₄+1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ X₂+1 ≤ X₁₃ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₇₂: l5(X₂, X₄, X₇, X₁₂, X₁₃) → l2(X₂+1, X₄+1, 0, X₁₂, X₁₃) :|: X₄+2 ≤ X₁₂ ∧ X₂+2 ≤ X₁₃ ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ P ≤ 7 ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₇₃: l5(X₂, X₄, X₇, X₁₂, X₁₃) → l3(X₂, X₄, X₇, X₁₂, X₁₃) :|: X₁₂ ≤ X₄ ∧ X₁₃ ≤ X₂ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₇₄: l5(X₂, X₄, X₇, X₁₂, X₁₃) → l3(X₂, X₄, X₇, X₁₂, X₁₃) :|: X₁₂ ≤ X₄ ∧ X₁₃ ≤ X₂ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₇₅: l5(X₂, X₄, X₇, X₁₂, X₁₃) → l3(X₂+1, X₄+1, 1, X₁₂, X₁₃) :|: X₁₂ ≤ X₄+1 ∧ X₁₃ ≤ X₂+1 ∧ P ≤ 7 ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₇₆: l5(X₂, X₄, X₇, X₁₂, X₁₃) → l3(X₂, X₄, X₇, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₇₇: l5(X₂, X₄, X₇, X₁₂, X₁₃) → l3(X₂, X₄, X₇, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₇₈: l5(X₂, X₄, X₇, X₁₂, X₁₃) → l3(X₂+1, X₄+1, 1, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₇₉: l6(X₂, X₄, X₇, X₁₂, X₁₃) → l5(X₂, X₄, 0, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₇ ≤ 1 ∧ 0 ≤ X₇
t₈₀: l6(X₂, X₄, X₇, X₁₂, X₁₃) → l5(X₂, X₄, 1, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₇ ≤ 1 ∧ 0 ≤ X₇

Analysing control-flow refined program

Cut unsatisfiable transition t₉₄₅₃: n_l5___7→l3

Cut unsatisfiable transition t₉₄₆₀: n_l5___7→l3

Cut unsatisfiable transition t₉₄₉₅: n_l5___7→l3

Cut unsatisfiable transition t₉₅₀₂: n_l5___7→l3

Found invariant X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₃ ∧ 1+X₇ ≤ X₁₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₁₃+X₇ ∧ 1 ≤ X₁₂+X₇ ∧ 1+X₄ ≤ X₁₂ ∧ 1+X₂ ≤ X₁₃ ∧ 1 ≤ X₁₃ ∧ 2 ≤ X₁₂+X₁₃ ∧ 1 ≤ X₁₂ for location n_l6___9

Found invariant X₇ ≤ 1 ∧ 0 ≤ X₇ for location l2

Found invariant X₇ ≤ 1 ∧ 1 ≤ X₇ for location n_l5___1

Found invariant X₇ ≤ 0 ∧ 0 ≤ X₇ for location n_l4___17

Found invariant X₇ ≤ 1 ∧ X₇ ≤ X₁₃ ∧ X₇ ≤ X₁₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁₃+X₇ ∧ 2 ≤ X₁₂+X₇ ∧ X₄ ≤ 1+X₁₂ ∧ X₂ ≤ 1+X₁₃ ∧ 1 ≤ X₁₃ ∧ 2 ≤ X₁₂+X₁₃ ∧ 1 ≤ X₁₂ for location n_l6___4

Found invariant X₇ ≤ 1 ∧ X₇ ≤ X₁₃ ∧ X₇ ≤ X₁₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁₃+X₇ ∧ 2 ≤ X₁₂+X₇ ∧ X₄ ≤ X₁₂ ∧ X₂ ≤ X₁₃ ∧ 1 ≤ X₁₃ ∧ 2 ≤ X₁₂+X₁₃ ∧ 1 ≤ X₁₂ for location n_l5___5

Found invariant X₇ ≤ 1 ∧ 1 ≤ X₇ for location n_l6___14

Found invariant X₇ ≤ 1 ∧ 1 ≤ X₇ for location n_l4___16

Found invariant X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₃ ∧ 1+X₇ ≤ X₁₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₁₃+X₇ ∧ 1 ≤ X₁₂+X₇ ∧ 1+X₄ ≤ X₁₂ ∧ 1+X₂ ≤ X₁₃ ∧ 1 ≤ X₁₃ ∧ 2 ≤ X₁₂+X₁₃ ∧ 1 ≤ X₁₂ for location n_l2___12

Found invariant X₇ ≤ 1 ∧ X₇ ≤ X₁₃ ∧ X₇ ≤ X₁₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁₃+X₇ ∧ 2 ≤ X₁₂+X₇ ∧ X₄ ≤ 1+X₁₂ ∧ X₂ ≤ 1+X₁₃ ∧ 1 ≤ X₁₃ ∧ 2 ≤ X₁₂+X₁₃ ∧ 1 ≤ X₁₂ for location n_l5___2

Found invariant X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₃ ∧ 1+X₇ ≤ X₁₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₁₃+X₇ ∧ 1 ≤ X₁₂+X₇ ∧ X₄ ≤ X₁₂ ∧ X₂ ≤ X₁₃ ∧ 1 ≤ X₁₃ ∧ 2 ≤ X₁₂+X₁₃ ∧ 1 ≤ X₁₂ for location n_l5___6

Found invariant X₇ ≤ 0 ∧ 0 ≤ X₇ for location n_l5___13

Found invariant X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₃ ∧ 1+X₇ ≤ X₁₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₁₃+X₇ ∧ 1 ≤ X₁₂+X₇ ∧ 1+X₄ ≤ X₁₂ ∧ 1+X₂ ≤ X₁₃ ∧ 1 ≤ X₁₃ ∧ 2 ≤ X₁₂+X₁₃ ∧ 1 ≤ X₁₂ for location n_l5___7

Found invariant X₇ ≤ 1 ∧ X₇ ≤ X₁₃ ∧ X₇ ≤ X₁₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁₃+X₇ ∧ 2 ≤ X₁₂+X₇ ∧ X₄ ≤ X₁₂ ∧ X₂ ≤ X₁₃ ∧ 1 ≤ X₁₃ ∧ 2 ≤ X₁₂+X₁₃ ∧ 1 ≤ X₁₂ for location n_l6___8

Found invariant X₇ ≤ 1 ∧ 0 ≤ X₇ for location l3

Found invariant X₇ ≤ 1 ∧ X₇ ≤ X₁₃ ∧ X₇ ≤ X₁₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁₃+X₇ ∧ 2 ≤ X₁₂+X₇ ∧ X₄ ≤ X₁₂ ∧ X₂ ≤ X₁₃ ∧ 1 ≤ X₁₃ ∧ 2 ≤ X₁₂+X₁₃ ∧ 1 ≤ X₁₂ for location n_l4___10

Found invariant X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₃ ∧ 1+X₇ ≤ X₁₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₁₃+X₇ ∧ 1 ≤ X₁₂+X₇ ∧ 1+X₄ ≤ X₁₂ ∧ 1+X₂ ≤ X₁₃ ∧ 1 ≤ X₁₃ ∧ 2 ≤ X₁₂+X₁₃ ∧ 1 ≤ X₁₂ for location n_l4___11

Found invariant X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₃ ∧ 1+X₇ ≤ X₁₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₁₃+X₇ ∧ 1 ≤ X₁₂+X₇ ∧ X₄ ≤ 1+X₁₂ ∧ X₂ ≤ 1+X₁₃ ∧ 1 ≤ X₁₃ ∧ 2 ≤ X₁₂+X₁₃ ∧ 1 ≤ X₁₂ for location n_l5___3

Found invariant X₇ ≤ 0 ∧ 0 ≤ X₇ for location n_l6___15

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 1 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: 1 {O(1)}
t₆₄: inf {Infinity}
t₆₅: inf {Infinity}
t₆₆: inf {Infinity}
t₆₇: inf {Infinity}
t₆₈: inf {Infinity}
t₆₉: inf {Infinity}
t₇₀: inf {Infinity}
t₇₁: inf {Infinity}
t₇₂: inf {Infinity}
t₇₃: 1 {O(1)}
t₇₄: 1 {O(1)}
t₇₅: 1 {O(1)}
t₇₆: 1 {O(1)}
t₇₇: 1 {O(1)}
t₇₈: 1 {O(1)}
t₇₉: inf {Infinity}
t₈₀: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 1 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: 1 {O(1)}
t₆₄: inf {Infinity}
t₆₅: inf {Infinity}
t₆₆: inf {Infinity}
t₆₇: inf {Infinity}
t₆₈: inf {Infinity}
t₆₉: inf {Infinity}
t₇₀: inf {Infinity}
t₇₁: inf {Infinity}
t₇₂: inf {Infinity}
t₇₃: 1 {O(1)}
t₇₄: 1 {O(1)}
t₇₅: 1 {O(1)}
t₇₆: 1 {O(1)}
t₇₇: 1 {O(1)}
t₇₈: 1 {O(1)}
t₇₉: inf {Infinity}
t₈₀: inf {Infinity}

Sizebounds

t₅₄, X₂: X₂ {O(n)}
t₅₄, X₄: X₄ {O(n)}
t₅₄, X₇: X₇ {O(n)}
t₅₄, X₁₂: X₁₂ {O(n)}
t₅₄, X₁₃: X₁₃ {O(n)}
t₅₅, X₂: X₂ {O(n)}
t₅₅, X₄: X₄ {O(n)}
t₅₅, X₇: 0 {O(1)}
t₅₅, X₁₂: X₁₂ {O(n)}
t₅₅, X₁₃: X₁₃ {O(n)}
t₅₆, X₂: X₂ {O(n)}
t₅₆, X₄: X₄ {O(n)}
t₅₆, X₇: 0 {O(1)}
t₅₆, X₁₂: X₁₂ {O(n)}
t₅₆, X₁₃: X₁₃ {O(n)}
t₅₇, X₂: X₂+1 {O(n)}
t₅₇, X₄: X₄+1 {O(n)}
t₅₇, X₇: 1 {O(1)}
t₅₇, X₁₂: X₁₂ {O(n)}
t₅₇, X₁₃: X₁₃ {O(n)}
t₅₈, X₂: X₂ {O(n)}
t₅₈, X₄: X₄ {O(n)}
t₅₈, X₇: 0 {O(1)}
t₅₈, X₁₂: X₁₂ {O(n)}
t₅₈, X₁₃: X₁₃ {O(n)}
t₅₉, X₂: X₂ {O(n)}
t₅₉, X₄: X₄ {O(n)}
t₅₉, X₇: 0 {O(1)}
t₅₉, X₁₂: X₁₂ {O(n)}
t₅₉, X₁₃: X₁₃ {O(n)}
t₆₀, X₂: X₂+1 {O(n)}
t₆₀, X₄: X₄+1 {O(n)}
t₆₀, X₇: 1 {O(1)}
t₆₀, X₁₂: X₁₂ {O(n)}
t₆₀, X₁₃: X₁₃ {O(n)}
t₆₁, X₇: 1 {O(1)}
t₆₁, X₁₂: 30⋅X₁₂ {O(n)}
t₆₁, X₁₃: 30⋅X₁₃ {O(n)}
t₆₂, X₇: 1 {O(1)}
t₆₂, X₁₂: 30⋅X₁₂ {O(n)}
t₆₂, X₁₃: 30⋅X₁₃ {O(n)}
t₆₃, X₇: 1 {O(1)}
t₆₃, X₁₂: 30⋅X₁₂ {O(n)}
t₆₃, X₁₃: 30⋅X₁₃ {O(n)}
t₆₄, X₇: 1 {O(1)}
t₆₄, X₁₂: 9⋅X₁₂ {O(n)}
t₆₄, X₁₃: 9⋅X₁₃ {O(n)}
t₆₅, X₇: 1 {O(1)}
t₆₅, X₁₂: 9⋅X₁₂ {O(n)}
t₆₅, X₁₃: 9⋅X₁₃ {O(n)}
t₆₆, X₇: 1 {O(1)}
t₆₆, X₁₂: 9⋅X₁₂ {O(n)}
t₆₆, X₁₃: 9⋅X₁₃ {O(n)}
t₆₇, X₇: 1 {O(1)}
t₆₇, X₁₂: 9⋅X₁₂ {O(n)}
t₆₇, X₁₃: 9⋅X₁₃ {O(n)}
t₆₈, X₇: 1 {O(1)}
t₆₈, X₁₂: 9⋅X₁₂ {O(n)}
t₆₈, X₁₃: 9⋅X₁₃ {O(n)}
t₆₉, X₇: 1 {O(1)}
t₆₉, X₁₂: 9⋅X₁₂ {O(n)}
t₆₉, X₁₃: 9⋅X₁₃ {O(n)}
t₇₀, X₇: 0 {O(1)}
t₇₀, X₁₂: 9⋅X₁₂ {O(n)}
t₇₀, X₁₃: 9⋅X₁₃ {O(n)}
t₇₁, X₇: 0 {O(1)}
t₇₁, X₁₂: 9⋅X₁₂ {O(n)}
t₇₁, X₁₃: 9⋅X₁₃ {O(n)}
t₇₂, X₇: 0 {O(1)}
t₇₂, X₁₂: 9⋅X₁₂ {O(n)}
t₇₂, X₁₃: 9⋅X₁₃ {O(n)}
t₇₃, X₇: 1 {O(1)}
t₇₃, X₁₂: 18⋅X₁₂ {O(n)}
t₇₃, X₁₃: 18⋅X₁₃ {O(n)}
t₇₄, X₇: 1 {O(1)}
t₇₄, X₁₂: 18⋅X₁₂ {O(n)}
t₇₄, X₁₃: 18⋅X₁₃ {O(n)}
t₇₅, X₇: 1 {O(1)}
t₇₅, X₁₂: 18⋅X₁₂ {O(n)}
t₇₅, X₁₃: 18⋅X₁₃ {O(n)}
t₇₆, X₇: 1 {O(1)}
t₇₆, X₁₂: 18⋅X₁₂ {O(n)}
t₇₆, X₁₃: 18⋅X₁₃ {O(n)}
t₇₇, X₇: 1 {O(1)}
t₇₇, X₁₂: 18⋅X₁₂ {O(n)}
t₇₇, X₁₃: 18⋅X₁₃ {O(n)}
t₇₈, X₇: 1 {O(1)}
t₇₈, X₁₂: 18⋅X₁₂ {O(n)}
t₇₈, X₁₃: 18⋅X₁₃ {O(n)}
t₇₉, X₇: 0 {O(1)}
t₇₉, X₁₂: 9⋅X₁₂ {O(n)}
t₇₉, X₁₃: 9⋅X₁₃ {O(n)}
t₈₀, X₇: 1 {O(1)}
t₈₀, X₁₂: 9⋅X₁₂ {O(n)}
t₈₀, X₁₃: 9⋅X₁₃ {O(n)}