Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: F
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₆: l0(X₀, X₁, X₂, X₃, X₄) → l1(F, 0, F, X₃, 0)
t₀: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, 0, F, F, X₄) :|: X₀ ≤ 0
t₅: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₀
t₄: l2(X₀, X₁, X₂, X₃, X₄) → l1(F, X₁, F, X₃, 0) :|: X₃ ≤ 0
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₃
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₃: l5(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
Cut unreachable locations [l4; l5] from the program graph
Eliminate variables {X₁,X₂,X₄} that do not contribute to the problem
Found invariant X₀ ≤ 0 for location l2
Found invariant 1 ≤ X₀ for location l3
Start: l0
Program_Vars: X₀, X₃
Temp_Vars: F
Locations: l0, l1, l2, l3
Transitions:
t₁₆: l0(X₀, X₃) → l1(F, X₃)
t₁₇: l1(X₀, X₃) → l2(X₀, F) :|: X₀ ≤ 0
t₁₈: l1(X₀, X₃) → l3(X₀, X₃) :|: 1 ≤ X₀
t₂₀: l2(X₀, X₃) → l1(F, X₃) :|: X₃ ≤ 0 ∧ X₀ ≤ 0
t₁₉: l2(X₀, X₃) → l2(X₀, X₃) :|: 1 ≤ X₃ ∧ X₀ ≤ 0
t₂₁: l3(X₀, X₃) → l3(X₀, X₃) :|: 1 ≤ X₀
Found invariant X₃ ≤ 0 for location n_l1___2
Found invariant 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l2___1
Found invariant X₀ ≤ 0 for location n_l2___3
Found invariant 1 ≤ X₀ for location l3
Found invariant X₃ ≤ 0 for location n_l1___2
Found invariant 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l2___1
Found invariant X₀ ≤ 0 for location n_l2___3
Found invariant 1 ≤ X₀ for location l3
Found invariant X₀ ≤ 0 for location l2
Found invariant 1 ≤ X₀ for location l3
Found invariant X₀ ≤ 0 for location l2
Found invariant 1 ≤ X₀ for location l3
Found invariant X₀ ≤ 0 for location l2
Found invariant 1 ≤ X₀ for location l3
Overall timebound:inf {Infinity}
t₁₆: 1 {O(1)}
t₁₇: inf {Infinity}
t₁₈: 1 {O(1)}
t₁₉: inf {Infinity}
t₂₀: inf {Infinity}
t₂₁: inf {Infinity}
Overall costbound: inf {Infinity}
t₁₆: 1 {O(1)}
t₁₇: inf {Infinity}
t₁₈: 1 {O(1)}
t₁₉: inf {Infinity}
t₂₀: inf {Infinity}
t₂₁: inf {Infinity}
t₁₆, X₃: X₃ {O(n)}