Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: L, M
Locations: l0, l1, l10, l11, l12, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ X₀
t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₁
t₁₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀, X₁, X₂, X₃, X₄, X₅, L, X₇+1, X₈, X₉, X₁₀) :|: X₇+1 ≤ X₃
t₁₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, M, L, X₁₀) :|: M+1 ≤ X₂ ∧ X₃ ≤ X₇
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁+1, L, X₃, X₄, X₅, X₆, X₇, L, M, X₁) :|: X₂ ≤ L ∧ X₃ ≤ X₇
t₁₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, L, X₉, X₁₀) :|: X₇ ≤ X₀
t₁₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₇
t₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: L+1 ≤ 0
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₂₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₂+1 ≤ 0 ∧ 1+X₀ ≤ X₃
t₂₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₂ ∧ 1+X₀ ≤ X₃
t₂₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁+1, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃+1, L, L, X₆, X₇, X₈, X₉, X₁₀) :|: L ≤ X₂ ∧ X₃ ≤ X₀
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, L, X₃+1, L, L, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₂ ≤ L ∧ X₃ ≤ X₀
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ ≤ X₀
t₂₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₃
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, L, X₇, X₈, X₉, X₁₀) :|: X₁+1 ≤ X₃
t₂₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ ≤ X₁
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₀+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ ≤ X₃ ∧ X₃ ≤ X₀
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, L, X₉, X₁₀) :|: X₃+1 ≤ X₀
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, L, X₉, X₁₀) :|: 1+X₀ ≤ X₃
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₁
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ X₀
t₂₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ X₇
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, L, X₇+1, X₈, X₉, X₁₀) :|: X₇+1 ≤ X₁
t₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀, X₁, X₂, X₃, X₄, X₅, L, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ X₀
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₁ ∧ X₃+1 ≤ X₁₀
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₃
t₂₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₃) :|: 1+X₀ ≤ X₁ ∧ X₃ ≤ X₁₀ ∧ X₁₀ ≤ X₃

Preprocessing

Eliminate variables {X₄,X₅,X₆,X₈,X₉} that do not contribute to the problem

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l11

Found invariant 0 ≤ X₂ ∧ X₁ ≤ X₀ for location l2

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l6

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l12

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l7

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant 1 ≤ 0 for location l8

Found invariant 1 ≤ 0 for location l10

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location l4

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l9

Found invariant 1+X₀ ≤ X₁ for location l3

Cut unsatisfiable transition t₆₆: l10→l10

Cut unsatisfiable transition t₆₇: l10→l9

Cut unsatisfiable transition t₆₈: l10→l9

Cut unsatisfiable transition t₇₅: l2→l1

Cut unsatisfiable transition t₈₀: l4→l8

Cut unsatisfiable transition t₈₃: l6→l7

Cut unsatisfiable transition t₈₅: l7→l7

Cut unsatisfiable transition t₈₇: l8→l8

Cut unsatisfiable transition t₈₈: l8→l4

Cut unsatisfiable transition t₈₉: l9→l10

Cut unreachable locations [l10; l8] from the program graph

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₇, X₁₀
Temp_Vars: L
Locations: l0, l1, l11, l12, l2, l3, l4, l5, l6, l7, l9
Transitions:
t₆₃: l0(X₀, X₁, X₂, X₃, X₇, X₁₀) → l1(X₀, X₁, X₂, X₃, X₇, X₁₀)
t₆₄: l1(X₀, X₁, X₂, X₃, X₇, X₁₀) → l2(X₀, X₁, 0, X₃, X₇, X₁₀) :|: X₁ ≤ X₀
t₆₅: l1(X₀, X₁, X₂, X₃, X₇, X₁₀) → l3(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₁
t₆₉: l11(X₀, X₁, X₂, X₃, X₇, X₁₀) → l11(X₀, X₁, X₂, X₃, X₇+1, X₁₀) :|: X₇ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₇₀: l11(X₀, X₁, X₂, X₃, X₇, X₁₀) → l12(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₇₁: l12(X₀, X₁, X₂, X₃, X₇, X₁₀) → l6(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: L+1 ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₇₂: l12(X₀, X₁, X₂, X₃, X₇, X₁₀) → l6(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₇₆: l2(X₀, X₁, X₂, X₃, X₇, X₁₀) → l1(X₀, X₁+1, X₂, X₃, X₇, X₁₀) :|: 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀
t₇₇: l2(X₀, X₁, X₂, X₃, X₇, X₁₀) → l1(X₀, X₁+1, 0, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀
t₇₃: l2(X₀, X₁, X₂, X₃, X₇, X₁₀) → l2(X₀, X₁, X₂, X₃+1, X₇, X₁₀) :|: L ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀
t₇₄: l2(X₀, X₁, X₂, X₃, X₇, X₁₀) → l2(X₀, X₁, L, X₃+1, X₇, X₁₀) :|: 1+X₂ ≤ L ∧ X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀
t₇₈: l3(X₀, X₁, X₂, X₃, X₇, X₁₀) → l4(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁
t₇₉: l3(X₀, X₁, X₂, X₃, X₇, X₁₀) → l5(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁
t₈₁: l4(X₀, X₁, X₂, X₃, X₇, X₁₀) → l9(X₀, X₁, 0, X₃, X₇, X₁₀) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁
t₈₄: l6(X₀, X₁, X₂, X₃, X₇, X₁₀) → l3(X₀, X₁, X₂, X₀+1, X₇, X₁₀) :|: X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₈₂: l6(X₀, X₁, X₂, X₃, X₇, X₁₀) → l7(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: X₃+1 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₈₆: l7(X₀, X₁, X₂, X₃, X₇, X₁₀) → l3(X₀, X₁, X₂, X₃+1, X₇, X₁₀) :|: 1+X₀ ≤ X₁ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₉₀: l9(X₀, X₁, X₂, X₃, X₇, X₁₀) → l11(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₁ ∧ X₃+1 ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₉₁: l9(X₀, X₁, X₂, X₃, X₇, X₁₀) → l11(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₉₂: l9(X₀, X₁, X₂, X₃, X₇, X₁₀) → l12(X₀, X₁, X₂, X₃, X₇, X₃) :|: 1+X₀ ≤ X₁ ∧ X₃ ≤ X₁₀ ∧ X₁₀ ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁

Analysing control-flow refined program

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l11

Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___6

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l6

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l12

Found invariant 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___2

Found invariant X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___3

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l7

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l1___5

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location l4

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l9

Found invariant 1+X₀ ≤ X₁ for location l3

Found invariant X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l1___1

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___4

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l11

Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___6

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l6

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l12

Found invariant 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___2

Found invariant X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___3

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l7

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l1___5

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location l4

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l9

Found invariant 1+X₀ ≤ X₁ for location l3

Found invariant X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l1___1

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___4

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l11

Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___6

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l6

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l12

Found invariant X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___2

Found invariant X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___3

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l7

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l1___5

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location l4

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l9

Found invariant 1+X₀ ≤ X₁ for location l3

Found invariant X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l1___1

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___4

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l11

Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___6

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l6

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l12

Found invariant X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___2

Found invariant X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___3

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l7

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l1___5

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location l4

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l9

Found invariant 1+X₀ ≤ X₁ for location l3

Found invariant X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l1___1

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l2___4

Time-Bound by TWN-Loops:

TWN-Loops: t₃₈₁ 72⋅X₀+72⋅X₁+55 {O(n)}

TWN-Loops:

entry: t₃₉₀: n_l2___6(X₀, X₁, X₂, X₃, X₇, X₁₀) → n_l1___5(X₀, X₁+1, 0, X₃, X₇, X₁₀) :|: X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀
results in twn-loop: twn:Inv: [X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀] , (X₀,X₁,X₂,X₃,X₇,X₁₀) -> (X₀,X₁+1,0,X₃,X₇,X₁₀) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0
entry: t₃₈₇: n_l2___4(X₀, X₁, X₂, X₃, X₇, X₁₀) → n_l1___5(X₀, X₁+1, 0, X₃, X₇, X₁₀) :|: X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀
results in twn-loop: twn:Inv: [X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀] , (X₀,X₁,X₂,X₃,X₇,X₁₀) -> (X₀,X₁+1,0,X₃,X₇,X₁₀) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0
entry: t₃₈₀: n_l1___1(X₀, X₁, X₂, X₃, X₇, X₁₀) → n_l2___2(X₀, X₁, 0, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ 1+X₀
results in twn-loop: twn:Inv: [1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀] , (X₀,X₁,X₂,X₃,X₇,X₁₀) -> (X₀,1+X₁,0,X₃,X₇,X₁₀) :|: 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁+1 ≤ X₀
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: [[n == 0]] * X₂
X₃: X₃

Termination: true
Formula:

1+X₀ < X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₃ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₃ ∧ 1 < 0
∨ X₁ < X₀ ∧ 1+X₀ < X₃ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ X₁ < X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₃ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₃ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁

Stabilization-Threshold for: X₁ ≤ X₀
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₁ ≤ 1+X₀
alphas_abs: 1+X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+4 {O(n)}

relevant size-bounds w.r.t. t₃₉₀:
X₀: X₀ {O(n)}
X₁: X₁+1 {O(n)}
Runtime-bound of t₃₉₀: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₁+13 {O(n)}

order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: [[n == 0]] * X₂
X₃: X₃

Termination: true
Formula:

1+X₀ < X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₃ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₃ ∧ 1 < 0
∨ X₁ < X₀ ∧ 1+X₀ < X₃ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ X₁ < X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₃ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₃ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁

Stabilization-Threshold for: X₁ ≤ X₀
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₁ ≤ 1+X₀
alphas_abs: 1+X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+4 {O(n)}

relevant size-bounds w.r.t. t₃₈₇:
X₀: 2⋅X₀ {O(n)}
X₁: 2⋅X₁+2 {O(n)}
Runtime-bound of t₃₈₇: 1 {O(1)}
Results in: 8⋅X₀+8⋅X₁+17 {O(n)}

order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: [[n == 0]] * X₂
X₃: X₃

Termination: true
Formula:

1+X₀ < X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₃ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
∨ X₁+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₃ ∧ 1 < 0
∨ X₁+1 < X₀ ∧ 1+X₀ < X₃ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁+1 < X₀ ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
∨ X₁+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ X₁+1 < X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁+1 < X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₀ < X₃ ∧ 1 < 0
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₀ < X₃ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁

Stabilization-Threshold for: X₁+1 ≤ X₀
alphas_abs: X₀+X₁+1
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+4 {O(n)}
Stabilization-Threshold for: X₁ ≤ X₀
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}

relevant size-bounds w.r.t. t₃₈₀:
X₀: 15⋅X₀ {O(n)}
X₁: 15⋅X₁+4 {O(n)}
Runtime-bound of t₃₈₀: 1 {O(1)}
Results in: 60⋅X₀+60⋅X₁+25 {O(n)}

72⋅X₀+72⋅X₁+55 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₃₈₃ 72⋅X₀+72⋅X₁+55 {O(n)}

relevant size-bounds w.r.t. t₃₉₀:
X₀: X₀ {O(n)}
X₁: X₁+1 {O(n)}
Runtime-bound of t₃₉₀: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₁+13 {O(n)}

relevant size-bounds w.r.t. t₃₈₇:
X₀: 2⋅X₀ {O(n)}
X₁: 2⋅X₁+2 {O(n)}
Runtime-bound of t₃₈₇: 1 {O(1)}
Results in: 8⋅X₀+8⋅X₁+17 {O(n)}

relevant size-bounds w.r.t. t₃₈₀:
X₀: 15⋅X₀ {O(n)}
X₁: 15⋅X₁+4 {O(n)}
Runtime-bound of t₃₈₀: 1 {O(1)}
Results in: 60⋅X₀+60⋅X₁+25 {O(n)}

72⋅X₀+72⋅X₁+55 {O(n)}

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₂₈₇₄: n_l3___19→l5

Cut unsatisfiable transition t₂₈₇₆: n_l3___3→l5

Cut unsatisfiable transition t₂₈₇₇: n_l3___32→l5

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___11

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l4___31

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___23

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___18

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___43

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l9___42

Found invariant X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ 1+X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l3___15

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___16

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___19

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___38

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l12___36

Found invariant X₃ ≤ 1+X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l3___5

Found invariant 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___20

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___13

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l9___17

Found invariant 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___41

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___8

Found invariant 1+X₀ ≤ X₁ for location l3

Found invariant X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___39

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___28

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l12___37

Found invariant X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___6

Found invariant 2+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___14

Found invariant 0 ≤ X₂ ∧ X₁ ≤ X₀ for location l2

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___27

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___25

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l9___1

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l3___32

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___2

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___10

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l9___30

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___3

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 2+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l7___33

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___22

Found invariant X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 2+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___21

Found invariant 2+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l7___24

Found invariant X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l3___34

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___9

Found invariant 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___7

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___29

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___40

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___12

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l12___26

Found invariant X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___4

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___35

Cut unsatisfiable transition t₂₈₄₄: n_l9___30→n_l11___28

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___11

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l4___31

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___23

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___18

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___43

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l9___42

Found invariant X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ 1+X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l3___15

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___16

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___19

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___38

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l12___36

Found invariant X₃ ≤ 1+X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l3___5

Found invariant 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___20

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___13

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l9___17

Found invariant 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___41

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___8

Found invariant 1+X₀ ≤ X₁ for location l3

Found invariant X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___39

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___28

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l12___37

Found invariant X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___6

Found invariant 2+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___14

Found invariant 0 ≤ X₂ ∧ X₁ ≤ X₀ for location l2

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___27

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___25

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l9___1

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l3___32

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___2

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___10

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l9___30

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___3

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 2+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l7___33

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___22

Found invariant X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 2+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___21

Found invariant 2+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l7___24

Found invariant X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l3___34

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___9

Found invariant 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___7

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___29

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___40

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___12

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l12___26

Found invariant X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___4

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___35

Time-Bound by TWN-Loops:

TWN-Loops: t₂₇₉₁ 12⋅X₀+12⋅X₇+15 {O(n)}

TWN-Loops:

entry: t₂₇₉₅: n_l11___41(X₀, X₁, X₂, X₃, X₇, X₁₀) → n_l11___38(X₀, X₁, 0, X₃, X₇+1, X₁₀) :|: X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
results in twn-loop: twn:Inv: [X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁] , (X₀,X₁,X₂,X₃,X₇,X₁₀) -> (X₀,X₁,0,X₃,X₇+1,X₁₀) :|: X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
order: [X₀; X₁; X₂; X₃; X₇; X₁₀]
closed-form:
X₀: X₀
X₁: X₁
X₂: [[n == 0]] * X₂
X₃: X₃
X₇: X₇ + [[n != 0]] * n^1
X₁₀: X₁₀

Termination: true
Formula:

1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇

Stabilization-Threshold for: X₇ ≤ X₀
alphas_abs: X₀+X₇
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₇+2 {O(n)}
Stabilization-Threshold for: X₇ ≤ 1+X₀
alphas_abs: 1+X₀+X₇
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₇+4 {O(n)}

relevant size-bounds w.r.t. t₂₇₉₅:
X₀: 3⋅X₀ {O(n)}
X₇: 3⋅X₇+1 {O(n)}
Runtime-bound of t₂₇₉₅: 1 {O(1)}
Results in: 12⋅X₀+12⋅X₇+15 {O(n)}

12⋅X₀+12⋅X₇+15 {O(n)}

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___11

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l4___31

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___23

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___18

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___43

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l9___42

Found invariant X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ 1+X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l3___15

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___16

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___19

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___38

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l12___36

Found invariant X₃ ≤ 1+X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l3___5

Found invariant 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___20

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___13

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l9___17

Found invariant 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___41

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___8

Found invariant 1+X₀ ≤ X₁ for location l3

Found invariant X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___39

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___28

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l12___37

Found invariant X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___6

Found invariant 2+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___14

Found invariant 0 ≤ X₂ ∧ X₁ ≤ X₀ for location l2

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___27

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___25

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l9___1

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l3___32

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___2

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___10

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l9___30

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___3

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 2+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l7___33

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___22

Found invariant X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 2+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___21

Found invariant 2+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l7___24

Found invariant X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l3___34

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___9

Found invariant 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___7

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___29

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___40

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l12___12

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l12___26

Found invariant X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l7___4

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___35

Time-Bound by TWN-Loops:

TWN-Loops: t₂₇₈₇ 36⋅X₀+36⋅X₇+19 {O(n)}

TWN-Loops:

entry: t₂₇₉₃: n_l11___40(X₀, X₁, X₂, X₃, X₇, X₁₀) → n_l11___13(X₀, X₁, 0, X₃, X₇+1, X₁₀) :|: X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁
results in twn-loop: twn:Inv: [X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁] , (X₀,X₁,X₂,X₃,X₇,X₁₀) -> (X₀,X₁,0,X₃,X₇+1,X₁₀) :|: X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
order: [X₀; X₁; X₂; X₃; X₇; X₁₀]
closed-form:
X₀: X₀
X₁: X₁
X₂: [[n == 0]] * X₂
X₃: X₃
X₇: X₇ + [[n != 0]] * n^1
X₁₀: X₁₀

Termination: true
Formula:

1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 < 0
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 < 0
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇

Stabilization-Threshold for: X₇ ≤ X₀
alphas_abs: X₀+X₇
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₇+2 {O(n)}
Stabilization-Threshold for: X₇ ≤ 1+X₀
alphas_abs: 1+X₀+X₇
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₇+4 {O(n)}

relevant size-bounds w.r.t. t₂₇₉₃:
X₀: 9⋅X₀ {O(n)}
X₇: 9⋅X₇+2 {O(n)}
Runtime-bound of t₂₇₉₃: 1 {O(1)}
Results in: 36⋅X₀+36⋅X₇+19 {O(n)}

36⋅X₀+36⋅X₇+19 {O(n)}

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₆₃: 1 {O(1)}
t₆₄: inf {Infinity}
t₆₅: 1 {O(1)}
t₆₉: inf {Infinity}
t₇₀: inf {Infinity}
t₇₁: inf {Infinity}
t₇₂: inf {Infinity}
t₇₃: inf {Infinity}
t₇₄: inf {Infinity}
t₇₆: inf {Infinity}
t₇₇: inf {Infinity}
t₇₈: inf {Infinity}
t₇₉: 1 {O(1)}
t₈₁: inf {Infinity}
t₈₂: inf {Infinity}
t₈₄: inf {Infinity}
t₈₆: inf {Infinity}
t₉₀: inf {Infinity}
t₉₁: inf {Infinity}
t₉₂: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
t₆₃: 1 {O(1)}
t₆₄: inf {Infinity}
t₆₅: 1 {O(1)}
t₆₉: inf {Infinity}
t₇₀: inf {Infinity}
t₇₁: inf {Infinity}
t₇₂: inf {Infinity}
t₇₃: inf {Infinity}
t₇₄: inf {Infinity}
t₇₆: inf {Infinity}
t₇₇: inf {Infinity}
t₇₈: inf {Infinity}
t₇₉: 1 {O(1)}
t₈₁: inf {Infinity}
t₈₂: inf {Infinity}
t₈₄: inf {Infinity}
t₈₆: inf {Infinity}
t₉₀: inf {Infinity}
t₉₁: inf {Infinity}
t₉₂: inf {Infinity}

Sizebounds

t₆₃, X₀: X₀ {O(n)}
t₆₃, X₁: X₁ {O(n)}
t₆₃, X₂: X₂ {O(n)}
t₆₃, X₃: X₃ {O(n)}
t₆₃, X₇: X₇ {O(n)}
t₆₃, X₁₀: X₁₀ {O(n)}
t₆₄, X₀: X₀ {O(n)}
t₆₄, X₂: 0 {O(1)}
t₆₄, X₇: X₇ {O(n)}
t₆₄, X₁₀: X₁₀ {O(n)}
t₆₅, X₀: 3⋅X₀ {O(n)}
t₆₅, X₇: 3⋅X₇ {O(n)}
t₆₅, X₁₀: 3⋅X₁₀ {O(n)}
t₆₉, X₀: 3⋅X₀ {O(n)}
t₆₉, X₂: 0 {O(1)}
t₇₀, X₀: 3⋅X₀ {O(n)}
t₇₀, X₂: 0 {O(1)}
t₇₁, X₀: 3⋅X₀ {O(n)}
t₇₁, X₂: 0 {O(1)}
t₇₂, X₀: 3⋅X₀ {O(n)}
t₇₂, X₂: 0 {O(1)}
t₇₃, X₀: X₀ {O(n)}
t₇₃, X₇: X₇ {O(n)}
t₇₃, X₁₀: X₁₀ {O(n)}
t₇₄, X₀: X₀ {O(n)}
t₇₄, X₇: X₇ {O(n)}
t₇₄, X₁₀: X₁₀ {O(n)}
t₇₆, X₀: X₀ {O(n)}
t₇₆, X₇: X₇ {O(n)}
t₇₆, X₁₀: X₁₀ {O(n)}
t₇₇, X₀: X₀ {O(n)}
t₇₇, X₂: 0 {O(1)}
t₇₇, X₇: X₇ {O(n)}
t₇₇, X₁₀: X₁₀ {O(n)}
t₇₈, X₀: 3⋅X₀ {O(n)}
t₇₉, X₀: 9⋅X₀ {O(n)}
t₈₁, X₀: 3⋅X₀ {O(n)}
t₈₁, X₂: 0 {O(1)}
t₈₂, X₀: 3⋅X₀ {O(n)}
t₈₂, X₂: 0 {O(1)}
t₈₄, X₀: 6⋅X₀ {O(n)}
t₈₄, X₂: 0 {O(1)}
t₈₄, X₃: 6⋅X₀+2 {O(n)}
t₈₆, X₀: 3⋅X₀ {O(n)}
t₈₆, X₂: 0 {O(1)}
t₉₀, X₀: 3⋅X₀ {O(n)}
t₉₀, X₂: 0 {O(1)}
t₉₁, X₀: 3⋅X₀ {O(n)}
t₉₁, X₂: 0 {O(1)}
t₉₂, X₀: 3⋅X₀ {O(n)}
t₉₂, X₂: 0 {O(1)}