Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: L, M
Locations: l0, l1, l10, l11, l12, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₂₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₃
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ ≤ X₀
t₁₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, L, X₉, X₁₀) :|: X₇ ≤ X₀
t₁₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₇
t₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: L+1 ≤ 0
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ L
t₁₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃+1, L, L, X₆, X₇, X₈, X₉, X₁₀) :|: L ≤ X₂ ∧ X₃ ≤ X₀
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, L, X₃+1, L, L, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₂ ≤ L ∧ X₃ ≤ X₀
t₂₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₂+1 ≤ 0 ∧ 1+X₀ ≤ X₃
t₂₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₂ ∧ 1+X₀ ≤ X₃
t₂₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁+1, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₁
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ X₀
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₃, X₄, X₅, L, X₇, X₈, X₉, X₁₀) :|: X₁+1 ≤ X₃
t₂₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ ≤ X₁
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₀+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ ≤ X₃ ∧ X₃ ≤ X₀
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, L, X₉, X₁₀) :|: X₃+1 ≤ X₀
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, L, X₉, X₁₀) :|: 1+X₀ ≤ X₃
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₁
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ X₀
t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ X₇
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆-L*M, X₇+1, X₈, X₉, X₁₀) :|: X₇+1 ≤ X₁
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₁ ∧ X₃+1 ≤ X₁₀
t₂₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₃
t₂₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₃) :|: 1+X₀ ≤ X₁ ∧ X₃ ≤ X₁₀ ∧ X₁₀ ≤ X₃
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, L, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ X₀
t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, L*M, L, X₁₀) :|: L*M+1 ≤ X₂ ∧ X₃ ≤ X₇
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁+1, L*M, X₃, X₄, X₅, X₆, X₇, L*M, M, X₁) :|: X₂ ≤ L*M ∧ X₃ ≤ X₇
t₁₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆-L*M, X₇+1, X₈, X₉, X₁₀) :|: X₇+1 ≤ X₃

Preprocessing

Eliminate variables {X₄,X₅,X₆,X₈,X₉} that do not contribute to the problem

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l11

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l2

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l6

Found invariant 0 ≤ X₂ ∧ X₁ ≤ X₀ for location l12

Found invariant 1 ≤ 0 for location l7

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l8

Found invariant 1+X₀ ≤ X₁ for location l1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l10

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location l4

Found invariant 1 ≤ 0 for location l9

Cut unsatisfiable transition t₇₇: l12→l3

Cut unsatisfiable transition t₈₂: l4→l7

Cut unsatisfiable transition t₈₅: l5→l6

Cut unsatisfiable transition t₈₇: l6→l6

Cut unsatisfiable transition t₈₉: l7→l7

Cut unsatisfiable transition t₉₀: l7→l4

Cut unsatisfiable transition t₉₁: l8→l9

Cut unsatisfiable transition t₉₅: l9→l9

Cut unsatisfiable transition t₉₆: l9→l8

Cut unsatisfiable transition t₉₇: l9→l8

Cut unreachable locations [l7; l9] from the program graph

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₇, X₁₀
Temp_Vars: L
Locations: l0, l1, l10, l11, l12, l2, l3, l4, l5, l6, l8
Transitions:
t₆₇: l0(X₀, X₁, X₂, X₃, X₇, X₁₀) → l3(X₀, X₁, X₂, X₃, X₇, X₁₀)
t₆₉: l1(X₀, X₁, X₂, X₃, X₇, X₁₀) → l2(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁
t₆₈: l1(X₀, X₁, X₂, X₃, X₇, X₁₀) → l4(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁
t₇₀: l10(X₀, X₁, X₂, X₃, X₇, X₁₀) → l10(X₀, X₁, X₂, X₃, X₇+1, X₁₀) :|: X₇ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₇₁: l10(X₀, X₁, X₂, X₃, X₇, X₁₀) → l11(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₇₂: l11(X₀, X₁, X₂, X₃, X₇, X₁₀) → l5(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: L+1 ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₇₃: l11(X₀, X₁, X₂, X₃, X₇, X₁₀) → l5(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1 ≤ L ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₇₄: l11(X₀, X₁, X₂, X₃, X₇, X₁₀) → l5(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₇₅: l12(X₀, X₁, X₂, X₃, X₇, X₁₀) → l12(X₀, X₁, X₂, X₃+1, X₇, X₁₀) :|: L ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀
t₇₆: l12(X₀, X₁, X₂, X₃, X₇, X₁₀) → l12(X₀, X₁, L, X₃+1, X₇, X₁₀) :|: 1+X₂ ≤ L ∧ X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀
t₇₈: l12(X₀, X₁, X₂, X₃, X₇, X₁₀) → l3(X₀, X₁+1, X₂, X₃, X₇, X₁₀) :|: 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀
t₇₉: l12(X₀, X₁, X₂, X₃, X₇, X₁₀) → l3(X₀, X₁+1, 0, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀
t₈₁: l3(X₀, X₁, X₂, X₃, X₇, X₁₀) → l1(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₁
t₈₀: l3(X₀, X₁, X₂, X₃, X₇, X₁₀) → l12(X₀, X₁, 0, X₃, X₇, X₁₀) :|: X₁ ≤ X₀
t₈₃: l4(X₀, X₁, X₂, X₃, X₇, X₁₀) → l8(X₀, X₁, 0, X₃, X₇, X₁₀) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁
t₈₆: l5(X₀, X₁, X₂, X₃, X₇, X₁₀) → l1(X₀, X₁, X₂, X₀+1, X₇, X₁₀) :|: X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₈₄: l5(X₀, X₁, X₂, X₃, X₇, X₁₀) → l6(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: X₃+1 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₈₈: l6(X₀, X₁, X₂, X₃, X₇, X₁₀) → l1(X₀, X₁, X₂, X₃+1, X₇, X₁₀) :|: 1+X₀ ≤ X₁ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₉₂: l8(X₀, X₁, X₂, X₃, X₇, X₁₀) → l10(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₁ ∧ X₃+1 ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₉₃: l8(X₀, X₁, X₂, X₃, X₇, X₁₀) → l10(X₀, X₁, X₂, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₉₄: l8(X₀, X₁, X₂, X₃, X₇, X₁₀) → l11(X₀, X₁, X₂, X₃, X₇, X₃) :|: 1+X₀ ≤ X₁ ∧ X₃ ≤ X₁₀ ∧ X₁₀ ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁

Analysing control-flow refined program

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l11

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l2

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l6

Found invariant X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l3___3

Found invariant 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l8

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___5

Found invariant X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l3___2

Found invariant 1+X₀ ≤ X₁ for location l1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l10

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location l4

Found invariant X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___4

Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___6

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l11

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l2

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l6

Found invariant X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l3___3

Found invariant X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l8

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___5

Found invariant X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l3___2

Found invariant 1+X₀ ≤ X₁ for location l1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l10

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location l4

Found invariant X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___4

Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___6

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l11

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l2

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l6

Found invariant X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l3___3

Found invariant 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l8

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___5

Found invariant X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l3___2

Found invariant 1+X₀ ≤ X₁ for location l1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l10

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location l4

Found invariant X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___4

Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___6

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l11

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l2

Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l6

Found invariant X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l3___3

Found invariant X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l5

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l8

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___5

Found invariant X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l3___2

Found invariant 1+X₀ ≤ X₁ for location l1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l10

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location l4

Found invariant X₃ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___4

Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___6

Time-Bound by TWN-Loops:

TWN-Loops: t₃₉₇ 72⋅X₀+72⋅X₁+55 {O(n)}

TWN-Loops:

entry: t₄₀₇: n_l3___2(X₀, X₁, X₂, X₃, X₇, X₁₀) → n_l12___1(X₀, X₁, 0, X₃, X₇, X₁₀) :|: 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ 1+X₀
results in twn-loop: twn:Inv: [1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀] , (X₀,X₁,X₂,X₃,X₇,X₁₀) -> (X₀,1+X₁,0,X₃,X₇,X₁₀) :|: X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁+1 ≤ X₀
entry: t₄₀₆: n_l12___6(X₀, X₁, X₂, X₃, X₇, X₁₀) → n_l3___3(X₀, X₁+1, 0, X₃, X₇, X₁₀) :|: X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀
results in twn-loop: twn:Inv: [X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀] , (X₀,X₁,X₂,X₃,X₇,X₁₀) -> (X₀,X₁+1,0,X₃,X₇,X₁₀) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0
entry: t₄₀₃: n_l12___5(X₀, X₁, X₂, X₃, X₇, X₁₀) → n_l3___3(X₀, X₁+1, 0, X₃, X₇, X₁₀) :|: X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀
results in twn-loop: twn:Inv: [X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀] , (X₀,X₁,X₂,X₃,X₇,X₁₀) -> (X₀,X₁+1,0,X₃,X₇,X₁₀) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: [[n == 0]] * X₂
X₃: X₃

Termination: true
Formula:

1+X₀ < X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₃ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
∨ X₁+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₃ ∧ 1 < 0
∨ X₁+1 < X₀ ∧ 1+X₀ < X₃ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁+1 < X₀ ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
∨ X₁+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ X₁+1 < X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁+1 < X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₀ < X₃ ∧ 1 < 0
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₀ < X₃ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁+1 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁

Stabilization-Threshold for: X₁+1 ≤ X₀
alphas_abs: X₀+X₁+1
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+4 {O(n)}
Stabilization-Threshold for: X₁ ≤ X₀
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}

relevant size-bounds w.r.t. t₄₀₇:
X₀: 15⋅X₀ {O(n)}
X₁: 15⋅X₁+4 {O(n)}
Runtime-bound of t₄₀₇: 1 {O(1)}
Results in: 60⋅X₀+60⋅X₁+25 {O(n)}

order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: [[n == 0]] * X₂
X₃: X₃

Termination: true
Formula:

1+X₀ < X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₃ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₃ ∧ 1 < 0
∨ X₁ < X₀ ∧ 1+X₀ < X₃ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ X₁ < X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₃ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₃ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁

Stabilization-Threshold for: X₁ ≤ X₀
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₁ ≤ 1+X₀
alphas_abs: 1+X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+4 {O(n)}

relevant size-bounds w.r.t. t₄₀₆:
X₀: X₀ {O(n)}
X₁: X₁+1 {O(n)}
Runtime-bound of t₄₀₆: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₁+13 {O(n)}

order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: [[n == 0]] * X₂
X₃: X₃

Termination: true
Formula:

1+X₀ < X₃ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ < X₃ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₃ ∧ 1 < 0
∨ X₁ < X₀ ∧ 1+X₀ < X₃ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ X₁ < X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₃ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₃ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ 1+X₀ ≤ X₁

Stabilization-Threshold for: X₁ ≤ X₀
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₁ ≤ 1+X₀
alphas_abs: 1+X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+4 {O(n)}

relevant size-bounds w.r.t. t₄₀₃:
X₀: 2⋅X₀ {O(n)}
X₁: 2⋅X₁+2 {O(n)}
Runtime-bound of t₄₀₃: 1 {O(1)}
Results in: 8⋅X₀+8⋅X₁+17 {O(n)}

72⋅X₀+72⋅X₁+55 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₄₀₈ 72⋅X₀+72⋅X₁+55 {O(n)}

relevant size-bounds w.r.t. t₄₀₇:
X₀: 15⋅X₀ {O(n)}
X₁: 15⋅X₁+4 {O(n)}
Runtime-bound of t₄₀₇: 1 {O(1)}
Results in: 60⋅X₀+60⋅X₁+25 {O(n)}

relevant size-bounds w.r.t. t₄₀₆:
X₀: X₀ {O(n)}
X₁: X₁+1 {O(n)}
Runtime-bound of t₄₀₆: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₁+13 {O(n)}

relevant size-bounds w.r.t. t₄₀₃:
X₀: 2⋅X₀ {O(n)}
X₁: 2⋅X₁+2 {O(n)}
Runtime-bound of t₄₀₃: 1 {O(1)}
Results in: 8⋅X₀+8⋅X₁+17 {O(n)}

72⋅X₀+72⋅X₁+55 {O(n)}

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₃₄₇₂: n_l1___19→l2

Cut unsatisfiable transition t₃₄₇₄: n_l1___3→l2

Cut unsatisfiable transition t₃₄₇₅: n_l1___32→l2

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l8___17

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l4___31

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___11

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___36

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___18

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l8___1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___43

Found invariant X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___4

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l10___28

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l1___32

Found invariant 2+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___14

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l10___13

Found invariant X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 2+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l1___21

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l1___3

Found invariant X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___6

Found invariant 0 ≤ X₂ ∧ X₁ ≤ X₀ for location l12

Found invariant X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___39

Found invariant X₃ ≤ 1+X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l1___5

Found invariant 1+X₀ ≤ X₁ for location l1

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___26

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l1___19

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___9

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l2

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___27

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___16

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l10___29

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___23

Found invariant 2+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___24

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 2+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___33

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l8___42

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___12

Found invariant X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l1___34

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___2

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l8___30

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___10

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___8

Found invariant X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ 1+X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l1___15

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l5___25

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l10___40

Found invariant 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l10___41

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___22

Found invariant 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___7

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l10___38

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___37

Found invariant 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___20

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l5___35

Cut unsatisfiable transition t₃₄₃₈: n_l8___30→n_l10___28

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l8___17

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l4___31

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___11

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___36

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___18

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l8___1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___43

Found invariant X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___4

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l10___28

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l1___32

Found invariant 2+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___14

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l10___13

Found invariant X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 2+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l1___21

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l1___3

Found invariant X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___6

Found invariant 0 ≤ X₂ ∧ X₁ ≤ X₀ for location l12

Found invariant X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___39

Found invariant X₃ ≤ 1+X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l1___5

Found invariant 1+X₀ ≤ X₁ for location l1

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___26

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l1___19

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___9

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l2

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___27

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___16

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l10___29

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___23

Found invariant 2+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___24

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 2+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___33

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l8___42

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___12

Found invariant X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l1___34

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___2

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l8___30

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___10

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___8

Found invariant X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ 1+X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l1___15

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l5___25

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l10___40

Found invariant 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l10___41

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___22

Found invariant 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___7

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l10___38

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___37

Found invariant 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___20

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l5___35

Time-Bound by TWN-Loops:

TWN-Loops: t₃₃₇₇ 12⋅X₀+12⋅X₇+15 {O(n)}

TWN-Loops:

entry: t₃₃₈₁: n_l10___41(X₀, X₁, X₂, X₃, X₇, X₁₀) → n_l10___38(X₀, X₁, 0, X₃, X₇+1, X₁₀) :|: X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁
results in twn-loop: twn:Inv: [X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁] , (X₀,X₁,X₂,X₃,X₇,X₁₀) -> (X₀,X₁,0,X₃,X₇+1,X₁₀) :|: X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
order: [X₀; X₁; X₂; X₃; X₇; X₁₀]
closed-form:
X₀: X₀
X₁: X₁
X₂: [[n == 0]] * X₂
X₃: X₃
X₇: X₇ + [[n != 0]] * n^1
X₁₀: X₁₀

Termination: true
Formula:

1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₃ < X₁₀
∨ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ < X₁₀
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ < X₁₀
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₃ < X₁₀
∨ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ < X₁₀
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ < X₁₀
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₃ < X₁₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ < X₁₀
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ < X₁₀
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₃ < X₁₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ < X₁₀
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ < X₁₀
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₃ < X₁₀
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ < X₁₀
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ < X₁₀
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₃ < X₁₀
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ < X₁₀
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ < X₁₀
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₃ < X₁₀
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ < X₁₀
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ < X₁₀
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₃ < X₁₀
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ < X₁₀
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ < X₁₀
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₃ < X₁₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ < X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ < X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₃ < X₁₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ < X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ < X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₃ < X₁₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ < X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ < X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₃ < X₁₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ < X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ < X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₃

Stabilization-Threshold for: X₇ ≤ X₀
alphas_abs: X₀+X₇
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₇+2 {O(n)}
Stabilization-Threshold for: X₇ ≤ 1+X₀
alphas_abs: 1+X₀+X₇
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₇+4 {O(n)}

relevant size-bounds w.r.t. t₃₃₈₁:
X₀: 3⋅X₀ {O(n)}
X₇: 3⋅X₇+1 {O(n)}
Runtime-bound of t₃₃₈₁: 1 {O(1)}
Results in: 12⋅X₀+12⋅X₇+15 {O(n)}

12⋅X₀+12⋅X₇+15 {O(n)}

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l8___17

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l4___31

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___11

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___36

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___18

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l8___1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___43

Found invariant X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___4

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l10___28

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l1___32

Found invariant 2+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___14

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l10___13

Found invariant X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 2+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l1___21

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l1___3

Found invariant X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___6

Found invariant 0 ≤ X₂ ∧ X₁ ≤ X₀ for location l12

Found invariant X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___39

Found invariant X₃ ≤ 1+X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l1___5

Found invariant 1+X₀ ≤ X₁ for location l1

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___26

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l1___19

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___9

Found invariant 1+X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l2

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___27

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___16

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l10___29

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___23

Found invariant 2+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___24

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 2+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___33

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l8___42

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l11___12

Found invariant X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l1___34

Found invariant X₃ ≤ 1+X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l4___2

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l8___30

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___10

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___8

Found invariant X₃ ≤ X₇ ∧ 1+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ X₃ ≤ 1+X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l1___15

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l5___25

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l10___40

Found invariant 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l10___41

Found invariant 1+X₃ ≤ X₇ ∧ 2+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l5___22

Found invariant 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___7

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l10___38

Found invariant 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___37

Found invariant 2+X₃ ≤ X₇ ∧ 3+X₁₀ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁₀ ≤ X₁ ∧ 2+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l6___20

Found invariant X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l5___35

Time-Bound by TWN-Loops:

TWN-Loops: t₃₃₇₃ 48⋅X₀+48⋅X₇+19 {O(n)}

TWN-Loops:

entry: t₃₃₇₉: n_l10___40(X₀, X₁, X₂, X₃, X₇, X₁₀) → n_l10___13(X₀, X₁, 0, X₃, X₇+1, X₁₀) :|: X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁
results in twn-loop: twn:Inv: [X₇ ≤ X₁ ∧ X₇ ≤ 1+X₀ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁₀ ≤ X₁ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₀ ≤ X₁] , (X₀,X₁,X₂,X₃,X₇,X₁₀) -> (X₀,X₁,0,X₃,X₇+1,X₁₀) :|: X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
order: [X₀; X₁; X₂; X₃; X₇; X₁₀]
closed-form:
X₀: X₀
X₁: X₁
X₂: [[n == 0]] * X₂
X₃: X₃
X₇: X₇ + [[n != 0]] * n^1
X₁₀: X₁₀

Termination: true
Formula:

1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₁₀ < X₃
∨ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ < X₃
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ < X₃
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₁₀ < X₃
∨ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ < X₃
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ < X₃
∨ 1 < 0 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₁₀ < X₃
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ < X₃
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ < X₃
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₁₀ < X₃
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ < X₃
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ < X₃
∨ 1 < 0 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₁₀ < X₃
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ < X₃
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ < X₃
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₁₀ < X₃
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ < X₃
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ < X₃
∨ X₇ < X₀ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₁₀ < X₃
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ < X₃
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ < X₃
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₁₀ < X₃
∨ X₇ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ < X₃
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ < X₃
∨ X₇ < X₀ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₁₀ < X₃
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ < X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ < X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₁₀ < X₃
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ < X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ < X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₁₀ < X₃
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ < X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ < X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₁₀ < X₃
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ < X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₇ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ < X₃
∨ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₀ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ 1+X₁₀

Stabilization-Threshold for: X₇ ≤ X₀
alphas_abs: X₀+X₇
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₇+2 {O(n)}
Stabilization-Threshold for: X₇ ≤ 1+X₀
alphas_abs: 1+X₀+X₇
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₇+4 {O(n)}

relevant size-bounds w.r.t. t₃₃₇₉:
X₀: 12⋅X₀ {O(n)}
X₇: 12⋅X₇+2 {O(n)}
Runtime-bound of t₃₃₇₉: 1 {O(1)}
Results in: 48⋅X₀+48⋅X₇+19 {O(n)}

48⋅X₀+48⋅X₇+19 {O(n)}

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₆₇: 1 {O(1)}
t₆₈: inf {Infinity}
t₆₉: 1 {O(1)}
t₇₀: inf {Infinity}
t₇₁: inf {Infinity}
t₇₂: inf {Infinity}
t₇₃: inf {Infinity}
t₇₄: inf {Infinity}
t₇₅: inf {Infinity}
t₇₆: inf {Infinity}
t₇₈: inf {Infinity}
t₇₉: inf {Infinity}
t₈₀: inf {Infinity}
t₈₁: 1 {O(1)}
t₈₃: inf {Infinity}
t₈₄: inf {Infinity}
t₈₆: inf {Infinity}
t₈₈: inf {Infinity}
t₉₂: inf {Infinity}
t₉₃: inf {Infinity}
t₉₄: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
t₆₇: 1 {O(1)}
t₆₈: inf {Infinity}
t₆₉: 1 {O(1)}
t₇₀: inf {Infinity}
t₇₁: inf {Infinity}
t₇₂: inf {Infinity}
t₇₃: inf {Infinity}
t₇₄: inf {Infinity}
t₇₅: inf {Infinity}
t₇₆: inf {Infinity}
t₇₈: inf {Infinity}
t₇₉: inf {Infinity}
t₈₀: inf {Infinity}
t₈₁: 1 {O(1)}
t₈₃: inf {Infinity}
t₈₄: inf {Infinity}
t₈₆: inf {Infinity}
t₈₈: inf {Infinity}
t₉₂: inf {Infinity}
t₉₃: inf {Infinity}
t₉₄: inf {Infinity}

Sizebounds

t₆₇, X₀: X₀ {O(n)}
t₆₇, X₁: X₁ {O(n)}
t₆₇, X₂: X₂ {O(n)}
t₆₇, X₃: X₃ {O(n)}
t₆₇, X₇: X₇ {O(n)}
t₆₇, X₁₀: X₁₀ {O(n)}
t₆₈, X₀: 3⋅X₀ {O(n)}
t₆₉, X₀: 12⋅X₀ {O(n)}
t₇₀, X₀: 3⋅X₀ {O(n)}
t₇₀, X₂: 0 {O(1)}
t₇₁, X₀: 3⋅X₀ {O(n)}
t₇₁, X₂: 0 {O(1)}
t₇₂, X₀: 3⋅X₀ {O(n)}
t₇₂, X₂: 0 {O(1)}
t₇₃, X₀: 3⋅X₀ {O(n)}
t₇₃, X₂: 0 {O(1)}
t₇₄, X₀: 3⋅X₀ {O(n)}
t₇₄, X₂: 0 {O(1)}
t₇₅, X₀: X₀ {O(n)}
t₇₅, X₇: X₇ {O(n)}
t₇₅, X₁₀: X₁₀ {O(n)}
t₇₆, X₀: X₀ {O(n)}
t₇₆, X₇: X₇ {O(n)}
t₇₆, X₁₀: X₁₀ {O(n)}
t₇₈, X₀: X₀ {O(n)}
t₇₈, X₇: X₇ {O(n)}
t₇₈, X₁₀: X₁₀ {O(n)}
t₇₉, X₀: X₀ {O(n)}
t₇₉, X₂: 0 {O(1)}
t₇₉, X₇: X₇ {O(n)}
t₇₉, X₁₀: X₁₀ {O(n)}
t₈₀, X₀: X₀ {O(n)}
t₈₀, X₂: 0 {O(1)}
t₈₀, X₇: X₇ {O(n)}
t₈₀, X₁₀: X₁₀ {O(n)}
t₈₁, X₀: 3⋅X₀ {O(n)}
t₈₁, X₇: 3⋅X₇ {O(n)}
t₈₁, X₁₀: 3⋅X₁₀ {O(n)}
t₈₃, X₀: 3⋅X₀ {O(n)}
t₈₃, X₂: 0 {O(1)}
t₈₄, X₀: 3⋅X₀ {O(n)}
t₈₄, X₂: 0 {O(1)}
t₈₆, X₀: 9⋅X₀ {O(n)}
t₈₆, X₂: 0 {O(1)}
t₈₆, X₃: 9⋅X₀+3 {O(n)}
t₈₈, X₀: 3⋅X₀ {O(n)}
t₈₈, X₂: 0 {O(1)}
t₉₂, X₀: 3⋅X₀ {O(n)}
t₉₂, X₂: 0 {O(1)}
t₉₃, X₀: 3⋅X₀ {O(n)}
t₉₃, X₂: 0 {O(1)}
t₉₄, X₀: 3⋅X₀ {O(n)}
t₉₄, X₂: 0 {O(1)}