Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₁₄: l10(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₄: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄)
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄)
t₆: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₇: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₃, X₄, X₂, X₃, X₄)
t₉: l8(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₂ ≤ X₀
t₈: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₀ < X₂
t₁₀: l9(X₀, X₁, X₂, X₃, X₄) → l8(X₀+1, X₁, X₂, X₃, X₄) :|: X₀ < X₁ ∧ X₀ < X₁
t₁₁: l9(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀ < X₁ ∧ X₁ ≤ X₀
t₁₂: l9(X₀, X₁, X₂, X₃, X₄) → l8(X₀+1, X₁+1, X₂, X₃, X₄) :|: X₁ ≤ X₀ ∧ X₀ < X₁
t₁₃: l9(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁+1, X₂, X₃, X₄) :|: X₁ ≤ X₀ ∧ X₁ ≤ X₀

Preprocessing

Cut unsatisfiable transition t₁₁: l9→l8

Cut unsatisfiable transition t₁₂: l9→l8

Found invariant X₄ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ for location l11

Found invariant X₄ ≤ X₁ ∧ X₃ ≤ X₀ for location l8

Found invariant X₄ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ for location l10

Found invariant X₄ ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₂ for location l9

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₁₄: l10(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₄: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄)
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄)
t₆: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₇: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₃, X₄, X₂, X₃, X₄)
t₉: l8(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₂ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₀
t₈: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₀ < X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₀
t₁₀: l9(X₀, X₁, X₂, X₃, X₄) → l8(X₀+1, X₁, X₂, X₃, X₄) :|: X₀ < X₁ ∧ X₀ < X₁ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₂
t₁₃: l9(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁+1, X₂, X₃, X₄) :|: X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₂

Analysing control-flow refined program

Cut unsatisfiable transition t₁₇₄: n_l8___5→l10

Found invariant X₄ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ for location l11

Found invariant 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location n_l8___2

Found invariant X₄ ≤ X₁ ∧ 1+X₃ ≤ X₄ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location n_l9___4

Found invariant X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₀ ≤ X₂ for location n_l9___7

Found invariant 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location n_l9___1

Found invariant 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l8___5

Found invariant X₄ ≤ X₁ ∧ 1+X₃ ≤ X₄ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location n_l8___6

Found invariant 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l9___3

Found invariant X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l8

Found invariant X₄ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ for location l10

Found invariant X₄ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ for location l11

Found invariant 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location n_l8___2

Found invariant X₄ ≤ X₁ ∧ 1+X₃ ≤ X₄ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location n_l9___4

Found invariant X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₀ ≤ X₂ for location n_l9___7

Found invariant 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location n_l9___1

Found invariant 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l8___5

Found invariant X₄ ≤ X₁ ∧ 1+X₃ ≤ X₄ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location n_l8___6

Found invariant 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ for location n_l9___3

Found invariant X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l8

Found invariant X₄ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ for location l10

Time-Bound by TWN-Loops:

TWN-Loops: t₁₅₈ 10⋅X₃+2⋅X₄+4⋅X₂+21 {O(n)}

TWN-Loops:

entry: t₁₆₆: n_l9___7(X₀, X₁, X₂, X₃, X₄) → n_l8___6(X₀+1, X₁, X₂, X₃, X₄) :|: X₀ < X₂ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ < X₁ ∧ 1+X₀ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₀ ≤ X₂
results in twn-loop: twn:Inv: [X₄ ≤ X₁ ∧ 1+X₃ ≤ X₄ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₄ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ X₁] , (X₀,X₁,X₂,X₃,X₄) -> (X₀+1,X₁,X₂,X₃,X₄) :|: X₄ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ < X₂ ∧ X₀ < X₂ ∧ X₃ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ < X₁ ∧ 1+X₀ ≤ X₂
order: [X₀; X₁; X₂; X₃; X₄]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁
X₂: X₂
X₃: X₃
X₄: X₄

Termination: true
Formula:

0 < 1 ∧ X₄ < X₁ ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₄ < X₁ ∧ 1 < 0
∨ 1 < 0 ∧ X₃ < X₀ ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1 < 0 ∧ X₃ < X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ 1 < 0
∨ 1 < 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1 < 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ X₄ < X₁ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < X₁ ∧ 0 < 1 ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < X₁ ∧ 0 < 1 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₄ < X₁ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < X₁ ∧ X₃ < X₀ ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < X₁ ∧ X₃ < X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ X₄ < X₁ ∧ 1 < 0
∨ 1+X₀ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1+X₀ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₂ ∧ X₃ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₄ < X₁ ∧ 1 < 0
∨ 1+X₀ < X₂ ∧ 1 < 0 ∧ X₃ < X₀ ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₂ ∧ X₃ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1+X₀ < X₂ ∧ 1 < 0 ∧ X₃ < X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ 1 < 0
∨ 1+X₀ < X₂ ∧ 1 < 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1+X₀ < X₂ ∧ 1 < 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ X₄ < X₁ ∧ 1 < 0
∨ 1+X₀ < X₂ ∧ X₀ < X₁ ∧ 0 < 1 ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1+X₀ < X₂ ∧ X₀ < X₁ ∧ 0 < 1 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₂ ∧ X₀ < X₁ ∧ X₃ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₄ < X₁ ∧ 1 < 0
∨ 1+X₀ < X₂ ∧ X₀ < X₁ ∧ X₃ < X₀ ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₂ ∧ X₀ < X₁ ∧ X₃ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1+X₀ < X₂ ∧ X₀ < X₁ ∧ X₃ < X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₂ ∧ X₀ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ 1 < 0
∨ 1+X₀ < X₂ ∧ X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₂ ∧ X₀ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1+X₀ < X₂ ∧ X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1 ∧ X₄ < X₁ ∧ 1 < 0
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₄ < X₁ ∧ 1 < 0
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0 ∧ X₃ < X₀ ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₃ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0 ∧ X₃ < X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ 1 < 0
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ X₄ < X₁ ∧ 1 < 0
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ < X₁ ∧ 0 < 1 ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ < X₁ ∧ 0 < 1 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ < X₁ ∧ X₃ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₄ < X₁ ∧ 1 < 0
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ < X₁ ∧ X₃ < X₀ ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ < X₁ ∧ X₃ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ < X₁ ∧ X₃ < X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ 1 < 0
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 < 0
∨ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 1+X₀ ≤ X₂
alphas_abs: 1+X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}
Stabilization-Threshold for: X₀ < X₁
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₃ ≤ X₀
alphas_abs: X₀+X₃
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₃+2 {O(n)}
Stabilization-Threshold for: X₀ < X₂
alphas_abs: X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+2 {O(n)}

relevant size-bounds w.r.t. t₁₆₆:
X₀: X₃+1 {O(n)}
X₁: X₄ {O(n)}
X₂: X₂ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₁₆₆: 1 {O(1)}
Results in: 10⋅X₃+2⋅X₄+4⋅X₂+21 {O(n)}

10⋅X₃+2⋅X₄+4⋅X₂+21 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₁₆₄ 10⋅X₃+2⋅X₄+4⋅X₂+21 {O(n)}

relevant size-bounds w.r.t. t₁₆₆:
X₀: X₃+1 {O(n)}
X₁: X₄ {O(n)}
X₂: X₂ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₁₆₆: 1 {O(1)}
Results in: 10⋅X₃+2⋅X₄+4⋅X₂+21 {O(n)}

10⋅X₃+2⋅X₄+4⋅X₂+21 {O(n)}

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₁₄: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: inf {Infinity}
t₉: 1 {O(1)}
t₁₀: inf {Infinity}
t₁₃: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₁₄: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: inf {Infinity}
t₉: 1 {O(1)}
t₁₀: inf {Infinity}
t₁₃: inf {Infinity}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₁₄, X₂: 2⋅X₂ {O(n)}
t₁₄, X₃: 2⋅X₃ {O(n)}
t₁₄, X₄: 2⋅X₄ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₇, X₀: X₃ {O(n)}
t₇, X₁: X₄ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₉, X₂: 2⋅X₂ {O(n)}
t₉, X₃: 2⋅X₃ {O(n)}
t₉, X₄: 2⋅X₄ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: X₄ {O(n)}