Initial Problem

Start: l0
Program_Vars: X₀, X₁
Temp_Vars: C, D
Locations: l0, l1, l2
Transitions:
t₆: l0(X₀, X₁) → l1(X₀, X₁)
t₁: l1(X₀, X₁) → l1(C, X₁) :|: 0 ≤ C ∧ X₀ ≤ 14 ∧ 14 ≤ X₀
t₄: l1(X₀, X₁) → l1(X₀-1, X₁) :|: 15 ≤ X₀ ∧ 1 ≤ X₀
t₅: l1(X₀, X₁) → l1(X₀-1, X₁) :|: X₀ ≤ 13 ∧ 1 ≤ X₀
t₀: l1(X₀, X₁) → l2(C, D) :|: C+1 ≤ 0 ∧ X₀ ≤ 14 ∧ 14 ≤ X₀
t₂: l1(X₀, X₁) → l2(X₀-1, C) :|: 15 ≤ X₀ ∧ X₀ ≤ 0
t₃: l1(X₀, X₁) → l2(X₀-1, C) :|: X₀ ≤ 13 ∧ X₀ ≤ 0

Preprocessing

Cut unsatisfiable transition t₂: l1→l2

Eliminate variables {D,X₁} that do not contribute to the problem

Found invariant 1+X₀ ≤ 0 for location l2

Problem after Preprocessing

Start: l0
Program_Vars: X₀
Temp_Vars: C
Locations: l0, l1, l2
Transitions:
t₂₃: l0(X₀) → l1(X₀)
t₂₅: l1(X₀) → l1(C) :|: 0 ≤ C ∧ X₀ ≤ 14 ∧ 14 ≤ X₀
t₂₇: l1(X₀) → l1(X₀-1) :|: 15 ≤ X₀ ∧ 1 ≤ X₀
t₂₈: l1(X₀) → l1(X₀-1) :|: X₀ ≤ 13 ∧ 1 ≤ X₀
t₂₄: l1(X₀) → l2(C) :|: C+1 ≤ 0 ∧ X₀ ≤ 14 ∧ 14 ≤ X₀
t₂₆: l1(X₀) → l2(X₀-1) :|: X₀ ≤ 13 ∧ X₀ ≤ 0

Analysing control-flow refined program

Cut unsatisfiable transition t₁₆₅: n_l1___1→l2

Cut unsatisfiable transition t₁₆₃: n_l1___2→l2

Cut unsatisfiable transition t₁₆₉: n_l1___2→l2

Found invariant 1+X₀ ≤ 0 for location l2

Found invariant 14 ≤ X₀ for location n_l1___2

Found invariant 0 ≤ X₀ for location n_l1___3

Found invariant X₀ ≤ 12 ∧ 0 ≤ X₀ for location n_l1___1

Found invariant 1+X₀ ≤ 0 for location l2

Found invariant 14 ≤ X₀ for location n_l1___2

Found invariant 0 ≤ X₀ for location n_l1___3

Found invariant X₀ ≤ 12 ∧ 0 ≤ X₀ for location n_l1___1

Found invariant 1+X₀ ≤ 0 for location l2

Found invariant 14 ≤ X₀ for location n_l1___2

Found invariant 0 ≤ X₀ for location n_l1___3

Found invariant X₀ ≤ 12 ∧ 0 ≤ X₀ for location n_l1___1

Time-Bound by TWN-Loops:

TWN-Loops: t₁₃₈ 312 {O(1)}

TWN-Loops:

entry: t₁₄₁: n_l1___3(X₀) → n_l1___1(X₀-1) :|: 0 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 13 ∧ 0 ≤ X₀
results in twn-loop: twn:Inv: [X₀ ≤ 12 ∧ 0 ≤ X₀] , (X₀) -> (X₀-1) :|: X₀ ≤ 13 ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 12 ∧ 1 ≤ X₀ ∧ X₀ ≤ 13
entry: t₁₄₄: l1(X₀) → n_l1___1(X₀-1) :|: 1 ≤ X₀ ∧ X₀ ≤ 13
results in twn-loop: twn:Inv: [X₀ ≤ 12 ∧ 0 ≤ X₀] , (X₀) -> (X₀-1) :|: X₀ ≤ 13 ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 12 ∧ 1 ≤ X₀ ∧ X₀ ≤ 13
order: [X₀]
closed-form:
X₀: X₀ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < 1 ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < 1 ∧ 1 < X₀ ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < X₀ ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < X₀ ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < X₀ ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < X₀ ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 13 ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 13 ∧ 1 < 0 ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 < 0 ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ X₀ < 13 ∧ 1 < 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 < 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 13 ∧ 1 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 1 < X₀ ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 13 ∧ 1 < X₀ ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 < X₀ ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ X₀ < 13 ∧ 1 < X₀ ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 < X₀ ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0

Stabilization-Threshold for: X₀ ≤ 13
alphas_abs: 13+X₀
M: 0
N: 1
Bound: 2⋅X₀+28 {O(n)}
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: X₀ ≤ 12
alphas_abs: 12+X₀
M: 0
N: 1
Bound: 2⋅X₀+26 {O(n)}
Stabilization-Threshold for: 0 ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}

relevant size-bounds w.r.t. t₁₄₁:
X₀: 12 {O(1)}
Runtime-bound of t₁₄₁: 1 {O(1)}
Results in: 156 {O(1)}

order: [X₀]
closed-form:
X₀: X₀ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < 1 ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < 1 ∧ 1 < X₀ ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < X₀ ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < X₀ ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < X₀ ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < X₀ ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 13 ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 13 ∧ 1 < 0 ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 < 0 ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ X₀ < 13 ∧ 1 < 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 < 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 13 ∧ 1 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 1 < X₀ ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 13 ∧ 1 < X₀ ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 < X₀ ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ X₀ < 13 ∧ 1 < X₀ ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 < X₀ ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 13 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 < X₀ ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 12 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 13 ∧ 13 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 12 ∧ 12 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0

Stabilization-Threshold for: X₀ ≤ 13
alphas_abs: 13+X₀
M: 0
N: 1
Bound: 2⋅X₀+28 {O(n)}
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: X₀ ≤ 12
alphas_abs: 12+X₀
M: 0
N: 1
Bound: 2⋅X₀+26 {O(n)}
Stabilization-Threshold for: 0 ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}

relevant size-bounds w.r.t. t₁₄₄:
X₀: 12 {O(1)}
Runtime-bound of t₁₄₄: 1 {O(1)}
Results in: 156 {O(1)}

312 {O(1)}

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₂₃: 1 {O(1)}
t₂₄: 1 {O(1)}
t₂₅: inf {Infinity}
t₂₆: 1 {O(1)}
t₂₇: inf {Infinity}
t₂₈: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
t₂₃: 1 {O(1)}
t₂₄: 1 {O(1)}
t₂₅: inf {Infinity}
t₂₆: 1 {O(1)}
t₂₇: inf {Infinity}
t₂₈: inf {Infinity}

Sizebounds

t₂₃, X₀: X₀ {O(n)}
t₂₈, X₀: 12 {O(1)}