Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆
Temp_Vars: B1, C1, D1, E1, F1, G1, H1, I1
Locations: l0, l1, l2, l3, l4
Transitions:
t₁₇: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(17, X₁, 1, 0, B1, B1, B1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, E1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₁₈, 1+X₉, 0, F1, C1, X₁₃, D1, X₁₅, E1, X₁₈, X₁₆, B1, 1+X₉, X₇-1, X₉, X₂₃, X₂₄, X₂₅, X₂₆) :|: D1 ≤ X₁₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 1 ≤ X₁₆ ∧ 1 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₁₈, 1+X₉, 0, F1, C1, X₁₃, D1, X₁₅, E1, X₁₈, X₁₆, B1, 1+X₉, X₇-1, X₉, X₂₃, X₂₄, X₂₅, X₂₆) :|: D1 ≤ X₁₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₈+1 ≤ 0 ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₁₈, 1+X₉, 0, F1, C1, X₁₃, D1, X₁₅, E1, X₁₈, X₁₆, B1, 1+X₉, X₇-1, X₉, X₂₃, X₂₄, X₂₅, X₂₆) :|: D1 ≤ X₁₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ X₁₆+1 ≤ 0 ∧ 1 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₁₈, 1+X₉, 0, F1, C1, X₁₃, D1, X₁₅, E1, X₁₈, X₁₆, B1, 1+X₉, X₇-1, X₉, X₂₃, X₂₄, X₂₅, X₂₆) :|: D1 ≤ X₁₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ X₁₆+1 ≤ 0 ∧ X₈+1 ≤ 0 ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, B1, X₉, X₈, E1, F1, C1, D1, G1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: C1+1 ≤ D1 ∧ 0 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₉
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, B1, X₉, X₈, E1, F1, C1, D1, G1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: C1+1 ≤ D1 ∧ 0 ≤ X₇ ∧ X₈+1 ≤ 0 ∧ 1 ≤ X₉
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, E1, F1, X₁₃, C1, X₁₅, 0, X₁₈, X₁₈, X₁₉, X₂₀, X₂₁, X₉, B1, X₂₄, X₂₅, X₂₆) :|: C1 ≤ X₁₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₁₆ ≤ 0 ∧ 0 ≤ X₁₆ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, E1, F1, X₁₃, C1, X₁₅, 0, X₁₈, X₁₈, X₁₉, X₂₀, X₂₁, X₉, B1, X₂₄, X₂₅, X₂₆) :|: C1 ≤ X₁₃ ∧ 0 ≤ X₇ ∧ X₈+1 ≤ 0 ∧ 0 ≤ X₉ ∧ X₁₆ ≤ 0 ∧ 0 ≤ X₁₆ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀
t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, G1, X₂, X₃, X₄, X₅, X₆, X₃-3, B1, 1, 0, H1, I1, X₁₃, X₁₄, X₁₅, C1, B1, E1, F1, 1, X₃-3, X₂₂, X₄, X₄, X₃-2, D1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ 1 ≤ E1 ∧ 1 ≤ B1 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, G1, X₂, X₃, X₄, X₅, X₆, X₃-3, B1, 1, 0, H1, I1, X₁₃, X₁₄, X₁₅, C1, B1, E1, F1, 1, X₃-3, X₂₂, X₄, X₄, X₃-2, D1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ 1 ≤ E1 ∧ 1 ≤ B1 ∧ X₀ ≤ X₂ ∧ X₄+1 ≤ 0
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, G1, X₂, X₃, X₄, X₅, X₆, X₃-3, B1, 1, 0, H1, I1, X₁₃, X₁₄, X₁₅, C1, B1, E1, F1, 1, X₃-3, X₂₂, X₄, X₄, X₃-2, D1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ 1 ≤ E1 ∧ B1+1 ≤ 0 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, G1, X₂, X₃, X₄, X₅, X₆, X₃-3, B1, 1, 0, H1, I1, X₁₃, X₁₄, X₁₅, C1, B1, E1, F1, 1, X₃-3, X₂₂, X₄, X₄, X₃-2, D1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ 1 ≤ E1 ∧ B1+1 ≤ 0 ∧ X₀ ≤ X₂ ∧ X₄+1 ≤ 0
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, G1, X₂, X₃, X₄, X₅, X₆, X₃-3, B1, 1, 0, H1, I1, X₁₃, X₁₄, X₁₅, C1, B1, E1, F1, 1, X₃-3, X₂₂, X₄, X₄, X₃-2, D1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ E1+1 ≤ 0 ∧ 1 ≤ B1 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, G1, X₂, X₃, X₄, X₅, X₆, X₃-3, B1, 1, 0, H1, I1, X₁₃, X₁₄, X₁₅, C1, B1, E1, F1, 1, X₃-3, X₂₂, X₄, X₄, X₃-2, D1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ E1+1 ≤ 0 ∧ 1 ≤ B1 ∧ X₀ ≤ X₂ ∧ X₄+1 ≤ 0
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, G1, X₂, X₃, X₄, X₅, X₆, X₃-3, B1, 1, 0, H1, I1, X₁₃, X₁₄, X₁₅, C1, B1, E1, F1, 1, X₃-3, X₂₂, X₄, X₄, X₃-2, D1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ E1+1 ≤ 0 ∧ B1+1 ≤ 0 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄
t₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, G1, X₂, X₃, X₄, X₅, X₆, X₃-3, B1, 1, 0, H1, I1, X₁₃, X₁₄, X₁₅, C1, B1, E1, F1, 1, X₃-3, X₂₂, X₄, X₄, X₃-2, D1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ E1+1 ≤ 0 ∧ B1+1 ≤ 0 ∧ X₀ ≤ X₂ ∧ X₄+1 ≤ 0
t₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, 1+X₂, 1+X₃, B1, B1, B1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₂ ≤ X₀ ∧ 0 ≤ X₃

Preprocessing

Eliminate variables {F1,H1,I1,X₁,X₅,X₆,X₁₁,X₁₂,X₁₄,X₁₅,X₁₇,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆} that do not contribute to the problem

Found invariant X₉ ≤ 14 ∧ X₉ ≤ 14+X₇ ∧ X₇+X₉ ≤ 14 ∧ 2+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 30 ∧ 3+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 31 ∧ 3+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 31 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ X₇ ∧ 16 ≤ X₃+X₇ ∧ X₃ ≤ 16+X₇ ∧ 17 ≤ X₂+X₇ ∧ X₂ ≤ 17+X₇ ∧ 17 ≤ X₀+X₇ ∧ X₀ ≤ 17+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location l2

Found invariant X₉ ≤ 15 ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location l1

Found invariant X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location l4

Found invariant X₉ ≤ 14 ∧ X₉ ≤ 14+X₇ ∧ X₇+X₉ ≤ 14 ∧ 2+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 30 ∧ 3+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 31 ∧ X₉ ≤ 14+X₁₆ ∧ X₁₆+X₉ ≤ 14 ∧ X₉ ≤ 14+X₁₀ ∧ X₁₀+X₉ ≤ 14 ∧ 3+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 31 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₆+X₉ ∧ 1+X₁₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₆ ∧ X₁₆+X₇ ≤ 13 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ X₇ ∧ 16 ≤ X₃+X₇ ∧ X₃ ≤ 16+X₇ ∧ 17 ≤ X₂+X₇ ∧ X₂ ≤ 17+X₇ ∧ 0 ≤ X₁₆+X₇ ∧ X₁₆ ≤ X₇ ∧ 0 ≤ X₁₀+X₇ ∧ X₁₀ ≤ X₇ ∧ 17 ≤ X₀+X₇ ∧ X₀ ≤ 17+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₆ ∧ X₁₆+X₃ ≤ 16 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₆+X₃ ∧ 16+X₁₆ ≤ X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₆ ∧ X₁₆+X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₆+X₂ ∧ 17+X₁₆ ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₆ ≤ 0 ∧ X₁₆ ≤ X₁₀ ∧ X₁₀+X₁₆ ≤ 0 ∧ 17+X₁₆ ≤ X₀ ∧ X₀+X₁₆ ≤ 17 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ X₁₆ ∧ 17 ≤ X₀+X₁₆ ∧ X₀ ≤ 17+X₁₆ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈
Temp_Vars: B1, C1, D1, E1, G1
Locations: l0, l1, l2, l3, l4
Transitions:
t₄₅: l0(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l4(17, 1, 0, B1, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈)
t₄₈: l1(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l1(X₀, X₂, X₃, X₄, X₇-1, X₁₈, 1+X₉, 0, X₁₃, E1, X₁₆) :|: D1 ≤ X₁₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 1 ≤ X₁₆ ∧ 1 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ 15 ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₄₉: l1(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l1(X₀, X₂, X₃, X₄, X₇-1, X₁₈, 1+X₉, 0, X₁₃, E1, X₁₆) :|: D1 ≤ X₁₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₈+1 ≤ 0 ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ 15 ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₅₀: l1(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l1(X₀, X₂, X₃, X₄, X₇-1, X₁₈, 1+X₉, 0, X₁₃, E1, X₁₆) :|: D1 ≤ X₁₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ X₁₆+1 ≤ 0 ∧ 1 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ 15 ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₅₁: l1(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l1(X₀, X₂, X₃, X₄, X₇-1, X₁₈, 1+X₉, 0, X₁₃, E1, X₁₆) :|: D1 ≤ X₁₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ X₁₆+1 ≤ 0 ∧ X₈+1 ≤ 0 ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ 15 ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₄₆: l1(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l2(X₀, X₂, X₃, X₄, X₇, B1, X₉, X₈, C1, X₁₆, X₁₈) :|: C1+1 ≤ D1 ∧ 0 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₉ ∧ X₉ ≤ 15 ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₄₇: l1(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l2(X₀, X₂, X₃, X₄, X₇, B1, X₉, X₈, C1, X₁₆, X₁₈) :|: C1+1 ≤ D1 ∧ 0 ≤ X₇ ∧ X₈+1 ≤ 0 ∧ 1 ≤ X₉ ∧ X₉ ≤ 15 ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₅₂: l1(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l3(X₀, X₂, X₃, X₄, X₇, X₈, X₉, 0, X₁₃, 0, X₁₈) :|: C1 ≤ X₁₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₁₆ ≤ 0 ∧ 0 ≤ X₁₆ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ 15 ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₅₃: l1(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l3(X₀, X₂, X₃, X₄, X₇, X₈, X₉, 0, X₁₃, 0, X₁₈) :|: C1 ≤ X₁₃ ∧ 0 ≤ X₇ ∧ X₈+1 ≤ 0 ∧ 0 ≤ X₉ ∧ X₁₆ ≤ 0 ∧ 0 ≤ X₁₆ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ 15 ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₅₅: l4(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l1(X₀, X₂, X₃, X₄, X₃-3, B1, 1, 0, X₁₃, C1, E1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ 1 ≤ E1 ∧ 1 ≤ B1 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₅₆: l4(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l1(X₀, X₂, X₃, X₄, X₃-3, B1, 1, 0, X₁₃, C1, E1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ 1 ≤ E1 ∧ 1 ≤ B1 ∧ X₀ ≤ X₂ ∧ X₄+1 ≤ 0 ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₅₇: l4(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l1(X₀, X₂, X₃, X₄, X₃-3, B1, 1, 0, X₁₃, C1, E1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ 1 ≤ E1 ∧ B1+1 ≤ 0 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₅₈: l4(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l1(X₀, X₂, X₃, X₄, X₃-3, B1, 1, 0, X₁₃, C1, E1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ 1 ≤ E1 ∧ B1+1 ≤ 0 ∧ X₀ ≤ X₂ ∧ X₄+1 ≤ 0 ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₅₉: l4(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l1(X₀, X₂, X₃, X₄, X₃-3, B1, 1, 0, X₁₃, C1, E1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ E1+1 ≤ 0 ∧ 1 ≤ B1 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₆₀: l4(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l1(X₀, X₂, X₃, X₄, X₃-3, B1, 1, 0, X₁₃, C1, E1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ E1+1 ≤ 0 ∧ 1 ≤ B1 ∧ X₀ ≤ X₂ ∧ X₄+1 ≤ 0 ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₆₁: l4(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l1(X₀, X₂, X₃, X₄, X₃-3, B1, 1, 0, X₁₃, C1, E1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ E1+1 ≤ 0 ∧ B1+1 ≤ 0 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₆₂: l4(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l1(X₀, X₂, X₃, X₄, X₃-3, B1, 1, 0, X₁₃, C1, E1) :|: G1 ≤ D1 ∧ 2 ≤ X₃ ∧ E1+1 ≤ 0 ∧ B1+1 ≤ 0 ∧ X₀ ≤ X₂ ∧ X₄+1 ≤ 0 ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀
t₅₄: l4(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l4(X₀, 1+X₂, 1+X₃, B1, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) :|: 1+X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀

Found invariant X₉ ≤ 14 ∧ X₉ ≤ 14+X₇ ∧ X₇+X₉ ≤ 14 ∧ 2+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 30 ∧ 3+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 31 ∧ 3+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 31 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ X₇ ∧ 16 ≤ X₃+X₇ ∧ X₃ ≤ 16+X₇ ∧ 17 ≤ X₂+X₇ ∧ X₂ ≤ 17+X₇ ∧ 17 ≤ X₀+X₇ ∧ X₀ ≤ 17+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location l2

Found invariant X₉ ≤ 15 ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location l1

Found invariant X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location l4

Found invariant X₉ ≤ 14 ∧ X₉ ≤ 14+X₇ ∧ X₇+X₉ ≤ 14 ∧ 2+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 30 ∧ 3+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 31 ∧ X₉ ≤ 14+X₁₆ ∧ X₁₆+X₉ ≤ 14 ∧ X₉ ≤ 14+X₁₀ ∧ X₁₀+X₉ ≤ 14 ∧ 3+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 31 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₆+X₉ ∧ 1+X₁₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₆ ∧ X₁₆+X₇ ≤ 13 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ X₇ ∧ 16 ≤ X₃+X₇ ∧ X₃ ≤ 16+X₇ ∧ 17 ≤ X₂+X₇ ∧ X₂ ≤ 17+X₇ ∧ 0 ≤ X₁₆+X₇ ∧ X₁₆ ≤ X₇ ∧ 0 ≤ X₁₀+X₇ ∧ X₁₀ ≤ X₇ ∧ 17 ≤ X₀+X₇ ∧ X₀ ≤ 17+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₆ ∧ X₁₆+X₃ ≤ 16 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₆+X₃ ∧ 16+X₁₆ ≤ X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₆ ∧ X₁₆+X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₆+X₂ ∧ 17+X₁₆ ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₆ ≤ 0 ∧ X₁₆ ≤ X₁₀ ∧ X₁₀+X₁₆ ≤ 0 ∧ 17+X₁₆ ≤ X₀ ∧ X₀+X₁₆ ≤ 17 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ X₁₆ ∧ 17 ≤ X₀+X₁₆ ∧ X₀ ≤ 17+X₁₆ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₅₄ 44 {O(1)}

TWN-Loops:

entry: t₄₅: l0(X₀, X₂, X₃, X₄, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈) → l4(17, 1, 0, B1, X₇, X₈, X₉, X₁₀, X₁₃, X₁₆, X₁₈)
results in twn-loop: twn:Inv: [X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀] , (X₀,X₂,X₃,X₄,X₇,X₈,X₉,X₁₀,X₁₃,X₁₆,X₁₈) -> (X₀,1+X₂,1+X₃,B1,X₇,X₈,X₉,X₁₀,X₁₃,X₁₆,X₁₈) :|: 1+X₂ ≤ X₀ ∧ 0 ≤ X₃
order: [X₀; X₂; X₃]
closed-form:
X₀: X₀
X₂: X₂ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * n^1

Termination: true
Formula:

0 < 1 ∧ 1 < 0 ∧ 2 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ X₂+X₃ < 33 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 0 < 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₂+X₃ ≤ 33 ∧ 33 ≤ X₂+X₃
∨ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+X₃ < 33 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₂+X₃ ≤ 33 ∧ 33 ≤ X₂+X₃
∨ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 < 0
∨ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₂+X₃ < 33 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₂+X₃ ≤ 33 ∧ 33 ≤ X₂+X₃
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 2 < 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ X₂+X₃ < 33 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₂+X₃ ≤ 33 ∧ 33 ≤ X₂+X₃
∨ 0 < X₃ ∧ 1+X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ 0 < X₃ ∧ 1+X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+X₃ < 33 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 0 < X₃ ∧ 1+X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₂+X₃ ≤ 33 ∧ 33 ≤ X₂+X₃
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 < 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₂+X₃ < 33 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₂+X₃ ≤ 33 ∧ 33 ≤ X₂+X₃
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 < 0 ∧ 2 < 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 < 0 ∧ X₂+X₃ < 33 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₂+X₃ ≤ 33 ∧ 33 ≤ X₂+X₃
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1+X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1+X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+X₃ < 33 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1+X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₂+X₃ ≤ 33 ∧ 33 ≤ X₂+X₃
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 < 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₂+X₃ < 33 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₂+X₃ ≤ 33 ∧ 33 ≤ X₂+X₃

Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 1+X₂ ≤ X₀
alphas_abs: 1+X₂+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}

relevant size-bounds w.r.t. t₄₅:
X₀: 17 {O(1)}
X₂: 1 {O(1)}
X₃: 0 {O(1)}
Runtime-bound of t₄₅: 1 {O(1)}
Results in: 44 {O(1)}

44 {O(1)}

Analysing control-flow refined program

Cut unsatisfiable transition t₇₆₉: n_l1___1→l2

Cut unsatisfiable transition t₇₈₅: n_l1___1→l3

Cut unsatisfiable transition t₈₀₁: n_l1___1→l2

Cut unsatisfiable transition t₈₁₇: n_l1___1→l3

Cut unsatisfiable transition t₈₃₃: n_l1___1→l2

Cut unsatisfiable transition t₈₄₉: n_l1___1→l3

Cut unsatisfiable transition t₈₆₅: n_l1___1→l2

Cut unsatisfiable transition t₈₈₁: n_l1___1→l3

Cut unsatisfiable transition t₇₇₀: n_l1___2→l2

Cut unsatisfiable transition t₇₈₆: n_l1___2→l3

Cut unsatisfiable transition t₈₀₂: n_l1___2→l2

Cut unsatisfiable transition t₈₁₈: n_l1___2→l3

Cut unsatisfiable transition t₈₃₄: n_l1___2→l2

Cut unsatisfiable transition t₈₅₀: n_l1___2→l3

Cut unsatisfiable transition t₈₆₆: n_l1___2→l2

Cut unsatisfiable transition t₈₈₂: n_l1___2→l3

Cut unsatisfiable transition t₇₇₉: n_l1___3→l2

Cut unsatisfiable transition t₇₉₅: n_l1___3→l3

Cut unsatisfiable transition t₈₁₁: n_l1___3→l2

Cut unsatisfiable transition t₈₂₇: n_l1___3→l3

Cut unsatisfiable transition t₈₄₃: n_l1___3→l2

Cut unsatisfiable transition t₈₅₉: n_l1___3→l3

Cut unsatisfiable transition t₈₇₅: n_l1___3→l2

Cut unsatisfiable transition t₈₉₁: n_l1___3→l3

Cut unsatisfiable transition t₇₈₀: n_l1___4→l2

Cut unsatisfiable transition t₇₉₆: n_l1___4→l3

Cut unsatisfiable transition t₈₁₂: n_l1___4→l2

Cut unsatisfiable transition t₈₂₈: n_l1___4→l3

Cut unsatisfiable transition t₈₄₄: n_l1___4→l2

Cut unsatisfiable transition t₈₆₀: n_l1___4→l3

Cut unsatisfiable transition t₈₇₆: n_l1___4→l2

Cut unsatisfiable transition t₈₉₂: n_l1___4→l3

Cut unsatisfiable transition t₇₇₃: n_l1___5→l2

Cut unsatisfiable transition t₇₈₉: n_l1___5→l3

Cut unsatisfiable transition t₈₀₅: n_l1___5→l2

Cut unsatisfiable transition t₈₂₁: n_l1___5→l3

Cut unsatisfiable transition t₈₃₇: n_l1___5→l2

Cut unsatisfiable transition t₈₅₃: n_l1___5→l3

Cut unsatisfiable transition t₈₆₉: n_l1___5→l2

Cut unsatisfiable transition t₈₈₅: n_l1___5→l3

Cut unsatisfiable transition t₇₇₄: n_l1___6→l2

Cut unsatisfiable transition t₇₉₀: n_l1___6→l3

Cut unsatisfiable transition t₈₀₆: n_l1___6→l2

Cut unsatisfiable transition t₈₂₂: n_l1___6→l3

Cut unsatisfiable transition t₈₃₈: n_l1___6→l2

Cut unsatisfiable transition t₈₅₄: n_l1___6→l3

Cut unsatisfiable transition t₈₇₀: n_l1___6→l2

Cut unsatisfiable transition t₈₈₆: n_l1___6→l3

Cut unsatisfiable transition t₇₈₃: n_l1___7→l2

Cut unsatisfiable transition t₇₉₉: n_l1___7→l3

Cut unsatisfiable transition t₈₁₅: n_l1___7→l2

Cut unsatisfiable transition t₈₃₁: n_l1___7→l3

Cut unsatisfiable transition t₈₄₇: n_l1___7→l2

Cut unsatisfiable transition t₈₆₃: n_l1___7→l3

Cut unsatisfiable transition t₈₇₉: n_l1___7→l2

Cut unsatisfiable transition t₈₉₅: n_l1___7→l3

Cut unsatisfiable transition t₇₈₄: n_l1___8→l2

Cut unsatisfiable transition t₈₀₀: n_l1___8→l3

Cut unsatisfiable transition t₈₁₆: n_l1___8→l2

Cut unsatisfiable transition t₈₃₂: n_l1___8→l3

Cut unsatisfiable transition t₈₄₈: n_l1___8→l2

Cut unsatisfiable transition t₈₆₄: n_l1___8→l3

Cut unsatisfiable transition t₈₈₀: n_l1___8→l2

Cut unsatisfiable transition t₈₉₆: n_l1___8→l3

Found invariant X₉ ≤ 14 ∧ X₉ ≤ 14+X₇ ∧ X₇+X₉ ≤ 14 ∧ 2+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 30 ∧ 3+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 31 ∧ 3+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 31 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ X₇ ∧ 16 ≤ X₃+X₇ ∧ X₃ ≤ 16+X₇ ∧ 17 ≤ X₂+X₇ ∧ X₂ ≤ 17+X₇ ∧ 17 ≤ X₀+X₇ ∧ X₀ ≤ 17+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location l2

Found invariant X₉ ≤ 15 ∧ X₈+X₉ ≤ 14 ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₁₈+X₉ ≤ 14 ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 3 ≤ X₉ ∧ 4+X₈ ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 8+X₉ ∧ 19 ≤ X₃+X₉ ∧ X₃ ≤ 13+X₉ ∧ 20 ≤ X₂+X₉ ∧ X₂ ≤ 14+X₉ ∧ 4+X₁₈ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 20 ≤ X₀+X₉ ∧ X₀ ≤ 14+X₉ ∧ 1+X₈ ≤ 0 ∧ X₈ ≤ X₇ ∧ X₇+X₈ ≤ 10 ∧ 17+X₈ ≤ X₃ ∧ X₃+X₈ ≤ 15 ∧ 18+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 16 ∧ 2+X₁₈+X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₀+X₈ ≤ 0 ∧ 18+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 16 ∧ X₇ ≤ 11 ∧ 5+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 27 ∧ 6+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 28 ∧ X₁₈+X₇ ≤ 10 ∧ X₇ ≤ 11+X₁₀ ∧ X₁₀+X₇ ≤ 11 ∧ 6+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 28 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ X₁₈ ≤ X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₁₈+X₃ ≤ 15 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17+X₁₈ ≤ X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₁₈+X₂ ≤ 16 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 18+X₁₈ ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁₈ ≤ 0 ∧ 1+X₁₈ ≤ X₁₀ ∧ 1+X₁₀+X₁₈ ≤ 0 ∧ 18+X₁₈ ≤ X₀ ∧ X₀+X₁₈ ≤ 16 ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location n_l1___6

Found invariant X₉ ≤ 15 ∧ X₉ ≤ 14+X₈ ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₁₈+X₉ ≤ 14 ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 8+X₉ ∧ 19 ≤ X₃+X₉ ∧ X₃ ≤ 13+X₉ ∧ 20 ≤ X₂+X₉ ∧ X₂ ≤ 14+X₉ ∧ 4+X₁₈ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 20 ≤ X₀+X₉ ∧ X₀ ≤ 14+X₉ ∧ 1 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ 10+X₈ ∧ 17 ≤ X₃+X₈ ∧ X₃ ≤ 15+X₈ ∧ 18 ≤ X₂+X₈ ∧ X₂ ≤ 16+X₈ ∧ 2+X₁₈ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1+X₁₀ ≤ X₈ ∧ 18 ≤ X₀+X₈ ∧ X₀ ≤ 16+X₈ ∧ X₇ ≤ 11 ∧ 5+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 27 ∧ 6+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 28 ∧ X₁₈+X₇ ≤ 10 ∧ X₇ ≤ 11+X₁₀ ∧ X₁₀+X₇ ≤ 11 ∧ 6+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 28 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ X₁₈ ≤ X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₁₈+X₃ ≤ 15 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17+X₁₈ ≤ X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₁₈+X₂ ≤ 16 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 18+X₁₈ ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁₈ ≤ 0 ∧ 1+X₁₈ ≤ X₁₀ ∧ 1+X₁₀+X₁₈ ≤ 0 ∧ 18+X₁₈ ≤ X₀ ∧ X₀+X₁₈ ≤ 16 ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location n_l1___4

Found invariant X₉ ≤ 2 ∧ X₉ ≤ 1+X₈ ∧ 10+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 14 ∧ 14+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 18 ∧ 15+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 19 ∧ X₉ ≤ 1+X₁₈ ∧ X₉ ≤ 2+X₁₀ ∧ X₁₀+X₉ ≤ 2 ∧ 15+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 19 ∧ 2 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 10+X₉ ∧ 18 ≤ X₃+X₉ ∧ X₃ ≤ 14+X₉ ∧ 19 ≤ X₂+X₉ ∧ X₂ ≤ 15+X₉ ∧ 3 ≤ X₁₈+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 19 ≤ X₀+X₉ ∧ X₀ ≤ 15+X₉ ∧ 1 ≤ X₈ ∧ 13 ≤ X₇+X₈ ∧ X₇ ≤ 11+X₈ ∧ 17 ≤ X₃+X₈ ∧ X₃ ≤ 15+X₈ ∧ 18 ≤ X₂+X₈ ∧ X₂ ≤ 16+X₈ ∧ 2 ≤ X₁₈+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1+X₁₀ ≤ X₈ ∧ 18 ≤ X₀+X₈ ∧ X₀ ≤ 16+X₈ ∧ X₇ ≤ 12 ∧ 4+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 28 ∧ 5+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 29 ∧ X₇ ≤ 11+X₁₈ ∧ X₇ ≤ 12+X₁₀ ∧ X₁₀+X₇ ≤ 12 ∧ 5+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 29 ∧ 12 ≤ X₇ ∧ 28 ≤ X₃+X₇ ∧ X₃ ≤ 4+X₇ ∧ 29 ≤ X₂+X₇ ∧ X₂ ≤ 5+X₇ ∧ 13 ≤ X₁₈+X₇ ∧ 12 ≤ X₁₀+X₇ ∧ 12+X₁₀ ≤ X₇ ∧ 29 ≤ X₀+X₇ ∧ X₀ ≤ 5+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 15+X₁₈ ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₁₈+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 16+X₁₈ ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 18 ≤ X₁₈+X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₈ ∧ 1 ≤ X₁₀+X₁₈ ∧ 1+X₁₀ ≤ X₁₈ ∧ 18 ≤ X₀+X₁₈ ∧ X₀ ≤ 16+X₁₈ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location n_l1___7

Found invariant X₉ ≤ 2 ∧ X₈+X₉ ≤ 1 ∧ 10+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 14 ∧ 14+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 18 ∧ 15+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 19 ∧ X₁₈+X₉ ≤ 1 ∧ X₉ ≤ 2+X₁₀ ∧ X₁₀+X₉ ≤ 2 ∧ 15+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 19 ∧ 2 ≤ X₉ ∧ 3+X₈ ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 10+X₉ ∧ 18 ≤ X₃+X₉ ∧ X₃ ≤ 14+X₉ ∧ 19 ≤ X₂+X₉ ∧ X₂ ≤ 15+X₉ ∧ 3+X₁₈ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 19 ≤ X₀+X₉ ∧ X₀ ≤ 15+X₉ ∧ 1+X₈ ≤ 0 ∧ 13+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 11 ∧ 17+X₈ ≤ X₃ ∧ X₃+X₈ ≤ 15 ∧ 18+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 16 ∧ 2+X₁₈+X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₀+X₈ ≤ 0 ∧ 18+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 16 ∧ X₇ ≤ 12 ∧ 4+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 28 ∧ 5+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 29 ∧ X₁₈+X₇ ≤ 11 ∧ X₇ ≤ 12+X₁₀ ∧ X₁₀+X₇ ≤ 12 ∧ 5+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 29 ∧ 12 ≤ X₇ ∧ 28 ≤ X₃+X₇ ∧ X₃ ≤ 4+X₇ ∧ 29 ≤ X₂+X₇ ∧ X₂ ≤ 5+X₇ ∧ 13+X₁₈ ≤ X₇ ∧ 12 ≤ X₁₀+X₇ ∧ 12+X₁₀ ≤ X₇ ∧ 29 ≤ X₀+X₇ ∧ X₀ ≤ 5+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₁₈+X₃ ≤ 15 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17+X₁₈ ≤ X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₁₈+X₂ ≤ 16 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 18+X₁₈ ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁₈ ≤ 0 ∧ 1+X₁₈ ≤ X₁₀ ∧ 1+X₁₀+X₁₈ ≤ 0 ∧ 18+X₁₈ ≤ X₀ ∧ X₀+X₁₈ ≤ 16 ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location n_l1___2

Found invariant X₉ ≤ 15 ∧ X₉ ≤ 14+X₈ ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₉ ≤ 14+X₁₈ ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 8+X₉ ∧ 19 ≤ X₃+X₉ ∧ X₃ ≤ 13+X₉ ∧ 20 ≤ X₂+X₉ ∧ X₂ ≤ 14+X₉ ∧ 4 ≤ X₁₈+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 20 ≤ X₀+X₉ ∧ X₀ ≤ 14+X₉ ∧ 1 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ 10+X₈ ∧ 17 ≤ X₃+X₈ ∧ X₃ ≤ 15+X₈ ∧ 18 ≤ X₂+X₈ ∧ X₂ ≤ 16+X₈ ∧ 2 ≤ X₁₈+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1+X₁₀ ≤ X₈ ∧ 18 ≤ X₀+X₈ ∧ X₀ ≤ 16+X₈ ∧ X₇ ≤ 11 ∧ 5+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 27 ∧ 6+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 28 ∧ X₇ ≤ 10+X₁₈ ∧ X₇ ≤ 11+X₁₀ ∧ X₁₀+X₇ ≤ 11 ∧ 6+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 28 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ 0 ≤ X₁₈+X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 15+X₁₈ ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₁₈+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 16+X₁₈ ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 18 ≤ X₁₈+X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₈ ∧ 1 ≤ X₁₀+X₁₈ ∧ 1+X₁₀ ≤ X₁₈ ∧ 18 ≤ X₀+X₁₈ ∧ X₀ ≤ 16+X₁₈ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location n_l1___3

Found invariant X₉ ≤ 2 ∧ X₉ ≤ 1+X₈ ∧ 10+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 14 ∧ 14+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 18 ∧ 15+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 19 ∧ X₁₈+X₉ ≤ 1 ∧ X₉ ≤ 2+X₁₀ ∧ X₁₀+X₉ ≤ 2 ∧ 15+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 19 ∧ 2 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 10+X₉ ∧ 18 ≤ X₃+X₉ ∧ X₃ ≤ 14+X₉ ∧ 19 ≤ X₂+X₉ ∧ X₂ ≤ 15+X₉ ∧ 3+X₁₈ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 19 ≤ X₀+X₉ ∧ X₀ ≤ 15+X₉ ∧ 1 ≤ X₈ ∧ 13 ≤ X₇+X₈ ∧ X₇ ≤ 11+X₈ ∧ 17 ≤ X₃+X₈ ∧ X₃ ≤ 15+X₈ ∧ 18 ≤ X₂+X₈ ∧ X₂ ≤ 16+X₈ ∧ 2+X₁₈ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1+X₁₀ ≤ X₈ ∧ 18 ≤ X₀+X₈ ∧ X₀ ≤ 16+X₈ ∧ X₇ ≤ 12 ∧ 4+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 28 ∧ 5+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 29 ∧ X₁₈+X₇ ≤ 11 ∧ X₇ ≤ 12+X₁₀ ∧ X₁₀+X₇ ≤ 12 ∧ 5+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 29 ∧ 12 ≤ X₇ ∧ 28 ≤ X₃+X₇ ∧ X₃ ≤ 4+X₇ ∧ 29 ≤ X₂+X₇ ∧ X₂ ≤ 5+X₇ ∧ 13+X₁₈ ≤ X₇ ∧ 12 ≤ X₁₀+X₇ ∧ 12+X₁₀ ≤ X₇ ∧ 29 ≤ X₀+X₇ ∧ X₀ ≤ 5+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₁₈+X₃ ≤ 15 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17+X₁₈ ≤ X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₁₈+X₂ ≤ 16 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 18+X₁₈ ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁₈ ≤ 0 ∧ 1+X₁₈ ≤ X₁₀ ∧ 1+X₁₀+X₁₈ ≤ 0 ∧ 18+X₁₈ ≤ X₀ ∧ X₀+X₁₈ ≤ 16 ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location n_l1___8

Found invariant X₉ ≤ 15 ∧ X₈+X₉ ≤ 14 ∧ X₉ ≤ 16+X₇ ∧ X₇+X₉ ≤ 14 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 31 ∧ 2+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 32 ∧ X₉ ≤ 14+X₁₈ ∧ X₉ ≤ 15+X₁₀ ∧ X₁₀+X₉ ≤ 15 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 32 ∧ 3 ≤ X₉ ∧ 4+X₈ ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 8+X₉ ∧ 19 ≤ X₃+X₉ ∧ X₃ ≤ 13+X₉ ∧ 20 ≤ X₂+X₉ ∧ X₂ ≤ 14+X₉ ∧ 4 ≤ X₁₈+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 20 ≤ X₀+X₉ ∧ X₀ ≤ 14+X₉ ∧ 1+X₈ ≤ 0 ∧ X₈ ≤ X₇ ∧ X₇+X₈ ≤ 10 ∧ 17+X₈ ≤ X₃ ∧ X₃+X₈ ≤ 15 ∧ 18+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 16 ∧ 2+X₈ ≤ X₁₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₀+X₈ ≤ 0 ∧ 18+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 16 ∧ X₇ ≤ 11 ∧ 5+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 27 ∧ 6+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 28 ∧ X₇ ≤ 10+X₁₈ ∧ X₇ ≤ 11+X₁₀ ∧ X₁₀+X₇ ≤ 11 ∧ 6+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 28 ∧ 0 ≤ 1+X₇ ∧ 15 ≤ X₃+X₇ ∧ X₃ ≤ 17+X₇ ∧ 16 ≤ X₂+X₇ ∧ X₂ ≤ 18+X₇ ∧ 0 ≤ X₁₈+X₇ ∧ 0 ≤ 1+X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 16 ≤ X₀+X₇ ∧ X₀ ≤ 18+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 15+X₁₈ ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₁₈+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 16+X₁₈ ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 18 ≤ X₁₈+X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₈ ∧ 1 ≤ X₁₀+X₁₈ ∧ 1+X₁₀ ≤ X₁₈ ∧ 18 ≤ X₀+X₁₈ ∧ X₀ ≤ 16+X₁₈ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location n_l1___5

Found invariant X₉ ≤ 1 ∧ 12+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 14 ∧ 15+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 17 ∧ 16+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 18 ∧ X₉ ≤ 1+X₁₀ ∧ X₁₀+X₉ ≤ 1 ∧ 16+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 18 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 13 ≤ X₇ ∧ 29 ≤ X₃+X₇ ∧ X₃ ≤ 3+X₇ ∧ 30 ≤ X₂+X₇ ∧ X₂ ≤ 4+X₇ ∧ 13 ≤ X₁₀+X₇ ∧ 13+X₁₀ ≤ X₇ ∧ 30 ≤ X₀+X₇ ∧ X₀ ≤ 4+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location l1

Found invariant X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₀+X₃ ∧ X₀ ≤ 17+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 1 ≤ X₂ ∧ 18 ≤ X₀+X₂ ∧ X₀ ≤ 16+X₂ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location l4

Found invariant X₉ ≤ 14 ∧ X₉ ≤ 14+X₇ ∧ X₇+X₉ ≤ 14 ∧ 2+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 30 ∧ 3+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 31 ∧ X₉ ≤ 14+X₁₆ ∧ X₁₆+X₉ ≤ 14 ∧ X₉ ≤ 14+X₁₀ ∧ X₁₀+X₉ ≤ 14 ∧ 3+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 31 ∧ 1 ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 12+X₉ ∧ 17 ≤ X₃+X₉ ∧ X₃ ≤ 15+X₉ ∧ 18 ≤ X₂+X₉ ∧ X₂ ≤ 16+X₉ ∧ 1 ≤ X₁₆+X₉ ∧ 1+X₁₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₁₀ ≤ X₉ ∧ 18 ≤ X₀+X₉ ∧ X₀ ≤ 16+X₉ ∧ X₇ ≤ 13 ∧ 3+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 29 ∧ 4+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 30 ∧ X₇ ≤ 13+X₁₆ ∧ X₁₆+X₇ ≤ 13 ∧ X₇ ≤ 13+X₁₀ ∧ X₁₀+X₇ ≤ 13 ∧ 4+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 30 ∧ 0 ≤ X₇ ∧ 16 ≤ X₃+X₇ ∧ X₃ ≤ 16+X₇ ∧ 17 ≤ X₂+X₇ ∧ X₂ ≤ 17+X₇ ∧ 0 ≤ X₁₆+X₇ ∧ X₁₆ ≤ X₇ ∧ 0 ≤ X₁₀+X₇ ∧ X₁₀ ≤ X₇ ∧ 17 ≤ X₀+X₇ ∧ X₀ ≤ 17+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 16+X₁₆ ∧ X₁₆+X₃ ≤ 16 ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 16 ≤ X₁₆+X₃ ∧ 16+X₁₆ ≤ X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₆ ∧ X₁₆+X₂ ≤ 17 ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 17 ≤ X₁₆+X₂ ∧ 17+X₁₆ ≤ X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁₆ ≤ 0 ∧ X₁₆ ≤ X₁₀ ∧ X₁₀+X₁₆ ≤ 0 ∧ 17+X₁₆ ≤ X₀ ∧ X₀+X₁₆ ≤ 17 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ X₁₆ ∧ 17 ≤ X₀+X₁₆ ∧ X₀ ≤ 17+X₁₆ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location l3

Found invariant X₉ ≤ 2 ∧ X₈+X₉ ≤ 1 ∧ 10+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 14 ∧ 14+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 18 ∧ 15+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 19 ∧ X₉ ≤ 1+X₁₈ ∧ X₉ ≤ 2+X₁₀ ∧ X₁₀+X₉ ≤ 2 ∧ 15+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 19 ∧ 2 ≤ X₉ ∧ 3+X₈ ≤ X₉ ∧ 14 ≤ X₇+X₉ ∧ X₇ ≤ 10+X₉ ∧ 18 ≤ X₃+X₉ ∧ X₃ ≤ 14+X₉ ∧ 19 ≤ X₂+X₉ ∧ X₂ ≤ 15+X₉ ∧ 3 ≤ X₁₈+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 19 ≤ X₀+X₉ ∧ X₀ ≤ 15+X₉ ∧ 1+X₈ ≤ 0 ∧ 13+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 11 ∧ 17+X₈ ≤ X₃ ∧ X₃+X₈ ≤ 15 ∧ 18+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 16 ∧ 2+X₈ ≤ X₁₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₀+X₈ ≤ 0 ∧ 18+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 16 ∧ X₇ ≤ 12 ∧ 4+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 28 ∧ 5+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 29 ∧ X₇ ≤ 11+X₁₈ ∧ X₇ ≤ 12+X₁₀ ∧ X₁₀+X₇ ≤ 12 ∧ 5+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 29 ∧ 12 ≤ X₇ ∧ 28 ≤ X₃+X₇ ∧ X₃ ≤ 4+X₇ ∧ 29 ≤ X₂+X₇ ∧ X₂ ≤ 5+X₇ ∧ 13 ≤ X₁₈+X₇ ∧ 12 ≤ X₁₀+X₇ ∧ 12+X₁₀ ≤ X₇ ∧ 29 ≤ X₀+X₇ ∧ X₀ ≤ 5+X₇ ∧ X₃ ≤ 16 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 33 ∧ X₃ ≤ 15+X₁₈ ∧ X₃ ≤ 16+X₁₀ ∧ X₁₀+X₃ ≤ 16 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 33 ∧ 16 ≤ X₃ ∧ 33 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 17 ≤ X₁₈+X₃ ∧ 16 ≤ X₁₀+X₃ ∧ 16+X₁₀ ≤ X₃ ∧ 33 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 17 ∧ X₂ ≤ 16+X₁₈ ∧ X₂ ≤ 17+X₁₀ ∧ X₁₀+X₂ ≤ 17 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 34 ∧ 17 ≤ X₂ ∧ 18 ≤ X₁₈+X₂ ∧ 17 ≤ X₁₀+X₂ ∧ 17+X₁₀ ≤ X₂ ∧ 34 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₈ ∧ 1 ≤ X₁₀+X₁₈ ∧ 1+X₁₀ ≤ X₁₈ ∧ 18 ≤ X₀+X₁₈ ∧ X₀ ≤ 16+X₁₈ ∧ X₁₀ ≤ 0 ∧ 17+X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 17 ∧ 0 ≤ X₁₀ ∧ 17 ≤ X₀+X₁₀ ∧ X₀ ≤ 17+X₁₀ ∧ X₀ ≤ 17 ∧ 17 ≤ X₀ for location n_l1___1

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₄₅: 1 {O(1)}
t₄₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈: inf {Infinity}
t₄₉: inf {Infinity}
t₅₀: inf {Infinity}
t₅₁: inf {Infinity}
t₅₂: 1 {O(1)}
t₅₃: 1 {O(1)}
t₅₄: 44 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 1 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₄₅: 1 {O(1)}
t₄₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈: inf {Infinity}
t₄₉: inf {Infinity}
t₅₀: inf {Infinity}
t₅₁: inf {Infinity}
t₅₂: 1 {O(1)}
t₅₃: 1 {O(1)}
t₅₄: 44 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 1 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}

Sizebounds

t₄₅, X₀: 17 {O(1)}
t₄₅, X₂: 1 {O(1)}
t₄₅, X₃: 0 {O(1)}
t₄₅, X₇: X₇ {O(n)}
t₄₅, X₈: X₈ {O(n)}
t₄₅, X₉: X₉ {O(n)}
t₄₅, X₁₀: X₁₀ {O(n)}
t₄₅, X₁₃: X₁₃ {O(n)}
t₄₅, X₁₆: X₁₆ {O(n)}
t₄₅, X₁₈: X₁₈ {O(n)}
t₄₆, X₀: 17 {O(1)}
t₄₆, X₂: 17 {O(1)}
t₄₆, X₃: 16 {O(1)}
t₄₆, X₇: 13 {O(1)}
t₄₆, X₉: 14 {O(1)}
t₄₇, X₀: 17 {O(1)}
t₄₇, X₂: 17 {O(1)}
t₄₇, X₃: 16 {O(1)}
t₄₇, X₇: 13 {O(1)}
t₄₇, X₉: 14 {O(1)}
t₄₈, X₀: 17 {O(1)}
t₄₈, X₂: 17 {O(1)}
t₄₈, X₃: 16 {O(1)}
t₄₈, X₇: 12 {O(1)}
t₄₈, X₉: 15 {O(1)}
t₄₈, X₁₀: 0 {O(1)}
t₄₈, X₁₃: 16⋅X₁₃ {O(n)}
t₄₉, X₀: 17 {O(1)}
t₄₉, X₂: 17 {O(1)}
t₄₉, X₃: 16 {O(1)}
t₄₉, X₇: 12 {O(1)}
t₄₉, X₉: 15 {O(1)}
t₄₉, X₁₀: 0 {O(1)}
t₄₉, X₁₃: 16⋅X₁₃ {O(n)}
t₅₀, X₀: 17 {O(1)}
t₅₀, X₂: 17 {O(1)}
t₅₀, X₃: 16 {O(1)}
t₅₀, X₇: 12 {O(1)}
t₅₀, X₉: 15 {O(1)}
t₅₀, X₁₀: 0 {O(1)}
t₅₀, X₁₃: 16⋅X₁₃ {O(n)}
t₅₁, X₀: 17 {O(1)}
t₅₁, X₂: 17 {O(1)}
t₅₁, X₃: 16 {O(1)}
t₅₁, X₇: 12 {O(1)}
t₅₁, X₉: 15 {O(1)}
t₅₁, X₁₀: 0 {O(1)}
t₅₁, X₁₃: 16⋅X₁₃ {O(n)}
t₅₂, X₀: 17 {O(1)}
t₅₂, X₂: 17 {O(1)}
t₅₂, X₃: 16 {O(1)}
t₅₂, X₇: 13 {O(1)}
t₅₂, X₉: 14 {O(1)}
t₅₂, X₁₀: 0 {O(1)}
t₅₂, X₁₃: 68⋅X₁₃ {O(n)}
t₅₂, X₁₆: 0 {O(1)}
t₅₃, X₀: 17 {O(1)}
t₅₃, X₂: 17 {O(1)}
t₅₃, X₃: 16 {O(1)}
t₅₃, X₇: 13 {O(1)}
t₅₃, X₉: 14 {O(1)}
t₅₃, X₁₀: 0 {O(1)}
t₅₃, X₁₃: 68⋅X₁₃ {O(n)}
t₅₃, X₁₆: 0 {O(1)}
t₅₄, X₀: 17 {O(1)}
t₅₄, X₂: 17 {O(1)}
t₅₄, X₃: 16 {O(1)}
t₅₄, X₇: X₇ {O(n)}
t₅₄, X₈: X₈ {O(n)}
t₅₄, X₉: X₉ {O(n)}
t₅₄, X₁₀: X₁₀ {O(n)}
t₅₄, X₁₃: X₁₃ {O(n)}
t₅₄, X₁₆: X₁₆ {O(n)}
t₅₄, X₁₈: X₁₈ {O(n)}
t₅₅, X₀: 17 {O(1)}
t₅₅, X₂: 17 {O(1)}
t₅₅, X₃: 16 {O(1)}
t₅₅, X₇: 13 {O(1)}
t₅₅, X₉: 1 {O(1)}
t₅₅, X₁₀: 0 {O(1)}
t₅₅, X₁₃: X₁₃ {O(n)}
t₅₆, X₀: 17 {O(1)}
t₅₆, X₂: 17 {O(1)}
t₅₆, X₃: 16 {O(1)}
t₅₆, X₇: 13 {O(1)}
t₅₆, X₉: 1 {O(1)}
t₅₆, X₁₀: 0 {O(1)}
t₅₆, X₁₃: X₁₃ {O(n)}
t₅₇, X₀: 17 {O(1)}
t₅₇, X₂: 17 {O(1)}
t₅₇, X₃: 16 {O(1)}
t₅₇, X₇: 13 {O(1)}
t₅₇, X₉: 1 {O(1)}
t₅₇, X₁₀: 0 {O(1)}
t₅₇, X₁₃: X₁₃ {O(n)}
t₅₈, X₀: 17 {O(1)}
t₅₈, X₂: 17 {O(1)}
t₅₈, X₃: 16 {O(1)}
t₅₈, X₇: 13 {O(1)}
t₅₈, X₉: 1 {O(1)}
t₅₈, X₁₀: 0 {O(1)}
t₅₈, X₁₃: X₁₃ {O(n)}
t₅₉, X₀: 17 {O(1)}
t₅₉, X₂: 17 {O(1)}
t₅₉, X₃: 16 {O(1)}
t₅₉, X₇: 13 {O(1)}
t₅₉, X₉: 1 {O(1)}
t₅₉, X₁₀: 0 {O(1)}
t₅₉, X₁₃: X₁₃ {O(n)}
t₆₀, X₀: 17 {O(1)}
t₆₀, X₂: 17 {O(1)}
t₆₀, X₃: 16 {O(1)}
t₆₀, X₇: 13 {O(1)}
t₆₀, X₉: 1 {O(1)}
t₆₀, X₁₀: 0 {O(1)}
t₆₀, X₁₃: X₁₃ {O(n)}
t₆₁, X₀: 17 {O(1)}
t₆₁, X₂: 17 {O(1)}
t₆₁, X₃: 16 {O(1)}
t₆₁, X₇: 13 {O(1)}
t₆₁, X₉: 1 {O(1)}
t₆₁, X₁₀: 0 {O(1)}
t₆₁, X₁₃: X₁₃ {O(n)}
t₆₂, X₀: 17 {O(1)}
t₆₂, X₂: 17 {O(1)}
t₆₂, X₃: 16 {O(1)}
t₆₂, X₇: 13 {O(1)}
t₆₂, X₉: 1 {O(1)}
t₆₂, X₁₀: 0 {O(1)}
t₆₂, X₁₃: X₁₃ {O(n)}