Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars: D
Locations: l0, l1, l2
Transitions:
t₁₆: l0(X₀, X₁, X₂) → l1(X₀, X₁, X₂)
t₁: l1(X₀, X₁, X₂) → l1(1, 2, X₂) :|: D ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₂: l1(X₀, X₁, X₂) → l1(1+X₀, 2, X₂) :|: 2 ≤ X₀ ∧ D ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
t₃: l1(X₀, X₁, X₂) → l1(1+X₀, 2, X₂) :|: X₀ ≤ 0 ∧ D ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
t₄: l1(X₀, X₁, X₂) → l1(1, 1+X₁, X₂) :|: 2 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₅: l1(X₀, X₁, X₂) → l1(1, 1+X₁, X₂) :|: X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₆: l1(X₀, X₁, X₂) → l1(1+X₀, 1+X₁, X₂) :|: X₁ ≤ 1 ∧ 2 ≤ X₀ ∧ 2 ≤ X₁
t₇: l1(X₀, X₁, X₂) → l1(1+X₀, 1+X₁, X₂) :|: X₁ ≤ 1 ∧ 2 ≤ X₀ ∧ X₁ ≤ 0
t₈: l1(X₀, X₁, X₂) → l1(1+X₀, 1+X₁, X₂) :|: X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 2 ≤ X₁
t₉: l1(X₀, X₁, X₂) → l1(1+X₀, 1+X₁, X₂) :|: X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ X₁ ≤ 0
t₁₀: l1(X₀, X₁, X₂) → l1(1, 1+X₁, X₂) :|: 2 ≤ X₁ ∧ D ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₁: l1(X₀, X₁, X₂) → l1(1, 1+X₁, X₂) :|: 2 ≤ X₁ ∧ X₁ ≤ 0 ∧ D ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₂: l1(X₀, X₁, X₂) → l1(1+X₀, 1+X₁, X₂) :|: 2 ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₁₃: l1(X₀, X₁, X₂) → l1(1+X₀, 1+X₁, X₂) :|: 2 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₁₄: l1(X₀, X₁, X₂) → l1(1+X₀, 1+X₁, X₂) :|: 2 ≤ X₁ ∧ X₀ ≤ 2 ∧ X₀ ≤ 0
t₁₅: l1(X₀, X₁, X₂) → l1(1+X₀, 1+X₁, X₂) :|: 2 ≤ X₁ ∧ X₀ ≤ 2 ∧ X₀ ≤ 0 ∧ X₁ ≤ 0
t₀: l1(X₀, X₁, X₂) → l2(X₀, X₁, D) :|: 3 ≤ X₀ ∧ 2 ≤ X₁

Preprocessing

Cut unsatisfiable transition t₄: l1→l1

Cut unsatisfiable transition t₆: l1→l1

Cut unsatisfiable transition t₈: l1→l1

Cut unsatisfiable transition t₁₁: l1→l1

Cut unsatisfiable transition t₁₃: l1→l1

Cut unsatisfiable transition t₁₅: l1→l1

Eliminate variables {X₂} that do not contribute to the problem

Found invariant 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l2

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁
Temp_Vars: D
Locations: l0, l1, l2
Transitions:
t₂₁₁: l0(X₀, X₁) → l1(X₀, X₁)
t₂₁₃: l1(X₀, X₁) → l1(1, 2) :|: D ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₂₁₄: l1(X₀, X₁) → l1(1+X₀, 2) :|: 2 ≤ X₀ ∧ D ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
t₂₁₅: l1(X₀, X₁) → l1(1+X₀, 2) :|: X₀ ≤ 0 ∧ D ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
t₂₁₆: l1(X₀, X₁) → l1(1, 1+X₁) :|: X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₂₁₇: l1(X₀, X₁) → l1(1+X₀, 1+X₁) :|: X₁ ≤ 1 ∧ 2 ≤ X₀ ∧ X₁ ≤ 0
t₂₁₈: l1(X₀, X₁) → l1(1+X₀, 1+X₁) :|: X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ X₁ ≤ 0
t₂₁₉: l1(X₀, X₁) → l1(1, 1+X₁) :|: 2 ≤ X₁ ∧ D ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₂₂₀: l1(X₀, X₁) → l1(1+X₀, 1+X₁) :|: 2 ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₂₂₁: l1(X₀, X₁) → l1(1+X₀, 1+X₁) :|: 2 ≤ X₁ ∧ X₀ ≤ 2 ∧ X₀ ≤ 0
t₂₁₂: l1(X₀, X₁) → l2(X₀, X₁) :|: 3 ≤ X₀ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₂₂₀: l1(X₀, X₁) → l1(1+X₀, 1+X₁) :|: 2 ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

Analysing control-flow refined program

Cut unsatisfiable transition t₁₁₅₈: n_l1___1→l2

Cut unsatisfiable transition t₁₁₆₀: n_l1___3→l2

Cut unsatisfiable transition t₁₁₆₁: n_l1___4→l2

Cut unsatisfiable transition t₁₁₆₂: n_l1___5→l2

Cut unsatisfiable transition t₁₁₆₃: n_l1___6→l2

Cut unsatisfiable transition t₁₁₆₄: n_l1___7→l2

Cut unsatisfiable transition t₁₁₆₆: n_l1___9→l2

Found invariant 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l2

Found invariant X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6

Found invariant X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___9

Found invariant X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 for location n_l1___4

Found invariant X₁ ≤ 2 ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___7

Found invariant 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location n_l1___2

Found invariant 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₁ ≤ 2 ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___8

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 3 ≤ X₀ for location n_l1___5

Found invariant 3 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___1

Found invariant 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l2

Found invariant X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6

Found invariant X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___9

Found invariant X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 for location n_l1___4

Found invariant X₁ ≤ 2 ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___7

Found invariant 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location n_l1___2

Found invariant 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₁ ≤ 2 ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___8

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 3 ≤ X₀ for location n_l1___5

Found invariant 3 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___1

Time-Bound by TWN-Loops:

TWN-Loops: t₁₀₅₇ 4⋅X₀+4⋅X₁+22 {O(n)}

TWN-Loops:

entry: t₁₀₅₀: l1(X₀, X₁) → n_l1___4(X₀+1, X₁+1) :|: X₁ ≤ 0 ∧ X₀ ≤ 0
results in twn-loop: twn:Inv: [X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1] , (X₀,X₁) -> (X₀+1,X₁+1) :|: X₁ ≤ 1 ∧ X₀ ≤ 1 ∧ X₁ ≤ 0 ∧ X₀ ≤ 0
order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁ + [[n != 0]] * n^1

Termination: true
Formula:

1 < 0 ∧ 2 < 0
∨ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ 1 < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ 1 < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 < 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₁ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₁ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₁ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ 1 < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ 1 < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 < 0
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ 1 < 0 ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ 1 < 0 ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 2 < 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₀ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 < 0
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 2 < 0
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2 < 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ < 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₀+X₁ < 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₀+X₁

Stabilization-Threshold for: X₀ ≤ 0
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: X₁ ≤ 0
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₀ ≤ 1
alphas_abs: 1+X₀
M: 0
N: 1
Bound: 2⋅X₀+4 {O(n)}
Stabilization-Threshold for: X₁ ≤ 1
alphas_abs: 1+X₁
M: 0
N: 1
Bound: 2⋅X₁+4 {O(n)}

relevant size-bounds w.r.t. t₁₀₅₀:
X₀: X₀+1 {O(n)}
X₁: X₁+1 {O(n)}
Runtime-bound of t₁₀₅₀: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₁+22 {O(n)}

4⋅X₀+4⋅X₁+22 {O(n)}

Found invariant 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l2

Found invariant X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6

Found invariant X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___9

Found invariant X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 for location n_l1___4

Found invariant X₁ ≤ 2 ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___7

Found invariant 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location n_l1___2

Found invariant 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₁ ≤ 2 ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___8

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 3 ≤ X₀ for location n_l1___5

Found invariant 3 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___1

Time-Bound by TWN-Loops:

TWN-Loops: t₁₀₆₁ 4⋅X₀+4⋅X₁+30 {O(n)}

TWN-Loops:

entry: t₁₀₅₁: l1(X₀, X₁) → n_l1___5(X₀+1, X₁+1) :|: 2 ≤ X₀ ∧ X₁ ≤ 0
results in twn-loop: twn:Inv: [X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 3 ≤ X₀] , (X₀,X₁) -> (X₀+1,X₁+1) :|: 2 ≤ X₀ ∧ 3 ≤ X₀ ∧ X₁ ≤ 1 ∧ 2 ≤ X₀ ∧ X₁ ≤ 0
order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁ + [[n != 0]] * n^1

Termination: true
Formula:

1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1 < 0 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < 1 ∧ X₁ < 1 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ X₁ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < 1
∨ 1 < 0 ∧ 0 < 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ 2 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1
∨ 2 < X₀ ∧ 1 < 0 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 2 < X₀ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ 1 < 0 ∧ 2 < X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1 < 0 ∧ 2 < X₀ ∧ X₁ < 1 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 2 < X₀ ∧ X₁ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ 1 < 0 ∧ 2 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < 1
∨ 1 < 0 ∧ 2 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 2 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ 1 < 0 ∧ 0 < 1
∨ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ 1 < 0 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ 1 < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1 < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ < 1 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ 1 < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < 1
∨ 1 < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₁ < 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₁ < 0 ∧ 0 < 1 ∧ X₁ < 1 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 0 ∧ 0 < 1 ∧ X₁ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < 1
∨ X₁ < 0 ∧ 0 < 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 0 ∧ 0 < 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ < 0 ∧ 2 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1
∨ X₁ < 0 ∧ 2 < X₀ ∧ 1 < 0 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 0 ∧ 2 < X₀ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ < 0 ∧ 2 < X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₁ < 0 ∧ 2 < X₀ ∧ X₁ < 1 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 0 ∧ 2 < X₀ ∧ X₁ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ < 0 ∧ 2 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < 1
∨ X₁ < 0 ∧ 2 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 0 ∧ 2 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ 1 < 0 ∧ 0 < 1
∨ X₁ < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ 1 < 0 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₁ < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ < 1 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < 1
∨ X₁ < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 0 < 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 1 ∧ 1 < 0 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 1 ∧ X₁ < 1 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 1 ∧ X₁ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 < X₀ ∧ 1 < 0 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 < X₀ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 < X₀ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 < X₀ ∧ X₁ < 1 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 < X₀ ∧ X₁ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ 1 < 0 ∧ 0 < 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ 1 < 0 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ < 1 ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 3 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀ ∧ X₀ ≤ 2 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀ ∧ X₀ ≤ 3

Stabilization-Threshold for: X₁ ≤ 0
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 2 ≤ X₀
alphas_abs: 2+X₀
M: 0
N: 1
Bound: 2⋅X₀+6 {O(n)}
Stabilization-Threshold for: X₁ ≤ 1
alphas_abs: 1+X₁
M: 0
N: 1
Bound: 2⋅X₁+4 {O(n)}
Stabilization-Threshold for: 3 ≤ X₀
alphas_abs: 3+X₀
M: 0
N: 1
Bound: 2⋅X₀+8 {O(n)}

relevant size-bounds w.r.t. t₁₀₅₁:
X₀: X₀+1 {O(n)}
X₁: X₁+1 {O(n)}
Runtime-bound of t₁₀₅₁: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₁+30 {O(n)}

4⋅X₀+4⋅X₁+30 {O(n)}

Found invariant 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l2

Found invariant X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6

Found invariant X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___9

Found invariant X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 for location n_l1___4

Found invariant X₁ ≤ 2 ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___7

Found invariant 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location n_l1___2

Found invariant 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₁ ≤ 2 ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___8

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 3 ≤ X₀ for location n_l1___5

Found invariant 3 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___1

Found invariant 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l2

Found invariant X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6

Found invariant X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___9

Found invariant X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 for location n_l1___4

Found invariant X₁ ≤ 2 ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___7

Found invariant 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location n_l1___2

Found invariant 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₁ ≤ 2 ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___8

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 3 ≤ X₀ for location n_l1___5

Found invariant 3 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___1

Time-Bound by TWN-Loops:

TWN-Loops: t₁₀₆₃ 12⋅X₁+40 {O(n)}

TWN-Loops:

entry: t₁₀₅₈: n_l1___4(X₀, X₁) → n_l1___6(1, X₁+1) :|: X₁ ≤ 1 ∧ X₀ ≤ 1 ∧ X₁ ≤ 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1
results in twn-loop: twn:Inv: [X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀] , (X₀,X₁) -> (1,X₁+1) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1 ∧ X₀ ≤ 1 ∧ X₁ ≤ 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
entry: t₁₀₅₂: l1(X₀, X₁) → n_l1___6(1, X₁+1) :|: X₁ ≤ 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀] , (X₀,X₁) -> (1,X₁+1) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1 ∧ X₀ ≤ 1 ∧ X₁ ≤ 0 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
order: [X₀; X₁]
closed-form:
X₀: [[n == 0]] * X₀ + [[n != 0]]
X₁: X₁ + [[n != 0]] * n^1

Termination: true
Formula:

1 < 0
∨ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 0 ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁

Stabilization-Threshold for: X₁ ≤ 0
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₁ ≤ 1
alphas_abs: 1+X₁
M: 0
N: 1
Bound: 2⋅X₁+4 {O(n)}

relevant size-bounds w.r.t. t₁₀₅₈:
X₁: 2⋅X₁+5 {O(n)}
Runtime-bound of t₁₀₅₈: 1 {O(1)}
Results in: 8⋅X₁+28 {O(n)}

order: [X₀; X₁]
closed-form:
X₀: [[n == 0]] * X₀ + [[n != 0]]
X₁: X₁ + [[n != 0]] * n^1

Termination: true
Formula:

1 < 0
∨ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 0 ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁

Stabilization-Threshold for: X₁ ≤ 0
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₁ ≤ 1
alphas_abs: 1+X₁
M: 0
N: 1
Bound: 2⋅X₁+4 {O(n)}

relevant size-bounds w.r.t. t₁₀₅₂:
X₁: X₁+1 {O(n)}
Runtime-bound of t₁₀₅₂: 1 {O(1)}
Results in: 4⋅X₁+12 {O(n)}

12⋅X₁+40 {O(n)}

Found invariant 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l2

Found invariant X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6

Found invariant X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___9

Found invariant X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 for location n_l1___4

Found invariant X₁ ≤ 2 ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___7

Found invariant 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location n_l1___2

Found invariant 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₁ ≤ 2 ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___8

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 3 ≤ X₀ for location n_l1___5

Found invariant 3 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___1

Found invariant 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l2

Found invariant X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6

Found invariant X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___9

Found invariant X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 for location n_l1___4

Found invariant X₁ ≤ 2 ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___7

Found invariant 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location n_l1___2

Found invariant 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₁ ≤ 2 ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___8

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 3 ≤ X₀ for location n_l1___5

Found invariant 3 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___1

Time-Bound by TWN-Loops:

TWN-Loops: t₁₀₄₅ 16⋅X₀+4⋅X₁+96 {O(n)}

TWN-Loops:

entry: t₁₀₆₅: n_l1___7(X₀, X₁) → n_l1___1(X₀+1, X₁+1) :|: 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 2 ≤ X₁ ∧ X₀ ≤ 0 ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1
results in twn-loop: twn:Inv: [3 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1] , (X₀,X₁) -> (X₀+1,X₁+1) :|: 2 ≤ X₁ ∧ 3 ≤ X₁ ∧ X₀ ≤ 1 ∧ 2 ≤ X₁ ∧ X₀ ≤ 0
entry: t₁₀₄₇: l1(X₀, X₁) → n_l1___1(X₀+1, X₁+1) :|: 2 ≤ X₁ ∧ X₀ ≤ 0
results in twn-loop: twn:Inv: [3 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1] , (X₀,X₁) -> (X₀+1,X₁+1) :|: 2 ≤ X₁ ∧ 3 ≤ X₁ ∧ X₀ ≤ 1 ∧ 2 ≤ X₁ ∧ X₀ ≤ 0
order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁ + [[n != 0]] * n^1

Termination: true
Formula:

1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < 1 ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 0 < 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 2 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1
∨ 2 < X₁ ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 2 < X₁ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 < 0 ∧ 2 < X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1 < 0 ∧ 2 < X₁ ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 2 < X₁ ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 < 0 ∧ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 2 < X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 2 < X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 0 < 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1 < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 0 ∧ 0 < 1 ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 0 < 1 ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ X₀ < 0 ∧ 0 < 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 0 < 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 2 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 0 ∧ 2 < X₁ ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 2 < X₁ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3

Stabilization-Threshold for: X₀ ≤ 0
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: 2 ≤ X₁
alphas_abs: 2+X₁
M: 0
N: 1
Bound: 2⋅X₁+6 {O(n)}
Stabilization-Threshold for: X₀ ≤ 1
alphas_abs: 1+X₀
M: 0
N: 1
Bound: 2⋅X₀+4 {O(n)}
Stabilization-Threshold for: 3 ≤ X₁
alphas_abs: 3+X₁
M: 0
N: 1
Bound: 2⋅X₁+8 {O(n)}

relevant size-bounds w.r.t. t₁₀₆₅:
X₀: 3⋅X₀+8 {O(n)}
X₁: 3 {O(1)}
Runtime-bound of t₁₀₆₅: 1 {O(1)}
Results in: 12⋅X₀+66 {O(n)}

order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁ + [[n != 0]] * n^1

Termination: true
Formula:

1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < 1 ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 0 < 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 2 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1
∨ 2 < X₁ ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 2 < X₁ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 < 0 ∧ 2 < X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1 < 0 ∧ 2 < X₁ ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 2 < X₁ ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 < 0 ∧ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 2 < X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 2 < X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 0 < 1
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1 < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ 1 < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 0 ∧ 0 < 1 ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 0 < 1 ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ X₀ < 0 ∧ 0 < 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 0 < 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 2 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 0 ∧ 2 < X₁ ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 2 < X₁ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 2 < X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 < X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₁ ∧ X₁ ≤ 3

Stabilization-Threshold for: X₀ ≤ 0
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: 2 ≤ X₁
alphas_abs: 2+X₁
M: 0
N: 1
Bound: 2⋅X₁+6 {O(n)}
Stabilization-Threshold for: X₀ ≤ 1
alphas_abs: 1+X₀
M: 0
N: 1
Bound: 2⋅X₀+4 {O(n)}
Stabilization-Threshold for: 3 ≤ X₁
alphas_abs: 3+X₁
M: 0
N: 1
Bound: 2⋅X₁+8 {O(n)}

relevant size-bounds w.r.t. t₁₀₄₇:
X₀: X₀+1 {O(n)}
X₁: X₁+1 {O(n)}
Runtime-bound of t₁₀₄₇: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₁+30 {O(n)}

16⋅X₀+4⋅X₁+96 {O(n)}

Found invariant 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l2

Found invariant X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6

Found invariant X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___9

Found invariant X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ X₀ ≤ 1 for location n_l1___4

Found invariant X₁ ≤ 2 ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___7

Found invariant 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location n_l1___2

Found invariant 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₁ ≤ 2 ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___8

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 3 ≤ X₀ for location n_l1___5

Found invariant 3 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l1___1

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₂₁₁: 1 {O(1)}
t₂₁₂: 1 {O(1)}
t₂₁₃: inf {Infinity}
t₂₁₄: inf {Infinity}
t₂₁₅: inf {Infinity}
t₂₁₆: inf {Infinity}
t₂₁₇: inf {Infinity}
t₂₁₈: inf {Infinity}
t₂₁₉: inf {Infinity}
t₂₂₀: 1 {O(1)}
t₂₂₁: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
t₂₁₁: 1 {O(1)}
t₂₁₂: 1 {O(1)}
t₂₁₃: inf {Infinity}
t₂₁₄: inf {Infinity}
t₂₁₅: inf {Infinity}
t₂₁₆: inf {Infinity}
t₂₁₇: inf {Infinity}
t₂₁₈: inf {Infinity}
t₂₁₉: inf {Infinity}
t₂₂₀: 1 {O(1)}
t₂₂₁: inf {Infinity}

Sizebounds

t₂₁₁, X₀: X₀ {O(n)}
t₂₁₁, X₁: X₁ {O(n)}
t₂₁₂, X₁: 2⋅X₁+3 {O(n)}
t₂₁₃, X₀: 1 {O(1)}
t₂₁₃, X₁: 2 {O(1)}
t₂₁₄, X₁: 2 {O(1)}
t₂₁₅, X₀: 2⋅X₀+3 {O(n)}
t₂₁₅, X₁: 2 {O(1)}
t₂₁₆, X₀: 1 {O(1)}
t₂₁₆, X₁: 2⋅X₁+2 {O(n)}
t₂₁₇, X₁: X₁+1 {O(n)}
t₂₁₈, X₀: X₀+1 {O(n)}
t₂₁₈, X₁: X₁+1 {O(n)}
t₂₁₉, X₀: 1 {O(1)}
t₂₂₀, X₀: 3 {O(1)}
t₂₂₀, X₁: X₁+1 {O(n)}
t₂₂₁, X₀: 3⋅X₀+4 {O(n)}