Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆
Temp_Vars: B1, C1, D1, E1, F1, G1, H1, I1, J1, K1, L1, M1, N1, O1, P1, Q1, R1
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆)
t₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ 0
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, B1, Q1, D1, G1, L1, 1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 2⋅C1 ≤ X₄ ∧ X₄+1 ≤ 3⋅C1 ∧ D1 ≤ C1 ∧ 2⋅E1 ≤ X₄ ∧ X₄+1 ≤ 3⋅E1 ∧ E1 ≤ D1 ∧ 2⋅B1*F1 ≤ B1*X₄ ∧ B1*X₄+1 ≤ 2⋅B1*F1+F1 ∧ G1 ≤ F1 ∧ 2⋅B1*H1 ≤ B1*X₄ ∧ B1*X₄+1 ≤ 2⋅B1*H1+H1 ∧ H1 ≤ G1 ∧ B1*I1*X₄ ≤ X₃ ∧ X₃+1 ≤ B1*I1*X₄+I1 ∧ B1*J1*X₄ ≤ X₃ ∧ X₃+1 ≤ B1*J1*X₄+J1 ∧ 2⋅B1*J1*K1 ≤ B1*I1*X₄ ∧ B1*I1*X₄+1 ≤ 2⋅B1*J1*K1+K1 ∧ L1 ≤ K1 ∧ B1*M1*X₄ ≤ X₃ ∧ X₃+1 ≤ B1*M1*X₄+M1 ∧ B1*N1*X₄ ≤ X₃ ∧ X₃+1 ≤ B1*N1*X₄+N1 ∧ 2⋅B1*N1*O1 ≤ B1*M1*X₄ ∧ B1*M1*X₄+1 ≤ 2⋅B1*N1*O1+O1 ∧ O1 ≤ L1 ∧ 1 ≤ X₂ ∧ B1*P1*X₄ ≤ X₃ ∧ X₃+1 ≤ B1*P1*X₄+P1 ∧ Q1 ≤ P1 ∧ B1*R1*X₄ ≤ X₃ ∧ X₃+1 ≤ B1*R1*X₄+R1 ∧ R1 ≤ Q1
t₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 2+X₁₂ ≤ X₁₃+X₇
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃+X₇, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₃, X₂₁, X₂₂, X₂₁*X₂₃+X₂₃-X₂₂*X₂₄, X₂₁*X₂₄+X₂₂*X₂₃+X₂₄, X₂₅, X₂₆) :|: X₁₃+X₇ ≤ X₁₂+1
t₁₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+2, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₉ ≤ X₁₁
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, D1*X₂₃+G1*X₂₄, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁+X₁₈, X₁₂, X₁₃, X₁₄, B1*X₂₃-Q1*X₂₄, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₁₁, X₁₁+X₁₇) :|: X₁₁ ≤ X₉
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₈ ≤ X₁₁
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₁ ≤ X₈ ∧ X₁₁+1 ≤ X₁₀
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₀ ≤ X₁₁ ∧ 2⋅Q1 ≤ X₈ ∧ X₈+1 ≤ 3⋅Q1 ∧ B1 ≤ Q1 ∧ 2⋅D1 ≤ X₈ ∧ X₈+1 ≤ 3⋅D1 ∧ D1 ≤ B1 ∧ X₁₁ ≤ X₈
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂+1, B1*X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂-1, X₃, X₄*X₅, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₈ ≤ X₁₇
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, 2⋅X₁₇, B1, Q1, D1, G1, 1, 0, X₂₅, X₂₆) :|: X₁₇+1 ≤ X₈
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₁+X₇ ≤ X₁₂+1 ∧ 2⋅Q1 ≤ X₈ ∧ X₈+1 ≤ 3⋅Q1 ∧ B1 ≤ Q1 ∧ 2⋅D1 ≤ X₈ ∧ X₈+1 ≤ 3⋅D1 ∧ D1 ≤ B1
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 2+X₁₂ ≤ X₁₁+X₇
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+X₁₆, X₁₁+X₇, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₇ ≤ X₁₆ ∧ X₁₀ ≤ X₁₆
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+X₁₆, X₁₁+X₇, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₆+1 ≤ X₇
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀-X₁₆, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁₆ ≤ X₁₀ ∧ 2⋅Q1 ≤ X₁₆ ∧ X₁₆+1 ≤ 3⋅Q1 ∧ B1 ≤ Q1 ∧ 2⋅D1 ≤ X₁₆ ∧ X₁₆+1 ≤ 3⋅D1 ∧ D1 ≤ B1 ∧ X₇ ≤ X₁₆
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+2, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₉ ≤ X₁₃
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃+X₈, X₁₀+X₁₃-X₁₁, B1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₃ ≤ X₉
t₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₃ ≤ X₁₇
t₁₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₈, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁₇ ≤ X₁₃
Eliminate variables {X₁,X₆,X₁₄,X₁₅,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆} that do not contribute to the problem
Found invariant 1 ≤ 0 for location l11
Found invariant X₄ ≤ 1 ∧ X₂+X₄ ≤ 1 ∧ X₀+X₄ ≤ 0 ∧ 1 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₀ ≤ X₄ ∧ X₂ ≤ 0 ∧ 1+X₀+X₂ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ 0 for location l2
Found invariant 1 ≤ 0 for location l6
Found invariant 1 ≤ 0 for location l7
Found invariant 1 ≤ 0 for location l5
Found invariant 1 ≤ 0 for location l8
Found invariant X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂ for location l1
Found invariant 1 ≤ 0 for location l10
Found invariant 1 ≤ 0 for location l9
Found invariant 1 ≤ 0 for location l3
Cut unsatisfiable transition t₅₁: l1→l3
Cut unsatisfiable transition t₅₃: l10→l11
Cut unsatisfiable transition t₅₄: l10→l9
Cut unsatisfiable transition t₅₅: l11→l11
Cut unsatisfiable transition t₅₆: l11→l10
Cut unsatisfiable transition t₅₇: l3→l6
Cut unsatisfiable transition t₅₈: l3→l7
Cut unsatisfiable transition t₅₉: l3→l5
Cut unsatisfiable transition t₆₂: l5→l9
Cut unsatisfiable transition t₆₃: l5→l1
Cut unsatisfiable transition t₆₄: l6→l8
Cut unsatisfiable transition t₆₅: l6→l7
Cut unsatisfiable transition t₆₆: l7→l7
Cut unsatisfiable transition t₆₇: l7→l3
Cut unsatisfiable transition t₆₈: l7→l3
Cut unsatisfiable transition t₆₉: l8→l8
Cut unsatisfiable transition t₇₀: l8→l6
Cut unsatisfiable transition t₇₁: l9→l10
Cut unsatisfiable transition t₇₂: l9→l5
Cut unreachable locations [l10; l11; l3; l5; l6; l7; l8; l9] from the program graph
Eliminate variables {B1,X₃,X₅,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₆,X₁₇,X₁₈} that do not contribute to the problem
Start: l0
Program_Vars: X₀, X₂, X₄
Temp_Vars:
Locations: l0, l1, l2, l4
Transitions:
t₁₂₂: l0(X₀, X₂, X₄) → l4(X₀, X₂, X₄)
t₁₂₃: l1(X₀, X₂, X₄) → l2(X₀, X₂, X₄) :|: X₂ ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂
t₁₂₅: l4(X₀, X₂, X₄) → l1(X₀, X₂, 1) :|: 1+X₀ ≤ X₂
t₁₂₄: l4(X₀, X₂, X₄) → l4(X₀, X₂+1, X₄) :|: X₂ ≤ X₀
Found invariant X₄ ≤ 1 ∧ X₂+X₄ ≤ 1 ∧ X₀+X₄ ≤ 0 ∧ 1 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₀ ≤ X₄ ∧ X₂ ≤ 0 ∧ 1+X₀+X₂ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ 0 for location l2
Found invariant X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂ for location l1
Termination: true
Formula:
relevant size-bounds w.r.t. t₁₂₂:
X₀: X₀ {O(n)}
X₂: X₂ {O(n)}
Runtime-bound of t₁₂₂: 1 {O(1)}
Results in: 2⋅X₀+2⋅X₂+4 {O(n)}
Overall timebound:2⋅X₀+2⋅X₂+7 {O(n)}
t₁₂₂: 1 {O(1)}
t₁₂₃: 1 {O(1)}
t₁₂₄: 2⋅X₀+2⋅X₂+4 {O(n)}
t₁₂₅: 1 {O(1)}
Overall costbound: 2⋅X₀+2⋅X₂+7 {O(n)}
t₁₂₂: 1 {O(1)}
t₁₂₃: 1 {O(1)}
t₁₂₄: 2⋅X₀+2⋅X₂+4 {O(n)}
t₁₂₅: 1 {O(1)}
t₁₂₂, X₀: X₀ {O(n)}
t₁₂₂, X₂: X₂ {O(n)}
t₁₂₂, X₄: X₄ {O(n)}
t₁₂₃, X₀: 2⋅X₀ {O(n)}
t₁₂₃, X₂: 2⋅X₀+4⋅X₂+4 {O(n)}
t₁₂₃, X₄: 1 {O(1)}
t₁₂₄, X₀: X₀ {O(n)}
t₁₂₄, X₂: 2⋅X₀+3⋅X₂+4 {O(n)}
t₁₂₄, X₄: X₄ {O(n)}
t₁₂₅, X₀: 2⋅X₀ {O(n)}
t₁₂₅, X₂: 2⋅X₀+4⋅X₂+4 {O(n)}
t₁₂₅, X₄: 1 {O(1)}