Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l1, l2
Transitions:
t₀: l0(X₀, X₁) → l1(X₀, X₁)
t₁: l1(X₀, X₁) → l1(2⋅X₀, X₁-1) :|: 0 < X₁
t₂: l1(X₀, X₁) → l2(X₀, X₁) :|: X₁ ≤ 0
t₃: l2(X₀, X₁) → l2(X₀-1, X₁) :|: 0 < X₀
Found invariant X₁ ≤ 0 for location l2
Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l1, l2
Transitions:
t₀: l0(X₀, X₁) → l1(X₀, X₁)
t₁: l1(X₀, X₁) → l1(2⋅X₀, X₁-1) :|: 0 < X₁
t₂: l1(X₀, X₁) → l2(X₀, X₁) :|: X₁ ≤ 0
t₃: l2(X₀, X₁) → l2(X₀-1, X₁) :|: 0 < X₀ ∧ X₁ ≤ 0
Found invariant X₁ ≤ 0 for location l2
Termination: true
Formula:
relevant size-bounds w.r.t. t₀:
X₁: X₁ {O(n)}
Runtime-bound of t₀: 1 {O(1)}
Results in: 2⋅X₁+4 {O(n)}
Found invariant X₁ ≤ 0 for location l2
Termination: true
Formula:
relevant size-bounds w.r.t. t₂:
X₀: 2^(2⋅X₁+4)⋅X₀+X₀ {O(EXP)}
Runtime-bound of t₂: 1 {O(1)}
Results in: 2⋅2^(2⋅X₁+4)⋅X₀+2⋅X₀+4 {O(EXP)}
Found invariant X₁ ≤ 0 for location l2
Found invariant X₁ ≤ 0 for location l2
Termination: true
Formula:
relevant size-bounds w.r.t. t₂:
X₀: 2^(2⋅X₁+4)⋅X₀+X₀ {O(EXP)}
Runtime-bound of t₂: 1 {O(1)}
Results in: 2⋅2^(2⋅X₁+4)⋅X₀+2⋅X₀+5 {O(EXP)}
Overall timebound:2⋅2^(2⋅X₁+4)⋅X₀+2⋅X₀+2⋅X₁+10 {O(EXP)}
t₀: 1 {O(1)}
t₁: 2⋅X₁+4 {O(n)}
t₂: 1 {O(1)}
t₃: 2⋅2^(2⋅X₁+4)⋅X₀+2⋅X₀+4 {O(EXP)}
Overall costbound: 2⋅2^(2⋅X₁+4)⋅X₀+2⋅X₀+2⋅X₁+10 {O(EXP)}
t₀: 1 {O(1)}
t₁: 2⋅X₁+4 {O(n)}
t₂: 1 {O(1)}
t₃: 2⋅2^(2⋅X₁+4)⋅X₀+2⋅X₀+4 {O(EXP)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₁, X₀: 2^(2⋅X₁+4)⋅X₀ {O(EXP)}
t₁, X₁: X₁ {O(n)}
t₂, X₀: 2^(2⋅X₁+4)⋅X₀+X₀ {O(EXP)}
t₂, X₁: 2⋅X₁ {O(n)}
t₃, X₀: 2^(2⋅X₁+4)⋅X₀+X₀ {O(EXP)}
t₃, X₁: 2⋅X₁ {O(n)}