Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉
Temp_Vars: U
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₃₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l11(X₀, X₂, X₂, X₄, X₄, X₆, X₆, X₈, X₈, X₁₀, X₁₀, X₁₂, X₁₂, X₁₄, X₁₄, X₁₆, X₁₆, X₁₈, X₁₈, X₀)
t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, U, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₅+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₅+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₅, X₁₈, X₁₉) :|: X₁+2 ≤ X₀ ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, 0, X₁₄, 1, X₁₆, 0, X₁₈, X₁₉) :|: 1 ≤ X₁ ∧ 1 ≤ 0 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₉ ≤ 2 ∧ 2 ≤ X₁₉ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₂₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, 0, X₁₆, 1, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₃₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, 0, X₁₆, 2, X₁₈, X₁₉) :|: 4 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, 0, X₁₆, X₁₉, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, 0, X₁₆, X₁₉, X₁₈, X₁₉) :|: 4 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 0, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ X₁+1 ∧ X₀ ≤ 1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1, X₁₆, 1, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₅ ≤ X₁₆ ∧ X₁₆ ≤ X₁₅ ∧ X₁₇ ≤ X₁₈ ∧ X₁₈ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₅ ≤ X₁₆ ∧ X₁₆ ≤ X₁₅ ∧ X₁₇ ≤ X₁₈ ∧ X₁₈ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l10(X₀, X₁₅, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l3(X₀, X₁, X₂, U, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁
t₂₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l1(X₀, X₁, X₂, X₃, X₄, U, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₃+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₃+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₇, X₁₈, X₁₉) :|: 2⋅X₇+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₇+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₅+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₅+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 1+2⋅X₇ ∧ 1 ≤ X₁₅ ∧ 0 ≤ 1+2⋅X₅ ∧ 0 ≤ 1+2⋅X₉ ∧ 0 ≤ 1+2⋅X₃ ∧ 2⋅X₉+1 ≤ X₁₅ ∧ 2⋅X₅+1 ≤ X₁₅ ∧ 2⋅X₃+1 ≤ X₁₅ ∧ 2⋅X₇+1 ≤ X₁₅ ∧ 2⋅X₅ ≤ 2⋅X₃+1 ∧ 2⋅X₉ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₇+1 ∧ 2⋅X₅ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₉+1 ∧ 2⋅X₅ ≤ 2⋅X₉+1 ∧ 2⋅X₉ ≤ 2⋅X₃+1 ∧ 2⋅X₇ ≤ 2⋅X₃+1 ∧ 2⋅X₃ ≤ 2⋅X₅+1 ∧ 2⋅X₉ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₉+1 ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₇ ∧ X₇ ≤ X₁₇ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, 0, X₁₄, 1+X₁₅, X₁₆, 0, X₁₈, X₁₉) :|: 1 ≤ X₁₇+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₃ ∧ 3 ≤ X₀ ∧ X₁₃ ≤ 1 ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₅+2 ≤ X₀ ∧ X₀ ≤ X₁₅+2 ∧ X₁₁+3 ≤ X₀ ∧ X₀ ≤ X₁₁+3
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, 1, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, 2, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ X₁₁+2 ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2⋅X₁₃+X₁₅+2 ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 1+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 2+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 2+X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 1+2⋅X₁₇, X₁₈, X₁₉) :|: X₀+X₁₅+3 ≤ 0 ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 2+2⋅X₁₇, X₁₈, X₁₉) :|: X₀+X₁₅+4 ≤ 0 ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₀+X₁₅+3 ≤ 0 ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
t₁₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₀+X₁₅+4 ≤ 0 ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
Cut unsatisfiable transition t₂₅: l10→l9
Cut unsatisfiable transition t₂₆: l10→l6
Cut unsatisfiable transition t₈: l8→l8
Cut unsatisfiable transition t₉: l8→l7
Cut unsatisfiable transition t₁₀: l8→l8
Cut unsatisfiable transition t₁₁: l8→l7
Found invariant X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ for location l11
Found invariant X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l2
Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l6
Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l7
Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l5
Found invariant X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l8
Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l1
Found invariant X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10
Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l4
Found invariant X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ for location l9
Found invariant 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l3
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉
Temp_Vars: U
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₃₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l11(X₀, X₂, X₂, X₄, X₄, X₆, X₆, X₈, X₈, X₁₀, X₁₀, X₁₂, X₁₂, X₁₄, X₁₄, X₁₆, X₁₆, X₁₈, X₁₈, X₀)
t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, U, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₅+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₅+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₅, X₁₈, X₁₉) :|: X₁+2 ≤ X₀ ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, 0, X₁₆, 1, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₃₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, 0, X₁₆, 2, X₁₈, X₁₉) :|: 4 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, 0, X₁₆, X₁₉, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, 0, X₁₆, X₁₉, X₁₈, X₁₉) :|: 4 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1, X₁₆, 1, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₅ ≤ X₁₆ ∧ X₁₆ ≤ X₁₅ ∧ X₁₇ ≤ X₁₈ ∧ X₁₈ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂
t₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₅ ≤ X₁₆ ∧ X₁₆ ≤ X₁₅ ∧ X₁₇ ≤ X₁₈ ∧ X₁₈ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l10(X₀, X₁₅, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l3(X₀, X₁, X₂, U, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₂₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l1(X₀, X₁, X₂, X₃, X₄, U, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₃+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₃+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₇, X₁₈, X₁₉) :|: 2⋅X₇+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₇+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₅+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₅+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 1+2⋅X₇ ∧ 1 ≤ X₁₅ ∧ 0 ≤ 1+2⋅X₅ ∧ 0 ≤ 1+2⋅X₉ ∧ 0 ≤ 1+2⋅X₃ ∧ 2⋅X₉+1 ≤ X₁₅ ∧ 2⋅X₅+1 ≤ X₁₅ ∧ 2⋅X₃+1 ≤ X₁₅ ∧ 2⋅X₇+1 ≤ X₁₅ ∧ 2⋅X₅ ≤ 2⋅X₃+1 ∧ 2⋅X₉ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₇+1 ∧ 2⋅X₅ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₉+1 ∧ 2⋅X₅ ≤ 2⋅X₉+1 ∧ 2⋅X₉ ≤ 2⋅X₃+1 ∧ 2⋅X₇ ≤ 2⋅X₃+1 ∧ 2⋅X₃ ≤ 2⋅X₅+1 ∧ 2⋅X₉ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₉+1 ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₇ ∧ X₇ ≤ X₁₇ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, 0, X₁₄, 1+X₁₅, X₁₆, 0, X₁₈, X₁₉) :|: 1 ≤ X₁₇+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₃ ∧ 3 ≤ X₀ ∧ X₁₃ ≤ 1 ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₅+2 ≤ X₀ ∧ X₀ ≤ X₁₅+2 ∧ X₁₁+3 ≤ X₀ ∧ X₀ ≤ X₁₁+3 ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, 1, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, 2, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ X₁₁+2 ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2⋅X₁₃+X₁₅+2 ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 1+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 2+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 2+X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇ ∧ X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
Cut unsatisfiable transition t₅₈₅: n_l10___23→l7
Cut unsatisfiable transition t₅₈₉: n_l10___23→l7
Cut unsatisfiable transition t₅₉₃: n_l10___23→l8
Cut unsatisfiable transition t₅₉₇: n_l10___23→l8
Cut unsatisfiable transition t₅₈₆: n_l10___5→l7
Cut unsatisfiable transition t₅₉₀: n_l10___5→l7
Cut unsatisfiable transition t₅₉₄: n_l10___5→l8
Cut unsatisfiable transition t₅₉₈: n_l10___5→l8
Found invariant X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ for location l11
Found invariant 1+X₉ ≤ X₇ ∧ 4+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 3+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₁ ∧ 4+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 0 ≤ X₃+X₉ ∧ 4 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 2 ≤ X₁+X₉ ∧ 4 ≤ X₀+X₉ ∧ 3+X₇ ≤ X₁₉ ∧ X₇ ≤ X₁₇ ∧ 2+X₇ ≤ X₁₅ ∧ 1+X₇ ≤ X₁ ∧ 3+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 5 ≤ X₁₉+X₇ ∧ 2 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 4 ≤ X₁₅+X₇ ∧ 3 ≤ X₁+X₇ ∧ 5 ≤ X₀+X₇ ∧ 0 ≤ X₃ ∧ 4 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 3 ≤ X₁₅+X₃ ∧ 2 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 4 ≤ X₁₉ ∧ 5 ≤ X₁₇+X₁₉ ∧ 3+X₁₇ ≤ X₁₉ ∧ 7 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₁+X₁₉ ∧ 2+X₁ ≤ X₁₉ ∧ 8 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 2+X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₁ ∧ 3+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 4 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 5 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 3 ≤ X₁₅ ∧ 5 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 7 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l1___12
Found invariant 2+X₇ ≤ X₁₉ ∧ X₇ ≤ X₁₇ ∧ 1+X₇ ≤ X₁₅ ∧ X₇ ≤ X₁ ∧ 2+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 2 ≤ X₁₅+X₇ ∧ 1 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 1 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 2 ≤ X₁₅+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 2+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 1 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l2___15
Found invariant X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 2+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1 ∧ X₁₇ ≤ X₁₅ ∧ X₁₅+X₁₇ ≤ 2 ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1 ∧ 2+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l2
Found invariant X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₃+X₇ ≤ 0 ∧ 3+X₇ ≤ X₁₉ ∧ X₇ ≤ X₁₇ ∧ X₁₇+X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₅ ∧ X₁₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ X₁₅ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₉ ∧ X₅ ≤ X₁₇ ∧ X₁₇+X₅ ≤ 0 ∧ 1+X₅ ≤ X₁₅ ∧ X₁₅+X₅ ≤ 1 ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ X₁₇ ≤ X₅ ∧ 1 ≤ X₁₅+X₅ ∧ X₁₅ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₁₉ ∧ X₃ ≤ X₁₇ ∧ X₁₇+X₃ ≤ 0 ∧ 1+X₃ ≤ X₁₅ ∧ X₁₅+X₃ ≤ 1 ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ X₁₇ ≤ X₃ ∧ 1 ≤ X₁₅+X₃ ∧ X₁₅ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 3+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 2+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 0 ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₅+X₁₇ ≤ 1 ∧ 3+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ 1+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1 ∧ 2+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location n_l2___6
Found invariant 1 ≤ 0 for location n_l5___1
Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ X₉ ≤ X₁ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 2 ≤ X₁₅+X₉ ∧ 1 ≤ X₁+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 2 ≤ X₁₅+X₇ ∧ 1 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 1 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 2 ≤ X₁₅+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 2+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 1 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l5___16
Found invariant 1 ≤ 0 for location n_l3___4
Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁ ∧ 2+X₉ ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l6
Found invariant X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ X₃+X₉ ≤ 0 ∧ 3+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ X₁₇+X₉ ≤ 1 ∧ 1+X₉ ≤ X₁₅ ∧ X₁₅+X₉ ≤ 1 ∧ 3+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ X₁₇ ≤ 1+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ X₁₅ ≤ 1+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ X₁₇+X₃ ≤ 1 ∧ 1+X₃ ≤ X₁₅ ∧ X₁₅+X₃ ≤ 1 ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ X₁₇ ≤ 1+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ X₁₅ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 2+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1 ∧ X₁₇ ≤ X₁₅ ∧ X₁₅+X₁₇ ≤ 2 ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1 ∧ 2+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location n_l1___9
Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ X₉ ≤ X₁ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 2 ≤ X₁₇+X₉ ∧ 2 ≤ X₁₅+X₉ ∧ 1 ≤ X₁+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 2 ≤ X₁₇+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 1 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 1+X₃ ≤ X₁₅ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 2 ≤ X₁₇+X₃ ∧ 2 ≤ X₁₅+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 5 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 2+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 1+X₁ ∧ 1+X₁₇ ≤ X₀ ∧ 2 ≤ X₁₇ ∧ 4 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 5 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l4___17
Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ X₉ ≤ X₁ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 2 ≤ X₁₇+X₉ ∧ 2 ≤ X₁₅+X₉ ∧ 1 ≤ X₁+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 2 ≤ X₁₇+X₃ ∧ 2 ≤ X₁₅+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 5 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 2+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 1+X₁ ∧ 1+X₁₇ ≤ X₀ ∧ 2 ≤ X₁₇ ∧ 4 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 5 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___18
Found invariant 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 2 ≤ X₁₇+X₉ ∧ 2 ≤ X₁₅+X₉ ∧ 1 ≤ X₁+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 5 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 2+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 1+X₁ ∧ 1+X₁₇ ≤ X₀ ∧ 2 ≤ X₁₇ ∧ 4 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 5 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___19
Found invariant 1 ≤ 0 for location n_l4___2
Found invariant 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 2 ≤ X₁₇+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 2 ≤ X₁+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 5 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 6 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ 2 ≤ X₁₇ ∧ 5 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ 1+X₁₇ ∧ 4 ≤ X₁+X₁₇ ∧ X₁ ≤ X₁₇ ∧ 5 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 3 ≤ X₁₅ ∧ 5 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 6 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l10___20
Found invariant 1 ≤ 0 for location n_l1___3
Found invariant 4+X₉ ≤ X₁₉ ∧ 3+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₁ ∧ 4+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 4 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 2 ≤ X₁+X₉ ∧ 4 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 4 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 3 ≤ X₁₅+X₇ ∧ 2 ≤ X₁+X₇ ∧ 4 ≤ X₀+X₇ ∧ 4+X₅ ≤ X₁₉ ∧ 3+X₅ ≤ X₁₅ ∧ 2+X₅ ≤ X₁ ∧ 4+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 4 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 3 ≤ X₁₅+X₅ ∧ 2 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 4+X₃ ≤ X₁₉ ∧ 3+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₁ ∧ 4+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 4 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 3 ≤ X₁₅+X₃ ∧ 2 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 4 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 7 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₁+X₁₉ ∧ 2+X₁ ≤ X₁₉ ∧ 8 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 3 ≤ X₁₅ ∧ 5 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 7 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l5___10
Found invariant 1+X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 1+X₇+X₉ ≤ 0 ∧ 1+X₉ ≤ X₅ ∧ 1+X₅+X₉ ≤ 0 ∧ 1+X₉ ≤ X₃ ∧ 1+X₃+X₉ ≤ 0 ∧ 4+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₁₇+X₉ ≤ 0 ∧ 3+X₉ ≤ X₁₅ ∧ X₁₅+X₉ ≤ 1 ∧ 2+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 4+X₉ ≤ X₀ ∧ 0 ≤ 1+X₉ ∧ 0 ≤ 1+X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ 1+X₅+X₉ ∧ X₅ ≤ 1+X₉ ∧ 0 ≤ 1+X₃+X₉ ∧ X₃ ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ 1+X₁₇+X₉ ∧ X₁₇ ≤ 1+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ X₁₅ ≤ 3+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ 2+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₃+X₇ ≤ 0 ∧ 3+X₇ ≤ X₁₉ ∧ X₇ ≤ X₁₇ ∧ X₁₇+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₅ ∧ X₁₅+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 1 ∧ 3+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 2 ≤ X₁₅+X₇ ∧ X₁₅ ≤ 2+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₉ ∧ X₅ ≤ X₁₇ ∧ X₁₇+X₅ ≤ 0 ∧ 2+X₅ ≤ X₁₅ ∧ X₁₅+X₅ ≤ 2 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 1 ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ X₁₇ ≤ X₅ ∧ 2 ≤ X₁₅+X₅ ∧ X₁₅ ≤ 2+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₁₉ ∧ X₃ ≤ X₁₇ ∧ X₁₇+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁₅ ∧ X₁₅+X₃ ≤ 2 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 1 ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ X₁₇ ≤ X₃ ∧ 2 ≤ X₁₅+X₃ ∧ X₁₅ ≤ 2+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 3+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 2+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 0 ∧ 2+X₁₇ ≤ X₁₅ ∧ X₁₅+X₁₇ ≤ 2 ∧ 1+X₁₇ ≤ X₁ ∧ X₁+X₁₇ ≤ 1 ∧ 3+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ 2+X₁₇ ∧ 1 ≤ X₁+X₁₇ ∧ X₁ ≤ 1+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 2 ∧ X₁₅ ≤ 1+X₁ ∧ X₁+X₁₅ ≤ 3 ∧ 1+X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l10___5
Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁ ∧ 2+X₉ ≤ X₀ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l7
Found invariant 0 ≤ 1+X₉ ∧ 0 ≤ 1+X₇+X₉ ∧ 0 ≤ 1+X₅+X₉ ∧ 0 ≤ 1+X₃+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ 1+X₁₇+X₉ ∧ 2 ≤ X₁₅+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ 2+X₇ ≤ X₁₉ ∧ X₇ ≤ X₁₇ ∧ 2+X₇ ≤ X₁₅ ∧ 1+X₇ ≤ X₁ ∧ 2+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 3 ≤ X₁₅+X₇ ∧ 2 ≤ X₁+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 2+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 3 ≤ X₁₅+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 2+X₃ ≤ X₁₅ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 3 ≤ X₁₅+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 6 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 2+X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 3 ≤ X₁₅ ∧ 5 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 6 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l10___14
Found invariant X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 5 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 2+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 1+X₁ ∧ 1+X₁₇ ≤ X₀ ∧ 2 ≤ X₁₇ ∧ 4 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 5 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l2___21
Found invariant 2+X₉ ≤ X₁₉ ∧ 2+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁ ∧ 2+X₉ ≤ X₀ ∧ X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l8
Found invariant 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₅+X₉ ∧ 4 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 2 ≤ X₁+X₉ ∧ 4 ≤ X₀+X₉ ∧ 2+X₇ ≤ X₁₉ ∧ X₇ ≤ X₁₇ ∧ 1+X₇ ≤ X₁₅ ∧ X₇ ≤ X₁ ∧ 2+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 5 ≤ X₁₉+X₇ ∧ 2 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 4 ≤ X₁₅+X₇ ∧ 3 ≤ X₁+X₇ ∧ 5 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 5 ≤ X₁₉+X₅ ∧ 2 ≤ X₁₇+X₅ ∧ 4 ≤ X₁₅+X₅ ∧ 3 ≤ X₁+X₅ ∧ 5 ≤ X₀+X₅ ∧ X₁₉ ≤ X₀ ∧ 4 ≤ X₁₉ ∧ 5 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 7 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₁+X₁₉ ∧ 2+X₁ ≤ X₁₉ ∧ 8 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 4 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 5 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 3 ≤ X₁₅ ∧ 5 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 7 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l3___13
Found invariant X₉ ≤ 0 ∧ 3+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ X₁₇+X₉ ≤ 1 ∧ 1+X₉ ≤ X₁₅ ∧ X₁₅+X₉ ≤ 1 ∧ 3+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ X₁₇ ≤ 1+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ X₁₅ ≤ 1+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 2+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1 ∧ X₁₇ ≤ X₁₅ ∧ X₁₅+X₁₇ ≤ 2 ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1 ∧ 2+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location n_l3___22
Found invariant X₉ ≤ 0 ∧ X₉ ≤ X₇ ∧ X₇+X₉ ≤ 0 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ X₃+X₉ ≤ 0 ∧ 3+X₉ ≤ X₁₉ ∧ X₉ ≤ X₁₇ ∧ X₁₇+X₉ ≤ 0 ∧ 1+X₉ ≤ X₁₅ ∧ X₁₅+X₉ ≤ 1 ∧ 3+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ X₁₇ ≤ X₉ ∧ 1 ≤ X₁₅+X₉ ∧ X₁₅ ≤ 1+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₃+X₇ ≤ 0 ∧ 3+X₇ ≤ X₁₉ ∧ X₇ ≤ X₁₇ ∧ X₁₇+X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₅ ∧ X₁₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ X₁₅ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₉ ∧ X₅ ≤ X₁₇ ∧ X₁₇+X₅ ≤ 0 ∧ 1+X₅ ≤ X₁₅ ∧ X₁₅+X₅ ≤ 1 ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ X₁₇ ≤ X₅ ∧ 1 ≤ X₁₅+X₅ ∧ X₁₅ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₁₉ ∧ X₃ ≤ X₁₇ ∧ X₁₇+X₃ ≤ 0 ∧ 1+X₃ ≤ X₁₅ ∧ X₁₅+X₃ ≤ 1 ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ X₁₇ ≤ X₃ ∧ 1 ≤ X₁₅+X₃ ∧ X₁₅ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 3+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 2+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 0 ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₅+X₁₇ ≤ 1 ∧ 3+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ 1+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1 ∧ 2+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location n_l5___7
Found invariant X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ for location l9
Found invariant X₉ ≤ 0 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ X₃+X₉ ≤ 0 ∧ 3+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ X₁₇+X₉ ≤ 1 ∧ 1+X₉ ≤ X₁₅ ∧ X₁₅+X₉ ≤ 1 ∧ 3+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ X₁₇ ≤ 1+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ X₁₅ ≤ 1+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₇ ∧ X₁₇+X₅ ≤ 1 ∧ 1+X₅ ≤ X₁₅ ∧ X₁₅+X₅ ≤ 1 ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ X₁₇ ≤ 1+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ X₁₅ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ X₁₇+X₃ ≤ 1 ∧ 1+X₃ ≤ X₁₅ ∧ X₁₅+X₃ ≤ 1 ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ X₁₇ ≤ 1+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ X₁₅ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 2+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1 ∧ X₁₇ ≤ X₁₅ ∧ X₁₅+X₁₇ ≤ 2 ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1 ∧ 2+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location n_l4___8
Found invariant X₉ ≤ 0 ∧ 3+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ X₁₇+X₉ ≤ 1 ∧ 2+X₉ ≤ X₁₅ ∧ X₁₅+X₉ ≤ 2 ∧ 1+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 1 ∧ 3+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ X₁₇ ≤ 1+X₉ ∧ 2 ≤ X₁₅+X₉ ∧ X₁₅ ≤ 2+X₉ ∧ 1 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 2+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1 ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₅+X₁₇ ≤ 3 ∧ X₁₇ ≤ X₁ ∧ X₁+X₁₇ ≤ 2 ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ X₁₅ ≤ 1+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ X₁ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 2 ∧ X₁₅ ≤ 1+X₁ ∧ X₁+X₁₅ ≤ 3 ∧ 1+X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l10___23
Found invariant 4+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 3+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₁ ∧ 4+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 4 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 2 ≤ X₁+X₉ ∧ 4 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 4 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 3 ≤ X₁₅+X₅ ∧ 2 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 4+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 3+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₁ ∧ 4+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 4 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 3 ≤ X₁₅+X₃ ∧ 2 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 4 ≤ X₁₉ ∧ 5 ≤ X₁₇+X₁₉ ∧ 3+X₁₇ ≤ X₁₉ ∧ 7 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₁+X₁₉ ∧ 2+X₁ ≤ X₁₉ ∧ 8 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 2+X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₁ ∧ 3+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 4 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 5 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 3 ≤ X₁₅ ∧ 5 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 7 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l4___11
Cut unsatisfiable transition t₅₄₈: n_l1___3→n_l4___2
Cut unsatisfiable transition t₅₅₇: n_l2___6→n_l3___4
Cut unsatisfiable transition t₅₆₁: n_l3___4→n_l1___3
Cut unsatisfiable transition t₅₆₄: n_l4___2→n_l5___1
Cut unsatisfiable transition t₅₆₆: n_l5___1→n_l2___6
Cut unreachable locations [n_l1___3; n_l3___4; n_l4___2; n_l5___1] from the program graph
Overall timebound:inf {Infinity}
t₃₁: 1 {O(1)}
t₂₂: inf {Infinity}
t₂₄: inf {Infinity}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₁₈: inf {Infinity}
t₁₉: inf {Infinity}
t₂₃: inf {Infinity}
t₂₀: inf {Infinity}
t₂₁: inf {Infinity}
t₁₂: 1 {O(1)}
t₁₃: inf {Infinity}
t₁₄: inf {Infinity}
t₁₅: inf {Infinity}
t₁₆: inf {Infinity}
t₁₇: inf {Infinity}
t₂: inf {Infinity}
t₃: inf {Infinity}
t₄: inf {Infinity}
t₅: inf {Infinity}
t₆: inf {Infinity}
t₇: inf {Infinity}
Overall costbound: inf {Infinity}
t₃₁: 1 {O(1)}
t₂₂: inf {Infinity}
t₂₄: inf {Infinity}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₁₈: inf {Infinity}
t₁₉: inf {Infinity}
t₂₃: inf {Infinity}
t₂₀: inf {Infinity}
t₂₁: inf {Infinity}
t₁₂: 1 {O(1)}
t₁₃: inf {Infinity}
t₁₄: inf {Infinity}
t₁₅: inf {Infinity}
t₁₆: inf {Infinity}
t₁₇: inf {Infinity}
t₂: inf {Infinity}
t₃: inf {Infinity}
t₄: inf {Infinity}
t₅: inf {Infinity}
t₆: inf {Infinity}
t₇: inf {Infinity}
t₃₁, X₀: X₀ {O(n)}
t₃₁, X₁: X₂ {O(n)}
t₃₁, X₂: X₂ {O(n)}
t₃₁, X₃: X₄ {O(n)}
t₃₁, X₄: X₄ {O(n)}
t₃₁, X₅: X₆ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: X₈ {O(n)}
t₃₁, X₈: X₈ {O(n)}
t₃₁, X₉: X₁₀ {O(n)}
t₃₁, X₁₀: X₁₀ {O(n)}
t₃₁, X₁₁: X₁₂ {O(n)}
t₃₁, X₁₂: X₁₂ {O(n)}
t₃₁, X₁₃: X₁₄ {O(n)}
t₃₁, X₁₄: X₁₄ {O(n)}
t₃₁, X₁₅: X₁₆ {O(n)}
t₃₁, X₁₆: X₁₆ {O(n)}
t₃₁, X₁₇: X₁₈ {O(n)}
t₃₁, X₁₈: X₁₈ {O(n)}
t₃₁, X₁₉: X₀ {O(n)}
t₂₂, X₀: 2⋅X₀ {O(n)}
t₂₂, X₂: 2⋅X₂ {O(n)}
t₂₂, X₄: 2⋅X₄ {O(n)}
t₂₂, X₆: 2⋅X₆ {O(n)}
t₂₂, X₈: 2⋅X₈ {O(n)}
t₂₂, X₁₀: 2⋅X₁₀ {O(n)}
t₂₂, X₁₁: 2⋅X₁₂ {O(n)}
t₂₂, X₁₂: 2⋅X₁₂ {O(n)}
t₂₂, X₁₃: 2⋅X₁₄ {O(n)}
t₂₂, X₁₄: 2⋅X₁₄ {O(n)}
t₂₂, X₁₆: 2⋅X₁₆ {O(n)}
t₂₂, X₁₈: 2⋅X₁₈ {O(n)}
t₂₂, X₁₉: 2⋅X₀ {O(n)}
t₂₄, X₀: 2⋅X₀ {O(n)}
t₂₄, X₂: 2⋅X₂ {O(n)}
t₂₄, X₄: 2⋅X₄ {O(n)}
t₂₄, X₆: 2⋅X₆ {O(n)}
t₂₄, X₈: 2⋅X₈ {O(n)}
t₂₄, X₁₀: 2⋅X₁₀ {O(n)}
t₂₄, X₁₁: 2⋅X₁₂ {O(n)}
t₂₄, X₁₂: 2⋅X₁₂ {O(n)}
t₂₄, X₁₃: 2⋅X₁₄ {O(n)}
t₂₄, X₁₄: 2⋅X₁₄ {O(n)}
t₂₄, X₁₆: 2⋅X₁₆ {O(n)}
t₂₄, X₁₈: 2⋅X₁₈ {O(n)}
t₂₄, X₁₉: 2⋅X₀ {O(n)}
t₂₇, X₀: 2⋅X₀ {O(n)}
t₂₇, X₂: 2⋅X₂ {O(n)}
t₂₇, X₄: 2⋅X₄ {O(n)}
t₂₇, X₆: 2⋅X₆ {O(n)}
t₂₇, X₈: 2⋅X₈ {O(n)}
t₂₇, X₁₀: 2⋅X₁₀ {O(n)}
t₂₇, X₁₁: 2⋅X₁₂ {O(n)}
t₂₇, X₁₂: 2⋅X₁₂ {O(n)}
t₂₇, X₁₃: 1 {O(1)}
t₂₇, X₁₄: 2⋅X₁₄ {O(n)}
t₂₇, X₁₅: 0 {O(1)}
t₂₇, X₁₆: 2⋅X₁₆ {O(n)}
t₂₇, X₁₇: 2⋅X₀ {O(n)}
t₂₇, X₁₈: 2⋅X₁₈ {O(n)}
t₂₇, X₁₉: 2⋅X₀ {O(n)}
t₂₈, X₀: 2⋅X₀ {O(n)}
t₂₈, X₂: 2⋅X₂ {O(n)}
t₂₈, X₄: 2⋅X₄ {O(n)}
t₂₈, X₆: 2⋅X₆ {O(n)}
t₂₈, X₈: 2⋅X₈ {O(n)}
t₂₈, X₁₀: 2⋅X₁₀ {O(n)}
t₂₈, X₁₁: 2⋅X₁₂ {O(n)}
t₂₈, X₁₂: 2⋅X₁₂ {O(n)}
t₂₈, X₁₃: 1 {O(1)}
t₂₈, X₁₄: 2⋅X₁₄ {O(n)}
t₂₈, X₁₅: 0 {O(1)}
t₂₈, X₁₆: 2⋅X₁₆ {O(n)}
t₂₈, X₁₇: 1 {O(1)}
t₂₈, X₁₈: 2⋅X₁₈ {O(n)}
t₂₈, X₁₉: 2⋅X₀ {O(n)}
t₂₉, X₀: 2⋅X₀ {O(n)}
t₂₉, X₂: 2⋅X₂ {O(n)}
t₂₉, X₄: 2⋅X₄ {O(n)}
t₂₉, X₆: 2⋅X₆ {O(n)}
t₂₉, X₈: 2⋅X₈ {O(n)}
t₂₉, X₁₀: 2⋅X₁₀ {O(n)}
t₂₉, X₁₁: 2⋅X₁₂ {O(n)}
t₂₉, X₁₂: 2⋅X₁₂ {O(n)}
t₂₉, X₁₃: 2 {O(1)}
t₂₉, X₁₄: 2⋅X₁₄ {O(n)}
t₂₉, X₁₅: 0 {O(1)}
t₂₉, X₁₆: 2⋅X₁₆ {O(n)}
t₂₉, X₁₇: 2⋅X₀ {O(n)}
t₂₉, X₁₈: 2⋅X₁₈ {O(n)}
t₂₉, X₁₉: 2⋅X₀ {O(n)}
t₃₀, X₀: 2⋅X₀ {O(n)}
t₃₀, X₂: 2⋅X₂ {O(n)}
t₃₀, X₄: 2⋅X₄ {O(n)}
t₃₀, X₆: 2⋅X₆ {O(n)}
t₃₀, X₈: 2⋅X₈ {O(n)}
t₃₀, X₁₀: 2⋅X₁₀ {O(n)}
t₃₀, X₁₁: 2⋅X₁₂ {O(n)}
t₃₀, X₁₂: 2⋅X₁₂ {O(n)}
t₃₀, X₁₃: 2 {O(1)}
t₃₀, X₁₄: 2⋅X₁₄ {O(n)}
t₃₀, X₁₅: 0 {O(1)}
t₃₀, X₁₆: 2⋅X₁₆ {O(n)}
t₃₀, X₁₇: 2 {O(1)}
t₃₀, X₁₈: 2⋅X₁₈ {O(n)}
t₃₀, X₁₉: 2⋅X₀ {O(n)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₂ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₄ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₆ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₈ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₁₀ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₂ {O(n)}
t₀, X₁₂: X₁₂ {O(n)}
t₀, X₁₃: X₁₄ {O(n)}
t₀, X₁₄: X₁₄ {O(n)}
t₀, X₁₅: X₁₆ {O(n)}
t₀, X₁₆: X₁₆ {O(n)}
t₀, X₁₇: X₁₈ {O(n)}
t₀, X₁₈: X₁₈ {O(n)}
t₀, X₁₉: X₀ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₂ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₄ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₆ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₈ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₂ {O(n)}
t₁, X₁₂: X₁₂ {O(n)}
t₁, X₁₃: X₁₄ {O(n)}
t₁, X₁₄: X₁₄ {O(n)}
t₁, X₁₅: 1 {O(1)}
t₁, X₁₆: X₁₆ {O(n)}
t₁, X₁₇: 1 {O(1)}
t₁, X₁₈: X₁₈ {O(n)}
t₁, X₁₉: X₀ {O(n)}
t₁₈, X₀: 2⋅X₀ {O(n)}
t₁₈, X₂: 2⋅X₂ {O(n)}
t₁₈, X₄: 2⋅X₄ {O(n)}
t₁₈, X₆: 2⋅X₆ {O(n)}
t₁₈, X₈: 2⋅X₈ {O(n)}
t₁₈, X₁₀: 2⋅X₁₀ {O(n)}
t₁₈, X₁₁: 2⋅X₁₂ {O(n)}
t₁₈, X₁₂: 2⋅X₁₂ {O(n)}
t₁₈, X₁₃: 2⋅X₁₄ {O(n)}
t₁₈, X₁₄: 2⋅X₁₄ {O(n)}
t₁₈, X₁₆: 2⋅X₁₆ {O(n)}
t₁₈, X₁₈: 2⋅X₁₈ {O(n)}
t₁₈, X₁₉: 2⋅X₀ {O(n)}
t₁₉, X₀: 2⋅X₀ {O(n)}
t₁₉, X₂: 2⋅X₂ {O(n)}
t₁₉, X₄: 2⋅X₄ {O(n)}
t₁₉, X₆: 2⋅X₆ {O(n)}
t₁₉, X₈: 2⋅X₈ {O(n)}
t₁₉, X₁₀: 2⋅X₁₀ {O(n)}
t₁₉, X₁₁: 2⋅X₁₂ {O(n)}
t₁₉, X₁₂: 2⋅X₁₂ {O(n)}
t₁₉, X₁₃: 2⋅X₁₄ {O(n)}
t₁₉, X₁₄: 2⋅X₁₄ {O(n)}
t₁₉, X₁₆: 2⋅X₁₆ {O(n)}
t₁₉, X₁₈: 2⋅X₁₈ {O(n)}
t₁₉, X₁₉: 2⋅X₀ {O(n)}
t₂₃, X₀: 2⋅X₀ {O(n)}
t₂₃, X₂: 2⋅X₂ {O(n)}
t₂₃, X₄: 2⋅X₄ {O(n)}
t₂₃, X₆: 2⋅X₆ {O(n)}
t₂₃, X₈: 2⋅X₈ {O(n)}
t₂₃, X₁₀: 2⋅X₁₀ {O(n)}
t₂₃, X₁₁: 2⋅X₁₂ {O(n)}
t₂₃, X₁₂: 2⋅X₁₂ {O(n)}
t₂₃, X₁₃: 2⋅X₁₄ {O(n)}
t₂₃, X₁₄: 2⋅X₁₄ {O(n)}
t₂₃, X₁₆: 2⋅X₁₆ {O(n)}
t₂₃, X₁₈: 2⋅X₁₈ {O(n)}
t₂₃, X₁₉: 2⋅X₀ {O(n)}
t₂₀, X₀: 2⋅X₀ {O(n)}
t₂₀, X₂: 2⋅X₂ {O(n)}
t₂₀, X₄: 2⋅X₄ {O(n)}
t₂₀, X₆: 2⋅X₆ {O(n)}
t₂₀, X₈: 2⋅X₈ {O(n)}
t₂₀, X₁₀: 2⋅X₁₀ {O(n)}
t₂₀, X₁₁: 2⋅X₁₂ {O(n)}
t₂₀, X₁₂: 2⋅X₁₂ {O(n)}
t₂₀, X₁₃: 2⋅X₁₄ {O(n)}
t₂₀, X₁₄: 2⋅X₁₄ {O(n)}
t₂₀, X₁₆: 2⋅X₁₆ {O(n)}
t₂₀, X₁₈: 2⋅X₁₈ {O(n)}
t₂₀, X₁₉: 2⋅X₀ {O(n)}
t₂₁, X₀: 2⋅X₀ {O(n)}
t₂₁, X₂: 2⋅X₂ {O(n)}
t₂₁, X₄: 2⋅X₄ {O(n)}
t₂₁, X₆: 2⋅X₆ {O(n)}
t₂₁, X₈: 2⋅X₈ {O(n)}
t₂₁, X₁₀: 2⋅X₁₀ {O(n)}
t₂₁, X₁₁: 2⋅X₁₂ {O(n)}
t₂₁, X₁₂: 2⋅X₁₂ {O(n)}
t₂₁, X₁₃: 2⋅X₁₄ {O(n)}
t₂₁, X₁₄: 2⋅X₁₄ {O(n)}
t₂₁, X₁₆: 2⋅X₁₆ {O(n)}
t₂₁, X₁₈: 2⋅X₁₈ {O(n)}
t₂₁, X₁₉: 2⋅X₀ {O(n)}
t₁₂, X₀: 48⋅X₀ {O(n)}
t₁₂, X₂: 48⋅X₂ {O(n)}
t₁₂, X₄: 48⋅X₄ {O(n)}
t₁₂, X₆: 48⋅X₆ {O(n)}
t₁₂, X₈: 48⋅X₈ {O(n)}
t₁₂, X₁₀: 48⋅X₁₀ {O(n)}
t₁₂, X₁₂: 48⋅X₁₂ {O(n)}
t₁₂, X₁₃: 0 {O(1)}
t₁₂, X₁₄: 48⋅X₁₄ {O(n)}
t₁₂, X₁₆: 48⋅X₁₆ {O(n)}
t₁₂, X₁₇: 0 {O(1)}
t₁₂, X₁₈: 48⋅X₁₈ {O(n)}
t₁₂, X₁₉: 48⋅X₀ {O(n)}
t₁₃, X₀: 48⋅X₀ {O(n)}
t₁₃, X₂: 48⋅X₂ {O(n)}
t₁₃, X₄: 48⋅X₄ {O(n)}
t₁₃, X₆: 48⋅X₆ {O(n)}
t₁₃, X₈: 48⋅X₈ {O(n)}
t₁₃, X₁₀: 48⋅X₁₀ {O(n)}
t₁₃, X₁₂: 48⋅X₁₂ {O(n)}
t₁₃, X₁₃: 0 {O(1)}
t₁₃, X₁₄: 48⋅X₁₄ {O(n)}
t₁₃, X₁₆: 48⋅X₁₆ {O(n)}
t₁₃, X₁₇: 0 {O(1)}
t₁₃, X₁₈: 48⋅X₁₈ {O(n)}
t₁₃, X₁₉: 48⋅X₀ {O(n)}
t₁₄, X₀: 24⋅X₀ {O(n)}
t₁₄, X₂: 24⋅X₂ {O(n)}
t₁₄, X₄: 24⋅X₄ {O(n)}
t₁₄, X₆: 24⋅X₆ {O(n)}
t₁₄, X₈: 24⋅X₈ {O(n)}
t₁₄, X₁₀: 24⋅X₁₀ {O(n)}
t₁₄, X₁₂: 24⋅X₁₂ {O(n)}
t₁₄, X₁₃: 1 {O(1)}
t₁₄, X₁₄: 24⋅X₁₄ {O(n)}
t₁₄, X₁₆: 24⋅X₁₆ {O(n)}
t₁₄, X₁₇: 48⋅X₀ {O(n)}
t₁₄, X₁₈: 24⋅X₁₈ {O(n)}
t₁₄, X₁₉: 24⋅X₀ {O(n)}
t₁₅, X₀: 24⋅X₀ {O(n)}
t₁₅, X₂: 24⋅X₂ {O(n)}
t₁₅, X₄: 24⋅X₄ {O(n)}
t₁₅, X₆: 24⋅X₆ {O(n)}
t₁₅, X₈: 24⋅X₈ {O(n)}
t₁₅, X₁₀: 24⋅X₁₀ {O(n)}
t₁₅, X₁₂: 24⋅X₁₂ {O(n)}
t₁₅, X₁₃: 1 {O(1)}
t₁₅, X₁₄: 24⋅X₁₄ {O(n)}
t₁₅, X₁₆: 24⋅X₁₆ {O(n)}
t₁₅, X₁₇: 1 {O(1)}
t₁₅, X₁₈: 24⋅X₁₈ {O(n)}
t₁₅, X₁₉: 24⋅X₀ {O(n)}
t₁₆, X₀: 24⋅X₀ {O(n)}
t₁₆, X₂: 24⋅X₂ {O(n)}
t₁₆, X₄: 24⋅X₄ {O(n)}
t₁₆, X₆: 24⋅X₆ {O(n)}
t₁₆, X₈: 24⋅X₈ {O(n)}
t₁₆, X₁₀: 24⋅X₁₀ {O(n)}
t₁₆, X₁₂: 24⋅X₁₂ {O(n)}
t₁₆, X₁₃: 2 {O(1)}
t₁₆, X₁₄: 24⋅X₁₄ {O(n)}
t₁₆, X₁₆: 24⋅X₁₆ {O(n)}
t₁₆, X₁₇: 48⋅X₀ {O(n)}
t₁₆, X₁₈: 24⋅X₁₈ {O(n)}
t₁₆, X₁₉: 24⋅X₀ {O(n)}
t₁₇, X₀: 24⋅X₀ {O(n)}
t₁₇, X₂: 24⋅X₂ {O(n)}
t₁₇, X₄: 24⋅X₄ {O(n)}
t₁₇, X₆: 24⋅X₆ {O(n)}
t₁₇, X₈: 24⋅X₈ {O(n)}
t₁₇, X₁₀: 24⋅X₁₀ {O(n)}
t₁₇, X₁₂: 24⋅X₁₂ {O(n)}
t₁₇, X₁₃: 2 {O(1)}
t₁₇, X₁₄: 24⋅X₁₄ {O(n)}
t₁₇, X₁₆: 24⋅X₁₆ {O(n)}
t₁₇, X₁₇: 2 {O(1)}
t₁₇, X₁₈: 24⋅X₁₈ {O(n)}
t₁₇, X₁₉: 24⋅X₀ {O(n)}
t₂, X₀: 24⋅X₀ {O(n)}
t₂, X₂: 24⋅X₂ {O(n)}
t₂, X₄: 24⋅X₄ {O(n)}
t₂, X₆: 24⋅X₆ {O(n)}
t₂, X₈: 24⋅X₈ {O(n)}
t₂, X₁₀: 24⋅X₁₀ {O(n)}
t₂, X₁₂: 24⋅X₁₂ {O(n)}
t₂, X₁₄: 24⋅X₁₄ {O(n)}
t₂, X₁₆: 24⋅X₁₆ {O(n)}
t₂, X₁₈: 24⋅X₁₈ {O(n)}
t₂, X₁₉: 24⋅X₀ {O(n)}
t₃, X₀: 24⋅X₀ {O(n)}
t₃, X₂: 24⋅X₂ {O(n)}
t₃, X₄: 24⋅X₄ {O(n)}
t₃, X₆: 24⋅X₆ {O(n)}
t₃, X₈: 24⋅X₈ {O(n)}
t₃, X₁₀: 24⋅X₁₀ {O(n)}
t₃, X₁₂: 24⋅X₁₂ {O(n)}
t₃, X₁₄: 24⋅X₁₄ {O(n)}
t₃, X₁₆: 24⋅X₁₆ {O(n)}
t₃, X₁₇: 100⋅X₀ {O(n)}
t₃, X₁₈: 24⋅X₁₈ {O(n)}
t₃, X₁₉: 24⋅X₀ {O(n)}
t₄, X₀: 24⋅X₀ {O(n)}
t₄, X₂: 24⋅X₂ {O(n)}
t₄, X₄: 24⋅X₄ {O(n)}
t₄, X₆: 24⋅X₆ {O(n)}
t₄, X₈: 24⋅X₈ {O(n)}
t₄, X₁₀: 24⋅X₁₀ {O(n)}
t₄, X₁₂: 24⋅X₁₂ {O(n)}
t₄, X₁₄: 24⋅X₁₄ {O(n)}
t₄, X₁₆: 24⋅X₁₆ {O(n)}
t₄, X₁₈: 24⋅X₁₈ {O(n)}
t₄, X₁₉: 24⋅X₀ {O(n)}
t₅, X₀: 24⋅X₀ {O(n)}
t₅, X₂: 24⋅X₂ {O(n)}
t₅, X₄: 24⋅X₄ {O(n)}
t₅, X₆: 24⋅X₆ {O(n)}
t₅, X₈: 24⋅X₈ {O(n)}
t₅, X₁₀: 24⋅X₁₀ {O(n)}
t₅, X₁₂: 24⋅X₁₂ {O(n)}
t₅, X₁₄: 24⋅X₁₄ {O(n)}
t₅, X₁₆: 24⋅X₁₆ {O(n)}
t₅, X₁₇: 100⋅X₀ {O(n)}
t₅, X₁₈: 24⋅X₁₈ {O(n)}
t₅, X₁₉: 24⋅X₀ {O(n)}
t₆, X₀: 24⋅X₀ {O(n)}
t₆, X₂: 24⋅X₂ {O(n)}
t₆, X₄: 24⋅X₄ {O(n)}
t₆, X₆: 24⋅X₆ {O(n)}
t₆, X₈: 24⋅X₈ {O(n)}
t₆, X₁₀: 24⋅X₁₀ {O(n)}
t₆, X₁₂: 24⋅X₁₂ {O(n)}
t₆, X₁₄: 24⋅X₁₄ {O(n)}
t₆, X₁₆: 24⋅X₁₆ {O(n)}
t₆, X₁₈: 24⋅X₁₈ {O(n)}
t₆, X₁₉: 24⋅X₀ {O(n)}
t₇, X₀: 24⋅X₀ {O(n)}
t₇, X₂: 24⋅X₂ {O(n)}
t₇, X₄: 24⋅X₄ {O(n)}
t₇, X₆: 24⋅X₆ {O(n)}
t₇, X₈: 24⋅X₈ {O(n)}
t₇, X₁₀: 24⋅X₁₀ {O(n)}
t₇, X₁₂: 24⋅X₁₂ {O(n)}
t₇, X₁₄: 24⋅X₁₄ {O(n)}
t₇, X₁₆: 24⋅X₁₆ {O(n)}
t₇, X₁₇: 300⋅X₀ {O(n)}
t₇, X₁₈: 24⋅X₁₈ {O(n)}
t₇, X₁₉: 24⋅X₀ {O(n)}