Initial Problem

Start: l0
Program_Vars: X₀, X₁
Temp_Vars: C
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁) → l4(X₀, X₁)
t₆: l1(X₀, X₁) → l2(X₀, X₁)
t₄: l1(X₀, X₁) → l3(X₀, X₁) :|: C+1 ≤ 0
t₅: l1(X₀, X₁) → l3(X₀, X₁) :|: 1 ≤ C
t₈: l2(X₀, X₁) → l6(X₀, X₁) :|: X₀+1 ≤ X₁
t₉: l2(X₀, X₁) → l7(X₀, X₁) :|: X₁ ≤ X₀
t₇: l3(X₀, X₁) → l5(X₀+1, X₁)
t₁: l4(X₀, X₁) → l5(0, X₁)
t₃: l5(X₀, X₁) → l1(X₀, X₁) :|: X₀+1 ≤ X₁
t₂: l5(X₀, X₁) → l2(X₀, X₁) :|: X₁ ≤ X₀
t₁₀: l6(X₀, X₁) → l2(X₀+1, X₁)
t₁₁: l7(X₀, X₁) → l8(X₀, X₁)

Preprocessing

Found invariant 0 ≤ X₀ for location l2

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l6

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l7

Found invariant 0 ≤ X₀ for location l5

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l8

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁
Temp_Vars: C
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁) → l4(X₀, X₁)
t₆: l1(X₀, X₁) → l2(X₀, X₁) :|: 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₄: l1(X₀, X₁) → l3(X₀, X₁) :|: C+1 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₅: l1(X₀, X₁) → l3(X₀, X₁) :|: 1 ≤ C ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₈: l2(X₀, X₁) → l6(X₀, X₁) :|: X₀+1 ≤ X₁ ∧ 0 ≤ X₀
t₉: l2(X₀, X₁) → l7(X₀, X₁) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀
t₇: l3(X₀, X₁) → l5(X₀+1, X₁) :|: 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁: l4(X₀, X₁) → l5(0, X₁)
t₃: l5(X₀, X₁) → l1(X₀, X₁) :|: X₀+1 ≤ X₁ ∧ 0 ≤ X₀
t₂: l5(X₀, X₁) → l2(X₀, X₁) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀
t₁₀: l6(X₀, X₁) → l2(X₀+1, X₁) :|: 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₁: l7(X₀, X₁) → l8(X₀, X₁) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀

Analysing control-flow refined program

Found invariant 0 ≤ X₀ for location l2

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___4

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l6

Found invariant 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___2

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l7

Found invariant X₀ ≤ 0 ∧ 0 ≤ X₀ for location l5

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l8

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___5

Found invariant 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___1

Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___3

Found invariant 0 ≤ X₀ for location l2

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___4

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l6

Found invariant 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___2

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l7

Found invariant X₀ ≤ 0 ∧ 0 ≤ X₀ for location l5

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l8

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___5

Found invariant 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___1

Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___3

Time-Bound by TWN-Loops:

TWN-Loops: t₁₈₃ 8⋅X₁+16 {O(n)}

TWN-Loops:

entry: t₁₈₄: n_l3___4(X₀, X₁) → n_l5___3(X₀+1, X₁) :|: 1 ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
results in twn-loop: twn:Inv: [1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀] , (X₀,X₁) -> (X₀+1,X₁) :|: 0 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∨ 0 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁
order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁

Termination: true
Formula:

0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 < X₀ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < X₀ ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 < X₀ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < X₀ ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₁ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀

Stabilization-Threshold for: 1+X₀ ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 1+X₀
M: 0
N: 1
Bound: 2⋅X₀+4 {O(n)}
Stabilization-Threshold for: X₀ ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}

relevant size-bounds w.r.t. t₁₈₄:
X₀: 1 {O(1)}
X₁: 2⋅X₁ {O(n)}
Runtime-bound of t₁₈₄: 1 {O(1)}
Results in: 8⋅X₁+16 {O(n)}

8⋅X₁+16 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₁₈₅ 8⋅X₁+16 {O(n)}

relevant size-bounds w.r.t. t₁₈₄:
X₀: 1 {O(1)}
X₁: 2⋅X₁ {O(n)}
Runtime-bound of t₁₈₄: 1 {O(1)}
Results in: 8⋅X₁+16 {O(n)}

8⋅X₁+16 {O(n)}

knowledge_propagation leads to new time bound 8⋅X₁+16 {O(n)} for transition t₁₇₉: n_l1___2(X₀, X₁) → n_l3___1(X₀, X₁) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₁+16 {O(n)} for transition t₁₈₀: n_l1___2(X₀, X₁) → n_l3___1(X₀, X₁) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀

CFR: Improvement to new bound with the following program:

new bound:

32⋅X₁+64 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l2, l4, l5, l6, l7, l8, n_l1___2, n_l1___5, n_l3___1, n_l3___4, n_l5___3
Transitions:
t₀: l0(X₀, X₁) → l4(X₀, X₁)
t₈: l2(X₀, X₁) → l6(X₀, X₁) :|: X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀
t₉: l2(X₀, X₁) → l7(X₀, X₁) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀
t₁: l4(X₀, X₁) → l5(0, X₁)
t₂: l5(X₀, X₁) → l2(X₀, X₁) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₈₆: l5(X₀, X₁) → n_l1___5(X₀, X₁) :|: 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₀: l6(X₀, X₁) → l2(X₀+1, X₁) :|: 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₁: l7(X₀, X₁) → l8(X₀, X₁) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀
t₁₉₄: n_l1___2(X₀, X₁) → l2(X₀, X₁) :|: 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₇₉: n_l1___2(X₀, X₁) → n_l3___1(X₀, X₁) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₈₀: n_l1___2(X₀, X₁) → n_l3___1(X₀, X₁) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₉₅: n_l1___5(X₀, X₁) → l2(X₀, X₁) :|: 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₈₁: n_l1___5(X₀, X₁) → n_l3___4(X₀, X₁) :|: 1 ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₈₂: n_l1___5(X₀, X₁) → n_l3___4(X₀, X₁) :|: 1 ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₈₃: n_l3___1(X₀, X₁) → n_l5___3(X₀+1, X₁) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₈₄: n_l3___4(X₀, X₁) → n_l5___3(X₀+1, X₁) :|: 1 ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₉₆: n_l5___3(X₀, X₁) → l2(X₀, X₁) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₈₅: n_l5___3(X₀, X₁) → n_l1___2(X₀, X₁) :|: 0 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

Found invariant 0 ≤ X₀ for location l2

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___4

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l6

Found invariant 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___2

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l7

Found invariant X₀ ≤ 0 ∧ 0 ≤ X₀ for location l5

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l8

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___5

Found invariant 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___1

Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___3

Found invariant 0 ≤ X₀ for location l2

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___4

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l6

Found invariant 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___2

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l7

Found invariant X₀ ≤ 0 ∧ 0 ≤ X₀ for location l5

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l8

Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___5

Found invariant 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___1

Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___3

Time-Bound by TWN-Loops:

TWN-Loops: t₈ 6⋅X₁+8 {O(n)}

TWN-Loops:

entry: t₁₉₅: n_l1___5(X₀, X₁) → l2(X₀, X₁) :|: 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
results in twn-loop: twn:Inv: [0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀] , (X₀,X₁) -> (X₀+1,X₁) :|: X₀+1 ≤ X₁
entry: t₁₉₄: n_l1___2(X₀, X₁) → l2(X₀, X₁) :|: 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀] , (X₀,X₁) -> (X₀+1,X₁) :|: X₀+1 ≤ X₁
order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁

Termination: true
Formula:

1 < 0
∨ X₀+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+1 ≤ X₁ ∧ X₁ ≤ X₀+1

Stabilization-Threshold for: X₀+1 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}

relevant size-bounds w.r.t. t₁₉₅:
X₁: X₁ {O(n)}
Runtime-bound of t₁₉₅: 1 {O(1)}
Results in: 2⋅X₁+4 {O(n)}

order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁

Termination: true
Formula:

1 < 0
∨ X₀+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀+1 ≤ X₁ ∧ X₁ ≤ X₀+1

Stabilization-Threshold for: X₀+1 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}

relevant size-bounds w.r.t. t₁₉₄:
X₁: 2⋅X₁ {O(n)}
Runtime-bound of t₁₉₄: 1 {O(1)}
Results in: 4⋅X₁+4 {O(n)}

6⋅X₁+8 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₁₀ 6⋅X₁+8 {O(n)}

relevant size-bounds w.r.t. t₁₉₅:
X₁: X₁ {O(n)}
Runtime-bound of t₁₉₅: 1 {O(1)}
Results in: 2⋅X₁+4 {O(n)}

relevant size-bounds w.r.t. t₁₉₄:
X₁: 2⋅X₁ {O(n)}
Runtime-bound of t₁₉₄: 1 {O(1)}
Results in: 4⋅X₁+4 {O(n)}

6⋅X₁+8 {O(n)}

All Bounds

Timebounds

Overall timebound:44⋅X₁+92 {O(n)}
t₀: 1 {O(1)}
t₈: 6⋅X₁+8 {O(n)}
t₉: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₁₈₆: 1 {O(1)}
t₁₀: 6⋅X₁+8 {O(n)}
t₁₁: 1 {O(1)}
t₁₇₉: 8⋅X₁+16 {O(n)}
t₁₈₀: 8⋅X₁+16 {O(n)}
t₁₉₄: 1 {O(1)}
t₁₈₁: 1 {O(1)}
t₁₈₂: 1 {O(1)}
t₁₉₅: 1 {O(1)}
t₁₈₃: 8⋅X₁+16 {O(n)}
t₁₈₄: 1 {O(1)}
t₁₈₅: 8⋅X₁+16 {O(n)}
t₁₉₆: 1 {O(1)}

Costbounds

Overall costbound: 44⋅X₁+92 {O(n)}
t₀: 1 {O(1)}
t₈: 6⋅X₁+8 {O(n)}
t₉: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₁₈₆: 1 {O(1)}
t₁₀: 6⋅X₁+8 {O(n)}
t₁₁: 1 {O(1)}
t₁₇₉: 8⋅X₁+16 {O(n)}
t₁₈₀: 8⋅X₁+16 {O(n)}
t₁₉₄: 1 {O(1)}
t₁₈₁: 1 {O(1)}
t₁₈₂: 1 {O(1)}
t₁₉₅: 1 {O(1)}
t₁₈₃: 8⋅X₁+16 {O(n)}
t₁₈₄: 1 {O(1)}
t₁₈₅: 8⋅X₁+16 {O(n)}
t₁₉₆: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₈, X₀: 14⋅X₁+25 {O(n)}
t₈, X₁: 3⋅X₁ {O(n)}
t₉, X₀: 22⋅X₁+43 {O(n)}
t₉, X₁: 8⋅X₁ {O(n)}
t₁, X₀: 0 {O(1)}
t₁, X₁: X₁ {O(n)}
t₂, X₀: 0 {O(1)}
t₂, X₁: X₁ {O(n)}
t₁₈₆, X₀: 0 {O(1)}
t₁₈₆, X₁: X₁ {O(n)}
t₁₀, X₀: 14⋅X₁+25 {O(n)}
t₁₀, X₁: 3⋅X₁ {O(n)}
t₁₁, X₀: 22⋅X₁+43 {O(n)}
t₁₁, X₁: 8⋅X₁ {O(n)}
t₁₇₉, X₀: 8⋅X₁+17 {O(n)}
t₁₇₉, X₁: 2⋅X₁ {O(n)}
t₁₈₀, X₀: 8⋅X₁+17 {O(n)}
t₁₈₀, X₁: 2⋅X₁ {O(n)}
t₁₉₄, X₀: 8⋅X₁+17 {O(n)}
t₁₉₄, X₁: 2⋅X₁ {O(n)}
t₁₈₁, X₀: 0 {O(1)}
t₁₈₁, X₁: X₁ {O(n)}
t₁₈₂, X₀: 0 {O(1)}
t₁₈₂, X₁: X₁ {O(n)}
t₁₉₅, X₀: 0 {O(1)}
t₁₉₅, X₁: X₁ {O(n)}
t₁₈₃, X₀: 8⋅X₁+17 {O(n)}
t₁₈₃, X₁: 2⋅X₁ {O(n)}
t₁₈₄, X₀: 1 {O(1)}
t₁₈₄, X₁: 2⋅X₁ {O(n)}
t₁₈₅, X₀: 8⋅X₁+17 {O(n)}
t₁₈₅, X₁: 2⋅X₁ {O(n)}
t₁₉₆, X₀: 8⋅X₁+18 {O(n)}
t₁₉₆, X₁: 4⋅X₁ {O(n)}