Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄
Temp_Vars: A1, B1, C1, D1, E1, F1, G1, H1, I1, J1, K1, L1, M1, N1, O1, P1, Q1, Z
Locations: l0, l1, l2, l3, l4
Transitions:
t₁₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l1(A1, 2, B1, C1, B1, X₅, X₆, X₇, X₈, X₉, A1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, Z, X₂₁, B1, D1, X₂₄) :|: 2 ≤ A1
t₁₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l4(B1, D1, C1, K1, H1, X₅, X₆, P1, X₈, O1, A1, 0, L1, M1, N1, Q1, F1, X₁₇, X₁₈, X₁₉, Z, E1, G1, X₂₃, X₂₄) :|: I1 ≤ 0 ∧ A1 ≤ 0 ∧ J1 ≤ 0
t₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l1(X₀, 1+X₁, X₃, Z, X₃, A1, X₁, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) :|: X₁+1 ≤ X₀ ∧ 0 ≤ X₁
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l2(A1, C1, B1, H1, G1, X₅, X₆, X₂, X₁₇, 0, Z, X₂, X₂, 0, X₂, X₂, E1, X₁₇, X₁₈, X₁₉, X₂₀, D1, F1, X₂₃, X₁₇+1) :|: Z ≤ K1 ∧ 2 ≤ L1 ∧ L1 ≤ C1 ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 ≤ C1 ∧ 2 ≤ Z ∧ X₂+1 ≤ 0
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l2(A1, C1, B1, H1, G1, X₅, X₆, X₂, X₁₇, 0, Z, X₂, X₂, 0, X₂, X₂, E1, X₁₇, X₁₈, X₁₉, X₂₀, D1, F1, X₂₃, X₁₇+1) :|: Z ≤ K1 ∧ 2 ≤ L1 ∧ L1 ≤ C1 ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 ≤ C1 ∧ 2 ≤ Z
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l2(A1, C1, B1, H1, G1, X₅, X₆, X₂, X₁₇, 0, Z, X₂, X₂, 0, X₂, X₂, E1, X₁₇, X₁₈, X₁₉, X₂₀, D1, F1, X₂₃, X₁₇+1) :|: Z ≤ K1 ∧ 2 ≤ L1 ∧ L1 ≤ C1 ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ X₂+1 ≤ 0 ∧ 0 ≤ C1 ∧ 2 ≤ Z
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l2(A1, C1, B1, H1, G1, X₅, X₆, X₂, X₁₇, 0, Z, X₂, X₂, 0, X₂, X₂, E1, X₁₇, X₁₈, X₁₉, X₂₀, D1, F1, X₂₃, X₁₇+1) :|: Z ≤ K1 ∧ 2 ≤ L1 ∧ L1 ≤ C1 ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ X₂+1 ≤ 0 ∧ 0 ≤ C1 ∧ 2 ≤ Z ∧ 1 ≤ X₂
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0, Z, A1, A1, 0, A1, X₇, X₁₆, X₁₇-1, B1, X₁₇-1, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) :|: X₇+1 ≤ C1 ∧ 0 ≤ X₁₇ ∧ C1+1 ≤ A1 ∧ 2 ≤ Z ∧ X₉ ≤ 0 ∧ 0 ≤ X₉
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0, Z, A1, A1, 0, A1, X₇, X₁₆, X₁₇-1, B1, X₁₇-1, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) :|: X₇+1 ≤ C1 ∧ 0 ≤ X₁₇ ∧ A1+1 ≤ C1 ∧ 2 ≤ Z ∧ X₉ ≤ 0 ∧ 0 ≤ X₉
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0, Z, A1, A1, 0, A1, X₇, X₁₆, X₁₇-1, B1, X₁₇-1, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) :|: C1+1 ≤ X₇ ∧ 0 ≤ X₁₇ ∧ C1+1 ≤ A1 ∧ 2 ≤ Z ∧ X₉ ≤ 0 ∧ 0 ≤ X₉
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0, Z, A1, A1, 0, A1, X₇, X₁₆, X₁₇-1, B1, X₁₇-1, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) :|: C1+1 ≤ X₇ ∧ 0 ≤ X₁₇ ∧ A1+1 ≤ C1 ∧ 2 ≤ Z ∧ X₉ ≤ 0 ∧ 0 ≤ X₉
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, F1, X₈, E1, Z, X₁₁, B1, C1, D1, G1, A1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) :|: 2 ≤ Z ∧ 0 ≤ X₁₇ ∧ X₉ ≤ X₇ ∧ X₇ ≤ X₉
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0, Z, A1, A1, 0, A1, X₇, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) :|: X₇+1 ≤ B1 ∧ 0 ≤ X₈ ∧ B1+1 ≤ A1 ∧ 2 ≤ Z ∧ X₉ ≤ 0 ∧ 0 ≤ X₉
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0, Z, A1, A1, 0, A1, X₇, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) :|: X₇+1 ≤ B1 ∧ 0 ≤ X₈ ∧ A1+1 ≤ B1 ∧ 2 ≤ Z ∧ X₉ ≤ 0 ∧ 0 ≤ X₉
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0, Z, A1, A1, 0, A1, X₇, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) :|: B1+1 ≤ X₇ ∧ 0 ≤ X₈ ∧ B1+1 ≤ A1 ∧ 2 ≤ Z ∧ X₉ ≤ 0 ∧ 0 ≤ X₉
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0, Z, A1, A1, 0, A1, X₇, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) :|: B1+1 ≤ X₇ ∧ 0 ≤ X₈ ∧ A1+1 ≤ B1 ∧ 2 ≤ Z ∧ X₉ ≤ 0 ∧ 0 ≤ X₉
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, G1, X₈, F1, Z, B1, C1, D1, E1, H1, A1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) :|: 0 ≤ X₈ ∧ B1+1 ≤ 0 ∧ 2 ≤ Z ∧ X₉ ≤ X₇ ∧ X₇ ≤ X₉
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, G1, X₈, F1, Z, B1, C1, D1, E1, H1, A1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄) :|: 0 ≤ X₈ ∧ 1 ≤ B1 ∧ 2 ≤ Z ∧ X₉ ≤ X₇ ∧ X₇ ≤ X₉
Cut unreachable locations [l3] from the program graph
Cut unsatisfiable transition t₁₄: l1→l2
Cut unsatisfiable transition t₁₇: l1→l2
Eliminate variables {G1,M1,N1,Q1,X₄,X₅,X₆,X₈,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄} that do not contribute to the problem
Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₁ for location l2
Found invariant X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₇, X₉, X₁₇
Temp_Vars: A1, B1, C1, D1, E1, F1, H1, I1, J1, K1, L1, O1, P1, Z
Locations: l0, l1, l2, l4
Transitions:
t₃₄: l0(X₀, X₁, X₂, X₃, X₇, X₉, X₁₇) → l1(A1, 2, B1, C1, X₇, X₉, X₁₇) :|: 2 ≤ A1
t₃₃: l0(X₀, X₁, X₂, X₃, X₇, X₉, X₁₇) → l4(B1, D1, C1, K1, P1, O1, X₁₇) :|: I1 ≤ 0 ∧ A1 ≤ 0 ∧ J1 ≤ 0
t₃₅: l1(X₀, X₁, X₂, X₃, X₇, X₉, X₁₇) → l1(X₀, 1+X₁, X₃, Z, X₇, X₉, X₁₇) :|: X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₆: l1(X₀, X₁, X₂, X₃, X₇, X₉, X₁₇) → l2(A1, C1, B1, H1, X₂, 0, X₁₇) :|: Z ≤ K1 ∧ 2 ≤ L1 ∧ L1 ≤ C1 ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 ≤ C1 ∧ 2 ≤ Z ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₇: l1(X₀, X₁, X₂, X₃, X₇, X₉, X₁₇) → l2(A1, C1, B1, H1, X₂, 0, X₁₇) :|: Z ≤ K1 ∧ 2 ≤ L1 ∧ L1 ≤ C1 ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ X₂+1 ≤ 0 ∧ 0 ≤ C1 ∧ 2 ≤ Z ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₈: l2(X₀, X₁, X₂, X₃, X₇, X₉, X₁₇) → l2(X₀, X₁, X₂, X₃, X₇, 0, X₁₇-1) :|: X₇+1 ≤ C1 ∧ 0 ≤ X₁₇ ∧ C1+1 ≤ A1 ∧ 2 ≤ Z ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₁
t₃₉: l2(X₀, X₁, X₂, X₃, X₇, X₉, X₁₇) → l2(X₀, X₁, X₂, X₃, X₇, 0, X₁₇-1) :|: X₇+1 ≤ C1 ∧ 0 ≤ X₁₇ ∧ A1+1 ≤ C1 ∧ 2 ≤ Z ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₁
t₄₀: l2(X₀, X₁, X₂, X₃, X₇, X₉, X₁₇) → l2(X₀, X₁, X₂, X₃, X₇, 0, X₁₇-1) :|: C1+1 ≤ X₇ ∧ 0 ≤ X₁₇ ∧ C1+1 ≤ A1 ∧ 2 ≤ Z ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₁
t₄₁: l2(X₀, X₁, X₂, X₃, X₇, X₉, X₁₇) → l2(X₀, X₁, X₂, X₃, X₇, 0, X₁₇-1) :|: C1+1 ≤ X₇ ∧ 0 ≤ X₁₇ ∧ A1+1 ≤ C1 ∧ 2 ≤ Z ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₁
t₄₂: l2(X₀, X₁, X₂, X₃, X₇, X₉, X₁₇) → l4(X₀, X₁, X₂, X₃, F1, E1, X₁₇) :|: 2 ≤ Z ∧ 0 ≤ X₁₇ ∧ X₉ ≤ X₇ ∧ X₇ ≤ X₉ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₁
Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₁ for location l2
Found invariant X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₁ for location l2
Found invariant X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Found invariant X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___1
Cut unsatisfiable transition t₄₂: l2→l4
Cut unsatisfiable transition t₅₁₃: n_l2___1→l4
Cut unsatisfiable transition t₅₁₄: n_l2___2→l4
Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₁ for location l2
Found invariant X₉ ≤ 0 ∧ 1+X₇+X₉ ≤ 0 ∧ X₉ ≤ 1+X₁₇ ∧ 2+X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 1+X₇ ≤ X₉ ∧ 0 ≤ 1+X₁₇+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₁₇ ∧ 3+X₇ ≤ X₁ ∧ 0 ≤ 1+X₁₇ ∧ 1 ≤ X₁+X₁₇ ∧ 2 ≤ X₁ for location n_l2___1
Found invariant X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ X₉ ≤ 1+X₁₇ ∧ 2+X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 0 ≤ 1+X₁₇+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₇ ∧ 0 ≤ X₁₇+X₇ ∧ 3 ≤ X₁+X₇ ∧ 0 ≤ 1+X₁₇ ∧ 1 ≤ X₁+X₁₇ ∧ 2 ≤ X₁ for location n_l2___2
Found invariant X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Overall timebound:inf {Infinity}
t₃₃: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: inf {Infinity}
t₃₆: 1 {O(1)}
t₃₇: 1 {O(1)}
t₃₈: inf {Infinity}
t₃₉: inf {Infinity}
t₄₀: inf {Infinity}
t₄₁: inf {Infinity}
t₄₂: 1 {O(1)}
Overall costbound: inf {Infinity}
t₃₃: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: inf {Infinity}
t₃₆: 1 {O(1)}
t₃₇: 1 {O(1)}
t₃₈: inf {Infinity}
t₃₉: inf {Infinity}
t₄₀: inf {Infinity}
t₄₁: inf {Infinity}
t₄₂: 1 {O(1)}
t₃₃, X₁₇: X₁₇ {O(n)}
t₃₄, X₁: 2 {O(1)}
t₃₄, X₇: X₇ {O(n)}
t₃₄, X₉: X₉ {O(n)}
t₃₄, X₁₇: X₁₇ {O(n)}
t₃₅, X₇: X₇ {O(n)}
t₃₅, X₉: X₉ {O(n)}
t₃₅, X₁₇: X₁₇ {O(n)}
t₃₆, X₉: 0 {O(1)}
t₃₆, X₁₇: 2⋅X₁₇ {O(n)}
t₃₇, X₉: 0 {O(1)}
t₃₇, X₁₇: 2⋅X₁₇ {O(n)}
t₃₈, X₉: 0 {O(1)}
t₃₈, X₁₇: 16⋅X₁₇+1 {O(n)}
t₃₉, X₉: 0 {O(1)}
t₃₉, X₁₇: 16⋅X₁₇+1 {O(n)}
t₄₀, X₉: 0 {O(1)}
t₄₀, X₁₇: 16⋅X₁₇+1 {O(n)}
t₄₁, X₉: 0 {O(1)}
t₄₁, X₁₇: 16⋅X₁₇+1 {O(n)}
t₄₂, X₁₇: 64⋅X₁₇+4 {O(n)}