Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆
Temp_Vars: B1, C1, D1, E1, F1, G1, H1, I1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₄₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₄₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₃
t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂+1, X₃, B1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₃₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₃₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₂ ≤ X₀
t₃₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂ ∧ X₆+1 ≤ 0
t₃₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂ ∧ 1 ≤ X₆
t₃₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₃
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l14(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆+B1, B1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, B1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₅ ≤ 3
t₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 4 ≤ X₅
t₁₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1-C1, D1, E1, F1, G1, H1, I1, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₈ ≤ X₉ ∧ D1+X₁₁+1 ≤ E1
t₁₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1-C1, D1, E1, F1, G1, H1, I1, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₈ ≤ X₉ ∧ 1+E1 ≤ D1+X₁₁
t₂₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, C1, C1+X₁₁, D1, X₂₀, X₂₁, X₂₂, E1, F1, G1, H1) :|: 1+X₈ ≤ X₉
t₁₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₈
t₁₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, C1, D1, E1, F1) :|: 0 ≤ X₂₀
t₂₁: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, X₁₇, X₁₈, -X₁₉, X₂₀, X₂₁, X₂₂, C1, D1, E1, F1) :|: X₂₀+1 ≤ 0
t₂₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁ ≤ X₃
t₃₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₁
t₂₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₀
t₂₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₁
t₃₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₁
t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁ ≤ X₂
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₀
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₁
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, D1, B1, C1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀ ∧ X₅ ≤ 4
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, G1, B1, C1, D1, D1+C1, E1, F1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ E1+C1+1 ≤ F1
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, G1, B1, C1, D1, D1+C1, E1, F1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1+F1 ≤ E1+C1
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, F1, B1, C1, D1, E1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ D1+C1+1 ≤ E1
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, F1, B1, C1, D1, E1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1+E1 ≤ D1+C1
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, B1, C1, D1, D1+C1, E1, E1+C1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀ ∧ 5 ≤ X₅
t₃₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₃
t₂₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₂₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₅ ≤ 50
t₃₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 51 ≤ X₅
t₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₂ ≤ X₀
t₃₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂

Preprocessing

Cut unsatisfiable transition t₃: l11→l11

Cut unsatisfiable transition t₂₅: l5→l5

Eliminate variables {H1,I1,X₄,X₇,X₁₀,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆} that do not contribute to the problem

Found invariant 1+X₀ ≤ X₂ for location l11

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l15

Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l12

Found invariant 1 ≤ 0 for location l17

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1+X₀ ≤ X₂ for location l13

Found invariant 1+X₀ ≤ X₂ for location l8

Found invariant X₂ ≤ X₀ for location l10

Found invariant 1 ≤ 0 for location l16

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l9

Found invariant 1 ≤ 0 for location l3

Found invariant 1 ≤ 0 for location l14

Cut unsatisfiable transition t₉₈: l12→l14

Cut unsatisfiable transition t₉₉: l12→l15

Cut unsatisfiable transition t₁₀₀: l12→l15

Cut unsatisfiable transition t₁₀₂: l14→l14

Cut unsatisfiable transition t₁₀₃: l14→l12

Cut unsatisfiable transition t₁₀₄: l15→l9

Cut unsatisfiable transition t₁₀₅: l15→l9

Cut unsatisfiable transition t₁₀₆: l16→l6

Cut unsatisfiable transition t₁₀₇: l16→l17

Cut unsatisfiable transition t₁₀₈: l16→l17

Cut unsatisfiable transition t₁₀₉: l16→l4

Cut unsatisfiable transition t₁₁₀: l17→l4

Cut unsatisfiable transition t₁₁₁: l17→l4

Cut unsatisfiable transition t₁₁₂: l2→l2

Cut unsatisfiable transition t₁₁₃: l2→l3

Cut unsatisfiable transition t₁₁₄: l3→l3

Cut unsatisfiable transition t₁₁₅: l3→l5

Cut unsatisfiable transition t₁₁₆: l4→l4

Cut unsatisfiable transition t₁₁₇: l4→l2

Cut unsatisfiable transition t₁₁₈: l5→l6

Cut unsatisfiable transition t₁₁₉: l6→l6

Cut unsatisfiable transition t₁₂₀: l6→l16

Cut unsatisfiable transition t₁₂₁: l6→l16

Cut unsatisfiable transition t₁₂₂: l6→l16

Cut unsatisfiable transition t₁₂₃: l6→l16

Cut unsatisfiable transition t₁₂₄: l6→l16

Cut unsatisfiable transition t₁₂₅: l6→l9

Cut unsatisfiable transition t₁₂₆: l7→l7

Cut unsatisfiable transition t₁₂₇: l7→l8

Cut unsatisfiable transition t₁₃₀: l9→l6

Cut unsatisfiable transition t₁₃₁: l9→l7

Cut unreachable locations [l14; l15; l16; l17; l2; l3; l4; l5; l6; l7; l9] from the program graph

Eliminate variables {X₁,X₈,X₉,X₁₁,X₂₀} that do not contribute to the problem

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₂, X₃, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l8
Transitions:
t₂₃₆: l0(X₀, X₂, X₃, X₅, X₆) → l1(X₀, X₂, X₃, X₅, X₆)
t₂₃₇: l1(X₀, X₂, X₃, X₅, X₆) → l10(X₀, X₂, X₃, X₅, X₆) :|: X₂ ≤ X₀
t₂₃₈: l1(X₀, X₂, X₃, X₅, X₆) → l11(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂
t₂₄₀: l10(X₀, X₂, X₃, X₅, X₆) → l1(X₀, X₂+1, X₃, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
t₂₃₉: l10(X₀, X₂, X₃, X₅, X₆) → l10(X₀, X₂, X₃+1, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₂ ≤ X₀
t₂₄₁: l11(X₀, X₂, X₃, X₅, X₆) → l8(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₂₄₂: l12(X₀, X₂, X₃, X₅, X₆) → l13(X₀, X₂, X₃, X₅, 0) :|: X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂
t₂₄₃: l8(X₀, X₂, X₃, X₅, X₆) → l12(X₀, X₂, X₃, X₅, 0) :|: X₅ ≤ 50 ∧ 1+X₀ ≤ X₂
t₂₄₄: l8(X₀, X₂, X₃, X₅, X₆) → l13(X₀, X₂, X₃, X₅, X₆) :|: 51 ≤ X₅ ∧ 1+X₀ ≤ X₂

Analysing control-flow refined program

Found invariant 1+X₀ ≤ X₂ for location l11

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ for location n_l10___2

Found invariant 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location n_l10___1

Found invariant X₂ ≤ X₀ for location n_l10___4

Found invariant X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ for location n_l1___3

Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l12

Found invariant 1+X₀ ≤ X₂ for location l13

Found invariant 1+X₀ ≤ X₂ for location l8

Found invariant 1+X₀ ≤ X₂ for location l11

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ for location n_l10___2

Found invariant 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location n_l10___1

Found invariant X₂ ≤ X₀ for location n_l10___4

Found invariant X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ for location n_l1___3

Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l12

Found invariant 1+X₀ ≤ X₂ for location l13

Found invariant 1+X₀ ≤ X₂ for location l8

Time-Bound by TWN-Loops:

TWN-Loops: t₃₂₂ 4⋅X₀+4⋅X₃+13 {O(n)}

TWN-Loops:

entry: t₃₂₄: n_l10___4(X₀, X₂, X₃, X₅, X₆) → n_l10___2(X₀, X₂, X₃+1, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀
results in twn-loop: twn:Inv: [X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀] , (X₀,X₂,X₃,X₅,X₆) -> (X₀,X₂,X₃+1,X₅,X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀
order: [X₀; X₂; X₃]
closed-form:
X₀: X₀
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1

Termination: true
Formula:

X₂ < X₀ ∧ 1 < 0
∨ X₂ < X₀ ∧ 1 < 0 ∧ X₃ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃
∨ X₂ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₂ < X₀ ∧ X₃ < X₀ ∧ X₃ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃
∨ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0
∨ X₂ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0 ∧ X₃ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₃ < X₀ ∧ X₃ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃

Stabilization-Threshold for: X₃ ≤ X₀
alphas_abs: X₀+X₃
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₃+2 {O(n)}
Stabilization-Threshold for: X₃ ≤ 1+X₀
alphas_abs: 1+X₀+X₃
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₃+4 {O(n)}

relevant size-bounds w.r.t. t₃₂₄:
X₀: X₀ {O(n)}
X₃: X₃+1 {O(n)}
Runtime-bound of t₃₂₄: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₃+13 {O(n)}

4⋅X₀+4⋅X₃+13 {O(n)}

Found invariant 1+X₀ ≤ X₂ for location l11

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ for location n_l10___2

Found invariant 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location n_l10___1

Found invariant X₂ ≤ X₀ for location n_l10___4

Found invariant X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ for location n_l1___3

Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l12

Found invariant 1+X₀ ≤ X₂ for location l13

Found invariant 1+X₀ ≤ X₂ for location l8

Found invariant 1+X₀ ≤ X₂ for location l11

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ for location n_l10___2

Found invariant X₃ ≤ 1+X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location n_l10___1

Found invariant X₂ ≤ X₀ for location n_l10___4

Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ for location n_l1___3

Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l12

Found invariant 1+X₀ ≤ X₂ for location l13

Found invariant 1+X₀ ≤ X₂ for location l8

Time-Bound by TWN-Loops:

TWN-Loops: t₃₂₁ 12⋅X₀+12⋅X₂+30 {O(n)}

TWN-Loops:

entry: t₃₂₅: n_l10___4(X₀, X₂, X₃, X₅, X₆) → n_l1___3(X₀, X₂+1, X₃, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
results in twn-loop: twn:Inv: [X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀] , (X₀,X₂,X₃,X₅,X₆) -> (X₀,X₂+1,X₃,X₅,X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃
entry: t₃₂₃: n_l10___2(X₀, X₂, X₃, X₅, X₆) → n_l1___3(X₀, X₂+1, X₃, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀
results in twn-loop: twn:Inv: [X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀] , (X₀,X₂,X₃,X₅,X₆) -> (X₀,X₂+1,X₃,X₅,X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃
order: [X₀; X₂; X₃]
closed-form:
X₀: X₀
X₂: X₂ + [[n != 0]] * n^1
X₃: X₃

Termination: true
Formula:

1+X₀ < X₃ ∧ 1 < 0
∨ 1+X₀ < X₃ ∧ 1 < 0 ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ < X₃ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1+X₀ < X₃ ∧ X₂ < X₀ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₃ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0
∨ 1+X₀ < X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0 ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ < X₀ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂

Stabilization-Threshold for: X₂ ≤ X₀
alphas_abs: X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+2 {O(n)}
Stabilization-Threshold for: X₂ ≤ 1+X₀
alphas_abs: 1+X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}

relevant size-bounds w.r.t. t₃₂₅:
X₀: X₀ {O(n)}
X₂: X₂+1 {O(n)}
Runtime-bound of t₃₂₅: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₂+13 {O(n)}

order: [X₀; X₂; X₃]
closed-form:
X₀: X₀
X₂: X₂ + [[n != 0]] * n^1
X₃: X₃

Termination: true
Formula:

1+X₀ < X₃ ∧ 1 < 0
∨ 1+X₀ < X₃ ∧ 1 < 0 ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ < X₃ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1+X₀ < X₃ ∧ X₂ < X₀ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₃ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0
∨ 1+X₀ < X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0 ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ < X₀ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂

Stabilization-Threshold for: X₂ ≤ X₀
alphas_abs: X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+2 {O(n)}
Stabilization-Threshold for: X₂ ≤ 1+X₀
alphas_abs: 1+X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}

relevant size-bounds w.r.t. t₃₂₃:
X₀: 2⋅X₀ {O(n)}
X₂: 2⋅X₂+2 {O(n)}
Runtime-bound of t₃₂₃: 1 {O(1)}
Results in: 8⋅X₀+8⋅X₂+17 {O(n)}

12⋅X₀+12⋅X₂+30 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₃₂₆ 12⋅X₀+12⋅X₂+30 {O(n)}

relevant size-bounds w.r.t. t₃₂₅:
X₀: X₀ {O(n)}
X₂: X₂+1 {O(n)}
Runtime-bound of t₃₂₅: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₂+13 {O(n)}

relevant size-bounds w.r.t. t₃₂₃:
X₀: 2⋅X₀ {O(n)}
X₂: 2⋅X₂+2 {O(n)}
Runtime-bound of t₃₂₃: 1 {O(1)}
Results in: 8⋅X₀+8⋅X₂+17 {O(n)}

12⋅X₀+12⋅X₂+30 {O(n)}

CFR: Improvement to new bound with the following program:

new bound:

24⋅X₂+28⋅X₀+4⋅X₃+73 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₂, X₃, X₅, X₆
Temp_Vars:
Locations: l0, l1, l11, l12, l13, l8, n_l10___1, n_l10___2, n_l10___4, n_l1___3
Transitions:
t₂₃₆: l0(X₀, X₂, X₃, X₅, X₆) → l1(X₀, X₂, X₃, X₅, X₆)
t₂₃₈: l1(X₀, X₂, X₃, X₅, X₆) → l11(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂
t₃₂₇: l1(X₀, X₂, X₃, X₅, X₆) → n_l10___4(X₀, X₂, X₃, X₅, X₆) :|: X₂ ≤ X₀
t₂₄₁: l11(X₀, X₂, X₃, X₅, X₆) → l8(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₂₄₂: l12(X₀, X₂, X₃, X₅, X₆) → l13(X₀, X₂, X₃, X₅, 0) :|: X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂
t₂₄₃: l8(X₀, X₂, X₃, X₅, X₆) → l12(X₀, X₂, X₃, X₅, 0) :|: X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₂₄₄: l8(X₀, X₂, X₃, X₅, X₆) → l13(X₀, X₂, X₃, X₅, X₆) :|: 51 ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₃₂₁: n_l10___1(X₀, X₂, X₃, X₅, X₆) → n_l1___3(X₀, X₂+1, X₃, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
t₃₂₂: n_l10___2(X₀, X₂, X₃, X₅, X₆) → n_l10___2(X₀, X₂, X₃+1, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀
t₃₂₃: n_l10___2(X₀, X₂, X₃, X₅, X₆) → n_l1___3(X₀, X₂+1, X₃, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀
t₃₂₄: n_l10___4(X₀, X₂, X₃, X₅, X₆) → n_l10___2(X₀, X₂, X₃+1, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀
t₃₂₅: n_l10___4(X₀, X₂, X₃, X₅, X₆) → n_l1___3(X₀, X₂+1, X₃, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
t₃₃₄: n_l1___3(X₀, X₂, X₃, X₅, X₆) → l11(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀
t₃₂₆: n_l1___3(X₀, X₂, X₃, X₅, X₆) → n_l10___1(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀

All Bounds

Timebounds

Overall timebound:24⋅X₂+28⋅X₀+4⋅X₃+84 {O(n)}
t₂₃₆: 1 {O(1)}
t₂₃₈: 1 {O(1)}
t₃₂₇: 1 {O(1)}
t₂₄₁: 1 {O(1)}
t₂₄₂: 1 {O(1)}
t₂₄₃: 1 {O(1)}
t₂₄₄: 1 {O(1)}
t₃₂₁: 12⋅X₀+12⋅X₂+30 {O(n)}
t₃₂₂: 4⋅X₀+4⋅X₃+13 {O(n)}
t₃₂₃: 1 {O(1)}
t₃₂₄: 1 {O(1)}
t₃₂₅: 1 {O(1)}
t₃₂₆: 12⋅X₀+12⋅X₂+30 {O(n)}
t₃₃₄: 1 {O(1)}

Costbounds

Overall costbound: 24⋅X₂+28⋅X₀+4⋅X₃+84 {O(n)}
t₂₃₆: 1 {O(1)}
t₂₃₈: 1 {O(1)}
t₃₂₇: 1 {O(1)}
t₂₄₁: 1 {O(1)}
t₂₄₂: 1 {O(1)}
t₂₄₃: 1 {O(1)}
t₂₄₄: 1 {O(1)}
t₃₂₁: 12⋅X₀+12⋅X₂+30 {O(n)}
t₃₂₂: 4⋅X₀+4⋅X₃+13 {O(n)}
t₃₂₃: 1 {O(1)}
t₃₂₄: 1 {O(1)}
t₃₂₅: 1 {O(1)}
t₃₂₆: 12⋅X₀+12⋅X₂+30 {O(n)}
t₃₃₄: 1 {O(1)}

Sizebounds

t₂₃₆, X₀: X₀ {O(n)}
t₂₃₆, X₂: X₂ {O(n)}
t₂₃₆, X₃: X₃ {O(n)}
t₂₃₆, X₅: X₅ {O(n)}
t₂₃₆, X₆: X₆ {O(n)}
t₂₃₈, X₀: X₀ {O(n)}
t₂₃₈, X₂: X₂ {O(n)}
t₂₃₈, X₃: X₃ {O(n)}
t₂₃₈, X₅: X₅ {O(n)}
t₂₃₈, X₆: X₆ {O(n)}
t₃₂₇, X₀: X₀ {O(n)}
t₃₂₇, X₂: X₂ {O(n)}
t₃₂₇, X₃: X₃ {O(n)}
t₃₂₇, X₅: X₅ {O(n)}
t₃₂₇, X₆: X₆ {O(n)}
t₂₄₁, X₀: 7⋅X₀ {O(n)}
t₂₄₁, X₂: 12⋅X₀+19⋅X₂+36 {O(n)}
t₂₄₁, X₃: 15⋅X₃+8⋅X₀+30 {O(n)}
t₂₄₁, X₅: 7⋅X₅ {O(n)}
t₂₄₁, X₆: 7⋅X₆ {O(n)}
t₂₄₂, X₀: 7⋅X₀ {O(n)}
t₂₄₂, X₂: 12⋅X₀+19⋅X₂+36 {O(n)}
t₂₄₂, X₃: 15⋅X₃+8⋅X₀+30 {O(n)}
t₂₄₂, X₅: 7⋅X₅ {O(n)}
t₂₄₂, X₆: 0 {O(1)}
t₂₄₃, X₀: 7⋅X₀ {O(n)}
t₂₄₃, X₂: 12⋅X₀+19⋅X₂+36 {O(n)}
t₂₄₃, X₃: 15⋅X₃+8⋅X₀+30 {O(n)}
t₂₄₃, X₅: 7⋅X₅ {O(n)}
t₂₄₃, X₆: 0 {O(1)}
t₂₄₄, X₀: 7⋅X₀ {O(n)}
t₂₄₄, X₂: 12⋅X₀+19⋅X₂+36 {O(n)}
t₂₄₄, X₃: 15⋅X₃+8⋅X₀+30 {O(n)}
t₂₄₄, X₅: 7⋅X₅ {O(n)}
t₂₄₄, X₆: 7⋅X₆ {O(n)}
t₃₂₁, X₀: 3⋅X₀ {O(n)}
t₃₂₁, X₂: 12⋅X₀+15⋅X₂+33 {O(n)}
t₃₂₁, X₃: 4⋅X₀+7⋅X₃+15 {O(n)}
t₃₂₁, X₅: 3⋅X₅ {O(n)}
t₃₂₁, X₆: 3⋅X₆ {O(n)}
t₃₂₂, X₀: X₀ {O(n)}
t₃₂₂, X₂: X₂ {O(n)}
t₃₂₂, X₃: 4⋅X₀+5⋅X₃+14 {O(n)}
t₃₂₂, X₅: X₅ {O(n)}
t₃₂₂, X₆: X₆ {O(n)}
t₃₂₃, X₀: 2⋅X₀ {O(n)}
t₃₂₃, X₂: 2⋅X₂+2 {O(n)}
t₃₂₃, X₃: 4⋅X₀+6⋅X₃+15 {O(n)}
t₃₂₃, X₅: 2⋅X₅ {O(n)}
t₃₂₃, X₆: 2⋅X₆ {O(n)}
t₃₂₄, X₀: X₀ {O(n)}
t₃₂₄, X₂: X₂ {O(n)}
t₃₂₄, X₃: X₃+1 {O(n)}
t₃₂₄, X₅: X₅ {O(n)}
t₃₂₄, X₆: X₆ {O(n)}
t₃₂₅, X₀: X₀ {O(n)}
t₃₂₅, X₂: X₂+1 {O(n)}
t₃₂₅, X₃: X₃ {O(n)}
t₃₂₅, X₅: X₅ {O(n)}
t₃₂₅, X₆: X₆ {O(n)}
t₃₂₆, X₀: 3⋅X₀ {O(n)}
t₃₂₆, X₂: 12⋅X₀+15⋅X₂+33 {O(n)}
t₃₂₆, X₃: 4⋅X₀+7⋅X₃+15 {O(n)}
t₃₂₆, X₅: 3⋅X₅ {O(n)}
t₃₂₆, X₆: 3⋅X₆ {O(n)}
t₃₃₄, X₀: 6⋅X₀ {O(n)}
t₃₃₄, X₂: 12⋅X₀+18⋅X₂+36 {O(n)}
t₃₃₄, X₃: 14⋅X₃+8⋅X₀+30 {O(n)}
t₃₃₄, X₅: 6⋅X₅ {O(n)}
t₃₃₄, X₆: 6⋅X₆ {O(n)}