Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆
Temp_Vars: A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2, G1, G2, H1, H2, I1, I2, J1, J2, K1, K2, L1, L2, M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, X1, Y1, Z1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₅ ≤ 50
t₃₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 51 ≤ X₅
t₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₂ ≤ X₀
t₃₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂
t₃₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂+1, X₃, B1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₄₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l13(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆+B1, B1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀
t₃₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₃
t₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, B1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₅ ≤ 3
t₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 4 ≤ X₅
t₄₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₃
t₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l15(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀
t₁₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1-C1, D1, E1, F1, K1, G1, I1, X₂₃, X₂₄, X₂₅, X₂₆) :|: D1+X₁₁+1 ≤ E1 ∧ G1*H1+H1*I1 ≤ 1 ∧ 2 ≤ G1*H1+H1*I1+H1 ∧ H1 ≤ F1 ∧ G1*J1+I1*J1 ≤ 1 ∧ 2 ≤ G1*J1+I1*J1+J1 ∧ F1 ≤ J1 ∧ 1+X₈ ≤ X₉
t₁₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1-C1, D1, E1, F1, K1, G1, I1, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+E1 ≤ D1+X₁₁ ∧ G1*H1+H1*I1 ≤ 1 ∧ 2 ≤ G1*H1+H1*I1+H1 ∧ H1 ≤ F1 ∧ G1*J1+I1*J1 ≤ 1 ∧ 2 ≤ G1*J1+I1*J1+J1 ∧ F1 ≤ J1 ∧ 1+X₈ ≤ X₉
t₂₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1, C1, C1+X₁₁, D1, X₂₀, X₂₁, X₂₂, E1, F1, K1, G1) :|: E1*H1*I1 ≤ H1 ∧ H1+1 ≤ E1*H1*I1+I1 ∧ E1*J1*L1 ≤ L1 ∧ L1+1 ≤ E1*J1*L1+J1 ∧ E1*M1*N1 ≤ N1 ∧ N1+1 ≤ E1*M1*N1+M1 ∧ J1*O1 ≤ I1+M1*O1 ∧ M1*O1+I1+1 ≤ J1*O1+O1 ∧ K1 ≤ O1 ∧ E1*H1*P1 ≤ H1 ∧ H1+1 ≤ E1*H1*P1+P1 ∧ E1*L1*Q1 ≤ L1 ∧ L1+1 ≤ E1*L1*Q1+Q1 ∧ E1*N1*R1 ≤ N1 ∧ N1+1 ≤ E1*N1*R1+R1 ∧ Q1*S1 ≤ P1+R1*S1 ∧ R1*S1+P1+1 ≤ Q1*S1+S1 ∧ S1 ≤ K1 ∧ E1*H1*T1 ≤ H1 ∧ H1+1 ≤ E1*H1*T1+T1 ∧ E1*L1*U1 ≤ L1 ∧ L1+1 ≤ E1*L1*U1+U1 ∧ E1*N1*V1 ≤ N1 ∧ N1+1 ≤ E1*N1*V1+V1 ∧ U1*W1 ≤ T1+V1*W1 ∧ V1*W1+T1+1 ≤ U1*W1+W1 ∧ E1*X1 ≤ 1 ∧ 2 ≤ E1*X1+X1 ∧ Y1+X1*Y1 ≤ W1 ∧ W1+1 ≤ 2⋅Y1+X1*Y1 ∧ G1 ≤ Y1 ∧ E1*H1*Z1 ≤ H1 ∧ H1+1 ≤ E1*H1*Z1+Z1 ∧ A2*E1*L1 ≤ L1 ∧ L1+1 ≤ A2*E1*L1+A2 ∧ B2*E1*N1 ≤ N1 ∧ N1+1 ≤ B2*E1*N1+B2 ∧ A2*C2 ≤ Z1+B2*C2 ∧ B2*C2+Z1+1 ≤ A2*C2+C2 ∧ D2*E1 ≤ 1 ∧ 2 ≤ D2*E1+D2 ∧ E2+D2*E2 ≤ C2 ∧ C2+1 ≤ 2⋅E2+D2*E2 ∧ E2 ≤ G1 ∧ F2*L1 ≤ H1+F2*N1 ∧ F2*N1+H1+1 ≤ F2*L1+F2 ∧ D1 ≤ F2 ∧ G2*L1 ≤ H1+G2*N1 ∧ G2*N1+H1+1 ≤ G2*L1+G2 ∧ G2 ≤ D1 ∧ H2*I2*L1 ≤ H1*H2+H2*I2*N1 ∧ H2*I2*N1+H1*H2+1 ≤ H2*I2*L1+I2 ∧ B1 ≤ I2 ∧ H2*J2*L1 ≤ H1*H2+H2*J2*N1 ∧ H2*J2*N1+H1*H2+1 ≤ H2*J2*L1+J2 ∧ J2 ≤ B1 ∧ E1*K2 ≤ 1 ∧ 2 ≤ E1*K2+K2 ∧ K2 ≤ F1 ∧ E1*L2 ≤ 1 ∧ 2 ≤ E1*L2+L2 ∧ F1 ≤ L2 ∧ 1+X₈ ≤ X₉
t₁₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₈
t₁₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, B1*X₁₉, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, C1, D1, E1, F1) :|: 0 ≤ X₂₀ ∧ C1*K1*X₁₉ ≤ X₁₉ ∧ X₁₉+1 ≤ C1*K1*X₁₉+K1 ∧ E1 ≤ K1 ∧ C1*G1*X₁₉ ≤ X₁₉ ∧ X₁₉+1 ≤ C1*G1*X₁₉+G1 ∧ G1 ≤ E1 ∧ C1*I1 ≤ 1 ∧ 2 ≤ C1*I1+I1 ∧ I1 ≤ D1 ∧ C1*H1 ≤ 1 ∧ 2 ≤ C1*H1+H1 ∧ D1 ≤ H1 ∧ C1*J1*X₁₉ ≤ X₁₉ ∧ X₁₉+1 ≤ C1*J1*X₁₉+J1 ∧ C1*L1 ≤ 1 ∧ 2 ≤ C1*L1+L1 ∧ M1+L1*M1 ≤ J1 ∧ J1+1 ≤ 2⋅M1+L1*M1 ∧ F1 ≤ M1 ∧ C1*N1*X₁₉ ≤ X₁₉ ∧ X₁₉+1 ≤ C1*N1*X₁₉+N1 ∧ C1*O1 ≤ 1 ∧ 2 ≤ C1*O1+O1 ∧ P1+O1*P1 ≤ N1 ∧ N1+1 ≤ 2⋅P1+O1*P1 ∧ P1 ≤ F1
t₂₁: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, -B1*X₁₉, X₁₇, X₁₈, -X₁₉, X₂₀, X₂₁, X₂₂, C1, D1, -E1*X₁₉, F1) :|: C1*E1 ≤ 1 ∧ 2 ≤ C1*E1+E1 ∧ X₂₀+1 ≤ 0 ∧ C1*K1 ≤ 1 ∧ 2 ≤ C1*K1+K1 ∧ K1 ≤ D1 ∧ C1*G1 ≤ 1 ∧ 2 ≤ C1*G1+G1 ∧ D1 ≤ G1 ∧ C1*I1 ≤ 1 ∧ 2 ≤ C1*I1+I1 ∧ C1*H1 ≤ 1 ∧ 2 ≤ C1*H1+H1 ∧ I1*X₁₉+J1+H1*J1 ≤ 0 ∧ 1 ≤ 2⋅J1+H1*J1+I1*X₁₉ ∧ J1 ≤ F1 ∧ C1*L1 ≤ 1 ∧ 2 ≤ C1*L1+L1 ∧ C1*M1 ≤ 1 ∧ 2 ≤ C1*M1+M1 ∧ L1*X₁₉+N1+M1*N1 ≤ 0 ∧ 1 ≤ 2⋅N1+M1*N1+L1*X₁₉ ∧ F1 ≤ N1
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₂ ≤ X₀
t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂ ∧ X₆+1 ≤ 0
t₃₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂ ∧ 1 ≤ X₆
t₃₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁ ≤ X₃
t₃₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₁
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₀
t₂₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₁
t₃₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₁
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁ ≤ X₂
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, C1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₀
t₂₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₁
t₃₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₃
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, C1, B1, 100⋅B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀ ∧ X₅ ≤ 4
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, F1, B1, 100⋅B1, C1, C1+100⋅B1, D1, E1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ D1+100⋅B1+1 ≤ E1
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, F1, B1, 100⋅B1, C1, C1+100⋅B1, D1, E1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1+E1 ≤ D1+100⋅B1
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, E1, B1, 100⋅B1, C1, D1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ C1+100⋅B1+1 ≤ D1
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, E1, B1, 100⋅B1, C1, D1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1+D1 ≤ C1+100⋅B1
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉, B1, 100⋅B1, C1, C1+100⋅B1, D1, D1+100⋅B1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₃ ≤ X₀ ∧ 5 ≤ X₅
t₂₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₂₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
Cut unsatisfiable transition t₃: l11→l11
Cut unsatisfiable transition t₂₅: l7→l7
Eliminate variables {X₄,X₇,X₁₀,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆} that do not contribute to the problem
Found invariant 1+X₀ ≤ X₂ for location l11
Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l2
Found invariant 1 ≤ 0 for location l6
Found invariant X₂ ≤ X₀ for location l15
Found invariant 1 ≤ 0 for location l17
Found invariant 1 ≤ 0 for location l7
Found invariant 1 ≤ 0 for location l5
Found invariant 1 ≤ 0 for location l13
Found invariant 1 ≤ 0 for location l8
Found invariant 1+X₀ ≤ X₂ for location l1
Found invariant 1 ≤ 0 for location l10
Found invariant 1 ≤ 0 for location l16
Found invariant 1 ≤ 0 for location l4
Found invariant 1 ≤ 0 for location l9
Found invariant 1+X₀ ≤ X₂ for location l3
Found invariant 1 ≤ 0 for location l14
Cut unsatisfiable transition t₉₅: l10→l8
Cut unsatisfiable transition t₉₆: l10→l9
Cut unsatisfiable transition t₁₀₀: l13→l13
Cut unsatisfiable transition t₁₀₁: l13→l2
Cut unsatisfiable transition t₁₀₂: l14→l10
Cut unsatisfiable transition t₁₀₃: l14→l10
Cut unsatisfiable transition t₁₀₆: l16→l8
Cut unsatisfiable transition t₁₀₇: l16→l17
Cut unsatisfiable transition t₁₀₈: l16→l17
Cut unsatisfiable transition t₁₀₉: l16→l6
Cut unsatisfiable transition t₁₁₀: l17→l6
Cut unsatisfiable transition t₁₁₁: l17→l6
Cut unsatisfiable transition t₁₁₂: l2→l13
Cut unsatisfiable transition t₁₁₃: l2→l14
Cut unsatisfiable transition t₁₁₄: l2→l14
Cut unsatisfiable transition t₁₁₆: l4→l4
Cut unsatisfiable transition t₁₁₇: l4→l5
Cut unsatisfiable transition t₁₁₈: l5→l5
Cut unsatisfiable transition t₁₁₉: l5→l7
Cut unsatisfiable transition t₁₂₀: l6→l6
Cut unsatisfiable transition t₁₂₁: l6→l4
Cut unsatisfiable transition t₁₂₂: l7→l8
Cut unsatisfiable transition t₁₂₃: l8→l8
Cut unsatisfiable transition t₁₂₄: l8→l16
Cut unsatisfiable transition t₁₂₅: l8→l16
Cut unsatisfiable transition t₁₂₆: l8→l16
Cut unsatisfiable transition t₁₂₇: l8→l16
Cut unsatisfiable transition t₁₂₈: l8→l16
Cut unsatisfiable transition t₁₂₉: l8→l10
Cut unsatisfiable transition t₁₃₀: l9→l9
Cut unsatisfiable transition t₁₃₁: l9→l1
Cut unreachable locations [l10; l13; l14; l16; l17; l4; l5; l6; l7; l8; l9] from the program graph
Eliminate variables {X₁,X₈,X₉,X₁₁,X₁₉,X₂₀} that do not contribute to the problem
Start: l0
Program_Vars: X₀, X₂, X₃, X₅, X₆
Temp_Vars:
Locations: l0, l1, l11, l12, l15, l2, l3
Transitions:
t₂₃₇: l0(X₀, X₂, X₃, X₅, X₆) → l12(X₀, X₂, X₃, X₅, X₆)
t₂₃₈: l1(X₀, X₂, X₃, X₅, X₆) → l2(X₀, X₂, X₃, X₅, 0) :|: X₅ ≤ 50 ∧ 1+X₀ ≤ X₂
t₂₃₉: l1(X₀, X₂, X₃, X₅, X₆) → l3(X₀, X₂, X₃, X₅, X₆) :|: 51 ≤ X₅ ∧ 1+X₀ ≤ X₂
t₂₄₀: l11(X₀, X₂, X₃, X₅, X₆) → l1(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₂₄₂: l12(X₀, X₂, X₃, X₅, X₆) → l11(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂
t₂₄₁: l12(X₀, X₂, X₃, X₅, X₆) → l15(X₀, X₂, X₃, X₅, X₆) :|: X₂ ≤ X₀
t₂₄₄: l15(X₀, X₂, X₃, X₅, X₆) → l12(X₀, X₂+1, X₃, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
t₂₄₃: l15(X₀, X₂, X₃, X₅, X₆) → l15(X₀, X₂, X₃+1, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₂ ≤ X₀
t₂₄₅: l2(X₀, X₂, X₃, X₅, X₆) → l3(X₀, X₂, X₃, X₅, 0) :|: X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂
Found invariant 1+X₀ ≤ X₂ for location l11
Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l2
Found invariant X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ for location n_l12___3
Found invariant X₂ ≤ X₀ for location n_l15___4
Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ for location n_l15___2
Found invariant 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location n_l15___1
Found invariant 1+X₀ ≤ X₂ for location l1
Found invariant 1+X₀ ≤ X₂ for location l3
Found invariant 1+X₀ ≤ X₂ for location l11
Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l2
Found invariant X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ for location n_l12___3
Found invariant X₂ ≤ X₀ for location n_l15___4
Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ for location n_l15___2
Found invariant 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location n_l15___1
Found invariant 1+X₀ ≤ X₂ for location l1
Found invariant 1+X₀ ≤ X₂ for location l3
Termination: true
Formula:
relevant size-bounds w.r.t. t₃₂₈:
X₀: X₀ {O(n)}
X₃: X₃+1 {O(n)}
Runtime-bound of t₃₂₈: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₃+13 {O(n)}
Found invariant 1+X₀ ≤ X₂ for location l11
Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l2
Found invariant X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ for location n_l12___3
Found invariant X₂ ≤ X₀ for location n_l15___4
Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ for location n_l15___2
Found invariant 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location n_l15___1
Found invariant 1+X₀ ≤ X₂ for location l1
Found invariant 1+X₀ ≤ X₂ for location l3
Found invariant 1+X₀ ≤ X₂ for location l11
Found invariant X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ for location l2
Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ for location n_l12___3
Found invariant X₂ ≤ X₀ for location n_l15___4
Found invariant X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ for location n_l15___2
Found invariant X₃ ≤ 1+X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location n_l15___1
Found invariant 1+X₀ ≤ X₂ for location l1
Found invariant 1+X₀ ≤ X₂ for location l3
Termination: true
Formula:
relevant size-bounds w.r.t. t₃₂₇:
X₀: X₀ {O(n)}
X₂: X₂+1 {O(n)}
Runtime-bound of t₃₂₇: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₂+13 {O(n)}
Termination: true
Formula:
relevant size-bounds w.r.t. t₃₂₅:
X₀: 2⋅X₀ {O(n)}
X₂: 2⋅X₂+2 {O(n)}
Runtime-bound of t₃₂₅: 1 {O(1)}
Results in: 8⋅X₀+8⋅X₂+17 {O(n)}
relevant size-bounds w.r.t. t₃₂₇:
X₀: X₀ {O(n)}
X₂: X₂+1 {O(n)}
Runtime-bound of t₃₂₇: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₂+13 {O(n)}
relevant size-bounds w.r.t. t₃₂₅:
X₀: 2⋅X₀ {O(n)}
X₂: 2⋅X₂+2 {O(n)}
Runtime-bound of t₃₂₅: 1 {O(1)}
Results in: 8⋅X₀+8⋅X₂+17 {O(n)}
new bound:
24⋅X₂+28⋅X₀+4⋅X₃+73 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₂, X₃, X₅, X₆
Temp_Vars:
Locations: l0, l1, l11, l12, l2, l3, n_l12___3, n_l15___1, n_l15___2, n_l15___4
Transitions:
t₂₃₇: l0(X₀, X₂, X₃, X₅, X₆) → l12(X₀, X₂, X₃, X₅, X₆)
t₂₃₈: l1(X₀, X₂, X₃, X₅, X₆) → l2(X₀, X₂, X₃, X₅, 0) :|: X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₂₃₉: l1(X₀, X₂, X₃, X₅, X₆) → l3(X₀, X₂, X₃, X₅, X₆) :|: 51 ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₂₄₀: l11(X₀, X₂, X₃, X₅, X₆) → l1(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂
t₂₄₂: l12(X₀, X₂, X₃, X₅, X₆) → l11(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂
t₃₂₃: l12(X₀, X₂, X₃, X₅, X₆) → n_l15___4(X₀, X₂, X₃, X₅, X₆) :|: X₂ ≤ X₀
t₂₄₅: l2(X₀, X₂, X₃, X₅, X₆) → l3(X₀, X₂, X₃, X₅, 0) :|: X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 0 ∧ X₅+X₆ ≤ 50 ∧ 0 ≤ X₆ ∧ X₅ ≤ 50+X₆ ∧ X₅ ≤ 50 ∧ 1+X₀ ≤ X₂
t₃₃₅: n_l12___3(X₀, X₂, X₃, X₅, X₆) → l11(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀
t₃₂₂: n_l12___3(X₀, X₂, X₃, X₅, X₆) → n_l15___1(X₀, X₂, X₃, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀
t₃₂₄: n_l15___1(X₀, X₂, X₃, X₅, X₆) → n_l12___3(X₀, X₂+1, X₃, X₅, X₆) :|: 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
t₃₂₅: n_l15___2(X₀, X₂, X₃, X₅, X₆) → n_l12___3(X₀, X₂+1, X₃, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀
t₃₂₆: n_l15___2(X₀, X₂, X₃, X₅, X₆) → n_l15___2(X₀, X₂, X₃+1, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₀ ∧ X₂ ≤ X₀
t₃₂₇: n_l15___4(X₀, X₂, X₃, X₅, X₆) → n_l12___3(X₀, X₂+1, X₃, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
t₃₂₈: n_l15___4(X₀, X₂, X₃, X₅, X₆) → n_l15___2(X₀, X₂, X₃+1, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀
Overall timebound:24⋅X₂+28⋅X₀+4⋅X₃+84 {O(n)}
t₂₃₇: 1 {O(1)}
t₂₃₈: 1 {O(1)}
t₂₃₉: 1 {O(1)}
t₂₄₀: 1 {O(1)}
t₂₄₂: 1 {O(1)}
t₃₂₃: 1 {O(1)}
t₂₄₅: 1 {O(1)}
t₃₂₂: 12⋅X₀+12⋅X₂+30 {O(n)}
t₃₃₅: 1 {O(1)}
t₃₂₄: 12⋅X₀+12⋅X₂+30 {O(n)}
t₃₂₅: 1 {O(1)}
t₃₂₆: 4⋅X₀+4⋅X₃+13 {O(n)}
t₃₂₇: 1 {O(1)}
t₃₂₈: 1 {O(1)}
Overall costbound: 24⋅X₂+28⋅X₀+4⋅X₃+84 {O(n)}
t₂₃₇: 1 {O(1)}
t₂₃₈: 1 {O(1)}
t₂₃₉: 1 {O(1)}
t₂₄₀: 1 {O(1)}
t₂₄₂: 1 {O(1)}
t₃₂₃: 1 {O(1)}
t₂₄₅: 1 {O(1)}
t₃₂₂: 12⋅X₀+12⋅X₂+30 {O(n)}
t₃₃₅: 1 {O(1)}
t₃₂₄: 12⋅X₀+12⋅X₂+30 {O(n)}
t₃₂₅: 1 {O(1)}
t₃₂₆: 4⋅X₀+4⋅X₃+13 {O(n)}
t₃₂₇: 1 {O(1)}
t₃₂₈: 1 {O(1)}
t₂₃₇, X₀: X₀ {O(n)}
t₂₃₇, X₂: X₂ {O(n)}
t₂₃₇, X₃: X₃ {O(n)}
t₂₃₇, X₅: X₅ {O(n)}
t₂₃₇, X₆: X₆ {O(n)}
t₂₃₈, X₀: 7⋅X₀ {O(n)}
t₂₃₈, X₂: 12⋅X₀+19⋅X₂+36 {O(n)}
t₂₃₈, X₃: 15⋅X₃+8⋅X₀+30 {O(n)}
t₂₃₈, X₅: 7⋅X₅ {O(n)}
t₂₃₈, X₆: 0 {O(1)}
t₂₃₉, X₀: 7⋅X₀ {O(n)}
t₂₃₉, X₂: 12⋅X₀+19⋅X₂+36 {O(n)}
t₂₃₉, X₃: 15⋅X₃+8⋅X₀+30 {O(n)}
t₂₃₉, X₅: 7⋅X₅ {O(n)}
t₂₃₉, X₆: 7⋅X₆ {O(n)}
t₂₄₀, X₀: 7⋅X₀ {O(n)}
t₂₄₀, X₂: 12⋅X₀+19⋅X₂+36 {O(n)}
t₂₄₀, X₃: 15⋅X₃+8⋅X₀+30 {O(n)}
t₂₄₀, X₅: 7⋅X₅ {O(n)}
t₂₄₀, X₆: 7⋅X₆ {O(n)}
t₂₄₂, X₀: X₀ {O(n)}
t₂₄₂, X₂: X₂ {O(n)}
t₂₄₂, X₃: X₃ {O(n)}
t₂₄₂, X₅: X₅ {O(n)}
t₂₄₂, X₆: X₆ {O(n)}
t₃₂₃, X₀: X₀ {O(n)}
t₃₂₃, X₂: X₂ {O(n)}
t₃₂₃, X₃: X₃ {O(n)}
t₃₂₃, X₅: X₅ {O(n)}
t₃₂₃, X₆: X₆ {O(n)}
t₂₄₅, X₀: 7⋅X₀ {O(n)}
t₂₄₅, X₂: 12⋅X₀+19⋅X₂+36 {O(n)}
t₂₄₅, X₃: 15⋅X₃+8⋅X₀+30 {O(n)}
t₂₄₅, X₅: 7⋅X₅ {O(n)}
t₂₄₅, X₆: 0 {O(1)}
t₃₂₂, X₀: 3⋅X₀ {O(n)}
t₃₂₂, X₂: 12⋅X₀+15⋅X₂+33 {O(n)}
t₃₂₂, X₃: 4⋅X₀+7⋅X₃+15 {O(n)}
t₃₂₂, X₅: 3⋅X₅ {O(n)}
t₃₂₂, X₆: 3⋅X₆ {O(n)}
t₃₃₅, X₀: 6⋅X₀ {O(n)}
t₃₃₅, X₂: 12⋅X₀+18⋅X₂+36 {O(n)}
t₃₃₅, X₃: 14⋅X₃+8⋅X₀+30 {O(n)}
t₃₃₅, X₅: 6⋅X₅ {O(n)}
t₃₃₅, X₆: 6⋅X₆ {O(n)}
t₃₂₄, X₀: 3⋅X₀ {O(n)}
t₃₂₄, X₂: 12⋅X₀+15⋅X₂+33 {O(n)}
t₃₂₄, X₃: 4⋅X₀+7⋅X₃+15 {O(n)}
t₃₂₄, X₅: 3⋅X₅ {O(n)}
t₃₂₄, X₆: 3⋅X₆ {O(n)}
t₃₂₅, X₀: 2⋅X₀ {O(n)}
t₃₂₅, X₂: 2⋅X₂+2 {O(n)}
t₃₂₅, X₃: 4⋅X₀+6⋅X₃+15 {O(n)}
t₃₂₅, X₅: 2⋅X₅ {O(n)}
t₃₂₅, X₆: 2⋅X₆ {O(n)}
t₃₂₆, X₀: X₀ {O(n)}
t₃₂₆, X₂: X₂ {O(n)}
t₃₂₆, X₃: 4⋅X₀+5⋅X₃+14 {O(n)}
t₃₂₆, X₅: X₅ {O(n)}
t₃₂₆, X₆: X₆ {O(n)}
t₃₂₇, X₀: X₀ {O(n)}
t₃₂₇, X₂: X₂+1 {O(n)}
t₃₂₇, X₃: X₃ {O(n)}
t₃₂₇, X₅: X₅ {O(n)}
t₃₂₇, X₆: X₆ {O(n)}
t₃₂₈, X₀: X₀ {O(n)}
t₃₂₈, X₂: X₂ {O(n)}
t₃₂₈, X₃: X₃+1 {O(n)}
t₃₂₈, X₅: X₅ {O(n)}
t₃₂₈, X₆: X₆ {O(n)}