Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
t₈: l10(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂
t₇: l10(X₀, X₁, X₂, X₃) → l14(X₀, X₂, X₂, X₃) :|: X₂ < X₃
t₁₈: l11(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₁₆: l12(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃)
t₁₇: l13(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃)
t₉: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: 0 < X₁ ∧ X₁ < X₃
t₁₀: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0
t₁₁: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁
t₁₂: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁+1, X₂, X₃) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₃: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁-1, X₂, X₃) :|: X₀ < 1
t₁₄: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁-1, X₂, X₃) :|: 1 < X₀
t₁₅: l16(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₁: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₂: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₄: l4(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃)
t₂₁: l5(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₁₉: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₂₀: l7(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)
t₅: l9(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: 0 < X₂
t₆: l9(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0

Preprocessing

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l11

Found invariant X₂ ≤ 0 for location l6

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l15

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l12

Found invariant X₂ ≤ 0 for location l7

Found invariant X₂ ≤ 0 for location l5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l13

Found invariant 1 ≤ X₂ for location l10

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l16

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
t₈: l10(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂
t₇: l10(X₀, X₁, X₂, X₃) → l14(X₀, X₂, X₂, X₃) :|: X₂ < X₃ ∧ 1 ≤ X₂
t₁₈: l11(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂
t₁₆: l12(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂
t₁₇: l13(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂
t₉: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: 0 < X₁ ∧ X₁ < X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₀: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₁: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₂: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁+1, X₂, X₃) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₃: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁-1, X₂, X₃) :|: X₀ < 1 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₄: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁-1, X₂, X₃) :|: 1 < X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₅: l16(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₂: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₄: l4(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃)
t₂₁: l5(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₁₉: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₂₀: l7(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₅: l9(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: 0 < X₂
t₆: l9(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0

Analysing control-flow refined program

Cut unsatisfiable transition t₁₀: l14→l16

Cut unsatisfiable transition t₁₁: l14→l16

Cut unsatisfiable transition t₂₇₃: n_l14___4→l16

Cut unsatisfiable transition t₂₇₄: n_l14___5→l16

Cut unsatisfiable transition t₂₇₂: n_l14___6→l16

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l11

Found invariant X₂ ≤ 0 for location l6

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l14___4

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l15___7

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l14___6

Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l15___3

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l14___5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l12

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l15___2

Found invariant X₂ ≤ 0 for location l7

Found invariant X₂ ≤ 0 for location l5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l13

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l15___1

Found invariant 1 ≤ X₂ for location l10

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l16

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l14

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l11

Found invariant X₂ ≤ 0 for location l6

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l14___4

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l15___7

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l14___6

Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l15___3

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l14___5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l12

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l15___2

Found invariant X₂ ≤ 0 for location l7

Found invariant X₂ ≤ 0 for location l5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l13

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l15___1

Found invariant 1 ≤ X₂ for location l10

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l16

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l14

Time-Bound by TWN-Loops:

TWN-Loops: t₂₄₈ 4⋅X₃+8⋅X₂+15 {O(n)}

TWN-Loops:

entry: t₂₅₅: n_l15___7(X₀, X₁, X₂, X₃) → n_l14___4(X₀, X₁-1, X₂, X₃) :|: X₁ < X₃ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 < X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
results in twn-loop: twn:Inv: [2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀] , (X₀,X₁,X₂,X₃) -> (X₀,X₁-1,X₂,X₃) :|: X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 < X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 < X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂
X₃: X₃

Termination: true
Formula:

1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0

Stabilization-Threshold for: 1+X₁ ≤ X₃
alphas_abs: 1+X₁+X₃
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₃+4 {O(n)}
Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 0 < X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₁ < X₃
alphas_abs: X₁+X₃
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₃+2 {O(n)}

relevant size-bounds w.r.t. t₂₅₅:
X₁: X₂ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₂₅₅: 1 {O(1)}
Results in: 4⋅X₃+8⋅X₂+15 {O(n)}

4⋅X₃+8⋅X₂+15 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₂₅₂ 4⋅X₃+8⋅X₂+15 {O(n)}

relevant size-bounds w.r.t. t₂₅₅:
X₁: X₂ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₂₅₅: 1 {O(1)}
Results in: 4⋅X₃+8⋅X₂+15 {O(n)}

4⋅X₃+8⋅X₂+15 {O(n)}

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l11

Found invariant X₂ ≤ 0 for location l6

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l14___4

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l15___7

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l14___6

Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l15___3

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l14___5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l12

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l15___2

Found invariant X₂ ≤ 0 for location l7

Found invariant X₂ ≤ 0 for location l5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l13

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l15___1

Found invariant 1 ≤ X₂ for location l10

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l16

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l14

Time-Bound by TWN-Loops:

TWN-Loops: t₂₄₉ 4⋅X₃+8⋅X₂+15 {O(n)}

TWN-Loops:

entry: t₂₅₆: n_l15___7(X₀, X₁, X₂, X₃) → n_l14___5(X₀, X₁-1, X₂, X₃) :|: X₁ < X₃ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₀ < 1 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
results in twn-loop: twn:Inv: [2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0] , (X₀,X₁,X₂,X₃) -> (X₀,X₁-1,X₂,X₃) :|: X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₃ ∧ X₀ < 1 ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₀ < 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₀ < 1
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂
X₃: X₃

Termination: true
Formula:

X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ < X₃ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0

Stabilization-Threshold for: 1+X₁ ≤ X₃
alphas_abs: 1+X₁+X₃
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₃+4 {O(n)}
Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 0 < X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₁ < X₃
alphas_abs: X₁+X₃
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₃+2 {O(n)}

relevant size-bounds w.r.t. t₂₅₆:
X₁: X₂ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₂₅₆: 1 {O(1)}
Results in: 4⋅X₃+8⋅X₂+15 {O(n)}

4⋅X₃+8⋅X₂+15 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₂₅₃ 4⋅X₃+8⋅X₂+15 {O(n)}

relevant size-bounds w.r.t. t₂₅₆:
X₁: X₂ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₂₅₆: 1 {O(1)}
Results in: 4⋅X₃+8⋅X₂+15 {O(n)}

4⋅X₃+8⋅X₂+15 {O(n)}

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l11

Found invariant X₂ ≤ 0 for location l6

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l14___4

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l15___7

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l14___6

Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l15___3

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l14___5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l12

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l15___2

Found invariant X₂ ≤ 0 for location l7

Found invariant X₂ ≤ 0 for location l5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l13

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l15___1

Found invariant 1 ≤ X₂ for location l10

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l16

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l14

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l11

Found invariant X₂ ≤ 0 for location l6

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l14___4

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l15___7

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l14___6

Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l15___3

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l14___5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l12

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l15___2

Found invariant X₂ ≤ 0 for location l7

Found invariant X₂ ≤ 0 for location l5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l13

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l15___1

Found invariant 1 ≤ X₂ for location l10

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l16

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l14

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l11

Found invariant X₂ ≤ 0 for location l6

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l14___4

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l15___7

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l14___6

Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l15___3

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l14___5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l12

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l15___2

Found invariant X₂ ≤ 0 for location l7

Found invariant X₂ ≤ 0 for location l5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l13

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l15___1

Found invariant 1 ≤ X₂ for location l10

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l16

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l14

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l11

Found invariant X₂ ≤ 0 for location l6

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l14___4

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l15___7

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l14___6

Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l15___3

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l14___5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l12

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l15___2

Found invariant X₂ ≤ 0 for location l7

Found invariant X₂ ≤ 0 for location l5

Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l13

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l15___1

Found invariant 1 ≤ X₂ for location l10

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l16

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l14

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₁₈: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: 1 {O(1)}
t₉: inf {Infinity}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: inf {Infinity}
t₁₃: inf {Infinity}
t₁₄: inf {Infinity}
t₁₅: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₂₁: 1 {O(1)}
t₁₉: 1 {O(1)}
t₂₀: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₁₈: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: 1 {O(1)}
t₉: inf {Infinity}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: inf {Infinity}
t₁₃: inf {Infinity}
t₁₄: inf {Infinity}
t₁₅: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₂₁: 1 {O(1)}
t₁₉: 1 {O(1)}
t₂₀: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₂ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: X₃ {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: X₁ {O(n)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₇, X₀: X₀ {O(n)}
t₁₇, X₁: X₁ {O(n)}
t₁₇, X₂: X₂ {O(n)}
t₁₇, X₃: X₃ {O(n)}
t₉, X₀: X₀+1 {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₁₀, X₀: 2⋅X₀+2 {O(n)}
t₁₀, X₁: 0 {O(1)}
t₁₀, X₂: 2⋅X₂ {O(n)}
t₁₀, X₃: 2⋅X₃ {O(n)}
t₁₁, X₀: 1 {O(1)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₂, X₀: 1 {O(1)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₃, X₀: X₀+1 {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₄, X₀: X₀+1 {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₅, X₀: 2⋅X₀+3 {O(n)}
t₁₅, X₂: 3⋅X₂ {O(n)}
t₁₅, X₃: 3⋅X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₂₁, X₀: X₀ {O(n)}
t₂₁, X₁: X₁ {O(n)}
t₂₁, X₂: X₂ {O(n)}
t₂₁, X₃: X₃ {O(n)}
t₁₉, X₀: X₀ {O(n)}
t₁₉, X₁: X₁ {O(n)}
t₁₉, X₂: X₂ {O(n)}
t₁₉, X₃: X₃ {O(n)}
t₂₀, X₀: X₀ {O(n)}
t₂₀, X₁: X₁ {O(n)}
t₂₀, X₂: X₂ {O(n)}
t₂₀, X₃: X₃ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}