Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂
Temp_Vars: A1, B1, C1, D1, E1, F1, X, Y, Z
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l1(X₀, X, Y, Z, A1, B1, C1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: X₀ ≤ 0
t₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l1(X₀, X, Y, Z, A1, B1, C1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 2 ≤ X₀
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l4(1, X, Y, Z, A1, B1, C1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 2+X₀ ≤ 0 ∧ 1+X₇ ≤ X₈
t₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 0 ≤ X₀ ∧ 1+X₇ ≤ X₈
t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l2(-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 1+X₇ ≤ X₈ ∧ X₀+1 ≤ 0 ∧ 0 ≤ 1+X₀
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₇+2-X₈, 1, 0, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: X₈ ≤ 0 ∧ X₈ ≤ X₇
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₇+2-X₈, 1, 0, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 2 ≤ X₈ ∧ X₈ ≤ X₇
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, 1, 1, 0, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 1 ≤ X₇ ∧ X₈ ≤ 1 ∧ 1 ≤ X₈
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁+2, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: X₁₀ ≤ X₉
t₂₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 1+X₉ ≤ X₁₀
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 1+X₇ ≤ X₈
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: X₈ ≤ X₇
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 2⋅X ≤ X₁₅ ∧ X₁₅+1 ≤ 3⋅X ∧ 2+X ≤ X₁₆
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 2⋅X ≤ X₁₅ ∧ X₁₅+1 ≤ 3⋅X ∧ X₁₆ ≤ X+1
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l5(X₀, X₁, X₂, X₃, X₁₃, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₅*X₁₃+X₁₃-X₆*X₁₄, X₅*X₁₄+X₆*X₁₃+X₁₄, X₁₅, X₁₆+1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂+2) :|: 1+X₉ ≤ X₁₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X+3, X₁₂, X₁₃, X₁₄, X₁₅, 1, Y*X₁+Z*X₁, A1*X₁-B1*X₁, C1*X₂-D1*X₂, -E1*X₂-F1*X₂, X₂₁, X₂₂) :|: X₁₀+4⋅X ≤ X₉ ∧ X₉+1 ≤ 5⋅X+X₁₀ ∧ X₁₀ ≤ 0 ∧ X₁₀ ≤ X₉ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X+3, X₁₂, X₁₃, X₁₄, X₁₅, 1, Y*X₁+Z*X₁, A1*X₁-B1*X₁, C1*X₂-D1*X₂, -E1*X₂-F1*X₂, X₂₁, X₂₂) :|: X₁₀+4⋅X ≤ X₉ ∧ X₉+1 ≤ 5⋅X+X₁₀ ∧ X₁₀ ≤ X₉ ∧ 2 ≤ X₁₀ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 2, 1, X₁₂, X₁₃, X₁₄, X₁₅, 1, X*X₁+Y*X₁, Z*X₁-A1*X₁, B1*X₂-C1*X₂, -D1*X₂-E1*X₂, X₂₁, X₂₂) :|: 1 ≤ X₉ ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: X₁₆ ≤ 0 ∧ X₁₀ ≤ X₉
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 2 ≤ X₁₆ ∧ X₁₀ ≤ X₉
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₉+2-X₁₀, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X*X₁+Y*X₁, Z*X₁-A1*X₁, B1*X₂-C1*X₂, -D1*X₂-E1*X₂, X₁₅+3-F1, X₂₂) :|: 2⋅F1 ≤ X₁₆ ∧ X₁₆+1 ≤ 3⋅F1 ∧ X₁₀ ≤ 0
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₉+2-X₁₀, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X*X₁+Y*X₁, Z*X₁-A1*X₁, B1*X₂-C1*X₂, -D1*X₂-E1*X₂, X₁₅+3-F1, X₂₂) :|: 2⋅F1 ≤ X₁₆ ∧ X₁₆+1 ≤ 3⋅F1 ∧ 2 ≤ X₁₀
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 2, 1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X*X₁+Y*X₁, Z*X₁-A1*X₁, B1*X₂-C1*X₂, -D1*X₂-E1*X₂, X₁₅+3-F1, X₂₂) :|: 2⋅F1 ≤ X₁₆ ∧ X₁₆+1 ≤ 3⋅F1 ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀

Preprocessing

Eliminate variables {A1,B1,C1,D1,E1,Y,Z,X₁,X₂,X₃,X₄,X₅,X₆,X₁₁,X₁₂,X₁₃,X₁₄,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂} that do not contribute to the problem

Found invariant 1+X₇ ≤ X₈ for location l2

Found invariant X₈ ≤ X₇ for location l6

Found invariant X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ for location l7

Found invariant X₈ ≤ X₇ for location l5

Found invariant X₀ ≤ 1 ∧ 1 ≤ X₀ for location l4

Found invariant X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆
Temp_Vars: F1, X
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₆₇: l0(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: X₀ ≤ 0
t₆₈: l0(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 2 ≤ X₀
t₆₆: l0(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l4(1, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₇₂: l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l2(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 2+X₀ ≤ 0 ∧ 1+X₇ ≤ X₈
t₇₃: l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l2(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 0 ≤ X₀ ∧ 1+X₇ ≤ X₈
t₇₄: l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l2(-1, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 1+X₇ ≤ X₈ ∧ X₀+1 ≤ 0 ∧ 0 ≤ 1+X₀
t₆₉: l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l5(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: X₈ ≤ 0 ∧ X₈ ≤ X₇
t₇₀: l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l5(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 2 ≤ X₈ ∧ X₈ ≤ X₇
t₇₁: l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l5(X₀, X₇, 1, X₉, X₁₀, X₁₅, X₁₆) :|: 1 ≤ X₇ ∧ X₈ ≤ 1 ∧ 1 ≤ X₈
t₇₅: l3(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l3(X₀, X₇, X₈, X₉, X₁₀+1, X₁₅, X₁₆) :|: X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₇₆: l3(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l4(X₀, X₇, X₈+1, X₉, X₁₀, X₁₅, X₁₆) :|: 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₇₈: l4(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 1+X₇ ≤ X₈ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₇₇: l4(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l3(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₈₀: l5(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l1(X₀, X₇, X₈+1, X₉, X₁₀, X₁₅, X₁₆) :|: 2⋅X ≤ X₁₅ ∧ X₁₅+1 ≤ 3⋅X ∧ 2+X ≤ X₁₆ ∧ X₈ ≤ X₇
t₇₉: l5(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 2⋅X ≤ X₁₅ ∧ X₁₅+1 ≤ 3⋅X ∧ X₁₆ ≤ X+1 ∧ X₈ ≤ X₇
t₈₆: l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l5(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆+1) :|: 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇
t₈₃: l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, X₁₀+1, X₁₅, 1) :|: X₁₀+4⋅X ≤ X₉ ∧ X₉+1 ≤ 5⋅X+X₁₀ ∧ X₁₀ ≤ 0 ∧ X₁₀ ≤ X₉ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆ ∧ X₈ ≤ X₇
t₈₄: l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, X₁₀+1, X₁₅, 1) :|: X₁₀+4⋅X ≤ X₉ ∧ X₉+1 ≤ 5⋅X+X₁₀ ∧ X₁₀ ≤ X₉ ∧ 2 ≤ X₁₀ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆ ∧ X₈ ≤ X₇
t₈₅: l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, 2, X₁₅, 1) :|: 1 ≤ X₉ ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆ ∧ X₈ ≤ X₇
t₈₁: l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l7(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: X₁₆ ≤ 0 ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇
t₈₂: l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l7(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 2 ≤ X₁₆ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇
t₈₇: l7(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, X₁₀+1, X₁₅, X₁₆) :|: 2⋅F1 ≤ X₁₆ ∧ X₁₆+1 ≤ 3⋅F1 ∧ X₁₀ ≤ 0 ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇
t₈₈: l7(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, X₁₀+1, X₁₅, X₁₆) :|: 2⋅F1 ≤ X₁₆ ∧ X₁₆+1 ≤ 3⋅F1 ∧ 2 ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇
t₈₉: l7(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, 2, X₁₅, X₁₆) :|: 2⋅F1 ≤ X₁₆ ∧ X₁₆+1 ≤ 3⋅F1 ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇

Analysing control-flow refined program

Found invariant 1+X₇ ≤ X₈ for location l2

Found invariant X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___4

Found invariant X₈ ≤ X₇ for location l6

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ 1+X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___2

Found invariant X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___3

Found invariant X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ for location l7

Found invariant X₈ ≤ X₇ for location l5

Found invariant X₀ ≤ 1 ∧ 1 ≤ X₀ for location l4

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___1

Found invariant 1+X₇ ≤ X₈ for location l2

Found invariant X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___4

Found invariant X₈ ≤ X₇ for location l6

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ 1+X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___2

Found invariant X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___3

Found invariant X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ for location l7

Found invariant X₈ ≤ X₇ for location l5

Found invariant X₀ ≤ 1 ∧ 1 ≤ X₀ for location l4

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___1

Time-Bound by TWN-Loops:

TWN-Loops: t₂₈₄ 4⋅X₁₀+4⋅X₉+13 {O(n)}

TWN-Loops:

entry: t₂₈₆: n_l3___4(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → n_l3___3(1, X₇, X₈, X₉, X₁₀+1, X₁₅, X₁₆) :|: X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇ ∧ X₁₀ ≤ X₉ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀] , (X₀,X₇,X₈,X₉,X₁₀,X₁₅,X₁₆) -> (1,X₇,X₈,X₉,X₁₀+1,X₁₅,X₁₆) :|: X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₁₀ ≤ 1+X₉ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇ ∧ X₁₀ ≤ X₉ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
order: [X₀; X₇; X₈; X₉; X₁₀]
closed-form:
X₀: [[n == 0]] * X₀ + [[n != 0]]
X₇: X₇
X₈: X₈
X₉: X₉
X₁₀: X₁₀ + [[n != 0]] * n^1

Termination: true
Formula:

X₈ < X₇ ∧ 1 < 0
∨ 1 < 0 ∧ X₈ < X₇ ∧ X₁₀ < 1+X₉ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₈ < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₀ ≤ 1+X₉ ∧ 1+X₉ ≤ X₁₀
∨ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 < 0
∨ 1 < 0 ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₁₀ < 1+X₉ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₀ ≤ 1+X₉ ∧ 1+X₉ ≤ X₁₀
∨ X₁₀ < X₉ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ < X₇ ∧ 1 < 0
∨ X₁₀ < X₉ ∧ X₈ < X₇ ∧ X₁₀ < 1+X₉ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁₀ < X₉ ∧ X₈ < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₀ ≤ 1+X₉ ∧ 1+X₉ ≤ X₁₀
∨ X₁₀ < X₉ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 < 0
∨ X₁₀ < X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₁₀ < 1+X₉ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁₀ < X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₀ ≤ 1+X₉ ∧ 1+X₉ ≤ X₁₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₀ ≤ X₉ ∧ X₉ ≤ X₁₀ ∧ X₈ < X₇ ∧ 1 < 0
∨ X₁₀ ≤ X₉ ∧ X₉ ≤ X₁₀ ∧ X₈ < X₇ ∧ X₁₀ < 1+X₉ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁₀ ≤ X₉ ∧ X₉ ≤ X₁₀ ∧ X₈ < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₀ ≤ 1+X₉ ∧ 1+X₉ ≤ X₁₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₀ ≤ X₉ ∧ X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 < 0
∨ X₁₀ ≤ X₉ ∧ X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₁₀ < 1+X₉ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁₀ ≤ X₉ ∧ X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₀ ≤ 1+X₉ ∧ 1+X₉ ≤ X₁₀

Stabilization-Threshold for: X₁₀ ≤ X₉
alphas_abs: X₉+X₁₀
M: 0
N: 1
Bound: 2⋅X₁₀+2⋅X₉+2 {O(n)}
Stabilization-Threshold for: X₁₀ ≤ 1+X₉
alphas_abs: 1+X₉+X₁₀
M: 0
N: 1
Bound: 2⋅X₁₀+2⋅X₉+4 {O(n)}

relevant size-bounds w.r.t. t₂₈₆:
X₉: X₉ {O(n)}
X₁₀: X₁₀+1 {O(n)}
Runtime-bound of t₂₈₆: 1 {O(1)}
Results in: 4⋅X₁₀+4⋅X₉+13 {O(n)}

4⋅X₁₀+4⋅X₉+13 {O(n)}

Found invariant 1+X₇ ≤ X₈ for location l2

Found invariant X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___4

Found invariant X₈ ≤ X₇ for location l6

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ 1+X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___2

Found invariant X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___3

Found invariant X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ for location l7

Found invariant X₈ ≤ X₇ for location l5

Found invariant X₀ ≤ 1 ∧ 1 ≤ X₀ for location l4

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___1

Found invariant 1+X₇ ≤ X₈ for location l2

Found invariant X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___4

Found invariant X₈ ≤ X₇ for location l6

Found invariant 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ 1+X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___2

Found invariant X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___3

Found invariant X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ for location l7

Found invariant X₈ ≤ X₇ for location l5

Found invariant X₀ ≤ 1 ∧ 1 ≤ X₀ for location l4

Found invariant 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___1

Time-Bound by TWN-Loops:

TWN-Loops: t₂₈₃ 12⋅X₇+12⋅X₈+30 {O(n)}

TWN-Loops:

entry: t₂₈₇: n_l3___4(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → n_l4___2(1, X₇, X₈+1, X₉, X₁₀, X₁₅, X₁₆) :|: X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇ ∧ 1+X₉ ≤ X₁₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [1+X₉ ≤ X₁₀ ∧ X₈ ≤ 1+X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ 0 ≤ 0 ∧ 0 ≤ 0] , (X₀,X₇,X₈,X₉,X₁₀,X₁₅,X₁₆) -> (1,X₇,X₈+1,X₉,X₁₀,X₁₅,X₁₆) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1+X₉ ≤ X₁₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₇ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₉ ≤ X₁₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₈ ≤ X₇ ∧ 1+X₉ ≤ X₁₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇ ∧ 1+X₉ ≤ X₁₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0
entry: t₂₈₅: n_l3___3(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → n_l4___2(1, X₇, X₈+1, X₉, X₁₀, X₁₅, X₁₆) :|: X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₁₀ ≤ 1+X₉ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇ ∧ 1+X₉ ≤ X₁₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [1+X₉ ≤ X₁₀ ∧ X₈ ≤ 1+X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ 0 ≤ 0 ∧ 0 ≤ 0] , (X₀,X₇,X₈,X₉,X₁₀,X₁₅,X₁₆) -> (1,X₇,X₈+1,X₉,X₁₀,X₁₅,X₁₆) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1+X₉ ≤ X₁₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₇ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₉ ≤ X₁₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₈ ≤ X₇ ∧ 1+X₉ ≤ X₁₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇ ∧ 1+X₉ ≤ X₁₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0
order: [X₀; X₇; X₈; X₉; X₁₀]
closed-form:
X₀: [[n == 0]] * X₀ + [[n != 0]]
X₇: X₇
X₈: X₈ + [[n != 0]] * n^1
X₉: X₉
X₁₀: X₁₀

Termination: true
Formula:

1+X₉ < X₁₀ ∧ 1 < 0
∨ 1+X₉ < X₁₀ ∧ 1 < 0 ∧ X₈ < 1+X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₉ < X₁₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 1+X₇ ≤ X₈
∨ 1+X₉ < X₁₀ ∧ X₈ < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1+X₉ < X₁₀ ∧ X₈ < X₇ ∧ X₈ < 1+X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₉ < X₁₀ ∧ X₈ < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 1+X₇ ≤ X₈
∨ 1+X₉ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 < 0
∨ 1+X₉ < X₁₀ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₈ < 1+X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₉ < X₁₀ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 1+X₇ ≤ X₈
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1 < 0
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1 < 0 ∧ X₈ < 1+X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 1+X₇ ≤ X₈
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ < X₇ ∧ X₈ < 1+X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 1+X₇ ≤ X₈
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 < 0
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₈ < 1+X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 1+X₇ ≤ X₈

Stabilization-Threshold for: X₈ ≤ X₇
alphas_abs: X₇+X₈
M: 0
N: 1
Bound: 2⋅X₇+2⋅X₈+2 {O(n)}
Stabilization-Threshold for: X₈ ≤ 1+X₇
alphas_abs: 1+X₇+X₈
M: 0
N: 1
Bound: 2⋅X₇+2⋅X₈+4 {O(n)}

relevant size-bounds w.r.t. t₂₈₇:
X₇: X₇ {O(n)}
X₈: X₈+1 {O(n)}
Runtime-bound of t₂₈₇: 1 {O(1)}
Results in: 4⋅X₇+4⋅X₈+13 {O(n)}

order: [X₀; X₇; X₈; X₉; X₁₀]
closed-form:
X₀: [[n == 0]] * X₀ + [[n != 0]]
X₇: X₇
X₈: X₈ + [[n != 0]] * n^1
X₉: X₉
X₁₀: X₁₀

Termination: true
Formula:

1+X₉ < X₁₀ ∧ 1 < 0
∨ 1+X₉ < X₁₀ ∧ 1 < 0 ∧ X₈ < 1+X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₉ < X₁₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 1+X₇ ≤ X₈
∨ 1+X₉ < X₁₀ ∧ X₈ < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1+X₉ < X₁₀ ∧ X₈ < X₇ ∧ X₈ < 1+X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₉ < X₁₀ ∧ X₈ < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 1+X₇ ≤ X₈
∨ 1+X₉ < X₁₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 < 0
∨ 1+X₉ < X₁₀ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₈ < 1+X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₉ < X₁₀ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 1+X₇ ≤ X₈
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1 < 0
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1 < 0 ∧ X₈ < 1+X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 1+X₇ ≤ X₈
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ < X₇ ∧ X₈ < 1+X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 1+X₇ ≤ X₈
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 < 0
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₈ < 1+X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 1+X₇ ≤ X₈

Stabilization-Threshold for: X₈ ≤ X₇
alphas_abs: X₇+X₈
M: 0
N: 1
Bound: 2⋅X₇+2⋅X₈+2 {O(n)}
Stabilization-Threshold for: X₈ ≤ 1+X₇
alphas_abs: 1+X₇+X₈
M: 0
N: 1
Bound: 2⋅X₇+2⋅X₈+4 {O(n)}

relevant size-bounds w.r.t. t₂₈₅:
X₇: 2⋅X₇ {O(n)}
X₈: 2⋅X₈+2 {O(n)}
Runtime-bound of t₂₈₅: 1 {O(1)}
Results in: 8⋅X₇+8⋅X₈+17 {O(n)}

12⋅X₇+12⋅X₈+30 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₂₈₈ 12⋅X₇+12⋅X₈+30 {O(n)}

relevant size-bounds w.r.t. t₂₈₇:
X₇: X₇ {O(n)}
X₈: X₈+1 {O(n)}
Runtime-bound of t₂₈₇: 1 {O(1)}
Results in: 4⋅X₇+4⋅X₈+13 {O(n)}

relevant size-bounds w.r.t. t₂₈₅:
X₇: 2⋅X₇ {O(n)}
X₈: 2⋅X₈+2 {O(n)}
Runtime-bound of t₂₈₅: 1 {O(1)}
Results in: 8⋅X₇+8⋅X₈+17 {O(n)}

12⋅X₇+12⋅X₈+30 {O(n)}

CFR: Improvement to new bound with the following program:

new bound:

24⋅X₇+24⋅X₈+4⋅X₁₀+4⋅X₉+73 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆
Temp_Vars: F1, X
Locations: l0, l1, l2, l4, l5, l6, l7, n_l3___1, n_l3___3, n_l3___4, n_l4___2
Transitions:
t₆₇: l0(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: X₀ ≤ 0
t₆₈: l0(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 2 ≤ X₀
t₆₆: l0(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l4(1, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₇₂: l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l2(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 2+X₀ ≤ 0 ∧ 1+X₇ ≤ X₈
t₇₃: l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l2(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 0 ≤ X₀ ∧ 1+X₇ ≤ X₈
t₇₄: l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l2(-1, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 1+X₇ ≤ X₈ ∧ X₀+1 ≤ 0 ∧ 0 ≤ 1+X₀
t₆₉: l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l5(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: X₈ ≤ 0 ∧ X₈ ≤ X₇
t₇₀: l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l5(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 2 ≤ X₈ ∧ X₈ ≤ X₇
t₇₁: l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l5(X₀, X₇, 1, X₉, X₁₀, X₁₅, X₁₆) :|: 1 ≤ X₇ ∧ X₈ ≤ 1 ∧ 1 ≤ X₈
t₇₈: l4(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 1+X₇ ≤ X₈ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₂₈₉: l4(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → n_l3___4(1, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₈₀: l5(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l1(X₀, X₇, X₈+1, X₉, X₁₀, X₁₅, X₁₆) :|: 2⋅X ≤ X₁₅ ∧ X₁₅+1 ≤ 3⋅X ∧ 2+X ≤ X₁₆ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇
t₇₉: l5(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 2⋅X ≤ X₁₅ ∧ X₁₅+1 ≤ 3⋅X ∧ X₁₆ ≤ X+1 ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇
t₈₆: l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l5(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆+1) :|: 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇
t₈₃: l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, X₁₀+1, X₁₅, 1) :|: X₁₀+4⋅X ≤ X₉ ∧ X₉+1 ≤ 5⋅X+X₁₀ ∧ X₁₀ ≤ 0 ∧ X₁₀ ≤ X₉ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇
t₈₄: l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, X₁₀+1, X₁₅, 1) :|: X₁₀+4⋅X ≤ X₉ ∧ X₉+1 ≤ 5⋅X+X₁₀ ∧ X₁₀ ≤ X₉ ∧ 2 ≤ X₁₀ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇
t₈₅: l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, 2, X₁₅, 1) :|: 1 ≤ X₉ ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇
t₈₁: l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l7(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: X₁₆ ≤ 0 ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇
t₈₂: l6(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l7(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 2 ≤ X₁₆ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇
t₈₇: l7(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, X₁₀+1, X₁₅, X₁₆) :|: 2⋅F1 ≤ X₁₆ ∧ X₁₆+1 ≤ 3⋅F1 ∧ X₁₀ ≤ 0 ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇
t₈₈: l7(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, X₁₀+1, X₁₅, X₁₆) :|: 2⋅F1 ≤ X₁₆ ∧ X₁₆+1 ≤ 3⋅F1 ∧ 2 ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇
t₈₉: l7(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l6(X₀, X₇, X₈, X₉, 2, X₁₅, X₁₆) :|: 2⋅F1 ≤ X₁₆ ∧ X₁₆+1 ≤ 3⋅F1 ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇
t₂₈₃: n_l3___1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → n_l4___2(1, X₇, X₈+1, X₉, X₁₀, X₁₅, X₁₆) :|: X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1+X₉ ≤ X₁₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ 1+X₉ ≤ X₁₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇ ∧ 1+X₉ ≤ X₁₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₂₈₄: n_l3___3(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → n_l3___3(1, X₇, X₈, X₉, X₁₀+1, X₁₅, X₁₆) :|: X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₁₀ ≤ 1+X₉ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇ ∧ X₁₀ ≤ X₉ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₂₈₅: n_l3___3(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → n_l4___2(1, X₇, X₈+1, X₉, X₁₀, X₁₅, X₁₆) :|: X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₁₀ ≤ 1+X₉ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇ ∧ 1+X₉ ≤ X₁₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₂₈₆: n_l3___4(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → n_l3___3(1, X₇, X₈, X₉, X₁₀+1, X₁₅, X₁₆) :|: X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇ ∧ X₁₀ ≤ X₉ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₂₈₇: n_l3___4(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → n_l4___2(1, X₇, X₈+1, X₉, X₁₀, X₁₅, X₁₆) :|: X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₈ ≤ X₇ ∧ 1+X₉ ≤ X₁₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₂₉₆: n_l4___2(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → l1(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: 1+X₇ ≤ X₈ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ 1+X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₂₈₈: n_l4___2(X₀, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) → n_l3___1(1, X₇, X₈, X₉, X₁₀, X₁₅, X₁₆) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1+X₉ ≤ X₁₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₇ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ 1+X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀

Analysing control-flow refined program

Cut unsatisfiable transition t₁₅₁₉: n_l1___41→n_l5___38

Cut unsatisfiable transition t₁₅₆₆: n_l5___7→n_l1___6

Cut unreachable locations [n_l1___2; n_l1___6; n_l5___3; n_l5___4; n_l5___5] from the program graph

Found invariant X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___4

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ 2 ≤ X₈ ∧ 4 ≤ X₇+X₈ ∧ 5 ≤ X₁₆+X₈ ∧ 4 ≤ X₁₅+X₈ ∧ 2 ≤ X₇ ∧ 5 ≤ X₁₆+X₇ ∧ 4 ≤ X₁₅+X₇ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₅ for location n_l5___30

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ X₁₆ ≤ X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ 1 ∧ 1+X₁₆ ≤ X₁₅ ∧ 1+X₁₆ ≤ X₁₀ ∧ X₁₀+X₁₆ ≤ 3 ∧ 1 ≤ X₁₆ ∧ 3 ≤ X₁₅+X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 1+X₁₆ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁₀+X₁₅ ∧ X₁₀ ≤ X₁₅ ∧ X₁₀ ≤ 2 ∧ 2 ≤ X₁₀ for location n_l6___12

Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 4 ≤ X₁₆+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ 1+X₇ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 5 ≤ X₁₀+X₁₆ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁₀+X₁₅ ∧ 2 ≤ X₁₀ for location n_l1___21

Found invariant X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ X₁₅ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁₅+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 2 ≤ X₁₅ ∧ 1+X₁₀ ≤ X₁₅ ∧ X₁₀ ≤ 1 for location n_l6___27

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ 2 ≤ X₁₅ for location n_l5___13

Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1+X₈ ≤ X₉ ∧ 4 ≤ X₁₆+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₇ ∧ 3+X₈ ≤ X₁₆ ∧ 2+X₈ ≤ X₁₅ ∧ 2+X₈ ≤ X₁₀ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 5 ≤ X₁₀+X₁₆ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁₀+X₁₅ ∧ 2 ≤ X₁₀ for location n_l5___19

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ 1+X₇ ∧ 2 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 5 ≤ X₁₆+X₈ ∧ 4 ≤ X₁₅+X₈ ∧ 1 ≤ X₇ ∧ 4 ≤ X₁₆+X₇ ∧ 3 ≤ X₁₅+X₇ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₅ for location n_l1___28

Found invariant X₈ ≤ 0 ∧ X₈ ≤ X₇ ∧ 3+X₈ ≤ X₁₆ ∧ 2+X₈ ≤ X₁₅ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₅ for location n_l5___39

Found invariant X₉ ≤ 1 ∧ 1+X₉ ≤ X₁₆ ∧ X₁₆+X₉ ≤ 3 ∧ 1+X₉ ≤ X₁₅ ∧ 1+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 3 ∧ 1 ≤ X₉ ∧ 3 ≤ X₁₆+X₉ ∧ X₁₆ ≤ 1+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ 2 ∧ X₁₆ ≤ X₁₅ ∧ X₁₆ ≤ X₁₀ ∧ X₁₀+X₁₆ ≤ 4 ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁₅+X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ X₁₆ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁₀+X₁₅ ∧ X₁₀ ≤ X₁₅ ∧ X₁₀ ≤ 2 ∧ 2 ≤ X₁₀ for location n_l5___7

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ 2 ≤ X₁₅ for location n_l6___8

Found invariant X₀ ≤ 1 ∧ 1 ≤ X₀ for location l4

Found invariant X₈ ≤ 1+X₇ ∧ 2 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 5 ≤ X₁₆+X₈ ∧ 4 ≤ X₁₅+X₈ ∧ 1 ≤ X₇ ∧ 4 ≤ X₁₆+X₇ ∧ 3 ≤ X₁₅+X₇ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₅ for location n_l1___14

Found invariant X₈ ≤ 1 ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 1 ≤ X₇ for location n_l5___42

Found invariant X₈ ≤ X₇ ∧ 2 ≤ X₈ ∧ 4 ≤ X₇+X₈ ∧ 5 ≤ X₁₆+X₈ ∧ 4 ≤ X₁₅+X₈ ∧ 2 ≤ X₇ ∧ 5 ≤ X₁₆+X₇ ∧ 4 ≤ X₁₅+X₇ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₅ for location n_l5___38

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ 1+X₇ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₅ for location n_l1___33

Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ 4 ≤ X₁₆+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ 1 ∧ X₈ ≤ X₇ ∧ 2+X₈ ≤ X₁₆ ∧ 1+X₈ ≤ X₁₅ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₅+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 1 ≤ X₇ ∧ 4 ≤ X₁₆+X₇ ∧ 3 ≤ X₁₅+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 5 ≤ X₁₀+X₁₆ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁₀+X₁₅ ∧ 2 ≤ X₁₀ for location n_l5___17

Found invariant 1+X₇ ≤ X₈ for location l2

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ 1 ∧ X₈ ≤ X₇ ∧ 2+X₈ ≤ X₁₆ ∧ 1+X₈ ≤ X₁₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₅+X₈ ∧ 1 ≤ X₇ ∧ 4 ≤ X₁₆+X₇ ∧ 3 ≤ X₁₅+X₇ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₅ for location n_l5___29

Found invariant 4 ≤ X₉ ∧ 5 ≤ X₁₆+X₉ ∧ 3+X₁₆ ≤ X₉ ∧ 6 ≤ X₁₅+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ 1 ∧ 1+X₁₆ ≤ X₁₅ ∧ 1+X₁₆ ≤ X₁₀ ∧ X₁₀+X₁₆ ≤ 3 ∧ 1 ≤ X₁₆ ∧ 3 ≤ X₁₅+X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 1+X₁₆ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁₀+X₁₅ ∧ X₁₀ ≤ X₁₅ ∧ X₁₀ ≤ 2 ∧ 2 ≤ X₁₀ for location n_l6___1

Found invariant X₈ ≤ X₇ ∧ 2 ≤ X₈ ∧ 4 ≤ X₇+X₈ ∧ 2 ≤ X₇ for location n_l5___43

Found invariant X₈ ≤ 0 ∧ X₈ ≤ X₇ for location n_l5___44

Found invariant 2 ≤ X₉ ∧ 4 ≤ X₁₆+X₉ ∧ 4 ≤ X₁₅+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ X₁₅ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁₅+X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ X₁₆ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁₀+X₁₅ ∧ X₁₀ ≤ X₁₅ ∧ X₁₀ ≤ 2 ∧ 2 ≤ X₁₀ for location n_l7___15

Found invariant X₈ ≤ 1 ∧ X₈ ≤ X₇ ∧ 2+X₈ ≤ X₁₆ ∧ 1+X₈ ≤ X₁₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₅+X₈ ∧ 1 ≤ X₇ ∧ 4 ≤ X₁₆+X₇ ∧ 3 ≤ X₁₅+X₇ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₅ for location n_l5___37

Found invariant 1 ≤ X₉ ∧ 3 ≤ X₁₆+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ X₁₅ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁₅+X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ X₁₆ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁₀+X₁₅ ∧ X₁₀ ≤ X₁₅ ∧ X₁₀ ≤ 2 ∧ 2 ≤ X₁₀ for location n_l6___25

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ 1+X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___2

Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3 ≤ X₇+X₉ ∧ 4 ≤ X₁₆+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ 2 ≤ X₈ ∧ 4 ≤ X₇+X₈ ∧ 5 ≤ X₁₆+X₈ ∧ 4 ≤ X₁₅+X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 2 ≤ X₇ ∧ 5 ≤ X₁₆+X₇ ∧ 4 ≤ X₁₅+X₇ ∧ 4 ≤ X₁₀+X₇ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 5 ≤ X₁₀+X₁₆ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁₀+X₁₅ ∧ 2 ≤ X₁₀ for location n_l5___18

Found invariant 6 ≤ X₉ ∧ 7 ≤ X₁₆+X₉ ∧ 5+X₁₆ ≤ X₉ ∧ 8 ≤ X₁₅+X₉ ∧ 9 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ 1 ∧ 1+X₁₆ ≤ X₁₅ ∧ 2+X₁₆ ≤ X₁₀ ∧ 1 ≤ X₁₆ ∧ 3 ≤ X₁₅+X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ 2 ≤ X₁₅ ∧ 5 ≤ X₁₀+X₁₅ ∧ 3 ≤ X₁₀ for location n_l6___10

Found invariant X₈ ≤ X₇ ∧ 3 ≤ X₁₆ ∧ 7 ≤ X₁₅+X₁₆ ∧ 4 ≤ X₁₅ for location n_l6___36

Found invariant X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___3

Found invariant 2 ≤ X₉ ∧ 4 ≤ X₁₆+X₉ ∧ 4 ≤ X₁₅+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ X₁₅ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁₅+X₁₆ ∧ 5 ≤ X₁₀+X₁₆ ∧ 2 ≤ X₁₅ ∧ 5 ≤ X₁₀+X₁₅ ∧ 3 ≤ X₁₀ for location n_l6___26

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ 3 ≤ X₁₆ ∧ 7 ≤ X₁₅+X₁₆ ∧ 4 ≤ X₁₅ for location n_l6___32

Found invariant X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ X₁₅ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁₅+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 2 ≤ X₁₅ ∧ 1+X₁₀ ≤ X₁₅ ∧ X₁₀ ≤ 1 for location n_l7___24

Found invariant 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ 1 ∧ 1+X₁₆ ≤ X₁₅ ∧ X₁₀+X₁₆ ≤ 2 ∧ 1 ≤ X₁₆ ∧ 3 ≤ X₁₅+X₁₆ ∧ X₁₀ ≤ X₁₆ ∧ 2 ≤ X₁₅ ∧ 1+X₁₀ ≤ X₁₅ ∧ X₁₀ ≤ 1 for location n_l6___11

Found invariant 3 ≤ X₉ ∧ 5 ≤ X₁₆+X₉ ∧ 5 ≤ X₁₅+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ X₁₅ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁₅+X₁₆ ∧ 5 ≤ X₁₀+X₁₆ ∧ 2 ≤ X₁₅ ∧ 5 ≤ X₁₀+X₁₅ ∧ 3 ≤ X₁₀ for location n_l7___22

Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 4 ≤ X₁₆+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ 1+X₇ ∧ 2 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 5 ≤ X₁₆+X₈ ∧ 4 ≤ X₁₅+X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 1 ≤ X₇ ∧ 4 ≤ X₁₆+X₇ ∧ 3 ≤ X₁₅+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 5 ≤ X₁₀+X₁₆ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁₀+X₁₅ ∧ 2 ≤ X₁₀ for location n_l1___16

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₇ ∧ 3+X₈ ≤ X₁₆ ∧ 2+X₈ ≤ X₁₅ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₅ for location n_l5___31

Found invariant X₈ ≤ X₇ ∧ 2 ≤ X₁₅ for location n_l6___40

Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 4 ≤ X₁₆+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ 1+X₁₅ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 5 ≤ X₁₀+X₁₆ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁₀+X₁₅ ∧ 2 ≤ X₁₀ for location n_l5___23

Found invariant X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ 0 ∧ 2+X₁₆ ≤ X₁₅ ∧ 2 ≤ X₁₅ for location n_l7___9

Found invariant X₈ ≤ 1 ∧ X₈ ≤ 1+X₇ ∧ 2+X₈ ≤ X₁₆ ∧ 1+X₈ ≤ X₁₅ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₅ for location n_l1___41

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___1

Found invariant X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₅ for location n_l7___34

Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 3 ≤ X₁₆+X₉ ∧ 3 ≤ X₁₅+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁₅+X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁₀+X₁₅ ∧ 2 ≤ X₁₀ for location n_l6___20

Found invariant 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₇ ∧ X₁₆ ≤ 1+X₁₅ ∧ 3 ≤ X₁₆ ∧ 5 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₅ for location n_l5___35

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₆₆: 1 {O(1)}
t₆₇: 1 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: inf {Infinity}
t₇₀: inf {Infinity}
t₇₁: inf {Infinity}
t₇₂: 1 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 1 {O(1)}
t₇₈: 1 {O(1)}
t₂₈₉: 1 {O(1)}
t₇₉: inf {Infinity}
t₈₀: inf {Infinity}
t₈₁: inf {Infinity}
t₈₂: inf {Infinity}
t₈₃: inf {Infinity}
t₈₄: inf {Infinity}
t₈₅: inf {Infinity}
t₈₆: inf {Infinity}
t₈₇: inf {Infinity}
t₈₈: inf {Infinity}
t₈₉: inf {Infinity}
t₂₈₃: 12⋅X₇+12⋅X₈+30 {O(n)}
t₂₈₄: 4⋅X₁₀+4⋅X₉+13 {O(n)}
t₂₈₅: 1 {O(1)}
t₂₈₆: 1 {O(1)}
t₂₈₇: 1 {O(1)}
t₂₈₈: 12⋅X₇+12⋅X₈+30 {O(n)}
t₂₉₆: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₆₆: 1 {O(1)}
t₆₇: 1 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: inf {Infinity}
t₇₀: inf {Infinity}
t₇₁: inf {Infinity}
t₇₂: 1 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 1 {O(1)}
t₇₈: 1 {O(1)}
t₂₈₉: 1 {O(1)}
t₇₉: inf {Infinity}
t₈₀: inf {Infinity}
t₈₁: inf {Infinity}
t₈₂: inf {Infinity}
t₈₃: inf {Infinity}
t₈₄: inf {Infinity}
t₈₅: inf {Infinity}
t₈₆: inf {Infinity}
t₈₇: inf {Infinity}
t₈₈: inf {Infinity}
t₈₉: inf {Infinity}
t₂₈₃: 12⋅X₇+12⋅X₈+30 {O(n)}
t₂₈₄: 4⋅X₁₀+4⋅X₉+13 {O(n)}
t₂₈₅: 1 {O(1)}
t₂₈₆: 1 {O(1)}
t₂₈₇: 1 {O(1)}
t₂₈₈: 12⋅X₇+12⋅X₈+30 {O(n)}
t₂₉₆: 1 {O(1)}

Sizebounds

t₆₆, X₀: 1 {O(1)}
t₆₆, X₇: X₇ {O(n)}
t₆₆, X₈: X₈ {O(n)}
t₆₆, X₉: X₉ {O(n)}
t₆₆, X₁₀: X₁₀ {O(n)}
t₆₆, X₁₅: X₁₅ {O(n)}
t₆₆, X₁₆: X₁₆ {O(n)}
t₆₇, X₀: X₀ {O(n)}
t₆₇, X₇: X₇ {O(n)}
t₆₇, X₈: X₈ {O(n)}
t₆₇, X₉: X₉ {O(n)}
t₆₇, X₁₀: X₁₀ {O(n)}
t₆₇, X₁₅: X₁₅ {O(n)}
t₆₇, X₁₆: X₁₆ {O(n)}
t₆₈, X₀: X₀ {O(n)}
t₆₈, X₇: X₇ {O(n)}
t₆₈, X₈: X₈ {O(n)}
t₆₈, X₉: X₉ {O(n)}
t₆₈, X₁₀: X₁₀ {O(n)}
t₆₈, X₁₅: X₁₅ {O(n)}
t₆₈, X₁₆: X₁₆ {O(n)}
t₆₉, X₀: 6⋅X₀ {O(n)}
t₆₉, X₇: 6⋅X₇ {O(n)}
t₆₉, X₉: 6⋅X₉ {O(n)}
t₆₉, X₁₅: 6⋅X₁₅ {O(n)}
t₇₀, X₀: 6⋅X₀ {O(n)}
t₇₀, X₇: 6⋅X₇ {O(n)}
t₇₀, X₉: 6⋅X₉ {O(n)}
t₇₀, X₁₅: 6⋅X₁₅ {O(n)}
t₇₁, X₀: 6⋅X₀ {O(n)}
t₇₁, X₇: 6⋅X₇ {O(n)}
t₇₁, X₈: 1 {O(1)}
t₇₁, X₉: 6⋅X₉ {O(n)}
t₇₁, X₁₅: 6⋅X₁₅ {O(n)}
t₇₂, X₀: 7⋅X₀ {O(n)}
t₇₂, X₇: 7⋅X₇ {O(n)}
t₇₂, X₉: 7⋅X₉ {O(n)}
t₇₂, X₁₅: 7⋅X₁₅ {O(n)}
t₇₃, X₀: 8⋅X₀+2 {O(n)}
t₇₃, X₇: 15⋅X₇ {O(n)}
t₇₃, X₉: 15⋅X₉ {O(n)}
t₇₃, X₁₅: 15⋅X₁₅ {O(n)}
t₇₄, X₀: 1 {O(1)}
t₇₄, X₇: 7⋅X₇ {O(n)}
t₇₄, X₉: 7⋅X₉ {O(n)}
t₇₄, X₁₅: 7⋅X₁₅ {O(n)}
t₇₈, X₀: 1 {O(1)}
t₇₈, X₇: X₇ {O(n)}
t₇₈, X₈: X₈ {O(n)}
t₇₈, X₉: X₉ {O(n)}
t₇₈, X₁₀: X₁₀ {O(n)}
t₇₈, X₁₅: X₁₅ {O(n)}
t₇₈, X₁₆: X₁₆ {O(n)}
t₂₈₉, X₀: 1 {O(1)}
t₂₈₉, X₇: X₇ {O(n)}
t₂₈₉, X₈: X₈ {O(n)}
t₂₈₉, X₉: X₉ {O(n)}
t₂₈₉, X₁₀: X₁₀ {O(n)}
t₂₈₉, X₁₅: X₁₅ {O(n)}
t₂₈₉, X₁₆: X₁₆ {O(n)}
t₇₉, X₀: 6⋅X₀ {O(n)}
t₇₉, X₇: 6⋅X₇ {O(n)}
t₇₉, X₉: 6⋅X₉ {O(n)}
t₇₉, X₁₅: 6⋅X₁₅ {O(n)}
t₈₀, X₀: 6⋅X₀ {O(n)}
t₈₀, X₇: 6⋅X₇ {O(n)}
t₈₀, X₉: 6⋅X₉ {O(n)}
t₈₀, X₁₅: 6⋅X₁₅ {O(n)}
t₈₁, X₀: 6⋅X₀ {O(n)}
t₈₁, X₇: 6⋅X₇ {O(n)}
t₈₁, X₉: 6⋅X₉ {O(n)}
t₈₁, X₁₅: 6⋅X₁₅ {O(n)}
t₈₂, X₀: 6⋅X₀ {O(n)}
t₈₂, X₇: 6⋅X₇ {O(n)}
t₈₂, X₉: 6⋅X₉ {O(n)}
t₈₂, X₁₅: 6⋅X₁₅ {O(n)}
t₈₃, X₀: 6⋅X₀ {O(n)}
t₈₃, X₇: 6⋅X₇ {O(n)}
t₈₃, X₉: 6⋅X₉ {O(n)}
t₈₃, X₁₅: 6⋅X₁₅ {O(n)}
t₈₃, X₁₆: 1 {O(1)}
t₈₄, X₀: 12⋅X₀ {O(n)}
t₈₄, X₇: 12⋅X₇ {O(n)}
t₈₄, X₉: 12⋅X₉ {O(n)}
t₈₄, X₁₅: 12⋅X₁₅ {O(n)}
t₈₄, X₁₆: 1 {O(1)}
t₈₅, X₀: 6⋅X₀ {O(n)}
t₈₅, X₇: 6⋅X₇ {O(n)}
t₈₅, X₉: 6⋅X₉ {O(n)}
t₈₅, X₁₀: 2 {O(1)}
t₈₅, X₁₅: 6⋅X₁₅ {O(n)}
t₈₅, X₁₆: 1 {O(1)}
t₈₆, X₀: 6⋅X₀ {O(n)}
t₈₆, X₇: 6⋅X₇ {O(n)}
t₈₆, X₉: 6⋅X₉ {O(n)}
t₈₆, X₁₅: 6⋅X₁₅ {O(n)}
t₈₇, X₀: 6⋅X₀ {O(n)}
t₈₇, X₇: 6⋅X₇ {O(n)}
t₈₇, X₉: 6⋅X₉ {O(n)}
t₈₇, X₁₅: 6⋅X₁₅ {O(n)}
t₈₈, X₀: 6⋅X₀ {O(n)}
t₈₈, X₇: 6⋅X₇ {O(n)}
t₈₈, X₉: 6⋅X₉ {O(n)}
t₈₈, X₁₅: 6⋅X₁₅ {O(n)}
t₈₉, X₀: 6⋅X₀ {O(n)}
t₈₉, X₇: 6⋅X₇ {O(n)}
t₈₉, X₉: 6⋅X₉ {O(n)}
t₈₉, X₁₀: 2 {O(1)}
t₈₉, X₁₅: 6⋅X₁₅ {O(n)}
t₂₈₃, X₀: 1 {O(1)}
t₂₈₃, X₇: 3⋅X₇ {O(n)}
t₂₈₃, X₈: 12⋅X₇+15⋅X₈+33 {O(n)}
t₂₈₃, X₉: 3⋅X₉ {O(n)}
t₂₈₃, X₁₀: 4⋅X₉+7⋅X₁₀+15 {O(n)}
t₂₈₃, X₁₅: 3⋅X₁₅ {O(n)}
t₂₈₃, X₁₆: 3⋅X₁₆ {O(n)}
t₂₈₄, X₀: 1 {O(1)}
t₂₈₄, X₇: X₇ {O(n)}
t₂₈₄, X₈: X₈ {O(n)}
t₂₈₄, X₉: X₉ {O(n)}
t₂₈₄, X₁₀: 4⋅X₉+5⋅X₁₀+14 {O(n)}
t₂₈₄, X₁₅: X₁₅ {O(n)}
t₂₈₄, X₁₆: X₁₆ {O(n)}
t₂₈₅, X₀: 1 {O(1)}
t₂₈₅, X₇: 2⋅X₇ {O(n)}
t₂₈₅, X₈: 2⋅X₈+2 {O(n)}
t₂₈₅, X₉: 2⋅X₉ {O(n)}
t₂₈₅, X₁₀: 4⋅X₉+6⋅X₁₀+15 {O(n)}
t₂₈₅, X₁₅: 2⋅X₁₅ {O(n)}
t₂₈₅, X₁₆: 2⋅X₁₆ {O(n)}
t₂₈₆, X₀: 1 {O(1)}
t₂₈₆, X₇: X₇ {O(n)}
t₂₈₆, X₈: X₈ {O(n)}
t₂₈₆, X₉: X₉ {O(n)}
t₂₈₆, X₁₀: X₁₀+1 {O(n)}
t₂₈₆, X₁₅: X₁₅ {O(n)}
t₂₈₆, X₁₆: X₁₆ {O(n)}
t₂₈₇, X₀: 1 {O(1)}
t₂₈₇, X₇: X₇ {O(n)}
t₂₈₇, X₈: X₈+1 {O(n)}
t₂₈₇, X₉: X₉ {O(n)}
t₂₈₇, X₁₀: X₁₀ {O(n)}
t₂₈₇, X₁₅: X₁₅ {O(n)}
t₂₈₇, X₁₆: X₁₆ {O(n)}
t₂₈₈, X₀: 1 {O(1)}
t₂₈₈, X₇: 3⋅X₇ {O(n)}
t₂₈₈, X₈: 12⋅X₇+15⋅X₈+33 {O(n)}
t₂₈₈, X₉: 3⋅X₉ {O(n)}
t₂₈₈, X₁₀: 4⋅X₉+7⋅X₁₀+15 {O(n)}
t₂₈₈, X₁₅: 3⋅X₁₅ {O(n)}
t₂₈₈, X₁₆: 3⋅X₁₆ {O(n)}
t₂₉₆, X₀: 1 {O(1)}
t₂₉₆, X₇: 6⋅X₇ {O(n)}
t₂₉₆, X₈: 12⋅X₇+18⋅X₈+36 {O(n)}
t₂₉₆, X₉: 6⋅X₉ {O(n)}
t₂₉₆, X₁₀: 14⋅X₁₀+8⋅X₉+30 {O(n)}
t₂₉₆, X₁₅: 6⋅X₁₅ {O(n)}
t₂₉₆, X₁₆: 6⋅X₁₆ {O(n)}