Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₁: l1(X₀, X₁, X₂, X₃) → l1(X₁-1, X₁-1, E, X₃) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ E ∧ 1 ≤ X₁+X₀
t₂: l1(X₀, X₁, X₂, X₃) → l1(X₁-1, X₁-1, E, X₃) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ E+1 ≤ 0 ∧ 1 ≤ X₁+X₀
t₃: l1(X₀, X₁, X₂, X₃) → l1(X₀-1, X₀-2, 0, X₃) :|: 1 ≤ X₀ ∧ 1 ≤ X₁+X₀ ∧ 1 ≤ X₁
t₄: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, E) :|: 1 ≤ X₀ ∧ X₁+X₀ ≤ 0 ∧ 1 ≤ X₁
t₅: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, E) :|: 1 ≤ X₁ ∧ X₀ ≤ 0
t₆: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, E) :|: X₁ ≤ 0
Cut unsatisfiable transition t₄: l1→l2
Eliminate variables {X₂,X₃} that do not contribute to the problem
Start: l0
Program_Vars: X₀, X₁
Temp_Vars: E
Locations: l0, l1, l2
Transitions:
t₂₁: l0(X₀, X₁) → l1(X₀, X₁)
t₂₂: l1(X₀, X₁) → l1(X₁-1, X₁-1) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ E ∧ 1 ≤ X₁+X₀
t₂₃: l1(X₀, X₁) → l1(X₁-1, X₁-1) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ E+1 ≤ 0 ∧ 1 ≤ X₁+X₀
t₂₄: l1(X₀, X₁) → l1(X₀-1, X₀-2) :|: 1 ≤ X₀ ∧ 1 ≤ X₁+X₀ ∧ 1 ≤ X₁
t₂₅: l1(X₀, X₁) → l2(X₀, X₁) :|: 1 ≤ X₁ ∧ X₀ ≤ 0
t₂₆: l1(X₀, X₁) → l2(X₀, X₁) :|: X₁ ≤ 0
Found invariant 1+X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 0 ≤ X₀ for location n_l1___2
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l1___3
Found invariant 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 1 ≤ X₀ for location n_l1___1
Overall timebound:inf {Infinity}
t₂₁: 1 {O(1)}
t₂₂: inf {Infinity}
t₂₃: inf {Infinity}
t₂₄: inf {Infinity}
t₂₅: 1 {O(1)}
t₂₆: 1 {O(1)}
Overall costbound: inf {Infinity}
t₂₁: 1 {O(1)}
t₂₂: inf {Infinity}
t₂₃: inf {Infinity}
t₂₄: inf {Infinity}
t₂₅: 1 {O(1)}
t₂₆: 1 {O(1)}
t₂₁, X₀: X₀ {O(n)}
t₂₁, X₁: X₁ {O(n)}
t₂₂, X₀: 2⋅X₀+4⋅X₁ {O(n)}
t₂₂, X₁: 2⋅X₀+4⋅X₁ {O(n)}
t₂₃, X₀: 2⋅X₀+4⋅X₁ {O(n)}
t₂₃, X₁: 2⋅X₀+4⋅X₁ {O(n)}
t₂₄, X₀: 2⋅X₀+4⋅X₁ {O(n)}
t₂₄, X₁: 2⋅X₀+4⋅X₁ {O(n)}
t₂₅, X₀: X₀ {O(n)}
t₂₅, X₁: X₁ {O(n)}
t₂₆, X₀: 12⋅X₁+7⋅X₀ {O(n)}
t₂₆, X₁: 13⋅X₁+6⋅X₀ {O(n)}