Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l6(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: 1 ≤ X₂ ∧ X₂+1 ≤ X₁
t₃: l1(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ ≤ 0
t₄: l1(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ X₂
t₅: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: 1 ≤ X₀
t₆: l2(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₀ ≤ 0
t₇: l3(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1)
t₈: l4(X₀, X₁, X₂) → l1(X₀, X₁, X₂-1)
t₉: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂)
t₁: l6(X₀, X₁, X₂) → l1(X₂, X₁, X₀) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁

Preprocessing

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l2

Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l7

Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l5

Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l1

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l4

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l6(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: 1 ≤ X₂ ∧ X₂+1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃: l1(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₄: l1(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₅: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₆: l2(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₇: l3(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₈: l4(X₀, X₁, X₂) → l1(X₀, X₁, X₂-1) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₉: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁: l6(X₀, X₁, X₂) → l1(X₂, X₁, X₀) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁

Analysing control-flow refined program

Cut unsatisfiable transition t₃: l1→l5

Cut unsatisfiable transition t₄: l1→l5

Cut unsatisfiable transition t₂₆₇: n_l1___3→l5

Cut unsatisfiable transition t₂₆₆: n_l1___6→l5

Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___6

Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___4

Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___5

Found invariant 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___3

Found invariant 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l2___2

Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l7

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l2___9

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___8

Found invariant 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___1

Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l5

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l1

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___7

Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___6

Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___4

Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___5

Found invariant 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___3

Found invariant 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l2___2

Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l7

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l2___9

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___8

Found invariant 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___1

Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l5

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l1

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___7

Time-Bound by TWN-Loops:

TWN-Loops: t₂₄₆ 4⋅X₀+4⋅X₁+21 {O(n)}

TWN-Loops:

entry: t₂₅₂: n_l3___8(X₀, X₁, X₂) → n_l1___6(X₀, X₁, X₂+1) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂) -> (X₀,X₁,X₂+1) :|: 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂ + [[n != 0]] * n^1

Termination: true
Formula:

1 < X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 1 < X₀ ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 < 1 ∧ 1 < X₀ ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 < 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 < 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 0 < 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 < 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 < 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 0 < 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 < 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 < 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 0 < 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 < 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 < 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 0 < 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 1 < X₂ ∧ 1 < 0 ∧ 1 < X₀ ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1 < 0 ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < X₂ ∧ 1 < 0 ∧ 1 < X₀ ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1 < 0 ∧ 1 < X₀ ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 1 < X₂ ∧ 1 < 0 ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1 < 0 ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < X₂ ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < X₂ ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 1 < X₂ ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₀ ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 < 0
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 2 ≤ X₂ ∧ X₂ ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂

Stabilization-Threshold for: 1 ≤ X₂
alphas_abs: 1+X₂
M: 0
N: 1
Bound: 2⋅X₂+4 {O(n)}
Stabilization-Threshold for: 1+X₂ ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 2 ≤ X₂
alphas_abs: 2+X₂
M: 0
N: 1
Bound: 2⋅X₂+6 {O(n)}
Stabilization-Threshold for: X₂ ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}

relevant size-bounds w.r.t. t₂₅₂:
X₁: X₁ {O(n)}
X₂: X₀+1 {O(n)}
Runtime-bound of t₂₅₂: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₁+21 {O(n)}

4⋅X₀+4⋅X₁+21 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₂₄₈ 4⋅X₀+4⋅X₁+21 {O(n)}

relevant size-bounds w.r.t. t₂₅₂:
X₁: X₁ {O(n)}
X₂: X₀+1 {O(n)}
Runtime-bound of t₂₅₂: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₁+21 {O(n)}

4⋅X₀+4⋅X₁+21 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₂₅₁ 4⋅X₀+4⋅X₁+21 {O(n)}

relevant size-bounds w.r.t. t₂₅₂:
X₁: X₁ {O(n)}
X₂: X₀+1 {O(n)}
Runtime-bound of t₂₅₂: 1 {O(1)}
Results in: 4⋅X₀+4⋅X₁+21 {O(n)}

4⋅X₀+4⋅X₁+21 {O(n)}

Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___6

Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___4

Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___5

Found invariant 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___3

Found invariant 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l2___2

Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l7

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l2___9

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___8

Found invariant 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___1

Found invariant X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l5

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l1

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___7

Time-Bound by TWN-Loops:

TWN-Loops: t₂₄₅ 4⋅X₁+8⋅X₀+17 {O(n)}

TWN-Loops:

entry: t₂₅₄: n_l4___7(X₀, X₁, X₂) → n_l1___3(X₀, X₁, X₂-1) :|: X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
results in twn-loop: twn:Inv: [2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0] , (X₀,X₁,X₂) -> (X₀,X₁,X₂-1) :|: 1+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ 0 ∧ X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₀ ≤ 0
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

X₀ < 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 0 ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 0 ∧ 1 < X₂ ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1 < X₂ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < X₂ ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 < X₂ ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₂ ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 < X₂ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < X₂ ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 < X₂ ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 < X₂ ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < X₂ ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ X₁ ≤ 2+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0

Stabilization-Threshold for: 1+X₂ ≤ X₁
alphas_abs: 1+X₁+X₂
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+4 {O(n)}
Stabilization-Threshold for: 1 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
Stabilization-Threshold for: 2+X₂ ≤ X₁
alphas_abs: 2+X₁+X₂
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+6 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}

relevant size-bounds w.r.t. t₂₅₄:
X₁: X₁ {O(n)}
X₂: X₀ {O(n)}
Runtime-bound of t₂₅₄: 1 {O(1)}
Results in: 4⋅X₁+8⋅X₀+17 {O(n)}

4⋅X₁+8⋅X₀+17 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₂₄₇ 4⋅X₁+8⋅X₀+17 {O(n)}

relevant size-bounds w.r.t. t₂₅₄:
X₁: X₁ {O(n)}
X₂: X₀ {O(n)}
Runtime-bound of t₂₅₄: 1 {O(1)}
Results in: 4⋅X₁+8⋅X₀+17 {O(n)}

4⋅X₁+8⋅X₀+17 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₂₅₃ 4⋅X₁+8⋅X₀+17 {O(n)}

relevant size-bounds w.r.t. t₂₅₄:
X₁: X₁ {O(n)}
X₂: X₀ {O(n)}
Runtime-bound of t₂₅₄: 1 {O(1)}
Results in: 4⋅X₁+8⋅X₀+17 {O(n)}

4⋅X₁+8⋅X₀+17 {O(n)}

CFR: Improvement to new bound with the following program:

new bound:

24⋅X₁+36⋅X₀+114 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l5, l6, l7, n_l1___3, n_l1___6, n_l2___2, n_l2___5, n_l2___9, n_l3___4, n_l3___8, n_l4___1, n_l4___7
Transitions:
t₀: l0(X₀, X₁, X₂) → l6(X₀, X₁, X₂)
t₂₄₄: l1(X₀, X₁, X₂) → n_l2___9(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₉: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁: l6(X₀, X₁, X₂) → l1(X₂, X₁, X₀) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁
t₂₆₅: n_l1___3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₂₄₅: n_l1___3(X₀, X₁, X₂) → n_l2___2(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₂₆₈: n_l1___6(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₄₆: n_l1___6(X₀, X₁, X₂) → n_l2___5(X₀, X₁, X₂) :|: 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₄₇: n_l2___2(X₀, X₁, X₂) → n_l4___1(X₀, X₁, X₂) :|: X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₂₄₈: n_l2___5(X₀, X₁, X₂) → n_l3___4(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₄₉: n_l2___9(X₀, X₁, X₂) → n_l3___8(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₅₀: n_l2___9(X₀, X₁, X₂) → n_l4___7(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₅₁: n_l3___4(X₀, X₁, X₂) → n_l1___6(X₀, X₁, X₂+1) :|: 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₅₂: n_l3___8(X₀, X₁, X₂) → n_l1___6(X₀, X₁, X₂+1) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₅₃: n_l4___1(X₀, X₁, X₂) → n_l1___3(X₀, X₁, X₂-1) :|: X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₂₅₄: n_l4___7(X₀, X₁, X₂) → n_l1___3(X₀, X₁, X₂-1) :|: X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0

All Bounds

Timebounds

Overall timebound:24⋅X₁+36⋅X₀+124 {O(n)}
t₀: 1 {O(1)}
t₂₄₄: 1 {O(1)}
t₉: 1 {O(1)}
t₁: 1 {O(1)}
t₂₄₅: 4⋅X₁+8⋅X₀+17 {O(n)}
t₂₆₅: 1 {O(1)}
t₂₄₆: 4⋅X₀+4⋅X₁+21 {O(n)}
t₂₆₈: 1 {O(1)}
t₂₄₇: 4⋅X₁+8⋅X₀+17 {O(n)}
t₂₄₈: 4⋅X₀+4⋅X₁+21 {O(n)}
t₂₄₉: 1 {O(1)}
t₂₅₀: 1 {O(1)}
t₂₅₁: 4⋅X₀+4⋅X₁+21 {O(n)}
t₂₅₂: 1 {O(1)}
t₂₅₃: 4⋅X₁+8⋅X₀+17 {O(n)}
t₂₅₄: 1 {O(1)}

Costbounds

Overall costbound: 24⋅X₁+36⋅X₀+124 {O(n)}
t₀: 1 {O(1)}
t₂₄₄: 1 {O(1)}
t₉: 1 {O(1)}
t₁: 1 {O(1)}
t₂₄₅: 4⋅X₁+8⋅X₀+17 {O(n)}
t₂₆₅: 1 {O(1)}
t₂₄₆: 4⋅X₀+4⋅X₁+21 {O(n)}
t₂₆₈: 1 {O(1)}
t₂₄₇: 4⋅X₁+8⋅X₀+17 {O(n)}
t₂₄₈: 4⋅X₀+4⋅X₁+21 {O(n)}
t₂₄₉: 1 {O(1)}
t₂₅₀: 1 {O(1)}
t₂₅₁: 4⋅X₀+4⋅X₁+21 {O(n)}
t₂₅₂: 1 {O(1)}
t₂₅₃: 4⋅X₁+8⋅X₀+17 {O(n)}
t₂₅₄: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₂₄₄, X₀: X₂ {O(n)}
t₂₄₄, X₁: X₁ {O(n)}
t₂₄₄, X₂: X₀ {O(n)}
t₉, X₀: 4⋅X₂ {O(n)}
t₉, X₁: 4⋅X₁ {O(n)}
t₉, X₂: 4⋅X₁+6⋅X₀+23 {O(n)}
t₁, X₀: X₂ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₀ {O(n)}
t₂₄₅, X₀: X₂ {O(n)}
t₂₄₅, X₁: X₁ {O(n)}
t₂₄₅, X₂: X₀ {O(n)}
t₂₆₅, X₀: 2⋅X₂ {O(n)}
t₂₆₅, X₁: 2⋅X₁ {O(n)}
t₂₆₅, X₂: 0 {O(1)}
t₂₄₆, X₀: X₂ {O(n)}
t₂₄₆, X₁: X₁ {O(n)}
t₂₄₆, X₂: 4⋅X₁+5⋅X₀+22 {O(n)}
t₂₆₈, X₀: 2⋅X₂ {O(n)}
t₂₆₈, X₁: 2⋅X₁ {O(n)}
t₂₆₈, X₂: 4⋅X₁+6⋅X₀+23 {O(n)}
t₂₄₇, X₀: X₂ {O(n)}
t₂₄₇, X₁: X₁ {O(n)}
t₂₄₇, X₂: X₀ {O(n)}
t₂₄₈, X₀: X₂ {O(n)}
t₂₄₈, X₁: X₁ {O(n)}
t₂₄₈, X₂: 4⋅X₁+5⋅X₀+22 {O(n)}
t₂₄₉, X₀: X₂ {O(n)}
t₂₄₉, X₁: X₁ {O(n)}
t₂₄₉, X₂: X₀ {O(n)}
t₂₅₀, X₀: X₂ {O(n)}
t₂₅₀, X₁: X₁ {O(n)}
t₂₅₀, X₂: X₀ {O(n)}
t₂₅₁, X₀: X₂ {O(n)}
t₂₅₁, X₁: X₁ {O(n)}
t₂₅₁, X₂: 4⋅X₁+5⋅X₀+22 {O(n)}
t₂₅₂, X₀: X₂ {O(n)}
t₂₅₂, X₁: X₁ {O(n)}
t₂₅₂, X₂: X₀+1 {O(n)}
t₂₅₃, X₀: X₂ {O(n)}
t₂₅₃, X₁: X₁ {O(n)}
t₂₅₃, X₂: X₀ {O(n)}
t₂₅₄, X₀: X₂ {O(n)}
t₂₅₄, X₁: X₁ {O(n)}
t₂₅₄, X₂: X₀ {O(n)}