Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 2 ≤ X₀
t₁: l0(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: X₀ ≤ 1
t₂: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₀, 2⋅X₀) :|: 2 ≤ X₁
t₅: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃, 2⋅X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃
t₆: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃+1, 2⋅X₃+2) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃
t₈: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃, 2⋅X₃) :|: 1 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁
t₃: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁
t₄: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃+1) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁
t₇: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁
t₉: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁
t₁₀: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀

Preprocessing

Eliminate variables {X₂} that do not contribute to the problem

Found invariant 2 ≤ X₁ for location l2

Found invariant X₃ ≤ X₁ ∧ 2 ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₃
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₂₈: l0(X₀, X₁, X₃) → l1(X₀-1, X₁, X₃) :|: 2 ≤ X₀
t₂₉: l0(X₀, X₁, X₃) → l1(X₀, X₁-1, X₃) :|: X₀ ≤ 1
t₃₀: l1(X₀, X₁, X₃) → l2(X₀, X₁, 2⋅X₀) :|: 2 ≤ X₁
t₃₃: l2(X₀, X₁, X₃) → l2(X₀, X₁, 2⋅X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁
t₃₄: l2(X₀, X₁, X₃) → l2(X₀, X₁, 2⋅X₃+2) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁
t₃₆: l2(X₀, X₁, X₃) → l2(X₀, X₁, 2⋅X₃) :|: 1 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁
t₃₁: l2(X₀, X₁, X₃) → l3(X₀, X₁, X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₁
t₃₂: l2(X₀, X₁, X₃) → l3(X₀, X₁, X₃+1) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₁
t₃₅: l2(X₀, X₁, X₃) → l3(X₀, X₁, X₃) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁
t₃₇: l3(X₀, X₁, X₃) → l1(X₀-1, X₁, X₃) :|: 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁
t₃₈: l3(X₀, X₁, X₃) → l1(X₀, X₁-1, X₃) :|: 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁

Analysing control-flow refined program

Found invariant 6 ≤ X₃ ∧ 9 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___20

Found invariant 4 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___31

Found invariant 2 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___6

Found invariant X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___4

Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___9

Found invariant X₃ ≤ X₁ ∧ 5 ≤ X₃ ∧ 10 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 4+X₀ ≤ X₃ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___15

Found invariant 1+X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 9 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___27

Found invariant X₃ ≤ 2 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ X₀+X₃ ≤ 3 ∧ 2 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___22

Found invariant X₃ ≤ 2 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ X₀+X₃ ≤ 3 ∧ 2 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___19

Found invariant X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 8 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___7

Found invariant 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___38

Found invariant 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___5

Found invariant X₃ ≤ 1+X₁ ∧ 4 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___13

Found invariant X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___8

Found invariant X₃ ≤ 2 ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ X₀+X₃ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l2___3

Found invariant 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___30

Found invariant X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___33

Found invariant 1+X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 9 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___16

Found invariant X₃ ≤ 2 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 4 ∧ X₃ ≤ 1+X₀ ∧ X₀+X₃ ≤ 3 ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___10

Found invariant X₃ ≤ 3 ∧ X₃ ≤ X₁ ∧ X₃ ≤ 2+X₀ ∧ X₀+X₃ ≤ 4 ∧ 3 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___18

Found invariant X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___12

Found invariant 4 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___35

Found invariant X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 8 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___25

Found invariant X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 8 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___24

Found invariant X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___29

Found invariant X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___32

Found invariant X₃ ≤ 2 ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ X₀+X₃ ≤ 3 ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___11

Found invariant 4 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___17

Found invariant X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 8 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___14

Found invariant X₃ ≤ X₁ ∧ 5 ≤ X₃ ∧ 10 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 4+X₀ ≤ X₃ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___26

Found invariant 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___34

Found invariant X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___23

Found invariant 4 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___21

Found invariant 4 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___36

Found invariant X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___28

Found invariant X₃ ≤ 2 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ X₀+X₃ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l3___2

Found invariant 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___37

Found invariant X₃ ≤ 3 ∧ X₃ ≤ X₁ ∧ X₃ ≤ 2+X₀ ∧ X₀+X₃ ≤ 4 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l3___1

Cut unsatisfiable transition t₁₁₅₁: n_l3___1→n_l1___7

Cut unsatisfiable transition t₁₁₆₀: n_l3___2→n_l1___7

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₀₉₄: n_l1___9(X₀, X₁, X₃) → n_l2___11(X₀, X₁, 2⋅X₀) :|: 1 ≤ 2⋅X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: inf {Infinity}
t₃₁: inf {Infinity}
t₃₂: inf {Infinity}
t₃₃: inf {Infinity}
t₃₄: inf {Infinity}
t₃₅: inf {Infinity}
t₃₆: inf {Infinity}
t₃₇: inf {Infinity}
t₃₈: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: inf {Infinity}
t₃₁: inf {Infinity}
t₃₂: inf {Infinity}
t₃₃: inf {Infinity}
t₃₄: inf {Infinity}
t₃₅: inf {Infinity}
t₃₆: inf {Infinity}
t₃₇: inf {Infinity}
t₃₈: inf {Infinity}

Sizebounds

t₂₈, X₀: X₀ {O(n)}
t₂₈, X₁: X₁ {O(n)}
t₂₈, X₃: X₃ {O(n)}
t₂₉, X₀: X₀ {O(n)}
t₂₉, X₁: X₁+1 {O(n)}
t₂₉, X₃: X₃ {O(n)}
t₃₀, X₀: 2⋅X₀+1 {O(n)}
t₃₀, X₁: 2⋅X₁+1 {O(n)}
t₃₀, X₃: 8⋅X₀+4 {O(n)}
t₃₁, X₀: 2⋅X₀+1 {O(n)}
t₃₁, X₁: 2⋅X₁+1 {O(n)}
t₃₂, X₀: 2⋅X₀+1 {O(n)}
t₃₂, X₁: 2⋅X₁+1 {O(n)}
t₃₃, X₀: 2⋅X₀+1 {O(n)}
t₃₃, X₁: 2⋅X₁+1 {O(n)}
t₃₄, X₀: 2⋅X₀+1 {O(n)}
t₃₄, X₁: 2⋅X₁+1 {O(n)}
t₃₅, X₀: 2⋅X₀+1 {O(n)}
t₃₅, X₁: 2⋅X₁+1 {O(n)}
t₃₆, X₀: 6⋅X₀+3 {O(n)}
t₃₆, X₁: 6⋅X₁+3 {O(n)}
t₃₇, X₀: 2⋅X₀+1 {O(n)}
t₃₇, X₁: 2⋅X₁+1 {O(n)}
t₃₈, X₀: 1 {O(1)}
t₃₈, X₁: 2⋅X₁+1 {O(n)}