Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1
Transitions:
t₃: l0(X₀, X₁, X₂) → l1(X₀, X₁, X₂)
t₀: l1(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: X₂+1 ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀
t₁: l1(X₀, X₁, X₂) → l1(X₀, X₁-1, X₂) :|: X₂+1 ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ 1 ≤ X₁
t₂: l1(X₀, X₁, X₂) → l1(X₀, X₁, X₂) :|: X₂+1 ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ X₁ ≤ 0
Preprocessing
Cut unsatisfiable transition t₂: l1→l1
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1
Transitions:
t₃: l0(X₀, X₁, X₂) → l1(X₀, X₁, X₂)
t₀: l1(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: X₂+1 ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀
t₁: l1(X₀, X₁, X₂) → l1(X₀, X₁-1, X₂) :|: X₂+1 ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ 1 ≤ X₁
Time-Bound by TWN-Loops:
TWN-Loops: t₀ 2⋅X₁+2⋅X₂+4⋅X₀+7 {O(n)}
TWN-Loops:
entry: t₃: l0(X₀, X₁, X₂) → l1(X₀, X₁, X₂)
results in twn-loop: twn: (X₀,X₁,X₂) -> (X₀-1,X₁,X₂) :|: X₂+1 ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀ + [[n != 0]] * -1 * n^1
X₁: X₁
X₂: X₂
Termination: true
Formula:
0 < X₂ ∧ 1 < 0
∨ 1 < 0 ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₂ ∧ 1 < 0
∨ 1 < X₀ ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₀ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₂ ∧ 1 < 0
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: X₂+1 ≤ X₀+X₁
alphas_abs: X₂+X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2⋅X₂+2 {O(n)}
relevant size-bounds w.r.t. t₃:
X₀: X₀ {O(n)}
X₁: X₁ {O(n)}
X₂: X₂ {O(n)}
Runtime-bound of t₃: 1 {O(1)}
Results in: 2⋅X₁+2⋅X₂+4⋅X₀+7 {O(n)}
2⋅X₁+2⋅X₂+4⋅X₀+7 {O(n)}
Found invariant 1 ≤ 0 for location l1
Time-Bound by TWN-Loops:
TWN-Loops: t₁ 12⋅X₀⋅X₂+12⋅X₁⋅X₂+20⋅X₀⋅X₁+4⋅X₂⋅X₂+8⋅X₀⋅X₀+8⋅X₁⋅X₁+40⋅X₂+56⋅X₁+64⋅X₀+92 {O(n^2)}
TWN-Loops:
entry: t₀: l1(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: X₂+1 ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀
results in twn-loop: twn: (X₀,X₁,X₂) -> (X₀,X₁-1,X₂) :|: X₂+1 ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ 1 ≤ X₁
entry: t₃: l0(X₀, X₁, X₂) → l1(X₀, X₁, X₂)
results in twn-loop: twn: (X₀,X₁,X₂) -> (X₀,X₁-1,X₂) :|: X₂+1 ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ 1 ≤ X₁
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂
Termination: true
Formula:
X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < 0 ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ < 0 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0
∨ 1 < X₁ ∧ X₀ < 0 ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₁ ∧ X₀ < 0 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 < X₁ ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₁ ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 < 0
∨ 1 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ < 0 ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ < 0 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 < 0
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: 1+X₁
M: 0
N: 1
Bound: 2⋅X₁+4 {O(n)}
Stabilization-Threshold for: X₂+1 ≤ X₀+X₁
alphas_abs: X₂+1+X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2⋅X₂+4 {O(n)}
relevant size-bounds w.r.t. t₀:
X₀: X₀ {O(n)}
X₁: X₁ {O(n)}
X₂: X₂ {O(n)}
Runtime-bound of t₀: 2⋅X₁+2⋅X₂+4⋅X₀+7 {O(n)}
Results in: 12⋅X₀⋅X₂+12⋅X₁⋅X₂+20⋅X₀⋅X₁+4⋅X₂⋅X₂+8⋅X₀⋅X₀+8⋅X₁⋅X₁+38⋅X₂+52⋅X₁+62⋅X₀+84 {O(n^2)}
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂
Termination: true
Formula:
X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < 0 ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ < 0 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 < 0
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0
∨ 1 < X₁ ∧ X₀ < 0 ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₁ ∧ X₀ < 0 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 < X₁ ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₁ ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 < 0
∨ 1 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ < 0 ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ < 0 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 < 0
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂+1 < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂+1
Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₂+1 ≤ X₀+X₁
alphas_abs: X₂+X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2⋅X₂+2 {O(n)}
relevant size-bounds w.r.t. t₃:
X₀: X₀ {O(n)}
X₁: X₁ {O(n)}
X₂: X₂ {O(n)}
Runtime-bound of t₃: 1 {O(1)}
Results in: 2⋅X₀+2⋅X₂+4⋅X₁+8 {O(n)}
12⋅X₀⋅X₂+12⋅X₁⋅X₂+20⋅X₀⋅X₁+4⋅X₂⋅X₂+8⋅X₀⋅X₀+8⋅X₁⋅X₁+40⋅X₂+56⋅X₁+64⋅X₀+92 {O(n^2)}
Analysing control-flow refined program
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___2
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l1___3
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___1
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___2
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l1___3
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___1
Time-Bound by TWN-Loops:
TWN-Loops: t₅₆ 4⋅X₁+8 {O(n)}
TWN-Loops:
entry: t₅₉: l1(X₀, X₁, X₂) → n_l1___2(X₀, X₁-1, X₂) :|: 1+X₂ ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0
results in twn-loop: twn:Inv: [0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0] , (X₀,X₁,X₂) -> (X₀,X₁-1,X₂) :|: 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂
Termination: true
Formula:
X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂
Stabilization-Threshold for: 1+X₂ ≤ X₀+X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₂ ≤ X₀+X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
relevant size-bounds w.r.t. t₅₉:
X₁: X₁ {O(n)}
Runtime-bound of t₅₉: 1 {O(1)}
Results in: 4⋅X₁+8 {O(n)}
4⋅X₁+8 {O(n)}
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___2
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l1___3
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___1
Time-Bound by TWN-Loops:
TWN-Loops: t₅₈ 4⋅X₁+8⋅X₀+11 {O(n)}
TWN-Loops:
entry: t₆₀: l1(X₀, X₁, X₂) → n_l1___3(X₀-1, X₁, X₂) :|: 1+X₂ ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂
results in twn-loop: twn:Inv: [0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀] , (X₀,X₁,X₂) -> (X₀-1,X₁,X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ 1+X₂ ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀ + [[n != 0]] * -1 * n^1
X₁: X₁
X₂: X₂
Termination: true
Formula:
0 < X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < 0 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < 0 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1 < 0 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1 < 0 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1 < 0 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1 < 0 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ < X₀+X₁ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < X₀ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ < X₀+X₁ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 < 0
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: 1+X₂ ≤ X₀+X₁
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₂ ≤ X₀+X₁
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
relevant size-bounds w.r.t. t₆₀:
X₀: X₀ {O(n)}
X₁: X₁ {O(n)}
Runtime-bound of t₆₀: 1 {O(1)}
Results in: 4⋅X₁+8⋅X₀+11 {O(n)}
4⋅X₁+8⋅X₀+11 {O(n)}
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___2
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l1___3
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___1
Time-Bound by TWN-Loops:
TWN-Loops: t₅₅ 8⋅X₁+8⋅X₂+11 {O(n)}
TWN-Loops:
entry: t₅₇: n_l1___3(X₀, X₁, X₂) → n_l1___1(X₀, X₁-1, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ 1+X₂ ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
results in twn-loop: twn:Inv: [0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀] , (X₀,X₁,X₂) -> (X₀,X₁-1,X₂) :|: 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂
Termination: true
Formula:
X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0 ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀
∨ X₀ < 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 < 0 ∧ 0 < X₀
∨ 0 < X₂ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀
∨ 0 < X₂ ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀
∨ 0 < X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < X₀
∨ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀
∨ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀
∨ 0 < X₂ ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < X₀
∨ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀
∨ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀
∨ 0 < X₂ ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 0 < X₀
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < X₀
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 < X₀
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₀
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ X₂ < X₀+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
∨ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 < X₀
∨ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀+X₁ ∧ X₀+X₁ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0
Stabilization-Threshold for: 1+X₂ ≤ X₀+X₁
alphas_abs: 1+X₀+X₁+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2⋅X₂+4 {O(n)}
Stabilization-Threshold for: X₂ ≤ X₀+X₁
alphas_abs: X₀+X₁+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2⋅X₂+2 {O(n)}
relevant size-bounds w.r.t. t₅₇:
X₀: 0 {O(1)}
X₁: 2⋅X₁ {O(n)}
X₂: 2⋅X₂ {O(n)}
Runtime-bound of t₅₇: 1 {O(1)}
Results in: 8⋅X₁+8⋅X₂+11 {O(n)}
8⋅X₁+8⋅X₂+11 {O(n)}
CFR: Improvement to new bound with the following program:
new bound:
16⋅X₁+8⋅X₀+8⋅X₂+30 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, n_l1___1, n_l1___2, n_l1___3
Transitions:
t₃: l0(X₀, X₁, X₂) → l1(X₀, X₁, X₂)
t₅₉: l1(X₀, X₁, X₂) → n_l1___2(X₀, X₁-1, X₂) :|: 1+X₂ ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0
t₆₀: l1(X₀, X₁, X₂) → n_l1___3(X₀-1, X₁, X₂) :|: 1+X₂ ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂
t₅₅: n_l1___1(X₀, X₁, X₂) → n_l1___1(X₀, X₁-1, X₂) :|: 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₅₆: n_l1___2(X₀, X₁, X₂) → n_l1___2(X₀, X₁-1, X₂) :|: 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0
t₅₇: n_l1___3(X₀, X₁, X₂) → n_l1___1(X₀, X₁-1, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ 1+X₂ ≤ X₀+X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₅₈: n_l1___3(X₀, X₁, X₂) → n_l1___3(X₀-1, X₁, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀+X₁ ∧ 1+X₂ ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
All Bounds
Timebounds
Overall timebound:16⋅X₁+8⋅X₀+8⋅X₂+34 {O(n)}
t₃: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₅₅: 8⋅X₁+8⋅X₂+11 {O(n)}
t₅₆: 4⋅X₁+8 {O(n)}
t₅₇: 1 {O(1)}
t₅₈: 4⋅X₁+8⋅X₀+11 {O(n)}
Costbounds
Overall costbound: 16⋅X₁+8⋅X₀+8⋅X₂+34 {O(n)}
t₃: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₅₅: 8⋅X₁+8⋅X₂+11 {O(n)}
t₅₆: 4⋅X₁+8 {O(n)}
t₅₇: 1 {O(1)}
t₅₈: 4⋅X₁+8⋅X₀+11 {O(n)}
Sizebounds
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₅₉, X₀: X₀ {O(n)}
t₅₉, X₁: X₁ {O(n)}
t₅₉, X₂: X₂ {O(n)}
t₆₀, X₀: X₀ {O(n)}
t₆₀, X₁: X₁ {O(n)}
t₆₀, X₂: X₂ {O(n)}
t₅₅, X₀: 0 {O(1)}
t₅₅, X₁: 2⋅X₁ {O(n)}
t₅₅, X₂: 2⋅X₂ {O(n)}
t₅₆, X₀: X₀ {O(n)}
t₅₆, X₁: X₁ {O(n)}
t₅₆, X₂: X₂ {O(n)}
t₅₇, X₀: 0 {O(1)}
t₅₇, X₁: 2⋅X₁ {O(n)}
t₅₇, X₂: 2⋅X₂ {O(n)}
t₅₈, X₀: X₀ {O(n)}
t₅₈, X₁: X₁ {O(n)}
t₅₈, X₂: X₂ {O(n)}