Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₃, X₆, X₇) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0
t₁₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(nondef_0, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇)
t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆)
t₁₉: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇
t₁₈: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃
t₇: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆
t₈: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 0
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, nondef_1, X₃, X₄, X₅, X₆, X₇)
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1)
Preprocessing
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l11
Found invariant X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l6
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l15
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l19
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l12
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l17
Found invariant X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l7
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l13
Found invariant X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l8
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l10
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l16
Found invariant X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l18
Found invariant X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l4
Found invariant X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location l9
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₃, X₆, X₇) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(nondef_0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₉: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₈: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₇: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₈: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 0 ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, nondef_1, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
MPRF for transition t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l12 [X₄+1 ]
l10 [X₄+1 ]
l14 [X₄+1 ]
l16 [X₄ ]
l15 [X₄ ]
l17 [X₄ ]
l11 [X₄+1 ]
l13 [X₄ ]
l19 [X₄+1 ]
l4 [X₄+1 ]
l7 [X₁+1 ]
l8 [X₁+1 ]
l6 [X₁+1 ]
l9 [X₁+1 ]
l18 [X₄ ]
MPRF for transition t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l12 [X₄+1 ]
l10 [X₄+1 ]
l14 [X₄+1 ]
l16 [X₄ ]
l15 [X₁+1 ]
l17 [X₁+1 ]
l11 [X₄+1 ]
l13 [X₄+1 ]
l19 [X₄+1 ]
l4 [X₄+1 ]
l7 [X₁+1 ]
l8 [X₁+1 ]
l6 [X₁+1 ]
l9 [X₁+1 ]
l18 [X₁+1 ]
MPRF for transition t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l12 [X₄+1 ]
l10 [X₄+1 ]
l14 [X₄+1 ]
l16 [X₄+1 ]
l15 [X₁+2 ]
l17 [X₁+1 ]
l11 [X₄+1 ]
l13 [X₄+1 ]
l19 [X₄+1 ]
l4 [X₄+1 ]
l7 [X₄ ]
l8 [X₄ ]
l6 [X₁+1 ]
l9 [X₁+1 ]
l18 [X₄ ]
MPRF for transition t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l12 [X₄+1 ]
l10 [X₄+1 ]
l14 [X₄+1 ]
l16 [X₄+1 ]
l15 [X₄ ]
l17 [X₄ ]
l11 [X₄+1 ]
l13 [X₄+1 ]
l19 [X₄+1 ]
l4 [X₄+1 ]
l7 [X₄ ]
l8 [X₄ ]
l6 [X₁+1 ]
l9 [X₁+1 ]
l18 [X₄ ]
MPRF for transition t₁₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
2⋅X₃ {O(n)}
MPRF:
l12 [X₃+X₄ ]
l10 [X₃+X₄ ]
l14 [X₃+X₄ ]
l16 [X₃+X₄ ]
l15 [X₁+X₃+1 ]
l17 [X₁+X₃+1 ]
l11 [X₃+X₄ ]
l13 [X₃+X₄ ]
l19 [X₃+X₄ ]
l4 [X₃+X₄ ]
l7 [X₁+X₃ ]
l8 [X₁+X₃ ]
l6 [X₁+X₃ ]
l9 [X₁+X₃ ]
l18 [X₁+X₃ ]
MPRF for transition t₁₉: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
2⋅X₃+1 {O(n)}
MPRF:
l12 [X₃+X₄+1 ]
l10 [X₃+X₄+1 ]
l14 [X₃+X₄+1 ]
l16 [X₃+X₄+1 ]
l15 [X₃+X₄+1 ]
l17 [X₃+X₄+1 ]
l11 [X₃+X₄+1 ]
l13 [X₃+X₄+1 ]
l19 [X₃+X₄+1 ]
l4 [X₃+X₄+1 ]
l7 [X₁+X₃+2 ]
l8 [X₁+X₃+2 ]
l6 [X₁+X₃+2 ]
l9 [X₁+X₃+2 ]
l18 [X₃+X₄+1 ]
MPRF for transition t₈: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
2⋅X₃ {O(n)}
MPRF:
l12 [X₃+X₄ ]
l10 [X₃+X₄ ]
l14 [X₃+X₄ ]
l16 [X₃+X₄-1 ]
l15 [X₃+X₄-1 ]
l17 [X₃+X₄-1 ]
l11 [X₃+X₄ ]
l13 [X₃+X₄-1 ]
l19 [X₃+X₄ ]
l4 [X₃+X₄ ]
l7 [X₁+X₃ ]
l8 [X₁+X₃ ]
l6 [X₁+X₃ ]
l9 [X₁+X₃ ]
l18 [X₁+X₃ ]
MPRF for transition t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l12 [X₄ ]
l10 [X₄ ]
l14 [X₄ ]
l16 [X₄ ]
l15 [X₄ ]
l17 [X₄ ]
l11 [X₄ ]
l13 [X₄ ]
l19 [X₄ ]
l4 [X₄+1 ]
l7 [X₄ ]
l8 [X₄ ]
l6 [X₄ ]
l9 [X₄ ]
l18 [X₄ ]
MPRF for transition t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
2⋅X₃ {O(n)}
MPRF:
l12 [X₃+X₄ ]
l10 [X₃+X₄ ]
l14 [X₃+X₄ ]
l16 [X₃+X₄ ]
l15 [X₃+X₄ ]
l17 [X₃+X₄ ]
l11 [X₃+X₄ ]
l13 [X₃+X₄ ]
l19 [X₃+X₄ ]
l4 [X₃+X₄ ]
l7 [X₁+X₃+1 ]
l8 [X₁+X₃+1 ]
l6 [X₁+X₃+1 ]
l9 [X₁+X₃+1 ]
l18 [X₃+X₄ ]
Analysing control-flow refined program
Found invariant 1+X₆ ≤ X₅ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l19___5
Found invariant X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l6___2
Found invariant X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l8___3
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l15
Found invariant 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l10___2
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l8___8
Found invariant X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l9___1
Found invariant X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l19
Found invariant 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l11___4
Found invariant 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l12___3
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l11___9
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l12___8
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l14___6
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l17
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l13
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l6___7
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l7___9
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l9___6
Found invariant X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l16
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l18
Found invariant X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l4
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l10___7
Found invariant 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l14___1
Found invariant X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l7___4
Found invariant X₇ ≤ 1+X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l18___5
knowledge_propagation leads to new time bound 2⋅X₃ {O(n)} for transition t₁₉₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___9(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₆₉: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₆₄: n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₆₆: n_l12___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___7(NoDet0, X₁, X₂, Arg3_P, Arg4_P, X₅, Arg6_P, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ Arg4_P ≤ Arg3_P ∧ 0 ≤ Arg4_P ∧ 1 ≤ Arg3_P ∧ Arg6_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₃ {O(n)} for transition t₁₉₉: n_l7___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___8(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
knowledge_propagation leads to new time bound 2⋅X₃ {O(n)} for transition t₂₀₁: n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___7(X₀, Arg1_P, NoDet0, Arg3_P, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ 1+Arg1_P ∧ 1 ≤ Arg3_P ∧ Arg7_P ≤ Arg3_P ∧ Arg6_P ≤ Arg7_P ∧ Arg6_P ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg1_P+1 ∧ 1+Arg1_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg1_P+1 ≤ Arg4_P ∧ Arg4_P ≤ 1+Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₆₂: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₈₀: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₆₈: n_l14___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 < X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₃ {O(n)} for transition t₁₉₇: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___6(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 < X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
knowledge_propagation leads to new time bound 2⋅X₃ {O(n)} for transition t₂₁₃: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
knowledge_propagation leads to new time bound 2⋅X₃ {O(n)} for transition t₂₀₃: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___5(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇+1) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₅ ∧ 0 < X₂ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
MPRF for transition t₁₆₁: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
MPRF:
l16 [X₆ ]
l15 [X₆ ]
l17 [X₆ ]
l18 [X₇ ]
l19 [X₆ ]
n_l11___9 [X₅ ]
n_l12___3 [X₆+1 ]
n_l10___2 [X₆+1 ]
n_l12___8 [X₆ ]
n_l10___7 [X₆ ]
n_l14___1 [X₆ ]
n_l14___6 [X₅ ]
n_l11___4 [X₆+1 ]
n_l19___5 [X₆+1 ]
l13 [X₆ ]
n_l9___6 [X₆ ]
l4 [X₅ ]
n_l7___4 [X₃+1 ]
n_l7___9 [X₇ ]
n_l8___3 [X₃+1 ]
n_l6___2 [X₃+X₄-X₁ ]
n_l8___8 [X₇ ]
n_l6___7 [X₆ ]
n_l9___1 [X₃+1 ]
n_l18___5 [X₃+1 ]
MPRF for transition t₁₇₉: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l16 [X₄ ]
l15 [X₄ ]
l17 [X₄ ]
l18 [X₄ ]
l19 [X₄+1 ]
n_l11___9 [X₄+1 ]
n_l12___3 [X₄+1 ]
n_l10___2 [X₄+1 ]
n_l12___8 [X₄+1 ]
n_l10___7 [X₄+1 ]
n_l14___1 [X₄+1 ]
n_l14___6 [X₄+X₅+1-X₆ ]
n_l11___4 [X₄+1 ]
n_l19___5 [X₄+1 ]
l13 [X₄ ]
l4 [X₄+1 ]
n_l7___4 [X₁+1 ]
n_l7___9 [X₁+1 ]
n_l8___3 [X₁+1 ]
n_l6___2 [3⋅X₄-2⋅X₁-2 ]
n_l8___8 [X₁+1 ]
n_l6___7 [X₄ ]
n_l9___1 [X₁+1 ]
n_l9___6 [X₁+X₆+1-X₇ ]
n_l18___5 [X₁+1 ]
MPRF for transition t₁₆₃: n_l11___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
MPRF:
l16 [X₃+X₆-1 ]
l15 [X₃+X₆-1 ]
l17 [X₃+X₆-1 ]
l18 [X₁+X₃+X₆-X₄ ]
l19 [X₃+X₅-1 ]
n_l11___9 [X₃+X₆-1 ]
n_l12___3 [X₃+X₆-1 ]
n_l10___2 [X₃+X₆-1 ]
n_l12___8 [X₃+X₆-1 ]
n_l10___7 [X₃+X₆-1 ]
n_l14___1 [X₃+X₆-1 ]
n_l14___6 [X₃+X₅-1 ]
n_l11___4 [X₃+X₆ ]
n_l19___5 [X₃+X₆ ]
l13 [X₃+X₆-1 ]
n_l9___6 [2⋅X₁+X₃+X₇-2⋅X₄ ]
l4 [X₃+X₅-1 ]
n_l7___4 [2⋅X₃ ]
n_l7___9 [X₃+X₆-1 ]
n_l8___3 [2⋅X₃ ]
n_l6___2 [2⋅X₃ ]
n_l8___8 [X₃+X₆-1 ]
n_l6___7 [X₃+X₇-1 ]
n_l9___1 [2⋅X₃ ]
n_l18___5 [2⋅X₃ ]
MPRF for transition t₁₆₅: n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___2(NoDet0, X₁, X₂, Arg3_P, Arg4_P, X₅, Arg6_P, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ Arg4_P ≤ Arg3_P ∧ 0 ≤ Arg4_P ∧ 1 ≤ Arg3_P ∧ Arg6_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+5⋅X₃ {O(n^2)}
MPRF:
l16 [X₆ ]
l15 [X₆ ]
l17 [X₆ ]
l18 [X₆ ]
l19 [X₅ ]
n_l11___9 [X₆ ]
n_l12___3 [X₆+1 ]
n_l10___2 [X₆ ]
n_l12___8 [X₆ ]
n_l10___7 [X₆ ]
n_l14___1 [X₆ ]
n_l14___6 [X₅ ]
n_l11___4 [X₆+1 ]
n_l19___5 [X₆+1 ]
l13 [X₆ ]
n_l9___6 [X₆ ]
l4 [X₅ ]
n_l7___4 [X₃+2 ]
n_l7___9 [X₆ ]
n_l8___3 [X₃+2 ]
n_l6___2 [X₃+2 ]
n_l8___8 [X₆ ]
n_l6___7 [X₆ ]
n_l9___1 [X₃+2⋅X₄-2⋅X₁ ]
n_l18___5 [X₃+2 ]
MPRF for transition t₁₆₇: n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₃⋅X₃+3⋅X₃+2 {O(n^2)}
MPRF:
l16 [2⋅X₃+X₆-2 ]
l15 [2⋅X₃+X₆-2 ]
l17 [2⋅X₃+X₆-2 ]
l18 [2⋅X₃+X₇-2 ]
l19 [2⋅X₃+X₅-2 ]
n_l11___9 [2⋅X₃+X₆-2 ]
n_l12___3 [2⋅X₃+X₆-1 ]
n_l10___2 [2⋅X₃+X₆-1 ]
n_l12___8 [2⋅X₃+X₆-2 ]
n_l10___7 [2⋅X₃+X₆-2 ]
n_l14___1 [2⋅X₃+X₆-1 ]
n_l14___6 [2⋅X₃+X₅-2 ]
n_l11___4 [2⋅X₃+X₆-1 ]
n_l19___5 [2⋅X₃+X₆-1 ]
l13 [2⋅X₃+X₆-2 ]
n_l9___6 [2⋅X₃+X₇-2⋅X₁-4 ]
l4 [2⋅X₃+X₅-2 ]
n_l7___4 [3⋅X₃ ]
n_l7___9 [2⋅X₃+X₇-2 ]
n_l8___3 [3⋅X₃ ]
n_l6___2 [3⋅X₃ ]
n_l8___8 [2⋅X₃+X₇-2 ]
n_l6___7 [2⋅X₁+2⋅X₃+X₇-2⋅X₄ ]
n_l9___1 [3⋅X₃ ]
n_l18___5 [3⋅X₃ ]
MPRF for transition t₁₉₅: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___4(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₇ ∧ X₇ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ 1+X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
3⋅X₃⋅X₃+8⋅X₃+1 {O(n^2)}
MPRF:
l16 [2⋅X₃+X₄-X₆-1 ]
l15 [X₁+2⋅X₃-X₆ ]
l17 [X₁+2⋅X₃-X₆ ]
l18 [X₁+2⋅X₃-X₆ ]
l19 [2⋅X₃+X₄-X₅ ]
n_l14___6 [2⋅X₃+X₄-X₆ ]
n_l11___9 [2⋅X₃+X₄-X₆ ]
n_l12___3 [2⋅X₃+X₄ ]
n_l10___2 [2⋅X₃+X₄ ]
n_l12___8 [2⋅X₃+X₄-X₆ ]
n_l10___7 [2⋅X₃+X₄-X₆ ]
n_l14___1 [2⋅X₃+X₄ ]
n_l11___4 [2⋅X₃+X₄ ]
n_l19___5 [2⋅X₃+X₄ ]
l13 [2⋅X₃+X₄-X₆-1 ]
l4 [2⋅X₃+X₄-X₅ ]
n_l7___4 [X₁+2⋅X₃-X₇ ]
n_l7___9 [X₁+2⋅X₃-X₆ ]
n_l8___3 [X₁+2⋅X₃-X₇ ]
n_l6___2 [X₁+2⋅X₃-X₇ ]
n_l8___8 [X₁+2⋅X₃-X₆ ]
n_l6___7 [X₁+2⋅X₃-X₆ ]
n_l9___1 [X₁+2⋅X₃-X₇ ]
n_l9___6 [X₁+2⋅X₃-X₆ ]
n_l18___5 [X₁+2⋅X₃+1-X₇ ]
MPRF for transition t₂₁₁: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ 1+X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l16 [X₄+1 ]
l15 [X₄+1 ]
l17 [X₄+1 ]
l18 [X₄+1 ]
l19 [X₄+1 ]
n_l11___9 [X₄+1 ]
n_l12___3 [X₄+1 ]
n_l10___2 [X₄+1 ]
n_l12___8 [X₄+1 ]
n_l10___7 [X₄+1 ]
n_l14___1 [X₄+1 ]
n_l14___6 [X₄+1 ]
n_l11___4 [X₄+1 ]
n_l19___5 [X₄+1 ]
l13 [X₄+1 ]
l4 [X₄+1 ]
n_l7___4 [X₁+2 ]
n_l7___9 [X₁+2 ]
n_l8___3 [X₁+2 ]
n_l6___2 [X₁+2 ]
n_l8___8 [X₁+2 ]
n_l6___7 [X₄+1 ]
n_l9___1 [X₁+2 ]
n_l9___6 [X₁+2 ]
n_l18___5 [X₄+1 ]
MPRF for transition t₁₇₀: n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+5⋅X₃ {O(n^2)}
MPRF:
l16 [X₆ ]
l15 [X₆ ]
l17 [X₆ ]
l18 [X₆ ]
l19 [X₅ ]
n_l11___9 [X₆ ]
n_l12___3 [X₆ ]
n_l10___2 [X₆ ]
n_l12___8 [X₆ ]
n_l10___7 [X₅ ]
n_l14___1 [X₆ ]
n_l14___6 [X₆ ]
n_l11___4 [X₆ ]
n_l19___5 [X₆+1 ]
l13 [X₆ ]
n_l9___6 [X₇ ]
l4 [X₅ ]
n_l7___4 [X₃+2 ]
n_l7___9 [X₆ ]
n_l8___3 [X₃+2 ]
n_l6___2 [X₃+2 ]
n_l8___8 [X₆ ]
n_l6___7 [X₇ ]
n_l9___1 [X₃+2⋅X₄-2⋅X₁ ]
n_l18___5 [X₃+2 ]
MPRF for transition t₁₇₈: n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l16 [X₄ ]
l15 [X₄ ]
l17 [X₄ ]
l18 [X₄ ]
l19 [X₄+1 ]
n_l11___9 [X₄+1 ]
n_l12___3 [X₄+1 ]
n_l10___2 [X₄+1 ]
n_l12___8 [X₄+1 ]
n_l10___7 [X₄+1 ]
n_l14___1 [X₄+1 ]
n_l14___6 [X₄+1 ]
n_l11___4 [X₄+1 ]
n_l19___5 [X₄+1 ]
l13 [X₄ ]
l4 [X₄+1 ]
n_l7___4 [X₁+1 ]
n_l7___9 [X₁+1 ]
n_l8___3 [X₁+1 ]
n_l6___2 [X₄ ]
n_l8___8 [X₁+1 ]
n_l6___7 [X₁+1 ]
n_l9___1 [X₁+1 ]
n_l9___6 [X₁+1 ]
n_l18___5 [X₁+1 ]
MPRF for transition t₁₉₆: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___1(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 < X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
4⋅X₃⋅X₃+10⋅X₃+1 {O(n^2)}
MPRF:
l16 [X₁+3⋅X₃-X₆ ]
l15 [X₁+3⋅X₃-X₆ ]
l17 [X₁+3⋅X₃-X₆ ]
l18 [X₁+3⋅X₃-X₆ ]
l19 [3⋅X₃+X₄-X₅ ]
n_l14___6 [3⋅X₃+X₄-X₅ ]
n_l11___9 [3⋅X₃+X₄-X₆ ]
n_l12___3 [3⋅X₃+X₄ ]
n_l10___2 [3⋅X₃+X₄ ]
n_l12___8 [3⋅X₃+X₄-X₅ ]
n_l10___7 [3⋅X₃+X₄-X₆ ]
n_l14___1 [3⋅X₃+X₄ ]
n_l11___4 [3⋅X₃+X₄ ]
n_l19___5 [3⋅X₃+X₄ ]
l13 [3⋅X₃+X₄-X₆-1 ]
l4 [3⋅X₃+X₄-X₅ ]
n_l7___4 [X₁+3⋅X₃-X₇ ]
n_l7___9 [X₁+3⋅X₃-X₆ ]
n_l8___3 [X₁+3⋅X₃-X₇ ]
n_l6___2 [X₁+3⋅X₃-X₇ ]
n_l8___8 [X₁+3⋅X₃-X₆ ]
n_l6___7 [X₁+3⋅X₃-X₆ ]
n_l9___1 [3⋅X₃+X₄-X₇-2 ]
n_l9___6 [X₁+3⋅X₃-X₆ ]
n_l18___5 [X₁+3⋅X₃-X₇ ]
MPRF for transition t₂₁₂: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l16 [2⋅X₄-X₁ ]
l15 [2⋅X₄-X₁ ]
l17 [2⋅X₄-X₁ ]
l18 [2⋅X₄-X₁ ]
l19 [X₄+1 ]
n_l11___9 [X₄+1 ]
n_l12___3 [X₄+1 ]
n_l10___2 [X₄+1 ]
n_l12___8 [X₄+1 ]
n_l10___7 [X₄+1 ]
n_l14___1 [X₄+1 ]
n_l14___6 [X₄+1 ]
n_l11___4 [X₄+1 ]
n_l19___5 [X₄+1 ]
l13 [X₄+1 ]
l4 [X₄+1 ]
n_l7___4 [X₁+2 ]
n_l7___9 [X₁+2 ]
n_l8___3 [X₁+2 ]
n_l6___2 [X₄+1 ]
n_l8___8 [X₁+2 ]
n_l6___7 [X₁+2 ]
n_l9___1 [X₁+2 ]
n_l9___6 [X₁+2 ]
n_l18___5 [X₁+2 ]
MPRF for transition t₁₉₈: n_l7___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___3(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
2⋅X₃⋅X₃+8⋅X₃+4 {O(n^2)}
MPRF:
l16 [X₁+X₃+1-X₆ ]
l15 [X₁+X₃+1-X₆ ]
l17 [X₁+X₃+1-X₆ ]
l18 [X₁+X₃+1-X₆ ]
l19 [X₃+X₄+1-X₆ ]
n_l14___6 [X₃+X₄+1-X₅ ]
n_l11___9 [X₃+X₄+1-X₆ ]
n_l12___3 [X₃+X₄+2 ]
n_l10___2 [X₃+X₄+2 ]
n_l12___8 [X₃+X₄+1-X₆ ]
n_l10___7 [X₃+X₄+1-X₅ ]
n_l14___1 [X₃+X₄+2 ]
n_l11___4 [X₃+X₄+2 ]
n_l19___5 [X₃+X₄+2 ]
l13 [X₃+X₄-X₆ ]
l4 [X₃+X₄+1-X₅ ]
n_l7___4 [X₁+X₃+2-X₇ ]
n_l7___9 [X₁+X₃+1-X₆ ]
n_l8___3 [X₁+X₃+1-X₇ ]
n_l6___2 [X₁+X₃+1-X₇ ]
n_l8___8 [X₁+X₃+1-X₆ ]
n_l6___7 [X₃+X₄-X₇ ]
n_l9___1 [X₁+X₃+1-X₇ ]
n_l9___6 [X₁+X₃+1-X₇ ]
n_l18___5 [X₁+X₃+2-X₇ ]
MPRF for transition t₂₀₀: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___2(X₀, Arg1_P, NoDet0, Arg3_P, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ 1+Arg1_P ∧ 1 ≤ Arg3_P ∧ Arg7_P ≤ Arg3_P ∧ Arg6_P ≤ Arg7_P ∧ Arg6_P ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg1_P+1 ∧ 1+Arg1_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg1_P+1 ≤ Arg4_P ∧ Arg4_P ≤ 1+Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
4⋅X₃⋅X₃+16⋅X₃+7 {O(n^2)}
MPRF:
l16 [X₁+3⋅X₃+2-3⋅X₆ ]
l15 [X₁+3⋅X₃+2-3⋅X₆ ]
l17 [X₁+3⋅X₃+2-3⋅X₆ ]
l18 [X₁+3⋅X₃+2-3⋅X₆ ]
l19 [3⋅X₃+X₄+2-X₅-2⋅X₆ ]
n_l14___6 [3⋅X₃+X₄+X₅+2-4⋅X₆ ]
n_l11___9 [3⋅X₃+X₄+2-X₅-2⋅X₆ ]
n_l12___3 [3⋅X₃+X₄+4 ]
n_l10___2 [3⋅X₃+X₄+4 ]
n_l12___8 [3⋅X₃+X₄+2-3⋅X₆ ]
n_l10___7 [3⋅X₃+X₄+2-3⋅X₆ ]
n_l14___1 [3⋅X₃+X₄+4 ]
n_l11___4 [3⋅X₃+X₄+4 ]
n_l19___5 [3⋅X₃+X₄+4 ]
l13 [3⋅X₃+X₄+1-3⋅X₆ ]
l4 [3⋅X₃+X₄+2-3⋅X₅ ]
n_l7___4 [X₁+3⋅X₃+3-2⋅X₆-X₇ ]
n_l7___9 [X₁+3⋅X₃+2-3⋅X₆ ]
n_l8___3 [3⋅X₃+X₄+2-2⋅X₆-X₇ ]
n_l6___2 [X₁+3⋅X₃+2-2⋅X₆-X₇ ]
n_l8___8 [X₁+3⋅X₃+2-3⋅X₆ ]
n_l6___7 [3⋅X₃+2⋅X₄-X₁-3⋅X₇ ]
n_l9___1 [3⋅X₃+X₄+1-2⋅X₆-X₇ ]
n_l9___6 [X₁+3⋅X₃+2-3⋅X₇ ]
n_l18___5 [3⋅X₃+2⋅X₄+1-X₁-2⋅X₆-X₇ ]
MPRF for transition t₂₀₂: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___5(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇+1) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 0 < X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
3⋅X₃⋅X₃+10⋅X₃+2 {O(n^2)}
MPRF:
l16 [2⋅X₃+2⋅X₄-X₁-2⋅X₆-2 ]
l15 [2⋅X₃+2⋅X₄-X₁-2⋅X₆-2 ]
l17 [2⋅X₃+2⋅X₄-X₁-2⋅X₆-2 ]
l18 [2⋅X₃+2⋅X₄-X₁-2⋅X₆-2 ]
l19 [2⋅X₃+X₄-2⋅X₆ ]
n_l14___6 [2⋅X₃+X₄-2⋅X₅-1 ]
n_l11___9 [2⋅X₃+X₄-2⋅X₆ ]
n_l12___3 [2⋅X₃+X₄+1 ]
n_l10___2 [2⋅X₃+X₄+1 ]
n_l12___8 [2⋅X₃+X₄-2⋅X₆ ]
n_l10___7 [2⋅X₃+X₄-2⋅X₆ ]
n_l14___1 [2⋅X₃+X₄+1 ]
n_l11___4 [2⋅X₃+X₄+1 ]
n_l19___5 [2⋅X₃+X₄+1 ]
l13 [2⋅X₃+X₄-2⋅X₆-1 ]
l4 [2⋅X₃+X₄-2⋅X₅ ]
n_l7___4 [2⋅X₃+X₄+1-2⋅X₇ ]
n_l7___9 [2⋅X₃+X₄-X₆-X₇-1 ]
n_l8___3 [2⋅X₃+X₄+1-2⋅X₇ ]
n_l6___2 [X₁+2⋅X₃+2-2⋅X₇ ]
n_l8___8 [X₁+2⋅X₃-2⋅X₆ ]
n_l6___7 [X₁+2⋅X₃-2⋅X₇ ]
n_l9___1 [X₁+2⋅X₃+2-2⋅X₇ ]
n_l9___6 [X₁+2⋅X₃-2⋅X₇ ]
n_l18___5 [X₁+2⋅X₃+2-2⋅X₇ ]
CFR: Improvement to new bound with the following program:
new bound:
32⋅X₃⋅X₃+102⋅X₃+33 {O(n^2)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: Arg1_P, Arg3_P, Arg4_P, Arg5_P, Arg6_P, Arg7_P, NoDet0
Locations: l0, l1, l13, l15, l16, l17, l18, l19, l2, l20, l3, l4, l5, n_l10___2, n_l10___7, n_l11___4, n_l11___9, n_l12___3, n_l12___8, n_l14___1, n_l14___6, n_l18___5, n_l19___5, n_l6___2, n_l6___7, n_l7___4, n_l7___9, n_l8___3, n_l8___8, n_l9___1, n_l9___6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₃, X₆, X₇) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆) :|: X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₉: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₉₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___9(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₈: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₆₉: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 0 ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇₉: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₆₁: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₈₀: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₆₂: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₆₃: n_l11___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₆₄: n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₆₅: n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___2(NoDet0, X₁, X₂, Arg3_P, Arg4_P, X₅, Arg6_P, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ Arg4_P ≤ Arg3_P ∧ 0 ≤ Arg4_P ∧ 1 ≤ Arg3_P ∧ Arg6_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₆₆: n_l12___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___7(NoDet0, X₁, X₂, Arg3_P, Arg4_P, X₅, Arg6_P, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ Arg4_P ≤ Arg3_P ∧ 0 ≤ Arg4_P ∧ 1 ≤ Arg3_P ∧ Arg6_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₆₇: n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₆₈: n_l14___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 < X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₁₁: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ 1+X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₁₉₅: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___4(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₇ ∧ X₇ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ 1+X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₁₇₈: n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₇₀: n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₁₂: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₉₆: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___1(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 < X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₁₃: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₉₇: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___6(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 < X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₉₈: n_l7___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___3(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₁₉₉: n_l7___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___8(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₀₀: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___2(X₀, Arg1_P, NoDet0, Arg3_P, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ 1+Arg1_P ∧ 1 ≤ Arg3_P ∧ Arg7_P ≤ Arg3_P ∧ Arg6_P ≤ Arg7_P ∧ Arg6_P ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg1_P+1 ∧ 1+Arg1_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg1_P+1 ≤ Arg4_P ∧ Arg4_P ≤ 1+Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₀₁: n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___7(X₀, Arg1_P, NoDet0, Arg3_P, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ 1+Arg1_P ∧ 1 ≤ Arg3_P ∧ Arg7_P ≤ Arg3_P ∧ Arg6_P ≤ Arg7_P ∧ Arg6_P ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg1_P+1 ∧ 1+Arg1_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg1_P+1 ≤ Arg4_P ∧ Arg4_P ≤ 1+Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₀₂: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___5(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇+1) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 0 < X₂ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₀₃: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___5(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇+1) :|: X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₅ ∧ 0 < X₂ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
All Bounds
Timebounds
Overall timebound:32⋅X₃⋅X₃+102⋅X₃+40 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₄: X₃+1 {O(n)}
t₁₆: X₃+1 {O(n)}
t₁₅: X₃+1 {O(n)}
t₁₇: 2⋅X₃ {O(n)}
t₁₉: 2⋅X₃+1 {O(n)}
t₁₉₄: 2⋅X₃ {O(n)}
t₈: 2⋅X₃ {O(n)}
t₁₆₉: X₃+1 {O(n)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: X₃+1 {O(n)}
t₆: 1 {O(1)}
t₂₅: 1 {O(1)}
t₁₆₁: 2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₇₉: X₃+1 {O(n)}
t₁₆₂: X₃+1 {O(n)}
t₁₈₀: X₃+1 {O(n)}
t₁₆₃: 4⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₆₄: X₃+1 {O(n)}
t₁₆₅: 2⋅X₃⋅X₃+5⋅X₃ {O(n^2)}
t₁₆₆: X₃+1 {O(n)}
t₁₆₇: 6⋅X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₆₈: X₃+1 {O(n)}
t₁₉₅: 3⋅X₃⋅X₃+8⋅X₃+1 {O(n^2)}
t₂₁₁: X₃+1 {O(n)}
t₁₇₀: 2⋅X₃⋅X₃+5⋅X₃ {O(n^2)}
t₁₇₈: X₃+1 {O(n)}
t₁₉₆: 4⋅X₃⋅X₃+10⋅X₃+1 {O(n^2)}
t₂₁₂: X₃+1 {O(n)}
t₁₉₇: 2⋅X₃ {O(n)}
t₂₁₃: 2⋅X₃ {O(n)}
t₁₉₈: 2⋅X₃⋅X₃+8⋅X₃+4 {O(n^2)}
t₁₉₉: 2⋅X₃ {O(n)}
t₂₀₀: 4⋅X₃⋅X₃+16⋅X₃+7 {O(n^2)}
t₂₀₁: 2⋅X₃ {O(n)}
t₂₀₂: 3⋅X₃⋅X₃+10⋅X₃+2 {O(n^2)}
t₂₀₃: 2⋅X₃ {O(n)}
Costbounds
Overall costbound: 32⋅X₃⋅X₃+102⋅X₃+40 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₄: X₃+1 {O(n)}
t₁₆: X₃+1 {O(n)}
t₁₅: X₃+1 {O(n)}
t₁₇: 2⋅X₃ {O(n)}
t₁₉: 2⋅X₃+1 {O(n)}
t₁₉₄: 2⋅X₃ {O(n)}
t₈: 2⋅X₃ {O(n)}
t₁₆₉: X₃+1 {O(n)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: X₃+1 {O(n)}
t₆: 1 {O(1)}
t₂₅: 1 {O(1)}
t₁₆₁: 2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₇₉: X₃+1 {O(n)}
t₁₆₂: X₃+1 {O(n)}
t₁₈₀: X₃+1 {O(n)}
t₁₆₃: 4⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₆₄: X₃+1 {O(n)}
t₁₆₅: 2⋅X₃⋅X₃+5⋅X₃ {O(n^2)}
t₁₆₆: X₃+1 {O(n)}
t₁₆₇: 6⋅X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₆₈: X₃+1 {O(n)}
t₁₉₅: 3⋅X₃⋅X₃+8⋅X₃+1 {O(n^2)}
t₂₁₁: X₃+1 {O(n)}
t₁₇₀: 2⋅X₃⋅X₃+5⋅X₃ {O(n^2)}
t₁₇₈: X₃+1 {O(n)}
t₁₉₆: 4⋅X₃⋅X₃+10⋅X₃+1 {O(n^2)}
t₂₁₂: X₃+1 {O(n)}
t₁₉₇: 2⋅X₃ {O(n)}
t₂₁₃: 2⋅X₃ {O(n)}
t₁₉₈: 2⋅X₃⋅X₃+8⋅X₃+4 {O(n^2)}
t₁₉₉: 2⋅X₃ {O(n)}
t₂₀₀: 4⋅X₃⋅X₃+16⋅X₃+7 {O(n^2)}
t₂₀₁: 2⋅X₃ {O(n)}
t₂₀₂: 3⋅X₃⋅X₃+10⋅X₃+2 {O(n^2)}
t₂₀₃: 2⋅X₃ {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₃ {O(n)}
t₄, X₅: X₃ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₁₄, X₁: X₃+1 {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: 4⋅X₃+4 {O(n)}
t₁₄, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₁₄, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₄, X₇: 75⋅X₃⋅X₃+325⋅X₃+5⋅X₇+100 {O(n^2)}
t₁₆, X₁: X₃+1 {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: 4⋅X₃+4 {O(n)}
t₁₆, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₁₆, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₆, X₇: 75⋅X₃⋅X₃+325⋅X₃+5⋅X₇+100 {O(n^2)}
t₁₅, X₁: X₃+1 {O(n)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₄: 4⋅X₃+4 {O(n)}
t₁₅, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₁₅, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₅, X₇: 75⋅X₃⋅X₃+325⋅X₃+5⋅X₇+100 {O(n^2)}
t₁₇, X₁: X₃+1 {O(n)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: 4⋅X₃+4 {O(n)}
t₁₇, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₁₇, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₇, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉, X₁: X₃+1 {O(n)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: X₃+1 {O(n)}
t₁₉, X₅: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉₄, X₁: X₃+1 {O(n)}
t₁₉₄, X₃: X₃ {O(n)}
t₁₉₄, X₄: X₃+2 {O(n)}
t₁₉₄, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₁₉₄, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉₄, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₈, X₁: 5⋅X₃+X₁+5 {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₃+1 {O(n)}
t₈, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₈, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₈, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₆₉, X₁: 5⋅X₃+X₁+5 {O(n)}
t₁₆₉, X₃: X₃ {O(n)}
t₁₆₉, X₄: X₃+1 {O(n)}
t₁₆₉, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₁₆₉, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₆₉, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₅, X₁: 5⋅X₃+X₁+5 {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₃+1 {O(n)}
t₅, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₅, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₅, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₆, X₁: 5⋅X₃+5 {O(n)}
t₆, X₃: 4⋅X₃ {O(n)}
t₆, X₄: 1 {O(1)}
t₆, X₅: 12⋅X₃⋅X₃+52⋅X₃+16 {O(n^2)}
t₆, X₆: 15⋅X₃⋅X₃+65⋅X₃+20 {O(n^2)}
t₆, X₇: 15⋅X₃⋅X₃+65⋅X₃+20 {O(n^2)}
t₂₅, X₁: 5⋅X₃+X₁+5 {O(n)}
t₂₅, X₃: 5⋅X₃ {O(n)}
t₂₅, X₄: X₄+1 {O(n)}
t₂₅, X₅: 12⋅X₃⋅X₃+52⋅X₃+X₅+16 {O(n^2)}
t₂₅, X₆: 15⋅X₃⋅X₃+65⋅X₃+X₆+20 {O(n^2)}
t₂₅, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₆₁, X₁: 5⋅X₃+X₁+5 {O(n)}
t₁₆₁, X₃: X₃ {O(n)}
t₁₆₁, X₄: X₃+1 {O(n)}
t₁₆₁, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₁₆₁, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₆₁, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₇₉, X₁: 5⋅X₃+X₁+5 {O(n)}
t₁₇₉, X₃: X₃ {O(n)}
t₁₇₉, X₄: X₃+1 {O(n)}
t₁₇₉, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₁₇₉, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₇₉, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₆₂, X₁: 5⋅X₃+X₁+5 {O(n)}
t₁₆₂, X₃: X₃ {O(n)}
t₁₆₂, X₄: X₃+1 {O(n)}
t₁₆₂, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₁₆₂, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₆₂, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₈₀, X₁: 5⋅X₃+X₁+5 {O(n)}
t₁₈₀, X₃: X₃ {O(n)}
t₁₈₀, X₄: X₃+1 {O(n)}
t₁₈₀, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₁₈₀, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₈₀, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₆₃, X₁: 5⋅X₃+X₁+5 {O(n)}
t₁₆₃, X₃: X₃ {O(n)}
t₁₆₃, X₄: X₃+1 {O(n)}
t₁₆₃, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₁₆₃, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₆₃, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₆₄, X₁: 5⋅X₃+X₁+5 {O(n)}
t₁₆₄, X₃: X₃ {O(n)}
t₁₆₄, X₄: X₃+1 {O(n)}
t₁₆₄, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₁₆₄, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₆₄, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₆₅, X₁: 5⋅X₃+X₁+5 {O(n)}
t₁₆₅, X₃: X₃ {O(n)}
t₁₆₅, X₄: X₃+1 {O(n)}
t₁₆₅, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₁₆₅, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₆₅, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₆₆, X₁: 5⋅X₃+X₁+5 {O(n)}
t₁₆₆, X₃: X₃ {O(n)}
t₁₆₆, X₄: X₃+1 {O(n)}
t₁₆₆, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₁₆₆, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₆₆, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₆₇, X₁: 5⋅X₃+X₁+5 {O(n)}
t₁₆₇, X₃: X₃ {O(n)}
t₁₆₇, X₄: X₃+1 {O(n)}
t₁₆₇, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₁₆₇, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₆₇, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₆₈, X₁: 5⋅X₃+X₁+5 {O(n)}
t₁₆₈, X₃: X₃ {O(n)}
t₁₆₈, X₄: X₃+1 {O(n)}
t₁₆₈, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₁₆₈, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₆₈, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₉₅, X₁: X₃+1 {O(n)}
t₁₉₅, X₃: X₃ {O(n)}
t₁₉₅, X₄: 2⋅X₃+4 {O(n)}
t₁₉₅, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₁₉₅, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉₅, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₁₁, X₁: 2⋅X₃+2 {O(n)}
t₂₁₁, X₃: X₃ {O(n)}
t₂₁₁, X₄: X₃+1 {O(n)}
t₂₁₁, X₅: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₁₁, X₆: 6⋅X₃⋅X₃+26⋅X₃+8 {O(n^2)}
t₂₁₁, X₇: 6⋅X₃⋅X₃+26⋅X₃+8 {O(n^2)}
t₁₇₀, X₁: 5⋅X₃+X₁+5 {O(n)}
t₁₇₀, X₃: X₃ {O(n)}
t₁₇₀, X₄: X₃+1 {O(n)}
t₁₇₀, X₅: 12⋅X₃⋅X₃+53⋅X₃+16 {O(n^2)}
t₁₇₀, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₇₀, X₇: 15⋅X₃⋅X₃+65⋅X₃+X₇+20 {O(n^2)}
t₁₇₈, X₁: 10⋅X₃+2⋅X₁+10 {O(n)}
t₁₇₈, X₃: X₃ {O(n)}
t₁₇₈, X₄: X₃+1 {O(n)}
t₁₇₈, X₅: 24⋅X₃⋅X₃+106⋅X₃+32 {O(n^2)}
t₁₇₈, X₆: 1 {O(1)}
t₁₇₈, X₇: 30⋅X₃⋅X₃+130⋅X₃+2⋅X₇+40 {O(n^2)}
t₁₉₆, X₁: X₃+1 {O(n)}
t₁₉₆, X₃: X₃ {O(n)}
t₁₉₆, X₄: X₃+2 {O(n)}
t₁₉₆, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₁₉₆, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉₆, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₁₂, X₁: X₃+1 {O(n)}
t₂₁₂, X₃: X₃ {O(n)}
t₂₁₂, X₄: X₃+1 {O(n)}
t₂₁₂, X₅: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₁₂, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₁₂, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉₇, X₁: X₃+1 {O(n)}
t₁₉₇, X₃: X₃ {O(n)}
t₁₉₇, X₄: X₃+2 {O(n)}
t₁₉₇, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₁₉₇, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉₇, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₁₃, X₁: X₃+1 {O(n)}
t₂₁₃, X₃: X₃ {O(n)}
t₂₁₃, X₄: X₃+1 {O(n)}
t₂₁₃, X₅: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₁₃, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₁₃, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉₈, X₁: X₃+1 {O(n)}
t₁₉₈, X₃: X₃ {O(n)}
t₁₉₈, X₄: X₃+2 {O(n)}
t₁₉₈, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₁₉₈, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉₈, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉₉, X₁: X₃+1 {O(n)}
t₁₉₉, X₃: X₃ {O(n)}
t₁₉₉, X₄: X₃+2 {O(n)}
t₁₉₉, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₁₉₉, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₁₉₉, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₀₀, X₁: X₃+1 {O(n)}
t₂₀₀, X₃: X₃ {O(n)}
t₂₀₀, X₄: X₃+2 {O(n)}
t₂₀₀, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₂₀₀, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₀₀, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₀₁, X₁: X₃+1 {O(n)}
t₂₀₁, X₃: X₃ {O(n)}
t₂₀₁, X₄: X₃+2 {O(n)}
t₂₀₁, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₂₀₁, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₀₁, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₀₂, X₁: X₃+1 {O(n)}
t₂₀₂, X₃: X₃ {O(n)}
t₂₀₂, X₄: X₃+2 {O(n)}
t₂₀₂, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₂₀₂, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₀₂, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₀₃, X₁: X₃+1 {O(n)}
t₂₀₃, X₃: X₃ {O(n)}
t₂₀₃, X₄: X₃+2 {O(n)}
t₂₀₃, X₅: 60⋅X₃⋅X₃+265⋅X₃+80 {O(n^2)}
t₂₀₃, X₆: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}
t₂₀₃, X₇: 3⋅X₃⋅X₃+13⋅X₃+4 {O(n^2)}