Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀
t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(nondef_1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁₁-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁-2)
t₃₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₈, X₈, X₉, X₁, X₁₁)
t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ X₁₀
t₁₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ < X₇+1
t₃₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₁₀-X₂, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₅: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈, X₃, X₁₀, X₁₁)
t₁₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2 ≤ X₆
t₁₂: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2
t₇: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₀: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₅, X₁₀, X₁₁)
t₂₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈+3 ≤ X₁₁
t₂₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ < X₈+3
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₃: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆-1, X₈, X₉, X₉+X₆-1, X₁₁)
t₃₆: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, nondef_0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₇-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₇, X₉, X₁₀, X₁₀-1)

Preprocessing

Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location l11

Found invariant X₆ ≤ 1 for location l32

Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ for location l6

Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l15

Found invariant X₆ ≤ 1 for location l31

Found invariant 2 ≤ X₆ for location l30

Found invariant X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂ for location l19

Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ for location l29

Found invariant X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ for location l23

Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location l12

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀ for location l17

Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ for location l7

Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ for location l5

Found invariant X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂ for location l20

Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location l13

Found invariant 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ for location l8

Found invariant X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ for location l22

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀ for location l16

Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 2 ≤ X₁₀ for location l9

Found invariant 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ for location l18

Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0 ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀
t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀
t₂₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(nondef_1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀
t₂₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁₁-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀
t₂₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁-2) :|: 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₃₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₈, X₈, X₉, X₁, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀
t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀
t₁₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆
t₁₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ < X₇+1 ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆
t₃₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₁₀-X₂, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂
t₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂
t₃₅: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈, X₃, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂
t₁₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2 ≤ X₆
t₁₂: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2
t₇: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₀: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₅, X₁₀, X₁₁)
t₂₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈+3 ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀
t₂₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ < X₈+3 ∧ X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₃: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆-1, X₈, X₉, X₉+X₆-1, X₁₁) :|: 2 ≤ X₆
t₃₆: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 1
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, nondef_0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀
t₃₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₇-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₇, X₉, X₁₀, X₁₀-1) :|: 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 2 ≤ X₁₀

MPRF for transition t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ of depth 1:

new bound:

3⋅X₅+1 {O(n)}

MPRF:

l13 [2⋅X₁₀-X₈ ]
l11 [2⋅X₁₀-X₈ ]
l15 [2⋅X₁₀-X₈-1 ]
l17 [2⋅X₁₀-X₈ ]
l16 [2⋅X₁₀-X₈ ]
l19 [2⋅X₁₀-X₇ ]
l22 [2⋅X₂+2⋅X₃-X₇ ]
l23 [2⋅X₂+2⋅X₃-X₇ ]
l24 [X₆+2⋅X₉-1 ]
l12 [2⋅X₁₀-X₈ ]
l14 [2⋅X₁₀-X₈ ]
l30 [X₆+2⋅X₉-1 ]
l18 [2⋅X₁₀-X₇ ]
l6 [2⋅X₁₀-X₇ ]
l7 [2⋅X₁₀-X₇ ]
l5 [2⋅X₁₀-X₇ ]
l8 [2⋅X₁₀-X₇ ]
l20 [2⋅X₁₀-X₇ ]
l9 [2⋅X₁₀-X₇ ]
l29 [2⋅X₁₀-X₈ ]

MPRF for transition t₂₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0 ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ of depth 1:

new bound:

2⋅X₅+1 {O(n)}

MPRF:

l13 [X₁₀+1 ]
l11 [X₁₀+1 ]
l15 [X₁₀+1 ]
l17 [X₁₁ ]
l16 [X₁₁ ]
l19 [X₁₀+1 ]
l22 [X₂+X₃+1 ]
l23 [X₂+X₃+1 ]
l24 [X₆+X₉+1 ]
l12 [X₁₀+1 ]
l14 [X₁₁ ]
l30 [X₆+X₉+1 ]
l18 [X₁₀+1 ]
l6 [X₁₀+1 ]
l7 [X₁₀+1 ]
l5 [X₁₀+1 ]
l8 [X₁₀+1 ]
l20 [X₁₀+1 ]
l9 [X₁₀+1 ]
l29 [X₁₀+1 ]

MPRF for transition t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ of depth 1:

new bound:

2⋅X₅ {O(n)}

MPRF:

l13 [X₁₁ ]
l11 [X₁₁ ]
l15 [X₁₁ ]
l17 [X₁₁ ]
l16 [X₁ ]
l19 [X₁₀ ]
l22 [X₂+X₃ ]
l23 [X₂+X₃ ]
l24 [X₆+X₉ ]
l12 [X₁₁+1 ]
l14 [X₁₁ ]
l30 [X₆+X₉ ]
l18 [X₁₀ ]
l6 [X₁₀ ]
l7 [X₁₀ ]
l5 [X₁₀ ]
l8 [X₁₀ ]
l20 [X₁₀ ]
l9 [X₁₀ ]
l29 [X₁₁+1 ]

MPRF for transition t₂₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(nondef_1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ of depth 1:

new bound:

2⋅X₅ {O(n)}

MPRF:

l13 [X₁₁+2 ]
l11 [X₁₁ ]
l15 [X₁₁ ]
l17 [X₁+1 ]
l16 [X₁+1 ]
l19 [X₁₀ ]
l22 [X₂+X₃ ]
l23 [X₂+X₃ ]
l24 [X₆+X₉ ]
l12 [X₁₁+2 ]
l14 [X₁₁ ]
l30 [X₆+X₉ ]
l18 [X₁₀+1 ]
l6 [X₁₀+1 ]
l7 [X₁₀+1 ]
l5 [X₁₀+1 ]
l8 [X₁₀ ]
l20 [X₁₀ ]
l9 [X₁₀+1 ]
l29 [X₁₁+2 ]

MPRF for transition t₂₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁₁-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ of depth 1:

new bound:

2⋅X₅ {O(n)}

MPRF:

l13 [X₁₀-1 ]
l11 [X₁₀-1 ]
l15 [X₁₀-1 ]
l17 [X₁₁-1 ]
l16 [X₁₁-1 ]
l19 [X₁₀ ]
l22 [X₂+X₃ ]
l23 [X₂+X₃ ]
l24 [X₆+X₉ ]
l12 [X₁₀-1 ]
l14 [X₁₁ ]
l30 [X₆+X₉ ]
l18 [X₁₀ ]
l6 [X₁₀ ]
l7 [X₁₀ ]
l5 [X₁₀ ]
l8 [X₁₀ ]
l20 [X₁₀ ]
l9 [X₁₀ ]
l29 [X₁₀-1 ]

MPRF for transition t₂₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁-2) :|: 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₅ {O(n)}

MPRF:

l13 [2⋅X₁₀+1-X₈ ]
l11 [2⋅X₁₀+1-X₈ ]
l15 [2⋅X₁₀+1-X₈ ]
l17 [2⋅X₁₀-X₈ ]
l16 [2⋅X₁+1-X₈ ]
l19 [2⋅X₁₀+1-X₇ ]
l22 [2⋅X₂+2⋅X₃+1-X₇ ]
l23 [2⋅X₂+2⋅X₃+1-X₇ ]
l24 [X₆+2⋅X₉ ]
l12 [2⋅X₁₀+1-X₈ ]
l14 [2⋅X₁₀-X₈ ]
l30 [X₆+2⋅X₉ ]
l18 [2⋅X₁₀+1-X₇ ]
l6 [2⋅X₁₀+1-X₇ ]
l7 [2⋅X₁₀+1-X₇ ]
l5 [2⋅X₁₀+1-X₇ ]
l8 [2⋅X₁₀+1-X₇ ]
l20 [2⋅X₁₀+1-X₇ ]
l9 [2⋅X₁₀+1-X₇ ]
l29 [2⋅X₁₀+1-X₈ ]

MPRF for transition t₁₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ of depth 1:

new bound:

4⋅X₅+6 {O(n)}

MPRF:

l13 [2⋅X₈+X₁₁-4 ]
l11 [2⋅X₈+X₁₁-4 ]
l15 [2⋅X₈+X₁₁-4 ]
l17 [X₁+2⋅X₈-3 ]
l16 [X₁+2⋅X₈-3 ]
l19 [2⋅X₇+X₁₀-5 ]
l22 [X₂+X₃+2⋅X₇-5 ]
l23 [3⋅X₂+X₃-6 ]
l24 [3⋅X₆+X₉-6 ]
l12 [2⋅X₈+X₁₁-4 ]
l14 [2⋅X₈+X₁₁-4 ]
l30 [3⋅X₆+X₉-6 ]
l18 [2⋅X₇+X₁₀-3 ]
l6 [2⋅X₇+X₁₀-5 ]
l7 [2⋅X₇+X₁₀-5 ]
l5 [2⋅X₇+X₁₀-5 ]
l8 [2⋅X₇+X₁₀-5 ]
l20 [2⋅X₇+X₁₀-5 ]
l9 [2⋅X₇+X₁₀-5 ]
l29 [2⋅X₈+X₁₁-4 ]

MPRF for transition t₂₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈+3 ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ of depth 1:

new bound:

3⋅X₅ {O(n)}

MPRF:

l13 [2⋅X₁₀-X₈ ]
l11 [2⋅X₁₀-X₈ ]
l15 [2⋅X₁₀-X₈ ]
l17 [2⋅X₁₀-X₈ ]
l16 [2⋅X₁+1-X₈ ]
l19 [2⋅X₁₀+1-X₇ ]
l22 [2⋅X₂+2⋅X₃+1-X₇ ]
l23 [2⋅X₂+2⋅X₃+1-X₇ ]
l24 [X₆+2⋅X₉ ]
l12 [2⋅X₁₀-X₈ ]
l14 [2⋅X₁₀-X₈ ]
l30 [X₆+2⋅X₉ ]
l18 [2⋅X₁₀+1-X₇ ]
l6 [2⋅X₁₀+1-X₇ ]
l7 [2⋅X₁₀+1-X₇ ]
l5 [2⋅X₁₀+1-X₇ ]
l8 [2⋅X₁₀+1-X₇ ]
l20 [2⋅X₁₀+1-X₇ ]
l9 [2⋅X₁₀+1-X₇ ]
l29 [2⋅X₁₀+1-X₈ ]

MPRF for transition t₂₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ < X₈+3 ∧ X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ of depth 1:

new bound:

2⋅X₅+1 {O(n)}

MPRF:

l13 [X₁₀-1 ]
l11 [X₁₀-1 ]
l15 [X₁₀-1 ]
l17 [X₁₀-3 ]
l16 [X₁₁-2 ]
l19 [X₁₀-1 ]
l22 [X₂+X₃-1 ]
l23 [X₂+X₃-1 ]
l24 [X₆+X₉-1 ]
l12 [X₁₀-1 ]
l14 [X₁₀-3 ]
l30 [X₆+X₉-2 ]
l18 [X₁₀-1 ]
l6 [X₁₀-1 ]
l7 [X₁₀-1 ]
l5 [X₁₀-1 ]
l8 [X₁₀-1 ]
l20 [X₁₀-1 ]
l9 [X₁₀-1 ]
l29 [X₁₀-1 ]

MPRF for transition t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ of depth 1:

new bound:

4⋅X₅ {O(n)}

MPRF:

l13 [2⋅X₁₀ ]
l11 [2⋅X₁₀ ]
l15 [2⋅X₁₀ ]
l17 [2⋅X₁₀ ]
l16 [2⋅X₁₁ ]
l19 [2⋅X₁₀ ]
l22 [2⋅X₂+2⋅X₃ ]
l23 [2⋅X₂+2⋅X₃ ]
l24 [2⋅X₆+2⋅X₉ ]
l12 [2⋅X₁₀ ]
l14 [2⋅X₁₀ ]
l30 [2⋅X₆+2⋅X₉ ]
l18 [2⋅X₁₀+2 ]
l6 [2⋅X₁₀+2 ]
l7 [2⋅X₁₀+2 ]
l5 [2⋅X₁₀+1 ]
l8 [2⋅X₁₀ ]
l20 [2⋅X₁₀ ]
l9 [2⋅X₁₀ ]
l29 [2⋅X₁₀ ]

MPRF for transition t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ of depth 1:

new bound:

8⋅X₅+10 {O(n)}

MPRF:

l13 [6⋅X₁₀-2⋅X₈-X₁₁-18 ]
l11 [6⋅X₁₀-2⋅X₈-X₁₁-18 ]
l15 [6⋅X₁₀-2⋅X₈-X₁₁-18 ]
l17 [6⋅X₁₀-X₁-2⋅X₈-19 ]
l16 [5⋅X₁-2⋅X₈-7 ]
l19 [5⋅X₁₀-2⋅X₂-10 ]
l22 [3⋅X₂+5⋅X₃-10 ]
l23 [3⋅X₂+5⋅X₃-10 ]
l24 [3⋅X₆+5⋅X₉-10 ]
l12 [6⋅X₁₀-2⋅X₈-X₁₁-18 ]
l14 [6⋅X₁₀-2⋅X₈-X₁₁-18 ]
l30 [3⋅X₆+5⋅X₉-10 ]
l18 [5⋅X₁₀-2⋅X₇-7 ]
l6 [5⋅X₁₀-2⋅X₇-7 ]
l7 [5⋅X₁₀-2⋅X₇-7 ]
l5 [5⋅X₁₀-2⋅X₇-7 ]
l8 [5⋅X₁₀-2⋅X₇-8 ]
l20 [5⋅X₁₀-2⋅X₂-10 ]
l9 [5⋅X₁₀-2⋅X₇-7 ]
l29 [6⋅X₁₀-2⋅X₈-X₁₁-18 ]

MPRF for transition t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ of depth 1:

new bound:

5⋅X₅+6 {O(n)}

MPRF:

l13 [3⋅X₁₀-X₇-5 ]
l11 [3⋅X₁₀-X₇-5 ]
l15 [3⋅X₁₀-X₇-5 ]
l17 [3⋅X₁₀-X₈-5 ]
l16 [3⋅X₁₀-X₈-10 ]
l19 [X₇+3⋅X₁₀-2⋅X₂-7 ]
l22 [X₂+3⋅X₃+X₇-7 ]
l23 [X₂+3⋅X₃+X₇-7 ]
l24 [2⋅X₆+3⋅X₉-6 ]
l12 [3⋅X₁₀-X₇-5 ]
l14 [3⋅X₁₀-X₇-5 ]
l30 [2⋅X₆+3⋅X₉-6 ]
l18 [3⋅X₁₀-X₇-4 ]
l6 [3⋅X₁₀-X₇-4 ]
l7 [3⋅X₁₀-X₇-5 ]
l5 [3⋅X₁₀-X₇-5 ]
l8 [3⋅X₁₀-X₇-5 ]
l20 [5⋅X₂+3⋅X₁₀-6⋅X₇ ]
l9 [3⋅X₁₀-X₇-5 ]
l29 [3⋅X₁₀-X₇-5 ]

MPRF for transition t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, nondef_0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ of depth 1:

new bound:

2⋅X₅ {O(n)}

MPRF:

l13 [X₁₀-1 ]
l11 [X₁₀-1 ]
l15 [X₁₀-1 ]
l17 [X₁₀-1 ]
l16 [X₁+1 ]
l19 [X₁₀ ]
l22 [X₂+X₃ ]
l23 [X₂+X₃ ]
l24 [X₆+X₉ ]
l12 [X₁₀-1 ]
l14 [X₁₀-1 ]
l30 [X₆+X₉ ]
l18 [X₁₀+1 ]
l6 [X₁₀+1 ]
l7 [X₁₀+1 ]
l5 [X₁₀ ]
l8 [X₁₀ ]
l20 [X₁₀ ]
l9 [X₁₀ ]
l29 [X₁₀-1 ]

MPRF for transition t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₇, X₉, X₁₀, X₁₀-1) :|: 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 2 ≤ X₁₀ of depth 1:

new bound:

2⋅X₅+1 {O(n)}

MPRF:

l13 [X₁₀-2 ]
l11 [X₁₀-2 ]
l15 [X₁₀-2 ]
l17 [X₁ ]
l16 [X₁ ]
l19 [X₂+X₁₀-X₇ ]
l22 [2⋅X₂+X₃-X₇ ]
l23 [2⋅X₂+X₃-X₇ ]
l24 [X₆+X₉-1 ]
l12 [X₁₀-2 ]
l14 [X₁₀-2 ]
l30 [X₆+X₉-1 ]
l18 [X₁₀ ]
l6 [X₁₀ ]
l7 [X₁₀ ]
l5 [X₁₀ ]
l8 [X₁₀ ]
l20 [X₂+X₁₀-X₇ ]
l9 [X₁₀-1 ]
l29 [X₁₀-2 ]

knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₃₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₈, X₈, X₉, X₁, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀

MPRF for transition t₁₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ < X₇+1 ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ of depth 1:

new bound:

8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}

MPRF:

l13 [X₆ ]
l11 [X₆ ]
l15 [X₆ ]
l17 [X₈+2-X₁₁ ]
l16 [X₈+1-X₁ ]
l19 [2⋅X₇-X₂-X₁₀-1 ]
l22 [X₇-X₂-X₃ ]
l23 [X₂+2-X₃-X₇ ]
l24 [1-X₉ ]
l12 [X₆ ]
l29 [X₆ ]
l14 [X₈+2-X₁₁ ]
l30 [1-X₉ ]
l18 [X₇+1-X₁₀ ]
l9 [X₇-X₁₀ ]
l6 [X₇+1-X₁₀ ]
l7 [X₇+1-X₁₀ ]
l5 [X₇-X₁₀ ]
l8 [X₇-X₁₀ ]
l20 [2⋅X₇-X₂-X₁₀-1 ]

MPRF for transition t₃₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₁₀-X₂, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂ of depth 1:

new bound:

12⋅X₅⋅X₅+7⋅X₅ {O(n^2)}

MPRF:

l12 [X₈+2 ]
l13 [X₈+2 ]
l11 [X₈+2 ]
l15 [X₈+2 ]
l17 [X₈+1 ]
l16 [X₈+1 ]
l19 [X₂+2 ]
l22 [X₂ ]
l23 [X₂ ]
l24 [X₆ ]
l14 [X₈+1 ]
l30 [X₆ ]
l18 [X₇+1 ]
l6 [X₇+1 ]
l7 [X₇+1 ]
l5 [X₇+1 ]
l8 [X₇+1 ]
l20 [X₂+2 ]
l9 [X₇+1 ]
l29 [X₈+1 ]

MPRF for transition t₃₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂ of depth 1:

new bound:

12⋅X₅⋅X₅+13⋅X₅+2 {O(n^2)}

MPRF:

l12 [X₈+4 ]
l13 [X₈+4 ]
l11 [X₈+4 ]
l15 [X₈+4 ]
l17 [X₈+3 ]
l16 [X₈+3 ]
l19 [X₇+2 ]
l22 [X₂+3 ]
l23 [X₂+3 ]
l24 [X₆+2 ]
l14 [X₈+3 ]
l30 [X₆+2 ]
l18 [X₇+3 ]
l6 [X₇+3 ]
l7 [X₇+3 ]
l5 [X₇+3 ]
l8 [X₇+3 ]
l20 [X₇+3 ]
l9 [X₇+3 ]
l29 [X₈+3 ]

MPRF for transition t₃₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ of depth 1:

new bound:

48⋅X₅⋅X₅+2⋅X₅ {O(n^2)}

MPRF:

l12 [2⋅X₆+2⋅X₈ ]
l13 [2⋅X₆+2⋅X₈ ]
l11 [2⋅X₆+2⋅X₈ ]
l15 [2⋅X₆+2⋅X₈ ]
l17 [2⋅X₈+2 ]
l16 [2⋅X₈+2 ]
l19 [X₂+X₇+3 ]
l22 [2⋅X₂+4 ]
l23 [2⋅X₂ ]
l24 [2⋅X₆ ]
l14 [2⋅X₈+2 ]
l30 [2⋅X₆ ]
l18 [2⋅X₇+2 ]
l6 [2⋅X₇+2 ]
l7 [2⋅X₇+2 ]
l5 [2⋅X₇+2 ]
l8 [2⋅X₇+2 ]
l20 [X₂+X₇+3 ]
l9 [2⋅X₇+2 ]
l29 [2⋅X₈+2 ]

MPRF for transition t₃₅: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈, X₃, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ of depth 1:

new bound:

12⋅X₅⋅X₅+19⋅X₅+1 {O(n^2)}

MPRF:

l12 [X₈+6 ]
l13 [X₈+6 ]
l11 [X₈+6 ]
l15 [X₈+3 ]
l17 [X₈+2 ]
l16 [X₈+2 ]
l19 [X₇+2 ]
l22 [X₇+2 ]
l23 [X₇+2 ]
l24 [X₆+1 ]
l14 [X₈+2 ]
l30 [X₆+1 ]
l18 [X₇+2 ]
l6 [X₇+2 ]
l7 [X₇+2 ]
l5 [X₇+2 ]
l8 [X₇+2 ]
l20 [X₇+2 ]
l9 [X₇+2 ]
l29 [X₈+2 ]

MPRF for transition t₁₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2 ≤ X₆ of depth 1:

new bound:

24⋅X₅⋅X₅+X₅+1 {O(n^2)}

MPRF:

l12 [X₆+X₈ ]
l13 [X₆+X₈ ]
l11 [X₈+2 ]
l15 [X₈+2 ]
l17 [X₈+1 ]
l16 [X₈+1 ]
l19 [X₇+1 ]
l22 [X₇+1 ]
l23 [X₂+2 ]
l24 [X₆+1 ]
l14 [X₈+1 ]
l30 [X₆ ]
l18 [X₇+1 ]
l6 [X₇+1 ]
l7 [X₇+1 ]
l5 [X₇+1 ]
l8 [X₇+1 ]
l20 [X₇+1 ]
l9 [X₇+1 ]
l29 [X₈+1 ]

MPRF for transition t₁₃: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆-1, X₈, X₉, X₉+X₆-1, X₁₁) :|: 2 ≤ X₆ of depth 1:

new bound:

12⋅X₅⋅X₅+4⋅X₅+1 {O(n^2)}

MPRF:

l12 [X₈+1 ]
l13 [X₈+1 ]
l11 [X₈+1 ]
l15 [X₈+1 ]
l17 [X₈ ]
l16 [X₈ ]
l19 [X₂+1 ]
l22 [2⋅X₂+2-X₇ ]
l23 [2⋅X₂+2-X₇ ]
l24 [X₆+1 ]
l14 [X₈ ]
l30 [X₆+1 ]
l18 [X₇ ]
l6 [X₇ ]
l7 [X₇ ]
l5 [X₇ ]
l8 [X₇ ]
l20 [X₇ ]
l9 [X₇ ]
l29 [X₈ ]

MPRF for transition t₃₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₇-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ of depth 1:

new bound:

36⋅X₅⋅X₅+X₅ {O(n^2)}

MPRF:

l12 [X₆+2⋅X₈ ]
l13 [X₆+2⋅X₈ ]
l11 [X₆+2⋅X₈ ]
l15 [2⋅X₈+2 ]
l17 [2⋅X₈+2-X₆ ]
l16 [2⋅X₈+2-X₆ ]
l19 [X₂ ]
l22 [X₂ ]
l23 [X₂ ]
l24 [X₆ ]
l14 [2⋅X₈+2-X₆ ]
l30 [X₆ ]
l18 [2⋅X₇+2-X₆ ]
l6 [2⋅X₇+2-X₆ ]
l7 [2⋅X₇+2-X₆ ]
l5 [2⋅X₇+2-X₆ ]
l8 [X₇+1 ]
l20 [X₇-1 ]
l9 [2⋅X₇+2-X₆ ]
l29 [2⋅X₈+2-X₆ ]

Analysing control-flow refined program

Found invariant X₆ ≤ 1 for location l32

Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ for location l6

Found invariant X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀ for location n_l23___3

Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ for location l29

Found invariant X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀ for location n_l20___6

Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location l12

Found invariant X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₁₀ ∧ X₉ ≤ X₁ ∧ X₃ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₃ ≤ 1+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₁ ≤ 2+X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l24___17

Found invariant 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ 2 ≤ X₆ ∧ 1+X₁₀ ≤ X₆ for location n_l8___14

Found invariant X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l20___21

Found invariant X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l22___19

Found invariant X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀ for location n_l22___4

Found invariant X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location l18

Found invariant X₉ ≤ 1 ∧ X₉ ≤ X₇ ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₃ ∧ X₃+X₉ ≤ 2 ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₀ ∧ X₃ ≤ X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₃ ≤ 1+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ for location n_l24___9

Found invariant X₉ ≤ X₃ ∧ X₉ ≤ X₁₀ ∧ 2 ≤ X₉ ∧ 5 ≤ X₇+X₉ ∧ 4 ≤ X₆+X₉ ∧ 2+X₄ ≤ X₉ ∧ 4 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 4 ≤ X₂+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3+X₄ ≤ X₇ ∧ 5 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 7 ≤ X₁₀+X₇ ∧ X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 6 ≤ X₁₀+X₃ ∧ 2+X₂ ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 6 ≤ X₁₀+X₂ ∧ 4 ≤ X₁₀ for location n_l30___1

Found invariant X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₁₀ ∧ X₉ ≤ X₁ ∧ X₃ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ 1+X₂ ∧ 3 ≤ X₈ ∧ 6 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 5 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 4 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 5 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₃ ≤ 1+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₁ ≤ 2+X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l30___16

Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ for location l14

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ X₆ ≤ X₅ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₅ for location n_l30___7

Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location l11

Found invariant X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀ for location n_l19___5

Found invariant X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 1 ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ X₃ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ for location n_l23___10

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ X₆ ≤ X₉ ∧ X₅ ≤ X₉ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ for location l24

Found invariant 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ for location n_l18___15

Found invariant X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ for location n_l19___12

Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l15

Found invariant X₆ ≤ 1 for location l31

Found invariant X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ for location n_l20___13

Found invariant X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l8___22

Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ X₈ ≤ 1+X₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ 1+X₁ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ X₆ ≤ 2+X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 0 ≤ X₁ for location l17

Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ for location l7

Found invariant X₉ ≤ X₃ ∧ X₉ ≤ X₁₀ ∧ 3 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₀ ∧ 0 ≤ X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀ for location n_l24___2

Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ for location l5

Found invariant X₉ ≤ 1 ∧ 2+X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ X₉ ≤ X₃ ∧ X₃+X₉ ≤ 2 ∧ 1+X₉ ≤ X₂ ∧ X₉ ≤ X₁₀ ∧ X₃ ≤ X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₃ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ for location n_l30___8

Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location l13

Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₁₀ ∧ 2 ≤ X₁₀ for location l8

Found invariant X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l19___20

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀ for location l16

Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 2 ≤ X₁₀ for location l9

Found invariant X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l23___18

Found invariant X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ for location n_l22___11

knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₂₄₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₁₀ < 1+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₅+10 {O(n)} for transition t₂₆₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___6(X₀, X₁, X₇-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₁₀ ∧ 2 ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₅+10 {O(n)} for transition t₂₄₆: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀

knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₂₆₂: n_l8___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___21(X₀, X₁, X₇-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ < 1+X₈ ∧ 1 ≤ X₄ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₆ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₁+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ 2 ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₅+10 {O(n)} for transition t₂₄₃: n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___4(X₀, X₁, X₂, X₁₀-X₂, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀

knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₂₄₅: n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₁ < 1+X₈ ∧ 1 ≤ X₄ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₆ ∧ X₂+1 ≤ X₈ ∧ X₈ ≤ 1+X₂ ∧ X₁+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₅+10 {O(n)} for transition t₂₄₉: n_l22___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₃ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₅+10 {O(n)} for transition t₂₅₂: n_l23___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₂+1, X₈, X₃, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₃ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₅+10 {O(n)} for transition t₂₅₄: n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 2 ≤ X₉ ∧ X₉ ≤ X₁₀ ∧ X₂+X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₂+X₉ ∧ X₆+X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₆+X₉ ∧ X₇+X₉ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₇+X₉ ∧ X₃ ≤ X₉ ∧ X₉ ≤ X₃ ∧ 2 ≤ X₆ ∧ X₉ ≤ X₃ ∧ X₉ ≤ X₁₀ ∧ 3 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₀ ∧ 0 ≤ X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₅+10 {O(n)} for transition t₂₅₇: n_l30___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆-1, X₈, X₉, X₆+X₉-1, X₁₁) :|: X₄ ≤ 0 ∧ 2 ≤ X₉ ∧ 2 ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₆+X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₆+X₉ ∧ X₃ ≤ X₉ ∧ X₉ ≤ X₃ ∧ X₆+1 ≤ X₇ ∧ X₇ ≤ 1+X₆ ∧ 2 ≤ X₆ ∧ X₉ ≤ X₃ ∧ X₉ ≤ X₁₀ ∧ 2 ≤ X₉ ∧ 5 ≤ X₇+X₉ ∧ 4 ≤ X₆+X₉ ∧ 2+X₄ ≤ X₉ ∧ 4 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 4 ≤ X₂+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3+X₄ ≤ X₇ ∧ 5 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 7 ≤ X₁₀+X₇ ∧ X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 6 ≤ X₁₀+X₃ ∧ 2+X₂ ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 6 ≤ X₁₀+X₂ ∧ 4 ≤ X₁₀

knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₂₄₂: n_l19___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___19(X₀, X₁, X₂, X₁₀-X₂, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₁ < 1+X₈ ∧ 1 ≤ X₄ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₆ ∧ X₂+1 ≤ X₈ ∧ X₈ ≤ 1+X₂ ∧ X₁+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₂₄₈: n_l22___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ < 1+X₇ ∧ 1 ≤ X₄ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₁₀+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁₀ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₃ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₂₅₁: n_l23___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___17(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₂+1, X₈, X₃, X₁₀, X₁₁) :|: X₁₀ < 1+X₇ ∧ 1 ≤ X₄ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₁₀+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁₀ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₃ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₂₅₃: n_l24___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ < 2+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ X₆+1 ≤ X₈ ∧ X₈ ≤ 1+X₆ ∧ X₈+X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₈+X₉ ∧ X₃+X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₃+X₈ ∧ X₂+1 ≤ X₈ ∧ X₈ ≤ 1+X₂ ∧ X₁+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₁₀+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ 2 ≤ X₆ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₁₀ ∧ X₉ ≤ X₁ ∧ X₃ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₃ ≤ 1+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₁ ≤ 2+X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₂₅₈: n_l30___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆-1, X₈, X₉, X₆+X₉-1, X₁₁) :|: X₁₁ < 3+X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₂+X₉+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₂+X₉ ∧ X₂+X₃+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₂+X₃ ∧ X₂+1 ≤ X₈ ∧ X₈ ≤ 1+X₂ ∧ X₁+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₁₀+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ 2 ≤ X₆ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₁₀ ∧ X₉ ≤ X₁ ∧ X₃ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ 1+X₂ ∧ 3 ≤ X₈ ∧ 6 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 5 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 4 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 5 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₃ ≤ 1+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₁ ≤ 2+X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

MPRF for transition t₂₃₉: n_l18___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ 1+X₇ ≤ X₆ ∧ X₆+X₉ ≤ 1+X₁₀ ∧ 1+X₁₀ ≤ X₆+X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₆ ∧ X₁₀ < 1+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ of depth 1:

new bound:

120⋅X₅⋅X₅+141⋅X₅+22 {O(n^2)}

MPRF:

l13 [0 ]
l11 [0 ]
l15 [0 ]
l17 [0 ]
l16 [0 ]
l18 [0 ]
n_l8___22 [0 ]
l12 [0 ]
l14 [0 ]
l7 [0 ]
l5 [0 ]
l8 [0 ]
l9 [0 ]
l29 [0 ]
l6 [0 ]
n_l19___12 [X₂+X₆+X₉-X₁₀-1 ]
n_l20___21 [2⋅X₂+1-X₈ ]
n_l19___20 [2⋅X₂+1-X₈ ]
n_l20___6 [0 ]
n_l19___5 [0 ]
n_l22___11 [X₂ ]
n_l22___19 [2⋅X₂+1-X₈ ]
n_l22___4 [0 ]
n_l23___10 [X₂ ]
n_l23___18 [2⋅X₂+1-X₈ ]
n_l23___3 [0 ]
n_l24___17 [2⋅X₆+1-X₈ ]
n_l24___2 [0 ]
n_l30___1 [0 ]
n_l24___9 [X₆ ]
n_l30___16 [2⋅X₆+1-X₇ ]
n_l30___8 [X₆ ]
n_l18___15 [2⋅X₆-X₇-2 ]
n_l8___14 [2⋅X₆-X₇-3 ]
n_l20___13 [X₂+X₆-X₇-1 ]

MPRF for transition t₂₇₄: n_l18___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ of depth 1:

new bound:

4⋅X₅+5 {O(n)}

MPRF:

l13 [2⋅X₈+X₁₁-7 ]
l11 [2⋅X₈+X₁₁-7 ]
l15 [2⋅X₈+X₁₁-7 ]
l17 [X₁+2⋅X₈-6 ]
l16 [X₁+2⋅X₈-6 ]
l18 [X₁+2⋅X₈-6 ]
l12 [2⋅X₈+X₁₁-7 ]
l14 [2⋅X₈+X₁₁-7 ]
l7 [2⋅X₇+X₁₀-8 ]
l5 [2⋅X₇+X₁₀-8 ]
l8 [2⋅X₇+X₁₀-8 ]
l9 [2⋅X₇+X₁₀-8 ]
l29 [2⋅X₈+X₁₁-7 ]
l6 [2⋅X₇+X₁₀-8 ]
n_l19___12 [2⋅X₆+X₁₀-10 ]
n_l19___20 [X₁+3⋅X₂-X₈-3 ]
n_l20___6 [2⋅X₇+X₁₀-8 ]
n_l19___5 [2⋅X₂+X₁₀-6 ]
n_l22___11 [X₂+2⋅X₆+X₉-9 ]
n_l22___19 [3⋅X₂+X₁₀-X₈-3 ]
n_l22___4 [3⋅X₂+X₃-6 ]
n_l23___10 [X₂+X₃+2⋅X₆-10 ]
n_l23___18 [X₁+3⋅X₂-X₈-3 ]
n_l23___3 [3⋅X₂+X₃-6 ]
n_l24___17 [3⋅X₆+X₁₀-X₈-3 ]
n_l24___2 [3⋅X₂+X₃-6 ]
n_l24___9 [X₂+2⋅X₆+X₉-6 ]
n_l30___1 [3⋅X₆+X₉-6 ]
n_l30___16 [X₁+3⋅X₆+X₇+X₉-X₈-X₁₁-3 ]
n_l30___8 [X₂+2⋅X₆+X₉-6 ]
n_l18___15 [2⋅X₆+X₁₀-5 ]
n_l8___14 [2⋅X₆+X₁₀-5 ]
n_l20___13 [2⋅X₆+X₁₀-10 ]
n_l8___22 [X₁+2⋅X₈-6 ]
n_l20___21 [3⋅X₂+X₁₀-X₈-3 ]

MPRF for transition t₂₄₁: n_l19___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___11(X₀, X₁, X₂, X₁₀-X₂, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₉ < 1 ∧ 1+X₉ ≤ X₁₀ ∧ X₇+X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₇+X₉ ∧ X₆+X₉ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₆+X₉ ∧ X₂+X₉+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₂+X₉ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ of depth 1:

new bound:

40⋅X₅⋅X₅+41⋅X₅ {O(n^2)}

MPRF:

l13 [0 ]
l11 [0 ]
l15 [0 ]
l17 [0 ]
l16 [0 ]
l18 [0 ]
n_l8___22 [0 ]
l12 [0 ]
l14 [0 ]
l7 [0 ]
l5 [0 ]
l8 [0 ]
l9 [0 ]
l29 [0 ]
l6 [0 ]
n_l19___12 [X₂+X₆+X₉+1-X₁₀ ]
n_l20___21 [X₈ ]
n_l19___20 [X₈ ]
n_l20___6 [0 ]
n_l19___5 [0 ]
n_l22___11 [X₂+X₆+X₉-X₁₀-1 ]
n_l22___19 [X₈ ]
n_l22___4 [0 ]
n_l23___10 [X₂+X₃+X₆-X₁₀-2 ]
n_l23___18 [X₈ ]
n_l23___3 [0 ]
n_l24___17 [X₆+1 ]
n_l24___2 [X₆-X₂ ]
n_l30___1 [X₆-X₂ ]
n_l24___9 [X₆ ]
n_l30___16 [X₂+1 ]
n_l30___8 [X₆ ]
n_l18___15 [X₆ ]
n_l8___14 [X₆ ]
n_l20___13 [X₆ ]

MPRF for transition t₂₄₄: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₉ < 1 ∧ 1+X₉ ≤ X₁₀ ∧ X₇+X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₇+X₉ ∧ X₆+X₉ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₆+X₉ ∧ X₂+X₉+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₂+X₉ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ of depth 1:

new bound:

56⋅X₅⋅X₅+49⋅X₅+11 {O(n^2)}

MPRF:

l13 [0 ]
l11 [0 ]
l15 [0 ]
l17 [0 ]
l16 [0 ]
l18 [0 ]
n_l8___22 [0 ]
l12 [0 ]
l14 [0 ]
l7 [0 ]
l5 [0 ]
l8 [0 ]
l9 [0 ]
l29 [0 ]
l6 [0 ]
n_l19___12 [X₂-1 ]
n_l20___21 [2⋅X₂-X₈ ]
n_l19___20 [2⋅X₂-X₈ ]
n_l20___6 [0 ]
n_l19___5 [0 ]
n_l22___11 [X₂-1 ]
n_l22___19 [2⋅X₂-X₈ ]
n_l22___4 [0 ]
n_l23___10 [X₂-1 ]
n_l23___18 [2⋅X₂-X₈ ]
n_l23___3 [0 ]
n_l24___17 [2⋅X₆-X₈ ]
n_l24___2 [0 ]
n_l30___1 [0 ]
n_l24___9 [X₆-1 ]
n_l30___16 [X₂+X₆-X₇ ]
n_l30___8 [X₂-1 ]
n_l18___15 [X₆-1 ]
n_l8___14 [X₇ ]
n_l20___13 [X₂+1 ]

MPRF for transition t₂₄₇: n_l22___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₃ < 2 ∧ X₃ ≤ X₁₀ ∧ X₂+X₃ ≤ X₁₀ ∧ X₁₀ ≤ X₂+X₃ ∧ X₃ ≤ X₉+1 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₃+X₆ ≤ X₁₀+2 ∧ 2+X₁₀ ≤ X₃+X₆ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₃ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ of depth 1:

new bound:

104⋅X₅⋅X₅+139⋅X₅+22 {O(n^2)}

MPRF:

l13 [0 ]
l11 [0 ]
l15 [0 ]
l17 [0 ]
l16 [0 ]
l18 [0 ]
n_l8___22 [0 ]
l12 [0 ]
l14 [0 ]
l7 [0 ]
l5 [0 ]
l8 [0 ]
l9 [0 ]
l29 [0 ]
l6 [0 ]
n_l19___12 [X₂+1 ]
n_l20___21 [X₂ ]
n_l19___20 [X₂ ]
n_l20___6 [0 ]
n_l19___5 [0 ]
n_l22___11 [X₂+1 ]
n_l22___19 [X₂ ]
n_l22___4 [0 ]
n_l23___10 [X₂ ]
n_l23___18 [X₂ ]
n_l23___3 [0 ]
n_l24___17 [X₆ ]
n_l24___2 [0 ]
n_l30___1 [0 ]
n_l24___9 [X₆ ]
n_l30___16 [X₆ ]
n_l30___8 [X₆ ]
n_l18___15 [2⋅X₆-X₇-2 ]
n_l8___14 [X₇ ]
n_l20___13 [X₂+X₁₀+1-X₇-X₉ ]

MPRF for transition t₂₅₀: n_l23___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₂+1, X₈, X₃, X₁₀, X₁₁) :|: X₃ < 2 ∧ X₃ ≤ X₁₀ ∧ X₂+X₃ ≤ X₁₀ ∧ X₁₀ ≤ X₂+X₃ ∧ X₃ ≤ X₉+1 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₃+X₆ ≤ X₁₀+2 ∧ 2+X₁₀ ≤ X₃+X₆ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₃ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 1 ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ X₃ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ of depth 1:

new bound:

56⋅X₅⋅X₅+53⋅X₅+11 {O(n^2)}

MPRF:

l13 [0 ]
l11 [0 ]
l15 [0 ]
l17 [0 ]
l16 [0 ]
l18 [0 ]
n_l8___22 [0 ]
l12 [0 ]
l14 [0 ]
l7 [0 ]
l5 [0 ]
l8 [0 ]
l9 [0 ]
l29 [0 ]
l6 [0 ]
n_l19___12 [X₆ ]
n_l20___21 [2⋅X₂+2-X₈ ]
n_l19___20 [2⋅X₂+1-X₈ ]
n_l20___6 [0 ]
n_l19___5 [0 ]
n_l22___11 [X₆+X₁₀-X₂-X₃ ]
n_l22___19 [2⋅X₂+1-X₈ ]
n_l22___4 [X₂+X₃-X₁₀ ]
n_l23___10 [X₁₀+2-X₃ ]
n_l23___18 [2⋅X₂+1-X₈ ]
n_l23___3 [X₂+X₃-X₁₀ ]
n_l24___17 [X₂+X₆+1-X₈ ]
n_l24___2 [X₂+X₃-X₁₀ ]
n_l30___1 [X₂-X₇ ]
n_l24___9 [X₆ ]
n_l30___16 [X₂+X₆+1-X₈ ]
n_l30___8 [X₂ ]
n_l18___15 [X₇+1 ]
n_l8___14 [X₆ ]
n_l20___13 [X₆ ]

MPRF for transition t₂₅₆: n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < 2 ∧ X₃ ≤ X₁₀ ∧ X₂+X₃ ≤ X₁₀ ∧ X₁₀ ≤ X₂+X₃ ∧ X₃ ≤ X₉ ∧ X₉ ≤ X₃ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₃+X₆ ≤ X₁₀ ∧ X₁₀ ≤ X₃+X₆ ∧ 2 ≤ X₆ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₇ ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₃ ∧ X₃+X₉ ≤ 2 ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₀ ∧ X₃ ≤ X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₃ ≤ 1+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ of depth 1:

new bound:

56⋅X₅⋅X₅+41⋅X₅ {O(n^2)}

MPRF:

l13 [0 ]
l11 [0 ]
l15 [0 ]
l17 [0 ]
l16 [0 ]
l18 [0 ]
n_l8___22 [0 ]
l12 [0 ]
l14 [0 ]
l7 [0 ]
l5 [0 ]
l8 [0 ]
l9 [0 ]
l29 [0 ]
l6 [0 ]
n_l19___12 [X₆ ]
n_l20___21 [X₂+X₈-X₇ ]
n_l19___20 [X₂ ]
n_l20___6 [0 ]
n_l19___5 [0 ]
n_l22___11 [X₂+X₃+X₆-X₁₀ ]
n_l22___19 [X₂ ]
n_l22___4 [0 ]
n_l23___10 [X₂+X₃+X₆-X₁₀ ]
n_l23___18 [2⋅X₂+1-X₈ ]
n_l23___3 [0 ]
n_l24___17 [X₂+X₆+1-X₈ ]
n_l24___2 [0 ]
n_l30___1 [0 ]
n_l24___9 [X₆+2 ]
n_l30___16 [X₂+X₆+1-X₈ ]
n_l30___8 [X₂ ]
n_l18___15 [X₆ ]
n_l8___14 [X₆ ]
n_l20___13 [X₆ ]

MPRF for transition t₂₆₀: n_l30___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆-1, X₈, X₉, X₆+X₉-1, X₁₁) :|: X₃ < 2 ∧ 3 ≤ X₇ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₆+1 ≤ X₇ ∧ X₇ ≤ 1+X₆ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₃ ≤ X₉ ∧ X₉ ≤ X₃ ∧ 2 ≤ X₆ ∧ X₉ ≤ 1 ∧ 2+X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ X₉ ≤ X₃ ∧ X₃+X₉ ≤ 2 ∧ 1+X₉ ≤ X₂ ∧ X₉ ≤ X₁₀ ∧ X₃ ≤ X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₃ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ of depth 1:

new bound:

104⋅X₅⋅X₅+41⋅X₅ {O(n^2)}

MPRF:

l13 [0 ]
l11 [0 ]
l15 [0 ]
l17 [0 ]
l16 [0 ]
l18 [0 ]
n_l8___22 [0 ]
l12 [0 ]
l14 [0 ]
l7 [0 ]
l5 [0 ]
l8 [0 ]
l9 [0 ]
l29 [0 ]
l6 [0 ]
n_l19___12 [2⋅X₂+X₉+2-X₁₀ ]
n_l20___21 [5⋅X₈-4⋅X₂ ]
n_l19___20 [5⋅X₈-4⋅X₂ ]
n_l20___6 [0 ]
n_l19___5 [0 ]
n_l22___11 [2⋅X₂+X₉+2-X₁₀ ]
n_l22___19 [3⋅X₃+5⋅X₈-3⋅X₁-X₂ ]
n_l22___4 [0 ]
n_l23___10 [2⋅X₂+X₉+2-X₁₀ ]
n_l23___18 [4⋅X₂+3⋅X₃+5-3⋅X₁₀ ]
n_l23___3 [0 ]
n_l24___17 [3⋅X₃+4⋅X₆+5-3⋅X₁ ]
n_l24___2 [X₂-X₆ ]
n_l30___1 [X₂-X₁₀ ]
n_l24___9 [X₂+X₃+X₆+1-X₁₀ ]
n_l30___16 [3⋅X₂+3⋅X₃+X₆+5-3⋅X₁ ]
n_l30___8 [X₇ ]
n_l18___15 [X₆ ]
n_l8___14 [X₆ ]
n_l20___13 [3⋅X₂+3-2⋅X₇ ]

MPRF for transition t₂₆₁: n_l8___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___13(X₀, X₁, X₇-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ < 1 ∧ 1+X₉ ≤ X₁₀ ∧ X₆+X₉ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₆+X₉ ∧ X₇+X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₇+X₉ ∧ 2 ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ 2 ≤ X₆ ∧ 1+X₁₀ ≤ X₆ of depth 1:

new bound:

40⋅X₅⋅X₅+49⋅X₅+11 {O(n^2)}

MPRF:

l13 [0 ]
l11 [0 ]
l15 [0 ]
l17 [0 ]
l16 [0 ]
l18 [0 ]
n_l8___22 [0 ]
l12 [0 ]
l14 [0 ]
l7 [0 ]
l5 [0 ]
l8 [0 ]
l9 [0 ]
l29 [0 ]
l6 [0 ]
n_l19___12 [3⋅X₂+X₆-3⋅X₇ ]
n_l20___21 [X₂ ]
n_l19___20 [X₂ ]
n_l20___6 [0 ]
n_l19___5 [0 ]
n_l22___11 [X₆+3⋅X₉-3⋅X₃ ]
n_l22___19 [X₂ ]
n_l22___4 [0 ]
n_l23___10 [X₁₀-X₃-1 ]
n_l23___18 [X₂ ]
n_l23___3 [0 ]
n_l24___17 [X₂ ]
n_l24___2 [0 ]
n_l30___1 [0 ]
n_l24___9 [X₁₀-X₃-1 ]
n_l30___16 [X₂ ]
n_l30___8 [3⋅X₆+1-2⋅X₇ ]
n_l18___15 [X₆-1 ]
n_l8___14 [X₆-1 ]
n_l20___13 [X₆-3 ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:164⋅X₅⋅X₅+100⋅X₅+45 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₅: 1 {O(1)}
t₂₅: 3⋅X₅+1 {O(n)}
t₂₆: 2⋅X₅+1 {O(n)}
t₂₃: 2⋅X₅ {O(n)}
t₂₄: 2⋅X₅ {O(n)}
t₂₈: 2⋅X₅ {O(n)}
t₂₇: 3⋅X₅ {O(n)}
t₃₀: 2⋅X₅ {O(n)}
t₂₉: 2⋅X₅ {O(n)}
t₁₄: 4⋅X₅+6 {O(n)}
t₁₅: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
t₃₃: 12⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
t₁: 1 {O(1)}
t₃₂: 12⋅X₅⋅X₅+13⋅X₅+2 {O(n^2)}
t₆: 1 {O(1)}
t₃₄: 48⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₃₅: 12⋅X₅⋅X₅+19⋅X₅+1 {O(n^2)}
t₁₁: 24⋅X₅⋅X₅+X₅+1 {O(n^2)}
t₁₂: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₂₁: 3⋅X₅ {O(n)}
t₂₂: 2⋅X₅+1 {O(n)}
t₂: 1 {O(1)}
t₁₃: 12⋅X₅⋅X₅+4⋅X₅+1 {O(n^2)}
t₃₆: 1 {O(1)}
t₄: 1 {O(1)}
t₁₈: 4⋅X₅ {O(n)}
t₁₉: 8⋅X₅+10 {O(n)}
t₁₆: 5⋅X₅+6 {O(n)}
t₁₇: 2⋅X₅ {O(n)}
t₃₁: 36⋅X₅⋅X₅+X₅ {O(n^2)}
t₂₀: 2⋅X₅+1 {O(n)}

Costbounds

Overall costbound: 164⋅X₅⋅X₅+100⋅X₅+45 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₅: 1 {O(1)}
t₂₅: 3⋅X₅+1 {O(n)}
t₂₆: 2⋅X₅+1 {O(n)}
t₂₃: 2⋅X₅ {O(n)}
t₂₄: 2⋅X₅ {O(n)}
t₂₈: 2⋅X₅ {O(n)}
t₂₇: 3⋅X₅ {O(n)}
t₃₀: 2⋅X₅ {O(n)}
t₂₉: 2⋅X₅ {O(n)}
t₁₄: 4⋅X₅+6 {O(n)}
t₁₅: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
t₃₃: 12⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
t₁: 1 {O(1)}
t₃₂: 12⋅X₅⋅X₅+13⋅X₅+2 {O(n^2)}
t₆: 1 {O(1)}
t₃₄: 48⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₃₅: 12⋅X₅⋅X₅+19⋅X₅+1 {O(n^2)}
t₁₁: 24⋅X₅⋅X₅+X₅+1 {O(n^2)}
t₁₂: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₂₁: 3⋅X₅ {O(n)}
t₂₂: 2⋅X₅+1 {O(n)}
t₂: 1 {O(1)}
t₁₃: 12⋅X₅⋅X₅+4⋅X₅+1 {O(n^2)}
t₃₆: 1 {O(1)}
t₄: 1 {O(1)}
t₁₈: 4⋅X₅ {O(n)}
t₁₉: 8⋅X₅+10 {O(n)}
t₁₆: 5⋅X₅+6 {O(n)}
t₁₇: 2⋅X₅ {O(n)}
t₃₁: 36⋅X₅⋅X₅+X₅ {O(n^2)}
t₂₀: 2⋅X₅+1 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₉ {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₅, X₁₁: X₁₁ {O(n)}
t₂₅, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₂₅, X₂: 4⋅X₅+X₂ {O(n)}
t₂₅, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₂₅, X₅: X₅ {O(n)}
t₂₅, X₆: 4⋅X₅ {O(n)}
t₂₅, X₇: 4⋅X₅ {O(n)}
t₂₅, X₈: 4⋅X₅ {O(n)}
t₂₅, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₅, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₅, X₁₁: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₆, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₂₆, X₂: 4⋅X₅+X₂ {O(n)}
t₂₆, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₂₆, X₅: X₅ {O(n)}
t₂₆, X₆: 4⋅X₅ {O(n)}
t₂₆, X₇: 4⋅X₅ {O(n)}
t₂₆, X₈: 4⋅X₅ {O(n)}
t₂₆, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₆, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₆, X₁₁: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₃, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₂₃, X₂: 4⋅X₅+X₂ {O(n)}
t₂₃, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: 4⋅X₅ {O(n)}
t₂₃, X₇: 4⋅X₅ {O(n)}
t₂₃, X₈: 4⋅X₅ {O(n)}
t₂₃, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₃, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₃, X₁₁: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₄, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₂₄, X₂: 4⋅X₅+X₂ {O(n)}
t₂₄, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₂₄, X₅: X₅ {O(n)}
t₂₄, X₆: 4⋅X₅ {O(n)}
t₂₄, X₇: 4⋅X₅ {O(n)}
t₂₄, X₈: 4⋅X₅ {O(n)}
t₂₄, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₄, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₄, X₁₁: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₈, X₁: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₈, X₂: 4⋅X₅+X₂ {O(n)}
t₂₈, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₂₈, X₅: X₅ {O(n)}
t₂₈, X₆: 4⋅X₅ {O(n)}
t₂₈, X₇: 12⋅X₅ {O(n)}
t₂₈, X₈: 4⋅X₅ {O(n)}
t₂₈, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₈, X₁₀: 288⋅X₅⋅X₅⋅X₅+132⋅X₅⋅X₅+39⋅X₅ {O(n^3)}
t₂₈, X₁₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅ {O(n^3)}
t₂₇, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₂₇, X₂: 4⋅X₅+X₂ {O(n)}
t₂₇, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₂₇, X₅: X₅ {O(n)}
t₂₇, X₆: 4⋅X₅ {O(n)}
t₂₇, X₇: 4⋅X₅ {O(n)}
t₂₇, X₈: 4⋅X₅ {O(n)}
t₂₇, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₇, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₇, X₁₁: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₀, X₁: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₀, X₂: 4⋅X₅+X₂ {O(n)}
t₃₀, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₃₀, X₅: X₅ {O(n)}
t₃₀, X₆: 4⋅X₅ {O(n)}
t₃₀, X₇: 4⋅X₅ {O(n)}
t₃₀, X₈: 4⋅X₅ {O(n)}
t₃₀, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₀, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₀, X₁₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅ {O(n^3)}
t₂₉, X₁: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₉, X₂: 4⋅X₅+X₂ {O(n)}
t₂₉, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₂₉, X₅: X₅ {O(n)}
t₂₉, X₆: 4⋅X₅ {O(n)}
t₂₉, X₇: 12⋅X₅ {O(n)}
t₂₉, X₈: 4⋅X₅ {O(n)}
t₂₉, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₉, X₁₀: 288⋅X₅⋅X₅⋅X₅+132⋅X₅⋅X₅+39⋅X₅ {O(n^3)}
t₂₉, X₁₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅ {O(n^3)}
t₁₄, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₁₄, X₂: 4⋅X₅+X₂ {O(n)}
t₁₄, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: 4⋅X₅ {O(n)}
t₁₄, X₇: 4⋅X₅ {O(n)}
t₁₄, X₈: 8⋅X₅+X₈ {O(n)}
t₁₄, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₄, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₄, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₁₅, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₁₅, X₂: 2⋅X₂+8⋅X₅ {O(n)}
t₁₅, X₃: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+2⋅X₃+26⋅X₅ {O(n^3)}
t₁₅, X₅: X₅ {O(n)}
t₁₅, X₆: 8⋅X₅ {O(n)}
t₁₅, X₇: 4⋅X₅ {O(n)}
t₁₅, X₈: 8⋅X₅+X₈ {O(n)}
t₁₅, X₉: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅ {O(n^3)}
t₁₅, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₅, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₃₃, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₃₃, X₂: 4⋅X₅ {O(n)}
t₃₃, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₃, X₅: X₅ {O(n)}
t₃₃, X₆: 12⋅X₅ {O(n)}
t₃₃, X₇: 8⋅X₅ {O(n)}
t₃₃, X₈: 8⋅X₅+X₈ {O(n)}
t₃₃, X₉: 288⋅X₅⋅X₅⋅X₅+132⋅X₅⋅X₅+39⋅X₅ {O(n^3)}
t₃₃, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₃, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₃₂, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₃₂, X₂: 4⋅X₅ {O(n)}
t₃₂, X₃: 288⋅X₅⋅X₅⋅X₅+132⋅X₅⋅X₅+3⋅X₃+39⋅X₅ {O(n^3)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: 12⋅X₅ {O(n)}
t₃₂, X₇: 8⋅X₅ {O(n)}
t₃₂, X₈: 8⋅X₅+X₈ {O(n)}
t₃₂, X₉: 288⋅X₅⋅X₅⋅X₅+132⋅X₅⋅X₅+39⋅X₅ {O(n^3)}
t₃₂, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₂, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₆, X₁₁: X₁₁ {O(n)}
t₃₄, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₃₄, X₂: 4⋅X₅ {O(n)}
t₃₄, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₄, X₅: X₅ {O(n)}
t₃₄, X₆: 12⋅X₅ {O(n)}
t₃₄, X₇: 8⋅X₅ {O(n)}
t₃₄, X₈: 8⋅X₅+X₈ {O(n)}
t₃₄, X₉: 288⋅X₅⋅X₅⋅X₅+132⋅X₅⋅X₅+39⋅X₅ {O(n^3)}
t₃₄, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₄, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₃₅, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₃₅, X₂: 4⋅X₅ {O(n)}
t₃₅, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₅, X₅: X₅ {O(n)}
t₃₅, X₆: 4⋅X₅ {O(n)}
t₃₅, X₇: 8⋅X₅ {O(n)}
t₃₅, X₈: 8⋅X₅+X₈ {O(n)}
t₃₅, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₅, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₅, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₁₁, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₁₁, X₂: 4⋅X₅+X₂ {O(n)}
t₁₁, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: 4⋅X₅ {O(n)}
t₁₁, X₇: 8⋅X₅+X₇ {O(n)}
t₁₁, X₈: 8⋅X₅+X₈ {O(n)}
t₁₁, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₁, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₁₀ {O(n^3)}
t₁₁, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₁₂, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+2⋅X₁+26⋅X₅ {O(n^3)}
t₁₂, X₂: 4⋅X₅+X₂ {O(n)}
t₁₂, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₁₂, X₅: 2⋅X₅ {O(n)}
t₁₂, X₆: 5⋅X₅ {O(n)}
t₁₂, X₇: 8⋅X₅+X₇ {O(n)}
t₁₂, X₈: 2⋅X₈+8⋅X₅ {O(n)}
t₁₂, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+14⋅X₅ {O(n^3)}
t₁₂, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₁₀ {O(n^3)}
t₁₂, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+2⋅X₁₁+52⋅X₅ {O(n^3)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₇, X₁₁: X₁₁ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₈, X₈: X₈ {O(n)}
t₈, X₉: X₉ {O(n)}
t₈, X₁₀: X₁₀ {O(n)}
t₈, X₁₁: X₁₁ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₉, X₁₁: X₁₁ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₅ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₀, X₈: X₈ {O(n)}
t₁₀, X₉: X₅ {O(n)}
t₁₀, X₁₀: X₁₀ {O(n)}
t₁₀, X₁₁: X₁₁ {O(n)}
t₂₁, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₂₁, X₂: 4⋅X₅+X₂ {O(n)}
t₂₁, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₂₁, X₅: X₅ {O(n)}
t₂₁, X₆: 4⋅X₅ {O(n)}
t₂₁, X₇: 4⋅X₅ {O(n)}
t₂₁, X₈: 4⋅X₅ {O(n)}
t₂₁, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₁, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₁, X₁₁: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₂, X₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+2⋅X₁+52⋅X₅ {O(n^3)}
t₂₂, X₂: 4⋅X₅+X₂ {O(n)}
t₂₂, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: 4⋅X₅ {O(n)}
t₂₂, X₇: 8⋅X₅ {O(n)}
t₂₂, X₈: 4⋅X₅ {O(n)}
t₂₂, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₂, X₁₀: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅ {O(n^3)}
t₂₂, X₁₁: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₁₃, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₁₃, X₂: 4⋅X₅+X₂ {O(n)}
t₁₃, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: 4⋅X₅ {O(n)}
t₁₃, X₇: 4⋅X₅ {O(n)}
t₁₃, X₈: 8⋅X₅+X₈ {O(n)}
t₁₃, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₃, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₃, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₃₆, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+2⋅X₁+26⋅X₅ {O(n^3)}
t₃₆, X₂: 4⋅X₅+X₂ {O(n)}
t₃₆, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₃₆, X₅: 2⋅X₅ {O(n)}
t₃₆, X₆: 5⋅X₅ {O(n)}
t₃₆, X₇: 8⋅X₅+X₇ {O(n)}
t₃₆, X₈: 2⋅X₈+8⋅X₅ {O(n)}
t₃₆, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+14⋅X₅ {O(n^3)}
t₃₆, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₁₀ {O(n^3)}
t₃₆, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+2⋅X₁₁+52⋅X₅ {O(n^3)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: X₁₀ {O(n)}
t₄, X₁₁: X₁₁ {O(n)}
t₁₈, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₁₈, X₂: 4⋅X₅+X₂ {O(n)}
t₁₈, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₁₈, X₅: X₅ {O(n)}
t₁₈, X₆: 4⋅X₅ {O(n)}
t₁₈, X₇: 4⋅X₅ {O(n)}
t₁₈, X₈: 8⋅X₅+X₈ {O(n)}
t₁₈, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₈, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₈, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₁₉, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₁₉, X₂: 4⋅X₅+X₂ {O(n)}
t₁₉, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₁₉, X₅: X₅ {O(n)}
t₁₉, X₆: 4⋅X₅ {O(n)}
t₁₉, X₇: 4⋅X₅ {O(n)}
t₁₉, X₈: 8⋅X₅+X₈ {O(n)}
t₁₉, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₉, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₉, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₁₆, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₁₆, X₂: 4⋅X₅+X₂ {O(n)}
t₁₆, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₁₆, X₅: X₅ {O(n)}
t₁₆, X₆: 4⋅X₅ {O(n)}
t₁₆, X₇: 4⋅X₅ {O(n)}
t₁₆, X₈: 8⋅X₅+X₈ {O(n)}
t₁₆, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₆, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₆, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₁₇, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₁₇, X₂: 4⋅X₅+X₂ {O(n)}
t₁₇, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₁₇, X₅: X₅ {O(n)}
t₁₇, X₆: 4⋅X₅ {O(n)}
t₁₇, X₇: 4⋅X₅ {O(n)}
t₁₇, X₈: 8⋅X₅+X₈ {O(n)}
t₁₇, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₇, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₁₇, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₃₁, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₃₁, X₂: 4⋅X₅ {O(n)}
t₃₁, X₃: 288⋅X₅⋅X₅⋅X₅+132⋅X₅⋅X₅+3⋅X₃+39⋅X₅ {O(n^3)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: 12⋅X₅ {O(n)}
t₃₁, X₇: 8⋅X₅ {O(n)}
t₃₁, X₈: 8⋅X₅+X₈ {O(n)}
t₃₁, X₉: 288⋅X₅⋅X₅⋅X₅+132⋅X₅⋅X₅+39⋅X₅ {O(n^3)}
t₃₁, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₃₁, X₁₁: 384⋅X₅⋅X₅⋅X₅+176⋅X₅⋅X₅+52⋅X₅+X₁₁ {O(n^3)}
t₂₀, X₁: 192⋅X₅⋅X₅⋅X₅+88⋅X₅⋅X₅+26⋅X₅+X₁ {O(n^3)}
t₂₀, X₂: 4⋅X₅+X₂ {O(n)}
t₂₀, X₃: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅+X₃ {O(n^3)}
t₂₀, X₅: X₅ {O(n)}
t₂₀, X₆: 4⋅X₅ {O(n)}
t₂₀, X₇: 4⋅X₅ {O(n)}
t₂₀, X₈: 4⋅X₅ {O(n)}
t₂₀, X₉: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₀, X₁₀: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}
t₂₀, X₁₁: 96⋅X₅⋅X₅⋅X₅+44⋅X₅⋅X₅+13⋅X₅ {O(n^3)}