Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁
Temp_Vars: G1, H1, I1, J1, K1, L1, M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, X1
Locations: l0, l1, l2, l3, l4
Transitions:
t₁₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l1(J1, X₁, 2, K1, K1, M1, L1, X₇, K1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, G1, X₁₈, G1, J1, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, H1, I1, G1) :|: 2 ≤ J1
t₁₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(J1, N1, M1, R1, L1, X₅, T1, X₇, S1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, W1, X₁₆, X₂₉, V1, X₂₉, I1, X₂₉, U1, X1, Q1, X₂₅, X₂₆, X₂₇, X₂₈, G1, H1, K1) :|: O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
t₁₈: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(J1, N1, M1, R1, L1, X₅, T1, X₇, S1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X1, X₁₆, G1, W1, X₆, 1, U1, V1, O1, Q1, X₂₅, X₂₆, X₂₇, X₂₈, H1, I1, K1) :|: 1 ≤ 0 ∧ U1+1 ≤ G1
t₁₉: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(J1, N1, M1, R1, L1, X₅, T1, X₇, S1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X1, X₁₆, G1, W1, X₆, 1, U1, V1, O1, Q1, X₂₅, X₂₆, X₂₇, X₂₈, H1, I1, K1) :|: 1 ≤ 0 ∧ G1+1 ≤ U1
t₂₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(J1, N1, M1, R1, L1, X₅, T1, X₇, S1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X1, X₁₆, G1, W1, X₆, 1, U1, V1, O1, Q1, X₂₅, X₂₆, X₂₇, X₂₈, H1, I1, K1) :|: 1 ≤ 0 ∧ U1+1 ≤ G1
t₂₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(J1, N1, M1, R1, L1, X₅, T1, X₇, S1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X1, X₁₆, G1, W1, X₆, 1, U1, V1, O1, Q1, X₂₅, X₂₆, X₂₇, X₂₈, H1, I1, K1) :|: 1 ≤ 0 ∧ G1+1 ≤ U1
t₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l1(X₀, X₁, 1+X₂, X₃, X₆, X₅, G1, X₇, X₆, X₉, H1, X₁₁, X₂, X₁₄, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₂+1 ≤ X₀ ∧ 0 ≤ X₂
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(H1, L1, K1, N1, J1, X₅, R1, X₂₅+1, Q1, X₁₄, X₁₀, S1, X₁₂, X₁₃, X₁₄, X₄, X₂₅, X₁₉, X₁₉, X₁₉, G1, X₄, X₄, X₄, M1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, I1) :|: X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₉+1 ≤ X₄ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₄+1 ≤ X₁₉
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(H1, L1, K1, N1, J1, X₅, R1, X₂₅+1, Q1, X₁₄, X₁₀, S1, X₁₂, X₁₃, X₁₄, X₄, X₂₅, X₁₉, X₁₉, X₁₉, G1, X₄, X₄, X₄, M1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, I1) :|: X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₉+1 ≤ X₄ ∧ 0 ≤ K1 ∧ 2 ≤ G1
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(H1, L1, K1, N1, J1, X₅, R1, X₂₅+1, Q1, X₁₄, X₁₀, S1, X₁₂, X₁₃, X₁₄, X₄, X₂₅, X₁₉, X₁₉, X₁₉, G1, X₄, X₄, X₄, M1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, I1) :|: X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₄+1 ≤ X₁₉ ∧ 0 ≤ K1 ∧ 2 ≤ G1
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(H1, L1, K1, N1, J1, X₅, R1, X₂₅+1, Q1, X₁₄, X₁₀, S1, X₁₂, X₁₃, X₁₄, X₄, X₂₅, X₁₉, X₁₉, X₁₉, G1, X₄, X₄, X₄, M1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, I1) :|: X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₄+1 ≤ X₁₉ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₁₉+1 ≤ X₄
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₈, X₁₈, X₁₈, G1, H1, H1, X₁₅, X₂₄, X₂₅-1, I1, X₁₄, X₂₅-1, X₂₉, X₃₀, X₃₁) :|: X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₈, X₁₈, X₁₈, G1, H1, H1, X₁₅, X₂₄, X₂₅-1, I1, X₁₄, X₂₅-1, X₂₉, X₃₀, X₃₁) :|: X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₈, X₁₈, X₁₈, G1, H1, H1, X₁₅, X₂₄, X₂₅-1, I1, X₁₄, X₂₅-1, X₂₉, X₃₀, X₃₁) :|: J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₈, X₁₈, X₁₈, G1, H1, H1, X₁₅, X₂₄, X₂₅-1, I1, X₁₄, X₂₅-1, X₂₉, X₃₀, X₃₁) :|: J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, K1, X₁₆, X₁₇, J1, X₁₉, G1, X₂₁, I1, L1, H1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 2 ≤ G1 ∧ 0 ≤ X₂₅ ∧ X₁₈ ≤ X₁₅ ∧ X₁₅ ≤ X₁₈
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₈, X₁₈, X₁₈, G1, H1, H1, X₁₅, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₁₅+1 ≤ I1 ∧ 0 ≤ X₁₆ ∧ I1+1 ≤ H1 ∧ 2 ≤ G1
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₈, X₁₈, X₁₈, G1, H1, H1, X₁₅, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₁₅+1 ≤ I1 ∧ 0 ≤ X₁₆ ∧ H1+1 ≤ I1 ∧ 2 ≤ G1
t₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₈, X₁₈, X₁₈, G1, H1, H1, X₁₅, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: I1+1 ≤ X₁₅ ∧ 0 ≤ X₁₆ ∧ I1+1 ≤ H1 ∧ 2 ≤ G1
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₈, X₁₈, X₁₈, G1, H1, H1, X₁₅, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: I1+1 ≤ X₁₅ ∧ 0 ≤ X₁₆ ∧ H1+1 ≤ I1 ∧ 2 ≤ G1
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, M1, X₁₆, G1, L1, X₁₉, H1, J1, K1, N1, I1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 0 ≤ X₁₆ ∧ J1+1 ≤ G1 ∧ 2 ≤ H1 ∧ X₁₈ ≤ X₁₅ ∧ X₁₅ ≤ X₁₈
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, M1, X₁₆, G1, L1, X₁₉, H1, J1, K1, N1, I1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 0 ≤ X₁₆ ∧ G1+1 ≤ J1 ∧ 2 ≤ H1 ∧ X₁₈ ≤ X₁₅ ∧ X₁₅ ≤ X₁₈
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₃
η (X₀) = J1
η (X₂) = 2
η (X₃) = K1
η (X₄) = K1
η (X₅) = M1
η (X₆) = L1
η (X₈) = K1
η (X₁₇) = G1
η (X₁₉) = G1
η (X₂₀) = J1
η (X₂₉) = H1
η (X₃₀) = I1
η (X₃₁) = G1
τ = 2 ≤ J1
l3
l3
l0->l3
t₁₂
η (X₀) = J1
η (X₁) = N1
η (X₂) = M1
η (X₃) = R1
η (X₄) = L1
η (X₆) = T1
η (X₈) = S1
η (X₁₅) = W1
η (X₁₇) = X₂₉
η (X₁₈) = V1
η (X₁₉) = X₂₉
η (X₂₀) = I1
η (X₂₁) = X₂₉
η (X₂₂) = U1
η (X₂₃) = X1
η (X₂₄) = Q1
η (X₂₉) = G1
η (X₃₀) = H1
η (X₃₁) = K1
τ = O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
l0->l3
t₁₈
η (X₀) = J1
η (X₁) = N1
η (X₂) = M1
η (X₃) = R1
η (X₄) = L1
η (X₆) = T1
η (X₈) = S1
η (X₁₅) = X1
η (X₁₇) = G1
η (X₁₈) = W1
η (X₁₉) = X₆
η (X₂₀) = 1
η (X₂₁) = U1
η (X₂₂) = V1
η (X₂₃) = O1
η (X₂₄) = Q1
η (X₂₉) = H1
η (X₃₀) = I1
η (X₃₁) = K1
τ = 1 ≤ 0 ∧ U1+1 ≤ G1
l0->l3
t₁₉
η (X₀) = J1
η (X₁) = N1
η (X₂) = M1
η (X₃) = R1
η (X₄) = L1
η (X₆) = T1
η (X₈) = S1
η (X₁₅) = X1
η (X₁₇) = G1
η (X₁₈) = W1
η (X₁₉) = X₆
η (X₂₀) = 1
η (X₂₁) = U1
η (X₂₂) = V1
η (X₂₃) = O1
η (X₂₄) = Q1
η (X₂₉) = H1
η (X₃₀) = I1
η (X₃₁) = K1
τ = 1 ≤ 0 ∧ G1+1 ≤ U1
l0->l3
t₂₀
η (X₀) = J1
η (X₁) = N1
η (X₂) = M1
η (X₃) = R1
η (X₄) = L1
η (X₆) = T1
η (X₈) = S1
η (X₁₅) = X1
η (X₁₇) = G1
η (X₁₈) = W1
η (X₁₉) = X₆
η (X₂₀) = 1
η (X₂₁) = U1
η (X₂₂) = V1
η (X₂₃) = O1
η (X₂₄) = Q1
η (X₂₉) = H1
η (X₃₀) = I1
η (X₃₁) = K1
τ = 1 ≤ 0 ∧ U1+1 ≤ G1
l0->l3
t₂₁
η (X₀) = J1
η (X₁) = N1
η (X₂) = M1
η (X₃) = R1
η (X₄) = L1
η (X₆) = T1
η (X₈) = S1
η (X₁₅) = X1
η (X₁₇) = G1
η (X₁₈) = W1
η (X₁₉) = X₆
η (X₂₀) = 1
η (X₂₁) = U1
η (X₂₂) = V1
η (X₂₃) = O1
η (X₂₄) = Q1
η (X₂₉) = H1
η (X₃₀) = I1
η (X₃₁) = K1
τ = 1 ≤ 0 ∧ G1+1 ≤ U1
l1->l1
t₀
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = G1
η (X₈) = X₆
η (X₁₀) = H1
η (X₁₂) = X₂
η (X₁₃) = X₁₄
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂
l2
l2
l1->l2
t₁₄
η (X₀) = H1
η (X₁) = L1
η (X₂) = K1
η (X₃) = N1
η (X₄) = J1
η (X₆) = R1
η (X₇) = X₂₅+1
η (X₈) = Q1
η (X₉) = X₁₄
η (X₁₁) = S1
η (X₁₅) = X₄
η (X₁₆) = X₂₅
η (X₁₇) = X₁₉
η (X₁₈) = X₁₉
η (X₂₀) = G1
η (X₂₁) = X₄
η (X₂₂) = X₄
η (X₂₃) = X₄
η (X₂₄) = M1
η (X₃₁) = I1
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₉+1 ≤ X₄ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₄+1 ≤ X₁₉
l1->l2
t₁₅
η (X₀) = H1
η (X₁) = L1
η (X₂) = K1
η (X₃) = N1
η (X₄) = J1
η (X₆) = R1
η (X₇) = X₂₅+1
η (X₈) = Q1
η (X₉) = X₁₄
η (X₁₁) = S1
η (X₁₅) = X₄
η (X₁₆) = X₂₅
η (X₁₇) = X₁₉
η (X₁₈) = X₁₉
η (X₂₀) = G1
η (X₂₁) = X₄
η (X₂₂) = X₄
η (X₂₃) = X₄
η (X₂₄) = M1
η (X₃₁) = I1
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₉+1 ≤ X₄ ∧ 0 ≤ K1 ∧ 2 ≤ G1
l1->l2
t₁₆
η (X₀) = H1
η (X₁) = L1
η (X₂) = K1
η (X₃) = N1
η (X₄) = J1
η (X₆) = R1
η (X₇) = X₂₅+1
η (X₈) = Q1
η (X₉) = X₁₄
η (X₁₁) = S1
η (X₁₅) = X₄
η (X₁₆) = X₂₅
η (X₁₇) = X₁₉
η (X₁₈) = X₁₉
η (X₂₀) = G1
η (X₂₁) = X₄
η (X₂₂) = X₄
η (X₂₃) = X₄
η (X₂₄) = M1
η (X₃₁) = I1
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₄+1 ≤ X₁₉ ∧ 0 ≤ K1 ∧ 2 ≤ G1
l1->l2
t₁₇
η (X₀) = H1
η (X₁) = L1
η (X₂) = K1
η (X₃) = N1
η (X₄) = J1
η (X₆) = R1
η (X₇) = X₂₅+1
η (X₈) = Q1
η (X₉) = X₁₄
η (X₁₁) = S1
η (X₁₅) = X₄
η (X₁₆) = X₂₅
η (X₁₇) = X₁₉
η (X₁₈) = X₁₉
η (X₂₀) = G1
η (X₂₁) = X₄
η (X₂₂) = X₄
η (X₂₃) = X₄
η (X₂₄) = M1
η (X₃₁) = I1
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₄+1 ≤ X₁₉ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₁₉+1 ≤ X₄
l2->l2
t₇
η (X₁₇) = X₁₈
η (X₁₉) = X₁₈
η (X₂₀) = G1
η (X₂₁) = H1
η (X₂₂) = H1
η (X₂₃) = X₁₅
η (X₂₅) = X₂₅-1
η (X₂₆) = I1
η (X₂₇) = X₁₄
η (X₂₈) = X₂₅-1
τ = X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1
l2->l2
t₈
η (X₁₇) = X₁₈
η (X₁₉) = X₁₈
η (X₂₀) = G1
η (X₂₁) = H1
η (X₂₂) = H1
η (X₂₃) = X₁₅
η (X₂₅) = X₂₅-1
η (X₂₆) = I1
η (X₂₇) = X₁₄
η (X₂₈) = X₂₅-1
τ = X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1
l2->l2
t₉
η (X₁₇) = X₁₈
η (X₁₉) = X₁₈
η (X₂₀) = G1
η (X₂₁) = H1
η (X₂₂) = H1
η (X₂₃) = X₁₅
η (X₂₅) = X₂₅-1
η (X₂₆) = I1
η (X₂₇) = X₁₄
η (X₂₈) = X₂₅-1
τ = J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1
l2->l2
t₁₀
η (X₁₇) = X₁₈
η (X₁₉) = X₁₈
η (X₂₀) = G1
η (X₂₁) = H1
η (X₂₂) = H1
η (X₂₃) = X₁₅
η (X₂₅) = X₂₅-1
η (X₂₆) = I1
η (X₂₇) = X₁₄
η (X₂₈) = X₂₅-1
τ = J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1
l2->l3
t₁₁
η (X₁₅) = K1
η (X₁₈) = J1
η (X₂₀) = G1
η (X₂₂) = I1
η (X₂₃) = L1
η (X₂₄) = H1
τ = 2 ≤ G1 ∧ 0 ≤ X₂₅ ∧ X₁₈ ≤ X₁₅ ∧ X₁₅ ≤ X₁₈
l4
l4
l4->l2
t₁
η (X₁₇) = X₁₈
η (X₁₉) = X₁₈
η (X₂₀) = G1
η (X₂₁) = H1
η (X₂₂) = H1
η (X₂₃) = X₁₅
τ = X₁₅+1 ≤ I1 ∧ 0 ≤ X₁₆ ∧ I1+1 ≤ H1 ∧ 2 ≤ G1
l4->l2
t₂
η (X₁₇) = X₁₈
η (X₁₉) = X₁₈
η (X₂₀) = G1
η (X₂₁) = H1
η (X₂₂) = H1
η (X₂₃) = X₁₅
τ = X₁₅+1 ≤ I1 ∧ 0 ≤ X₁₆ ∧ H1+1 ≤ I1 ∧ 2 ≤ G1
l4->l2
t₃
η (X₁₇) = X₁₈
η (X₁₉) = X₁₈
η (X₂₀) = G1
η (X₂₁) = H1
η (X₂₂) = H1
η (X₂₃) = X₁₅
τ = I1+1 ≤ X₁₅ ∧ 0 ≤ X₁₆ ∧ I1+1 ≤ H1 ∧ 2 ≤ G1
l4->l2
t₄
η (X₁₇) = X₁₈
η (X₁₉) = X₁₈
η (X₂₀) = G1
η (X₂₁) = H1
η (X₂₂) = H1
η (X₂₃) = X₁₅
τ = I1+1 ≤ X₁₅ ∧ 0 ≤ X₁₆ ∧ H1+1 ≤ I1 ∧ 2 ≤ G1
l4->l3
t₅
η (X₁₅) = M1
η (X₁₇) = G1
η (X₁₈) = L1
η (X₂₀) = H1
η (X₂₁) = J1
η (X₂₂) = K1
η (X₂₃) = N1
η (X₂₄) = I1
τ = 0 ≤ X₁₆ ∧ J1+1 ≤ G1 ∧ 2 ≤ H1 ∧ X₁₈ ≤ X₁₅ ∧ X₁₅ ≤ X₁₈
l4->l3
t₆
η (X₁₅) = M1
η (X₁₇) = G1
η (X₁₈) = L1
η (X₂₀) = H1
η (X₂₁) = J1
η (X₂₂) = K1
η (X₂₃) = N1
η (X₂₄) = I1
τ = 0 ≤ X₁₆ ∧ G1+1 ≤ J1 ∧ 2 ≤ H1 ∧ X₁₈ ≤ X₁₅ ∧ X₁₅ ≤ X₁₈
Preprocessing
Cut unreachable locations [l4] from the program graph
Cut unsatisfiable transition t₁₈: l0→l3
Cut unsatisfiable transition t₁₉: l0→l3
Cut unsatisfiable transition t₂₀: l0→l3
Cut unsatisfiable transition t₂₁: l0→l3
Cut unsatisfiable transition t₁₄: l1→l2
Cut unsatisfiable transition t₁₇: l1→l2
Eliminate variables {N1,Q1,S1,X1,X₁,X₃,X₅,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₆,X₁₇,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₆,X₂₇,X₂₈,X₃₀,X₃₁} that do not contribute to the problem
Found invariant 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉ for location l2
Found invariant X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location l1
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉
Temp_Vars: G1, H1, I1, J1, K1, L1, M1, O1, P1, R1, T1, U1, V1, W1
Locations: l0, l1, l2, l3
Transitions:
t₃₈: l0(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l1(J1, 2, K1, L1, X₁₅, X₁₈, G1, X₂₅, H1) :|: 2 ≤ J1
t₃₇: l0(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l3(J1, M1, L1, T1, W1, V1, X₂₉, X₂₅, G1) :|: O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
t₃₉: l1(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l1(X₀, 1+X₂, X₆, G1, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) :|: X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₄₀: l1(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l2(H1, K1, J1, R1, X₄, X₁₉, X₁₉, X₂₅, X₂₉) :|: X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₉+1 ≤ X₄ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₄₁: l1(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l2(H1, K1, J1, R1, X₄, X₁₉, X₁₉, X₂₅, X₂₉) :|: X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₄+1 ≤ X₁₉ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₄₂: l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₈, X₂₅-1, X₂₉) :|: X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
t₄₃: l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₈, X₂₅-1, X₂₉) :|: X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
t₄₄: l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₈, X₂₅-1, X₂₉) :|: J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
t₄₅: l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₈, X₂₅-1, X₂₉) :|: J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
t₄₆: l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l3(X₀, X₂, X₄, X₆, K1, J1, X₁₉, X₂₅, X₂₉) :|: 2 ≤ G1 ∧ 0 ≤ X₂₅ ∧ X₁₈ ≤ X₁₅ ∧ X₁₅ ≤ X₁₈ ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
Show Graph
G
l0
l0
l1
l1
l0->l1
t₃₈
η (X₀) = J1
η (X₂) = 2
η (X₄) = K1
η (X₆) = L1
η (X₁₉) = G1
η (X₂₉) = H1
τ = 2 ≤ J1
l3
l3
l0->l3
t₃₇
η (X₀) = J1
η (X₂) = M1
η (X₄) = L1
η (X₆) = T1
η (X₁₅) = W1
η (X₁₈) = V1
η (X₁₉) = X₂₉
η (X₂₉) = G1
τ = O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
l1->l1
t₃₉
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = G1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₄₀
η (X₀) = H1
η (X₂) = K1
η (X₄) = J1
η (X₆) = R1
η (X₁₅) = X₄
η (X₁₈) = X₁₉
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₉+1 ≤ X₄ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l1->l2
t₄₁
η (X₀) = H1
η (X₂) = K1
η (X₄) = J1
η (X₆) = R1
η (X₁₅) = X₄
η (X₁₈) = X₁₉
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₄+1 ≤ X₁₉ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₄₂
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₃
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₄
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₅
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l3
t₄₆
η (X₁₅) = K1
η (X₁₈) = J1
τ = 2 ≤ G1 ∧ 0 ≤ X₂₅ ∧ X₁₈ ≤ X₁₅ ∧ X₁₅ ≤ X₁₈ ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
Analysing control-flow refined program
Found invariant 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉ for location l2
Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location l1
Found invariant X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ 3 ≤ X₀ for location n_l1___1
CFR did not improve the program. Rolling back
MPRF for transition t₄₂: l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₈, X₂₅-1, X₂₉) :|: X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉ of depth 1:
new bound:
4⋅X₂₅+2 {O(n)}
MPRF:
l2 [X₂₅+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₃₈
η (X₀) = J1
η (X₂) = 2
η (X₄) = K1
η (X₆) = L1
η (X₁₉) = G1
η (X₂₉) = H1
τ = 2 ≤ J1
l3
l3
l0->l3
t₃₇
η (X₀) = J1
η (X₂) = M1
η (X₄) = L1
η (X₆) = T1
η (X₁₅) = W1
η (X₁₈) = V1
η (X₁₉) = X₂₉
η (X₂₉) = G1
τ = O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
l1->l1
t₃₉
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = G1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₄₀
η (X₀) = H1
η (X₂) = K1
η (X₄) = J1
η (X₆) = R1
η (X₁₅) = X₄
η (X₁₈) = X₁₉
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₉+1 ≤ X₄ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l1->l2
t₄₁
η (X₀) = H1
η (X₂) = K1
η (X₄) = J1
η (X₆) = R1
η (X₁₅) = X₄
η (X₁₈) = X₁₉
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₄+1 ≤ X₁₉ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₄₂
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₃
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₄
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₅
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l3
t₄₆
η (X₁₅) = K1
η (X₁₈) = J1
τ = 2 ≤ G1 ∧ 0 ≤ X₂₅ ∧ X₁₈ ≤ X₁₅ ∧ X₁₅ ≤ X₁₈ ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
MPRF for transition t₄₃: l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₈, X₂₅-1, X₂₉) :|: X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉ of depth 1:
new bound:
4⋅X₂₅+2 {O(n)}
MPRF:
l2 [X₂₅+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₃₈
η (X₀) = J1
η (X₂) = 2
η (X₄) = K1
η (X₆) = L1
η (X₁₉) = G1
η (X₂₉) = H1
τ = 2 ≤ J1
l3
l3
l0->l3
t₃₇
η (X₀) = J1
η (X₂) = M1
η (X₄) = L1
η (X₆) = T1
η (X₁₅) = W1
η (X₁₈) = V1
η (X₁₉) = X₂₉
η (X₂₉) = G1
τ = O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
l1->l1
t₃₉
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = G1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₄₀
η (X₀) = H1
η (X₂) = K1
η (X₄) = J1
η (X₆) = R1
η (X₁₅) = X₄
η (X₁₈) = X₁₉
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₉+1 ≤ X₄ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l1->l2
t₄₁
η (X₀) = H1
η (X₂) = K1
η (X₄) = J1
η (X₆) = R1
η (X₁₅) = X₄
η (X₁₈) = X₁₉
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₄+1 ≤ X₁₉ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₄₂
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₃
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₄
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₅
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l3
t₄₆
η (X₁₅) = K1
η (X₁₈) = J1
τ = 2 ≤ G1 ∧ 0 ≤ X₂₅ ∧ X₁₈ ≤ X₁₅ ∧ X₁₅ ≤ X₁₈ ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
MPRF for transition t₄₄: l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₈, X₂₅-1, X₂₉) :|: J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉ of depth 1:
new bound:
4⋅X₂₅+2 {O(n)}
MPRF:
l2 [X₂₅+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₃₈
η (X₀) = J1
η (X₂) = 2
η (X₄) = K1
η (X₆) = L1
η (X₁₉) = G1
η (X₂₉) = H1
τ = 2 ≤ J1
l3
l3
l0->l3
t₃₇
η (X₀) = J1
η (X₂) = M1
η (X₄) = L1
η (X₆) = T1
η (X₁₅) = W1
η (X₁₈) = V1
η (X₁₉) = X₂₉
η (X₂₉) = G1
τ = O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
l1->l1
t₃₉
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = G1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₄₀
η (X₀) = H1
η (X₂) = K1
η (X₄) = J1
η (X₆) = R1
η (X₁₅) = X₄
η (X₁₈) = X₁₉
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₉+1 ≤ X₄ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l1->l2
t₄₁
η (X₀) = H1
η (X₂) = K1
η (X₄) = J1
η (X₆) = R1
η (X₁₅) = X₄
η (X₁₈) = X₁₉
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₄+1 ≤ X₁₉ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₄₂
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₃
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₄
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₅
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l3
t₄₆
η (X₁₅) = K1
η (X₁₈) = J1
τ = 2 ≤ G1 ∧ 0 ≤ X₂₅ ∧ X₁₈ ≤ X₁₅ ∧ X₁₅ ≤ X₁₈ ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
MPRF for transition t₄₅: l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₉, X₂₅, X₂₉) → l2(X₀, X₂, X₄, X₆, X₁₅, X₁₈, X₁₈, X₂₅-1, X₂₉) :|: J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉ of depth 1:
new bound:
4⋅X₂₅+2 {O(n)}
MPRF:
l2 [X₂₅+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₃₈
η (X₀) = J1
η (X₂) = 2
η (X₄) = K1
η (X₆) = L1
η (X₁₉) = G1
η (X₂₉) = H1
τ = 2 ≤ J1
l3
l3
l0->l3
t₃₇
η (X₀) = J1
η (X₂) = M1
η (X₄) = L1
η (X₆) = T1
η (X₁₅) = W1
η (X₁₈) = V1
η (X₁₉) = X₂₉
η (X₂₉) = G1
τ = O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
l1->l1
t₃₉
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = G1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₄₀
η (X₀) = H1
η (X₂) = K1
η (X₄) = J1
η (X₆) = R1
η (X₁₅) = X₄
η (X₁₈) = X₁₉
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₉+1 ≤ X₄ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l1->l2
t₄₁
η (X₀) = H1
η (X₂) = K1
η (X₄) = J1
η (X₆) = R1
η (X₁₅) = X₄
η (X₁₈) = X₁₉
τ = X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₄+1 ≤ X₁₉ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₄₂
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₃
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = X₁₅+1 ≤ J1 ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₄
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l2
t₄₅
η (X₁₉) = X₁₈
η (X₂₅) = X₂₅-1
τ = J1+1 ≤ X₁₅ ∧ 0 ≤ X₂₅ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
l2->l3
t₄₆
η (X₁₅) = K1
η (X₁₈) = J1
τ = 2 ≤ G1 ∧ 0 ≤ X₂₅ ∧ X₁₈ ≤ X₁₅ ∧ X₁₅ ≤ X₁₈ ∧ 2 ≤ X₂ ∧ X₁₉ ≤ X₁₈ ∧ X₁₈ ≤ X₁₉
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₃₇: 1 {O(1)}
t₃₈: 1 {O(1)}
t₃₉: inf {Infinity}
t₄₀: 1 {O(1)}
t₄₁: 1 {O(1)}
t₄₂: 4⋅X₂₅+2 {O(n)}
t₄₃: 4⋅X₂₅+2 {O(n)}
t₄₄: 4⋅X₂₅+2 {O(n)}
t₄₅: 4⋅X₂₅+2 {O(n)}
t₄₆: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
t₃₇: 1 {O(1)}
t₃₈: 1 {O(1)}
t₃₉: inf {Infinity}
t₄₀: 1 {O(1)}
t₄₁: 1 {O(1)}
t₄₂: 4⋅X₂₅+2 {O(n)}
t₄₃: 4⋅X₂₅+2 {O(n)}
t₄₄: 4⋅X₂₅+2 {O(n)}
t₄₅: 4⋅X₂₅+2 {O(n)}
t₄₆: 1 {O(1)}
Sizebounds
t₃₇, X₁₉: X₂₉ {O(n)}
t₃₇, X₂₅: X₂₅ {O(n)}
t₃₈, X₂: 2 {O(1)}
t₃₈, X₁₅: X₁₅ {O(n)}
t₃₈, X₁₈: X₁₈ {O(n)}
t₃₈, X₂₅: X₂₅ {O(n)}
t₃₉, X₁₅: X₁₅ {O(n)}
t₃₉, X₁₈: X₁₈ {O(n)}
t₃₉, X₂₅: X₂₅ {O(n)}
t₄₀, X₂₅: 2⋅X₂₅ {O(n)}
t₄₁, X₂₅: 2⋅X₂₅ {O(n)}
t₄₂, X₂₅: 16⋅X₂₅+1 {O(n)}
t₄₃, X₂₅: 16⋅X₂₅+1 {O(n)}
t₄₄, X₂₅: 16⋅X₂₅+1 {O(n)}
t₄₅, X₂₅: 16⋅X₂₅+1 {O(n)}
t₄₆, X₂₅: 64⋅X₂₅+4 {O(n)}