Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(nondef_1, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄
t₃₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆
t₃₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₄
t₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, 1, X₅, X₆, X₇)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0
t₁₄: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 1
t₁₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ 1 ≤ X₄
t₄₂: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₆: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 1
t₃₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄
t₃₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ X₄ ≤ X₇
t₄₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ X₆ ≤ X₇
t₃₉: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 1
t₄₀: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₆
t₁₇: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 1
t₁₈: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₁
t₁₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₁ ∧ X₁ ≤ X₇
t₂₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₂ ∧ X₂ ≤ X₇
t₂₆: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 1
t₂₇: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₂
t₁₅: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄ ≤ X₇
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: X₇ < 2⋅X₄
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 0 < X₃
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₃ ≤ 0
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, nondef_0, X₄, X₅, X₆, X₇)
t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₇ < X₂
t₂₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₇
t₃₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 0 < X₀
t₃₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₀ ≤ 0

Preprocessing

Cut unsatisfiable transition t₁₄: l20→l21

Cut unsatisfiable transition t₁₈: l25→l21

Cut unsatisfiable transition t₂₇: l26→l21

Found invariant 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l11

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l25

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₄ for location l27

Found invariant 1 ≤ X₄ for location l24

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l6

Found invariant 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l26

Found invariant X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l12

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l23

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l7

Found invariant 1 ≤ X₄ for location l20

Found invariant 1 ≤ X₄ for location l21

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l5

Found invariant X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l22

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l8

Found invariant 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l10

Found invariant 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l9

Cut unsatisfiable transition t₃₄: l12→l22

Cut unsatisfiable transition t₃₆: l22→l21

Cut unsatisfiable transition t₁₇: l25→l21

Cut unsatisfiable transition t₂₆: l26→l21

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(nondef_1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, 1, X₅, X₆, X₇)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ 1 ≤ X₄
t₁₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄
t₄₂: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄
t₃₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₄₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₉: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 1 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₄₀: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₆ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₂ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₅: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₄
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: X₇ < 2⋅X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₄
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₃ ≤ 0 ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, nondef_0, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₇ < X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 0 < X₀ ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁

MPRF for transition t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₇+3 {O(n)}

MPRF:

l11 [2⋅X₇-2⋅X₄-2 ]
l22 [2⋅X₇-2⋅X₆-1 ]
l23 [2⋅X₇-2⋅X₆-1 ]
l20 [2⋅X₇-2⋅X₄-1 ]
l10 [2⋅X₇-2⋅X₄-1 ]
l25 [2⋅X₇-2⋅X₄-1 ]
l27 [2⋅X₇-2⋅X₄-1 ]
l6 [2⋅X₇-2⋅X₄-1 ]
l7 [2⋅X₇-2⋅X₄-1 ]
l5 [2⋅X₇-2⋅X₄-1 ]
l26 [2⋅X₇-2⋅X₄-1 ]
l8 [2⋅X₇-2⋅X₄-1 ]
l9 [2⋅X₇-2⋅X₄-2 ]
l12 [2⋅X₇-X₄-X₆-2 ]

MPRF for transition t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(nondef_1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₇-X₄ ]
l22 [X₇-X₆ ]
l23 [X₇-X₆ ]
l20 [X₇-X₄ ]
l10 [X₇-X₄ ]
l25 [X₇-X₄ ]
l27 [X₇-X₄ ]
l6 [X₇-X₄ ]
l7 [X₇-X₄ ]
l5 [X₇-X₄ ]
l26 [X₇-X₄ ]
l8 [X₇-X₄ ]
l9 [X₇-X₄-1 ]
l12 [X₇-X₄-1 ]

MPRF for transition t₄₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₇-X₄ ]
l22 [X₇+1-X₆ ]
l23 [X₇+1-X₆ ]
l20 [X₇-X₄ ]
l10 [X₇-X₄ ]
l25 [X₇-X₄ ]
l27 [X₇-X₄ ]
l6 [X₇-X₄ ]
l7 [X₇-X₄ ]
l5 [X₇-X₄ ]
l26 [X₇-X₄ ]
l8 [X₇-X₄ ]
l9 [X₇-X₄ ]
l12 [X₇-X₄ ]

MPRF for transition t₁₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₇-X₄-1 ]
l22 [X₇-X₆ ]
l23 [X₇-X₆ ]
l20 [X₇-X₄ ]
l10 [X₇-X₄-1 ]
l25 [X₇-X₄ ]
l27 [X₇-X₄ ]
l6 [X₇-X₄-1 ]
l7 [X₇-X₄-1 ]
l5 [X₇-X₄-1 ]
l26 [X₇-X₄-1 ]
l8 [X₇-X₄-1 ]
l9 [X₇-X₄-1 ]
l12 [X₇-X₄-1 ]

MPRF for transition t₂₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₂ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₇+3 {O(n)}

MPRF:

l11 [X₇+1-X₄ ]
l22 [X₇+2-X₆ ]
l23 [X₇+2-X₆ ]
l20 [X₇+2-X₄ ]
l10 [X₇+1-X₄ ]
l25 [X₇+2-X₄ ]
l27 [X₇+2-X₄ ]
l6 [X₇+2-X₄ ]
l7 [X₇+2-X₄ ]
l5 [X₇+2-X₄ ]
l26 [X₇+2-X₄ ]
l8 [X₇+2-X₄ ]
l9 [X₇+1-X₄ ]
l12 [X₇+1-X₄ ]

MPRF for transition t₁₅: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₄ of depth 1:

new bound:

X₇+3 {O(n)}

MPRF:

l11 [X₇-2⋅X₄-1 ]
l22 [X₇+1-2⋅X₆ ]
l23 [X₇+1-2⋅X₆ ]
l20 [X₇+1-2⋅X₄ ]
l10 [X₇-2⋅X₄-1 ]
l25 [X₇-2⋅X₄-1 ]
l27 [X₇+1-2⋅X₄ ]
l6 [X₇-2⋅X₄-1 ]
l7 [X₇-2⋅X₄-1 ]
l5 [X₇-2⋅X₄-1 ]
l26 [X₇-2⋅X₄-1 ]
l8 [X₇-2⋅X₄-1 ]
l9 [X₇-2⋅X₄-1 ]
l12 [X₇-2⋅X₄-1 ]

MPRF for transition t₂₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₇+2 {O(n)}

MPRF:

l11 [X₇-X₄ ]
l22 [X₇+1-X₆ ]
l23 [X₇+1-X₆ ]
l20 [X₇+1-X₄ ]
l10 [X₇-X₄ ]
l25 [X₇+1-X₄ ]
l27 [X₇+1-X₄ ]
l6 [X₇+1-X₄ ]
l7 [X₇+1-X₄ ]
l5 [X₇+1-X₄ ]
l26 [X₇-X₄ ]
l8 [X₇-X₄ ]
l9 [X₇-X₄ ]
l12 [X₇-X₄ ]

MPRF for transition t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₃ ≤ 0 ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₇+2 {O(n)}

MPRF:

l11 [X₇-X₄ ]
l22 [X₇+1-X₆ ]
l23 [X₇+1-X₆ ]
l20 [X₇+1-X₄ ]
l10 [X₇-X₄ ]
l25 [X₇+1-X₄ ]
l27 [X₇+1-X₄ ]
l6 [X₇+1-X₄ ]
l7 [X₇+1-X₄ ]
l5 [X₇+1-X₄ ]
l26 [X₇-X₄ ]
l8 [X₇-X₄ ]
l9 [X₇-X₄ ]
l12 [X₇-X₄ ]

MPRF for transition t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₇+2 {O(n)}

MPRF:

l11 [X₇-X₄ ]
l22 [X₇+1-X₆ ]
l23 [X₇+1-X₆ ]
l20 [X₇+1-X₄ ]
l10 [X₇-X₄ ]
l25 [X₇+1-X₄ ]
l27 [X₇+1-X₄ ]
l6 [X₇+1-X₄ ]
l7 [X₇-X₄ ]
l5 [X₇-X₄ ]
l26 [X₇-X₄ ]
l8 [X₇-X₄ ]
l9 [X₇-X₄ ]
l12 [X₇-X₄ ]

MPRF for transition t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, nondef_0, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

3⋅X₇+6 {O(n)}

MPRF:

l11 [3⋅X₇-3⋅X₄ ]
l22 [3⋅X₇+3-3⋅X₆ ]
l23 [3⋅X₇+3-3⋅X₆ ]
l20 [3⋅X₇+3-3⋅X₄ ]
l10 [3⋅X₇-3⋅X₄ ]
l25 [3⋅X₇+3-3⋅X₄ ]
l27 [3⋅X₇+3-3⋅X₄ ]
l6 [3⋅X₇+3-3⋅X₄ ]
l7 [3⋅X₇+3-3⋅X₄ ]
l5 [3⋅X₇-3⋅X₄ ]
l26 [3⋅X₇-3⋅X₄ ]
l8 [3⋅X₇-3⋅X₄ ]
l9 [3⋅X₇-3⋅X₄ ]
l12 [3⋅X₇-3⋅X₄ ]

MPRF for transition t₂₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₇+2 {O(n)}

MPRF:

l11 [2⋅X₇-2⋅X₄-2 ]
l22 [2⋅X₇-2⋅X₆ ]
l23 [2⋅X₇-2⋅X₆ ]
l20 [2⋅X₇-2⋅X₄ ]
l10 [2⋅X₇-2⋅X₄-2 ]
l25 [2⋅X₇-2⋅X₄ ]
l27 [2⋅X₇-2⋅X₄ ]
l6 [2⋅X₇-2⋅X₄ ]
l7 [2⋅X₇-2⋅X₄ ]
l5 [2⋅X₇-2⋅X₄ ]
l26 [2⋅X₇-2⋅X₄-2 ]
l8 [2⋅X₇-2⋅X₄ ]
l9 [2⋅X₇-2⋅X₄-2 ]
l12 [2⋅X₇-2⋅X₄-2 ]

MPRF for transition t₃₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 0 < X₀ ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₇-X₄ ]
l22 [X₇-X₆ ]
l23 [X₇-X₆ ]
l20 [X₇-X₄ ]
l10 [X₇-X₄ ]
l25 [X₇-X₄ ]
l27 [X₇-X₄ ]
l6 [X₇-X₄ ]
l7 [X₇-X₄ ]
l5 [X₇-X₄ ]
l26 [X₇-X₄ ]
l8 [X₇-X₄ ]
l9 [X₇-X₄ ]
l12 [X₇-X₆ ]

MPRF for transition t₃₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₇+2 {O(n)}

MPRF:

l11 [X₇-X₄-1 ]
l22 [X₇-X₆-1 ]
l23 [X₇-X₆-1 ]
l20 [X₇-X₄-1 ]
l10 [X₇-X₄-1 ]
l25 [X₇-X₄-1 ]
l27 [X₇-X₄-1 ]
l6 [X₇-X₄-1 ]
l7 [X₇-X₄-1 ]
l5 [X₇-X₄-1 ]
l26 [X₇-X₄-1 ]
l8 [X₇-X₄-1 ]
l9 [X₇-X₄-1 ]
l12 [X₇-X₄-2 ]

knowledge_propagation leads to new time bound X₇+2 {O(n)} for transition t₁₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄

knowledge_propagation leads to new time bound X₇+2 {O(n)} for transition t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: X₇ < 2⋅X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₄

knowledge_propagation leads to new time bound 3⋅X₇+6 {O(n)} for transition t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₇ < X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound 5⋅X₇+9 {O(n)} for transition t₃₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound 5⋅X₇+9 {O(n)} for transition t₃₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁

All Bounds

Timebounds

Overall timebound:32⋅X₇+75 {O(n)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₉: 2⋅X₇+3 {O(n)}
t₃₀: X₇+1 {O(n)}
t₃₃: 5⋅X₇+9 {O(n)}
t₃₅: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁: 1 {O(1)}
t₁₂: X₇+2 {O(n)}
t₁₃: 1 {O(1)}
t₄₂: 1 {O(1)}
t₃₇: 1 {O(1)}
t₃₈: 5⋅X₇+9 {O(n)}
t₃₉: 1 {O(1)}
t₄₀: 1 {O(1)}
t₄₁: X₇+1 {O(n)}
t₁₉: X₇+1 {O(n)}
t₂₈: X₇+3 {O(n)}
t₁₅: X₇+3 {O(n)}
t₁₆: X₇+2 {O(n)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₂₂: X₇+2 {O(n)}
t₂₃: X₇+2 {O(n)}
t₂₀: X₇+2 {O(n)}
t₂₁: 3⋅X₇+6 {O(n)}
t₂₄: 2⋅X₇+2 {O(n)}
t₂₅: 3⋅X₇+6 {O(n)}
t₃₁: X₇+1 {O(n)}
t₃₂: X₇+2 {O(n)}

Costbounds

Overall costbound: 32⋅X₇+75 {O(n)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₉: 2⋅X₇+3 {O(n)}
t₃₀: X₇+1 {O(n)}
t₃₃: 5⋅X₇+9 {O(n)}
t₃₅: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁: 1 {O(1)}
t₁₂: X₇+2 {O(n)}
t₁₃: 1 {O(1)}
t₄₂: 1 {O(1)}
t₃₇: 1 {O(1)}
t₃₈: 5⋅X₇+9 {O(n)}
t₃₉: 1 {O(1)}
t₄₀: 1 {O(1)}
t₄₁: X₇+1 {O(n)}
t₁₉: X₇+1 {O(n)}
t₂₈: X₇+3 {O(n)}
t₁₅: X₇+3 {O(n)}
t₁₆: X₇+2 {O(n)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₂₂: X₇+2 {O(n)}
t₂₃: X₇+2 {O(n)}
t₂₀: X₇+2 {O(n)}
t₂₁: 3⋅X₇+6 {O(n)}
t₂₄: 2⋅X₇+2 {O(n)}
t₂₅: 3⋅X₇+6 {O(n)}
t₃₁: X₇+1 {O(n)}
t₃₂: X₇+2 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₂₉, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₂₉, X₂: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₉, X₄: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₂₉, X₅: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₉, X₆: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8+2⋅X₆ {O(EXP)}
t₂₉, X₇: X₇ {O(n)}
t₃₀, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₃₀, X₂: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₀, X₄: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₃₀, X₅: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₀, X₆: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8+2⋅X₆ {O(EXP)}
t₃₀, X₇: X₇ {O(n)}
t₃₃, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅32+2^(X₇+3)⋅6⋅X₇ {O(EXP)}
t₃₃, X₂: 24⋅2^(X₇+3)+2^(X₇+3)⋅6⋅X₇+2 {O(EXP)}
t₃₃, X₄: 28⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+2^(X₇+3)⋅4⋅X₇ {O(EXP)}
t₃₃, X₅: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇ {O(EXP)}
t₃₃, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₃, X₇: X₇ {O(n)}
t₃₅, X₁: 24⋅2^(X₇+3)+2^(X₇+3)⋅6⋅X₇ {O(EXP)}
t₃₅, X₂: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+2 {O(EXP)}
t₃₅, X₄: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇ {O(EXP)}
t₃₅, X₅: 16⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₅, X₆: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₃₅, X₇: 2⋅X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: 1 {O(1)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁₂, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅32+2^(X₇+3)⋅6⋅X₇+X₁ {O(EXP)}
t₁₂, X₂: 24⋅2^(X₇+3)+2^(X₇+3)⋅6⋅X₇+X₂+2 {O(EXP)}
t₁₂, X₄: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₁₂, X₅: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+X₅ {O(EXP)}
t₁₂, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇+X₆ {O(EXP)}
t₁₂, X₇: X₇ {O(n)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₁ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: 1 {O(1)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁₃, X₇: X₇ {O(n)}
t₄₂, X₁: 120⋅2^(X₇+3)+2^(X₇+3)⋅30⋅X₇+X₁ {O(EXP)}
t₄₂, X₂: 14⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅3⋅X₇+2^(X₇+3)⋅6⋅X₇+2^(X₇+3)⋅92+X₂+8 {O(EXP)}
t₄₂, X₄: 104⋅2^(X₇+3)+12⋅2^(X₇+3)⋅X₇+2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅4⋅X₇+2^(X₇+3)⋅8⋅X₇+1 {O(EXP)}
t₄₂, X₅: 12⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅3⋅X₇+2^(X₇+3)⋅4⋅X₇+2^(X₇+3)⋅76+X₅ {O(EXP)}
t₄₂, X₆: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+X₆ {O(EXP)}
t₄₂, X₇: 6⋅X₇ {O(n)}
t₃₇, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅32+2^(X₇+3)⋅6⋅X₇ {O(EXP)}
t₃₇, X₂: 24⋅2^(X₇+3)+2^(X₇+3)⋅6⋅X₇+2 {O(EXP)}
t₃₇, X₄: 28⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+2^(X₇+3)⋅4⋅X₇ {O(EXP)}
t₃₇, X₅: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇ {O(EXP)}
t₃₇, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₇, X₇: X₇ {O(n)}
t₃₈, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅32+2^(X₇+3)⋅6⋅X₇ {O(EXP)}
t₃₈, X₂: 24⋅2^(X₇+3)+2^(X₇+3)⋅6⋅X₇+2 {O(EXP)}
t₃₈, X₄: 28⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+2^(X₇+3)⋅4⋅X₇ {O(EXP)}
t₃₈, X₅: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇ {O(EXP)}
t₃₈, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₈, X₇: X₇ {O(n)}
t₃₉, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅32+2^(X₇+3)⋅6⋅X₇ {O(EXP)}
t₃₉, X₂: 24⋅2^(X₇+3)+2^(X₇+3)⋅6⋅X₇+2 {O(EXP)}
t₃₉, X₄: 28⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+2^(X₇+3)⋅4⋅X₇ {O(EXP)}
t₃₉, X₅: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇ {O(EXP)}
t₃₉, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₉, X₇: X₇ {O(n)}
t₄₀, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅32+2^(X₇+3)⋅6⋅X₇ {O(EXP)}
t₄₀, X₂: 24⋅2^(X₇+3)+2^(X₇+3)⋅6⋅X₇+2 {O(EXP)}
t₄₀, X₄: 28⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+2^(X₇+3)⋅4⋅X₇ {O(EXP)}
t₄₀, X₅: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇ {O(EXP)}
t₄₀, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₄₀, X₇: X₇ {O(n)}
t₄₁, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅32+2^(X₇+3)⋅6⋅X₇ {O(EXP)}
t₄₁, X₂: 24⋅2^(X₇+3)+2^(X₇+3)⋅6⋅X₇+2 {O(EXP)}
t₄₁, X₄: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₄₁, X₅: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇ {O(EXP)}
t₄₁, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₄₁, X₇: X₇ {O(n)}
t₁₉, X₁: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₁₉, X₂: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₁₉, X₄: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₁₉, X₅: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+X₅ {O(EXP)}
t₁₉, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇+X₆ {O(EXP)}
t₁₉, X₇: X₇ {O(n)}
t₂₈, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₂₈, X₂: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₈, X₄: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₂₈, X₅: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₈, X₆: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8+2⋅X₆ {O(EXP)}
t₂₈, X₇: X₇ {O(n)}
t₁₅, X₁: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₁₅, X₂: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₁₅, X₄: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₁₅, X₅: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+X₅ {O(EXP)}
t₁₅, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇+X₆ {O(EXP)}
t₁₅, X₇: X₇ {O(n)}
t₁₆, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₁₆, X₂: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8+2 {O(EXP)}
t₁₆, X₄: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₁₆, X₅: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₁₆, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇+X₆ {O(EXP)}
t₁₆, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₂₂, X₁: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₂, X₂: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₂, X₄: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₂, X₅: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₂, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇+X₆ {O(EXP)}
t₂₂, X₇: X₇ {O(n)}
t₂₃, X₁: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₃, X₂: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₃, X₄: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₃, X₅: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₃, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇+X₆ {O(EXP)}
t₂₃, X₇: X₇ {O(n)}
t₂₀, X₁: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₀, X₂: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₀, X₄: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₀, X₅: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+X₅ {O(EXP)}
t₂₀, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇+X₆ {O(EXP)}
t₂₀, X₇: X₇ {O(n)}
t₂₁, X₁: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₁, X₂: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₁, X₄: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₁, X₅: 2⋅2^(X₇+3)⋅X₇+20⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+X₅ {O(EXP)}
t₂₁, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇+X₆ {O(EXP)}
t₂₁, X₇: X₇ {O(n)}
t₂₄, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₂₄, X₂: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₄, X₄: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₂₄, X₅: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₄, X₆: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8+2⋅X₆ {O(EXP)}
t₂₄, X₇: X₇ {O(n)}
t₂₅, X₁: 16⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₅, X₂: 16⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇+2^(X₇+3)⋅X₇+2 {O(EXP)}
t₂₅, X₄: 12⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇ {O(EXP)}
t₂₅, X₅: 12⋅2^(X₇+3)+2^(X₇+3)⋅3⋅X₇ {O(EXP)}
t₂₅, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₂₅, X₇: X₇ {O(n)}
t₃₁, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₃₁, X₂: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₁, X₄: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₃₁, X₅: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₁, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₁, X₇: X₇ {O(n)}
t₃₂, X₁: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₃₂, X₂: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₂, X₄: 2⋅2^(X₇+3)⋅X₇+2^(X₇+3)⋅8 {O(EXP)}
t₃₂, X₅: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₂, X₆: 2^(X₇+3)⋅4+2^(X₇+3)⋅X₇ {O(EXP)}
t₃₂, X₇: X₇ {O(n)}