Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 2 ≤ X₀
t₁: l0(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: X₀ ≤ 1
t₂: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₀, 2⋅X₀) :|: 2 ≤ X₁
t₅: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃, 2⋅X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃
t₆: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃+1, 2⋅X₃+2) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃
t₈: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃, 2⋅X₃) :|: 1 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁
t₃: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁
t₄: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃+1) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁
t₇: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁
t₉: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁
t₁₀: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
Preprocessing
Eliminate variables {X₂} that do not contribute to the problem
Found invariant 2 ≤ X₁ for location l2
Found invariant X₃ ≤ X₁ ∧ 2 ≤ X₁ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₃
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₂₈: l0(X₀, X₁, X₃) → l1(X₀-1, X₁, X₃) :|: 2 ≤ X₀
t₂₉: l0(X₀, X₁, X₃) → l1(X₀, X₁-1, X₃) :|: X₀ ≤ 1
t₃₀: l1(X₀, X₁, X₃) → l2(X₀, X₁, 2⋅X₀) :|: 2 ≤ X₁
t₃₃: l2(X₀, X₁, X₃) → l2(X₀, X₁, 2⋅X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁
t₃₄: l2(X₀, X₁, X₃) → l2(X₀, X₁, 2⋅X₃+2) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁
t₃₆: l2(X₀, X₁, X₃) → l2(X₀, X₁, 2⋅X₃) :|: 1 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁
t₃₁: l2(X₀, X₁, X₃) → l3(X₀, X₁, X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₁
t₃₂: l2(X₀, X₁, X₃) → l3(X₀, X₁, X₃+1) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₁
t₃₅: l2(X₀, X₁, X₃) → l3(X₀, X₁, X₃) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁
t₃₇: l3(X₀, X₁, X₃) → l1(X₀-1, X₁, X₃) :|: 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁
t₃₈: l3(X₀, X₁, X₃) → l1(X₀, X₁-1, X₃) :|: 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁
MPRF for transition t₃₇: l3(X₀, X₁, X₃) → l1(X₀-1, X₁, X₃) :|: 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₀+2 {O(n)}
MPRF:
l2 [X₀-1 ]
l3 [X₀-1 ]
l1 [X₀-1 ]
MPRF for transition t₃₈: l3(X₀, X₁, X₃) → l1(X₀, X₁-1, X₃) :|: 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₁+3 {O(n)}
MPRF:
l2 [X₁-1 ]
l3 [X₁-1 ]
l1 [X₁-1 ]
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁+7 {O(n)} for transition t₃₀: l1(X₀, X₁, X₃) → l2(X₀, X₁, 2⋅X₀) :|: 2 ≤ X₁
MPRF for transition t₃₁: l2(X₀, X₁, X₃) → l3(X₀, X₁, X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
MPRF:
l2 [X₁-1 ]
l3 [X₁-2 ]
l1 [X₁-1 ]
MPRF for transition t₃₂: l2(X₀, X₁, X₃) → l3(X₀, X₁, X₃+1) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
MPRF:
l2 [X₁-1 ]
l3 [X₁-2 ]
l1 [X₁-1 ]
MPRF for transition t₃₃: l2(X₀, X₁, X₃) → l2(X₀, X₁, 2⋅X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
MPRF:
l1 [X₁+1-2⋅X₀ ]
l3 [X₁-X₃ ]
l2 [X₁+1-X₃ ]
MPRF for transition t₃₄: l2(X₀, X₁, X₃) → l2(X₀, X₁, 2⋅X₃+2) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁ of depth 1:
new bound:
8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22 {O(n^2)}
MPRF:
l1 [2⋅X₁-2⋅X₀ ]
l3 [2⋅X₁-X₃ ]
l2 [2⋅X₁-X₃ ]
MPRF for transition t₃₅: l2(X₀, X₁, X₃) → l3(X₀, X₁, X₃) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
MPRF:
l2 [X₁-1 ]
l3 [X₁-2 ]
l1 [X₁-1 ]
MPRF for transition t₃₆: l2(X₀, X₁, X₃) → l2(X₀, X₁, 2⋅X₃) :|: 1 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
MPRF:
l1 [X₁+1-2⋅X₀ ]
l3 [X₁-X₃ ]
l2 [X₁+1-X₃ ]
Analysing control-flow refined program
Found invariant 6 ≤ X₃ ∧ 9 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___20
Found invariant 4 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___31
Found invariant 2 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___6
Found invariant X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___4
Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___9
Found invariant X₃ ≤ X₁ ∧ 5 ≤ X₃ ∧ 10 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 4+X₀ ≤ X₃ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___15
Found invariant 1+X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 9 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___27
Found invariant X₃ ≤ 2 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ X₀+X₃ ≤ 3 ∧ 2 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___22
Found invariant X₃ ≤ 2 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ X₀+X₃ ≤ 3 ∧ 2 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___19
Found invariant X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 8 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___7
Found invariant 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___38
Found invariant 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant X₃ ≤ 1+X₁ ∧ 4 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___13
Found invariant X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___8
Found invariant X₃ ≤ 2 ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ X₀+X₃ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l2___3
Found invariant 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___30
Found invariant X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___33
Found invariant 1+X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 9 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___16
Found invariant X₃ ≤ 2 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 4 ∧ X₃ ≤ 1+X₀ ∧ X₀+X₃ ≤ 3 ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___10
Found invariant X₃ ≤ 3 ∧ X₃ ≤ X₁ ∧ X₃ ≤ 2+X₀ ∧ X₀+X₃ ≤ 4 ∧ 3 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___18
Found invariant X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___12
Found invariant 4 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___35
Found invariant X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 8 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___25
Found invariant X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 8 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___24
Found invariant X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___29
Found invariant X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___32
Found invariant X₃ ≤ 2 ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ X₀+X₃ ≤ 3 ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___11
Found invariant 4 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___17
Found invariant X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 8 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___14
Found invariant X₃ ≤ X₁ ∧ 5 ≤ X₃ ∧ 10 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 4+X₀ ≤ X₃ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___26
Found invariant 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___34
Found invariant X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___23
Found invariant 4 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___21
Found invariant 4 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___36
Found invariant X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___28
Found invariant X₃ ≤ 2 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ X₀+X₃ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l3___2
Found invariant 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___37
Found invariant X₃ ≤ 3 ∧ X₃ ≤ X₁ ∧ X₃ ≤ 2+X₀ ∧ X₀+X₃ ≤ 4 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l3___1
Cut unsatisfiable transition t₂₃₃: n_l3___1→n_l1___7
Cut unsatisfiable transition t₂₄₂: n_l3___2→n_l1___7
MPRF for transition t₁₇₀: n_l1___23(X₀, X₁, X₃) → n_l2___38(X₀, X₁, 2⋅X₀) :|: 2 ≤ X₁ ∧ 1 ≤ 2⋅X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₀+10 {O(n)}
MPRF:
n_l2___37 [2⋅X₀-2 ]
n_l2___38 [X₃-2 ]
n_l2___31 [2⋅X₀-2 ]
n_l2___36 [2⋅X₀-2 ]
n_l2___6 [X₃-2 ]
n_l3___25 [2⋅X₀-2 ]
n_l3___26 [2⋅X₀-2 ]
n_l3___27 [2⋅X₀-2 ]
n_l3___28 [2⋅X₀-2 ]
n_l3___29 [2⋅X₀-2 ]
n_l3___30 [2⋅X₀-2 ]
n_l1___23 [2⋅X₀ ]
n_l3___32 [2⋅X₀+X₁-X₃-2 ]
n_l3___33 [2⋅X₀-2 ]
n_l3___34 [2⋅X₀-2 ]
n_l3___4 [X₃-3 ]
n_l3___5 [2⋅X₀-2 ]
n_l1___7 [2⋅X₀-2 ]
MPRF for transition t₁₇₄: n_l1___7(X₀, X₁, X₃) → n_l2___6(X₀, X₁, 2⋅X₀) :|: 1+2⋅X₀ ≤ X₁ ∧ 2 ≤ X₁ ∧ 1 ≤ 2⋅X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 8 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₀+8 {O(n)}
MPRF:
n_l2___37 [2⋅X₀-2 ]
n_l2___38 [X₃ ]
n_l2___31 [2⋅X₀-2 ]
n_l2___36 [2⋅X₀-2 ]
n_l2___6 [2⋅X₀-2 ]
n_l3___25 [2⋅X₀-2 ]
n_l3___26 [2⋅X₀-2 ]
n_l3___27 [2⋅X₀-2 ]
n_l3___28 [2⋅X₀-2 ]
n_l3___29 [2⋅X₀-2 ]
n_l3___30 [2⋅X₀-2 ]
n_l1___23 [2⋅X₀ ]
n_l3___32 [X₃ ]
n_l3___33 [2⋅X₀ ]
n_l3___34 [2⋅X₀ ]
n_l3___4 [2⋅X₀-2 ]
n_l3___5 [2⋅X₀-2 ]
n_l1___7 [2⋅X₀-1 ]
MPRF for transition t₂₀₈: n_l2___31(X₀, X₁, X₃) → n_l3___25(X₀, X₁, X₁) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2 ≤ X₃ ∧ 2+X₃ ≤ 2⋅X₁ ∧ 4 ≤ X₃ ∧ X₃ ≤ 2⋅X₁ ∧ 2 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₀+4 {O(n)}
MPRF:
n_l2___37 [2⋅X₀ ]
n_l2___38 [2⋅X₀ ]
n_l2___31 [2⋅X₀ ]
n_l2___36 [2⋅X₀ ]
n_l2___6 [X₃ ]
n_l3___25 [2⋅X₀-2 ]
n_l3___26 [2⋅X₀ ]
n_l3___27 [2⋅X₀ ]
n_l3___28 [2⋅X₀ ]
n_l3___29 [2⋅X₀ ]
n_l3___30 [2⋅X₀ ]
n_l1___23 [2⋅X₀ ]
n_l3___32 [2⋅X₀ ]
n_l3___33 [2⋅X₀ ]
n_l3___34 [2⋅X₀ ]
n_l3___4 [X₃-1 ]
n_l3___5 [2⋅X₀ ]
n_l1___7 [2⋅X₀ ]
MPRF for transition t₂₀₉: n_l2___31(X₀, X₁, X₃) → n_l3___26(X₀, X₁, X₃+1) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2 ≤ X₃ ∧ 2+X₃ ≤ 2⋅X₁ ∧ 4 ≤ X₃ ∧ X₃ ≤ 2⋅X₁ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀+2 {O(n)}
MPRF:
n_l2___37 [X₀ ]
n_l2___38 [X₀ ]
n_l2___31 [X₀ ]
n_l2___36 [X₀ ]
n_l2___6 [X₃+1-X₀ ]
n_l3___25 [X₀ ]
n_l3___26 [X₀-1 ]
n_l3___27 [X₀ ]
n_l3___28 [X₀ ]
n_l3___29 [X₀ ]
n_l3___30 [X₀ ]
n_l1___23 [X₀ ]
n_l3___32 [X₀ ]
n_l3___33 [X₀ ]
n_l3___34 [X₀ ]
n_l3___4 [X₀ ]
n_l3___5 [X₃-X₀ ]
n_l1___7 [X₀+1 ]
MPRF for transition t₂₁₀: n_l2___31(X₀, X₁, X₃) → n_l3___27(X₀, X₁, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2 ≤ X₃ ∧ 2+X₃ ≤ 2⋅X₁ ∧ 4 ≤ X₃ ∧ X₃ ≤ 2⋅X₁ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₀+7 {O(n)}
MPRF:
n_l2___37 [2⋅X₀+1 ]
n_l2___38 [2⋅X₀+1 ]
n_l2___31 [2⋅X₀+1 ]
n_l2___36 [2⋅X₀+1 ]
n_l2___6 [2⋅X₀+1 ]
n_l3___25 [2⋅X₀+1 ]
n_l3___26 [2⋅X₀+1 ]
n_l3___27 [2⋅X₀ ]
n_l3___28 [2⋅X₀ ]
n_l3___29 [2⋅X₀ ]
n_l3___30 [2⋅X₀ ]
n_l1___23 [2⋅X₀+1 ]
n_l3___32 [X₃+1 ]
n_l3___33 [2⋅X₀+1 ]
n_l3___34 [X₃+1 ]
n_l3___4 [2⋅X₀ ]
n_l3___5 [2⋅X₀ ]
n_l1___7 [2⋅X₀+1 ]
MPRF for transition t₂₁₄: n_l2___36(X₀, X₁, X₃) → n_l3___25(X₀, X₁, X₁) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 4 ≤ X₃ ∧ X₃ ≤ 2⋅X₁ ∧ 2 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₀+4 {O(n)}
MPRF:
n_l2___37 [2⋅X₀ ]
n_l2___38 [2⋅X₀ ]
n_l2___31 [2⋅X₀ ]
n_l2___36 [2⋅X₀ ]
n_l2___6 [2⋅X₀ ]
n_l3___25 [2⋅X₀-2 ]
n_l3___26 [2⋅X₀ ]
n_l3___27 [2⋅X₀ ]
n_l3___28 [2⋅X₀ ]
n_l3___29 [2⋅X₀ ]
n_l3___30 [2⋅X₀ ]
n_l1___23 [2⋅X₀ ]
n_l3___32 [2⋅X₀ ]
n_l3___33 [2⋅X₀ ]
n_l3___34 [2⋅X₀ ]
n_l3___4 [2⋅X₀ ]
n_l3___5 [2⋅X₀ ]
n_l1___7 [2⋅X₀ ]
MPRF for transition t₂₁₅: n_l2___36(X₀, X₁, X₃) → n_l3___26(X₀, X₁, X₃+1) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 4 ≤ X₃ ∧ X₃ ≤ 2⋅X₁ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₀+4 {O(n)}
MPRF:
n_l2___37 [2⋅X₀ ]
n_l2___38 [X₃ ]
n_l2___31 [2⋅X₀ ]
n_l2___36 [2⋅X₀ ]
n_l2___6 [2⋅X₀ ]
n_l3___25 [2⋅X₀ ]
n_l3___26 [2⋅X₀-2 ]
n_l3___27 [2⋅X₀ ]
n_l3___28 [2⋅X₀ ]
n_l3___29 [2⋅X₀ ]
n_l3___30 [2⋅X₀ ]
n_l1___23 [2⋅X₀ ]
n_l3___32 [X₁ ]
n_l3___33 [X₃-1 ]
n_l3___34 [X₃ ]
n_l3___4 [2⋅X₀ ]
n_l3___5 [2⋅X₀ ]
n_l1___7 [2⋅X₀ ]
MPRF for transition t₂₁₆: n_l2___36(X₀, X₁, X₃) → n_l3___27(X₀, X₁, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 4 ≤ X₃ ∧ X₃ ≤ 2⋅X₁ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 4 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀+5 {O(n)}
MPRF:
n_l2___37 [X₀+1 ]
n_l2___38 [X₀+1 ]
n_l2___31 [X₀+1 ]
n_l2___36 [X₀+1 ]
n_l2___6 [X₀+1 ]
n_l3___25 [X₀+1 ]
n_l3___26 [X₀+1 ]
n_l3___27 [X₀ ]
n_l3___28 [X₀ ]
n_l3___29 [X₀ ]
n_l3___30 [X₀ ]
n_l1___23 [X₀+1 ]
n_l3___32 [X₀ ]
n_l3___33 [X₀ ]
n_l3___34 [X₀ ]
n_l3___4 [X₀ ]
n_l3___5 [X₀ ]
n_l1___7 [X₀+1 ]
MPRF for transition t₂₁₇: n_l2___37(X₀, X₁, X₃) → n_l2___31(X₀, X₁, 2⋅X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2 ≤ X₃ ∧ 2+X₃ ≤ 2⋅X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀+3 {O(n)}
MPRF:
n_l2___37 [X₀ ]
n_l2___38 [X₀ ]
n_l2___31 [X₀-1 ]
n_l2___36 [X₀-1 ]
n_l2___6 [3⋅X₀-X₃ ]
n_l3___25 [X₀-1 ]
n_l3___26 [X₀-1 ]
n_l3___27 [X₀-1 ]
n_l3___28 [X₀ ]
n_l3___29 [X₀ ]
n_l3___30 [X₀ ]
n_l1___23 [X₀ ]
n_l3___32 [X₀ ]
n_l3___33 [X₀ ]
n_l3___34 [X₀ ]
n_l3___4 [3⋅X₀-X₃ ]
n_l3___5 [3⋅X₀-X₃ ]
n_l1___7 [X₀ ]
MPRF for transition t₂₁₉: n_l2___37(X₀, X₁, X₃) → n_l2___36(X₀, X₁, 2⋅X₃+2) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2 ≤ X₃ ∧ 2+X₃ ≤ 2⋅X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀+4 {O(n)}
MPRF:
n_l2___37 [X₀+1 ]
n_l2___38 [X₀+1 ]
n_l2___31 [X₀ ]
n_l2___36 [X₀ ]
n_l2___6 [X₃-X₀ ]
n_l3___25 [X₀ ]
n_l3___26 [X₀ ]
n_l3___27 [X₀ ]
n_l3___28 [X₀+1 ]
n_l3___29 [X₀+1 ]
n_l3___30 [X₀+1 ]
n_l1___23 [X₀+1 ]
n_l3___32 [X₀+1 ]
n_l3___33 [X₀+1 ]
n_l3___34 [X₀+1 ]
n_l3___4 [X₀ ]
n_l3___5 [X₃-X₀ ]
n_l1___7 [X₀ ]
MPRF for transition t₂₂₀: n_l2___37(X₀, X₁, X₃) → n_l3___28(X₀, X₁, X₁) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2 ≤ X₃ ∧ 2+X₃ ≤ 2⋅X₁ ∧ 2 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
36⋅X₀+72 {O(n)}
MPRF:
n_l2___37 [18⋅X₀-12 ]
n_l2___38 [18⋅X₀-12 ]
n_l2___31 [18⋅X₀-12 ]
n_l2___36 [18⋅X₀-12 ]
n_l2___6 [9⋅X₃-12 ]
n_l3___25 [18⋅X₀-12 ]
n_l3___26 [18⋅X₀-12 ]
n_l3___27 [18⋅X₀-12 ]
n_l3___28 [18⋅X₀-13 ]
n_l3___29 [18⋅X₀-12 ]
n_l3___30 [18⋅X₀-12 ]
n_l1___23 [18⋅X₀-12 ]
n_l3___32 [9⋅X₃-12 ]
n_l3___33 [18⋅X₀-12 ]
n_l3___34 [18⋅X₀-12 ]
n_l3___4 [9⋅X₃-21 ]
n_l3___5 [18⋅X₀-12 ]
n_l1___7 [18⋅X₀-12 ]
MPRF for transition t₂₂₁: n_l2___37(X₀, X₁, X₃) → n_l3___29(X₀, X₁, X₃+1) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2 ≤ X₃ ∧ 2+X₃ ≤ 2⋅X₁ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₀+4 {O(n)}
MPRF:
n_l2___37 [2⋅X₀ ]
n_l2___38 [2⋅X₀ ]
n_l2___31 [2⋅X₀ ]
n_l2___36 [2⋅X₀ ]
n_l2___6 [X₃ ]
n_l3___25 [2⋅X₀ ]
n_l3___26 [2⋅X₀ ]
n_l3___27 [2⋅X₀ ]
n_l3___28 [2⋅X₀ ]
n_l3___29 [2⋅X₀-1 ]
n_l3___30 [2⋅X₀ ]
n_l1___23 [2⋅X₀ ]
n_l3___32 [X₁ ]
n_l3___33 [2⋅X₀ ]
n_l3___34 [2⋅X₀ ]
n_l3___4 [2⋅X₀ ]
n_l3___5 [2⋅X₀ ]
n_l1___7 [2⋅X₀ ]
MPRF for transition t₂₂₂: n_l2___37(X₀, X₁, X₃) → n_l3___30(X₀, X₁, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2 ≤ X₃ ∧ 2+X₃ ≤ 2⋅X₁ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀+2 {O(n)}
MPRF:
n_l2___37 [X₀ ]
n_l2___38 [X₀ ]
n_l2___31 [X₀ ]
n_l2___36 [X₀ ]
n_l2___6 [3⋅X₀-X₃ ]
n_l3___25 [X₀ ]
n_l3___26 [X₀ ]
n_l3___27 [X₀ ]
n_l3___28 [X₀ ]
n_l3___29 [X₀ ]
n_l3___30 [X₀-1 ]
n_l1___23 [X₀ ]
n_l3___32 [X₀ ]
n_l3___33 [X₀ ]
n_l3___34 [X₀ ]
n_l3___4 [X₀ ]
n_l3___5 [X₀ ]
n_l1___7 [X₀ ]
MPRF for transition t₂₂₄: n_l2___38(X₀, X₁, X₃) → n_l2___36(X₀, X₁, 2⋅X₃+2) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2⋅X₀ ≤ X₃ ∧ X₃ ≤ 2⋅X₀ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
10⋅X₀+3 {O(n)}
MPRF:
n_l2___37 [X₀ ]
n_l2___38 [3⋅X₀-X₃ ]
n_l2___31 [X₀-1 ]
n_l2___36 [X₀-1 ]
n_l2___6 [X₃-X₀ ]
n_l3___25 [X₀-1 ]
n_l3___26 [X₀-1 ]
n_l3___27 [X₀-1 ]
n_l3___28 [X₀ ]
n_l3___29 [X₀ ]
n_l3___30 [X₀ ]
n_l1___23 [X₀ ]
n_l3___32 [X₀ ]
n_l3___33 [X₃-X₀-1 ]
n_l3___34 [3⋅X₀-X₃ ]
n_l3___4 [X₀ ]
n_l3___5 [X₃-X₀ ]
n_l1___7 [X₀ ]
MPRF for transition t₂₂₅: n_l2___38(X₀, X₁, X₃) → n_l2___37(X₀, X₁, 2⋅X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2⋅X₀ ≤ X₃ ∧ X₃ ≤ 2⋅X₀ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₀+8 {O(n)}
MPRF:
n_l2___37 [2⋅X₀-2 ]
n_l2___38 [2⋅X₀ ]
n_l2___31 [2⋅X₀-2 ]
n_l2___36 [2⋅X₀-2 ]
n_l2___6 [X₃ ]
n_l3___25 [2⋅X₀-2 ]
n_l3___26 [2⋅X₀-2 ]
n_l3___27 [2⋅X₀-2 ]
n_l3___28 [2⋅X₀-2 ]
n_l3___29 [2⋅X₀-2 ]
n_l3___30 [2⋅X₀-2 ]
n_l1___23 [2⋅X₀ ]
n_l3___32 [X₁ ]
n_l3___33 [2⋅X₀ ]
n_l3___34 [2⋅X₀ ]
n_l3___4 [2⋅X₀ ]
n_l3___5 [X₃ ]
n_l1___7 [2⋅X₀ ]
MPRF for transition t₂₂₆: n_l2___38(X₀, X₁, X₃) → n_l3___32(X₀, X₁, X₁) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2⋅X₀ ≤ X₃ ∧ X₃ ≤ 2⋅X₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₀+6⋅X₁+10 {O(n)}
MPRF:
n_l2___37 [2⋅X₀-X₁-1 ]
n_l2___38 [2⋅X₀+1-X₁ ]
n_l2___31 [2⋅X₀-X₁-1 ]
n_l2___36 [2⋅X₀-X₁-1 ]
n_l2___6 [2⋅X₀-X₁ ]
n_l3___25 [2⋅X₀-X₁-1 ]
n_l3___26 [2⋅X₀-X₁-1 ]
n_l3___27 [2⋅X₀-X₁-1 ]
n_l3___28 [2⋅X₀-X₃-1 ]
n_l3___29 [2⋅X₀-X₁-1 ]
n_l3___30 [2⋅X₀-X₁-1 ]
n_l1___23 [2⋅X₀+1-X₁ ]
n_l3___32 [2⋅X₀-X₁ ]
n_l3___33 [2⋅X₀-X₁ ]
n_l3___34 [2⋅X₀-X₁ ]
n_l3___4 [2⋅X₀-X₁ ]
n_l3___5 [2⋅X₀-X₁ ]
n_l1___7 [2⋅X₀+2-X₁ ]
MPRF for transition t₂₂₇: n_l2___38(X₀, X₁, X₃) → n_l3___33(X₀, X₁, X₃+1) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2⋅X₀ ≤ X₃ ∧ X₃ ≤ 2⋅X₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₀+6 {O(n)}
MPRF:
n_l2___37 [2⋅X₀ ]
n_l2___38 [2⋅X₀+2 ]
n_l2___31 [2⋅X₀ ]
n_l2___36 [2⋅X₀ ]
n_l2___6 [X₃ ]
n_l3___25 [2⋅X₀ ]
n_l3___26 [2⋅X₀ ]
n_l3___27 [2⋅X₀ ]
n_l3___28 [2⋅X₀ ]
n_l3___29 [2⋅X₀ ]
n_l3___30 [2⋅X₀ ]
n_l1___23 [2⋅X₀+2 ]
n_l3___32 [2⋅X₀+2 ]
n_l3___33 [2⋅X₀+1 ]
n_l3___34 [2⋅X₀+2 ]
n_l3___4 [2⋅X₀-1 ]
n_l3___5 [2⋅X₀ ]
n_l1___7 [2⋅X₀ ]
MPRF for transition t₂₂₈: n_l2___38(X₀, X₁, X₃) → n_l3___34(X₀, X₁, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2⋅X₀ ≤ X₃ ∧ X₃ ≤ 2⋅X₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₀+11 {O(n)}
MPRF:
n_l2___37 [2⋅X₀-3 ]
n_l2___38 [2⋅X₀-1 ]
n_l2___31 [2⋅X₀-3 ]
n_l2___36 [2⋅X₀-3 ]
n_l2___6 [2⋅X₀-3 ]
n_l3___25 [2⋅X₀-3 ]
n_l3___26 [2⋅X₀-3 ]
n_l3___27 [2⋅X₀-3 ]
n_l3___28 [2⋅X₀-3 ]
n_l3___29 [2⋅X₀-3 ]
n_l3___30 [2⋅X₀-3 ]
n_l1___23 [2⋅X₀-1 ]
n_l3___32 [X₁-1 ]
n_l3___33 [X₃-2 ]
n_l3___34 [2⋅X₀-5 ]
n_l3___4 [2⋅X₀-3 ]
n_l3___5 [2⋅X₀-3 ]
n_l1___7 [2⋅X₀-3 ]
MPRF for transition t₂₂₉: n_l2___6(X₀, X₁, X₃) → n_l2___31(X₀, X₁, 2⋅X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2⋅X₀ ≤ X₃ ∧ X₃ ≤ 2⋅X₀ ∧ 2 ≤ X₁ ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 2+X₃ ≤ 2⋅X₁ ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₀+3 {O(n)}
MPRF:
n_l2___37 [X₀ ]
n_l2___38 [X₃-X₀ ]
n_l2___31 [X₀-1 ]
n_l2___36 [X₀-1 ]
n_l2___6 [3⋅X₀-X₃ ]
n_l3___25 [X₀-1 ]
n_l3___26 [X₀-1 ]
n_l3___27 [X₀-1 ]
n_l3___28 [X₀ ]
n_l3___29 [X₀ ]
n_l3___30 [X₀ ]
n_l1___23 [X₀ ]
n_l3___32 [X₀+X₃-X₁ ]
n_l3___33 [X₃-X₀-1 ]
n_l3___34 [X₃-X₀ ]
n_l3___4 [X₃-X₀-1 ]
n_l3___5 [3⋅X₀-X₃ ]
n_l1___7 [X₀ ]
MPRF for transition t₂₃₀: n_l2___6(X₀, X₁, X₃) → n_l2___36(X₀, X₁, 2⋅X₃+2) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁ ∧ 2⋅X₀ ≤ X₃ ∧ X₃ ≤ 2⋅X₀ ∧ 2 ≤ X₁ ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 2+X₃ ≤ 2⋅X₁ ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀+3 {O(n)}
MPRF:
n_l2___37 [X₀ ]
n_l2___38 [X₀ ]
n_l2___31 [X₀-1 ]
n_l2___36 [X₀-1 ]
n_l2___6 [X₃-X₀ ]
n_l3___25 [X₀-1 ]
n_l3___26 [X₀-1 ]
n_l3___27 [X₀-1 ]
n_l3___28 [X₀ ]
n_l3___29 [X₀ ]
n_l3___30 [X₀ ]
n_l1___23 [X₀ ]
n_l3___32 [X₀ ]
n_l3___33 [X₀ ]
n_l3___34 [X₀ ]
n_l3___4 [X₃-X₀-1 ]
n_l3___5 [X₃-X₀ ]
n_l1___7 [X₀+1 ]
All Bounds
Timebounds
Overall timebound:16⋅X₁⋅X₁+24⋅X₀⋅X₀+28⋅X₀⋅X₁+76⋅X₀+94⋅X₁+103 {O(n^2)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 2⋅X₀+2⋅X₁+7 {O(n)}
t₃₁: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₂: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₃: 4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
t₃₄: 8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22 {O(n^2)}
t₃₅: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₆: 4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
t₃₇: 2⋅X₀+2 {O(n)}
t₃₈: 2⋅X₁+3 {O(n)}
Costbounds
Overall costbound: 16⋅X₁⋅X₁+24⋅X₀⋅X₀+28⋅X₀⋅X₁+76⋅X₀+94⋅X₁+103 {O(n^2)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 2⋅X₀+2⋅X₁+7 {O(n)}
t₃₁: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₂: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₃: 4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
t₃₄: 8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22 {O(n^2)}
t₃₅: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₆: 4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
t₃₇: 2⋅X₀+2 {O(n)}
t₃₈: 2⋅X₁+3 {O(n)}
Sizebounds
t₂₈, X₀: X₀ {O(n)}
t₂₈, X₁: X₁ {O(n)}
t₂₈, X₃: X₃ {O(n)}
t₂₉, X₀: X₀ {O(n)}
t₂₉, X₁: X₁+1 {O(n)}
t₂₉, X₃: X₃ {O(n)}
t₃₀, X₀: 2⋅X₀+1 {O(n)}
t₃₀, X₁: 2⋅X₁+1 {O(n)}
t₃₀, X₃: 8⋅X₀+4 {O(n)}
t₃₁, X₀: 2⋅X₀+1 {O(n)}
t₃₁, X₁: 2⋅X₁+1 {O(n)}
t₃₁, X₃: 16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₀+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₁+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅60+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅64⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅72⋅X₀+8⋅X₀+4 {O(EXP)}
t₃₂, X₀: 2⋅X₀+1 {O(n)}
t₃₂, X₁: 2⋅X₁+1 {O(n)}
t₃₂, X₃: 16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₀+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₁+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅60+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅64⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅72⋅X₀+8⋅X₀+7 {O(EXP)}
t₃₃, X₀: 2⋅X₀+1 {O(n)}
t₃₃, X₁: 2⋅X₁+1 {O(n)}
t₃₃, X₃: 2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅30+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅36⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₁⋅X₁ {O(EXP)}
t₃₄, X₀: 2⋅X₀+1 {O(n)}
t₃₄, X₁: 2⋅X₁+1 {O(n)}
t₃₄, X₃: 2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅30+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅36⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₁⋅X₁ {O(EXP)}
t₃₅, X₀: 2⋅X₀+1 {O(n)}
t₃₅, X₁: 2⋅X₁+1 {O(n)}
t₃₅, X₃: 16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₀+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₁+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅60+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅64⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅72⋅X₀+8⋅X₀+4 {O(EXP)}
t₃₆, X₀: 6⋅X₀+3 {O(n)}
t₃₆, X₁: 6⋅X₁+3 {O(n)}
t₃₆, X₃: 120⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)+128⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁+144⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁⋅X₁+16⋅X₀+8 {O(EXP)}
t₃₇, X₀: 2⋅X₀+1 {O(n)}
t₃₇, X₁: 2⋅X₁+1 {O(n)}
t₃₇, X₃: 120⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)+128⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁+144⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₀+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₁+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅60+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅64⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅72⋅X₀+24⋅X₀+15 {O(EXP)}
t₃₈, X₀: 1 {O(1)}
t₃₈, X₁: 2⋅X₁+1 {O(n)}
t₃₈, X₃: 120⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)+128⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁+144⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₀+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₁+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅60+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅64⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅72⋅X₀+24⋅X₀+15 {O(EXP)}