Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₈, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ ≤ 0
t₂₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₀
t₂₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁
t₂₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₈, X₁₀, X₁₁) :|: X₁ ≤ 0
t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, nondef_0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₄-1, X₆, X₇, X₈, X₈+1, X₁₀, X₁₁)
t₃₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₅, X₅, X₆, X₇, X₉, X₉, X₁₀-1, X₁₁)
t₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₆: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₇: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₈: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₀: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₅: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₂-1, X₄, X₅, X₆, X₆+1, X₈, X₉, X₁₀, X₁₁)
t₁₇: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₃, X₃, X₄, X₅, X₇, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0
t₁₆: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇
t₂₃: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄
t₂₄: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₈, X₁₀, X₁₁) :|: X₄ ≤ 0
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ 0
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₂
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₁₁, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₀, X₉, X₁₁-1, X₁₁)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₇-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
Preprocessing
Found invariant 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l11
Found invariant X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁ for location l25
Found invariant 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l27
Found invariant X₆ ≤ 0 ∧ X₂+X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ for location l24
Found invariant 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l15
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁ for location l26
Found invariant 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l12
Found invariant X₆ ≤ 0 ∧ X₂+X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ for location l23
Found invariant X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₂ ≤ X₁₁ for location l5
Found invariant 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l13
Found invariant X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₀ for location l8
Found invariant X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₀ for location l10
Found invariant X₉ ≤ 1+X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l16
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁ for location l9
Found invariant 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₀
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₈, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ ≤ 0 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₂₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₂₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₂₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₈, X₁₀, X₁₁) :|: X₁ ≤ 0 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, nondef_0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₂₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₄-1, X₆, X₇, X₈, X₈+1, X₁₀, X₁₁) :|: 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₅, X₅, X₆, X₇, X₉, X₉, X₁₀-1, X₁₁) :|: X₉ ≤ 1+X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₆: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₇: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₈: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₀: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 0 ∧ X₂+X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁
t₁₅: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₂-1, X₄, X₅, X₆, X₆+1, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁
t₁₇: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₃, X₃, X₄, X₅, X₇, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁
t₁₆: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁
t₂₃: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₂₄: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₈, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ 0 ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₂ ≤ X₁₁
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₂ ≤ X₁₁
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₁₁, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₀, X₉, X₁₁-1, X₁₁) :|: X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₀
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₇-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁
MPRF for transition t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF:
l14 [X₄+X₈ ]
l12 [X₄+X₈ ]
l15 [X₄+X₈ ]
l26 [X₃+X₇ ]
l13 [X₄+X₈ ]
l27 [X₄+X₈ ]
l16 [X₅+X₉ ]
l5 [X₂ ]
l25 [X₂ ]
l8 [X₀+X₃ ]
l11 [X₄+X₈ ]
l9 [X₃+X₇ ]
l10 [X₀+X₃+1 ]
MPRF for transition t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₈, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ ≤ 0 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF:
l14 [X₄+X₇+X₈-X₀ ]
l12 [X₄+X₇+X₈-X₀ ]
l15 [X₄+X₇+X₈-X₀ ]
l26 [X₃+X₇ ]
l13 [X₄+X₇+X₈-X₀ ]
l27 [X₄+X₇+X₈-X₀ ]
l16 [X₅+X₇+X₉-X₀ ]
l5 [X₂ ]
l25 [X₂ ]
l8 [X₀+X₃+1 ]
l11 [X₄+X₈+1 ]
l9 [X₃+X₇ ]
l10 [X₀+X₃+1 ]
MPRF for transition t₂₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF:
l14 [X₄+X₇-X₀ ]
l12 [X₄+1 ]
l15 [X₄ ]
l26 [X₃+1 ]
l13 [X₄+X₇-X₀ ]
l27 [X₄+X₇-X₀ ]
l16 [X₅+X₇-X₀ ]
l5 [X₂ ]
l25 [X₂ ]
l8 [X₃+1 ]
l11 [X₄+1 ]
l9 [X₃+1 ]
l10 [X₃+1 ]
MPRF for transition t₂₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₄-1, X₆, X₇, X₈, X₈+1, X₁₀, X₁₁) :|: 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF:
l14 [X₄ ]
l12 [X₄ ]
l15 [X₄ ]
l26 [X₃ ]
l13 [X₄ ]
l27 [X₄ ]
l16 [X₅ ]
l5 [X₂ ]
l25 [X₂ ]
l8 [X₃ ]
l11 [X₄ ]
l9 [X₃ ]
l10 [X₃ ]
MPRF for transition t₁₅: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₂-1, X₄, X₅, X₆, X₆+1, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF:
l14 [X₀+X₂-X₇ ]
l12 [X₀+X₂-X₇ ]
l15 [X₀+X₂-X₇ ]
l26 [X₂-1 ]
l13 [X₀+X₂-X₇ ]
l27 [X₀+X₂-X₇ ]
l16 [X₂-1 ]
l5 [X₂ ]
l25 [X₂ ]
l8 [X₀+X₂-X₇ ]
l11 [X₂-1 ]
l9 [X₂-1 ]
l10 [X₂-1 ]
MPRF for transition t₁₆: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
2⋅X₁₁ {O(n)}
MPRF:
l14 [X₄+X₈+X₁₁ ]
l12 [X₄+X₈+X₁₁ ]
l15 [X₄+X₈+X₁₁ ]
l26 [X₃+X₇+X₁₁ ]
l13 [X₄+X₈+X₁₁ ]
l27 [X₄+X₈+X₁₁ ]
l16 [X₅+X₉+X₁₁ ]
l5 [X₂+X₁₁ ]
l25 [X₂+X₁₁ ]
l8 [X₀+X₃+X₁₁ ]
l11 [X₄+X₈+X₁₁ ]
l9 [X₃+X₇+X₁₁-1 ]
l10 [X₀+X₃+X₁₁ ]
MPRF for transition t₁₇: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₃, X₃, X₄, X₅, X₇, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF:
l14 [X₃+X₇-X₀ ]
l12 [X₃+X₇-X₀ ]
l15 [X₃+X₇-X₀ ]
l26 [X₃+1 ]
l13 [X₃+X₇-X₀ ]
l27 [X₃+1 ]
l16 [X₃+X₇-X₀ ]
l5 [X₂ ]
l25 [X₂ ]
l8 [X₃+1 ]
l11 [X₃+1 ]
l9 [X₃+1 ]
l10 [X₃+1 ]
MPRF for transition t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₂ ≤ X₁₁ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF:
l14 [X₀+X₂-X₇ ]
l12 [X₀+X₂-X₇ ]
l15 [X₀+X₂-X₇ ]
l26 [X₂-1 ]
l13 [X₀+X₂-X₇ ]
l27 [X₀+X₂-X₇ ]
l16 [X₂-1 ]
l5 [X₂ ]
l25 [X₂-1 ]
l8 [X₂-1 ]
l11 [X₂-1 ]
l9 [X₂-1 ]
l10 [X₂-1 ]
MPRF for transition t₂₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₀, X₉, X₁₁-1, X₁₁) :|: X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF:
l14 [X₄+X₈ ]
l12 [X₄+X₈ ]
l15 [X₄+X₈ ]
l26 [X₃+X₇ ]
l13 [X₄+X₈ ]
l27 [X₄+X₈ ]
l16 [X₅+X₉ ]
l5 [X₂ ]
l25 [X₂ ]
l8 [X₀+X₃+1 ]
l11 [X₄+X₈ ]
l9 [X₃+X₇ ]
l10 [X₀+X₃+1 ]
MPRF for transition t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₇-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
2⋅X₁₁ {O(n)}
MPRF:
l14 [X₄+X₈+X₁₁ ]
l12 [X₄+X₈+X₁₁ ]
l15 [X₄+X₈+X₁₁ ]
l26 [X₃+X₇+X₁₁ ]
l13 [X₄+X₈+X₁₁ ]
l27 [X₄+X₈+X₁₁ ]
l16 [X₅+X₉+X₁₁ ]
l5 [X₂+X₁₁ ]
l25 [X₂+X₁₁ ]
l8 [X₃+X₇+X₁₁-1 ]
l11 [X₄+X₈+X₁₁ ]
l9 [X₃+X₇+X₁₁ ]
l10 [X₃+X₇+X₁₁-1 ]
MPRF for transition t₂₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁₁⋅X₁₁ {O(n^2)}
MPRF:
l10 [X₁₁ ]
l14 [X₁₀ ]
l12 [X₁₀ ]
l15 [X₁₀ ]
l9 [0 ]
l26 [0 ]
l13 [X₁₀ ]
l27 [X₁₀ ]
l16 [X₁₀ ]
l5 [0 ]
l25 [0 ]
l8 [X₁₁ ]
l11 [X₁₀+1 ]
MPRF for transition t₂₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₈, X₁₀, X₁₁) :|: X₁ ≤ 0 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁₁⋅X₁₁ {O(n^2)}
MPRF:
l10 [X₁₁ ]
l14 [X₇+X₁₀-X₀ ]
l12 [X₁₀+1 ]
l15 [X₁₀ ]
l9 [0 ]
l26 [0 ]
l13 [X₇+X₁₀-X₀ ]
l27 [X₇+X₁₀-X₀ ]
l16 [X₁₀ ]
l5 [0 ]
l25 [0 ]
l8 [X₁₁ ]
l11 [X₇+X₁₀-X₀ ]
MPRF for transition t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
4⋅X₁₁⋅X₁₁+X₁₁+2 {O(n^2)}
MPRF:
l10 [2⋅X₁₁ ]
l14 [3⋅X₀+X₁₀+X₁₁-3⋅X₇ ]
l12 [3⋅X₀+X₁₀+X₁₁-3⋅X₇ ]
l15 [3⋅X₀+X₁₀+X₁₁-3⋅X₇ ]
l9 [X₁₁-2 ]
l26 [X₁₁-2 ]
l13 [2⋅X₀+X₁₀+X₁₁-2⋅X₇ ]
l27 [2⋅X₀+X₁₀+X₁₁-2⋅X₇ ]
l16 [3⋅X₀+X₁₀+X₁₁-3⋅X₇ ]
l5 [X₁₁-2 ]
l25 [X₁₁-2 ]
l8 [2⋅X₁₁ ]
l11 [3⋅X₀+X₁₀+X₁₁+1-3⋅X₇ ]
MPRF for transition t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, nondef_0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁₁⋅X₁₁ {O(n^2)}
MPRF:
l10 [X₁₁ ]
l14 [X₁₀ ]
l12 [X₁₀-1 ]
l15 [X₁₀-1 ]
l9 [0 ]
l26 [0 ]
l13 [X₁₀ ]
l27 [X₁₀ ]
l16 [X₁₀-1 ]
l5 [0 ]
l25 [0 ]
l8 [X₁₁ ]
l11 [X₁₀ ]
MPRF for transition t₃₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₅, X₅, X₆, X₇, X₉, X₉, X₁₀-1, X₁₁) :|: X₉ ≤ 1+X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁₁⋅X₁₁ {O(n^2)}
MPRF:
l10 [X₁₁ ]
l14 [X₁₀ ]
l12 [X₁₀ ]
l15 [X₁₀ ]
l9 [0 ]
l26 [0 ]
l13 [X₁₀ ]
l27 [X₁₀ ]
l16 [X₁₀ ]
l5 [0 ]
l25 [0 ]
l8 [X₁₁ ]
l11 [X₁₀ ]
MPRF for transition t₂₃: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁₁⋅X₁₁ {O(n^2)}
MPRF:
l10 [X₁₁ ]
l14 [X₀+X₁₀-X₇ ]
l12 [X₁₀-1 ]
l15 [X₁₀-1 ]
l9 [0 ]
l26 [0 ]
l13 [X₀+X₁₀-X₇ ]
l27 [X₁₀ ]
l16 [X₁₀-1 ]
l5 [0 ]
l25 [0 ]
l8 [X₁₁ ]
l11 [X₁₀ ]
MPRF for transition t₂₄: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₈, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁₁⋅X₁₁ {O(n^2)}
MPRF:
l10 [X₁₁ ]
l14 [X₁₀ ]
l12 [X₁₀ ]
l15 [X₁₀ ]
l9 [0 ]
l26 [0 ]
l13 [X₁₀ ]
l27 [X₁₀ ]
l16 [X₁₀-1 ]
l5 [0 ]
l25 [0 ]
l8 [X₁₁ ]
l11 [X₁₀ ]
Analysing control-flow refined program
Found invariant 1+X₈ ≤ X₇ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ X₂ ≤ 1+X₁₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l11
Found invariant X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁ for location l25
Found invariant X₉ ≤ X₈ ∧ 1+X₉ ≤ X₇ ∧ X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₈ ≤ X₇ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ X₁ ≤ X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₁+X₆ ≤ 0 ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₁ ∧ X₅ ≤ X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ X₄ ≤ X₁₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ X₂ ≤ 1+X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ for location n_l16___13
Found invariant 1+X₈ ≤ X₇ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ X₄ ≤ X₁₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ X₂ ≤ 1+X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l13___17
Found invariant 1+X₈ ≤ X₇ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ X₄ ≤ X₁₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ X₂ ≤ 1+X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l12___14
Found invariant X₉ ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 4 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 4 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 2+X₁₀ ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l14___9
Found invariant X₆ ≤ 0 ∧ X₂+X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ for location l24
Found invariant X₉ ≤ X₈ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 3 ≤ X₃+X₉ ∧ 4 ≤ X₂+X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₄+X₈ ∧ 3 ≤ X₃+X₈ ∧ 4 ≤ X₂+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 4 ≤ X₂+X₇ ∧ 4 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 4 ≤ X₂+X₅ ∧ 4 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 5 ≤ X₁₁+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁₁+X₂ ∧ 4 ≤ X₁₀+X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 2+X₁₀ ≤ X₁₁ ∧ 4 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l13___1
Found invariant X₉ ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ X₁ ≤ X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 4 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₁+X₆ ≤ 0 ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 4 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 2+X₁₀ ≤ X₁₁ ∧ 3+X₁ ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ for location n_l27___11
Found invariant 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l15
Found invariant X₉ ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₁ ≤ X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ X₆ ≤ X₁₀ ∧ X₁+X₆ ≤ 0 ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2+X₁₀ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ for location n_l11___12
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁ for location l26
Found invariant X₉ ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 4 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 4 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 2+X₁₀ ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l12___8
Found invariant X₆ ≤ 0 ∧ X₂+X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ for location l23
Found invariant X₉ ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ X₁ ≤ X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 4 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₁+X₆ ≤ 0 ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 4 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 2+X₁₀ ≤ X₁₁ ∧ 3+X₁ ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ for location n_l16___7
Found invariant X₉ ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 4 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₁₀ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 2+X₁₀ ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l27___5
Found invariant X₉ ≤ X₈ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₂+X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 4 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 4 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 2+X₁₀ ≤ X₁₁ ∧ 4 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l27___2
Found invariant X₉ ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₁ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₁ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l11___6
Found invariant X₉ ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ X₁ ≤ X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 4 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₁+X₆ ≤ 0 ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₁₁+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 4 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 2+X₁₀ ≤ X₁₁ ∧ 3+X₁ ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ for location n_l13___10
Found invariant X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₂ ≤ X₁₁ for location l5
Found invariant X₉ ≤ X₈ ∧ 1+X₉ ≤ X₇ ∧ X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₈ ≤ X₇ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₁₀ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁₁ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ X₂ ≤ 1+X₁₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l16___16
Found invariant X₉ ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 1+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 4 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₁₀ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₁₀ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 2+X₁₀ ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l16___4
Found invariant X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₀ for location l8
Found invariant 1+X₈ ≤ X₇ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ X₄ ≤ X₁₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ X₂ ≤ 1+X₁₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l27___18
Found invariant X₉ ≤ 1+X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₂+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l16
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₁₁ for location l9
Found invariant X₉ ≤ X₈ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₂+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ X₆ ≤ X₁₀ ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2+X₁₀ ≤ X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l11___3
Found invariant X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁₁ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 0 ≤ X₀ for location l10
Found invariant 1+X₈ ≤ X₇ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 3 ≤ X₁₁+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₁ ∧ 1+X₆ ≤ X₁₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₁ ∧ X₄ ≤ X₁₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁₁ ∧ X₂ ≤ 1+X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁₁+X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location n_l14___15
All Bounds
Timebounds
Overall timebound:16⋅X₁₁⋅X₁₁+13⋅X₁₁+17 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₁₉: X₁₁ {O(n)}
t₂₁: 2⋅X₁₁⋅X₁₁ {O(n^2)}
t₂₂: X₁₁ {O(n)}
t₂₇: X₁₁ {O(n)}
t₂₈: 2⋅X₁₁⋅X₁₁ {O(n^2)}
t₂₅: 4⋅X₁₁⋅X₁₁+X₁₁+2 {O(n^2)}
t₂₆: 2⋅X₁₁⋅X₁₁ {O(n^2)}
t₂₉: X₁₁ {O(n)}
t₃₀: 2⋅X₁₁⋅X₁₁ {O(n^2)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₁: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₁₅: X₁₁ {O(n)}
t₁₆: 2⋅X₁₁ {O(n)}
t₁₇: X₁₁ {O(n)}
t₂₃: 2⋅X₁₁⋅X₁₁ {O(n^2)}
t₂₄: 2⋅X₁₁⋅X₁₁ {O(n^2)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₃: X₁₁ {O(n)}
t₁₄: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₂₀: X₁₁ {O(n)}
t₁₈: 2⋅X₁₁ {O(n)}
Costbounds
Overall costbound: 16⋅X₁₁⋅X₁₁+13⋅X₁₁+17 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₁₉: X₁₁ {O(n)}
t₂₁: 2⋅X₁₁⋅X₁₁ {O(n^2)}
t₂₂: X₁₁ {O(n)}
t₂₇: X₁₁ {O(n)}
t₂₈: 2⋅X₁₁⋅X₁₁ {O(n^2)}
t₂₅: 4⋅X₁₁⋅X₁₁+X₁₁+2 {O(n^2)}
t₂₆: 2⋅X₁₁⋅X₁₁ {O(n^2)}
t₂₉: X₁₁ {O(n)}
t₃₀: 2⋅X₁₁⋅X₁₁ {O(n^2)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₁: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₁₅: X₁₁ {O(n)}
t₁₆: 2⋅X₁₁ {O(n)}
t₁₇: X₁₁ {O(n)}
t₂₃: 2⋅X₁₁⋅X₁₁ {O(n^2)}
t₂₄: 2⋅X₁₁⋅X₁₁ {O(n^2)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₃: X₁₁ {O(n)}
t₁₄: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₂₀: X₁₁ {O(n)}
t₁₈: 2⋅X₁₁ {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₉ {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₁₉, X₀: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₁₉, X₂: X₁₁ {O(n)}
t₁₉, X₃: X₁₁ {O(n)}
t₁₉, X₄: 4⋅X₁₁+X₄ {O(n)}
t₁₉, X₅: 2⋅X₁₁+X₅ {O(n)}
t₁₉, X₆: 0 {O(1)}
t₁₉, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₁₉, X₈: 8⋅X₁₁⋅X₁₁+X₈+4 {O(n^2)}
t₁₉, X₉: 6⋅X₁₁⋅X₁₁+X₉+4 {O(n^2)}
t₁₉, X₁₀: X₁₀ {O(n)}
t₁₉, X₁₁: X₁₁ {O(n)}
t₂₁, X₀: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₁, X₂: X₁₁ {O(n)}
t₂₁, X₃: X₁₁ {O(n)}
t₂₁, X₄: X₁₁ {O(n)}
t₂₁, X₅: 4⋅X₁₁+X₅ {O(n)}
t₂₁, X₆: 0 {O(1)}
t₂₁, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₁, X₈: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₁, X₉: 12⋅X₁₁⋅X₁₁+X₉+8 {O(n^2)}
t₂₁, X₁₀: X₁₁ {O(n)}
t₂₁, X₁₁: X₁₁ {O(n)}
t₂₂, X₀: 4⋅X₁₁⋅X₁₁+2 {O(n^2)}
t₂₂, X₂: X₁₁ {O(n)}
t₂₂, X₃: X₁₁ {O(n)}
t₂₂, X₄: 2⋅X₁₁ {O(n)}
t₂₂, X₅: 2⋅X₁₁+X₅ {O(n)}
t₂₂, X₆: 0 {O(1)}
t₂₂, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₂, X₈: 4⋅X₁₁⋅X₁₁+2 {O(n^2)}
t₂₂, X₉: 6⋅X₁₁⋅X₁₁+X₉+4 {O(n^2)}
t₂₂, X₁₀: 0 {O(1)}
t₂₂, X₁₁: X₁₁ {O(n)}
t₂₇, X₀: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₇, X₂: X₁₁ {O(n)}
t₂₇, X₃: X₁₁ {O(n)}
t₂₇, X₄: X₁₁ {O(n)}
t₂₇, X₅: 4⋅X₁₁+X₅ {O(n)}
t₂₇, X₆: 0 {O(1)}
t₂₇, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₇, X₈: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₇, X₉: 12⋅X₁₁⋅X₁₁+X₉+8 {O(n^2)}
t₂₇, X₁₀: X₁₁ {O(n)}
t₂₇, X₁₁: X₁₁ {O(n)}
t₂₈, X₀: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₈, X₂: X₁₁ {O(n)}
t₂₈, X₃: X₁₁ {O(n)}
t₂₈, X₄: X₁₁ {O(n)}
t₂₈, X₅: X₁₁ {O(n)}
t₂₈, X₆: 0 {O(1)}
t₂₈, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₈, X₈: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₈, X₉: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₈, X₁₀: X₁₁ {O(n)}
t₂₈, X₁₁: X₁₁ {O(n)}
t₂₅, X₀: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₅, X₂: X₁₁ {O(n)}
t₂₅, X₃: X₁₁ {O(n)}
t₂₅, X₄: X₁₁ {O(n)}
t₂₅, X₅: 4⋅X₁₁+X₅ {O(n)}
t₂₅, X₆: 0 {O(1)}
t₂₅, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₅, X₈: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₅, X₉: 12⋅X₁₁⋅X₁₁+X₉+8 {O(n^2)}
t₂₅, X₁₀: X₁₁ {O(n)}
t₂₅, X₁₁: X₁₁ {O(n)}
t₂₆, X₀: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₆, X₂: X₁₁ {O(n)}
t₂₆, X₃: X₁₁ {O(n)}
t₂₆, X₄: X₁₁ {O(n)}
t₂₆, X₅: 4⋅X₁₁+X₅ {O(n)}
t₂₆, X₆: 0 {O(1)}
t₂₆, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₆, X₈: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₆, X₉: 12⋅X₁₁⋅X₁₁+X₉+8 {O(n^2)}
t₂₆, X₁₀: X₁₁ {O(n)}
t₂₆, X₁₁: X₁₁ {O(n)}
t₂₉, X₀: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₉, X₂: X₁₁ {O(n)}
t₂₉, X₃: X₁₁ {O(n)}
t₂₉, X₄: X₁₁ {O(n)}
t₂₉, X₅: X₁₁ {O(n)}
t₂₉, X₆: 0 {O(1)}
t₂₉, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₉, X₈: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₉, X₉: 2⋅X₁₁⋅X₁₁+2 {O(n^2)}
t₂₉, X₁₀: X₁₁ {O(n)}
t₂₉, X₁₁: X₁₁ {O(n)}
t₃₀, X₀: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₃₀, X₂: X₁₁ {O(n)}
t₃₀, X₃: X₁₁ {O(n)}
t₃₀, X₄: X₁₁ {O(n)}
t₃₀, X₅: 2⋅X₁₁ {O(n)}
t₃₀, X₆: 0 {O(1)}
t₃₀, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₃₀, X₈: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₃₀, X₉: 6⋅X₁₁⋅X₁₁+4 {O(n^2)}
t₃₀, X₁₀: X₁₁ {O(n)}
t₃₀, X₁₁: X₁₁ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₅, X₁₁: X₁₁ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₆, X₁₁: X₁₁ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₇, X₁₁: X₁₁ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₈, X₈: X₈ {O(n)}
t₈, X₉: X₉ {O(n)}
t₈, X₁₀: X₁₀ {O(n)}
t₈, X₁₁: X₁₁ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₉, X₁₁: X₁₁ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₀, X₈: X₈ {O(n)}
t₁₀, X₉: X₉ {O(n)}
t₁₀, X₁₀: X₁₀ {O(n)}
t₁₀, X₁₁: X₁₁ {O(n)}
t₃₁, X₀: 4⋅X₁₁⋅X₁₁+X₀+2 {O(n^2)}
t₃₁, X₂: 2⋅X₁₁ {O(n)}
t₃₁, X₃: X₁₁+X₃ {O(n)}
t₃₁, X₄: 2⋅X₁₁+X₄ {O(n)}
t₃₁, X₅: 2⋅X₁₁+2⋅X₅ {O(n)}
t₃₁, X₆: 0 {O(1)}
t₃₁, X₇: X₇ {O(n)}
t₃₁, X₈: 4⋅X₁₁⋅X₁₁+X₈+2 {O(n^2)}
t₃₁, X₉: 6⋅X₁₁⋅X₁₁+2⋅X₉+4 {O(n^2)}
t₃₁, X₁₀: X₁₀ {O(n)}
t₃₁, X₁₁: 2⋅X₁₁ {O(n)}
t₁₅, X₀: 4⋅X₁₁⋅X₁₁+X₀+2 {O(n^2)}
t₁₅, X₂: X₁₁ {O(n)}
t₁₅, X₃: X₁₁ {O(n)}
t₁₅, X₄: 2⋅X₁₁+X₄ {O(n)}
t₁₅, X₅: 2⋅X₁₁+X₅ {O(n)}
t₁₅, X₆: 0 {O(1)}
t₁₅, X₇: 1 {O(1)}
t₁₅, X₈: 4⋅X₁₁⋅X₁₁+X₈+2 {O(n^2)}
t₁₅, X₉: 6⋅X₁₁⋅X₁₁+X₉+4 {O(n^2)}
t₁₅, X₁₀: X₁₀ {O(n)}
t₁₅, X₁₁: X₁₁ {O(n)}
t₁₆, X₀: 8⋅X₁₁⋅X₁₁+X₀+4 {O(n^2)}
t₁₆, X₂: X₁₁ {O(n)}
t₁₆, X₃: X₁₁ {O(n)}
t₁₆, X₄: 4⋅X₁₁+X₄ {O(n)}
t₁₆, X₅: 2⋅X₁₁+X₅ {O(n)}
t₁₆, X₆: 0 {O(1)}
t₁₆, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₁₆, X₈: 8⋅X₁₁⋅X₁₁+X₈+4 {O(n^2)}
t₁₆, X₉: 6⋅X₁₁⋅X₁₁+X₉+4 {O(n^2)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₁₆, X₁₁: X₁₁ {O(n)}
t₁₇, X₀: 4⋅X₁₁⋅X₁₁+2 {O(n^2)}
t₁₇, X₂: X₁₁ {O(n)}
t₁₇, X₃: X₁₁ {O(n)}
t₁₇, X₄: 2⋅X₁₁ {O(n)}
t₁₇, X₅: 2⋅X₁₁+X₅ {O(n)}
t₁₇, X₆: 0 {O(1)}
t₁₇, X₇: 0 {O(1)}
t₁₇, X₈: 4⋅X₁₁⋅X₁₁+2 {O(n^2)}
t₁₇, X₉: 6⋅X₁₁⋅X₁₁+X₉+4 {O(n^2)}
t₁₇, X₁₀: 0 {O(1)}
t₁₇, X₁₁: X₁₁ {O(n)}
t₂₃, X₀: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₃, X₂: X₁₁ {O(n)}
t₂₃, X₃: X₁₁ {O(n)}
t₂₃, X₄: X₁₁ {O(n)}
t₂₃, X₅: 4⋅X₁₁+X₅ {O(n)}
t₂₃, X₆: 0 {O(1)}
t₂₃, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₃, X₈: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₃, X₉: 12⋅X₁₁⋅X₁₁+X₉+8 {O(n^2)}
t₂₃, X₁₀: X₁₁ {O(n)}
t₂₃, X₁₁: X₁₁ {O(n)}
t₂₄, X₀: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₄, X₂: X₁₁ {O(n)}
t₂₄, X₃: X₁₁ {O(n)}
t₂₄, X₄: 0 {O(1)}
t₂₄, X₅: 0 {O(1)}
t₂₄, X₆: 0 {O(1)}
t₂₄, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₄, X₈: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₄, X₉: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₄, X₁₀: X₁₁ {O(n)}
t₂₄, X₁₁: X₁₁ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: X₁₀ {O(n)}
t₄, X₁₁: X₁₁ {O(n)}
t₁₃, X₀: 4⋅X₁₁⋅X₁₁+X₀+2 {O(n^2)}
t₁₃, X₂: X₁₁ {O(n)}
t₁₃, X₃: X₁₁+X₃ {O(n)}
t₁₃, X₄: 2⋅X₁₁+X₄ {O(n)}
t₁₃, X₅: 2⋅X₁₁+X₅ {O(n)}
t₁₃, X₆: 0 {O(1)}
t₁₃, X₇: X₇ {O(n)}
t₁₃, X₈: 4⋅X₁₁⋅X₁₁+X₈+2 {O(n^2)}
t₁₃, X₉: 6⋅X₁₁⋅X₁₁+X₉+4 {O(n^2)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₁₃, X₁₁: X₁₁ {O(n)}
t₁₄, X₀: 4⋅X₁₁⋅X₁₁+X₀+2 {O(n^2)}
t₁₄, X₂: 2⋅X₁₁ {O(n)}
t₁₄, X₃: X₁₁+X₃ {O(n)}
t₁₄, X₄: 2⋅X₁₁+X₄ {O(n)}
t₁₄, X₅: 2⋅X₁₁+2⋅X₅ {O(n)}
t₁₄, X₆: 0 {O(1)}
t₁₄, X₇: X₇ {O(n)}
t₁₄, X₈: 4⋅X₁₁⋅X₁₁+X₈+2 {O(n^2)}
t₁₄, X₉: 6⋅X₁₁⋅X₁₁+2⋅X₉+4 {O(n^2)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₄, X₁₁: 2⋅X₁₁ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₇ {O(n)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₁, X₁₀: X₁₀ {O(n)}
t₁₁, X₁₁: X₁₁ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₁₁ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₅ {O(n)}
t₁₂, X₆: 0 {O(1)}
t₁₂, X₇: X₇ {O(n)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₉ {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₂, X₁₁: X₁₁ {O(n)}
t₂₀, X₀: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₀, X₂: X₁₁ {O(n)}
t₂₀, X₃: X₁₁ {O(n)}
t₂₀, X₄: X₁₁ {O(n)}
t₂₀, X₅: 2⋅X₁₁+X₅ {O(n)}
t₂₀, X₆: 0 {O(1)}
t₂₀, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₀, X₈: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₂₀, X₉: 6⋅X₁₁⋅X₁₁+X₉+4 {O(n^2)}
t₂₀, X₁₀: X₁₁ {O(n)}
t₂₀, X₁₁: X₁₁ {O(n)}
t₁₈, X₀: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₁₈, X₂: X₁₁ {O(n)}
t₁₈, X₃: X₁₁ {O(n)}
t₁₈, X₄: 4⋅X₁₁+X₄ {O(n)}
t₁₈, X₅: 2⋅X₁₁+X₅ {O(n)}
t₁₈, X₆: 0 {O(1)}
t₁₈, X₇: 2⋅X₁₁⋅X₁₁+1 {O(n^2)}
t₁₈, X₈: 8⋅X₁₁⋅X₁₁+X₈+4 {O(n^2)}
t₁₈, X₉: 6⋅X₁₁⋅X₁₁+X₉+4 {O(n^2)}
t₁₈, X₁₀: X₁₀ {O(n)}
t₁₈, X₁₁: X₁₁ {O(n)}