Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇
Temp_Vars: S, T, U, V, W, X
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l1(X₀, 1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₀ ≤ 0
t₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l1(X₀, 1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 2 ≤ X₀
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l3(1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 1+X₀ ≤ X₁
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l4(X₀, X₁, X₁+1, S, T, 1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₁ ≤ X₀
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₅ ≤ X₁
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l3(X₀, X₁, X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 1+X₁ ≤ X₅ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l6(X₀, X₁, X₂, X₃, X₄, 1, S, T, U, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₂+1 ≤ X₀ ∧ 1+X₁ ≤ X₅
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l6(X₀, X₁, X₂, X₃, X₄, 1, S, T, U, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₅
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l2(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₄+1 ≤ 0 ∧ 1+X₁ ≤ X₅
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l2(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 1 ≤ X₄ ∧ 1+X₁ ≤ X₅
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l2(X₀, X₁, X₂, X₃, 0, 1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 1+X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l4(X₀, X₁, X₂, X₃+S*T, X₄+U*V, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₅ ≤ X₁
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 1+X₉ ≤ X₅
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀-1, S, T, U, V, X₁₀, X₁₆, X₁₇) :|: X₅ ≤ X₉
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l5(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇, X₈, S, X₁, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, T, U) :|: 2⋅V ≤ X₁+1 ∧ X₁+2 ≤ 3⋅V ∧ S ≤ V ∧ 2⋅W ≤ X₁+1 ∧ X₁+2 ≤ 3⋅W ∧ W ≤ S ∧ 1+X₁ ≤ X₅
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆+S*T, X₇+U*V, X₈+W*X, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₅ ≤ X₁

Preprocessing

Eliminate variables {X,X₃,X₆,X₇,X₈,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇} that do not contribute to the problem

Found invariant X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2

Found invariant X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₉ ≤ 1 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 3 ∧ 1+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 3 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ X₅ ≤ 1+X₉ ∧ 3 ≤ X₂+X₉ ∧ X₂ ≤ 1+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₅ ≤ 2 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 2 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 3 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₁ ≤ 2 ∧ 1 ≤ X₁ for location l1

Found invariant X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4

Found invariant X₀ ≤ 3 for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₄, X₅, X₉
Temp_Vars: S, T, U, V, W
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₃₆: l0(X₀, X₁, X₂, X₄, X₅, X₉) → l1(X₀, 1, X₂, X₄, X₅, X₉) :|: X₀ ≤ 0
t₃₇: l0(X₀, X₁, X₂, X₄, X₅, X₉) → l1(X₀, 1, X₂, X₄, X₅, X₉) :|: 2 ≤ X₀
t₃₅: l0(X₀, X₁, X₂, X₄, X₅, X₉) → l3(1, X₁, X₂, X₄, X₅, X₉) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₃₉: l1(X₀, X₁, X₂, X₄, X₅, X₉) → l3(X₀, X₁, X₂, X₄, X₅, X₉) :|: 1+X₀ ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 ≤ X₁
t₃₈: l1(X₀, X₁, X₂, X₄, X₅, X₉) → l4(X₀, X₁, X₁+1, T, 1, X₉) :|: X₁ ≤ X₀ ∧ X₁ ≤ 2 ∧ 1 ≤ X₁
t₄₀: l2(X₀, X₁, X₂, X₄, X₅, X₉) → l2(X₀, X₁, X₂, X₄, X₅+1, X₉) :|: X₅ ≤ X₁ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₁: l2(X₀, X₁, X₂, X₄, X₅, X₉) → l3(X₀, X₁, X₀, X₄, X₅, X₉) :|: 1+X₁ ≤ X₅ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₂: l2(X₀, X₁, X₂, X₄, X₅, X₉) → l6(X₀, X₁, X₂, X₄, 1, X₉) :|: X₂+1 ≤ X₀ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₃: l2(X₀, X₁, X₂, X₄, X₅, X₉) → l6(X₀, X₁, X₂, X₄, 1, X₉) :|: 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₅: l4(X₀, X₁, X₂, X₄, X₅, X₉) → l2(X₀, X₁, X₂, X₄, 1, X₉) :|: X₄+1 ≤ 0 ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₆: l4(X₀, X₁, X₂, X₄, X₅, X₉) → l2(X₀, X₁, X₂, X₄, 1, X₉) :|: 1 ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₇: l4(X₀, X₁, X₂, X₄, X₅, X₉) → l2(X₀, X₁, X₂, 0, 1, X₉) :|: 1+X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₄: l4(X₀, X₁, X₂, X₄, X₅, X₉) → l4(X₀, X₁, X₂, X₄+U*V, X₅+1, X₉) :|: X₅ ≤ X₁ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₉: l5(X₀, X₁, X₂, X₄, X₅, X₉) → l1(X₀, X₁+1, X₂, X₄, X₅, X₉) :|: 1+X₉ ≤ X₅ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 3 ∧ 1+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 3 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ X₅ ≤ 1+X₉ ∧ 3 ≤ X₂+X₉ ∧ X₂ ≤ 1+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₅ ≤ 2 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 2 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 3 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₈: l5(X₀, X₁, X₂, X₄, X₅, X₉) → l5(X₀, X₁, X₂, X₄, X₅+1, X₉) :|: X₅ ≤ X₉ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 3 ∧ 1+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 3 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ X₅ ≤ 1+X₉ ∧ 3 ≤ X₂+X₉ ∧ X₂ ≤ 1+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₅ ≤ 2 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 2 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 3 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅₁: l6(X₀, X₁, X₂, X₄, X₅, X₉) → l5(X₀, X₁, X₂, X₄, 1, S) :|: 2⋅V ≤ X₁+1 ∧ X₁+2 ≤ 3⋅V ∧ S ≤ V ∧ 2⋅W ≤ X₁+1 ∧ X₁+2 ≤ 3⋅W ∧ W ≤ S ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅₀: l6(X₀, X₁, X₂, X₄, X₅, X₉) → l6(X₀, X₁, X₂, X₄, X₅+1, X₉) :|: X₅ ≤ X₁ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₃₈: l1(X₀, X₁, X₂, X₄, X₅, X₉) → l4(X₀, X₁, X₁+1, T, 1, X₉) :|: X₁ ≤ X₀ ∧ X₁ ≤ 2 ∧ 1 ≤ X₁ of depth 1:

new bound:

4 {O(1)}

MPRF:

l4 [2-X₁ ]
l2 [3-X₂ ]
l1 [3-X₁ ]
l6 [3-X₂ ]
l5 [3-X₂ ]

MPRF for transition t₄₀: l2(X₀, X₁, X₂, X₄, X₅, X₉) → l2(X₀, X₁, X₂, X₄, X₅+1, X₉) :|: X₅ ≤ X₁ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF:

l4 [6-X₂ ]
l2 [7-X₂-X₅ ]
l1 [5-X₁ ]
l6 [7-2⋅X₂ ]
l5 [6-X₁-X₂ ]

MPRF for transition t₄₂: l2(X₀, X₁, X₂, X₄, X₅, X₉) → l6(X₀, X₁, X₂, X₄, 1, X₉) :|: X₂+1 ≤ X₀ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

MPRF:

l4 [X₀+1-X₁ ]
l2 [X₀+1-X₁ ]
l1 [X₀+1-X₁ ]
l6 [X₀-X₁ ]
l5 [X₀-X₁ ]

MPRF for transition t₄₃: l2(X₀, X₁, X₂, X₄, X₅, X₉) → l6(X₀, X₁, X₂, X₄, 1, X₉) :|: 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF:

l4 [3-X₁ ]
l2 [4-X₂ ]
l1 [3-X₁ ]
l6 [3-X₂ ]
l5 [4-X₁-X₂ ]

MPRF for transition t₄₄: l4(X₀, X₁, X₂, X₄, X₅, X₉) → l4(X₀, X₁, X₂, X₄+Temp_Int₈₃₂, X₅+1, X₉) :|: X₅ ≤ X₁ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF:

l4 [2⋅X₁+13-4⋅X₂-2⋅X₅ ]
l2 [7-4⋅X₁ ]
l1 [7-2⋅X₁ ]
l6 [7-4⋅X₁ ]
l5 [7-4⋅X₁ ]

MPRF for transition t₄₅: l4(X₀, X₁, X₂, X₄, X₅, X₉) → l2(X₀, X₁, X₂, X₄, 1, X₉) :|: X₄+1 ≤ 0 ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF:

l4 [3-X₁ ]
l2 [2-X₁ ]
l1 [3-X₁ ]
l6 [2⋅X₂-3⋅X₁ ]
l5 [4-3⋅X₁ ]

MPRF for transition t₄₆: l4(X₀, X₁, X₂, X₄, X₅, X₉) → l2(X₀, X₁, X₂, X₄, 1, X₉) :|: 1 ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF:

l4 [3-X₁ ]
l2 [2-X₁ ]
l1 [3-X₁ ]
l6 [3-X₂ ]
l5 [2-X₁ ]

MPRF for transition t₄₇: l4(X₀, X₁, X₂, X₄, X₅, X₉) → l2(X₀, X₁, X₂, 0, 1, X₉) :|: 1+X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF:

l4 [4-X₂ ]
l2 [3-X₂ ]
l1 [3-X₁ ]
l6 [3-X₂ ]
l5 [5-2⋅X₁-X₂ ]

MPRF for transition t₄₈: l5(X₀, X₁, X₂, X₄, X₅, X₉) → l5(X₀, X₁, X₂, X₄, X₅+1, X₉) :|: X₅ ≤ X₉ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 3 ∧ 1+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 3 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ X₅ ≤ 1+X₉ ∧ 3 ≤ X₂+X₉ ∧ X₂ ≤ 1+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₅ ≤ 2 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 2 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 3 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₀+3 {O(n)}

MPRF:

l4 [3⋅X₀+3-2⋅X₂ ]
l2 [3⋅X₀+3-2⋅X₂ ]
l1 [3⋅X₀+1-2⋅X₁ ]
l6 [3⋅X₀+X₁+4-3⋅X₂ ]
l5 [3⋅X₀+2⋅X₉+5-3⋅X₂-2⋅X₅ ]

MPRF for transition t₄₉: l5(X₀, X₁, X₂, X₄, X₅, X₉) → l1(X₀, X₁+1, X₂, X₄, X₅, X₉) :|: 1+X₉ ≤ X₅ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 3 ∧ 1+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 3 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ X₅ ≤ 1+X₉ ∧ 3 ≤ X₂+X₉ ∧ X₂ ≤ 1+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₅ ≤ 2 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 2 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 3 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3 {O(1)}

MPRF:

l4 [2-X₁ ]
l2 [2-X₁ ]
l1 [2-X₁ ]
l6 [2⋅X₂-3⋅X₁ ]
l5 [2-X₁ ]

MPRF for transition t₅₀: l6(X₀, X₁, X₂, X₄, X₅, X₉) → l6(X₀, X₁, X₂, X₄, X₅+1, X₉) :|: X₅ ≤ X₁ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF:

l4 [7-2⋅X₁ ]
l2 [X₂+4-2⋅X₁ ]
l1 [7-2⋅X₁ ]
l6 [X₂+5-2⋅X₁-X₅ ]
l5 [6-3⋅X₁ ]

MPRF for transition t₅₁: l6(X₀, X₁, X₂, X₄, X₅, X₉) → l5(X₀, X₁, X₂, X₄, 1, S) :|: 2⋅V ≤ X₁+1 ∧ X₁+2 ≤ 3⋅V ∧ S ≤ V ∧ 2⋅W ≤ X₁+1 ∧ X₁+2 ≤ 3⋅W ∧ W ≤ S ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF:

l4 [4-X₂ ]
l2 [4-X₂ ]
l1 [3-X₁ ]
l6 [3-X₁ ]
l5 [2-X₁ ]

knowledge_propagation leads to new time bound 6 {O(1)} for transition t₄₂: l2(X₀, X₁, X₂, X₄, X₅, X₉) → l6(X₀, X₁, X₂, X₄, 1, X₉) :|: X₂+1 ≤ X₀ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 5 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 4 {O(1)} for transition t₄₈: l5(X₀, X₁, X₂, X₄, X₅, X₉) → l5(X₀, X₁, X₂, X₄, X₅+1, X₉) :|: X₅ ≤ X₉ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 3 ∧ 1+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 3 ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 2 ∧ X₉ ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ X₅ ≤ 1+X₉ ∧ 3 ≤ X₂+X₉ ∧ X₂ ≤ 1+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₅ ≤ 2 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ X₅ ≤ 1+X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 2 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 3 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:66 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 1 {O(1)}
t₃₇: 1 {O(1)}
t₃₈: 4 {O(1)}
t₃₉: 1 {O(1)}
t₄₀: 6 {O(1)}
t₄₁: 1 {O(1)}
t₄₂: 6 {O(1)}
t₄₃: 4 {O(1)}
t₄₄: 9 {O(1)}
t₄₅: 4 {O(1)}
t₄₆: 4 {O(1)}
t₄₇: 4 {O(1)}
t₄₈: 4 {O(1)}
t₄₉: 3 {O(1)}
t₅₀: 9 {O(1)}
t₅₁: 4 {O(1)}

Costbounds

Overall costbound: 66 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 1 {O(1)}
t₃₇: 1 {O(1)}
t₃₈: 4 {O(1)}
t₃₉: 1 {O(1)}
t₄₀: 6 {O(1)}
t₄₁: 1 {O(1)}
t₄₂: 6 {O(1)}
t₄₃: 4 {O(1)}
t₄₄: 9 {O(1)}
t₄₅: 4 {O(1)}
t₄₆: 4 {O(1)}
t₄₇: 4 {O(1)}
t₄₈: 4 {O(1)}
t₄₉: 3 {O(1)}
t₅₀: 9 {O(1)}
t₅₁: 4 {O(1)}

Sizebounds

t₃₅, X₀: 1 {O(1)}
t₃₅, X₁: X₁ {O(n)}
t₃₅, X₂: X₂ {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₅, X₅: X₅ {O(n)}
t₃₅, X₉: X₉ {O(n)}
t₃₆, X₀: X₀ {O(n)}
t₃₆, X₁: 1 {O(1)}
t₃₆, X₂: X₂ {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₅: X₅ {O(n)}
t₃₆, X₉: X₉ {O(n)}
t₃₇, X₀: X₀ {O(n)}
t₃₇, X₁: 1 {O(1)}
t₃₇, X₂: X₂ {O(n)}
t₃₇, X₄: X₄ {O(n)}
t₃₇, X₅: X₅ {O(n)}
t₃₇, X₉: X₉ {O(n)}
t₃₈, X₀: X₀+2 {O(n)}
t₃₈, X₁: 2 {O(1)}
t₃₈, X₂: 3 {O(1)}
t₃₈, X₅: 1 {O(1)}
t₃₈, X₉: X₉+1 {O(n)}
t₃₉, X₀: 2⋅X₀+2 {O(n)}
t₃₉, X₁: 2 {O(1)}
t₃₉, X₂: X₂+2 {O(n)}
t₃₉, X₅: X₅+2 {O(n)}
t₃₉, X₉: X₉+1 {O(n)}
t₄₀, X₀: X₀+2 {O(n)}
t₄₀, X₁: 2 {O(1)}
t₄₀, X₂: 3 {O(1)}
t₄₀, X₅: 3 {O(1)}
t₄₀, X₉: 3⋅X₉+3 {O(n)}
t₄₁, X₀: 3 {O(1)}
t₄₁, X₁: 2 {O(1)}
t₄₁, X₂: 3 {O(1)}
t₄₁, X₅: 3 {O(1)}
t₄₁, X₉: 3⋅X₉+3 {O(n)}
t₄₂, X₀: X₀+2 {O(n)}
t₄₂, X₁: 2 {O(1)}
t₄₂, X₂: 3 {O(1)}
t₄₂, X₅: 1 {O(1)}
t₄₂, X₉: 3⋅X₉+3 {O(n)}
t₄₃, X₀: 2 {O(1)}
t₄₃, X₁: 2 {O(1)}
t₄₃, X₂: 3 {O(1)}
t₄₃, X₅: 1 {O(1)}
t₄₃, X₉: 3⋅X₉+3 {O(n)}
t₄₄, X₀: X₀+2 {O(n)}
t₄₄, X₁: 2 {O(1)}
t₄₄, X₂: 3 {O(1)}
t₄₄, X₅: 3 {O(1)}
t₄₄, X₉: X₉+1 {O(n)}
t₄₅, X₀: X₀+2 {O(n)}
t₄₅, X₁: 2 {O(1)}
t₄₅, X₂: 3 {O(1)}
t₄₅, X₅: 1 {O(1)}
t₄₅, X₉: X₉+1 {O(n)}
t₄₆, X₀: X₀+2 {O(n)}
t₄₆, X₁: 2 {O(1)}
t₄₆, X₂: 3 {O(1)}
t₄₆, X₅: 1 {O(1)}
t₄₆, X₉: X₉+1 {O(n)}
t₄₇, X₀: X₀+2 {O(n)}
t₄₇, X₁: 2 {O(1)}
t₄₇, X₂: 3 {O(1)}
t₄₇, X₄: 0 {O(1)}
t₄₇, X₅: 1 {O(1)}
t₄₇, X₉: X₉+1 {O(n)}
t₄₈, X₀: X₀+2 {O(n)}
t₄₈, X₁: 1 {O(1)}
t₄₈, X₂: 2 {O(1)}
t₄₈, X₅: 2 {O(1)}
t₄₈, X₉: 1 {O(1)}
t₄₉, X₀: X₀+2 {O(n)}
t₄₉, X₁: 2 {O(1)}
t₄₉, X₂: 2 {O(1)}
t₄₉, X₅: 2 {O(1)}
t₄₉, X₉: 1 {O(1)}
t₅₀, X₀: X₀+2 {O(n)}
t₅₀, X₁: 2 {O(1)}
t₅₀, X₂: 3 {O(1)}
t₅₀, X₅: 3 {O(1)}
t₅₀, X₉: 6⋅X₉+6 {O(n)}
t₅₁, X₀: X₀+2 {O(n)}
t₅₁, X₁: 1 {O(1)}
t₅₁, X₂: 2 {O(1)}
t₅₁, X₅: 1 {O(1)}
t₅₁, X₉: 1 {O(1)}