Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: K, L, M
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₆: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, 0, 0, X₆, X₇, X₈, X₉)
t₃₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(L, 0, X₃-2, X₃-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₃₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(L, 0, X₃-2, X₃-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₃₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₃₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₃₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, L) :|: X₂ ≤ 0
t₃₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, L) :|: 1 ≤ X₂ ∧ X₃ ≤ 0
t₂₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, 1, 1, X₆, X₇, X₈, X₉) :|: X₈ ≤ X₃ ∧ X₇ ≤ X₂ ∧ X₇+X₈ ≤ X₂+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(L, 0, X₃-2, X₃-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₅₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(L, 0, X₃-2, X₃-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₅₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, L) :|: X₂ ≤ 0
t₄₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, 1, 1, X₆, X₇, X₈, X₉) :|: X₈ ≤ X₃ ∧ X₇ ≤ X₂ ∧ X₇+X₈ ≤ X₂+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(L, 0, X₃-2, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉)
t₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(L, K, X₂-1, X₂-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: K+1 ≤ 0
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(L, K, X₂-1, X₂-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ K
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(L, 0, X₃-2, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉)
t₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(L, K, X₂-1, X₂-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: K+1 ≤ 0
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(L, K, X₂-1, X₂-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ K
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(L, 0, X₃-2, X₃-1, 0, X₅, 0, X₇, X₈, X₉) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(L, K, X₂-1, X₂-1, 0, X₅, 0, X₇, X₈, X₉) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(L, K, X₂-1, X₂-1, 0, X₅, 0, X₇, X₈, X₉) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(L, 0, X₃-2, X₃-1, 1, X₅, K, X₂, X₃, X₉) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(L, 0, X₃-2, X₃-1, 1, X₅, K, X₂, X₃, X₉) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(L, K, X₂-1, X₂-1, 1, X₅, M, X₂, X₃, X₉) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(L, K, X₂-1, X₂-1, 1, X₅, M, X₂, X₃, X₉) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(L, K, X₂-1, X₂-1, 1, X₅, M, X₂, X₃, X₉) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(L, K, X₂-1, X₂-1, 1, X₅, M, X₂, X₃, X₉) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, L) :|: X₂ ≤ 0
t₁₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, L) :|: 1 ≤ X₂ ∧ X₃ ≤ 0
t₂₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(L, 0, X₃-2, X₃-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(L, 0, X₃-2, X₃-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, L) :|: X₂ ≤ 0
t₂₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, L) :|: 1 ≤ X₂ ∧ X₃ ≤ 0
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, 1, 1, X₆, X₇, X₈, X₉) :|: X₈ ≤ X₃ ∧ X₇ ≤ X₂ ∧ X₇+X₈ ≤ X₂+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₃₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(L, 0, X₃-2, X₃-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(L, 0, X₃-2, X₃-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₃₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(L, K, X₂-1, X₂-1, 1, X₅, X₆, X₇, X₈, X₉) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, L) :|: X₂ ≤ 0
t₃₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, 1, 1, X₆, X₇, X₈, X₉) :|: X₈ ≤ X₃ ∧ X₇ ≤ X₂ ∧ X₇+X₈ ≤ X₂+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
Preprocessing
Cut unreachable locations [l1; l2; l3; l4] from the program graph
Cut unsatisfiable transition t₂₆: l6→l8
Eliminate variables {L,X₀,X₁,X₅,X₆,X₉} that do not contribute to the problem
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ for location l6
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location l7
Found invariant X₄ ≤ 0 ∧ 0 ≤ X₄ for location l5
Found invariant X₄ ≤ 1 ∧ 0 ≤ X₄ for location l8
Found invariant X₈ ≤ X₃ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ X₇ ≤ X₃ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l9
Cut unsatisfiable transition t₁₀₄: l6→l9
Cut unsatisfiable transition t₁₁₂: l7→l9
Cut unreachable locations [l9] from the program graph
Problem after Preprocessing
Start: l0
Program_Vars: X₂, X₃, X₄, X₇, X₈
Temp_Vars: K, M
Locations: l0, l5, l6, l7, l8
Transitions:
t₉₂: l0(X₂, X₃, X₄, X₇, X₈) → l5(X₂, X₃, 0, X₇, X₈)
t₉₃: l5(X₂, X₃, X₄, X₇, X₈) → l5(X₃-2, X₃-1, 0, X₇, X₈) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₉₄: l5(X₂, X₃, X₄, X₇, X₈) → l5(X₂-1, X₂-1, 0, X₇, X₈) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₉₅: l5(X₂, X₃, X₄, X₇, X₈) → l5(X₂-1, X₂-1, 0, X₇, X₈) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₀₀: l5(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₀₁: l5(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₉₆: l5(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₉₇: l5(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₉₈: l5(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₉₉: l5(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₀₂: l5(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₀₃: l5(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: 1 ≤ X₂ ∧ X₃ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₀₇: l6(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₁₀: l6(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₀₅: l6(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₀₆: l6(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₀₈: l6(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₀₉: l6(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₁₁: l6(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₁₅: l7(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₁₈: l7(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₁₃: l7(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₁₄: l7(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₁₆: l7(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₁₇: l7(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₁₉: l7(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
Analysing control-flow refined program
Found invariant X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ for location n_l5___1
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ for location l6
Found invariant X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location n_l5___2
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location l7
Found invariant X₄ ≤ 0 ∧ 0 ≤ X₄ for location l5
Found invariant X₄ ≤ 1 ∧ 0 ≤ X₄ for location l8
Found invariant X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ for location n_l5___3
MPRF for transition t₃₉₀: n_l5___1(X₂, X₃, X₄, X₇, X₈) → n_l5___1(X₃-2, X₃-1, 0, X₇, X₈) :|: 1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
2⋅X₂+X₃ {O(n)}
MPRF:
n_l5___1 [X₃ ]
n_l5___3 [X₂ ]
n_l5___2 [X₂ ]
MPRF for transition t₃₉₁: n_l5___1(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: 1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
6⋅X₂+X₃+2 {O(n)}
MPRF:
n_l5___1 [X₃ ]
n_l5___3 [X₂ ]
n_l5___2 [2⋅X₃+1-X₂ ]
MPRF for transition t₃₉₂: n_l5___1(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: 1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
6⋅X₂+X₃+2 {O(n)}
MPRF:
n_l5___1 [X₃ ]
n_l5___3 [X₂ ]
n_l5___2 [2⋅X₃+1-X₂ ]
MPRF for transition t₃₉₃: n_l5___2(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
2⋅X₂+X₃+2 {O(n)}
MPRF:
n_l5___1 [X₃ ]
n_l5___3 [X₂ ]
n_l5___2 [X₃+1 ]
MPRF for transition t₃₉₄: n_l5___2(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
2⋅X₂+X₃+2 {O(n)}
MPRF:
n_l5___1 [X₃ ]
n_l5___3 [X₂ ]
n_l5___2 [X₃+1 ]
MPRF for transition t₃₉₅: n_l5___2(X₂, X₃, X₄, X₇, X₈) → n_l5___3(X₃-2, X₃-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
2⋅X₂+X₃+2 {O(n)}
MPRF:
n_l5___1 [X₂ ]
n_l5___3 [X₂ ]
n_l5___2 [X₂+1 ]
MPRF for transition t₃₉₆: n_l5___3(X₂, X₃, X₄, X₇, X₈) → n_l5___1(X₃-2, X₃-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ of depth 1:
new bound:
2⋅X₂+X₃+1 {O(n)}
MPRF:
n_l5___1 [X₃-2 ]
n_l5___3 [X₃+1 ]
n_l5___2 [X₂ ]
MPRF for transition t₃₉₇: n_l5___3(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ of depth 1:
new bound:
2⋅X₂+X₃+2 {O(n)}
MPRF:
n_l5___1 [X₃-2 ]
n_l5___3 [X₂+2 ]
n_l5___2 [X₂ ]
MPRF for transition t₃₉₈: n_l5___3(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ of depth 1:
new bound:
2⋅X₂+X₃+2 {O(n)}
MPRF:
n_l5___1 [X₃-2 ]
n_l5___3 [X₂+2 ]
n_l5___2 [X₂ ]
CFR: Improvement to new bound with the following program:
new bound:
26⋅X₂+9⋅X₃+15 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₂, X₃, X₄, X₇, X₈
Temp_Vars: K, M
Locations: l0, l5, l6, l7, l8, n_l5___1, n_l5___2, n_l5___3
Transitions:
t₉₂: l0(X₂, X₃, X₄, X₇, X₈) → l5(X₂, X₃, 0, X₇, X₈)
t₁₀₀: l5(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₀₁: l5(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₉₆: l5(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₉₇: l5(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₉₈: l5(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₉₉: l5(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₀₂: l5(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₀₃: l5(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: 1 ≤ X₂ ∧ X₃ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₃₉₉: l5(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₄₀₀: l5(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₄₀₁: l5(X₂, X₃, X₄, X₇, X₈) → n_l5___3(X₃-2, X₃-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₀₇: l6(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₁₀: l6(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₀₅: l6(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₀₆: l6(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₀₈: l6(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₀₉: l6(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₁₁: l6(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₁₁₅: l7(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₁₈: l7(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₁₃: l7(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₁₄: l7(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₁₆: l7(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₁₇: l7(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₁₉: l7(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₃₅: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₃₈: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₅₆: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₅₉: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₇₇: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₈₀: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₄₁: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₄₄: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₄₇: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₅₀: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₆₂: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₆₅: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₆₈: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₇₁: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₈₃: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₈₆: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₈₉: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₉₂: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₅₃: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₇₄: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₉₅: n_l5___1(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₃₉₀: n_l5___1(X₂, X₃, X₄, X₇, X₈) → n_l5___1(X₃-2, X₃-1, 0, X₇, X₈) :|: 1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₃₉₁: n_l5___1(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: 1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₃₉₂: n_l5___1(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: 1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₃₆: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₃₉: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₅₇: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₆₀: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₇₈: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₈₁: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₄₂: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₄₅: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₄₈: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₅₁: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₆₃: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₆₆: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₆₉: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₇₂: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₈₄: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₈₇: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₉₀: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₉₃: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₅₄: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₇₅: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₉₆: n_l5___2(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₃₉₃: n_l5___2(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₃₉₄: n_l5___2(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₃₉₅: n_l5___2(X₂, X₃, X₄, X₇, X₈) → n_l5___3(X₃-2, X₃-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₄₃₇: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₄₀: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₅₈: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₆₁: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₇₉: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₈₂: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₄₃: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₄₆: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₄₉: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₅₂: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₆₄: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₆₇: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₇₀: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₇₃: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₈₅: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₈₈: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ K+1 ≤ 0 ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₉₁: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ M+1 ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₉₄: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ K ∧ 1 ≤ M ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₅₅: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₇₆: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₄₉₇: n_l5___3(X₂, X₃, X₄, X₇, X₈) → l8(X₂, X₃, X₄, X₇, X₈) :|: X₂ ≤ 0 ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₃₉₆: n_l5___3(X₂, X₃, X₄, X₇, X₈) → n_l5___1(X₃-2, X₃-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₃₉₇: n_l5___3(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
t₃₉₈: n_l5___3(X₂, X₃, X₄, X₇, X₈) → n_l5___2(X₂-1, X₂-1, 0, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂
MPRF for transition t₁₀₅: l6(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ of depth 1:
new bound:
1700⋅X₃+3412⋅X₂+20 {O(n)}
MPRF:
l7 [X₂ ]
l6 [X₃+1 ]
MPRF for transition t₁₀₆: l6(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ of depth 1:
new bound:
1700⋅X₃+3412⋅X₂+20 {O(n)}
MPRF:
l7 [X₂ ]
l6 [X₃+1 ]
MPRF for transition t₁₀₇: l6(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ of depth 1:
new bound:
1700⋅X₃+3412⋅X₂+20 {O(n)}
MPRF:
l7 [X₂ ]
l6 [X₃+1 ]
MPRF for transition t₁₀₈: l6(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ of depth 1:
new bound:
1700⋅X₃+3412⋅X₂+20 {O(n)}
MPRF:
l7 [X₂ ]
l6 [X₃+1 ]
MPRF for transition t₁₀₉: l6(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ of depth 1:
new bound:
1700⋅X₃+3412⋅X₂+20 {O(n)}
MPRF:
l7 [X₂ ]
l6 [X₃+1 ]
MPRF for transition t₁₁₀: l6(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 2+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ of depth 1:
new bound:
1700⋅X₃+3412⋅X₂+20 {O(n)}
MPRF:
l7 [X₂ ]
l6 [X₃+1 ]
MPRF for transition t₁₁₃: l7(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
1012⋅X₂+506⋅X₃+40 {O(n)}
MPRF:
l7 [X₂+1 ]
l6 [X₂ ]
MPRF for transition t₁₁₄: l7(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
1012⋅X₂+506⋅X₃+40 {O(n)}
MPRF:
l7 [X₂+1 ]
l6 [X₂ ]
MPRF for transition t₁₁₅: l7(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₇, X₈) :|: X₂+1 ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
1012⋅X₂+506⋅X₃+40 {O(n)}
MPRF:
l7 [X₃+1 ]
l6 [X₂ ]
MPRF for transition t₁₁₆: l7(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ K+1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
1012⋅X₂+506⋅X₃+40 {O(n)}
MPRF:
l7 [X₂+1 ]
l6 [X₂ ]
MPRF for transition t₁₁₇: l7(X₂, X₃, X₄, X₇, X₈) → l7(X₂-1, X₂-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ K ∧ 1 ≤ X₂+X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
1012⋅X₂+506⋅X₃+40 {O(n)}
MPRF:
l7 [X₂+1 ]
l6 [X₂ ]
MPRF for transition t₁₁₈: l7(X₂, X₃, X₄, X₇, X₈) → l6(X₃-2, X₃-1, 1, X₇, X₈) :|: X₃+1 ≤ X₈ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
1012⋅X₂+506⋅X₃+20 {O(n)}
MPRF:
l7 [X₃ ]
l6 [X₂-1 ]
All Bounds
Timebounds
Overall timebound:13245⋅X₃+26570⋅X₂+432 {O(n)}
t₉₂: 1 {O(1)}
t₉₆: 1 {O(1)}
t₉₇: 1 {O(1)}
t₉₈: 1 {O(1)}
t₉₉: 1 {O(1)}
t₁₀₀: 1 {O(1)}
t₁₀₁: 1 {O(1)}
t₁₀₂: 1 {O(1)}
t₁₀₃: 1 {O(1)}
t₃₉₉: 1 {O(1)}
t₄₀₀: 1 {O(1)}
t₄₀₁: 1 {O(1)}
t₁₀₅: 1700⋅X₃+3412⋅X₂+20 {O(n)}
t₁₀₆: 1700⋅X₃+3412⋅X₂+20 {O(n)}
t₁₀₇: 1700⋅X₃+3412⋅X₂+20 {O(n)}
t₁₀₈: 1700⋅X₃+3412⋅X₂+20 {O(n)}
t₁₀₉: 1700⋅X₃+3412⋅X₂+20 {O(n)}
t₁₁₀: 1700⋅X₃+3412⋅X₂+20 {O(n)}
t₁₁₁: 1 {O(1)}
t₁₁₃: 1012⋅X₂+506⋅X₃+40 {O(n)}
t₁₁₄: 1012⋅X₂+506⋅X₃+40 {O(n)}
t₁₁₅: 1012⋅X₂+506⋅X₃+40 {O(n)}
t₁₁₆: 1012⋅X₂+506⋅X₃+40 {O(n)}
t₁₁₇: 1012⋅X₂+506⋅X₃+40 {O(n)}
t₁₁₈: 1012⋅X₂+506⋅X₃+20 {O(n)}
t₁₁₉: 1 {O(1)}
t₃₉₀: 2⋅X₂+X₃ {O(n)}
t₃₉₁: 6⋅X₂+X₃+2 {O(n)}
t₃₉₂: 6⋅X₂+X₃+2 {O(n)}
t₄₃₅: 1 {O(1)}
t₄₃₈: 1 {O(1)}
t₄₄₁: 1 {O(1)}
t₄₄₄: 1 {O(1)}
t₄₄₇: 1 {O(1)}
t₄₅₀: 1 {O(1)}
t₄₅₃: 1 {O(1)}
t₄₅₆: 1 {O(1)}
t₄₅₉: 1 {O(1)}
t₄₆₂: 1 {O(1)}
t₄₆₅: 1 {O(1)}
t₄₆₈: 1 {O(1)}
t₄₇₁: 1 {O(1)}
t₄₇₄: 1 {O(1)}
t₄₇₇: 1 {O(1)}
t₄₈₀: 1 {O(1)}
t₄₈₃: 1 {O(1)}
t₄₈₆: 1 {O(1)}
t₄₈₉: 1 {O(1)}
t₄₉₂: 1 {O(1)}
t₄₉₅: 1 {O(1)}
t₃₉₃: 2⋅X₂+X₃+2 {O(n)}
t₃₉₄: 2⋅X₂+X₃+2 {O(n)}
t₃₉₅: 2⋅X₂+X₃+2 {O(n)}
t₄₃₆: 1 {O(1)}
t₄₃₉: 1 {O(1)}
t₄₄₂: 1 {O(1)}
t₄₄₅: 1 {O(1)}
t₄₄₈: 1 {O(1)}
t₄₅₁: 1 {O(1)}
t₄₅₄: 1 {O(1)}
t₄₅₇: 1 {O(1)}
t₄₆₀: 1 {O(1)}
t₄₆₃: 1 {O(1)}
t₄₆₆: 1 {O(1)}
t₄₆₉: 1 {O(1)}
t₄₇₂: 1 {O(1)}
t₄₇₅: 1 {O(1)}
t₄₇₈: 1 {O(1)}
t₄₈₁: 1 {O(1)}
t₄₈₄: 1 {O(1)}
t₄₈₇: 1 {O(1)}
t₄₉₀: 1 {O(1)}
t₄₉₃: 1 {O(1)}
t₄₉₆: 1 {O(1)}
t₃₉₆: 2⋅X₂+X₃+1 {O(n)}
t₃₉₇: 2⋅X₂+X₃+2 {O(n)}
t₃₉₈: 2⋅X₂+X₃+2 {O(n)}
t₄₃₇: 1 {O(1)}
t₄₄₀: 1 {O(1)}
t₄₄₃: 1 {O(1)}
t₄₄₆: 1 {O(1)}
t₄₄₉: 1 {O(1)}
t₄₅₂: 1 {O(1)}
t₄₅₅: 1 {O(1)}
t₄₅₈: 1 {O(1)}
t₄₆₁: 1 {O(1)}
t₄₆₄: 1 {O(1)}
t₄₆₇: 1 {O(1)}
t₄₇₀: 1 {O(1)}
t₄₇₃: 1 {O(1)}
t₄₇₆: 1 {O(1)}
t₄₇₉: 1 {O(1)}
t₄₈₂: 1 {O(1)}
t₄₈₅: 1 {O(1)}
t₄₈₈: 1 {O(1)}
t₄₉₁: 1 {O(1)}
t₄₉₄: 1 {O(1)}
t₄₉₇: 1 {O(1)}
Costbounds
Overall costbound: 13245⋅X₃+26570⋅X₂+432 {O(n)}
t₉₂: 1 {O(1)}
t₉₆: 1 {O(1)}
t₉₇: 1 {O(1)}
t₉₈: 1 {O(1)}
t₉₉: 1 {O(1)}
t₁₀₀: 1 {O(1)}
t₁₀₁: 1 {O(1)}
t₁₀₂: 1 {O(1)}
t₁₀₃: 1 {O(1)}
t₃₉₉: 1 {O(1)}
t₄₀₀: 1 {O(1)}
t₄₀₁: 1 {O(1)}
t₁₀₅: 1700⋅X₃+3412⋅X₂+20 {O(n)}
t₁₀₆: 1700⋅X₃+3412⋅X₂+20 {O(n)}
t₁₀₇: 1700⋅X₃+3412⋅X₂+20 {O(n)}
t₁₀₈: 1700⋅X₃+3412⋅X₂+20 {O(n)}
t₁₀₉: 1700⋅X₃+3412⋅X₂+20 {O(n)}
t₁₁₀: 1700⋅X₃+3412⋅X₂+20 {O(n)}
t₁₁₁: 1 {O(1)}
t₁₁₃: 1012⋅X₂+506⋅X₃+40 {O(n)}
t₁₁₄: 1012⋅X₂+506⋅X₃+40 {O(n)}
t₁₁₅: 1012⋅X₂+506⋅X₃+40 {O(n)}
t₁₁₆: 1012⋅X₂+506⋅X₃+40 {O(n)}
t₁₁₇: 1012⋅X₂+506⋅X₃+40 {O(n)}
t₁₁₈: 1012⋅X₂+506⋅X₃+20 {O(n)}
t₁₁₉: 1 {O(1)}
t₃₉₀: 2⋅X₂+X₃ {O(n)}
t₃₉₁: 6⋅X₂+X₃+2 {O(n)}
t₃₉₂: 6⋅X₂+X₃+2 {O(n)}
t₄₃₅: 1 {O(1)}
t₄₃₈: 1 {O(1)}
t₄₄₁: 1 {O(1)}
t₄₄₄: 1 {O(1)}
t₄₄₇: 1 {O(1)}
t₄₅₀: 1 {O(1)}
t₄₅₃: 1 {O(1)}
t₄₅₆: 1 {O(1)}
t₄₅₉: 1 {O(1)}
t₄₆₂: 1 {O(1)}
t₄₆₅: 1 {O(1)}
t₄₆₈: 1 {O(1)}
t₄₇₁: 1 {O(1)}
t₄₇₄: 1 {O(1)}
t₄₇₇: 1 {O(1)}
t₄₈₀: 1 {O(1)}
t₄₈₃: 1 {O(1)}
t₄₈₆: 1 {O(1)}
t₄₈₉: 1 {O(1)}
t₄₉₂: 1 {O(1)}
t₄₉₅: 1 {O(1)}
t₃₉₃: 2⋅X₂+X₃+2 {O(n)}
t₃₉₄: 2⋅X₂+X₃+2 {O(n)}
t₃₉₅: 2⋅X₂+X₃+2 {O(n)}
t₄₃₆: 1 {O(1)}
t₄₃₉: 1 {O(1)}
t₄₄₂: 1 {O(1)}
t₄₄₅: 1 {O(1)}
t₄₄₈: 1 {O(1)}
t₄₅₁: 1 {O(1)}
t₄₅₄: 1 {O(1)}
t₄₅₇: 1 {O(1)}
t₄₆₀: 1 {O(1)}
t₄₆₃: 1 {O(1)}
t₄₆₆: 1 {O(1)}
t₄₆₉: 1 {O(1)}
t₄₇₂: 1 {O(1)}
t₄₇₅: 1 {O(1)}
t₄₇₈: 1 {O(1)}
t₄₈₁: 1 {O(1)}
t₄₈₄: 1 {O(1)}
t₄₈₇: 1 {O(1)}
t₄₉₀: 1 {O(1)}
t₄₉₃: 1 {O(1)}
t₄₉₆: 1 {O(1)}
t₃₉₆: 2⋅X₂+X₃+1 {O(n)}
t₃₉₇: 2⋅X₂+X₃+2 {O(n)}
t₃₉₈: 2⋅X₂+X₃+2 {O(n)}
t₄₃₇: 1 {O(1)}
t₄₄₀: 1 {O(1)}
t₄₄₃: 1 {O(1)}
t₄₄₆: 1 {O(1)}
t₄₄₉: 1 {O(1)}
t₄₅₂: 1 {O(1)}
t₄₅₅: 1 {O(1)}
t₄₅₈: 1 {O(1)}
t₄₆₁: 1 {O(1)}
t₄₆₄: 1 {O(1)}
t₄₆₇: 1 {O(1)}
t₄₇₀: 1 {O(1)}
t₄₇₃: 1 {O(1)}
t₄₇₆: 1 {O(1)}
t₄₇₉: 1 {O(1)}
t₄₈₂: 1 {O(1)}
t₄₈₅: 1 {O(1)}
t₄₈₈: 1 {O(1)}
t₄₉₁: 1 {O(1)}
t₄₉₄: 1 {O(1)}
t₄₉₇: 1 {O(1)}
Sizebounds
t₉₂, X₂: X₂ {O(n)}
t₉₂, X₃: X₃ {O(n)}
t₉₂, X₄: 0 {O(1)}
t₉₂, X₇: X₇ {O(n)}
t₉₂, X₈: X₈ {O(n)}
t₉₆, X₂: X₂ {O(n)}
t₉₆, X₃: X₂ {O(n)}
t₉₆, X₄: 1 {O(1)}
t₉₆, X₇: X₂ {O(n)}
t₉₆, X₈: X₃ {O(n)}
t₉₇, X₂: X₂ {O(n)}
t₉₇, X₃: X₂ {O(n)}
t₉₇, X₄: 1 {O(1)}
t₉₇, X₇: X₂ {O(n)}
t₉₇, X₈: X₃ {O(n)}
t₉₈, X₂: X₂ {O(n)}
t₉₈, X₃: X₂ {O(n)}
t₉₈, X₄: 1 {O(1)}
t₉₈, X₇: X₂ {O(n)}
t₉₈, X₈: X₃ {O(n)}
t₉₉, X₂: X₂ {O(n)}
t₉₉, X₃: X₂ {O(n)}
t₉₉, X₄: 1 {O(1)}
t₉₉, X₇: X₂ {O(n)}
t₉₉, X₈: X₃ {O(n)}
t₁₀₀, X₂: X₃ {O(n)}
t₁₀₀, X₃: X₃ {O(n)}
t₁₀₀, X₄: 1 {O(1)}
t₁₀₀, X₇: X₂ {O(n)}
t₁₀₀, X₈: X₃ {O(n)}
t₁₀₁, X₂: X₃ {O(n)}
t₁₀₁, X₃: X₃ {O(n)}
t₁₀₁, X₄: 1 {O(1)}
t₁₀₁, X₇: X₂ {O(n)}
t₁₀₁, X₈: X₃ {O(n)}
t₁₀₂, X₂: X₂ {O(n)}
t₁₀₂, X₃: X₃ {O(n)}
t₁₀₂, X₄: 0 {O(1)}
t₁₀₂, X₇: X₇ {O(n)}
t₁₀₂, X₈: X₈ {O(n)}
t₁₀₃, X₂: X₂ {O(n)}
t₁₀₃, X₃: X₃ {O(n)}
t₁₀₃, X₄: 0 {O(1)}
t₁₀₃, X₇: X₇ {O(n)}
t₁₀₃, X₈: X₈ {O(n)}
t₃₉₉, X₂: X₂ {O(n)}
t₃₉₉, X₃: X₂ {O(n)}
t₃₉₉, X₄: 0 {O(1)}
t₃₉₉, X₇: X₇ {O(n)}
t₃₉₉, X₈: X₈ {O(n)}
t₄₀₀, X₂: X₂ {O(n)}
t₄₀₀, X₃: X₂ {O(n)}
t₄₀₀, X₄: 0 {O(1)}
t₄₀₀, X₇: X₇ {O(n)}
t₄₀₀, X₈: X₈ {O(n)}
t₄₀₁, X₂: X₃ {O(n)}
t₄₀₁, X₃: X₃ {O(n)}
t₄₀₁, X₄: 0 {O(1)}
t₄₀₁, X₇: X₇ {O(n)}
t₄₀₁, X₈: X₈ {O(n)}
t₁₀₅, X₂: 1626⋅X₃+3036⋅X₂ {O(n)}
t₁₀₅, X₃: 3434⋅X₃+6408⋅X₂ {O(n)}
t₁₀₅, X₄: 1 {O(1)}
t₁₀₅, X₇: 1512⋅X₃+3150⋅X₂ {O(n)}
t₁₀₅, X₈: 12384⋅X₃+24624⋅X₂ {O(n)}
t₁₀₆, X₂: 1626⋅X₃+3036⋅X₂ {O(n)}
t₁₀₆, X₃: 3434⋅X₃+6408⋅X₂ {O(n)}
t₁₀₆, X₄: 1 {O(1)}
t₁₀₆, X₇: 1512⋅X₃+3150⋅X₂ {O(n)}
t₁₀₆, X₈: 12384⋅X₃+24624⋅X₂ {O(n)}
t₁₀₇, X₂: 1626⋅X₃+3036⋅X₂ {O(n)}
t₁₀₇, X₃: 22526⋅X₃+41868⋅X₂ {O(n)}
t₁₀₇, X₄: 1 {O(1)}
t₁₀₇, X₇: 1512⋅X₃+3150⋅X₂ {O(n)}
t₁₀₇, X₈: 12384⋅X₃+24624⋅X₂ {O(n)}
t₁₀₈, X₂: 6⋅X₃ {O(n)}
t₁₀₈, X₃: 14⋅X₃ {O(n)}
t₁₀₈, X₄: 1 {O(1)}
t₁₀₈, X₇: 6⋅X₂ {O(n)}
t₁₀₈, X₈: 6⋅X₃ {O(n)}
t₁₀₉, X₂: 6⋅X₃ {O(n)}
t₁₀₉, X₃: 14⋅X₃ {O(n)}
t₁₀₉, X₄: 1 {O(1)}
t₁₀₉, X₇: 6⋅X₂ {O(n)}
t₁₀₉, X₈: 6⋅X₃ {O(n)}
t₁₁₀, X₂: 6⋅X₃ {O(n)}
t₁₁₀, X₃: 78⋅X₃ {O(n)}
t₁₁₀, X₄: 1 {O(1)}
t₁₁₀, X₇: 6⋅X₂ {O(n)}
t₁₁₀, X₈: 6⋅X₃ {O(n)}
t₁₁₁, X₂: 1 {O(1)}
t₁₁₁, X₃: 1 {O(1)}
t₁₁₁, X₄: 1 {O(1)}
t₁₁₁, X₇: 3192⋅X₃+6650⋅X₂ {O(n)}
t₁₁₁, X₈: 26144⋅X₃+51984⋅X₂ {O(n)}
t₁₁₃, X₂: 1626⋅X₃+3036⋅X₂ {O(n)}
t₁₁₃, X₃: 12820⋅X₂+6864⋅X₃ {O(n)}
t₁₁₃, X₄: 1 {O(1)}
t₁₁₃, X₇: 1512⋅X₃+3150⋅X₂ {O(n)}
t₁₁₃, X₈: 12384⋅X₃+24624⋅X₂ {O(n)}
t₁₁₄, X₂: 1626⋅X₃+3036⋅X₂ {O(n)}
t₁₁₄, X₃: 12820⋅X₂+6864⋅X₃ {O(n)}
t₁₁₄, X₄: 1 {O(1)}
t₁₁₄, X₇: 1512⋅X₃+3150⋅X₂ {O(n)}
t₁₁₄, X₈: 12384⋅X₃+24624⋅X₂ {O(n)}
t₁₁₅, X₂: 1626⋅X₃+3036⋅X₂ {O(n)}
t₁₁₅, X₃: 21008⋅X₃+39132⋅X₂ {O(n)}
t₁₁₅, X₄: 1 {O(1)}
t₁₁₅, X₇: 1512⋅X₃+3150⋅X₂ {O(n)}
t₁₁₅, X₈: 12384⋅X₃+24624⋅X₂ {O(n)}
t₁₁₆, X₂: 6⋅X₃ {O(n)}
t₁₁₆, X₃: 24⋅X₃ {O(n)}
t₁₁₆, X₄: 1 {O(1)}
t₁₁₆, X₇: 6⋅X₂ {O(n)}
t₁₁₆, X₈: 6⋅X₃ {O(n)}
t₁₁₇, X₂: 6⋅X₃ {O(n)}
t₁₁₇, X₃: 24⋅X₃ {O(n)}
t₁₁₇, X₄: 1 {O(1)}
t₁₁₇, X₇: 6⋅X₂ {O(n)}
t₁₁₇, X₈: 6⋅X₃ {O(n)}
t₁₁₈, X₂: 6⋅X₃ {O(n)}
t₁₁₈, X₃: 76⋅X₃ {O(n)}
t₁₁₈, X₄: 1 {O(1)}
t₁₁₈, X₇: 6⋅X₂ {O(n)}
t₁₁₈, X₈: 6⋅X₃ {O(n)}
t₁₁₉, X₂: 0 {O(1)}
t₁₁₉, X₃: 0 {O(1)}
t₁₁₉, X₄: 1 {O(1)}
t₁₁₉, X₇: 13300⋅X₂+6384⋅X₃ {O(n)}
t₁₁₉, X₈: 103968⋅X₂+52288⋅X₃ {O(n)}
t₃₉₀, X₂: 3⋅X₃+6⋅X₂ {O(n)}
t₃₉₀, X₃: 114⋅X₂+57⋅X₃ {O(n)}
t₃₉₀, X₄: 0 {O(1)}
t₃₉₀, X₇: 9⋅X₇ {O(n)}
t₃₉₀, X₈: 9⋅X₈ {O(n)}
t₃₉₁, X₂: 3⋅X₃+6⋅X₂ {O(n)}
t₃₉₁, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₃₉₁, X₄: 0 {O(1)}
t₃₉₁, X₇: 9⋅X₇ {O(n)}
t₃₉₁, X₈: 9⋅X₈ {O(n)}
t₃₉₂, X₂: 3⋅X₃+6⋅X₂ {O(n)}
t₃₉₂, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₃₉₂, X₄: 0 {O(1)}
t₃₉₂, X₇: 9⋅X₇ {O(n)}
t₃₉₂, X₈: 9⋅X₈ {O(n)}
t₄₃₅, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₃₅, X₃: 114⋅X₃+228⋅X₂ {O(n)}
t₄₃₅, X₄: 1 {O(1)}
t₄₃₅, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₃₅, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₃₈, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₃₈, X₃: 114⋅X₃+228⋅X₂ {O(n)}
t₄₃₈, X₄: 1 {O(1)}
t₄₃₈, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₃₈, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₄₁, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₄₁, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₄₄₁, X₄: 1 {O(1)}
t₄₄₁, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₄₁, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₄₄, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₄₄, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₄₄₄, X₄: 1 {O(1)}
t₄₄₄, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₄₄, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₄₇, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₄₇, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₄₄₇, X₄: 1 {O(1)}
t₄₄₇, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₄₇, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₅₀, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₅₀, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₄₅₀, X₄: 1 {O(1)}
t₄₅₀, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₅₀, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₅₃, X₂: 0 {O(1)}
t₄₅₃, X₃: 1 {O(1)}
t₄₅₃, X₄: 0 {O(1)}
t₄₅₃, X₇: 18⋅X₇ {O(n)}
t₄₅₃, X₈: 18⋅X₈ {O(n)}
t₄₅₆, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₅₆, X₃: 114⋅X₃+228⋅X₂ {O(n)}
t₄₅₆, X₄: 1 {O(1)}
t₄₅₆, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₅₆, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₅₉, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₅₉, X₃: 114⋅X₃+228⋅X₂ {O(n)}
t₄₅₉, X₄: 1 {O(1)}
t₄₅₉, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₅₉, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₆₂, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₆₂, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₄₆₂, X₄: 1 {O(1)}
t₄₆₂, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₆₂, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₆₅, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₆₅, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₄₆₅, X₄: 1 {O(1)}
t₄₆₅, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₆₅, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₆₈, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₆₈, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₄₆₈, X₄: 1 {O(1)}
t₄₆₈, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₆₈, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₇₁, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₇₁, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₄₇₁, X₄: 1 {O(1)}
t₄₇₁, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₇₁, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₇₄, X₂: 0 {O(1)}
t₄₇₄, X₃: 1 {O(1)}
t₄₇₄, X₄: 0 {O(1)}
t₄₇₄, X₇: 18⋅X₇ {O(n)}
t₄₇₄, X₈: 18⋅X₈ {O(n)}
t₄₇₇, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₇₇, X₃: 114⋅X₃+228⋅X₂ {O(n)}
t₄₇₇, X₄: 1 {O(1)}
t₄₇₇, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₇₇, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₈₀, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₈₀, X₃: 114⋅X₃+228⋅X₂ {O(n)}
t₄₈₀, X₄: 1 {O(1)}
t₄₈₀, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₈₀, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₈₃, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₈₃, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₄₈₃, X₄: 1 {O(1)}
t₄₈₃, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₈₃, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₈₆, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₈₆, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₄₈₆, X₄: 1 {O(1)}
t₄₈₆, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₈₆, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₈₉, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₈₉, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₄₈₉, X₄: 1 {O(1)}
t₄₈₉, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₈₉, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₉₂, X₂: 12⋅X₂+6⋅X₃ {O(n)}
t₄₉₂, X₃: 12⋅X₂+6⋅X₃ {O(n)}
t₄₉₂, X₄: 1 {O(1)}
t₄₉₂, X₇: 12⋅X₂+6⋅X₃ {O(n)}
t₄₉₂, X₈: 114⋅X₃+228⋅X₂ {O(n)}
t₄₉₅, X₂: 0 {O(1)}
t₄₉₅, X₃: 1 {O(1)}
t₄₉₅, X₄: 0 {O(1)}
t₄₉₅, X₇: 18⋅X₇ {O(n)}
t₄₉₅, X₈: 18⋅X₈ {O(n)}
t₃₉₃, X₂: 3⋅X₃+6⋅X₂ {O(n)}
t₃₉₃, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₃₉₃, X₄: 0 {O(1)}
t₃₉₃, X₇: 9⋅X₇ {O(n)}
t₃₉₃, X₈: 9⋅X₈ {O(n)}
t₃₉₄, X₂: 3⋅X₃+6⋅X₂ {O(n)}
t₃₉₄, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₃₉₄, X₄: 0 {O(1)}
t₃₉₄, X₇: 9⋅X₇ {O(n)}
t₃₉₄, X₈: 9⋅X₈ {O(n)}
t₃₉₅, X₂: 3⋅X₃+6⋅X₂ {O(n)}
t₃₉₅, X₃: 114⋅X₂+56⋅X₃ {O(n)}
t₃₉₅, X₄: 0 {O(1)}
t₃₉₅, X₇: 9⋅X₇ {O(n)}
t₃₉₅, X₈: 9⋅X₈ {O(n)}
t₄₃₆, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₃₆, X₃: 114⋅X₂+56⋅X₃ {O(n)}
t₄₃₆, X₄: 1 {O(1)}
t₄₃₆, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₃₆, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₃₉, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₃₉, X₃: 114⋅X₂+56⋅X₃ {O(n)}
t₄₃₉, X₄: 1 {O(1)}
t₄₃₉, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₃₉, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₄₂, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₄₂, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₄₄₂, X₄: 1 {O(1)}
t₄₄₂, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₄₂, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₄₅, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₄₅, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₄₄₅, X₄: 1 {O(1)}
t₄₄₅, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₄₅, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₄₈, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₄₈, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₄₄₈, X₄: 1 {O(1)}
t₄₄₈, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₄₈, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₅₁, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₅₁, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₄₅₁, X₄: 1 {O(1)}
t₄₅₁, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₅₁, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₅₄, X₂: 0 {O(1)}
t₄₅₄, X₃: 0 {O(1)}
t₄₅₄, X₄: 0 {O(1)}
t₄₅₄, X₇: 56⋅X₇ {O(n)}
t₄₅₄, X₈: 56⋅X₈ {O(n)}
t₄₅₇, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₅₇, X₃: 114⋅X₂+56⋅X₃ {O(n)}
t₄₅₇, X₄: 1 {O(1)}
t₄₅₇, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₅₇, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₆₀, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₆₀, X₃: 114⋅X₂+56⋅X₃ {O(n)}
t₄₆₀, X₄: 1 {O(1)}
t₄₆₀, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₆₀, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₆₃, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₆₃, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₄₆₃, X₄: 1 {O(1)}
t₄₆₃, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₆₃, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₆₆, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₆₆, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₄₆₆, X₄: 1 {O(1)}
t₄₆₆, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₆₆, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₆₉, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₆₉, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₄₆₉, X₄: 1 {O(1)}
t₄₆₉, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₆₉, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₇₂, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₇₂, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₄₇₂, X₄: 1 {O(1)}
t₄₇₂, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₇₂, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₇₅, X₂: 0 {O(1)}
t₄₇₅, X₃: 0 {O(1)}
t₄₇₅, X₄: 0 {O(1)}
t₄₇₅, X₇: 56⋅X₇ {O(n)}
t₄₇₅, X₈: 56⋅X₈ {O(n)}
t₄₇₈, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₇₈, X₃: 114⋅X₂+56⋅X₃ {O(n)}
t₄₇₈, X₄: 1 {O(1)}
t₄₇₈, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₇₈, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₈₁, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₈₁, X₃: 114⋅X₂+56⋅X₃ {O(n)}
t₄₈₁, X₄: 1 {O(1)}
t₄₈₁, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₈₁, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₈₄, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₈₄, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₄₈₄, X₄: 1 {O(1)}
t₄₈₄, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₈₄, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₈₇, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₈₇, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₄₈₇, X₄: 1 {O(1)}
t₄₈₇, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₈₇, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₉₀, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₉₀, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₄₉₀, X₄: 1 {O(1)}
t₄₉₀, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₉₀, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₉₃, X₂: 18⋅X₃+38⋅X₂ {O(n)}
t₄₉₃, X₃: 18⋅X₃+38⋅X₂ {O(n)}
t₄₉₃, X₄: 1 {O(1)}
t₄₉₃, X₇: 18⋅X₃+38⋅X₂ {O(n)}
t₄₉₃, X₈: 114⋅X₂+56⋅X₃ {O(n)}
t₄₉₆, X₂: 0 {O(1)}
t₄₉₆, X₃: 0 {O(1)}
t₄₉₆, X₄: 0 {O(1)}
t₄₉₆, X₇: 56⋅X₇ {O(n)}
t₄₉₆, X₈: 56⋅X₈ {O(n)}
t₃₉₆, X₂: 3⋅X₃+6⋅X₂ {O(n)}
t₃₉₆, X₃: 114⋅X₂+57⋅X₃ {O(n)}
t₃₉₆, X₄: 0 {O(1)}
t₃₉₆, X₇: 9⋅X₇ {O(n)}
t₃₉₆, X₈: 9⋅X₈ {O(n)}
t₃₉₇, X₂: 3⋅X₃+6⋅X₂ {O(n)}
t₃₉₇, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₃₉₇, X₄: 0 {O(1)}
t₃₉₇, X₇: 9⋅X₇ {O(n)}
t₃₉₇, X₈: 9⋅X₈ {O(n)}
t₃₉₈, X₂: 3⋅X₃+6⋅X₂ {O(n)}
t₃₉₈, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₃₉₈, X₄: 0 {O(1)}
t₃₉₈, X₇: 9⋅X₇ {O(n)}
t₃₉₈, X₈: 9⋅X₈ {O(n)}
t₄₃₇, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₃₇, X₃: 114⋅X₂+57⋅X₃ {O(n)}
t₄₃₇, X₄: 1 {O(1)}
t₄₃₇, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₃₇, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₄₀, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₄₀, X₃: 114⋅X₂+57⋅X₃ {O(n)}
t₄₄₀, X₄: 1 {O(1)}
t₄₄₀, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₄₀, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₄₃, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₄₃, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₄₄₃, X₄: 1 {O(1)}
t₄₄₃, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₄₃, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₄₆, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₄₆, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₄₄₆, X₄: 1 {O(1)}
t₄₄₆, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₄₆, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₄₉, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₄₉, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₄₄₉, X₄: 1 {O(1)}
t₄₄₉, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₄₉, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₅₂, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₅₂, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₄₅₂, X₄: 1 {O(1)}
t₄₅₂, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₅₂, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₅₅, X₂: 1 {O(1)}
t₄₅₅, X₃: 1 {O(1)}
t₄₅₅, X₄: 0 {O(1)}
t₄₅₅, X₇: 10⋅X₇ {O(n)}
t₄₅₅, X₈: 10⋅X₈ {O(n)}
t₄₅₈, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₅₈, X₃: 114⋅X₂+57⋅X₃ {O(n)}
t₄₅₈, X₄: 1 {O(1)}
t₄₅₈, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₅₈, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₆₁, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₆₁, X₃: 114⋅X₂+57⋅X₃ {O(n)}
t₄₆₁, X₄: 1 {O(1)}
t₄₆₁, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₆₁, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₆₄, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₆₄, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₄₆₄, X₄: 1 {O(1)}
t₄₆₄, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₆₄, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₆₇, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₆₇, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₄₆₇, X₄: 1 {O(1)}
t₄₆₇, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₆₇, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₇₀, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₇₀, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₄₇₀, X₄: 1 {O(1)}
t₄₇₀, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₇₀, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₇₃, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₇₃, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₄₇₃, X₄: 1 {O(1)}
t₄₇₃, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₇₃, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₇₆, X₂: 1 {O(1)}
t₄₇₆, X₃: 1 {O(1)}
t₄₇₆, X₄: 0 {O(1)}
t₄₇₆, X₇: 10⋅X₇ {O(n)}
t₄₇₆, X₈: 10⋅X₈ {O(n)}
t₄₇₉, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₇₉, X₃: 114⋅X₂+57⋅X₃ {O(n)}
t₄₇₉, X₄: 1 {O(1)}
t₄₇₉, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₇₉, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₈₂, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₈₂, X₃: 114⋅X₂+57⋅X₃ {O(n)}
t₄₈₂, X₄: 1 {O(1)}
t₄₈₂, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₈₂, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₈₅, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₈₅, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₄₈₅, X₄: 1 {O(1)}
t₄₈₅, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₈₅, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₈₈, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₈₈, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₄₈₈, X₄: 1 {O(1)}
t₄₈₈, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₈₈, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₉₁, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₉₁, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₄₉₁, X₄: 1 {O(1)}
t₄₉₁, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₉₁, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₉₄, X₂: 4⋅X₃+6⋅X₂ {O(n)}
t₄₉₄, X₃: 4⋅X₃+6⋅X₂ {O(n)}
t₄₉₄, X₄: 1 {O(1)}
t₄₉₄, X₇: 4⋅X₃+6⋅X₂ {O(n)}
t₄₉₄, X₈: 114⋅X₂+57⋅X₃ {O(n)}
t₄₉₇, X₂: 1 {O(1)}
t₄₉₇, X₃: 1 {O(1)}
t₄₉₇, X₄: 0 {O(1)}
t₄₉₇, X₇: 10⋅X₇ {O(n)}
t₄₉₇, X₈: 10⋅X₈ {O(n)}