Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E, F, G
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃)
t₅₂: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+1)
t₄₃: l10(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁+1
t₄₂: l10(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀
t₅₈: l11(X₀, X₁, X₂, X₃) → l19(X₀, X₁, X₂, X₃)
t₄₁: l12(X₀, X₁, X₂, X₃) → l10(X₀, 0, X₂, X₃)
t₆: l13(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃) :|: 1 ≤ X₂
t₅: l13(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₇: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₈: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E
t₉: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: X₂+2 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₁₀: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₁: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E
t₁₂: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂+2 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₁₃: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₄: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₅: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₁₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₇: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₈: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₁₉: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₀: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₂₁: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ F ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₂: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₂₃: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₂₄: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₅: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₂₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E
t₂₇: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ X₂+2 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₈: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ F ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₂₉: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ X₂+2 ≤ 0 ∧ G ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂+1 ≤ 2⋅G ∧ 2⋅G ≤ 2+X₂
t₃₀: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ X₂+2 ≤ 0 ∧ G ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅G ∧ 2⋅G ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₁: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₂: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₃₃: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ F ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₄: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₅: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: X₂+2 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₃₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: X₂+2 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₇: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ F ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₃₈: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: X₂+2 ≤ 0 ∧ F ≤ 0 ∧ G ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅G ∧ 2⋅G ≤ 2+X₂
t₃₉: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: X₂+2 ≤ 0 ∧ F ≤ 0 ∧ G ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅G ∧ 2⋅G ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₄₀: l16(X₀, X₁, X₂, X₃) → l17(X₀, X₁+1, X₂, X₃)
t₄: l17(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁
t₃: l17(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₁, X₃) :|: 1+X₁ ≤ X₀
t₂: l18(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2
t₁: l18(X₀, X₁, X₂, X₃) → l17(X₀, 1, X₂, X₃) :|: 3 ≤ X₀
t₅₃: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+2)
t₄₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀
t₄₈: l3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁+4+2⋅X₂ ≤ X₀
t₄₉: l3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁
t₅₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₅₁: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₅₄: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃)
t₅₅: l5(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₀, X₃)
t₅₆: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₃, X₃)
t₄₅: l7(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁+3+2⋅X₂ ≤ X₀
t₄₆: l7(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁
t₅₇: l8(X₀, X₁, X₂, X₃) → l10(X₀, X₁+1, X₂, X₃)
t₄₄: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, 0, X₃)

Preprocessing

Cut unsatisfiable transition t₇: l14→l15

Cut unsatisfiable transition t₉: l14→l15

Cut unsatisfiable transition t₁₀: l14→l16

Cut unsatisfiable transition t₁₂: l14→l16

Cut unsatisfiable transition t₁₄: l15→l13

Cut unsatisfiable transition t₁₅: l15→l13

Cut unsatisfiable transition t₁₆: l15→l13

Cut unsatisfiable transition t₁₇: l15→l13

Cut unsatisfiable transition t₁₈: l15→l13

Cut unsatisfiable transition t₁₉: l15→l13

Cut unsatisfiable transition t₂₀: l15→l13

Cut unsatisfiable transition t₂₁: l15→l13

Cut unsatisfiable transition t₂₂: l15→l13

Cut unsatisfiable transition t₂₃: l15→l13

Cut unsatisfiable transition t₂₄: l15→l13

Cut unsatisfiable transition t₂₅: l15→l13

Cut unsatisfiable transition t₂₇: l15→l13

Cut unsatisfiable transition t₂₈: l15→l13

Cut unsatisfiable transition t₂₉: l15→l13

Cut unsatisfiable transition t₃₀: l15→l13

Cut unsatisfiable transition t₃₁: l15→l13

Cut unsatisfiable transition t₃₂: l15→l13

Cut unsatisfiable transition t₃₃: l15→l13

Cut unsatisfiable transition t₃₄: l15→l13

Cut unsatisfiable transition t₃₅: l15→l13

Cut unsatisfiable transition t₃₆: l15→l13

Cut unsatisfiable transition t₃₇: l15→l13

Cut unsatisfiable transition t₃₈: l15→l13

Cut unsatisfiable transition t₄₉: l3→l4

Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l2

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l6

Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l15

Found invariant X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location l12

Found invariant X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l7

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5

Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l13

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l8

Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l1

Found invariant 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10

Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l16

Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l4

Found invariant 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l9

Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l3

Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l14

Cut unsatisfiable transition t₁₃: l15→l13

Cut unsatisfiable transition t₃₉: l15→l13

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E, F, G
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃)
t₅₂: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+1) :|: 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₃: l10(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₂: l10(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₈: l11(X₀, X₁, X₂, X₃) → l19(X₀, X₁, X₂, X₃)
t₄₁: l12(X₀, X₁, X₂, X₃) → l10(X₀, 0, X₂, X₃) :|: X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀
t₆: l13(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃) :|: 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅: l13(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₈: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₁₁: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₀: l16(X₀, X₁, X₂, X₃) → l17(X₀, X₁+1, X₂, X₃) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄: l17(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₃: l17(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₁, X₃) :|: 1+X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂: l18(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2
t₁: l18(X₀, X₁, X₂, X₃) → l17(X₀, 1, X₂, X₃) :|: 3 ≤ X₀
t₅₃: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+2) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
t₄₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₈: l3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
t₅₁: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
t₅₄: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₅: l5(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₀, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₆: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₃, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₅: l7(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₆: l7(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₇: l8(X₀, X₁, X₂, X₃) → l10(X₀, X₁+1, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₄: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, 0, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀

MPRF for transition t₅: l13(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l14 [X₀-X₁ ]
l15 [X₀-X₁ ]
l16 [X₀-X₁-1 ]
l17 [X₀-X₁ ]
l13 [X₀-X₁ ]

MPRF for transition t₁₁: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l14 [X₀-X₁ ]
l15 [X₀-X₁ ]
l16 [X₀-X₁-1 ]
l17 [X₀-X₁ ]
l13 [X₀-X₁ ]

MPRF for transition t₄₀: l16(X₀, X₁, X₂, X₃) → l17(X₀, X₁+1, X₂, X₃) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l14 [X₀-X₁ ]
l15 [X₀-X₁ ]
l16 [X₀-X₁ ]
l17 [X₀-X₁ ]
l13 [X₀-X₁ ]

MPRF for transition t₃: l17(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₁, X₃) :|: 1+X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

MPRF:

l14 [X₀-X₁ ]
l15 [X₀-X₁ ]
l16 [X₀-X₁ ]
l17 [X₀+1-X₁ ]
l13 [X₀-X₁ ]

MPRF for transition t₆: l13(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃) :|: 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀+11⋅X₀+14 {O(n^2)}

MPRF:

l14 [X₂ ]
l15 [X₂ ]
l13 [2⋅X₂+1 ]
l16 [0 ]
l17 [0 ]

MPRF for transition t₈: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀+10⋅X₀+12 {O(n^2)}

MPRF:

l14 [X₂+1 ]
l15 [X₂-1 ]
l13 [2⋅X₂ ]
l16 [X₂ ]
l17 [0 ]

MPRF for transition t₂₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀+11⋅X₀+14 {O(n^2)}

MPRF:

l14 [2⋅X₂+1 ]
l15 [2⋅X₂+1 ]
l13 [2⋅X₂+1 ]
l16 [2⋅X₂ ]
l17 [0 ]

Analysing control-flow refined program

Cut unsatisfiable transition t₄: l17→l12

Cut unsatisfiable transition t₃₅₆: n_l13___8→l16

Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l2

Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l14___7

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l6

Found invariant 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l14___3

Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l17___1

Found invariant 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l13___4

Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l15___6

Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location l12

Found invariant 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l15___2

Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l17___9

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l7

Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l16___5

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5

Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l13___8

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l8

Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l1

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10

Found invariant X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l16

Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l4

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l9

Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l3

MPRF for transition t₃₃₈: l16(X₀, X₁, X₂, X₃) → n_l17___9(X₀, X₁+1, X₂, X₃) :|: X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l16 [X₀-X₁ ]
n_l14___3 [X₀-X₁ ]
n_l14___7 [X₀-X₁ ]
n_l15___2 [X₀-X₁ ]
n_l15___6 [X₀-X₂ ]
n_l13___4 [X₀-X₁ ]
n_l16___5 [X₀-X₁ ]
n_l17___1 [X₀-X₁ ]
n_l17___9 [X₀-X₁ ]
n_l13___8 [X₀-X₂ ]

MPRF for transition t₃₅₅: n_l13___4(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

MPRF:

l16 [X₀-X₁ ]
n_l14___3 [X₀+1-X₁ ]
n_l14___7 [X₀+1-X₂ ]
n_l15___2 [X₀+1-X₁ ]
n_l15___6 [X₀+X₁+1-2⋅X₂ ]
n_l13___4 [X₀+1-X₁ ]
n_l16___5 [X₀+1-X₁ ]
n_l17___1 [X₀+2-X₁ ]
n_l17___9 [X₀+1-X₁ ]
n_l13___8 [X₀+1-X₂ ]

MPRF for transition t₃₃₁: n_l13___8(X₀, X₁, X₂, X₃) → n_l14___7(X₀, X₁, X₂, X₃) :|: 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

MPRF:

l16 [X₀-X₁ ]
n_l14___3 [X₀-X₁ ]
n_l14___7 [X₀-X₂ ]
n_l15___2 [X₀-X₁ ]
n_l15___6 [X₀-X₁ ]
n_l13___4 [X₀-X₁ ]
n_l16___5 [X₀-X₁ ]
n_l17___1 [X₀+1-X₁ ]
n_l17___9 [X₀+1-X₁ ]
n_l13___8 [X₀+1-X₁ ]

MPRF for transition t₃₃₃: n_l14___3(X₀, X₁, X₂, X₃) → n_l16___5(X₀, X₁, Arg2_P, X₃) :|: 1+X₁ ≤ X₀ ∧ 1+2⋅X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ Arg2_P ∧ 3 ≤ X₀ ∧ Arg2_P ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l16 [X₀-X₁ ]
n_l14___3 [X₀-X₁ ]
n_l14___7 [X₀-X₁ ]
n_l15___2 [X₀-X₁ ]
n_l15___6 [X₀-X₁ ]
n_l13___4 [X₀-X₁ ]
n_l16___5 [X₀-X₁-1 ]
n_l17___1 [X₀-X₁ ]
n_l17___9 [X₀+1-X₁ ]
n_l13___8 [X₀-X₂ ]

MPRF for transition t₃₃₄: n_l14___7(X₀, X₁, X₂, X₃) → n_l15___6(X₀, X₁, Arg2_P, X₃) :|: 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ Arg2_P ∧ 3 ≤ X₀ ∧ Arg2_P ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l16 [X₀-X₁-1 ]
n_l14___3 [X₀-X₁-1 ]
n_l14___7 [X₀-X₂ ]
n_l15___2 [X₀-X₁-1 ]
n_l15___6 [X₀-X₂-1 ]
n_l13___4 [X₀-X₁-1 ]
n_l16___5 [X₀-X₁-1 ]
n_l17___1 [X₀-X₁ ]
n_l17___9 [X₀-X₁ ]
n_l13___8 [X₀-X₁ ]

MPRF for transition t₃₃₅: n_l14___7(X₀, X₁, X₂, X₃) → n_l16___5(X₀, X₁, Arg2_P, X₃) :|: 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ Arg2_P ∧ 3 ≤ X₀ ∧ Arg2_P ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l16 [X₀-X₁-1 ]
n_l14___3 [X₀-X₁-1 ]
n_l14___7 [X₀-X₂ ]
n_l15___2 [X₀-X₁-1 ]
n_l15___6 [X₀-X₁-1 ]
n_l13___4 [X₀-X₁-1 ]
n_l16___5 [X₀-X₁-1 ]
n_l17___1 [X₀-X₁ ]
n_l17___9 [X₀-X₁ ]
n_l13___8 [X₀-X₁ ]

MPRF for transition t₃₃₇: n_l15___6(X₀, X₁, X₂, X₃) → n_l13___4(X₀, X₁, Arg2_P, X₃) :|: 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 2+2⋅Arg2_P ∧ 1+2⋅Arg2_P ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l16 [X₀-X₁-1 ]
n_l14___3 [X₀-X₁-1 ]
n_l14___7 [X₀-X₂ ]
n_l15___2 [X₀-X₁-1 ]
n_l15___6 [X₀-X₂ ]
n_l13___4 [X₀-X₁-1 ]
n_l16___5 [X₀-X₁-1 ]
n_l17___1 [X₀-X₁ ]
n_l17___9 [X₀-X₁ ]
n_l13___8 [X₀-X₂ ]

MPRF for transition t₃₃₉: n_l16___5(X₀, X₁, X₂, X₃) → n_l17___1(X₀, X₁+1, X₂, X₃) :|: X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l16 [X₀-X₁ ]
n_l14___3 [X₀-X₁ ]
n_l14___7 [X₀-X₁ ]
n_l15___2 [X₀-X₁ ]
n_l15___6 [X₀-X₁ ]
n_l13___4 [X₀-X₁ ]
n_l16___5 [X₀-X₁ ]
n_l17___1 [X₀-X₁ ]
n_l17___9 [X₀+1-X₁ ]
n_l13___8 [X₀-X₁ ]

MPRF for transition t₃₄₀: n_l17___1(X₀, X₁, X₂, X₃) → n_l13___8(X₀, X₁, X₁, X₃) :|: 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l16 [X₀-X₁ ]
n_l14___3 [X₀-X₁ ]
n_l14___7 [X₀-X₂ ]
n_l15___2 [X₀-X₁ ]
n_l15___6 [X₀-X₁ ]
n_l13___4 [X₀-X₁ ]
n_l16___5 [X₀-X₁ ]
n_l17___1 [X₀+1-X₁ ]
n_l17___9 [X₀+1-X₁ ]
n_l13___8 [X₀-X₂ ]

MPRF for transition t₃₄₂: n_l17___9(X₀, X₁, X₂, X₃) → n_l13___8(X₀, X₁, X₁, X₃) :|: X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l16 [X₀-X₁ ]
n_l14___3 [X₀-X₁ ]
n_l14___7 [X₀-X₁ ]
n_l15___2 [X₀-X₁ ]
n_l15___6 [X₀-X₂ ]
n_l13___4 [X₀-X₁ ]
n_l16___5 [X₀-X₁ ]
n_l17___1 [X₀-X₁ ]
n_l17___9 [X₀+1-X₁ ]
n_l13___8 [X₀-X₁ ]

MPRF for transition t₃₃₀: n_l13___4(X₀, X₁, X₂, X₃) → n_l14___3(X₀, X₁, X₂, X₃) :|: 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 1+2⋅X₂ ≤ X₁ ∧ 0 ≤ 1+2⋅X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

4⋅X₀⋅X₀+12⋅X₀+10 {O(n^2)}

MPRF:

n_l17___9 [0 ]
l16 [0 ]
n_l13___8 [X₂+1 ]
n_l14___3 [2⋅X₂ ]
n_l14___7 [X₂+1 ]
n_l15___2 [2⋅X₂ ]
n_l15___6 [X₂+1 ]
n_l13___4 [2⋅X₂+2 ]
n_l16___5 [0 ]
n_l17___1 [0 ]

MPRF for transition t₃₃₂: n_l14___3(X₀, X₁, X₂, X₃) → n_l15___2(X₀, X₁, Arg2_P, X₃) :|: 1+X₁ ≤ X₀ ∧ 1+2⋅X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ Arg2_P ∧ 3 ≤ X₀ ∧ Arg2_P ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:

new bound:

8⋅X₀⋅X₀+20⋅X₀+14 {O(n^2)}

MPRF:

n_l17___9 [X₁-2 ]
l16 [X₁-1 ]
n_l13___8 [2⋅X₂ ]
n_l14___3 [X₁+X₂-1 ]
n_l14___7 [2⋅X₂ ]
n_l15___2 [X₁+X₂-2 ]
n_l15___6 [X₁+X₂ ]
n_l13___4 [X₁+2⋅X₂-1 ]
n_l16___5 [X₁ ]
n_l17___1 [X₁-X₂ ]

MPRF for transition t₃₃₆: n_l15___2(X₀, X₁, X₂, X₃) → n_l13___4(X₀, X₁, Arg2_P, X₃) :|: 1+X₁ ≤ X₀ ∧ 1+2⋅X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 2+2⋅Arg2_P ∧ 1+2⋅Arg2_P ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:

new bound:

4⋅X₀⋅X₀+10⋅X₀+7 {O(n^2)}

MPRF:

n_l17___9 [0 ]
l16 [0 ]
n_l13___8 [X₂ ]
n_l14___3 [X₂ ]
n_l14___7 [X₁ ]
n_l15___2 [X₂ ]
n_l15___6 [X₂ ]
n_l13___4 [2⋅X₂ ]
n_l16___5 [0 ]
n_l17___1 [0 ]

CFR did not improve the program. Rolling back

MPRF for transition t₄₂: l10(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀ {O(n)}

MPRF:

l1 [X₀-X₁-1 ]
l4 [X₀-X₁-1 ]
l2 [X₀-X₁-1 ]
l5 [X₀-X₁-1 ]
l6 [X₀-X₁-1 ]
l3 [X₀-X₁-1 ]
l8 [X₀-X₁-1 ]
l10 [X₀-X₁ ]
l9 [X₀-X₁-1 ]
l7 [X₀-X₁-1 ]

MPRF for transition t₄₆: l7(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l1 [X₀-X₁-1 ]
l4 [X₀-X₁-1 ]
l2 [X₀-X₁-1 ]
l5 [X₀-X₁-1 ]
l6 [X₀-X₁-1 ]
l3 [X₀-X₁-1 ]
l8 [X₀-X₁-2 ]
l10 [X₀-X₁-1 ]
l9 [X₀-X₁-1 ]
l7 [X₀-X₁-1 ]

MPRF for transition t₅₇: l8(X₀, X₁, X₂, X₃) → l10(X₀, X₁+1, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀ {O(n)}

MPRF:

l1 [X₀-X₁ ]
l4 [X₀-X₁ ]
l2 [X₀-X₁ ]
l5 [X₀-X₁ ]
l6 [X₀-X₁ ]
l3 [X₀-X₁ ]
l8 [X₀-X₁ ]
l10 [X₀-X₁ ]
l9 [X₀-X₁ ]
l7 [X₀-X₁ ]

MPRF for transition t₄₄: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, 0, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l1 [X₀-X₁-2 ]
l4 [X₀-X₁-2 ]
l2 [X₀-X₁-2 ]
l5 [X₀-X₁-2 ]
l6 [X₀-X₁-2 ]
l3 [X₀-X₁-2 ]
l8 [X₀-X₁-2 ]
l10 [X₀-X₁-1 ]
l9 [X₀-X₁-1 ]
l7 [X₀-X₁-2 ]

MPRF for transition t₅₂: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+1) :|: 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+4⋅X₀+5 {O(n^2)}

MPRF:

l9 [-X₂ ]
l1 [X₀-X₂-2 ]
l4 [X₀-X₂-2 ]
l2 [X₀-X₂-2 ]
l5 [X₀-X₂-3 ]
l6 [X₀-X₃-2 ]
l3 [X₀-X₂-2 ]
l7 [X₀-X₂-2 ]
l8 [X₀-X₂-2 ]
l10 [-X₂ ]

MPRF for transition t₅₃: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+2) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+4⋅X₀+4 {O(n^2)}

MPRF:

l9 [X₀-X₂ ]
l1 [X₀-X₂ ]
l4 [X₀+1-X₂ ]
l2 [X₀+1-X₂ ]
l5 [X₀-X₂ ]
l6 [X₀+1-X₃ ]
l3 [X₀+1-X₂ ]
l7 [X₀+1-X₂ ]
l8 [X₀-X₂ ]
l10 [X₀-X₂ ]

MPRF for transition t₄₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+3⋅X₀+3 {O(n^2)}

MPRF:

l9 [X₀-X₂ ]
l1 [X₀-X₂-1 ]
l4 [X₀-X₂ ]
l2 [X₀-X₂ ]
l5 [X₀-X₂-1 ]
l6 [X₀-X₂-1 ]
l3 [X₀-X₂ ]
l7 [X₀-X₂ ]
l8 [X₀-X₂ ]
l10 [X₀-X₂ ]

MPRF for transition t₄₈: l3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+3⋅X₀+3 {O(n^2)}

MPRF:

l9 [X₀-X₂ ]
l1 [X₀-X₂-1 ]
l4 [X₀-X₂-1 ]
l2 [X₀-X₂-1 ]
l5 [X₀-X₂-1 ]
l6 [X₀-X₃ ]
l3 [X₀-X₂ ]
l7 [X₀-X₂ ]
l8 [X₀-X₂ ]
l10 [X₀-X₂ ]

MPRF for transition t₅₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+4⋅X₀+4 {O(n^2)}

MPRF:

l9 [X₀-X₂ ]
l1 [X₀-X₂ ]
l4 [X₀+1-X₂ ]
l2 [X₀-X₂ ]
l5 [X₀-X₂ ]
l6 [X₀+1-X₃ ]
l3 [X₀+1-X₂ ]
l7 [X₀+1-X₂ ]
l8 [X₀-X₂ ]
l10 [X₀-X₂ ]

MPRF for transition t₅₁: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+5⋅X₀+6 {O(n^2)}

MPRF:

l9 [-X₂ ]
l1 [X₀-X₂-4 ]
l4 [X₀-X₂-3 ]
l2 [X₀-X₂-4 ]
l5 [X₀-X₂-4 ]
l6 [X₀-X₂-4 ]
l3 [X₀-X₂-3 ]
l7 [X₀-X₂-3 ]
l8 [X₀-X₂-3 ]
l10 [-X₂ ]

MPRF for transition t₅₄: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+3⋅X₀+4 {O(n^2)}

MPRF:

l9 [-X₂ ]
l1 [X₀+1-X₂ ]
l4 [X₀+1-X₂ ]
l2 [X₀+1-X₂ ]
l5 [X₀+1-X₂ ]
l6 [X₀-X₂ ]
l3 [X₀+1-X₂ ]
l7 [X₀+1-X₂ ]
l8 [X₀-X₂ ]
l10 [-X₂ ]

MPRF for transition t₅₅: l5(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₀, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+4⋅X₀+4 {O(n^2)}

MPRF:

l9 [X₀-X₂ ]
l1 [X₀+1-X₂ ]
l4 [X₀+1-X₂ ]
l2 [X₀+1-X₂ ]
l5 [X₀+1-X₂ ]
l6 [X₀-X₂ ]
l3 [X₀+1-X₂ ]
l7 [X₀+1-X₂ ]
l8 [X₀-X₂ ]
l10 [X₀-X₂ ]

MPRF for transition t₅₆: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₃, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+3⋅X₀+3 {O(n^2)}

MPRF:

l9 [X₀-X₂ ]
l1 [X₀-X₂ ]
l4 [X₀-X₂ ]
l2 [X₀-X₂ ]
l5 [X₀-X₂ ]
l6 [X₀-X₂ ]
l3 [X₀-X₂ ]
l7 [X₀-X₂ ]
l8 [X₀-X₂ ]
l10 [X₀-X₂ ]

MPRF for transition t₄₅: l7(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+6⋅X₀+8 {O(n^2)}

MPRF:

l9 [X₀-2⋅X₂ ]
l1 [X₀-2⋅X₂ ]
l4 [X₀-2⋅X₂ ]
l2 [X₀-2⋅X₂ ]
l5 [X₀-2⋅X₂ ]
l6 [X₀+2-2⋅X₃ ]
l3 [X₀-2⋅X₂ ]
l7 [X₀+2-2⋅X₂ ]
l8 [X₀-2⋅X₂ ]
l10 [X₀-2⋅X₂ ]

Analysing control-flow refined program

Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l6___3

Found invariant X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l4___15

Found invariant 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 8 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l6___13

Found invariant X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___18

Found invariant X₃ ≤ X₂ ∧ 4+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 4+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 6 ≤ X₀+X₂ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l3___17

Found invariant 2+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___19

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l2___5

Found invariant X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location l12

Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l5___4

Found invariant 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10

Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l14

Found invariant X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l1___12

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___24

Found invariant 3+X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 9 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l6___9

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l1___6

Found invariant X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l6___1

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l4___22

Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l15

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l5___14

Found invariant X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l2___11

Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 9 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l5___10

Found invariant X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l5___2

Found invariant 4 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 3+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l5___8

Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l5___21

Found invariant X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l7

Found invariant 4+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l1___16

Found invariant 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l1___23

Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l13

Found invariant X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l8

Found invariant 2+X₃ ≤ X₀ ∧ 4 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 3+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l6___7

Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l16

Found invariant 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l9

Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l6___20

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₃₁: l7(X₀, X₁, X₂, X₃) → n_l3___24(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀ ∧ 2+X₁ ≤ X₀ ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₀₆: n_l3___24(X₀, X₁, X₂, X₃) → n_l1___23(X₀, X₁, Arg2_P, X₃) :|: 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 3+X₁ ≤ X₀ ∧ X₀ ≤ X₁+2⋅X₂+3 ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ X₀ ≤ X₁+2⋅Arg2_P+3 ∧ 3+X₁+2⋅Arg2_P ≤ X₀ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₀₇: n_l3___24(X₀, X₁, X₂, X₃) → n_l4___22(X₀, X₁, X₂, X₃) :|: 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₁+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₁₀: n_l4___22(X₀, X₁, X₂, X₃) → n_l1___6(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₁₁: n_l4___22(X₀, X₁, X₂, X₃) → n_l2___5(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₀₀: n_l1___23(X₀, X₁, X₂, X₃) → n_l5___21(X₀, X₁, X₂, 2⋅X₂+1) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+3 ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₀₁: n_l1___6(X₀, X₁, X₂, X₃) → n_l5___4(X₀, X₁, X₂, 2⋅X₂+1) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₀₃: n_l2___5(X₀, X₁, X₂, X₃) → n_l5___2(X₀, X₁, X₂, 2⋅X₂+2) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₁₆: n_l5___2(X₀, X₁, X₂, X₃) → n_l6___1(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₁₇: n_l5___2(X₀, X₁, X₂, X₃) → n_l7___19(X₀, X₁, X₀, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₁₈: n_l5___21(X₀, X₁, X₂, X₃) → n_l6___20(X₀, X₁, X₂, X₃) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+3 ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₁₉: n_l5___21(X₀, X₁, X₂, X₃) → n_l7___19(X₀, X₁, X₀, X₃) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+3 ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₂₀: n_l5___4(X₀, X₁, X₂, X₃) → n_l6___3(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₂₁: n_l5___4(X₀, X₁, X₂, X₃) → n_l7___19(X₀, X₁, X₀, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₂₄: n_l6___1(X₀, X₁, X₂, X₃) → n_l7___18(X₀, X₁, X₃, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₂₆: n_l6___20(X₀, X₁, X₂, X₃) → n_l7___18(X₀, X₁, X₃, X₃) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+3 ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₆₂₇: n_l6___3(X₀, X₁, X₂, X₃) → n_l7___18(X₀, X₁, X₃, X₃) :|: 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

MPRF for transition t₅₉₈: n_l1___12(X₀, X₁, X₂, X₃) → n_l5___10(X₀, X₁, X₂, 2⋅X₂+1) :|: 4+X₁+2⋅X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ of depth 1:

new bound:

21⋅X₀⋅X₀+37⋅X₀+16 {O(n^2)}

MPRF:

l10 [4⋅X₀+4-2⋅X₁ ]
l9 [4⋅X₀+4-2⋅X₁ ]
l7 [4⋅X₀+4-2⋅X₁ ]
n_l1___16 [5⋅X₀-2⋅X₁-X₃ ]
n_l1___23 [4⋅X₀+4-2⋅X₁ ]
n_l3___24 [4⋅X₀+4-2⋅X₁ ]
n_l1___12 [5⋅X₀-2⋅X₁-X₂ ]
n_l4___15 [5⋅X₀-2⋅X₁-X₂ ]
n_l2___11 [5⋅X₀-2⋅X₁-X₃ ]
n_l1___6 [4⋅X₀+4-2⋅X₁ ]
n_l4___22 [4⋅X₀+4-2⋅X₁ ]
n_l2___5 [4⋅X₀+4-2⋅X₁ ]
n_l5___10 [5⋅X₀-2⋅X₁-X₂-1 ]
n_l5___14 [4⋅X₀+4-X₁ ]
n_l6___1 [4⋅X₀+4-2⋅X₁ ]
n_l5___2 [4⋅X₀+4-2⋅X₁ ]
n_l6___20 [X₀+X₁+13 ]
n_l5___21 [2⋅X₁+16 ]
n_l6___3 [4⋅X₀+4-2⋅X₁ ]
n_l5___4 [4⋅X₀+4-2⋅X₁ ]
n_l5___8 [5⋅X₀+X₃-2⋅X₁-3⋅X₂-2 ]
n_l6___13 [X₀+2⋅X₁+3⋅X₃+10 ]
n_l6___7 [5⋅X₀-2⋅X₁-X₃ ]
n_l6___9 [5⋅X₀-2⋅X₁-X₂-1 ]
n_l3___17 [5⋅X₀-2⋅X₁-X₃ ]
n_l7___18 [5⋅X₀+X₂-2⋅X₁-2⋅X₃ ]
n_l7___19 [4⋅X₂+4-2⋅X₁ ]
l8 [4⋅X₀+2-2⋅X₁ ]

MPRF for transition t₅₉₉: n_l1___16(X₀, X₁, X₂, X₃) → n_l5___14(X₀, X₁, X₂, 2⋅X₂+1) :|: 0 ≤ X₁ ∧ 5+X₁ ≤ X₀ ∧ X₀ ≤ X₁+2⋅X₃+3 ∧ 3+X₁+2⋅X₃ ≤ X₀ ∧ X₀ ≤ X₁+2⋅X₂+3 ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 4+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ of depth 1:

new bound:

24⋅X₀⋅X₀+37⋅X₀+11 {O(n^2)}

MPRF:

l10 [2⋅X₀-4⋅X₁ ]
l9 [2⋅X₀-4⋅X₁ ]
l7 [2⋅X₀-4⋅X₁ ]
n_l1___16 [3⋅X₀+2-3⋅X₁ ]
n_l1___23 [6-2⋅X₁ ]
n_l3___24 [2⋅X₀-4⋅X₁ ]
n_l1___12 [4⋅X₀-4⋅X₁-2⋅X₃-5 ]
n_l4___15 [4⋅X₀-4⋅X₁-2⋅X₂-5 ]
n_l2___11 [4⋅X₀-4⋅X₁-2⋅X₃-7 ]
n_l1___6 [2⋅X₀-4⋅X₁ ]
n_l4___22 [2⋅X₀-4⋅X₁ ]
n_l2___5 [2⋅X₀-4⋅X₁ ]
n_l5___10 [4⋅X₀-4⋅X₁-2⋅X₂-5 ]
n_l5___14 [3⋅X₀+8⋅X₂+2-3⋅X₁-4⋅X₃ ]
n_l6___1 [2⋅X₀+2-4⋅X₁-X₃ ]
n_l5___2 [2⋅X₀-4⋅X₁ ]
n_l6___20 [X₀+3-3⋅X₁ ]
n_l5___21 [6-2⋅X₁ ]
n_l6___3 [2⋅X₀+1-4⋅X₁-X₃ ]
n_l5___4 [2⋅X₀+X₃-4⋅X₁-1 ]
n_l5___8 [4⋅X₀-4⋅X₁-2⋅X₂-7 ]
n_l6___13 [3⋅X₀+8⋅X₂+2-3⋅X₁-4⋅X₃ ]
n_l6___7 [4⋅X₀+2⋅X₂-4⋅X₁-2⋅X₃-3 ]
n_l6___9 [4⋅X₀+2⋅X₂-4⋅X₁-2⋅X₃-3 ]
n_l3___17 [4⋅X₀-4⋅X₁-2⋅X₃-1 ]
n_l7___18 [4⋅X₀-4⋅X₁-2⋅X₃-1 ]
n_l7___19 [4⋅X₀+X₃-4⋅X₁-2⋅X₂-4 ]
l8 [2⋅X₀-4⋅X₁-4 ]

MPRF for transition t₆₀₂: n_l2___11(X₀, X₁, X₂, X₃) → n_l5___8(X₀, X₁, X₂, 2⋅X₂+2) :|: 4+X₁+2⋅X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 4+X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ of depth 1:

new bound:

18⋅X₀⋅X₀+30⋅X₀+14 {O(n^2)}

MPRF:

l10 [X₀+3-3⋅X₁ ]
l9 [X₀+3-3⋅X₁ ]
l7 [X₀+3-3⋅X₁ ]
n_l1___16 [3⋅X₀+1-3⋅X₁-2⋅X₃ ]
n_l1___23 [5-2⋅X₁ ]
n_l3___24 [X₀+3-3⋅X₁ ]
n_l1___12 [3⋅X₀+1-3⋅X₁-2⋅X₃ ]
n_l4___15 [3⋅X₀+1-3⋅X₁-2⋅X₃ ]
n_l2___11 [3⋅X₀+1-3⋅X₁-2⋅X₂ ]
n_l1___6 [X₀+2-3⋅X₁ ]
n_l4___22 [X₀+3-3⋅X₁ ]
n_l2___5 [X₀+3-3⋅X₁ ]
n_l5___10 [3⋅X₀+X₃-3⋅X₁-4⋅X₂ ]
n_l5___14 [2⋅X₀+4-2⋅X₁ ]
n_l6___1 [X₀+3-3⋅X₁ ]
n_l5___2 [X₀+3-3⋅X₁ ]
n_l6___20 [X₀+2-3⋅X₁ ]
n_l5___21 [5-2⋅X₁ ]
n_l6___3 [X₀+3-3⋅X₁-X₃ ]
n_l5___4 [X₀+2-3⋅X₁ ]
n_l5___8 [3⋅X₀-3⋅X₁-2⋅X₂-5 ]
n_l6___13 [X₀+5-X₁ ]
n_l6___7 [3⋅X₀-3⋅X₁-2⋅X₂-5 ]
n_l6___9 [3⋅X₀+X₃-3⋅X₁-4⋅X₂ ]
n_l3___17 [3⋅X₀+1-3⋅X₁-2⋅X₃ ]
n_l7___18 [3⋅X₀+1-3⋅X₁-2⋅X₃ ]
n_l7___19 [2⋅X₂+X₃+1-X₀-3⋅X₁ ]
l8 [X₀+2-3⋅X₁ ]

MPRF for transition t₆₀₄: n_l3___17(X₀, X₁, X₂, X₃) → n_l1___16(X₀, X₁, Arg2_P, X₃) :|: 3+X₁+2⋅X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₁ ∧ 3+X₁ ≤ X₀ ∧ X₀ ≤ X₁+2⋅X₂+3 ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ X₀ ≤ X₁+2⋅Arg2_P+3 ∧ 3+X₁+2⋅Arg2_P ≤ X₀ ∧ X₃ ≤ X₂ ∧ 4+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 4+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 6 ≤ X₀+X₂ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ of depth 1:

new bound:

12⋅X₀⋅X₀+27⋅X₀+13 {O(n^2)}

MPRF:

l10 [2⋅X₀-X₁ ]
l9 [2⋅X₀-X₁ ]
l7 [2⋅X₀-X₁-1 ]
n_l1___16 [3⋅X₀-X₁-X₃-5 ]
n_l1___23 [2⋅X₀-X₁-1 ]
n_l3___24 [2⋅X₀-X₁-1 ]
n_l1___12 [3⋅X₀-X₁-X₃-4 ]
n_l4___15 [3⋅X₀-X₁-X₂-4 ]
n_l2___11 [3⋅X₀-X₁-X₃-4 ]
n_l1___6 [2⋅X₀-X₁-1 ]
n_l4___22 [2⋅X₀-X₁-1 ]
n_l2___5 [2⋅X₀-X₁-1 ]
n_l5___10 [3⋅X₀-X₁-X₂-4 ]
n_l5___14 [2⋅X₀-1 ]
n_l6___1 [2⋅X₀+X₃-X₁-3 ]
n_l5___2 [2⋅X₀+X₃-X₁-3 ]
n_l6___20 [X₀+2 ]
n_l5___21 [X₁+5 ]
n_l6___3 [2⋅X₀-X₁-1 ]
n_l5___4 [2⋅X₀-X₁-1 ]
n_l5___8 [3⋅X₀-X₁-X₂-4 ]
n_l6___13 [X₀+X₁+2⋅X₂+2 ]
n_l6___7 [3⋅X₀-X₁-X₃-3 ]
n_l6___9 [3⋅X₀-X₁-X₂-4 ]
n_l3___17 [3⋅X₀-X₁-X₂-4 ]
n_l7___18 [3⋅X₀-X₁-X₂-3 ]
n_l7___19 [X₀+X₂-X₁-1 ]
l8 [2⋅X₀-X₁-1 ]

MPRF for transition t₆₀₅: n_l3___17(X₀, X₁, X₂, X₃) → n_l4___15(X₀, X₁, X₂, X₃) :|: 3+X₁+2⋅X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 4+X₁+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₂ ∧ 4+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 4+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 6 ≤ X₀+X₂ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ of depth 1:

new bound:

12⋅X₀⋅X₀+31⋅X₀+18 {O(n^2)}

MPRF:

l10 [X₀-2⋅X₁ ]
l9 [X₀-2⋅X₁ ]
l7 [X₀-2⋅X₁ ]
n_l1___16 [2⋅X₀-2⋅X₁-X₃-3 ]
n_l1___23 [3-X₁ ]
n_l3___24 [X₀-2⋅X₁ ]
n_l1___12 [2⋅X₀-2⋅X₁-X₂-4 ]
n_l4___15 [2⋅X₀-2⋅X₁-X₃-4 ]
n_l2___11 [2⋅X₀-2⋅X₁-X₃-4 ]
n_l1___6 [X₀-2⋅X₁ ]
n_l4___22 [X₀-2⋅X₁ ]
n_l2___5 [X₀-2⋅X₁ ]
n_l5___10 [2⋅X₀+X₃-2⋅X₁-3⋅X₂-5 ]
n_l5___14 [2⋅X₂+4 ]
n_l6___1 [X₀-2⋅X₁ ]
n_l5___2 [X₀-2⋅X₁ ]
n_l6___20 [X₀-2⋅X₁ ]
n_l5___21 [3-X₁ ]
n_l6___3 [X₀+2-2⋅X₁-2⋅X₃ ]
n_l5___4 [X₀-2⋅X₁ ]
n_l5___8 [2⋅X₀+X₂-2⋅X₁-X₃-2 ]
n_l6___13 [2⋅X₂+4 ]
n_l6___7 [2⋅X₀-2⋅X₁-X₂-4 ]
n_l6___9 [2⋅X₀-2⋅X₁-X₂-4 ]
n_l3___17 [2⋅X₀+X₃-2⋅X₁-2⋅X₂-3 ]
n_l7___18 [2⋅X₀+X₃-2⋅X₁-2⋅X₂-2 ]
n_l7___19 [X₀-2⋅X₁ ]
l8 [X₀-2⋅X₁-2 ]

MPRF for transition t₆₀₈: n_l4___15(X₀, X₁, X₂, X₃) → n_l1___12(X₀, X₁, X₂, X₃) :|: 4+X₁+2⋅X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 4+X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ of depth 1:

new bound:

24⋅X₀⋅X₀+74⋅X₀+51 {O(n^2)}

MPRF:

l10 [3⋅X₀+4-4⋅X₁ ]
l9 [3⋅X₀+4-4⋅X₁ ]
l7 [3⋅X₀+4-4⋅X₁ ]
n_l1___16 [6⋅X₁+18⋅X₂+32-6⋅X₀ ]
n_l1___23 [3⋅X₀+4-4⋅X₁ ]
n_l3___24 [3⋅X₀+4-4⋅X₁ ]
n_l1___12 [4⋅X₀-4⋅X₁-X₂-1 ]
n_l4___15 [4⋅X₀+1-4⋅X₁-X₃ ]
n_l2___11 [4⋅X₀+1-4⋅X₁-X₂ ]
n_l1___6 [3⋅X₀+4-4⋅X₁ ]
n_l4___22 [3⋅X₀+4-4⋅X₁ ]
n_l2___5 [3⋅X₀+4-4⋅X₁ ]
n_l5___10 [4⋅X₀+X₂-4⋅X₁-X₃ ]
n_l5___14 [6⋅X₁+18⋅X₂+32-6⋅X₀ ]
n_l6___1 [3⋅X₀+4-4⋅X₁ ]
n_l5___2 [3⋅X₀+4-4⋅X₁ ]
n_l6___20 [6⋅X₀+X₃-7⋅X₁-6 ]
n_l5___21 [13-X₁ ]
n_l6___3 [3⋅X₀+5-4⋅X₁-X₃ ]
n_l5___4 [3⋅X₀+4-4⋅X₁ ]
n_l5___8 [4⋅X₀+1-4⋅X₁-X₂ ]
n_l6___13 [6⋅X₀-6⋅X₁-3⋅X₃-3 ]
n_l6___7 [4⋅X₀+1-4⋅X₁-X₃ ]
n_l6___9 [4⋅X₀+1-4⋅X₁-X₃ ]
n_l3___17 [4⋅X₀+1-4⋅X₁-X₃ ]
n_l7___18 [4⋅X₀+5⋅X₃+1-4⋅X₁-6⋅X₂ ]
n_l7___19 [2⋅X₀+X₂+4-4⋅X₁ ]
l8 [3⋅X₀+3-4⋅X₁ ]

MPRF for transition t₆₀₉: n_l4___15(X₀, X₁, X₂, X₃) → n_l2___11(X₀, X₁, X₂, X₃) :|: 4+X₁+2⋅X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 4+X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ of depth 1:

new bound:

3⋅X₀⋅X₀+21⋅X₀+18 {O(n^2)}

MPRF:

l10 [0 ]
l9 [0 ]
l7 [0 ]
n_l1___16 [X₁ ]
n_l1___23 [0 ]
n_l3___24 [0 ]
n_l1___12 [X₀-X₂-4 ]
n_l4___15 [X₀-X₃-4 ]
n_l2___11 [X₀-X₂-5 ]
n_l1___6 [0 ]
n_l4___22 [0 ]
n_l2___5 [0 ]
n_l5___10 [X₀+X₂-X₃-3 ]
n_l5___14 [X₁ ]
n_l6___1 [0 ]
n_l5___2 [0 ]
n_l6___20 [X₀-X₁-3 ]
n_l5___21 [0 ]
n_l6___3 [1-X₃ ]
n_l5___4 [0 ]
n_l5___8 [X₀+X₂-X₃-3 ]
n_l6___13 [X₀-X₃-2 ]
n_l6___7 [X₀-X₃-2 ]
n_l6___9 [X₀+X₂-X₃-3 ]
n_l3___17 [X₀-X₃-4 ]
n_l7___18 [X₀+X₂-2⋅X₃-2 ]
n_l7___19 [X₀-X₂ ]
l8 [0 ]

MPRF for transition t₆₁₂: n_l5___10(X₀, X₁, X₂, X₃) → n_l6___9(X₀, X₁, X₂, X₃) :|: 3+X₁+X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₃ ∧ 2⋅X₂+1 ≤ X₃ ∧ X₃ ≤ 1+2⋅X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 9 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ of depth 1:

new bound:

27⋅X₀⋅X₀+123⋅X₀+96 {O(n^2)}

MPRF:

l10 [-12⋅X₁ ]
l9 [-12⋅X₁ ]
l7 [-12⋅X₁ ]
n_l1___16 [6⋅X₀-3⋅X₁-6⋅X₃-24 ]
n_l1___23 [-12⋅X₁ ]
n_l3___24 [-12⋅X₁ ]
n_l1___12 [6⋅X₀-3⋅X₁-6⋅X₂-24 ]
n_l4___15 [6⋅X₀-3⋅X₁-6⋅X₂-24 ]
n_l2___11 [6⋅X₀-3⋅X₁-6⋅X₃-24 ]
n_l1___6 [-12⋅X₁ ]
n_l4___22 [-12⋅X₁ ]
n_l2___5 [-12⋅X₁ ]
n_l5___10 [6⋅X₀-3⋅X₁-6⋅X₂-24 ]
n_l5___14 [3⋅X₀-15 ]
n_l6___1 [-12⋅X₁ ]
n_l5___2 [-12⋅X₁ ]
n_l6___20 [2⋅X₀-14⋅X₁-6 ]
n_l5___21 [-12⋅X₁ ]
n_l6___3 [-12⋅X₁ ]
n_l5___4 [-12⋅X₁ ]
n_l5___8 [6⋅X₀-3⋅X₁-3⋅X₃-18 ]
n_l6___13 [2⋅X₀+X₁+2⋅X₂-12 ]
n_l6___7 [6⋅X₀-3⋅X₁-6⋅X₃-24 ]
n_l6___9 [6⋅X₀-3⋅X₁-12⋅X₂-30 ]
n_l3___17 [6⋅X₀-3⋅X₁-6⋅X₃-24 ]
n_l7___18 [6⋅X₀-3⋅X₁-6⋅X₂-24 ]
n_l7___19 [-12⋅X₁ ]
l8 [-12⋅X₁-12 ]

All Bounds

Timebounds

Overall timebound:16⋅X₀⋅X₀+79⋅X₀+98 {O(n^2)}
t₀: 1 {O(1)}
t₅₂: X₀⋅X₀+4⋅X₀+5 {O(n^2)}
t₄₂: X₀ {O(n)}
t₄₃: 1 {O(1)}
t₅₈: 1 {O(1)}
t₄₁: 1 {O(1)}
t₅: X₀+1 {O(n)}
t₆: 2⋅X₀⋅X₀+11⋅X₀+14 {O(n^2)}
t₈: 2⋅X₀⋅X₀+10⋅X₀+12 {O(n^2)}
t₁₁: X₀+1 {O(n)}
t₂₆: 2⋅X₀⋅X₀+11⋅X₀+14 {O(n^2)}
t₄₀: X₀+1 {O(n)}
t₃: X₀+2 {O(n)}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅₃: X₀⋅X₀+4⋅X₀+4 {O(n^2)}
t₄₇: X₀⋅X₀+3⋅X₀+3 {O(n^2)}
t₄₈: X₀⋅X₀+3⋅X₀+3 {O(n^2)}
t₅₀: X₀⋅X₀+4⋅X₀+4 {O(n^2)}
t₅₁: X₀⋅X₀+5⋅X₀+6 {O(n^2)}
t₅₄: X₀⋅X₀+3⋅X₀+4 {O(n^2)}
t₅₅: X₀⋅X₀+4⋅X₀+4 {O(n^2)}
t₅₆: X₀⋅X₀+3⋅X₀+3 {O(n^2)}
t₄₅: X₀⋅X₀+6⋅X₀+8 {O(n^2)}
t₄₆: X₀+1 {O(n)}
t₅₇: X₀ {O(n)}
t₄₄: X₀+1 {O(n)}

Costbounds

Overall costbound: 16⋅X₀⋅X₀+79⋅X₀+98 {O(n^2)}
t₀: 1 {O(1)}
t₅₂: X₀⋅X₀+4⋅X₀+5 {O(n^2)}
t₄₂: X₀ {O(n)}
t₄₃: 1 {O(1)}
t₅₈: 1 {O(1)}
t₄₁: 1 {O(1)}
t₅: X₀+1 {O(n)}
t₆: 2⋅X₀⋅X₀+11⋅X₀+14 {O(n^2)}
t₈: 2⋅X₀⋅X₀+10⋅X₀+12 {O(n^2)}
t₁₁: X₀+1 {O(n)}
t₂₆: 2⋅X₀⋅X₀+11⋅X₀+14 {O(n^2)}
t₄₀: X₀+1 {O(n)}
t₃: X₀+2 {O(n)}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅₃: X₀⋅X₀+4⋅X₀+4 {O(n^2)}
t₄₇: X₀⋅X₀+3⋅X₀+3 {O(n^2)}
t₄₈: X₀⋅X₀+3⋅X₀+3 {O(n^2)}
t₅₀: X₀⋅X₀+4⋅X₀+4 {O(n^2)}
t₅₁: X₀⋅X₀+5⋅X₀+6 {O(n^2)}
t₅₄: X₀⋅X₀+3⋅X₀+4 {O(n^2)}
t₅₅: X₀⋅X₀+4⋅X₀+4 {O(n^2)}
t₅₆: X₀⋅X₀+3⋅X₀+3 {O(n^2)}
t₄₅: X₀⋅X₀+6⋅X₀+8 {O(n^2)}
t₄₆: X₀+1 {O(n)}
t₅₇: X₀ {O(n)}
t₄₄: X₀+1 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₅₂, X₀: X₀ {O(n)}
t₅₂, X₁: X₀ {O(n)}
t₅₂, X₂: 16⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀+18⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅4⋅X₀⋅X₀ {O(EXP)}
t₅₂, X₃: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9 {O(EXP)}
t₄₂, X₀: X₀ {O(n)}
t₄₂, X₁: X₀ {O(n)}
t₄₂, X₂: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9+3⋅X₀+3 {O(EXP)}
t₄₂, X₃: 16⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀+18⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)+2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅4⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9+X₃ {O(EXP)}
t₄₃, X₀: X₀ {O(n)}
t₄₃, X₁: X₀ {O(n)}
t₄₃, X₂: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9+2⋅X₀ {O(EXP)}
t₄₃, X₃: 16⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀+18⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)+2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅4⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9+X₃ {O(EXP)}
t₅₈, X₀: 2⋅X₀ {O(n)}
t₅₈, X₁: X₀+X₁ {O(n)}
t₅₈, X₂: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9+2⋅X₀+X₂ {O(EXP)}
t₅₈, X₃: 16⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀+18⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)+2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅4⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9+2⋅X₃ {O(EXP)}
t₄₁, X₀: X₀ {O(n)}
t₄₁, X₁: 0 {O(1)}
t₄₁, X₂: X₀+3 {O(n)}
t₄₁, X₃: X₃ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₀+2 {O(n)}
t₅, X₂: 0 {O(1)}
t₅, X₃: X₃ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₀+2 {O(n)}
t₆, X₂: X₀+3 {O(n)}
t₆, X₃: X₃ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₀+2 {O(n)}
t₈, X₂: X₀+3 {O(n)}
t₈, X₃: X₃ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₀+2 {O(n)}
t₁₁, X₂: X₀+3 {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₂₆, X₀: X₀ {O(n)}
t₂₆, X₁: X₀+2 {O(n)}
t₂₆, X₂: X₀+3 {O(n)}
t₂₆, X₃: X₃ {O(n)}
t₄₀, X₀: X₀ {O(n)}
t₄₀, X₁: X₀+2 {O(n)}
t₄₀, X₂: X₀+3 {O(n)}
t₄₀, X₃: X₃ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₀+2 {O(n)}
t₃, X₂: X₀+3 {O(n)}
t₃, X₃: X₃ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₀+2 {O(n)}
t₄, X₂: X₀+3 {O(n)}
t₄, X₃: X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: 1 {O(1)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₅₃, X₀: X₀ {O(n)}
t₅₃, X₁: X₀ {O(n)}
t₅₃, X₂: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9 {O(EXP)}
t₅₃, X₃: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9 {O(EXP)}
t₄₇, X₀: X₀ {O(n)}
t₄₇, X₁: X₀ {O(n)}
t₄₇, X₂: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9 {O(EXP)}
t₄₇, X₃: 2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅32⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅36+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀⋅X₀+X₃ {O(EXP)}
t₄₈, X₀: X₀ {O(n)}
t₄₈, X₁: X₀ {O(n)}
t₄₈, X₂: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9 {O(EXP)}
t₄₈, X₃: 2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅32⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅36+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀⋅X₀+X₃ {O(EXP)}
t₅₀, X₀: X₀ {O(n)}
t₅₀, X₁: X₀ {O(n)}
t₅₀, X₂: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9 {O(EXP)}
t₅₀, X₃: 2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅32⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅36+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀⋅X₀+X₃ {O(EXP)}
t₅₁, X₀: X₀ {O(n)}
t₅₁, X₁: X₀ {O(n)}
t₅₁, X₂: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9 {O(EXP)}
t₅₁, X₃: 2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅32⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅36+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀⋅X₀+X₃ {O(EXP)}
t₅₄, X₀: X₀ {O(n)}
t₅₄, X₁: X₀ {O(n)}
t₅₄, X₂: 16⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀+18⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)+2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅4⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9 {O(EXP)}
t₅₄, X₃: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9 {O(EXP)}
t₅₅, X₀: X₀ {O(n)}
t₅₅, X₁: X₀ {O(n)}
t₅₅, X₂: 2⋅X₀ {O(n)}
t₅₅, X₃: 16⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀+18⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅4⋅X₀⋅X₀ {O(EXP)}
t₅₆, X₀: X₀ {O(n)}
t₅₆, X₁: X₀ {O(n)}
t₅₆, X₂: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9 {O(EXP)}
t₅₆, X₃: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9 {O(EXP)}
t₄₅, X₀: X₀ {O(n)}
t₄₅, X₁: X₀ {O(n)}
t₄₅, X₂: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9 {O(EXP)}
t₄₅, X₃: 2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅32⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅36+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀⋅X₀+X₃ {O(EXP)}
t₄₆, X₀: X₀ {O(n)}
t₄₆, X₁: X₀ {O(n)}
t₄₆, X₂: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9+2⋅X₀ {O(EXP)}
t₄₆, X₃: 16⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀+18⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)+2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅4⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9+X₃ {O(EXP)}
t₅₇, X₀: X₀ {O(n)}
t₅₇, X₁: X₀ {O(n)}
t₅₇, X₂: 2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9+2⋅X₀ {O(EXP)}
t₅₇, X₃: 16⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀+18⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)+2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅4⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9+X₃ {O(EXP)}
t₄₄, X₀: X₀ {O(n)}
t₄₄, X₁: X₀ {O(n)}
t₄₄, X₂: 0 {O(1)}
t₄₄, X₃: 16⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀+18⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)+2⋅2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅4⋅X₀⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅8⋅X₀+2^(X₀⋅X₀+4⋅X₀+4)⋅2^(X₀⋅X₀+4⋅X₀+5)⋅9+X₃ {O(EXP)}