Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆
Temp_Vars: A2, B2, C2, D2, L1, M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, X1, Y1, Z1
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₅₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l1(2, X₁, X₂, X₃, X₄, X₅, L1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, N1, X₂₀, M1, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, L1, O1, P1, O1, X₃₁, X₃₂, O1, X₃₄, X₃₅, X₃₆) :|: 2 ≤ L1
t₅₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l5(S1, R1, 0, X₃, X₄, M1, L1, N1, 0, O1, X₁₀, P1, X₁₂, D2, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, T1, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, Q1, X1, A2, Z1, X₃₁, X₃₂, Y1, B2, C2, X₃₆) :|: U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
t₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l1(1+X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₉, L1, X₂₉, N1, X₀, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀
t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₁₄, X₁, X₂₈, X₃, 0, X₅, L1, X₇, X₂₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, N1, O1, R1, M1, X₃₁, X₃₂, P1, S1, T1, Q1) :|: X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₁₄, X₁, X₂₈, X₃, 0, X₅, L1, X₇, X₂₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, N1, O1, R1, M1, X₃₁, X₃₂, P1, S1, T1, Q1) :|: X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, L1, X₇, N1, X₉, O1, X₁₁, X₁₂, X₁₃, X₁₄-1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂, P1, 1+X₄, X₁₄-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, L1, X₇, N1, X₉, O1, X₁₁, X₁₂, X₁₃, X₁₄-1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂, P1, 1+X₄, X₁₄-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, L1, X₇, N1, X₉, O1, X₁₁, X₁₂, X₁₃, X₁₄-1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂, P1, 1+X₄, X₁₄-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, L1, X₇, N1, X₉, O1, X₁₁, X₁₂, X₁₃, X₁₄-1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂, P1, 1+X₄, X₁₄-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1
t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, L1, X₇, N1, X₉, O1, X₁₁, X₁₂, X₁₃, X₁₄-1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂, P1, 1+X₄, X₁₄-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
t₁₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, L1, X₇, N1, X₉, O1, X₁₁, X₁₂, X₁₃, X₁₄-1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂, P1, 1+X₄, X₁₄-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, L1, X₇, N1, X₉, O1, X₁₁, X₁₂, X₁₃, X₁₄-1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂, P1, 1+X₄, X₁₄-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, L1, X₇, N1, X₉, O1, X₁₁, X₁₂, X₁₃, X₁₄-1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂, P1, 1+X₄, X₁₄-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1
t₄₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₈, 0, X₁₅, X₁₅+1, 0, L1, X₈, X₈, 0, X₁₀, X₈, X₁₂, X₈, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₈+1 ≤ 0 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₄₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₈, 0, X₁₅, X₁₅+1, 0, L1, X₈, X₈, 0, X₁₀, X₈, X₁₂, X₈, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₄₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₈, 0, X₁₅, X₁₅+1, 0, L1, X₈, X₈, 0, X₁₀, X₈, X₁₂, X₈, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₄₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₈, 0, X₁₅, X₁₅+1, 0, L1, X₈, X₈, 0, X₁₀, X₈, X₁₂, X₈, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, X₁₀, N1, X₁₂, X₁, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₁+1 ≤ O1 ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₂₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, X₁₀, N1, X₁₂, X₁, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₁+1 ≤ O1 ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₂₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, X₁₀, N1, X₁₂, X₁, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₁+1 ≤ O1 ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₂₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, X₁₀, N1, X₁₂, X₁, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₁+1 ≤ O1 ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₂₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, X₁₀, N1, X₁₂, X₁, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: O1+1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₂₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, X₁₀, N1, X₁₂, X₁, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: O1+1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₂₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, X₁₀, N1, X₁₂, X₁, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: O1+1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₃₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, X₁₀, N1, X₁₂, X₁, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: O1+1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₃₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l5(X₀, R1, X₂, X₃, X₄, M1, L1, N1, S1, O1, X₁₀, P1, X₁₂, Q1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, T1, X₃₆) :|: 0 ≤ X₃ ∧ S1+1 ≤ 0 ∧ 2 ≤ L1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅
t₃₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l5(X₀, R1, X₂, X₃, X₄, M1, L1, N1, S1, O1, X₁₀, P1, X₁₂, Q1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, T1, X₃₆) :|: 0 ≤ X₃ ∧ 1 ≤ S1 ∧ 2 ≤ L1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅
t₃₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, O1, N1, X₁₂, X₁, X₁₄, X₁₅-1, X₁₆, X₁₅-1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₃₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, O1, N1, X₁₂, X₁, X₁₄, X₁₅-1, X₁₆, X₁₅-1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₃₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, O1, N1, X₁₂, X₁, X₁₄, X₁₅-1, X₁₆, X₁₅-1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₃₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, O1, N1, X₁₂, X₁, X₁₄, X₁₅-1, X₁₆, X₁₅-1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₃₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, O1, N1, X₁₂, X₁, X₁₄, X₁₅-1, X₁₆, X₁₅-1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₃₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, O1, N1, X₁₂, X₁, X₁₄, X₁₅-1, X₁₆, X₁₅-1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, O1, N1, X₁₂, X₁, X₁₄, X₁₅-1, X₁₆, X₁₅-1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₁, 0, X₃, X₄, 0, L1, N1, N1, 0, O1, N1, X₁₂, X₁, X₁₄, X₁₅-1, X₁₆, X₁₅-1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₄₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l5(X₀, R1, X₂, X₃, X₄, M1, L1, N1, X₈, O1, X₁₀, P1, X₁₂, T1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, S1, X₃₆) :|: 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅
t₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, 1, X₅, L1, X₇, N1, X₉, O1, X₁₁, 1+X₁₄, X₁₃, X₁₄, X₁₅, P1, X₁₇, X₁₄, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂+1 ≤ 0 ∧ L1 ≤ M1 ∧ N1+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, 1, X₅, L1, X₇, N1, X₉, O1, X₁₁, 1+X₁₄, X₁₃, X₁₄, X₁₅, P1, X₁₇, X₁₄, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂+1 ≤ 0 ∧ L1 ≤ M1 ∧ 1 ≤ N1 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, 1, X₅, L1, X₇, N1, X₉, O1, X₁₁, 1+X₁₄, X₁₃, X₁₄, X₁₅, P1, X₁₇, X₁₄, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂ ∧ L1 ≤ M1 ∧ N1+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, 1, X₅, L1, X₇, N1, X₉, O1, X₁₁, 1+X₁₄, X₁₃, X₁₄, X₁₅, P1, X₁₇, X₁₄, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂ ∧ L1 ≤ M1 ∧ 1 ≤ N1 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, L1, X₇, N1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, O1, X₂₁, P1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ X₂+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, L1, X₇, N1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, O1, X₂₁, P1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ X₂+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, L1, X₇, N1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, O1, X₂₁, P1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ X₂+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, L1, X₇, N1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, O1, X₂₁, P1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ X₂+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, L1, X₇, N1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, O1, X₂₁, P1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ 1 ≤ X₂ ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, L1, X₇, N1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, O1, X₂₁, P1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ 1 ≤ X₂ ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, L1, X₇, N1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, O1, X₂₁, P1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ 1 ≤ X₂ ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, L1, X₇, N1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, O1, X₂₁, P1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ 1 ≤ X₂ ∧ 1 ≤ N1 ∧ 1 ≤ P1
t₄₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₈, 0, X₁₅, X₁₅+1, 0, L1, X₈, X₈, 0, X₁₀, X₈, X₁₂, X₈, X₁₄, X₁₅, X₁₆, X₁₇, 0, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ X₈+1 ≤ 0 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₈ ≤ 0 ∧ 0 ≤ X₁₈ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₈, 0, X₁₅, X₁₅+1, 0, L1, X₈, X₈, 0, X₁₀, X₈, X₁₂, X₈, X₁₄, X₁₅, X₁₆, X₁₇, 0, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₈ ≤ 0 ∧ 0 ≤ X₁₈ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₈, 0, X₁₅, X₁₅+1, 0, L1, X₈, X₈, 0, X₁₀, X₈, X₁₂, X₈, X₁₄, X₁₅, X₁₆, X₁₇, 0, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₈ ≤ 0 ∧ 0 ≤ X₁₈ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, X₈, 0, X₁₅, X₁₅+1, 0, L1, X₈, X₈, 0, X₁₀, X₈, X₁₂, X₈, X₁₄, X₁₅, X₁₆, X₁₇, 0, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 1 ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₈ ≤ 0 ∧ 0 ≤ X₁₈ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₀
η (X₀) = 2
η (X₆) = L1
η (X₁₉) = N1
η (X₂₁) = M1
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
η (X₃₀) = O1
η (X₃₃) = O1
τ = 2 ≤ L1
l5
l5
l0->l5
t₅₁
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₆) = L1
η (X₇) = N1
η (X₈) = 0
η (X₉) = O1
η (X₁₁) = P1
η (X₁₃) = D2
η (X₁₉) = T1
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
η (X₃₀) = Z1
η (X₃₃) = Y1
η (X₃₄) = B2
η (X₃₅) = C2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₂₀
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
η (X₃₀) = X₂₉
η (X₃₁) = N1
η (X₃₂) = X₀
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀
l2
l2
l1->l2
t₂₁
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₆) = L1
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
η (X₃₀) = M1
η (X₃₃) = P1
η (X₃₄) = S1
η (X₃₅) = T1
η (X₃₆) = Q1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
l1->l2
t₂₂
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₆) = L1
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
η (X₃₀) = M1
η (X₃₃) = P1
η (X₃₄) = S1
η (X₃₅) = T1
η (X₃₆) = Q1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
l2->l2
t₁₂
η (X₄) = 1+X₄
η (X₆) = L1
η (X₈) = N1
η (X₁₀) = O1
η (X₁₄) = X₁₄-1
η (X₂₃) = X₂
η (X₂₄) = P1
η (X₂₅) = 1+X₄
η (X₂₆) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
l2->l2
t₁₃
η (X₄) = 1+X₄
η (X₆) = L1
η (X₈) = N1
η (X₁₀) = O1
η (X₁₄) = X₁₄-1
η (X₂₃) = X₂
η (X₂₄) = P1
η (X₂₅) = 1+X₄
η (X₂₆) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
l2->l2
t₁₄
η (X₄) = 1+X₄
η (X₆) = L1
η (X₈) = N1
η (X₁₀) = O1
η (X₁₄) = X₁₄-1
η (X₂₃) = X₂
η (X₂₄) = P1
η (X₂₅) = 1+X₄
η (X₂₆) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
l2->l2
t₁₅
η (X₄) = 1+X₄
η (X₆) = L1
η (X₈) = N1
η (X₁₀) = O1
η (X₁₄) = X₁₄-1
η (X₂₃) = X₂
η (X₂₄) = P1
η (X₂₅) = 1+X₄
η (X₂₆) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1
l2->l2
t₁₆
η (X₄) = 1+X₄
η (X₆) = L1
η (X₈) = N1
η (X₁₀) = O1
η (X₁₄) = X₁₄-1
η (X₂₃) = X₂
η (X₂₄) = P1
η (X₂₅) = 1+X₄
η (X₂₆) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
l2->l2
t₁₇
η (X₄) = 1+X₄
η (X₆) = L1
η (X₈) = N1
η (X₁₀) = O1
η (X₁₄) = X₁₄-1
η (X₂₃) = X₂
η (X₂₄) = P1
η (X₂₅) = 1+X₄
η (X₂₆) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
l2->l2
t₁₈
η (X₄) = 1+X₄
η (X₆) = L1
η (X₈) = N1
η (X₁₀) = O1
η (X₁₄) = X₁₄-1
η (X₂₃) = X₂
η (X₂₄) = P1
η (X₂₅) = 1+X₄
η (X₂₆) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
l2->l2
t₁₉
η (X₄) = 1+X₄
η (X₆) = L1
η (X₈) = N1
η (X₁₀) = O1
η (X₁₄) = X₁₄-1
η (X₂₃) = X₂
η (X₂₄) = P1
η (X₂₅) = 1+X₄
η (X₂₆) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1
l4
l4
l2->l4
t₄₆
η (X₁) = X₈
η (X₂) = 0
η (X₃) = X₁₅
η (X₄) = X₁₅+1
η (X₅) = 0
η (X₆) = L1
η (X₇) = X₈
η (X₉) = 0
η (X₁₁) = X₈
η (X₁₃) = X₈
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₈+1 ≤ 0 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
l2->l4
t₄₇
η (X₁) = X₈
η (X₂) = 0
η (X₃) = X₁₅
η (X₄) = X₁₅+1
η (X₅) = 0
η (X₆) = L1
η (X₇) = X₈
η (X₉) = 0
η (X₁₁) = X₈
η (X₁₃) = X₈
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
l2->l4
t₄₈
η (X₁) = X₈
η (X₂) = 0
η (X₃) = X₁₅
η (X₄) = X₁₅+1
η (X₅) = 0
η (X₆) = L1
η (X₇) = X₈
η (X₉) = 0
η (X₁₁) = X₈
η (X₁₃) = X₈
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
l2->l4
t₄₉
η (X₁) = X₈
η (X₂) = 0
η (X₃) = X₁₅
η (X₄) = X₁₅+1
η (X₅) = 0
η (X₆) = L1
η (X₇) = X₈
η (X₉) = 0
η (X₁₁) = X₈
η (X₁₃) = X₈
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
l3
l3
l3->l4
t₂₃
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₁) = N1
η (X₁₃) = X₁
τ = X₁+1 ≤ O1 ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l3->l4
t₂₄
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₁) = N1
η (X₁₃) = X₁
τ = X₁+1 ≤ O1 ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l3->l4
t₂₅
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₁) = N1
η (X₁₃) = X₁
τ = X₁+1 ≤ O1 ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l3->l4
t₂₆
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₁) = N1
η (X₁₃) = X₁
τ = X₁+1 ≤ O1 ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l3->l4
t₂₇
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₁) = N1
η (X₁₃) = X₁
τ = O1+1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l3->l4
t₂₈
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₁) = N1
η (X₁₃) = X₁
τ = O1+1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l3->l4
t₂₉
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₁) = N1
η (X₁₃) = X₁
τ = O1+1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l3->l4
t₃₀
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₁) = N1
η (X₁₃) = X₁
τ = O1+1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l3->l5
t₃₁
η (X₁) = R1
η (X₅) = M1
η (X₆) = L1
η (X₇) = N1
η (X₈) = S1
η (X₉) = O1
η (X₁₁) = P1
η (X₁₃) = Q1
η (X₃₅) = T1
τ = 0 ≤ X₃ ∧ S1+1 ≤ 0 ∧ 2 ≤ L1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅
l3->l5
t₃₂
η (X₁) = R1
η (X₅) = M1
η (X₆) = L1
η (X₇) = N1
η (X₈) = S1
η (X₉) = O1
η (X₁₁) = P1
η (X₁₃) = Q1
η (X₃₅) = T1
τ = 0 ≤ X₃ ∧ 1 ≤ S1 ∧ 2 ≤ L1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅
l4->l4
t₃₃
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₀) = O1
η (X₁₁) = N1
η (X₁₃) = X₁
η (X₁₅) = X₁₅-1
η (X₁₇) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l4->l4
t₃₄
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₀) = O1
η (X₁₁) = N1
η (X₁₃) = X₁
η (X₁₅) = X₁₅-1
η (X₁₇) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l4->l4
t₃₅
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₀) = O1
η (X₁₁) = N1
η (X₁₃) = X₁
η (X₁₅) = X₁₅-1
η (X₁₇) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l4->l4
t₃₆
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₀) = O1
η (X₁₁) = N1
η (X₁₃) = X₁
η (X₁₅) = X₁₅-1
η (X₁₇) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l4->l4
t₃₇
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₀) = O1
η (X₁₁) = N1
η (X₁₃) = X₁
η (X₁₅) = X₁₅-1
η (X₁₇) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l4->l4
t₃₈
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₀) = O1
η (X₁₁) = N1
η (X₁₃) = X₁
η (X₁₅) = X₁₅-1
η (X₁₇) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l4->l4
t₃₉
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₀) = O1
η (X₁₁) = N1
η (X₁₃) = X₁
η (X₁₅) = X₁₅-1
η (X₁₇) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l4->l4
t₄₀
η (X₂) = 0
η (X₅) = 0
η (X₆) = L1
η (X₇) = N1
η (X₈) = N1
η (X₉) = 0
η (X₁₀) = O1
η (X₁₁) = N1
η (X₁₃) = X₁
η (X₁₅) = X₁₅-1
η (X₁₇) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l4->l5
t₄₁
η (X₁) = R1
η (X₅) = M1
η (X₆) = L1
η (X₇) = N1
η (X₉) = O1
η (X₁₁) = P1
η (X₁₃) = T1
η (X₃₅) = S1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅
l6
l6
l6->l2
t₀
η (X₄) = 1
η (X₆) = L1
η (X₈) = N1
η (X₁₀) = O1
η (X₁₂) = 1+X₁₄
η (X₁₆) = P1
η (X₁₈) = X₁₄
τ = 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂+1 ≤ 0 ∧ L1 ≤ M1 ∧ N1+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l6->l2
t₁
η (X₄) = 1
η (X₆) = L1
η (X₈) = N1
η (X₁₀) = O1
η (X₁₂) = 1+X₁₄
η (X₁₆) = P1
η (X₁₈) = X₁₄
τ = 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂+1 ≤ 0 ∧ L1 ≤ M1 ∧ 1 ≤ N1 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l6->l2
t₂
η (X₄) = 1
η (X₆) = L1
η (X₈) = N1
η (X₁₀) = O1
η (X₁₂) = 1+X₁₄
η (X₁₆) = P1
η (X₁₈) = X₁₄
τ = 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂ ∧ L1 ≤ M1 ∧ N1+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l6->l2
t₃
η (X₄) = 1
η (X₆) = L1
η (X₈) = N1
η (X₁₀) = O1
η (X₁₂) = 1+X₁₄
η (X₁₆) = P1
η (X₁₈) = X₁₄
τ = 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂ ∧ L1 ≤ M1 ∧ 1 ≤ N1 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l7
l7
l7->l2
t₄
η (X₆) = L1
η (X₈) = N1
η (X₂₀) = O1
η (X₂₂) = P1
τ = 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ X₂+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
l7->l2
t₅
η (X₆) = L1
η (X₈) = N1
η (X₂₀) = O1
η (X₂₂) = P1
τ = 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ X₂+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
l7->l2
t₆
η (X₆) = L1
η (X₈) = N1
η (X₂₀) = O1
η (X₂₂) = P1
τ = 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ X₂+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
l7->l2
t₇
η (X₆) = L1
η (X₈) = N1
η (X₂₀) = O1
η (X₂₂) = P1
τ = 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ X₂+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1
l7->l2
t₈
η (X₆) = L1
η (X₈) = N1
η (X₂₀) = O1
η (X₂₂) = P1
τ = 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ 1 ≤ X₂ ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
l7->l2
t₉
η (X₆) = L1
η (X₈) = N1
η (X₂₀) = O1
η (X₂₂) = P1
τ = 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ 1 ≤ X₂ ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
l7->l2
t₁₀
η (X₆) = L1
η (X₈) = N1
η (X₂₀) = O1
η (X₂₂) = P1
τ = 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ 1 ≤ X₂ ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
l7->l2
t₁₁
η (X₆) = L1
η (X₈) = N1
η (X₂₀) = O1
η (X₂₂) = P1
τ = 0 ≤ X₁₈ ∧ 2 ≤ L1 ∧ 1 ≤ X₂ ∧ 1 ≤ N1 ∧ 1 ≤ P1
l7->l4
t₄₂
η (X₁) = X₈
η (X₂) = 0
η (X₃) = X₁₅
η (X₄) = X₁₅+1
η (X₅) = 0
η (X₆) = L1
η (X₇) = X₈
η (X₉) = 0
η (X₁₁) = X₈
η (X₁₃) = X₈
η (X₁₈) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ X₈+1 ≤ 0 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₈ ≤ 0 ∧ 0 ≤ X₁₈ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l7->l4
t₄₃
η (X₁) = X₈
η (X₂) = 0
η (X₃) = X₁₅
η (X₄) = X₁₅+1
η (X₅) = 0
η (X₆) = L1
η (X₇) = X₈
η (X₉) = 0
η (X₁₁) = X₈
η (X₁₃) = X₈
η (X₁₈) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₈ ≤ 0 ∧ 0 ≤ X₁₈ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l7->l4
t₄₄
η (X₁) = X₈
η (X₂) = 0
η (X₃) = X₁₅
η (X₄) = X₁₅+1
η (X₅) = 0
η (X₆) = L1
η (X₇) = X₈
η (X₉) = 0
η (X₁₁) = X₈
η (X₁₃) = X₈
η (X₁₈) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₈ ≤ 0 ∧ 0 ≤ X₁₈ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l7->l4
t₄₅
η (X₁) = X₈
η (X₂) = 0
η (X₃) = X₁₅
η (X₄) = X₁₅+1
η (X₅) = 0
η (X₆) = L1
η (X₇) = X₈
η (X₉) = 0
η (X₁₁) = X₈
η (X₁₃) = X₈
η (X₁₈) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 1 ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₈ ≤ 0 ∧ 0 ≤ X₁₈ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
Preprocessing
Cut unreachable locations [l3; l6; l7] from the program graph
Cut unsatisfiable transition t₄₆: l2→l4
Cut unsatisfiable transition t₄₉: l2→l4
Eliminate variables {B2,C2,D2,T1,Y1,Z1,X₃,X₆,X₇,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆,X₃₀,X₃₁,X₃₂,X₃₃,X₃₄,X₃₅,X₃₆} that do not contribute to the problem
Found invariant 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ for location l2
Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ for location l5
Found invariant 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀ for location l1
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉
Temp_Vars: A2, L1, M1, N1, O1, P1, Q1, R1, S1, U1, V1, W1, X1
Locations: l0, l1, l2, l4, l5
Transitions:
t₁₀₂: l0(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l1(2, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, L1, O1, P1) :|: 2 ≤ L1
t₁₀₃: l0(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l5(S1, R1, 0, X₄, M1, 0, X₁₄, X₁₅, Q1, X1, A2) :|: U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
t₁₀₄: l1(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l1(1+X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₉, L1) :|: X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
t₁₀₅: l1(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₁₄, X₁, X₂₈, 0, X₅, X₂₈, X₁₄, X₁₅, N1, O1, R1) :|: X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
t₁₀₆: l1(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₁₄, X₁, X₂₈, 0, X₅, X₂₈, X₁₄, X₁₅, N1, O1, R1) :|: X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
t₁₀₇: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₀₈: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₀₉: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₁₀: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₁₁: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₁₂: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₁₃: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₁₄: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₁₅: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₈, 0, X₁₅+1, 0, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) :|: 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₁₆: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₈, 0, X₁₅+1, 0, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) :|: 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₁₇: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₁₈: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₁₉: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₂₀: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₂₁: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₂₂: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₂₃: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₂₄: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
t₁₂₅: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l5(X₀, R1, X₂, X₄, M1, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) :|: 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
Analysing control-flow refined program
Found invariant 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ for location l2
Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ for location l5
Found invariant 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l1
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ for location l4
Found invariant 3 ≤ X₂₇ ∧ 6 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 3 ≤ X₀ for location n_l1___1
CFR did not improve the program. Rolling back
MPRF for transition t₁₀₇: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₁₄+2 {O(n)}
MPRF:
l2 [X₁₄+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₀₈: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₁₄+2 {O(n)}
MPRF:
l2 [X₁₄+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₀₉: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₁₄+2 {O(n)}
MPRF:
l2 [X₁₄+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₁₀: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₁₄+2 {O(n)}
MPRF:
l2 [X₁₄+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₁₁: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₁₄+2 {O(n)}
MPRF:
l2 [X₁₄+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₁₂: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₁₄+2 {O(n)}
MPRF:
l2 [X₁₄+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₁₃: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₁₄+2 {O(n)}
MPRF:
l2 [X₁₄+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₁₄: l2(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l2(X₀, X₁, X₂, 1+X₄, X₅, N1, X₁₄-1, X₁₅, X₂₇, X₂₈, X₂₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₁₄+2 {O(n)}
MPRF:
l2 [X₁₄+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₁₇: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₅+2 {O(n)}
MPRF:
l4 [X₁₅+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₁₈: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₅+2 {O(n)}
MPRF:
l4 [X₁₅+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₁₉: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₅+2 {O(n)}
MPRF:
l4 [X₁₅+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₂₀: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₅+2 {O(n)}
MPRF:
l4 [X₁₅+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₂₁: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₅+2 {O(n)}
MPRF:
l4 [X₁₅+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₂₂: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₅+2 {O(n)}
MPRF:
l4 [X₁₅+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₂₃: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₅+2 {O(n)}
MPRF:
l4 [X₁₅+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
MPRF for transition t₁₂₄: l4(X₀, X₁, X₂, X₄, X₅, X₈, X₁₄, X₁₅, X₂₇, X₂₈, X₂₉) → l4(X₀, X₁, 0, X₄, 0, N1, X₁₄, X₁₅-1, X₂₇, X₂₈, X₂₉) :|: P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₅+2 {O(n)}
MPRF:
l4 [X₁₅+1 ]
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₂
η (X₀) = 2
η (X₂₇) = L1
η (X₂₈) = O1
η (X₂₉) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₃
η (X₀) = S1
η (X₁) = R1
η (X₂) = 0
η (X₅) = M1
η (X₈) = 0
η (X₂₇) = Q1
η (X₂₈) = X1
η (X₂₉) = A2
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₄
η (X₀) = 1+X₀
η (X₂₈) = X₂₉
η (X₂₉) = L1
τ = X₀+1 ≤ X₂₇ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₅
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₂₈+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l1->l2
t₁₀₆
η (X₀) = X₁₄
η (X₂) = X₂₈
η (X₄) = 0
η (X₈) = X₂₈
η (X₂₇) = N1
η (X₂₈) = O1
η (X₂₉) = R1
τ = X₂₇ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₂₈ ∧ L1 ≤ Q1 ∧ L1 ≤ X₁₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₂₇ ∧ 4 ≤ X₀+X₂₇ ∧ X₀ ≤ X₂₇ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₄
η (X₄) = 1+X₄
η (X₈) = N1
η (X₁₄) = X₁₄-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₅
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₈ ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l2->l4
t₁₁₆
η (X₁) = X₈
η (X₂) = 0
η (X₄) = X₁₅+1
η (X₅) = 0
τ = 2 ≤ N1 ∧ X₈+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₁₄+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ 1+X₁₄ ∧ 1 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = X₁+1 ≤ P1 ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l4
t₁₂₄
η (X₂) = 0
η (X₅) = 0
η (X₈) = N1
η (X₁₅) = X₁₅-1
τ = P1+1 ≤ X₁ ∧ 0 ≤ X₁₅ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
l4->l5
t₁₂₅
η (X₁) = R1
η (X₅) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ X₅ ≤ X₁₄ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₁₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₁₅ ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₄ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₄+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁₄ ≤ X₀ ∧ 0 ≤ X₁₄ ∧ 2 ≤ X₀+X₁₄ ∧ 2 ≤ X₀
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₁₀₂: 1 {O(1)}
t₁₀₃: 1 {O(1)}
t₁₀₄: inf {Infinity}
t₁₀₅: 1 {O(1)}
t₁₀₆: 1 {O(1)}
t₁₀₇: 4⋅X₁₄+2 {O(n)}
t₁₀₈: 4⋅X₁₄+2 {O(n)}
t₁₀₉: 4⋅X₁₄+2 {O(n)}
t₁₁₀: 4⋅X₁₄+2 {O(n)}
t₁₁₁: 4⋅X₁₄+2 {O(n)}
t₁₁₂: 4⋅X₁₄+2 {O(n)}
t₁₁₃: 4⋅X₁₄+2 {O(n)}
t₁₁₄: 4⋅X₁₄+2 {O(n)}
t₁₁₅: 1 {O(1)}
t₁₁₆: 1 {O(1)}
t₁₁₇: 256⋅X₁₅+2 {O(n)}
t₁₁₈: 256⋅X₁₅+2 {O(n)}
t₁₁₉: 256⋅X₁₅+2 {O(n)}
t₁₂₀: 256⋅X₁₅+2 {O(n)}
t₁₂₁: 256⋅X₁₅+2 {O(n)}
t₁₂₂: 256⋅X₁₅+2 {O(n)}
t₁₂₃: 256⋅X₁₅+2 {O(n)}
t₁₂₄: 256⋅X₁₅+2 {O(n)}
t₁₂₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
t₁₀₂: 1 {O(1)}
t₁₀₃: 1 {O(1)}
t₁₀₄: inf {Infinity}
t₁₀₅: 1 {O(1)}
t₁₀₆: 1 {O(1)}
t₁₀₇: 4⋅X₁₄+2 {O(n)}
t₁₀₈: 4⋅X₁₄+2 {O(n)}
t₁₀₉: 4⋅X₁₄+2 {O(n)}
t₁₁₀: 4⋅X₁₄+2 {O(n)}
t₁₁₁: 4⋅X₁₄+2 {O(n)}
t₁₁₂: 4⋅X₁₄+2 {O(n)}
t₁₁₃: 4⋅X₁₄+2 {O(n)}
t₁₁₄: 4⋅X₁₄+2 {O(n)}
t₁₁₅: 1 {O(1)}
t₁₁₆: 1 {O(1)}
t₁₁₇: 256⋅X₁₅+2 {O(n)}
t₁₁₈: 256⋅X₁₅+2 {O(n)}
t₁₁₉: 256⋅X₁₅+2 {O(n)}
t₁₂₀: 256⋅X₁₅+2 {O(n)}
t₁₂₁: 256⋅X₁₅+2 {O(n)}
t₁₂₂: 256⋅X₁₅+2 {O(n)}
t₁₂₃: 256⋅X₁₅+2 {O(n)}
t₁₂₄: 256⋅X₁₅+2 {O(n)}
t₁₂₅: 1 {O(1)}
Sizebounds
t₁₀₂, X₀: 2 {O(1)}
t₁₀₂, X₁: X₁ {O(n)}
t₁₀₂, X₂: X₂ {O(n)}
t₁₀₂, X₄: X₄ {O(n)}
t₁₀₂, X₅: X₅ {O(n)}
t₁₀₂, X₈: X₈ {O(n)}
t₁₀₂, X₁₄: X₁₄ {O(n)}
t₁₀₂, X₁₅: X₁₅ {O(n)}
t₁₀₃, X₂: 0 {O(1)}
t₁₀₃, X₄: X₄ {O(n)}
t₁₀₃, X₈: 0 {O(1)}
t₁₀₃, X₁₄: X₁₄ {O(n)}
t₁₀₃, X₁₅: X₁₅ {O(n)}
t₁₀₄, X₁: X₁ {O(n)}
t₁₀₄, X₂: X₂ {O(n)}
t₁₀₄, X₄: X₄ {O(n)}
t₁₀₄, X₅: X₅ {O(n)}
t₁₀₄, X₈: X₈ {O(n)}
t₁₀₄, X₁₄: X₁₄ {O(n)}
t₁₀₄, X₁₅: X₁₅ {O(n)}
t₁₀₅, X₀: 2⋅X₁₄ {O(n)}
t₁₀₅, X₁: 2⋅X₁ {O(n)}
t₁₀₅, X₄: 0 {O(1)}
t₁₀₅, X₅: 2⋅X₅ {O(n)}
t₁₀₅, X₁₄: 2⋅X₁₄ {O(n)}
t₁₀₅, X₁₅: 2⋅X₁₅ {O(n)}
t₁₀₆, X₀: 2⋅X₁₄ {O(n)}
t₁₀₆, X₁: 2⋅X₁ {O(n)}
t₁₀₆, X₄: 0 {O(1)}
t₁₀₆, X₅: 2⋅X₅ {O(n)}
t₁₀₆, X₁₄: 2⋅X₁₄ {O(n)}
t₁₀₆, X₁₅: 2⋅X₁₅ {O(n)}
t₁₀₇, X₀: 32⋅X₁₄ {O(n)}
t₁₀₇, X₁: 32⋅X₁ {O(n)}
t₁₀₇, X₄: 32⋅X₁₄+16 {O(n)}
t₁₀₇, X₅: 32⋅X₅ {O(n)}
t₁₀₇, X₁₄: 32⋅X₁₄+1 {O(n)}
t₁₀₇, X₁₅: 32⋅X₁₅ {O(n)}
t₁₀₈, X₀: 32⋅X₁₄ {O(n)}
t₁₀₈, X₁: 32⋅X₁ {O(n)}
t₁₀₈, X₄: 32⋅X₁₄+16 {O(n)}
t₁₀₈, X₅: 32⋅X₅ {O(n)}
t₁₀₈, X₁₄: 32⋅X₁₄+1 {O(n)}
t₁₀₈, X₁₅: 32⋅X₁₅ {O(n)}
t₁₀₉, X₀: 32⋅X₁₄ {O(n)}
t₁₀₉, X₁: 32⋅X₁ {O(n)}
t₁₀₉, X₄: 32⋅X₁₄+16 {O(n)}
t₁₀₉, X₅: 32⋅X₅ {O(n)}
t₁₀₉, X₁₄: 32⋅X₁₄+1 {O(n)}
t₁₀₉, X₁₅: 32⋅X₁₅ {O(n)}
t₁₁₀, X₀: 32⋅X₁₄ {O(n)}
t₁₁₀, X₁: 32⋅X₁ {O(n)}
t₁₁₀, X₄: 32⋅X₁₄+16 {O(n)}
t₁₁₀, X₅: 32⋅X₅ {O(n)}
t₁₁₀, X₁₄: 32⋅X₁₄+1 {O(n)}
t₁₁₀, X₁₅: 32⋅X₁₅ {O(n)}
t₁₁₁, X₀: 32⋅X₁₄ {O(n)}
t₁₁₁, X₁: 32⋅X₁ {O(n)}
t₁₁₁, X₄: 32⋅X₁₄+16 {O(n)}
t₁₁₁, X₅: 32⋅X₅ {O(n)}
t₁₁₁, X₁₄: 32⋅X₁₄+1 {O(n)}
t₁₁₁, X₁₅: 32⋅X₁₅ {O(n)}
t₁₁₂, X₀: 32⋅X₁₄ {O(n)}
t₁₁₂, X₁: 32⋅X₁ {O(n)}
t₁₁₂, X₄: 32⋅X₁₄+16 {O(n)}
t₁₁₂, X₅: 32⋅X₅ {O(n)}
t₁₁₂, X₁₄: 32⋅X₁₄+1 {O(n)}
t₁₁₂, X₁₅: 32⋅X₁₅ {O(n)}
t₁₁₃, X₀: 32⋅X₁₄ {O(n)}
t₁₁₃, X₁: 32⋅X₁ {O(n)}
t₁₁₃, X₄: 32⋅X₁₄+16 {O(n)}
t₁₁₃, X₅: 32⋅X₅ {O(n)}
t₁₁₃, X₁₄: 32⋅X₁₄+1 {O(n)}
t₁₁₃, X₁₅: 32⋅X₁₅ {O(n)}
t₁₁₄, X₀: 32⋅X₁₄ {O(n)}
t₁₁₄, X₁: 32⋅X₁ {O(n)}
t₁₁₄, X₄: 32⋅X₁₄+16 {O(n)}
t₁₁₄, X₅: 32⋅X₅ {O(n)}
t₁₁₄, X₁₄: 32⋅X₁₄+1 {O(n)}
t₁₁₄, X₁₅: 32⋅X₁₅ {O(n)}
t₁₁₅, X₀: 128⋅X₁₄ {O(n)}
t₁₁₅, X₂: 0 {O(1)}
t₁₁₅, X₄: 128⋅X₁₅+4 {O(n)}
t₁₁₅, X₅: 0 {O(1)}
t₁₁₅, X₁₄: 128⋅X₁₄+4 {O(n)}
t₁₁₅, X₁₅: 128⋅X₁₅ {O(n)}
t₁₁₆, X₀: 128⋅X₁₄ {O(n)}
t₁₁₆, X₂: 0 {O(1)}
t₁₁₆, X₄: 128⋅X₁₅+4 {O(n)}
t₁₁₆, X₅: 0 {O(1)}
t₁₁₆, X₁₄: 128⋅X₁₄+4 {O(n)}
t₁₁₆, X₁₅: 128⋅X₁₅ {O(n)}
t₁₁₇, X₀: 1792⋅X₁₄ {O(n)}
t₁₁₇, X₂: 0 {O(1)}
t₁₁₇, X₄: 1792⋅X₁₅+56 {O(n)}
t₁₁₇, X₅: 0 {O(1)}
t₁₁₇, X₁₄: 1792⋅X₁₄+56 {O(n)}
t₁₁₇, X₁₅: 1792⋅X₁₅+1 {O(n)}
t₁₁₈, X₀: 1792⋅X₁₄ {O(n)}
t₁₁₈, X₂: 0 {O(1)}
t₁₁₈, X₄: 1792⋅X₁₅+56 {O(n)}
t₁₁₈, X₅: 0 {O(1)}
t₁₁₈, X₁₄: 1792⋅X₁₄+56 {O(n)}
t₁₁₈, X₁₅: 1792⋅X₁₅+1 {O(n)}
t₁₁₉, X₀: 1792⋅X₁₄ {O(n)}
t₁₁₉, X₂: 0 {O(1)}
t₁₁₉, X₄: 1792⋅X₁₅+56 {O(n)}
t₁₁₉, X₅: 0 {O(1)}
t₁₁₉, X₁₄: 1792⋅X₁₄+56 {O(n)}
t₁₁₉, X₁₅: 1792⋅X₁₅+1 {O(n)}
t₁₂₀, X₀: 1792⋅X₁₄ {O(n)}
t₁₂₀, X₂: 0 {O(1)}
t₁₂₀, X₄: 1792⋅X₁₅+56 {O(n)}
t₁₂₀, X₅: 0 {O(1)}
t₁₂₀, X₁₄: 1792⋅X₁₄+56 {O(n)}
t₁₂₀, X₁₅: 1792⋅X₁₅+1 {O(n)}
t₁₂₁, X₀: 1792⋅X₁₄ {O(n)}
t₁₂₁, X₂: 0 {O(1)}
t₁₂₁, X₄: 1792⋅X₁₅+56 {O(n)}
t₁₂₁, X₅: 0 {O(1)}
t₁₂₁, X₁₄: 1792⋅X₁₄+56 {O(n)}
t₁₂₁, X₁₅: 1792⋅X₁₅+1 {O(n)}
t₁₂₂, X₀: 1792⋅X₁₄ {O(n)}
t₁₂₂, X₂: 0 {O(1)}
t₁₂₂, X₄: 1792⋅X₁₅+56 {O(n)}
t₁₂₂, X₅: 0 {O(1)}
t₁₂₂, X₁₄: 1792⋅X₁₄+56 {O(n)}
t₁₂₂, X₁₅: 1792⋅X₁₅+1 {O(n)}
t₁₂₃, X₀: 1792⋅X₁₄ {O(n)}
t₁₂₃, X₂: 0 {O(1)}
t₁₂₃, X₄: 1792⋅X₁₅+56 {O(n)}
t₁₂₃, X₅: 0 {O(1)}
t₁₂₃, X₁₄: 1792⋅X₁₄+56 {O(n)}
t₁₂₃, X₁₅: 1792⋅X₁₅+1 {O(n)}
t₁₂₄, X₀: 1792⋅X₁₄ {O(n)}
t₁₂₄, X₂: 0 {O(1)}
t₁₂₄, X₄: 1792⋅X₁₅+56 {O(n)}
t₁₂₄, X₅: 0 {O(1)}
t₁₂₄, X₁₄: 1792⋅X₁₄+56 {O(n)}
t₁₂₄, X₁₅: 1792⋅X₁₅+1 {O(n)}
t₁₂₅, X₀: 10752⋅X₁₄ {O(n)}
t₁₂₅, X₂: 0 {O(1)}
t₁₂₅, X₄: 10752⋅X₁₅+336 {O(n)}
t₁₂₅, X₁₄: 10752⋅X₁₄+336 {O(n)}
t₁₂₅, X₁₅: 10752⋅X₁₅+6 {O(n)}