Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃+1 ≤ X₁
t₂: l1(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃
t₇: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₂
t₉: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃)
t₁₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, X₃+1)
t₄: l5(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: E+1 ≤ 0
t₅: l5(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 1 ≤ E
t₆: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃)
t₁₁: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₁: l7(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁

Preprocessing

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l4

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃+1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₂: l1(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, X₃+1) :|: 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄: l5(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: E+1 ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅: l5(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 1 ≤ E ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁: l7(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁

Analysing control-flow refined program

Cut unsatisfiable transition t₂: l1→l6

Cut unsatisfiable transition t₁₂₂: n_l1___9→l6

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___7

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___9

Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___4

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l3___6

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___11

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___8

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___2

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___5

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___12

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___1

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___10

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___3

MPRF for transition t₉₂: n_l1___4(X₀, X₁, X₂, X₃) → n_l5___3(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF:

n_l3___1 [X₁-X₃ ]
n_l3___6 [X₁-X₃ ]
n_l1___9 [X₁-X₃ ]
n_l4___5 [X₁-X₃ ]
n_l1___4 [X₁+1-X₃ ]
n_l5___3 [X₁-X₃ ]
n_l2___2 [X₁-X₃ ]
n_l5___8 [X₁-X₃ ]
n_l2___7 [X₁-X₃ ]

MPRF for transition t₉₅: n_l2___2(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁+1 {O(n)}

MPRF:

n_l3___1 [X₁-X₃-1 ]
n_l3___6 [X₁-X₃-1 ]
n_l1___9 [X₁-X₃-1 ]
n_l4___5 [X₁-X₃-1 ]
n_l1___4 [X₁-X₃ ]
n_l5___3 [X₁-X₃ ]
n_l2___2 [X₁-X₃ ]
n_l5___8 [X₁-X₃-1 ]
n_l2___7 [X₁-X₃-1 ]

MPRF for transition t₉₇: n_l2___7(X₀, X₁, X₂, X₃) → n_l4___5(X₀, X₁, X₀, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF:

n_l3___1 [X₁-X₃ ]
n_l3___6 [X₁-X₃ ]
n_l1___9 [X₁-X₃ ]
n_l4___5 [X₁-X₃-1 ]
n_l1___4 [X₁-X₃ ]
n_l5___3 [X₁-X₃ ]
n_l2___2 [X₁-X₃ ]
n_l5___8 [X₁-X₃ ]
n_l2___7 [X₁-X₃ ]

MPRF for transition t₉₈: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀+2⋅X₁+1 {O(n)}

MPRF:

n_l3___1 [X₀+X₁-X₃ ]
n_l3___6 [X₀+X₁-X₃-1 ]
n_l1___9 [X₀+X₁-X₃-1 ]
n_l4___5 [X₁+X₂-X₃-1 ]
n_l1___4 [X₀+X₁-X₃ ]
n_l5___3 [X₀+X₁-X₃ ]
n_l2___2 [X₀+X₁-X₃ ]
n_l5___8 [X₀+X₁-X₃-1 ]
n_l2___7 [X₀+X₁-X₃-1 ]

MPRF for transition t₁₀₁: n_l4___5(X₀, X₁, X₂, X₃) → n_l1___4(X₀, X₁, 0, X₃+1) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF:

n_l3___1 [X₁-X₃ ]
n_l3___6 [X₁-X₃ ]
n_l1___9 [X₁-X₃ ]
n_l4___5 [X₁-X₃ ]
n_l1___4 [X₁-X₃ ]
n_l5___3 [X₁-X₃ ]
n_l2___2 [X₁-X₃ ]
n_l5___8 [X₁-X₃ ]
n_l2___7 [X₁-X₃ ]

MPRF for transition t₁₀₄: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁+1 {O(n)}

MPRF:

n_l3___1 [X₁-X₃-1 ]
n_l3___6 [X₁-X₃-1 ]
n_l1___9 [X₁-X₃-1 ]
n_l4___5 [X₁-X₃-1 ]
n_l1___4 [X₁-X₃ ]
n_l5___3 [X₁-X₃ ]
n_l2___2 [X₁-X₃-1 ]
n_l5___8 [X₁-X₃-1 ]
n_l2___7 [X₁-X₃-1 ]

MPRF for transition t₁₀₅: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁+1 {O(n)}

MPRF:

n_l3___1 [X₁-X₃-1 ]
n_l3___6 [X₁-X₃-1 ]
n_l1___9 [X₁-X₃-1 ]
n_l4___5 [X₁-X₃-1 ]
n_l1___4 [X₁-X₃ ]
n_l5___3 [X₁-X₃ ]
n_l2___2 [X₁-X₃-1 ]
n_l5___8 [X₁-X₃-1 ]
n_l2___7 [X₁-X₃-1 ]

MPRF for transition t₉₃: n_l1___9(X₀, X₁, X₂, X₃) → n_l5___8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₀⋅X₁+6⋅X₀+2 {O(n^2)}

MPRF:

n_l5___3 [0 ]
n_l2___2 [X₀ ]
n_l3___1 [X₀ ]
n_l3___6 [X₀-X₂ ]
n_l1___9 [X₀+1-X₂ ]
n_l4___5 [0 ]
n_l1___4 [0 ]
n_l5___8 [X₀-X₂ ]
n_l2___7 [X₀-X₂ ]

MPRF for transition t₉₆: n_l2___7(X₀, X₁, X₂, X₃) → n_l3___6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

16⋅X₀⋅X₁+12⋅X₀+1 {O(n^2)}

MPRF:

n_l5___3 [X₀ ]
n_l2___2 [2⋅X₀ ]
n_l3___1 [2⋅X₀ ]
n_l3___6 [2⋅X₀-X₂-1 ]
n_l1___9 [2⋅X₀-X₂ ]
n_l4___5 [X₂ ]
n_l1___4 [X₀ ]
n_l5___8 [2⋅X₀-X₂ ]
n_l2___7 [2⋅X₀-X₂ ]

MPRF for transition t₁₀₀: n_l3___6(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

8⋅X₀⋅X₁+6⋅X₀+1 {O(n^2)}

MPRF:

n_l5___3 [0 ]
n_l2___2 [X₀ ]
n_l3___1 [X₀ ]
n_l3___6 [X₀-X₂ ]
n_l1___9 [X₀-X₂ ]
n_l4___5 [0 ]
n_l1___4 [0 ]
n_l5___8 [X₀-X₂ ]
n_l2___7 [X₀-X₂ ]

MPRF for transition t₁₀₆: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₀⋅X₁+6⋅X₀+2 {O(n^2)}

MPRF:

n_l5___3 [0 ]
n_l2___2 [X₀ ]
n_l3___1 [X₀ ]
n_l3___6 [X₀-X₂ ]
n_l1___9 [X₀+1-X₂ ]
n_l4___5 [0 ]
n_l1___4 [0 ]
n_l5___8 [X₀+1-X₂ ]
n_l2___7 [X₀-X₂ ]

MPRF for transition t₁₀₇: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₀⋅X₁+6⋅X₀+2 {O(n^2)}

MPRF:

n_l5___3 [0 ]
n_l2___2 [X₀ ]
n_l3___1 [X₀ ]
n_l3___6 [X₀-X₂ ]
n_l1___9 [X₀+1-X₂ ]
n_l4___5 [0 ]
n_l1___4 [0 ]
n_l5___8 [X₀+1-X₂ ]
n_l2___7 [X₀-X₂ ]

CFR: Improvement to new bound with the following program:

new bound:

48⋅X₀⋅X₁+14⋅X₁+38⋅X₀+12 {O(n^2)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: Arg2_P
Locations: l0, l1, l6, l7, l8, n_l1___4, n_l1___9, n_l2___11, n_l2___2, n_l2___7, n_l3___1, n_l3___10, n_l3___6, n_l4___5, n_l5___12, n_l5___3, n_l5___8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₉₁: l1(X₀, X₁, X₂, X₃) → n_l5___12(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁: l7(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁
t₁₂₁: n_l1___4(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₂: n_l1___4(X₀, X₁, X₂, X₃) → n_l5___3(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₃: n_l1___9(X₀, X₁, X₂, X₃) → n_l5___8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₄: n_l2___11(X₀, X₁, X₂, X₃) → n_l3___10(X₀, X₁, X₂, X₃) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₅: n_l2___2(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₆: n_l2___7(X₀, X₁, X₂, X₃) → n_l3___6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₇: n_l2___7(X₀, X₁, X₂, X₃) → n_l4___5(X₀, X₁, X₀, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₈: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₉: n_l3___10(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀₀: n_l3___6(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀
t₁₀₁: n_l4___5(X₀, X₁, X₂, X₃) → n_l1___4(X₀, X₁, 0, X₃+1) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₂₃: n_l5___12(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀₂: n_l5___12(X₀, X₁, X₂, X₃) → n_l2___11(X₀, X₁, Arg2_P, X₃) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀₃: n_l5___12(X₀, X₁, X₂, X₃) → n_l2___11(X₀, X₁, Arg2_P, X₃) :|: 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₂₄: n_l5___3(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀₄: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀₅: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₂₅: n_l5___8(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀₆: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀₇: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg2_P ∧ 1+X₃ ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:48⋅X₀⋅X₁+14⋅X₁+38⋅X₀+24 {O(n^2)}
t₀: 1 {O(1)}
t₉₁: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁: 1 {O(1)}
t₉₂: 2⋅X₁ {O(n)}
t₁₂₁: 1 {O(1)}
t₉₃: 8⋅X₀⋅X₁+6⋅X₀+2 {O(n^2)}
t₉₄: 1 {O(1)}
t₉₅: 2⋅X₁+1 {O(n)}
t₉₆: 16⋅X₀⋅X₁+12⋅X₀+1 {O(n^2)}
t₉₇: 2⋅X₁ {O(n)}
t₉₈: 2⋅X₀+2⋅X₁+1 {O(n)}
t₉₉: 1 {O(1)}
t₁₀₀: 8⋅X₀⋅X₁+6⋅X₀+1 {O(n^2)}
t₁₀₁: 2⋅X₁ {O(n)}
t₁₀₂: 1 {O(1)}
t₁₀₃: 1 {O(1)}
t₁₂₃: 1 {O(1)}
t₁₀₄: 2⋅X₁+1 {O(n)}
t₁₀₅: 2⋅X₁+1 {O(n)}
t₁₂₄: 1 {O(1)}
t₁₀₆: 8⋅X₀⋅X₁+6⋅X₀+2 {O(n^2)}
t₁₀₇: 8⋅X₀⋅X₁+6⋅X₀+2 {O(n^2)}
t₁₂₅: 1 {O(1)}

Costbounds

Overall costbound: 48⋅X₀⋅X₁+14⋅X₁+38⋅X₀+24 {O(n^2)}
t₀: 1 {O(1)}
t₉₁: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁: 1 {O(1)}
t₉₂: 2⋅X₁ {O(n)}
t₁₂₁: 1 {O(1)}
t₉₃: 8⋅X₀⋅X₁+6⋅X₀+2 {O(n^2)}
t₉₄: 1 {O(1)}
t₉₅: 2⋅X₁+1 {O(n)}
t₉₆: 16⋅X₀⋅X₁+12⋅X₀+1 {O(n^2)}
t₉₇: 2⋅X₁ {O(n)}
t₉₈: 2⋅X₀+2⋅X₁+1 {O(n)}
t₉₉: 1 {O(1)}
t₁₀₀: 8⋅X₀⋅X₁+6⋅X₀+1 {O(n^2)}
t₁₀₁: 2⋅X₁ {O(n)}
t₁₀₂: 1 {O(1)}
t₁₀₃: 1 {O(1)}
t₁₂₃: 1 {O(1)}
t₁₀₄: 2⋅X₁+1 {O(n)}
t₁₀₅: 2⋅X₁+1 {O(n)}
t₁₂₄: 1 {O(1)}
t₁₀₆: 8⋅X₀⋅X₁+6⋅X₀+2 {O(n^2)}
t₁₀₇: 8⋅X₀⋅X₁+6⋅X₀+2 {O(n^2)}
t₁₂₅: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₉₁, X₀: X₀ {O(n)}
t₉₁, X₁: X₁ {O(n)}
t₉₁, X₂: 0 {O(1)}
t₉₁, X₃: 0 {O(1)}
t₁₁, X₀: 7⋅X₀ {O(n)}
t₁₁, X₁: 7⋅X₁ {O(n)}
t₁₁, X₂: 8⋅X₀⋅X₁+6⋅X₀+3 {O(n^2)}
t₁₁, X₃: 6⋅X₁ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: 0 {O(1)}
t₁, X₃: 0 {O(1)}
t₉₂, X₀: 2⋅X₀ {O(n)}
t₉₂, X₁: 2⋅X₁ {O(n)}
t₉₂, X₂: 0 {O(1)}
t₉₂, X₃: 2⋅X₁ {O(n)}
t₁₂₁, X₀: 2⋅X₀ {O(n)}
t₁₂₁, X₁: 2⋅X₁ {O(n)}
t₁₂₁, X₂: 0 {O(1)}
t₁₂₁, X₃: 2⋅X₁ {O(n)}
t₉₃, X₀: 2⋅X₀ {O(n)}
t₉₃, X₁: 2⋅X₁ {O(n)}
t₉₃, X₂: 8⋅X₀⋅X₁+6⋅X₀+3 {O(n^2)}
t₉₃, X₃: 2⋅X₁ {O(n)}
t₉₄, X₀: 2⋅X₀ {O(n)}
t₉₄, X₁: 2⋅X₁ {O(n)}
t₉₄, X₂: 0 {O(1)}
t₉₄, X₃: 0 {O(1)}
t₉₅, X₀: 2⋅X₀ {O(n)}
t₉₅, X₁: 2⋅X₁ {O(n)}
t₉₅, X₂: 0 {O(1)}
t₉₅, X₃: 2⋅X₁ {O(n)}
t₉₆, X₀: 2⋅X₀ {O(n)}
t₉₆, X₁: 2⋅X₁ {O(n)}
t₉₆, X₂: 8⋅X₀⋅X₁+6⋅X₀+3 {O(n^2)}
t₉₆, X₃: 2⋅X₁ {O(n)}
t₉₇, X₀: 2⋅X₀ {O(n)}
t₉₇, X₁: 2⋅X₁ {O(n)}
t₉₇, X₂: 4⋅X₀ {O(n)}
t₉₇, X₃: 2⋅X₁ {O(n)}
t₉₈, X₀: 2⋅X₀ {O(n)}
t₉₈, X₁: 2⋅X₁ {O(n)}
t₉₈, X₂: 1 {O(1)}
t₉₈, X₃: 2⋅X₁ {O(n)}
t₉₉, X₀: 2⋅X₀ {O(n)}
t₉₉, X₁: 2⋅X₁ {O(n)}
t₉₉, X₂: 1 {O(1)}
t₉₉, X₃: 0 {O(1)}
t₁₀₀, X₀: 2⋅X₀ {O(n)}
t₁₀₀, X₁: 2⋅X₁ {O(n)}
t₁₀₀, X₂: 8⋅X₀⋅X₁+6⋅X₀+3 {O(n^2)}
t₁₀₀, X₃: 2⋅X₁ {O(n)}
t₁₀₁, X₀: 2⋅X₀ {O(n)}
t₁₀₁, X₁: 2⋅X₁ {O(n)}
t₁₀₁, X₂: 0 {O(1)}
t₁₀₁, X₃: 2⋅X₁ {O(n)}
t₁₀₂, X₀: X₀ {O(n)}
t₁₀₂, X₁: X₁ {O(n)}
t₁₀₂, X₂: 0 {O(1)}
t₁₀₂, X₃: 0 {O(1)}
t₁₀₃, X₀: X₀ {O(n)}
t₁₀₃, X₁: X₁ {O(n)}
t₁₀₃, X₂: 0 {O(1)}
t₁₀₃, X₃: 0 {O(1)}
t₁₂₃, X₀: X₀ {O(n)}
t₁₂₃, X₁: X₁ {O(n)}
t₁₂₃, X₂: 0 {O(1)}
t₁₂₃, X₃: 0 {O(1)}
t₁₀₄, X₀: 2⋅X₀ {O(n)}
t₁₀₄, X₁: 2⋅X₁ {O(n)}
t₁₀₄, X₂: 0 {O(1)}
t₁₀₄, X₃: 2⋅X₁ {O(n)}
t₁₀₅, X₀: 2⋅X₀ {O(n)}
t₁₀₅, X₁: 2⋅X₁ {O(n)}
t₁₀₅, X₂: 0 {O(1)}
t₁₀₅, X₃: 2⋅X₁ {O(n)}
t₁₂₄, X₀: 2⋅X₀ {O(n)}
t₁₂₄, X₁: 2⋅X₁ {O(n)}
t₁₂₄, X₂: 0 {O(1)}
t₁₂₄, X₃: 2⋅X₁ {O(n)}
t₁₀₆, X₀: 2⋅X₀ {O(n)}
t₁₀₆, X₁: 2⋅X₁ {O(n)}
t₁₀₆, X₂: 8⋅X₀⋅X₁+6⋅X₀+3 {O(n^2)}
t₁₀₆, X₃: 2⋅X₁ {O(n)}
t₁₀₇, X₀: 2⋅X₀ {O(n)}
t₁₀₇, X₁: 2⋅X₁ {O(n)}
t₁₀₇, X₂: 8⋅X₀⋅X₁+6⋅X₀+3 {O(n^2)}
t₁₀₇, X₃: 2⋅X₁ {O(n)}
t₁₂₅, X₀: 2⋅X₀ {O(n)}
t₁₂₅, X₁: 2⋅X₁ {O(n)}
t₁₂₅, X₂: 8⋅X₀⋅X₁+6⋅X₀+3 {O(n^2)}
t₁₂₅, X₃: 2⋅X₁ {O(n)}