Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₃+1, X₃, X₄, X₅, X₆, X₇)
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₃
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇) :|: X₃ ≤ X₇
t₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, 1, X₄, X₅, X₆, X₇)
t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₄+1, X₁, X₂, X₃, X₄, X₅, 1, X₇) :|: X₄+1 ≤ X₇
t₁₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₄+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄+1
t₁₆: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: X₀ < X₆
t₁₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇)
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₅+1, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₅
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₅ ≤ X₃
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇)
Preprocessing
Found invariant 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂ for location l11
Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l6
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2+X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l19
Found invariant 1 ≤ X₃ for location l12
Found invariant 1+X₇ ≤ X₃ ∧ 1 ≤ X₃ for location l17
Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l20
Found invariant 1+X₇ ≤ X₃ ∧ 1 ≤ X₃ for location l21
Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃ for location l8
Found invariant 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₃ for location l10
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l18
Found invariant 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂ for location l9
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₃+1, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₃
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂
t₁₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₃ ∧ 1 ≤ X₃
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇) :|: X₃ ≤ X₇ ∧ 1 ≤ X₃
t₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, 1, X₄, X₅, X₆, X₇)
t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₇ ≤ X₃ ∧ 1 ≤ X₃
t₁₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₄+1, X₁, X₂, X₃, X₄, X₅, 1, X₇) :|: X₄+1 ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₄+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄+1 ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₆: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: X₀ < X₆ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2+X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₀ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2+X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₅+1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₅ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂
MPRF for transition t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₃+1, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₇+2 {O(n)}
MPRF:
l11 [X₇+1-X₅ ]
l20 [X₇+1-X₃ ]
l19 [X₇+1-X₃ ]
l6 [X₄+1-X₃ ]
l7 [X₇+1-X₃ ]
l5 [X₄+1-X₃ ]
l18 [X₇+1-X₃ ]
l8 [X₇+1-X₃ ]
l10 [X₇+2-X₅ ]
l9 [X₇+1-X₅ ]
l12 [X₇+1-X₃ ]
MPRF for transition t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
2⋅X₇+1 {O(n)}
MPRF:
l11 [X₂+2⋅X₇-2⋅X₃-1 ]
l20 [2⋅X₇-X₃ ]
l19 [2⋅X₇-X₃ ]
l6 [2⋅X₄-X₃ ]
l7 [2⋅X₄-X₃ ]
l5 [2⋅X₇-X₃ ]
l18 [2⋅X₇-X₃ ]
l8 [2⋅X₇-X₃ ]
l10 [X₅+2⋅X₇-2⋅X₃-1 ]
l9 [2⋅X₅+2⋅X₇-X₂-2⋅X₃-2 ]
l12 [2⋅X₇-X₃ ]
MPRF for transition t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇) :|: X₃ ≤ X₇ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₇+2 {O(n)}
MPRF:
l11 [X₇+1-X₅ ]
l20 [X₇-X₃ ]
l19 [X₇-X₃ ]
l6 [X₇-X₃ ]
l7 [X₇-X₃ ]
l5 [X₇-X₃ ]
l18 [X₇-X₃ ]
l8 [X₇-X₃ ]
l10 [X₇+1-X₅ ]
l9 [X₇-X₃ ]
l12 [X₇+1-X₃ ]
MPRF for transition t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₇+2 {O(n)}
MPRF:
l11 [X₇-X₃ ]
l20 [X₇+1-X₃ ]
l19 [X₇+1-X₃ ]
l6 [X₀-X₃ ]
l7 [X₀-X₃ ]
l5 [X₄+1-X₃ ]
l18 [X₇+1-X₃ ]
l8 [X₇+1-X₃ ]
l10 [X₇-X₃ ]
l9 [X₇-X₃ ]
l12 [X₇+1-X₃ ]
MPRF for transition t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
2⋅X₇+2 {O(n)}
MPRF:
l11 [X₂+2⋅X₇-2⋅X₃ ]
l20 [2⋅X₇+1-X₃ ]
l19 [2⋅X₇+1-X₃ ]
l6 [2⋅X₄+1-X₃ ]
l7 [2⋅X₇+1-X₃ ]
l5 [2⋅X₄+1-X₃ ]
l18 [2⋅X₇+1-X₃ ]
l8 [2⋅X₇+1-X₃ ]
l10 [2⋅X₇+1-X₃ ]
l9 [X₂+2⋅X₇-2⋅X₃ ]
l12 [2⋅X₇+1-X₃ ]
MPRF for transition t₁₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₄+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄+1 ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
2⋅X₇⋅X₇+8⋅X₇+7 {O(n^2)}
MPRF:
l11 [X₃+1-X₅ ]
l9 [X₃+1-X₅ ]
l12 [X₃ ]
l20 [X₀+X₃-X₄-X₅ ]
l19 [X₀+X₃-X₄-X₅ ]
l6 [X₃-X₅ ]
l7 [X₃-X₅ ]
l5 [X₃-X₅ ]
l18 [X₃+1-X₅ ]
l8 [X₃+1-X₅ ]
l10 [X₃+1-X₅ ]
MPRF for transition t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
MPRF:
l11 [2⋅X₇-X₅ ]
l9 [2⋅X₇-X₅ ]
l12 [2⋅X₇ ]
l20 [2⋅X₇+1-X₅ ]
l19 [2⋅X₇+1-X₅ ]
l6 [2⋅X₇+1-X₅ ]
l7 [X₀+2⋅X₇+1-X₁-X₄ ]
l5 [2⋅X₀-X₁ ]
l18 [2⋅X₇+1-X₅ ]
l8 [2⋅X₇+1-X₅ ]
l10 [2⋅X₇-X₅ ]
MPRF for transition t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₅+1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₇⋅X₇+3⋅X₇ {O(n^2)}
MPRF:
l11 [X₂-X₅ ]
l9 [X₂-X₅ ]
l12 [X₇ ]
l20 [X₃+1-X₅ ]
l19 [X₃+1-X₅ ]
l6 [X₃+X₄+1-X₅-X₇ ]
l7 [X₃+X₄+1-X₀-X₅ ]
l5 [X₃+X₇+1-X₀-X₅ ]
l18 [X₃+1-X₅ ]
l8 [X₃+1-X₅ ]
l10 [X₃+1-X₅ ]
MPRF for transition t₁₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₇⋅X₇+8⋅X₇+7 {O(n^2)}
MPRF:
l11 [X₅-X₃-1 ]
l9 [X₅-X₃-1 ]
l12 [X₃ ]
l20 [X₃+1-X₅ ]
l19 [X₃+1-X₅ ]
l6 [X₃+1-X₅ ]
l7 [X₃+2-X₁ ]
l5 [X₃+1-X₁ ]
l18 [X₃+1-X₅ ]
l8 [X₃+1-X₅ ]
l10 [X₅-X₃-1 ]
MPRF for transition t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₅ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃ of depth 1:
new bound:
2⋅X₇⋅X₇+8⋅X₇+7 {O(n^2)}
MPRF:
l11 [X₃+1-X₅ ]
l9 [X₅-X₃-1 ]
l12 [X₃ ]
l20 [X₃-X₅ ]
l19 [X₃-X₅ ]
l6 [X₃-X₅ ]
l7 [X₃+1-X₁ ]
l5 [X₃+1-X₁ ]
l18 [X₃-X₅ ]
l8 [X₃+1-X₅ ]
l10 [X₃+1-X₅ ]
MPRF for transition t₁₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₄+1, X₁, X₂, X₃, X₄, X₅, 1, X₇) :|: X₄+1 ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+93⋅X₇+42 {O(n^3)}
MPRF:
l11 [3⋅X₇ ]
l18 [4⋅X₇-X₄ ]
l20 [4⋅X₇-X₀ ]
l19 [4⋅X₇-X₀ ]
l6 [4⋅X₇-X₄ ]
l7 [2⋅X₁+3⋅X₄-2⋅X₅-2 ]
l5 [3⋅X₄ ]
l8 [3⋅X₇ ]
l10 [3⋅X₇ ]
l9 [3⋅X₇ ]
l12 [3⋅X₇ ]
MPRF for transition t₁₆: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: X₀ < X₆ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2+X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
6⋅X₇⋅X₇⋅X₇+36⋅X₇⋅X₇+69⋅X₇+42 {O(n^3)}
MPRF:
l11 [0 ]
l18 [X₇-X₄ ]
l20 [X₇-X₄ ]
l19 [X₇-X₄ ]
l6 [X₇-X₄ ]
l7 [X₇-X₄ ]
l5 [0 ]
l8 [0 ]
l10 [0 ]
l9 [0 ]
l12 [0 ]
MPRF for transition t₁₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₀ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2+X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
6⋅X₇⋅X₇⋅X₇⋅X₇+36⋅X₇⋅X₇⋅X₇+69⋅X₇⋅X₇+43⋅X₇ {O(n^4)}
MPRF:
l11 [X₇ ]
l20 [2⋅X₀-X₄-X₆-1 ]
l19 [X₀+1-X₆ ]
l6 [X₄ ]
l7 [X₄ ]
l5 [X₄ ]
l18 [X₇ ]
l8 [X₇ ]
l10 [X₇ ]
l9 [X₇ ]
l12 [X₇ ]
MPRF for transition t₁₇: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇ {O(n^4)}
MPRF:
l11 [2⋅X₇ ]
l20 [2⋅X₇-X₆ ]
l19 [2⋅X₇-X₆ ]
l6 [2⋅X₇ ]
l7 [2⋅X₇ ]
l5 [2⋅X₇ ]
l18 [2⋅X₇ ]
l8 [2⋅X₇ ]
l10 [2⋅X₇ ]
l9 [2⋅X₇ ]
l12 [2⋅X₇ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₁₂: l8→l10
Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l11
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 2 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l18___2
Found invariant 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l19___13
Found invariant 1+X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 2 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 3 ≤ X₀ for location n_l6___9
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l18___17
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 2 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l6___1
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l19___16
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l8___3
Found invariant 2 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2+X₄ ∧ X₆ ≤ 1+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l19___11
Found invariant 1+X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 2 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l8___6
Found invariant 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l20___12
Found invariant 1 ≤ X₃ for location l12
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l5___4
Found invariant 1+X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 2 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___8
Found invariant 1+X₇ ≤ X₃ ∧ 1 ≤ X₃ for location l17
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l20___14
Found invariant 1+X₇ ≤ X₃ ∧ 1 ≤ X₃ for location l21
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃ for location l8
Found invariant 1+X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 2 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l5___7
Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l9
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l7___5
Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l10
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₀ for location n_l6___15
Found invariant 2 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ 1+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 5 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l18___10
knowledge_propagation leads to new time bound X₇+2 {O(n)} for transition t₁₉₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___17(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₇ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₇+2 {O(n)} for transition t₁₇₈: n_l18___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___15(X₄+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₃ ≤ X₇ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₅ ∧ X₇ < 1+X₄ ∧ X₄ ≤ X₇ ∧ X₃ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₇+2 {O(n)} for transition t₁₈₉: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___5(X₀, X₅+1, X₂, X₃, X₀-1, X₅, X₆, X₀-1) :|: 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₇ < X₀ ∧ X₀ ≤ 1+X₇ ∧ X₀ ≤ X₄+1 ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₄+1 ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₀
All Bounds
Timebounds
Overall timebound:18⋅X₇⋅X₇⋅X₇⋅X₇+126⋅X₇⋅X₇⋅X₇+315⋅X₇⋅X₇+331⋅X₇+125 {O(n^4)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₁: X₇+2 {O(n)}
t₂₂: 2⋅X₇+1 {O(n)}
t₉: X₇+2 {O(n)}
t₁₀: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₂₄: 1 {O(1)}
t₁₃: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+93⋅X₇+42 {O(n^3)}
t₁₄: 2⋅X₇⋅X₇+8⋅X₇+7 {O(n^2)}
t₁₅: 6⋅X₇⋅X₇⋅X₇⋅X₇+36⋅X₇⋅X₇⋅X₇+69⋅X₇⋅X₇+43⋅X₇ {O(n^4)}
t₁₆: 6⋅X₇⋅X₇⋅X₇+36⋅X₇⋅X₇+69⋅X₇+42 {O(n^3)}
t₁: 1 {O(1)}
t₁₇: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇ {O(n^4)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₂₀: 4⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₁₈: 2⋅X₇⋅X₇+3⋅X₇ {O(n^2)}
t₁₉: 2⋅X₇⋅X₇+8⋅X₇+7 {O(n^2)}
t₁₁: 2⋅X₇⋅X₇+8⋅X₇+7 {O(n^2)}
t₁₂: X₇+2 {O(n)}
t₂₃: 2⋅X₇+2 {O(n)}
Costbounds
Overall costbound: 18⋅X₇⋅X₇⋅X₇⋅X₇+126⋅X₇⋅X₇⋅X₇+315⋅X₇⋅X₇+331⋅X₇+125 {O(n^4)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₁: X₇+2 {O(n)}
t₂₂: 2⋅X₇+1 {O(n)}
t₉: X₇+2 {O(n)}
t₁₀: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₂₄: 1 {O(1)}
t₁₃: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+93⋅X₇+42 {O(n^3)}
t₁₄: 2⋅X₇⋅X₇+8⋅X₇+7 {O(n^2)}
t₁₅: 6⋅X₇⋅X₇⋅X₇⋅X₇+36⋅X₇⋅X₇⋅X₇+69⋅X₇⋅X₇+43⋅X₇ {O(n^4)}
t₁₆: 6⋅X₇⋅X₇⋅X₇+36⋅X₇⋅X₇+69⋅X₇+42 {O(n^3)}
t₁: 1 {O(1)}
t₁₇: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇ {O(n^4)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₂₀: 4⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₁₈: 2⋅X₇⋅X₇+3⋅X₇ {O(n^2)}
t₁₉: 2⋅X₇⋅X₇+8⋅X₇+7 {O(n^2)}
t₁₁: 2⋅X₇⋅X₇+8⋅X₇+7 {O(n^2)}
t₁₂: X₇+2 {O(n)}
t₂₃: 2⋅X₇+2 {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₂₁, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+56 {O(n^3)}
t₂₁, X₁: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₂₁, X₂: X₇+3 {O(n)}
t₂₁, X₃: X₇+3 {O(n)}
t₂₁, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+54 {O(n^3)}
t₂₁, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₂₁, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+X₆+1 {O(n^4)}
t₂₁, X₇: X₇ {O(n)}
t₂₂, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+56 {O(n^3)}
t₂₂, X₁: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₂₂, X₂: X₇+3 {O(n)}
t₂₂, X₃: X₇+3 {O(n)}
t₂₂, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+54 {O(n^3)}
t₂₂, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₂₂, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+X₆+1 {O(n^4)}
t₂₂, X₇: X₇ {O(n)}
t₉, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+X₀+56 {O(n^3)}
t₉, X₁: 2⋅X₇⋅X₇+3⋅X₇+X₁+1 {O(n^2)}
t₉, X₂: X₂+X₇+3 {O(n)}
t₉, X₃: X₇+3 {O(n)}
t₉, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+X₄+54 {O(n^3)}
t₉, X₅: 1 {O(1)}
t₉, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+X₆+1 {O(n^4)}
t₉, X₇: X₇ {O(n)}
t₁₀, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+X₀+56 {O(n^3)}
t₁₀, X₁: 2⋅X₇⋅X₇+3⋅X₇+X₁+1 {O(n^2)}
t₁₀, X₂: X₂+X₇+3 {O(n)}
t₁₀, X₃: X₇+4 {O(n)}
t₁₀, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+X₄+54 {O(n^3)}
t₁₀, X₅: 2⋅X₇⋅X₇+3⋅X₇+X₅+1 {O(n^2)}
t₁₀, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+2⋅X₆+86⋅X₇+1 {O(n^4)}
t₁₀, X₇: 2⋅X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: 1 {O(1)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₂₄, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+X₀+56 {O(n^3)}
t₂₄, X₁: 2⋅X₇⋅X₇+3⋅X₇+X₁+1 {O(n^2)}
t₂₄, X₂: X₂+X₇+3 {O(n)}
t₂₄, X₃: X₇+4 {O(n)}
t₂₄, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+X₄+54 {O(n^3)}
t₂₄, X₅: 2⋅X₇⋅X₇+3⋅X₇+X₅+1 {O(n^2)}
t₂₄, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+2⋅X₆+86⋅X₇+1 {O(n^4)}
t₂₄, X₇: 2⋅X₇ {O(n)}
t₁₃, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+95⋅X₇+48 {O(n^3)}
t₁₃, X₁: 4⋅X₇⋅X₇+6⋅X₇+X₁+2 {O(n^2)}
t₁₃, X₂: X₂+X₇+3 {O(n)}
t₁₃, X₃: X₇+3 {O(n)}
t₁₃, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+54 {O(n^3)}
t₁₃, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₁₃, X₆: 1 {O(1)}
t₁₃, X₇: X₇ {O(n)}
t₁₄, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+56 {O(n^3)}
t₁₄, X₁: 8⋅X₇⋅X₇+12⋅X₇+2⋅X₁+4 {O(n^2)}
t₁₄, X₂: X₂+X₇+3 {O(n)}
t₁₄, X₃: X₇+3 {O(n)}
t₁₄, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+54 {O(n^3)}
t₁₄, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₁₄, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+X₆+1 {O(n^4)}
t₁₄, X₇: X₇ {O(n)}
t₁₅, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+95⋅X₇+48 {O(n^3)}
t₁₅, X₁: 4⋅X₇⋅X₇+6⋅X₇+X₁+2 {O(n^2)}
t₁₅, X₂: X₂+X₇+3 {O(n)}
t₁₅, X₃: X₇+3 {O(n)}
t₁₅, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+54 {O(n^3)}
t₁₅, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₁₅, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+1 {O(n^4)}
t₁₅, X₇: X₇ {O(n)}
t₁₆, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+95⋅X₇+48 {O(n^3)}
t₁₆, X₁: 4⋅X₇⋅X₇+6⋅X₇+X₁+2 {O(n^2)}
t₁₆, X₂: X₂+X₇+3 {O(n)}
t₁₆, X₃: X₇+3 {O(n)}
t₁₆, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+95⋅X₇+48 {O(n^3)}
t₁₆, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₁₆, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+1 {O(n^4)}
t₁₆, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁₇, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+95⋅X₇+48 {O(n^3)}
t₁₇, X₁: 4⋅X₇⋅X₇+6⋅X₇+X₁+2 {O(n^2)}
t₁₇, X₂: X₂+X₇+3 {O(n)}
t₁₇, X₃: X₇+3 {O(n)}
t₁₇, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+54 {O(n^3)}
t₁₇, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₁₇, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+1 {O(n^4)}
t₁₇, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₂₀, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+56 {O(n^3)}
t₂₀, X₁: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₂₀, X₂: X₂+X₇+3 {O(n)}
t₂₀, X₃: X₇+3 {O(n)}
t₂₀, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+54 {O(n^3)}
t₂₀, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₂₀, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+X₆+1 {O(n^4)}
t₂₀, X₇: X₇ {O(n)}
t₁₈, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+56 {O(n^3)}
t₁₈, X₁: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₁₈, X₂: X₂+X₇+3 {O(n)}
t₁₈, X₃: X₇+3 {O(n)}
t₁₈, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+54 {O(n^3)}
t₁₈, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₁₈, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+X₆+1 {O(n^4)}
t₁₈, X₇: X₇ {O(n)}
t₁₉, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+56 {O(n^3)}
t₁₉, X₁: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₁₉, X₂: X₂+X₇+3 {O(n)}
t₁₉, X₃: X₇+3 {O(n)}
t₁₉, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+54 {O(n^3)}
t₁₉, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₁₉, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+X₆+1 {O(n^4)}
t₁₉, X₇: X₇ {O(n)}
t₁₁, X₀: 24⋅X₇⋅X₇⋅X₇+120⋅X₇⋅X₇+194⋅X₇+X₀+112 {O(n^3)}
t₁₁, X₁: 4⋅X₇⋅X₇+6⋅X₇+X₁+2 {O(n^2)}
t₁₁, X₂: X₂+X₇+3 {O(n)}
t₁₁, X₃: X₇+3 {O(n)}
t₁₁, X₄: 2⋅X₇+6 {O(n)}
t₁₁, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₁₁, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+X₆+1 {O(n^4)}
t₁₁, X₇: X₇ {O(n)}
t₁₂, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+56 {O(n^3)}
t₁₂, X₁: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₁₂, X₂: X₂+X₇+3 {O(n)}
t₁₂, X₃: X₇+3 {O(n)}
t₁₂, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+54 {O(n^3)}
t₁₂, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₁₂, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+X₆+1 {O(n^4)}
t₁₂, X₇: X₇ {O(n)}
t₂₃, X₀: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+56 {O(n^3)}
t₂₃, X₁: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₂₃, X₂: X₇+3 {O(n)}
t₂₃, X₃: X₇+3 {O(n)}
t₂₃, X₄: 12⋅X₇⋅X₇⋅X₇+60⋅X₇⋅X₇+97⋅X₇+54 {O(n^3)}
t₂₃, X₅: 2⋅X₇⋅X₇+3⋅X₇+1 {O(n^2)}
t₂₃, X₆: 12⋅X₇⋅X₇⋅X₇⋅X₇+72⋅X₇⋅X₇⋅X₇+138⋅X₇⋅X₇+86⋅X₇+X₆+1 {O(n^4)}
t₂₃, X₇: X₇ {O(n)}