Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂
Temp_Vars: N
Locations: l0, l1, l10, l11, l12, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(50, 5, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, 0, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₂ ≤ X₁
t₂₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₁, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₀) :|: 1+X₁ ≤ X₂
t₁₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆+1, N, X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₆
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, 0, X₁₂) :|: X₆+1 ≤ 0
t₁₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₅ ≤ X₇
t₁₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, N, X₉, X₁₀, X₁₁, X₁₂) :|: X₇ ≤ X₅
t₂₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₁ ≤ X₄
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃+N, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₄ ≤ X₁ ∧ X₂+1 ≤ X₄
t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃+N, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃+N, X₂+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₄ ≤ X₁ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆+1, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₆+1 ≤ X₅
t₂₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, X₄, X₅, 1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₅ ≤ X₆
t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇+1, N, X₉, X₁₀, X₁₁, X₁₂) :|: X₇ ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆+1, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₅ ≤ X₇
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, N, 0, X₁₀, X₁₁, X₁₂) :|: X₆+1 ≤ 0 ∧ X₇ ≤ X₅
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, N, 0, X₁₀, X₁₁, X₁₂) :|: 1 ≤ X₆ ∧ X₇ ≤ X₅
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₅-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₅ ≤ X₆
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, N, X₉, X₁₀, X₁₁, X₁₂) :|: X₆ ≤ X₅
t₂₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₅ ≤ X₇
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, N, 0, X₁₀, X₁₁, X₁₂) :|: X₇ ≤ X₅
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₆ ≤ X₉
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, N, X₉+1, X₁₀, X₁₁, X₁₂) :|: X₉+1 ≤ X₆
t₂₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₆ ≤ X₉
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, N, X₉+1, X₁₀, X₁₁, X₁₂) :|: X₉ ≤ X₆
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₆ ≤ X₇
t₁₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, N, X₉, X₁₀, X₁₁, X₁₂) :|: X₇+1 ≤ X₆
Preprocessing
Eliminate variables {N,X₀,X₃,X₈,X₁₀,X₁₁,X₁₂} that do not contribute to the problem
Found invariant X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ for location l11
Found invariant X₄ ≤ 6 ∧ X₄ ≤ 6+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ X₁ ≤ 5+X₄ ∧ 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ for location l2
Found invariant X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 11 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 10 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ for location l6
Found invariant 1+X₆ ≤ 0 ∧ 6+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ 7+X₆ ≤ X₂ ∧ 6+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 0 ≤ 1+X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ 6+X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ 6+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ for location l12
Found invariant X₉ ≤ 4 ∧ 1+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 9 ∧ X₉ ≤ X₆ ∧ X₆+X₉ ≤ 8 ∧ 1+X₉ ≤ X₅ ∧ X₅+X₉ ≤ 9 ∧ 2+X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 9 ∧ 0 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ 5+X₉ ∧ 1 ≤ X₆+X₉ ∧ X₆ ≤ 4+X₉ ∧ 5 ≤ X₅+X₉ ∧ X₅ ≤ 5+X₉ ∧ 6 ≤ X₂+X₉ ∧ 5 ≤ X₁+X₉ ∧ X₁ ≤ 5+X₉ ∧ X₇ ≤ 5 ∧ X₇ ≤ 4+X₆ ∧ X₆+X₇ ≤ 9 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 7 ≤ X₅+X₇ ∧ X₅ ≤ 3+X₇ ∧ 8 ≤ X₂+X₇ ∧ 7 ≤ X₁+X₇ ∧ X₁ ≤ 3+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ for location l7
Found invariant X₆ ≤ 6 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 11 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 11 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ for location l5
Found invariant X₉ ≤ 5 ∧ X₉ ≤ X₇ ∧ X₇+X₉ ≤ 10 ∧ X₉ ≤ 1+X₆ ∧ X₆+X₉ ≤ 9 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 10 ∧ 1+X₉ ≤ X₂ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 10 ∧ 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 5+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ 4+X₉ ∧ 5 ≤ X₅+X₉ ∧ X₅ ≤ 5+X₉ ∧ 6 ≤ X₂+X₉ ∧ 5 ≤ X₁+X₉ ∧ X₁ ≤ 5+X₉ ∧ X₇ ≤ 5 ∧ X₇ ≤ 5+X₆ ∧ X₆+X₇ ≤ 9 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ for location l8
Found invariant 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ for location l1
Found invariant X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ 1+X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ 6+X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ 6+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ for location l10
Found invariant X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ for location l4
Found invariant X₇ ≤ 5 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 5+X₇ ∧ 5 ≤ X₅+X₇ ∧ X₅ ≤ 5+X₇ ∧ 6 ≤ X₂+X₇ ∧ 5 ≤ X₁+X₇ ∧ X₁ ≤ 5+X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 10 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ for location l9
Found invariant X₆ ≤ 6 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 11 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 11 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ for location l3
Cut unsatisfiable transition t₇₅: l4→l7
Problem after Preprocessing
Start: l0
Program_Vars: X₁, X₂, X₄, X₅, X₆, X₇, X₉
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₆₂: l0(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l1(5, 0, X₄, X₅, X₆, X₇, X₉)
t₆₃: l1(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l2(X₁, X₂, 0, X₅, X₆, X₇, X₉) :|: X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₆₄: l1(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l3(X₁, X₂, X₄, X₁, 0, X₇, X₉) :|: 1+X₁ ≤ X₂ ∧ 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₆₅: l10(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l11(X₁, X₂, X₄, X₅, X₆, X₆+1, X₉) :|: 0 ≤ X₆ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ 1+X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ 6+X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ 6+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₆₆: l10(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l12(X₁, X₂, X₄, X₅, X₆, X₇, X₉) :|: X₆+1 ≤ 0 ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ 1+X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ 6+X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ 6+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₆₈: l11(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l10(X₁, X₂, X₄, X₅, X₆-1, X₇, X₉) :|: 1+X₅ ≤ X₇ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₆₇: l11(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l11(X₁, X₂, X₄, X₅, X₆, X₇+1, X₉) :|: X₇ ≤ X₅ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₇₂: l2(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l1(X₁, X₂+1, X₄, X₅, X₆, X₇, X₉) :|: 1+X₁ ≤ X₄ ∧ X₄ ≤ 6 ∧ X₄ ≤ 6+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ X₁ ≤ 5+X₄ ∧ 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₆₉: l2(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l2(X₁, X₂, X₄+1, X₅, X₆, X₇, X₉) :|: X₄ ≤ X₁ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 6 ∧ X₄ ≤ 6+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ X₁ ≤ 5+X₄ ∧ 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₇₀: l2(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l2(X₁, X₂, X₄+1, X₅, X₆, X₇, X₉) :|: 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ 6 ∧ X₄ ≤ 6+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ X₁ ≤ 5+X₄ ∧ 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₇₁: l2(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l2(X₁, X₂, X₂+1, X₅, X₆, X₇, X₉) :|: X₄ ≤ X₁ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 6 ∧ X₄ ≤ 6+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ X₁ ≤ 5+X₄ ∧ 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₇₃: l3(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l4(X₁, X₂, X₄, X₅, X₆, X₆+1, X₉) :|: X₆+1 ≤ X₅ ∧ X₆ ≤ 6 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 11 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 11 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₇₄: l3(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l5(X₁, X₂, X₄, X₅, 1, X₇, X₉) :|: X₅ ≤ X₆ ∧ X₆ ≤ 6 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 11 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 11 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₇₇: l4(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l4(X₁, X₂, X₄, X₅, 0, X₇+1, X₉) :|: X₇ ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₇₈: l4(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l6(X₁, X₂, X₄, X₅, X₆, X₆+1, X₉) :|: 1+X₅ ≤ X₇ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₇₆: l4(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l7(X₁, X₂, X₄, X₅, X₆, X₇, 0) :|: 1 ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₈₀: l5(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l10(X₁, X₂, X₄, X₅, X₅-1, X₇, X₉) :|: 1+X₅ ≤ X₆ ∧ X₆ ≤ 6 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 11 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 11 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₇₉: l5(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l9(X₁, X₂, X₄, X₅, X₆, 0, X₉) :|: X₆ ≤ X₅ ∧ X₆ ≤ 6 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 11 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 11 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₈₂: l6(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l3(X₁, X₂, X₄, X₅, X₆+1, X₇, X₉) :|: 1+X₅ ≤ X₇ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 11 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 10 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₈₁: l6(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l8(X₁, X₂, X₄, X₅, X₆, X₇, 0) :|: X₇ ≤ X₅ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 11 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 10 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₈₄: l7(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l4(X₁, X₂, X₄, X₅, X₆, X₇+1, X₉) :|: X₆ ≤ X₉ ∧ X₉ ≤ 4 ∧ 1+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 9 ∧ X₉ ≤ X₆ ∧ X₆+X₉ ≤ 8 ∧ 1+X₉ ≤ X₅ ∧ X₅+X₉ ≤ 9 ∧ 2+X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 9 ∧ 0 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ 5+X₉ ∧ 1 ≤ X₆+X₉ ∧ X₆ ≤ 4+X₉ ∧ 5 ≤ X₅+X₉ ∧ X₅ ≤ 5+X₉ ∧ 6 ≤ X₂+X₉ ∧ 5 ≤ X₁+X₉ ∧ X₁ ≤ 5+X₉ ∧ X₇ ≤ 5 ∧ X₇ ≤ 4+X₆ ∧ X₆+X₇ ≤ 9 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 7 ≤ X₅+X₇ ∧ X₅ ≤ 3+X₇ ∧ 8 ≤ X₂+X₇ ∧ 7 ≤ X₁+X₇ ∧ X₁ ≤ 3+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₈₃: l7(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l7(X₁, X₂, X₄, X₅, X₆, X₇, X₉+1) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ 4 ∧ 1+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 9 ∧ X₉ ≤ X₆ ∧ X₆+X₉ ≤ 8 ∧ 1+X₉ ≤ X₅ ∧ X₅+X₉ ≤ 9 ∧ 2+X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 9 ∧ 0 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ 5+X₉ ∧ 1 ≤ X₆+X₉ ∧ X₆ ≤ 4+X₉ ∧ 5 ≤ X₅+X₉ ∧ X₅ ≤ 5+X₉ ∧ 6 ≤ X₂+X₉ ∧ 5 ≤ X₁+X₉ ∧ X₁ ≤ 5+X₉ ∧ X₇ ≤ 5 ∧ X₇ ≤ 4+X₆ ∧ X₆+X₇ ≤ 9 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 7 ≤ X₅+X₇ ∧ X₅ ≤ 3+X₇ ∧ 8 ≤ X₂+X₇ ∧ 7 ≤ X₁+X₇ ∧ X₁ ≤ 3+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₈₆: l8(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l6(X₁, X₂, X₄, X₅, X₆, X₇+1, X₉) :|: 1+X₆ ≤ X₉ ∧ X₉ ≤ 5 ∧ X₉ ≤ X₇ ∧ X₇+X₉ ≤ 10 ∧ X₉ ≤ 1+X₆ ∧ X₆+X₉ ≤ 9 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 10 ∧ 1+X₉ ≤ X₂ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 10 ∧ 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 5+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ 4+X₉ ∧ 5 ≤ X₅+X₉ ∧ X₅ ≤ 5+X₉ ∧ 6 ≤ X₂+X₉ ∧ 5 ≤ X₁+X₉ ∧ X₁ ≤ 5+X₉ ∧ X₇ ≤ 5 ∧ X₇ ≤ 5+X₆ ∧ X₆+X₇ ≤ 9 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₈₅: l8(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l8(X₁, X₂, X₄, X₅, X₆, X₇, X₉+1) :|: X₉ ≤ X₆ ∧ X₉ ≤ 5 ∧ X₉ ≤ X₇ ∧ X₇+X₉ ≤ 10 ∧ X₉ ≤ 1+X₆ ∧ X₆+X₉ ≤ 9 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 10 ∧ 1+X₉ ≤ X₂ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 10 ∧ 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 5+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ 4+X₉ ∧ 5 ≤ X₅+X₉ ∧ X₅ ≤ 5+X₉ ∧ 6 ≤ X₂+X₉ ∧ 5 ≤ X₁+X₉ ∧ X₁ ≤ 5+X₉ ∧ X₇ ≤ 5 ∧ X₇ ≤ 5+X₆ ∧ X₆+X₇ ≤ 9 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₈₈: l9(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l5(X₁, X₂, X₄, X₅, X₆+1, X₇, X₉) :|: X₆ ≤ X₇ ∧ X₇ ≤ 5 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 5+X₇ ∧ 5 ≤ X₅+X₇ ∧ X₅ ≤ 5+X₇ ∧ 6 ≤ X₂+X₇ ∧ 5 ≤ X₁+X₇ ∧ X₁ ≤ 5+X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 10 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
t₈₇: l9(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l9(X₁, X₂, X₄, X₅, X₆, X₇+1, X₉) :|: X₇+1 ≤ X₆ ∧ X₇ ≤ 5 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 5+X₇ ∧ 5 ≤ X₅+X₇ ∧ X₅ ≤ 5+X₇ ∧ 6 ≤ X₂+X₇ ∧ 5 ≤ X₁+X₇ ∧ X₁ ≤ 5+X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 10 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁
MPRF for transition t₆₃: l1(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l2(X₁, X₂, 0, X₅, X₆, X₇, X₉) :|: X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
6 {O(1)}
MPRF:
l2 [X₁-X₂ ]
l1 [X₁+1-X₂ ]
MPRF for transition t₆₉: l2(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l2(X₁, X₂, X₄+1, X₅, X₆, X₇, X₉) :|: X₄ ≤ X₁ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 6 ∧ X₄ ≤ 6+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ X₁ ≤ 5+X₄ ∧ 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
181 {O(1)}
MPRF:
l2 [181-30⋅X₂-5⋅X₄ ]
l1 [181-30⋅X₂ ]
MPRF for transition t₇₁: l2(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l2(X₁, X₂, X₂+1, X₅, X₆, X₇, X₉) :|: X₄ ≤ X₁ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 6 ∧ X₄ ≤ 6+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ X₁ ≤ 5+X₄ ∧ 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
36 {O(1)}
MPRF:
l2 [7⋅X₁+1-6⋅X₂-X₄ ]
l1 [7⋅X₁+1-6⋅X₂ ]
MPRF for transition t₇₀: l2(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l2(X₁, X₂, X₄+1, X₅, X₆, X₇, X₉) :|: 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ 6 ∧ X₄ ≤ 6+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ X₁ ≤ 5+X₄ ∧ 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
156 {O(1)}
MPRF:
l2 [5⋅X₁+1-5⋅X₄ ]
l1 [5⋅X₁-5⋅X₄ ]
MPRF for transition t₇₂: l2(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l1(X₁, X₂+1, X₄, X₅, X₆, X₇, X₉) :|: 1+X₁ ≤ X₄ ∧ X₄ ≤ 6 ∧ X₄ ≤ 6+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ X₁ ≤ 5+X₄ ∧ 0 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
6 {O(1)}
MPRF:
l2 [1 ]
l1 [0 ]
MPRF for transition t₇₃: l3(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l4(X₁, X₂, X₄, X₅, X₆, X₆+1, X₉) :|: X₆+1 ≤ X₅ ∧ X₆ ≤ 6 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 11 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 11 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
18 {O(1)}
MPRF:
l3 [X₂+1-X₆ ]
l7 [X₂-X₆ ]
l4 [X₂-X₆ ]
l8 [X₂-X₆ ]
l6 [X₂-X₆ ]
MPRF for transition t₇₆: l4(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l7(X₁, X₂, X₄, X₅, X₆, X₇, 0) :|: 1 ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
44 {O(1)}
MPRF:
l3 [2⋅X₂+10-5⋅X₆ ]
l7 [2⋅X₂+10-4⋅X₆-X₇ ]
l4 [2⋅X₂+11-4⋅X₆-X₇ ]
l8 [2⋅X₂+X₅-4⋅X₆ ]
l6 [2⋅X₂+X₅-4⋅X₆ ]
MPRF for transition t₇₇: l4(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l4(X₁, X₂, X₄, X₅, 0, X₇+1, X₉) :|: X₇ ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
35 {O(1)}
MPRF:
l3 [6⋅X₅-X₁-25⋅X₆ ]
l7 [6⋅X₅-20⋅X₆-5⋅X₇ ]
l4 [6⋅X₅-20⋅X₆-5⋅X₇ ]
l8 [6⋅X₅-25⋅X₆-30 ]
l6 [6⋅X₅-25⋅X₆-30 ]
MPRF for transition t₇₈: l4(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l6(X₁, X₂, X₄, X₅, X₆, X₆+1, X₉) :|: 1+X₅ ≤ X₇ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
25 {O(1)}
MPRF:
l3 [25-5⋅X₆ ]
l7 [25-5⋅X₆ ]
l4 [25-5⋅X₆ ]
l8 [20-5⋅X₆ ]
l6 [20-5⋅X₆ ]
MPRF for transition t₈₁: l6(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l8(X₁, X₂, X₄, X₅, X₆, X₇, 0) :|: X₇ ≤ X₅ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 11 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 10 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
85 {O(1)}
MPRF:
l3 [5⋅X₂-5⋅X₆ ]
l7 [5⋅X₂-5⋅X₆ ]
l4 [5⋅X₂-5⋅X₆ ]
l8 [5⋅X₂-4⋅X₆-X₇ ]
l6 [5⋅X₂+1-4⋅X₆-X₇ ]
MPRF for transition t₈₂: l6(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l3(X₁, X₂, X₄, X₅, X₆+1, X₇, X₉) :|: 1+X₅ ≤ X₇ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 11 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 10 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
10 {O(1)}
MPRF:
l3 [2⋅X₅-X₆ ]
l7 [2⋅X₁-X₆ ]
l4 [2⋅X₁-X₆ ]
l8 [2⋅X₅-X₆ ]
l6 [X₅+5-X₆ ]
MPRF for transition t₈₃: l7(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l7(X₁, X₂, X₄, X₅, X₆, X₇, X₉+1) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ 4 ∧ 1+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 9 ∧ X₉ ≤ X₆ ∧ X₆+X₉ ≤ 8 ∧ 1+X₉ ≤ X₅ ∧ X₅+X₉ ≤ 9 ∧ 2+X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 9 ∧ 0 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ 5+X₉ ∧ 1 ≤ X₆+X₉ ∧ X₆ ≤ 4+X₉ ∧ 5 ≤ X₅+X₉ ∧ X₅ ≤ 5+X₉ ∧ 6 ≤ X₂+X₉ ∧ 5 ≤ X₁+X₉ ∧ X₁ ≤ 5+X₉ ∧ X₇ ≤ 5 ∧ X₇ ≤ 4+X₆ ∧ X₆+X₇ ≤ 9 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 7 ≤ X₅+X₇ ∧ X₅ ≤ 3+X₇ ∧ 8 ≤ X₂+X₇ ∧ 7 ≤ X₁+X₇ ∧ X₁ ≤ 3+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
465 {O(1)}
MPRF:
l3 [89⋅X₅-4⋅X₁-100⋅X₆ ]
l7 [445-80⋅X₆-20⋅X₇-5⋅X₉ ]
l4 [89⋅X₅-80⋅X₆-20⋅X₇ ]
l8 [65⋅X₅-80⋅X₆ ]
l6 [65⋅X₅-80⋅X₆ ]
MPRF for transition t₈₄: l7(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l4(X₁, X₂, X₄, X₅, X₆, X₇+1, X₉) :|: X₆ ≤ X₉ ∧ X₉ ≤ 4 ∧ 1+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 9 ∧ X₉ ≤ X₆ ∧ X₆+X₉ ≤ 8 ∧ 1+X₉ ≤ X₅ ∧ X₅+X₉ ≤ 9 ∧ 2+X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 9 ∧ 0 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ 5+X₉ ∧ 1 ≤ X₆+X₉ ∧ X₆ ≤ 4+X₉ ∧ 5 ≤ X₅+X₉ ∧ X₅ ≤ 5+X₉ ∧ 6 ≤ X₂+X₉ ∧ 5 ≤ X₁+X₉ ∧ X₁ ≤ 5+X₉ ∧ X₇ ≤ 5 ∧ X₇ ≤ 4+X₆ ∧ X₆+X₇ ≤ 9 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 7 ≤ X₅+X₇ ∧ X₅ ≤ 3+X₇ ∧ 8 ≤ X₂+X₇ ∧ 7 ≤ X₁+X₇ ∧ X₁ ≤ 3+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
29 {O(1)}
MPRF:
l3 [4⋅X₁+9-5⋅X₆ ]
l7 [30-5⋅X₆-X₇ ]
l4 [30-5⋅X₆-X₇ ]
l8 [24-5⋅X₆ ]
l6 [24-5⋅X₆ ]
MPRF for transition t₈₅: l8(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l8(X₁, X₂, X₄, X₅, X₆, X₇, X₉+1) :|: X₉ ≤ X₆ ∧ X₉ ≤ 5 ∧ X₉ ≤ X₇ ∧ X₇+X₉ ≤ 10 ∧ X₉ ≤ 1+X₆ ∧ X₆+X₉ ≤ 9 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 10 ∧ 1+X₉ ≤ X₂ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 10 ∧ 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 5+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ 4+X₉ ∧ 5 ≤ X₅+X₉ ∧ X₅ ≤ 5+X₉ ∧ 6 ≤ X₂+X₉ ∧ 5 ≤ X₁+X₉ ∧ X₁ ≤ 5+X₉ ∧ X₇ ≤ 5 ∧ X₇ ≤ 5+X₆ ∧ X₆+X₇ ≤ 9 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
120 {O(1)}
MPRF:
l3 [23⋅X₅-X₁-25⋅X₆ ]
l7 [22⋅X₅-25⋅X₆ ]
l4 [22⋅X₅-25⋅X₆ ]
l8 [115-20⋅X₆-5⋅X₇-X₉ ]
l6 [23⋅X₅-20⋅X₆-5⋅X₇ ]
MPRF for transition t₈₆: l8(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l6(X₁, X₂, X₄, X₅, X₆, X₇+1, X₉) :|: 1+X₆ ≤ X₉ ∧ X₉ ≤ 5 ∧ X₉ ≤ X₇ ∧ X₇+X₉ ≤ 10 ∧ X₉ ≤ 1+X₆ ∧ X₆+X₉ ≤ 9 ∧ X₉ ≤ X₅ ∧ X₅+X₉ ≤ 10 ∧ 1+X₉ ≤ X₂ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 10 ∧ 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ 5+X₉ ∧ 0 ≤ X₆+X₉ ∧ X₆ ≤ 4+X₉ ∧ 5 ≤ X₅+X₉ ∧ X₅ ≤ 5+X₉ ∧ 6 ≤ X₂+X₉ ∧ 5 ≤ X₁+X₉ ∧ X₁ ≤ 5+X₉ ∧ X₇ ≤ 5 ∧ X₇ ≤ 5+X₆ ∧ X₆+X₇ ≤ 9 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
85 {O(1)}
MPRF:
l3 [17⋅X₁-20⋅X₆ ]
l7 [17⋅X₅-20⋅X₆ ]
l4 [17⋅X₅-20⋅X₆ ]
l8 [4⋅X₅+69-16⋅X₆-4⋅X₇ ]
l6 [4⋅X₅+69-16⋅X₆-4⋅X₇ ]
MPRF for transition t₇₉: l5(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l9(X₁, X₂, X₄, X₅, X₆, 0, X₉) :|: X₆ ≤ X₅ ∧ X₆ ≤ 6 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 11 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 11 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
8 {O(1)}
MPRF:
l9 [6-X₆ ]
l5 [7-X₆ ]
MPRF for transition t₈₇: l9(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l9(X₁, X₂, X₄, X₅, X₆, X₇+1, X₉) :|: X₇+1 ≤ X₆ ∧ X₇ ≤ 5 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 5+X₇ ∧ 5 ≤ X₅+X₇ ∧ X₅ ≤ 5+X₇ ∧ 6 ≤ X₂+X₇ ∧ 5 ≤ X₁+X₇ ∧ X₁ ≤ 5+X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 10 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
36 {O(1)}
MPRF:
l9 [31-5⋅X₆-X₇ ]
l5 [31-5⋅X₆ ]
MPRF for transition t₈₈: l9(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l5(X₁, X₂, X₄, X₅, X₆+1, X₇, X₉) :|: X₆ ≤ X₇ ∧ X₇ ≤ 5 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 10 ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 10 ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 5+X₇ ∧ 5 ≤ X₅+X₇ ∧ X₅ ≤ 5+X₇ ∧ 6 ≤ X₂+X₇ ∧ 5 ≤ X₁+X₇ ∧ X₁ ≤ 5+X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 10 ∧ 1 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ 4+X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ 4+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
41 {O(1)}
MPRF:
l9 [26-5⋅X₆ ]
l5 [31-X₁-5⋅X₆ ]
MPRF for transition t₆₅: l10(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l11(X₁, X₂, X₄, X₅, X₆, X₆+1, X₉) :|: 0 ≤ X₆ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ 1+X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ 6+X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ 6+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
5 {O(1)}
MPRF:
l11 [X₆ ]
l10 [X₆+1 ]
MPRF for transition t₆₇: l11(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l11(X₁, X₂, X₄, X₅, X₆, X₇+1, X₉) :|: X₇ ≤ X₅ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
135 {O(1)}
MPRF:
l11 [6⋅X₅+30⋅X₆-5⋅X₇ ]
l10 [6⋅X₅+25⋅X₆-X₁ ]
MPRF for transition t₆₈: l11(X₁, X₂, X₄, X₅, X₆, X₇, X₉) → l10(X₁, X₂, X₄, X₅, X₆-1, X₇, X₉) :|: 1+X₅ ≤ X₇ ∧ X₇ ≤ 6 ∧ X₇ ≤ 6+X₆ ∧ X₆+X₇ ≤ 10 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 11 ∧ X₇ ≤ X₂ ∧ X₇ ≤ 1+X₁ ∧ X₁+X₇ ≤ 11 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ X₅ ≤ 4+X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ 4+X₇ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 6 ≤ X₂+X₆ ∧ 5 ≤ X₁+X₆ ∧ X₁ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 10 ∧ 5 ≤ X₅ ∧ 11 ≤ X₂+X₅ ∧ 10 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 5 ∧ 5 ≤ X₁ of depth 1:
new bound:
15 {O(1)}
MPRF:
l11 [X₆+1 ]
l10 [X₁+X₆+1-X₅ ]
All Bounds
Timebounds
Overall timebound:1546 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: 6 {O(1)}
t₆₄: 1 {O(1)}
t₆₅: 5 {O(1)}
t₆₆: 1 {O(1)}
t₆₇: 135 {O(1)}
t₆₈: 15 {O(1)}
t₆₉: 181 {O(1)}
t₇₀: 156 {O(1)}
t₇₁: 36 {O(1)}
t₇₂: 6 {O(1)}
t₇₃: 18 {O(1)}
t₇₄: 1 {O(1)}
t₇₆: 44 {O(1)}
t₇₇: 35 {O(1)}
t₇₈: 25 {O(1)}
t₇₉: 8 {O(1)}
t₈₀: 1 {O(1)}
t₈₁: 85 {O(1)}
t₈₂: 10 {O(1)}
t₈₃: 465 {O(1)}
t₈₄: 29 {O(1)}
t₈₅: 120 {O(1)}
t₈₆: 85 {O(1)}
t₈₇: 36 {O(1)}
t₈₈: 41 {O(1)}
Costbounds
Overall costbound: 1546 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: 6 {O(1)}
t₆₄: 1 {O(1)}
t₆₅: 5 {O(1)}
t₆₆: 1 {O(1)}
t₆₇: 135 {O(1)}
t₆₈: 15 {O(1)}
t₆₉: 181 {O(1)}
t₇₀: 156 {O(1)}
t₇₁: 36 {O(1)}
t₇₂: 6 {O(1)}
t₇₃: 18 {O(1)}
t₇₄: 1 {O(1)}
t₇₆: 44 {O(1)}
t₇₇: 35 {O(1)}
t₇₈: 25 {O(1)}
t₇₉: 8 {O(1)}
t₈₀: 1 {O(1)}
t₈₁: 85 {O(1)}
t₈₂: 10 {O(1)}
t₈₃: 465 {O(1)}
t₈₄: 29 {O(1)}
t₈₅: 120 {O(1)}
t₈₆: 85 {O(1)}
t₈₇: 36 {O(1)}
t₈₈: 41 {O(1)}
Sizebounds
t₆₂, X₁: 5 {O(1)}
t₆₂, X₂: 0 {O(1)}
t₆₂, X₄: X₄ {O(n)}
t₆₂, X₅: X₅ {O(n)}
t₆₂, X₆: X₆ {O(n)}
t₆₂, X₇: X₇ {O(n)}
t₆₂, X₉: X₉ {O(n)}
t₆₃, X₁: 5 {O(1)}
t₆₃, X₂: 5 {O(1)}
t₆₃, X₄: 0 {O(1)}
t₆₃, X₅: X₅ {O(n)}
t₆₃, X₆: X₆ {O(n)}
t₆₃, X₇: X₇ {O(n)}
t₆₃, X₉: X₉ {O(n)}
t₆₄, X₁: 5 {O(1)}
t₆₄, X₂: 17 {O(1)}
t₆₄, X₄: 6 {O(1)}
t₆₄, X₅: 5 {O(1)}
t₆₄, X₆: 0 {O(1)}
t₆₄, X₇: X₇ {O(n)}
t₆₄, X₉: X₉ {O(n)}
t₆₅, X₁: 5 {O(1)}
t₆₅, X₂: 17 {O(1)}
t₆₅, X₄: 6 {O(1)}
t₆₅, X₅: 5 {O(1)}
t₆₅, X₆: 4 {O(1)}
t₆₅, X₇: 5 {O(1)}
t₆₅, X₉: 5 {O(1)}
t₆₆, X₁: 5 {O(1)}
t₆₆, X₂: 17 {O(1)}
t₆₆, X₄: 6 {O(1)}
t₆₆, X₅: 5 {O(1)}
t₆₆, X₆: 1 {O(1)}
t₆₆, X₇: 6 {O(1)}
t₆₆, X₉: 5 {O(1)}
t₆₇, X₁: 5 {O(1)}
t₆₇, X₂: 17 {O(1)}
t₆₇, X₄: 6 {O(1)}
t₆₇, X₅: 5 {O(1)}
t₆₇, X₆: 4 {O(1)}
t₆₇, X₇: 6 {O(1)}
t₆₇, X₉: 5 {O(1)}
t₆₈, X₁: 5 {O(1)}
t₆₈, X₂: 17 {O(1)}
t₆₈, X₄: 6 {O(1)}
t₆₈, X₅: 5 {O(1)}
t₆₈, X₆: 3 {O(1)}
t₆₈, X₇: 6 {O(1)}
t₆₈, X₉: 5 {O(1)}
t₆₉, X₁: 5 {O(1)}
t₆₉, X₂: 4 {O(1)}
t₆₉, X₄: 6 {O(1)}
t₆₉, X₅: X₅ {O(n)}
t₆₉, X₆: X₆ {O(n)}
t₆₉, X₇: X₇ {O(n)}
t₆₉, X₉: X₉ {O(n)}
t₇₀, X₁: 5 {O(1)}
t₇₀, X₂: 5 {O(1)}
t₇₀, X₄: 6 {O(1)}
t₇₀, X₅: X₅ {O(n)}
t₇₀, X₆: X₆ {O(n)}
t₇₀, X₇: X₇ {O(n)}
t₇₀, X₉: X₉ {O(n)}
t₇₁, X₁: 5 {O(1)}
t₇₁, X₂: 5 {O(1)}
t₇₁, X₄: 6 {O(1)}
t₇₁, X₅: X₅ {O(n)}
t₇₁, X₆: X₆ {O(n)}
t₇₁, X₇: X₇ {O(n)}
t₇₁, X₉: X₉ {O(n)}
t₇₂, X₁: 5 {O(1)}
t₇₂, X₂: 17 {O(1)}
t₇₂, X₄: 6 {O(1)}
t₇₂, X₅: X₅ {O(n)}
t₇₂, X₆: X₆ {O(n)}
t₇₂, X₇: X₇ {O(n)}
t₇₂, X₉: X₉ {O(n)}
t₇₃, X₁: 5 {O(1)}
t₇₃, X₂: 17 {O(1)}
t₇₃, X₄: 6 {O(1)}
t₇₃, X₅: 5 {O(1)}
t₇₃, X₆: 4 {O(1)}
t₇₃, X₇: 5 {O(1)}
t₇₃, X₉: X₉+5 {O(n)}
t₇₄, X₁: 5 {O(1)}
t₇₄, X₂: 17 {O(1)}
t₇₄, X₄: 6 {O(1)}
t₇₄, X₅: 5 {O(1)}
t₇₄, X₆: 1 {O(1)}
t₇₄, X₇: 6 {O(1)}
t₇₄, X₉: 5 {O(1)}
t₇₆, X₁: 5 {O(1)}
t₇₆, X₂: 17 {O(1)}
t₇₆, X₄: 6 {O(1)}
t₇₆, X₅: 5 {O(1)}
t₇₆, X₆: 4 {O(1)}
t₇₆, X₇: 5 {O(1)}
t₇₆, X₉: 0 {O(1)}
t₇₇, X₁: 5 {O(1)}
t₇₇, X₂: 17 {O(1)}
t₇₇, X₄: 6 {O(1)}
t₇₇, X₅: 5 {O(1)}
t₇₇, X₆: 0 {O(1)}
t₇₇, X₇: 6 {O(1)}
t₇₇, X₉: X₉+5 {O(n)}
t₇₈, X₁: 5 {O(1)}
t₇₈, X₂: 17 {O(1)}
t₇₈, X₄: 6 {O(1)}
t₇₈, X₅: 5 {O(1)}
t₇₈, X₆: 4 {O(1)}
t₇₈, X₇: 5 {O(1)}
t₇₈, X₉: X₉+9 {O(n)}
t₇₉, X₁: 5 {O(1)}
t₇₉, X₂: 17 {O(1)}
t₇₉, X₄: 6 {O(1)}
t₇₉, X₅: 5 {O(1)}
t₇₉, X₆: 5 {O(1)}
t₇₉, X₇: 0 {O(1)}
t₇₉, X₉: 5 {O(1)}
t₈₀, X₁: 5 {O(1)}
t₈₀, X₂: 17 {O(1)}
t₈₀, X₄: 6 {O(1)}
t₈₀, X₅: 5 {O(1)}
t₈₀, X₆: 4 {O(1)}
t₈₀, X₇: 5 {O(1)}
t₈₀, X₉: 5 {O(1)}
t₈₁, X₁: 5 {O(1)}
t₈₁, X₂: 17 {O(1)}
t₈₁, X₄: 6 {O(1)}
t₈₁, X₅: 5 {O(1)}
t₈₁, X₆: 4 {O(1)}
t₈₁, X₇: 5 {O(1)}
t₈₁, X₉: 0 {O(1)}
t₈₂, X₁: 5 {O(1)}
t₈₂, X₂: 17 {O(1)}
t₈₂, X₄: 6 {O(1)}
t₈₂, X₅: 5 {O(1)}
t₈₂, X₆: 6 {O(1)}
t₈₂, X₇: 6 {O(1)}
t₈₂, X₉: 5 {O(1)}
t₈₃, X₁: 5 {O(1)}
t₈₃, X₂: 17 {O(1)}
t₈₃, X₄: 6 {O(1)}
t₈₃, X₅: 5 {O(1)}
t₈₃, X₆: 4 {O(1)}
t₈₃, X₇: 5 {O(1)}
t₈₃, X₉: 4 {O(1)}
t₈₄, X₁: 5 {O(1)}
t₈₄, X₂: 17 {O(1)}
t₈₄, X₄: 6 {O(1)}
t₈₄, X₅: 5 {O(1)}
t₈₄, X₆: 4 {O(1)}
t₈₄, X₇: 6 {O(1)}
t₈₄, X₉: 4 {O(1)}
t₈₅, X₁: 5 {O(1)}
t₈₅, X₂: 17 {O(1)}
t₈₅, X₄: 6 {O(1)}
t₈₅, X₅: 5 {O(1)}
t₈₅, X₆: 4 {O(1)}
t₈₅, X₇: 5 {O(1)}
t₈₅, X₉: 5 {O(1)}
t₈₆, X₁: 5 {O(1)}
t₈₆, X₂: 17 {O(1)}
t₈₆, X₄: 6 {O(1)}
t₈₆, X₅: 5 {O(1)}
t₈₆, X₆: 4 {O(1)}
t₈₆, X₇: 6 {O(1)}
t₈₆, X₉: 5 {O(1)}
t₈₇, X₁: 5 {O(1)}
t₈₇, X₂: 17 {O(1)}
t₈₇, X₄: 6 {O(1)}
t₈₇, X₅: 5 {O(1)}
t₈₇, X₆: 5 {O(1)}
t₈₇, X₇: 5 {O(1)}
t₈₇, X₉: 5 {O(1)}
t₈₈, X₁: 5 {O(1)}
t₈₈, X₂: 17 {O(1)}
t₈₈, X₄: 6 {O(1)}
t₈₈, X₅: 5 {O(1)}
t₈₈, X₆: 6 {O(1)}
t₈₈, X₇: 5 {O(1)}
t₈₈, X₉: 5 {O(1)}