Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars: D, E
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂) → l7(X₀, X₁, X₂)
t₅: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₂+1 ≤ X₁
t₆: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁ ≤ X₂
t₇: l2(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1) :|: E+1 ≤ D
t₈: l2(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1) :|: D ≤ E
t₉: l3(X₀, X₁, X₂) → l5(X₀+1, X₁, X₂)
t₄: l4(X₀, X₁, X₂) → l1(X₀, X₁, X₀+1)
t₂: l5(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 2+X₀ ≤ X₁
t₃: l5(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₁ ≤ X₀+1
t₁₀: l6(X₀, X₁, X₂) → l8(X₀, X₁, X₂)
t₁: l7(X₀, X₁, X₂) → l5(0, X₁, X₂)
Preprocessing
Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l2
Found invariant X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ X₀ for location l5
Found invariant X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ for location l8
Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1
Found invariant 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars: D, E
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂) → l7(X₀, X₁, X₂)
t₅: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₂+1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇: l2(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1) :|: E+1 ≤ D ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₈: l2(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1) :|: D ≤ E ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₉: l3(X₀, X₁, X₂) → l5(X₀+1, X₁, X₂) :|: X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₄: l4(X₀, X₁, X₂) → l1(X₀, X₁, X₀+1) :|: 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₂: l5(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₃: l5(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₁ ≤ X₀+1 ∧ 0 ≤ X₀
t₁₀: l6(X₀, X₁, X₂) → l8(X₀, X₁, X₂) :|: X₁ ≤ 1+X₀ ∧ 0 ≤ X₀
t₁: l7(X₀, X₁, X₂) → l5(0, X₁, X₂)
MPRF for transition t₆: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁ {O(n)}
MPRF:
l2 [X₁-X₀ ]
l3 [X₂-X₀-1 ]
l1 [X₁-X₀ ]
l5 [X₁-X₀ ]
l4 [X₁-X₀ ]
MPRF for transition t₉: l3(X₀, X₁, X₂) → l5(X₀+1, X₁, X₂) :|: X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF:
l2 [X₁+1-X₀ ]
l3 [X₂+1-X₀ ]
l1 [X₁+1-X₀ ]
l5 [X₁+1-X₀ ]
l4 [X₁+1-X₀ ]
MPRF for transition t₄: l4(X₀, X₁, X₂) → l1(X₀, X₁, X₀+1) :|: 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF:
l2 [X₁-X₀-2 ]
l3 [X₁-X₀-2 ]
l1 [X₁-X₀-2 ]
l5 [X₁-X₀-1 ]
l4 [X₁-X₀-1 ]
MPRF for transition t₂: l5(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF:
l2 [X₁-X₀ ]
l3 [X₁-X₀ ]
l1 [X₁-X₀ ]
l5 [X₁+1-X₀ ]
l4 [X₁-X₀ ]
MPRF for transition t₅: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₂+1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF:
l2 [X₁-X₂ ]
l3 [X₁-X₂ ]
l5 [0 ]
l4 [X₁ ]
l1 [X₁+1-X₂ ]
MPRF for transition t₇: l2(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1) :|: E+1 ≤ D ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁⋅X₁+3⋅X₁+1 {O(n^2)}
MPRF:
l2 [X₁-X₂ ]
l3 [X₁-X₂ ]
l5 [0 ]
l4 [X₁-X₀ ]
l1 [X₁-X₂ ]
MPRF for transition t₈: l2(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1) :|: D ≤ E ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF:
l2 [X₁-X₂ ]
l3 [X₁-X₂ ]
l5 [0 ]
l4 [X₁ ]
l1 [X₁-X₂ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₆: l1→l3
Found invariant X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ for location l6
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l1___2
Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l2___1
Found invariant 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l2___3
Found invariant 0 ≤ X₀ for location l5
Found invariant X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ for location l8
Found invariant 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1
Found invariant 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l3
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₈₀: l1(X₀, X₁, X₂) → n_l2___3(X₀, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₈₃: n_l2___3(X₀, X₁, X₂) → n_l1___2(X₀, X₁, X₂+1) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₈₄: n_l2___3(X₀, X₁, X₂) → n_l1___2(X₀, X₁, X₂+1) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
MPRF for transition t₇₉: n_l1___2(X₀, X₁, X₂) → n_l2___1(X₀, X₁, X₂) :|: 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 2+X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₀ ∧ 2+X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁+12⋅X₁+8 {O(n^2)}
MPRF:
n_l2___3 [0 ]
l1 [0 ]
l5 [0 ]
l4 [0 ]
l3 [X₁-X₂ ]
n_l2___1 [X₁-X₂ ]
n_l1___2 [X₁+1-X₂ ]
MPRF for transition t₉₁: n_l1___2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF:
l1 [X₁+1-X₀ ]
l5 [X₁+1-X₀ ]
l4 [X₁+1-X₀ ]
l3 [X₁-X₀ ]
n_l2___1 [X₁+1-X₀ ]
n_l2___3 [X₁+1-X₀ ]
n_l1___2 [X₁+1-X₀ ]
MPRF for transition t₈₁: n_l2___1(X₀, X₁, X₂) → n_l1___2(X₀, X₁, X₂+1) :|: 1+X₂ ≤ X₁ ∧ 2+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁+10⋅X₁+6 {O(n^2)}
MPRF:
n_l2___3 [0 ]
l1 [0 ]
l5 [0 ]
l4 [0 ]
l3 [0 ]
n_l2___1 [X₁-X₂ ]
n_l1___2 [X₁-X₂ ]
MPRF for transition t₈₂: n_l2___1(X₀, X₁, X₂) → n_l1___2(X₀, X₁, X₂+1) :|: 1+X₂ ≤ X₁ ∧ 2+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁+10⋅X₁+6 {O(n^2)}
MPRF:
n_l2___3 [0 ]
l1 [0 ]
l5 [0 ]
l4 [0 ]
l3 [0 ]
n_l2___1 [X₁-X₂ ]
n_l1___2 [X₁-X₂ ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:4⋅X₁⋅X₁+9⋅X₁+8 {O(n^2)}
t₀: 1 {O(1)}
t₅: X₁⋅X₁+X₁ {O(n^2)}
t₆: X₁ {O(n)}
t₇: 2⋅X₁⋅X₁+3⋅X₁+1 {O(n^2)}
t₈: X₁⋅X₁+X₁ {O(n^2)}
t₉: X₁+1 {O(n)}
t₄: X₁+1 {O(n)}
t₂: X₁+1 {O(n)}
t₃: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁: 1 {O(1)}
Costbounds
Overall costbound: 4⋅X₁⋅X₁+9⋅X₁+8 {O(n^2)}
t₀: 1 {O(1)}
t₅: X₁⋅X₁+X₁ {O(n^2)}
t₆: X₁ {O(n)}
t₇: 2⋅X₁⋅X₁+3⋅X₁+1 {O(n^2)}
t₈: X₁⋅X₁+X₁ {O(n^2)}
t₉: X₁+1 {O(n)}
t₄: X₁+1 {O(n)}
t₂: X₁+1 {O(n)}
t₃: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₅, X₀: X₁+1 {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: 3⋅X₁⋅X₁+5⋅X₁+3 {O(n^2)}
t₆, X₀: X₁+1 {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: 6⋅X₁⋅X₁+10⋅X₁+6 {O(n^2)}
t₇, X₀: X₁+1 {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: 3⋅X₁⋅X₁+5⋅X₁+3 {O(n^2)}
t₈, X₀: X₁+1 {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: 3⋅X₁⋅X₁+5⋅X₁+3 {O(n^2)}
t₉, X₀: X₁+1 {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: 6⋅X₁⋅X₁+10⋅X₁+6 {O(n^2)}
t₄, X₀: X₁+1 {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₁+2 {O(n)}
t₂, X₀: X₁+1 {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: 6⋅X₁⋅X₁+10⋅X₁+X₂+6 {O(n^2)}
t₃, X₀: X₁+1 {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: 6⋅X₁⋅X₁+10⋅X₁+X₂+6 {O(n^2)}
t₁₀, X₀: X₁+1 {O(n)}
t₁₀, X₁: 2⋅X₁ {O(n)}
t₁₀, X₂: 6⋅X₁⋅X₁+10⋅X₁+X₂+6 {O(n^2)}
t₁, X₀: 0 {O(1)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}