Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈
Temp_Vars: A2, A3, B2, B3, C2, C3, D2, D3, E2, F2, G2, H2, I2, J2, K2, L2, M2, N2, O2, P2, Q2, R2, S2, T2, U2, V2, W2, X1, X2, Y1, Y2, Z1, Z2
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₃₇: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l3(A2, X₁, D2, X₃, C2, X₅, I2, C3, H2, X₉, X₁₀, B3, X₁₂, Y2, X₁₄, Z2, X₁₆, A3, Y1, D3, F2, X₂₁, 0, X₂₃, J2, X1, Z1, G2, N2, X₂₉, O2, X₃₁, P2, E2, Q2, B2, R2, X₃₇, S2, X₃₉, T2, X₄₁, W2, M2, X2, L2, X₄₆, X₄₇, K2) :|: U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
t₂₈: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l5(Y1, X₁, 2, X₃, A2, X₅, C2, X₇, A2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, Y1, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X1, X₂₆, A2, X₂₈, D2, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: 2 ≤ Y1
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁-1, Y1, X₂₁-1, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, A2, X₄₇, X₄₈) :|: X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁-1, Y1, X₂₁-1, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, A2, X₄₇, X₄₈) :|: X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁-1, Y1, X₂₁-1, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, A2, X₄₇, X₄₈) :|: X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁-1, Y1, X₂₁-1, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, A2, X₄₇, X₄₈) :|: X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁-1, Y1, X₂₁-1, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, A2, X₄₇, X₄₈) :|: C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁-1, Y1, X₂₁-1, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, A2, X₄₇, X₄₈) :|: C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁-1, Y1, X₂₁-1, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, A2, X₄₇, X₄₈) :|: C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁-1, Y1, X₂₁-1, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, A2, X₄₇, X₄₈) :|: C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, F2, X₈, X₉, X₁₀, E2, X₁₂, A2, X₁₄, C2, X₁₆, D2, X1, G2, Y1, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁, Y1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: X₇+1 ≤ A2 ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁, Y1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: X₇+1 ≤ A2 ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁, Y1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: X₇+1 ≤ A2 ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁, Y1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: X₇+1 ≤ A2 ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁, Y1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: A2+1 ≤ X₇ ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁, Y1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: A2+1 ≤ X₇ ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁, Y1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: A2+1 ≤ X₇ ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, Y1, X₁₄, 0, X₁₆, Y1, X1, X₇, X₂₀, X₂₁, Y1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: A2+1 ≤ X₇ ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, G2, X₈, X₉, X₁₀, F2, X₁₂, C2, X₁₄, D2, X₁₆, E2, X1, H2, Y1, X₂₁, A2, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: 0 ≤ X₉ ∧ A2+1 ≤ 0 ∧ 2 ≤ X1 ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, G2, X₈, X₉, X₁₀, F2, X₁₂, C2, X₁₄, D2, X₁₆, E2, X1, H2, Y1, X₂₁, A2, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: 0 ≤ X₉ ∧ 1 ≤ A2 ∧ 2 ≤ X1 ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁
t₃₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂₂, X₈, X₂₁, X₁₀, 0, X₁₂, X₂₂, X₂₁+1, 0, X₁₆, X₂₂, X1, X₂₂, Y1, X₂₁, X₂₂, X₂₃, A2, X₂₅, E2, X₂₇, F2, X₂₉, G2, X₃₁, H2, X₃₃, I2, D2, J2, X₃₇, K2, X₃₉, B2, X₄₁, O2, Z1, P2, N2, X₄₆, X₄₇, C2) :|: 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈
t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂₂, X₈, X₂₁, X₁₀, 0, X₁₂, X₂₂, X₂₁+1, 0, X₁₆, X₂₂, X1, X₂₂, Y1, X₂₁, X₂₂, X₂₃, A2, X₂₅, E2, X₂₇, F2, X₂₉, G2, X₃₁, H2, X₃₃, I2, D2, J2, X₃₇, K2, X₃₉, B2, X₄₁, O2, Z1, P2, N2, X₄₆, X₄₇, C2) :|: 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈
t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂₂, X₈, X₂₁, X₁₀, 0, X₁₂, X₂₂, X₂₁+1, 0, X₁₆, X₂₂, X1, X₂₂, Y1, X₂₁, X₂₂, X₂₃, A2, X₂₅, E2, X₂₇, F2, X₂₉, G2, X₃₁, H2, X₃₃, I2, D2, J2, X₃₇, K2, X₃₉, B2, X₄₁, O2, Z1, P2, N2, X₄₆, X₄₇, C2) :|: 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈
t₄₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂₂, X₈, X₂₁, X₁₀, 0, X₁₂, X₂₂, X₂₁+1, 0, X₁₆, X₂₂, X1, X₂₂, Y1, X₂₁, X₂₂, X₂₃, A2, X₂₅, E2, X₂₇, F2, X₂₉, G2, X₃₁, H2, X₃₃, I2, D2, J2, X₃₇, K2, X₃₉, B2, X₄₁, O2, Z1, P2, N2, X₄₆, X₄₇, C2) :|: 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(X₀, B2, X₂, 1+X₁₄, X₄, X₁₆-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 1+X₁₄, X₁₅, X₁₆-1, X₁₇, X1, X₁₉, Y1, X₂₁, A2, X₂₃, A2, X₂₅, C2, X₂₇, D2, X₂₉, 0, X₃₁, E2, X₃₃, F2, X₃₅, G2, X₃₇, H2, X₃₉, I2, X₄₁, J2, X₄₃, 0, X₄₅, K2, X₄₈, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(X₀, B2, X₂, 1+X₁₄, X₄, X₁₆-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 1+X₁₄, X₁₅, X₁₆-1, X₁₇, X1, X₁₉, Y1, X₂₁, A2, X₂₃, A2, X₂₅, C2, X₂₇, D2, X₂₉, 0, X₃₁, E2, X₃₃, F2, X₃₅, G2, X₃₇, H2, X₃₉, I2, X₄₁, J2, X₄₃, 0, X₄₅, K2, X₄₈, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2
t₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(X₀, B2, X₂, 1+X₁₄, X₄, X₁₆-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 1+X₁₄, X₁₅, X₁₆-1, X₁₇, X1, X₁₉, Y1, X₂₁, A2, X₂₃, A2, X₂₅, C2, X₂₇, D2, X₂₉, 0, X₃₁, E2, X₃₃, F2, X₃₅, G2, X₃₇, H2, X₃₉, I2, X₄₁, J2, X₄₃, 0, X₄₅, K2, X₄₈, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(X₀, B2, X₂, 1+X₁₄, X₄, X₁₆-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 1+X₁₄, X₁₅, X₁₆-1, X₁₇, X1, X₁₉, Y1, X₂₁, A2, X₂₃, A2, X₂₅, C2, X₂₇, D2, X₂₉, 0, X₃₁, E2, X₃₃, F2, X₃₅, G2, X₃₇, H2, X₃₉, I2, X₄₁, J2, X₄₃, 0, X₄₅, K2, X₄₈, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(X₀, B2, X₂, 1+X₁₄, X₄, X₁₆-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 1+X₁₄, X₁₅, X₁₆-1, X₁₇, X1, X₁₉, Y1, X₂₁, A2, X₂₃, A2, X₂₅, C2, X₂₇, D2, X₂₉, 0, X₃₁, E2, X₃₃, F2, X₃₅, G2, X₃₇, H2, X₃₉, I2, X₄₁, J2, X₄₃, 0, X₄₅, K2, X₄₈, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(X₀, B2, X₂, 1+X₁₄, X₄, X₁₆-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 1+X₁₄, X₁₅, X₁₆-1, X₁₇, X1, X₁₉, Y1, X₂₁, A2, X₂₃, A2, X₂₅, C2, X₂₇, D2, X₂₉, 0, X₃₁, E2, X₃₃, F2, X₃₅, G2, X₃₇, H2, X₃₉, I2, X₄₁, J2, X₄₃, 0, X₄₅, K2, X₄₈, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(X₀, B2, X₂, 1+X₁₄, X₄, X₁₆-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 1+X₁₄, X₁₅, X₁₆-1, X₁₇, X1, X₁₉, Y1, X₂₁, A2, X₂₃, A2, X₂₅, C2, X₂₇, D2, X₂₉, 0, X₃₁, E2, X₃₃, F2, X₃₅, G2, X₃₇, H2, X₃₉, I2, X₄₁, J2, X₄₃, 0, X₄₅, K2, X₄₈, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(X₀, B2, X₂, 1+X₁₄, X₄, X₁₆-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 1+X₁₄, X₁₅, X₁₆-1, X₁₇, X1, X₁₉, Y1, X₂₁, A2, X₂₃, A2, X₂₅, C2, X₂₇, D2, X₂₉, 0, X₃₁, E2, X₃₃, F2, X₃₅, G2, X₃₇, H2, X₃₉, I2, X₄₁, J2, X₄₃, 0, X₄₅, K2, X₄₈, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2
t₂₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(Y1, X₁, C2, X₃, A2, X₅, H2, X₇, G2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X1, X₁₉, E2, X₂₁, I2, X₂₃, I2, X₂₅, K2, F2, B2, X₂₉, 0, X₃₁, N2, D2, O2, J2, P2, Z1, Q2, T2, R2, M2, S2, X₄₃, 0, X₄₅, X₄₆, X₄₇, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0
t₃₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(Y1, X₁, C2, X₃, A2, X₅, H2, X₇, G2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X1, X₁₉, E2, X₂₁, I2, X₂₃, I2, X₂₅, K2, F2, B2, X₂₉, 0, X₃₁, N2, D2, O2, J2, P2, Z1, Q2, T2, R2, M2, S2, X₄₃, 0, X₄₅, X₄₆, X₄₇, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2
t₃₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(Y1, X₁, C2, X₃, A2, X₅, H2, X₇, G2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X1, X₁₉, E2, X₂₁, I2, X₂₃, I2, X₂₅, K2, F2, B2, X₂₉, 0, X₃₁, N2, D2, O2, J2, P2, Z1, Q2, T2, R2, M2, S2, X₄₃, 0, X₄₅, X₄₆, X₄₇, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0
t₃₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(Y1, X₁, C2, X₃, A2, X₅, H2, X₇, G2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X1, X₁₉, E2, X₂₁, I2, X₂₃, I2, X₂₅, K2, F2, B2, X₂₉, 0, X₃₁, N2, D2, O2, J2, P2, Z1, Q2, T2, R2, M2, S2, X₄₃, 0, X₄₅, X₄₆, X₄₇, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2
t₃₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(Y1, X₁, C2, X₃, A2, X₅, H2, X₇, G2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X1, X₁₉, E2, X₂₁, I2, X₂₃, I2, X₂₅, K2, F2, B2, X₂₉, 0, X₃₁, N2, D2, O2, J2, P2, Z1, Q2, T2, R2, M2, S2, X₄₃, 0, X₄₅, X₄₆, X₄₇, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0
t₃₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(Y1, X₁, C2, X₃, A2, X₅, H2, X₇, G2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X1, X₁₉, E2, X₂₁, I2, X₂₃, I2, X₂₅, K2, F2, B2, X₂₉, 0, X₃₁, N2, D2, O2, J2, P2, Z1, Q2, T2, R2, M2, S2, X₄₃, 0, X₄₅, X₄₆, X₄₇, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2
t₃₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(Y1, X₁, C2, X₃, A2, X₅, H2, X₇, G2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X1, X₁₉, E2, X₂₁, I2, X₂₃, I2, X₂₅, K2, F2, B2, X₂₉, 0, X₃₁, N2, D2, O2, J2, P2, Z1, Q2, T2, R2, M2, S2, X₄₃, 0, X₄₅, X₄₆, X₄₇, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0
t₃₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l4(Y1, X₁, C2, X₃, A2, X₅, H2, X₇, G2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X1, X₁₉, E2, X₂₁, I2, X₂₃, I2, X₂₅, K2, F2, B2, X₂₉, 0, X₃₁, N2, D2, O2, J2, P2, Z1, Q2, T2, R2, M2, S2, X₄₃, 0, X₄₅, X₄₆, X₄₇, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2
t₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) → l5(X₀, X₁, 1+X₂, X₃, X₆, X₅, X1, X₇, X₆, X₉, Y1, X₁₁, X₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈) :|: X₂+1 ≤ X₀ ∧ 0 ≤ X₂
Show Graph
G
l0
l0
l3
l3
l0->l3
t₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₈) = H2
η (X₁₁) = B3
η (X₁₃) = Y2
η (X₁₅) = Z2
η (X₁₇) = A3
η (X₁₈) = Y1
η (X₁₉) = D3
η (X₂₀) = F2
η (X₂₂) = 0
η (X₂₄) = J2
η (X₂₅) = X1
η (X₂₆) = Z1
η (X₂₇) = G2
η (X₂₈) = N2
η (X₃₀) = O2
η (X₃₂) = P2
η (X₃₃) = E2
η (X₃₄) = Q2
η (X₃₅) = B2
η (X₃₆) = R2
η (X₃₈) = S2
η (X₄₀) = T2
η (X₄₂) = W2
η (X₄₃) = M2
η (X₄₄) = X2
η (X₄₅) = L2
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₂₈
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
η (X₈) = A2
η (X₁₈) = Y1
η (X₂₅) = X1
η (X₂₇) = A2
η (X₂₉) = D2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₉
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
η (X₂₃) = X₂₁-1
η (X₄₆) = A2
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₂₀
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
η (X₂₃) = X₂₁-1
η (X₄₆) = A2
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₂₁
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
η (X₂₃) = X₂₁-1
η (X₄₆) = A2
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₂₂
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
η (X₂₃) = X₂₁-1
η (X₄₆) = A2
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₂₃
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
η (X₂₃) = X₂₁-1
η (X₄₆) = A2
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₂₄
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
η (X₂₃) = X₂₁-1
η (X₄₆) = A2
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₂₅
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
η (X₂₃) = X₂₁-1
η (X₄₆) = A2
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₂₆
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
η (X₂₃) = X₂₁-1
η (X₄₆) = A2
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₂₇
η (X₇) = F2
η (X₁₁) = E2
η (X₁₃) = A2
η (X₁₅) = C2
η (X₁₇) = D2
η (X₁₈) = X1
η (X₁₉) = G2
η (X₂₀) = Y1
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁
l2
l2
l2->l1
t₉
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₂) = Y1
τ = X₇+1 ≤ A2 ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l2->l1
t₁₀
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₂) = Y1
τ = X₇+1 ≤ A2 ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l2->l1
t₁₁
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₂) = Y1
τ = X₇+1 ≤ A2 ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l2->l1
t₁₂
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₂) = Y1
τ = X₇+1 ≤ A2 ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l2->l1
t₁₃
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₂) = Y1
τ = A2+1 ≤ X₇ ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l2->l1
t₁₄
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₂) = Y1
τ = A2+1 ≤ X₇ ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l2->l1
t₁₅
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₂) = Y1
τ = A2+1 ≤ X₇ ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l2->l1
t₁₆
η (X₁₁) = 0
η (X₁₃) = Y1
η (X₁₅) = 0
η (X₁₇) = Y1
η (X₁₈) = X1
η (X₁₉) = X₇
η (X₂₂) = Y1
τ = A2+1 ≤ X₇ ∧ 0 ≤ X₉ ∧ 2 ≤ X1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l2->l3
t₁₇
η (X₇) = G2
η (X₁₁) = F2
η (X₁₃) = C2
η (X₁₅) = D2
η (X₁₇) = E2
η (X₁₈) = X1
η (X₁₉) = H2
η (X₂₀) = Y1
η (X₂₂) = A2
τ = 0 ≤ X₉ ∧ A2+1 ≤ 0 ∧ 2 ≤ X1 ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁
l2->l3
t₁₈
η (X₇) = G2
η (X₁₁) = F2
η (X₁₃) = C2
η (X₁₅) = D2
η (X₁₇) = E2
η (X₁₈) = X1
η (X₁₉) = H2
η (X₂₀) = Y1
η (X₂₂) = A2
τ = 0 ≤ X₉ ∧ 1 ≤ A2 ∧ 2 ≤ X1 ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁
l4
l4
l4->l1
t₃₈
η (X₇) = X₂₂
η (X₉) = X₂₁
η (X₁₁) = 0
η (X₁₃) = X₂₂
η (X₁₄) = X₂₁+1
η (X₁₅) = 0
η (X₁₇) = X₂₂
η (X₁₈) = X1
η (X₁₉) = X₂₂
η (X₂₀) = Y1
η (X₂₄) = A2
η (X₂₆) = E2
η (X₂₈) = F2
η (X₃₀) = G2
η (X₃₂) = H2
η (X₃₄) = I2
η (X₃₅) = D2
η (X₃₆) = J2
η (X₃₈) = K2
η (X₄₀) = B2
η (X₄₂) = O2
η (X₄₃) = Z1
η (X₄₄) = P2
η (X₄₅) = N2
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈
l4->l1
t₃₉
η (X₇) = X₂₂
η (X₉) = X₂₁
η (X₁₁) = 0
η (X₁₃) = X₂₂
η (X₁₄) = X₂₁+1
η (X₁₅) = 0
η (X₁₇) = X₂₂
η (X₁₈) = X1
η (X₁₉) = X₂₂
η (X₂₀) = Y1
η (X₂₄) = A2
η (X₂₆) = E2
η (X₂₈) = F2
η (X₃₀) = G2
η (X₃₂) = H2
η (X₃₄) = I2
η (X₃₅) = D2
η (X₃₆) = J2
η (X₃₈) = K2
η (X₄₀) = B2
η (X₄₂) = O2
η (X₄₃) = Z1
η (X₄₄) = P2
η (X₄₅) = N2
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈
l4->l1
t₄₀
η (X₇) = X₂₂
η (X₉) = X₂₁
η (X₁₁) = 0
η (X₁₃) = X₂₂
η (X₁₄) = X₂₁+1
η (X₁₅) = 0
η (X₁₇) = X₂₂
η (X₁₈) = X1
η (X₁₉) = X₂₂
η (X₂₀) = Y1
η (X₂₄) = A2
η (X₂₆) = E2
η (X₂₈) = F2
η (X₃₀) = G2
η (X₃₂) = H2
η (X₃₄) = I2
η (X₃₅) = D2
η (X₃₆) = J2
η (X₃₈) = K2
η (X₄₀) = B2
η (X₄₂) = O2
η (X₄₃) = Z1
η (X₄₄) = P2
η (X₄₅) = N2
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈
l4->l1
t₄₁
η (X₇) = X₂₂
η (X₉) = X₂₁
η (X₁₁) = 0
η (X₁₃) = X₂₂
η (X₁₄) = X₂₁+1
η (X₁₅) = 0
η (X₁₇) = X₂₂
η (X₁₈) = X1
η (X₁₉) = X₂₂
η (X₂₀) = Y1
η (X₂₄) = A2
η (X₂₆) = E2
η (X₂₈) = F2
η (X₃₀) = G2
η (X₃₂) = H2
η (X₃₄) = I2
η (X₃₅) = D2
η (X₃₆) = J2
η (X₃₈) = K2
η (X₄₀) = B2
η (X₄₂) = O2
η (X₄₃) = Z1
η (X₄₄) = P2
η (X₄₅) = N2
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈
l4->l4
t₁
η (X₁) = B2
η (X₃) = 1+X₁₄
η (X₅) = X₁₆-1
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₁₈) = X1
η (X₂₀) = Y1
η (X₂₂) = A2
η (X₂₄) = A2
η (X₂₆) = C2
η (X₂₈) = D2
η (X₃₀) = 0
η (X₃₂) = E2
η (X₃₄) = F2
η (X₃₆) = G2
η (X₃₈) = H2
η (X₄₀) = I2
η (X₄₂) = J2
η (X₄₄) = 0
η (X₄₆) = K2
η (X₄₇) = X₄₈
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0
l4->l4
t₂
η (X₁) = B2
η (X₃) = 1+X₁₄
η (X₅) = X₁₆-1
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₁₈) = X1
η (X₂₀) = Y1
η (X₂₂) = A2
η (X₂₄) = A2
η (X₂₆) = C2
η (X₂₈) = D2
η (X₃₀) = 0
η (X₃₂) = E2
η (X₃₄) = F2
η (X₃₆) = G2
η (X₃₈) = H2
η (X₄₀) = I2
η (X₄₂) = J2
η (X₄₄) = 0
η (X₄₆) = K2
η (X₄₇) = X₄₈
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2
l4->l4
t₃
η (X₁) = B2
η (X₃) = 1+X₁₄
η (X₅) = X₁₆-1
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₁₈) = X1
η (X₂₀) = Y1
η (X₂₂) = A2
η (X₂₄) = A2
η (X₂₆) = C2
η (X₂₈) = D2
η (X₃₀) = 0
η (X₃₂) = E2
η (X₃₄) = F2
η (X₃₆) = G2
η (X₃₈) = H2
η (X₄₀) = I2
η (X₄₂) = J2
η (X₄₄) = 0
η (X₄₆) = K2
η (X₄₇) = X₄₈
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0
l4->l4
t₄
η (X₁) = B2
η (X₃) = 1+X₁₄
η (X₅) = X₁₆-1
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₁₈) = X1
η (X₂₀) = Y1
η (X₂₂) = A2
η (X₂₄) = A2
η (X₂₆) = C2
η (X₂₈) = D2
η (X₃₀) = 0
η (X₃₂) = E2
η (X₃₄) = F2
η (X₃₆) = G2
η (X₃₈) = H2
η (X₄₀) = I2
η (X₄₂) = J2
η (X₄₄) = 0
η (X₄₆) = K2
η (X₄₇) = X₄₈
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2
l4->l4
t₅
η (X₁) = B2
η (X₃) = 1+X₁₄
η (X₅) = X₁₆-1
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₁₈) = X1
η (X₂₀) = Y1
η (X₂₂) = A2
η (X₂₄) = A2
η (X₂₆) = C2
η (X₂₈) = D2
η (X₃₀) = 0
η (X₃₂) = E2
η (X₃₄) = F2
η (X₃₆) = G2
η (X₃₈) = H2
η (X₄₀) = I2
η (X₄₂) = J2
η (X₄₄) = 0
η (X₄₆) = K2
η (X₄₇) = X₄₈
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0
l4->l4
t₆
η (X₁) = B2
η (X₃) = 1+X₁₄
η (X₅) = X₁₆-1
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₁₈) = X1
η (X₂₀) = Y1
η (X₂₂) = A2
η (X₂₄) = A2
η (X₂₆) = C2
η (X₂₈) = D2
η (X₃₀) = 0
η (X₃₂) = E2
η (X₃₄) = F2
η (X₃₆) = G2
η (X₃₈) = H2
η (X₄₀) = I2
η (X₄₂) = J2
η (X₄₄) = 0
η (X₄₆) = K2
η (X₄₇) = X₄₈
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2
l4->l4
t₇
η (X₁) = B2
η (X₃) = 1+X₁₄
η (X₅) = X₁₆-1
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₁₈) = X1
η (X₂₀) = Y1
η (X₂₂) = A2
η (X₂₄) = A2
η (X₂₆) = C2
η (X₂₈) = D2
η (X₃₀) = 0
η (X₃₂) = E2
η (X₃₄) = F2
η (X₃₆) = G2
η (X₃₈) = H2
η (X₄₀) = I2
η (X₄₂) = J2
η (X₄₄) = 0
η (X₄₆) = K2
η (X₄₇) = X₄₈
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0
l4->l4
t₈
η (X₁) = B2
η (X₃) = 1+X₁₄
η (X₅) = X₁₆-1
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₁₈) = X1
η (X₂₀) = Y1
η (X₂₂) = A2
η (X₂₄) = A2
η (X₂₆) = C2
η (X₂₈) = D2
η (X₃₀) = 0
η (X₃₂) = E2
η (X₃₄) = F2
η (X₃₆) = G2
η (X₃₈) = H2
η (X₄₀) = I2
η (X₄₂) = J2
η (X₄₄) = 0
η (X₄₆) = K2
η (X₄₇) = X₄₈
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2
l5->l4
t₂₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₈) = G2
η (X₁₈) = X1
η (X₂₀) = E2
η (X₂₂) = I2
η (X₂₄) = I2
η (X₂₆) = K2
η (X₂₇) = F2
η (X₂₈) = B2
η (X₃₀) = 0
η (X₃₂) = N2
η (X₃₃) = D2
η (X₃₄) = O2
η (X₃₅) = J2
η (X₃₆) = P2
η (X₃₇) = Z1
η (X₃₈) = Q2
η (X₃₉) = T2
η (X₄₀) = R2
η (X₄₁) = M2
η (X₄₂) = S2
η (X₄₄) = 0
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0
l5->l4
t₃₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₈) = G2
η (X₁₈) = X1
η (X₂₀) = E2
η (X₂₂) = I2
η (X₂₄) = I2
η (X₂₆) = K2
η (X₂₇) = F2
η (X₂₈) = B2
η (X₃₀) = 0
η (X₃₂) = N2
η (X₃₃) = D2
η (X₃₄) = O2
η (X₃₅) = J2
η (X₃₆) = P2
η (X₃₇) = Z1
η (X₃₈) = Q2
η (X₃₉) = T2
η (X₄₀) = R2
η (X₄₁) = M2
η (X₄₂) = S2
η (X₄₄) = 0
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2
l5->l4
t₃₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₈) = G2
η (X₁₈) = X1
η (X₂₀) = E2
η (X₂₂) = I2
η (X₂₄) = I2
η (X₂₆) = K2
η (X₂₇) = F2
η (X₂₈) = B2
η (X₃₀) = 0
η (X₃₂) = N2
η (X₃₃) = D2
η (X₃₄) = O2
η (X₃₅) = J2
η (X₃₆) = P2
η (X₃₇) = Z1
η (X₃₈) = Q2
η (X₃₉) = T2
η (X₄₀) = R2
η (X₄₁) = M2
η (X₄₂) = S2
η (X₄₄) = 0
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0
l5->l4
t₃₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₈) = G2
η (X₁₈) = X1
η (X₂₀) = E2
η (X₂₂) = I2
η (X₂₄) = I2
η (X₂₆) = K2
η (X₂₇) = F2
η (X₂₈) = B2
η (X₃₀) = 0
η (X₃₂) = N2
η (X₃₃) = D2
η (X₃₄) = O2
η (X₃₅) = J2
η (X₃₆) = P2
η (X₃₇) = Z1
η (X₃₈) = Q2
η (X₃₉) = T2
η (X₄₀) = R2
η (X₄₁) = M2
η (X₄₂) = S2
η (X₄₄) = 0
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2
l5->l4
t₃₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₈) = G2
η (X₁₈) = X1
η (X₂₀) = E2
η (X₂₂) = I2
η (X₂₄) = I2
η (X₂₆) = K2
η (X₂₇) = F2
η (X₂₈) = B2
η (X₃₀) = 0
η (X₃₂) = N2
η (X₃₃) = D2
η (X₃₄) = O2
η (X₃₅) = J2
η (X₃₆) = P2
η (X₃₇) = Z1
η (X₃₈) = Q2
η (X₃₉) = T2
η (X₄₀) = R2
η (X₄₁) = M2
η (X₄₂) = S2
η (X₄₄) = 0
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0
l5->l4
t₃₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₈) = G2
η (X₁₈) = X1
η (X₂₀) = E2
η (X₂₂) = I2
η (X₂₄) = I2
η (X₂₆) = K2
η (X₂₇) = F2
η (X₂₈) = B2
η (X₃₀) = 0
η (X₃₂) = N2
η (X₃₃) = D2
η (X₃₄) = O2
η (X₃₅) = J2
η (X₃₆) = P2
η (X₃₇) = Z1
η (X₃₈) = Q2
η (X₃₉) = T2
η (X₄₀) = R2
η (X₄₁) = M2
η (X₄₂) = S2
η (X₄₄) = 0
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2
l5->l4
t₃₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₈) = G2
η (X₁₈) = X1
η (X₂₀) = E2
η (X₂₂) = I2
η (X₂₄) = I2
η (X₂₆) = K2
η (X₂₇) = F2
η (X₂₈) = B2
η (X₃₀) = 0
η (X₃₂) = N2
η (X₃₃) = D2
η (X₃₄) = O2
η (X₃₅) = J2
η (X₃₆) = P2
η (X₃₇) = Z1
η (X₃₈) = Q2
η (X₃₉) = T2
η (X₄₀) = R2
η (X₄₁) = M2
η (X₄₂) = S2
η (X₄₄) = 0
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0
l5->l4
t₃₆
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₈) = G2
η (X₁₈) = X1
η (X₂₀) = E2
η (X₂₂) = I2
η (X₂₄) = I2
η (X₂₆) = K2
η (X₂₇) = F2
η (X₂₈) = B2
η (X₃₀) = 0
η (X₃₂) = N2
η (X₃₃) = D2
η (X₃₄) = O2
η (X₃₅) = J2
η (X₃₆) = P2
η (X₃₇) = Z1
η (X₃₈) = Q2
η (X₃₉) = T2
η (X₄₀) = R2
η (X₄₁) = M2
η (X₄₂) = S2
η (X₄₄) = 0
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2
l5->l5
t₀
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
η (X₈) = X₆
η (X₁₀) = Y1
η (X₁₂) = X₂
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂
Preprocessing
Cut unreachable locations [l2] from the program graph
Cut unsatisfiable transition t₃₈: l4→l1
Cut unsatisfiable transition t₄₁: l4→l1
Eliminate variables {A3,D3,G2,J2,N2,O2,P2,R2,S2,T2,W2,X2,Y2,Z2,X₁,X₃,X₅,X₈,X₉,X₁₀,X₁₂,X₁₃,X₁₅,X₁₇,X₁₈,X₁₉,X₂₀,X₂₃,X₂₄,X₂₅,X₂₆,X₂₇,X₂₈,X₂₉,X₃₀,X₃₂,X₃₃,X₃₄,X₃₅,X₃₆,X₃₇,X₃₈,X₃₉,X₄₀,X₄₁,X₄₂,X₄₃,X₄₄,X₄₅,X₄₆,X₄₇} that do not contribute to the problem
Found invariant X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location l5
Found invariant 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ for location l1
Found invariant 0 ≤ X₃₁ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈
Temp_Vars: A2, B2, B3, C2, C3, D2, E2, F2, H2, I2, K2, L2, M2, Q2, U2, V2, X1, Y1, Z1
Locations: l0, l1, l3, l4, l5
Transitions:
t₁₃₇: l0(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l3(A2, D2, C2, I2, C3, B3, X₁₄, X₁₆, X₂₁, 0, X₃₁, K2) :|: U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
t₁₃₆: l0(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l5(Y1, 2, A2, C2, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) :|: 2 ≤ Y1
t₁₃₈: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₃₉: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₄₀: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₄₁: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₄₂: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₄₃: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₄₄: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₄₅: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₄₆: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l3(X₀, X₂, X₄, X₆, F2, E2, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) :|: 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₅₅: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₂₂, 0, X₂₁+1, X₁₆, X₂₁, X₂₂, X₃₁, C2) :|: 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
t₁₅₆: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₂₂, 0, X₂₁+1, X₁₆, X₂₁, X₂₂, X₃₁, C2) :|: 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
t₁₄₇: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
t₁₄₈: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
t₁₄₉: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
t₁₅₀: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
t₁₅₁: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
t₁₅₂: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
t₁₅₃: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
t₁₅₄: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
t₁₅₈: l5(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(Y1, C2, A2, H2, X₇, X₁₁, X₁₄, X₁₆, X₂₁, I2, X₃₁, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₅₉: l5(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(Y1, C2, A2, H2, X₇, X₁₁, X₁₄, X₁₆, X₂₁, I2, X₃₁, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₆₀: l5(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(Y1, C2, A2, H2, X₇, X₁₁, X₁₄, X₁₆, X₂₁, I2, X₃₁, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₆₁: l5(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(Y1, C2, A2, H2, X₇, X₁₁, X₁₄, X₁₆, X₂₁, I2, X₃₁, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₆₂: l5(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(Y1, C2, A2, H2, X₇, X₁₁, X₁₄, X₁₆, X₂₁, I2, X₃₁, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₆₃: l5(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(Y1, C2, A2, H2, X₇, X₁₁, X₁₄, X₁₆, X₂₁, I2, X₃₁, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₆₄: l5(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(Y1, C2, A2, H2, X₇, X₁₁, X₁₄, X₁₆, X₂₁, I2, X₃₁, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₆₅: l5(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(Y1, C2, A2, H2, X₇, X₁₁, X₁₄, X₁₆, X₂₁, I2, X₃₁, X₄) :|: 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₅₇: l5(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l5(X₀, 1+X₂, X₆, X1, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) :|: X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
Analysing control-flow refined program
Found invariant X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ 3 ≤ X₀ for location n_l5___1
Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location l5
Found invariant 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ for location l1
Found invariant 0 ≤ X₃₁ for location l4
CFR did not improve the program. Rolling back
MPRF for transition t₁₄₇: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁ of depth 1:
new bound:
16⋅X₁₆+8 {O(n)}
MPRF:
l4 [X₁₆+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₄₈: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁ of depth 1:
new bound:
16⋅X₁₆+8 {O(n)}
MPRF:
l4 [X₁₆+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₄₉: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁ of depth 1:
new bound:
16⋅X₁₆+8 {O(n)}
MPRF:
l4 [X₁₆+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₅₀: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁ of depth 1:
new bound:
16⋅X₁₆+8 {O(n)}
MPRF:
l4 [X₁₆+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₅₁: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁ of depth 1:
new bound:
16⋅X₁₆+8 {O(n)}
MPRF:
l4 [X₁₆+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₅₂: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁ of depth 1:
new bound:
16⋅X₁₆+8 {O(n)}
MPRF:
l4 [X₁₆+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₅₃: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁ of depth 1:
new bound:
16⋅X₁₆+8 {O(n)}
MPRF:
l4 [X₁₆+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₅₄: l4(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l4(X₀, X₂, X₄, X₆, X₇, X₁₁, 1+X₁₄, X₁₆-1, X₂₁, A2, X₃₁, X₄₈) :|: 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁ of depth 1:
new bound:
16⋅X₁₆+8 {O(n)}
MPRF:
l4 [X₁₆+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₃₈: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:
new bound:
1024⋅X₂₁+2 {O(n)}
MPRF:
l1 [X₂₁+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₃₉: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:
new bound:
1024⋅X₂₁+2 {O(n)}
MPRF:
l1 [X₂₁+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₄₀: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:
new bound:
1024⋅X₂₁+2 {O(n)}
MPRF:
l1 [X₂₁+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₄₁: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:
new bound:
1024⋅X₂₁+2 {O(n)}
MPRF:
l1 [X₂₁+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₄₂: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:
new bound:
1024⋅X₂₁+2 {O(n)}
MPRF:
l1 [X₂₁+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₄₃: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:
new bound:
1024⋅X₂₁+2 {O(n)}
MPRF:
l1 [X₂₁+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₄₄: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:
new bound:
1024⋅X₂₁+2 {O(n)}
MPRF:
l1 [X₂₁+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₄₅: l1(X₀, X₂, X₄, X₆, X₇, X₁₁, X₁₄, X₁₆, X₂₁, X₂₂, X₃₁, X₄₈) → l1(X₀, X₂, X₄, X₆, X₇, 0, X₁₄, X₁₆, X₂₁-1, Y1, X₃₁, X₄₈) :|: C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:
new bound:
1024⋅X₂₁+2 {O(n)}
MPRF:
l1 [X₂₁+1 ]
Show Graph
G
l0
l0
l3
l3
l0->l3
t₁₃₇
η (X₀) = A2
η (X₂) = D2
η (X₄) = C2
η (X₆) = I2
η (X₇) = C3
η (X₁₁) = B3
η (X₂₂) = 0
η (X₄₈) = K2
τ = U2 ≤ 0 ∧ Y1 ≤ 0 ∧ V2 ≤ 0
l5
l5
l0->l5
t₁₃₆
η (X₀) = Y1
η (X₂) = 2
η (X₄) = A2
η (X₆) = C2
τ = 2 ≤ Y1
l1
l1
l1->l1
t₁₃₈
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₃₉
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₀
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₁
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = X₇+1 ≤ C2 ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₂
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₃
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ C2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₄
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l1
t₁₄₅
η (X₁₁) = 0
η (X₂₁) = X₂₁-1
η (X₂₂) = Y1
τ = C2+1 ≤ X₇ ∧ 0 ≤ X₂₁ ∧ 2 ≤ X1 ∧ Y1+1 ≤ C2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l1->l3
t₁₄₆
η (X₇) = F2
η (X₁₁) = E2
τ = 2 ≤ X1 ∧ 0 ≤ X₂₁ ∧ X₁₁ ≤ X₇ ∧ X₇ ≤ X₁₁ ∧ 0 ≤ X₃₁ ∧ 0 ≤ X₁₆+X₃₁ ∧ 0 ≤ X₁₁+X₃₁ ∧ X₁₁ ≤ X₃₁ ∧ 1+X₂₁ ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₁+X₁₆ ∧ X₁₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
l4
l4
l4->l1
t₁₅₅
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ 1 ≤ X₂₂ ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l1
t₁₅₆
η (X₇) = X₂₂
η (X₁₁) = 0
η (X₁₄) = X₂₁+1
η (X₄₈) = C2
τ = 2 ≤ Q2 ∧ 2 ≤ X1 ∧ 0 ≤ X₁₆ ∧ 0 ≤ X₁₄ ∧ X₂₂+1 ≤ 0 ∧ X₄₈ ≤ 0 ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₃₁
l4->l4
t₁₄₇
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₈
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₄₉
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₀
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ Z1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₁
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₂
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ A2+1 ≤ 0 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₃
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ B2+1 ≤ 0 ∧ 0 ≤ X₃₁
l4->l4
t₁₅₄
η (X₁₄) = 1+X₁₄
η (X₁₆) = X₁₆-1
η (X₂₂) = A2
τ = 0 ≤ X₁₄ ∧ 0 ≤ X₁₆ ∧ 2 ≤ X1 ∧ 1 ≤ Z1 ∧ 1 ≤ A2 ∧ 1 ≤ B2 ∧ 0 ≤ X₃₁
l5->l4
t₁₅₈
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₅₉
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₀
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₁
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ M2+1 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₂
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₃
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ X₄+1 ≤ 0 ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₄
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ I2+1 ≤ 0 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l4
t₁₆₅
η (X₀) = Y1
η (X₂) = C2
η (X₄) = A2
η (X₆) = H2
η (X₂₂) = I2
η (X₄₈) = X₄
τ = 2 ≤ L2 ∧ L2 ≤ Z1 ∧ 2 ≤ X1 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃₁ ∧ 1 ≤ M2 ∧ 1 ≤ X₄ ∧ 1 ≤ I2 ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
l5->l5
t₁₅₇
η (X₂) = 1+X₂
η (X₄) = X₆
η (X₆) = X1
τ = X₂+1 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₁₃₆: 1 {O(1)}
t₁₃₇: 1 {O(1)}
t₁₃₈: 1024⋅X₂₁+2 {O(n)}
t₁₃₉: 1024⋅X₂₁+2 {O(n)}
t₁₄₀: 1024⋅X₂₁+2 {O(n)}
t₁₄₁: 1024⋅X₂₁+2 {O(n)}
t₁₄₂: 1024⋅X₂₁+2 {O(n)}
t₁₄₃: 1024⋅X₂₁+2 {O(n)}
t₁₄₄: 1024⋅X₂₁+2 {O(n)}
t₁₄₅: 1024⋅X₂₁+2 {O(n)}
t₁₄₆: 1 {O(1)}
t₁₄₇: 16⋅X₁₆+8 {O(n)}
t₁₄₈: 16⋅X₁₆+8 {O(n)}
t₁₄₉: 16⋅X₁₆+8 {O(n)}
t₁₅₀: 16⋅X₁₆+8 {O(n)}
t₁₅₁: 16⋅X₁₆+8 {O(n)}
t₁₅₂: 16⋅X₁₆+8 {O(n)}
t₁₅₃: 16⋅X₁₆+8 {O(n)}
t₁₅₄: 16⋅X₁₆+8 {O(n)}
t₁₅₅: 1 {O(1)}
t₁₅₆: 1 {O(1)}
t₁₅₇: inf {Infinity}
t₁₅₈: 1 {O(1)}
t₁₅₉: 1 {O(1)}
t₁₆₀: 1 {O(1)}
t₁₆₁: 1 {O(1)}
t₁₆₂: 1 {O(1)}
t₁₆₃: 1 {O(1)}
t₁₆₄: 1 {O(1)}
t₁₆₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
t₁₃₆: 1 {O(1)}
t₁₃₇: 1 {O(1)}
t₁₃₈: 1024⋅X₂₁+2 {O(n)}
t₁₃₉: 1024⋅X₂₁+2 {O(n)}
t₁₄₀: 1024⋅X₂₁+2 {O(n)}
t₁₄₁: 1024⋅X₂₁+2 {O(n)}
t₁₄₂: 1024⋅X₂₁+2 {O(n)}
t₁₄₃: 1024⋅X₂₁+2 {O(n)}
t₁₄₄: 1024⋅X₂₁+2 {O(n)}
t₁₄₅: 1024⋅X₂₁+2 {O(n)}
t₁₄₆: 1 {O(1)}
t₁₄₇: 16⋅X₁₆+8 {O(n)}
t₁₄₈: 16⋅X₁₆+8 {O(n)}
t₁₄₉: 16⋅X₁₆+8 {O(n)}
t₁₅₀: 16⋅X₁₆+8 {O(n)}
t₁₅₁: 16⋅X₁₆+8 {O(n)}
t₁₅₂: 16⋅X₁₆+8 {O(n)}
t₁₅₃: 16⋅X₁₆+8 {O(n)}
t₁₅₄: 16⋅X₁₆+8 {O(n)}
t₁₅₅: 1 {O(1)}
t₁₅₆: 1 {O(1)}
t₁₅₇: inf {Infinity}
t₁₅₈: 1 {O(1)}
t₁₅₉: 1 {O(1)}
t₁₆₀: 1 {O(1)}
t₁₆₁: 1 {O(1)}
t₁₆₂: 1 {O(1)}
t₁₆₃: 1 {O(1)}
t₁₆₄: 1 {O(1)}
t₁₆₅: 1 {O(1)}
Sizebounds
t₁₃₆, X₂: 2 {O(1)}
t₁₃₆, X₇: X₇ {O(n)}
t₁₃₆, X₁₁: X₁₁ {O(n)}
t₁₃₆, X₁₄: X₁₄ {O(n)}
t₁₃₆, X₁₆: X₁₆ {O(n)}
t₁₃₆, X₂₁: X₂₁ {O(n)}
t₁₃₆, X₂₂: X₂₂ {O(n)}
t₁₃₆, X₃₁: X₃₁ {O(n)}
t₁₃₆, X₄₈: X₄₈ {O(n)}
t₁₃₇, X₁₄: X₁₄ {O(n)}
t₁₃₇, X₁₆: X₁₆ {O(n)}
t₁₃₇, X₂₁: X₂₁ {O(n)}
t₁₃₇, X₂₂: 0 {O(1)}
t₁₃₇, X₃₁: X₃₁ {O(n)}
t₁₃₈, X₁₁: 0 {O(1)}
t₁₃₈, X₁₄: 7168⋅X₂₁+56 {O(n)}
t₁₃₈, X₁₆: 7168⋅X₁₆+56 {O(n)}
t₁₃₈, X₂₁: 7168⋅X₂₁+1 {O(n)}
t₁₃₈, X₃₁: 7168⋅X₃₁ {O(n)}
t₁₃₉, X₁₁: 0 {O(1)}
t₁₃₉, X₁₄: 7168⋅X₂₁+56 {O(n)}
t₁₃₉, X₁₆: 7168⋅X₁₆+56 {O(n)}
t₁₃₉, X₂₁: 7168⋅X₂₁+1 {O(n)}
t₁₃₉, X₃₁: 7168⋅X₃₁ {O(n)}
t₁₄₀, X₁₁: 0 {O(1)}
t₁₄₀, X₁₄: 7168⋅X₂₁+56 {O(n)}
t₁₄₀, X₁₆: 7168⋅X₁₆+56 {O(n)}
t₁₄₀, X₂₁: 7168⋅X₂₁+1 {O(n)}
t₁₄₀, X₃₁: 7168⋅X₃₁ {O(n)}
t₁₄₁, X₁₁: 0 {O(1)}
t₁₄₁, X₁₄: 7168⋅X₂₁+56 {O(n)}
t₁₄₁, X₁₆: 7168⋅X₁₆+56 {O(n)}
t₁₄₁, X₂₁: 7168⋅X₂₁+1 {O(n)}
t₁₄₁, X₃₁: 7168⋅X₃₁ {O(n)}
t₁₄₂, X₁₁: 0 {O(1)}
t₁₄₂, X₁₄: 7168⋅X₂₁+56 {O(n)}
t₁₄₂, X₁₆: 7168⋅X₁₆+56 {O(n)}
t₁₄₂, X₂₁: 7168⋅X₂₁+1 {O(n)}
t₁₄₂, X₃₁: 7168⋅X₃₁ {O(n)}
t₁₄₃, X₁₁: 0 {O(1)}
t₁₄₃, X₁₄: 7168⋅X₂₁+56 {O(n)}
t₁₄₃, X₁₆: 7168⋅X₁₆+56 {O(n)}
t₁₄₃, X₂₁: 7168⋅X₂₁+1 {O(n)}
t₁₄₃, X₃₁: 7168⋅X₃₁ {O(n)}
t₁₄₄, X₁₁: 0 {O(1)}
t₁₄₄, X₁₄: 7168⋅X₂₁+56 {O(n)}
t₁₄₄, X₁₆: 7168⋅X₁₆+56 {O(n)}
t₁₄₄, X₂₁: 7168⋅X₂₁+1 {O(n)}
t₁₄₄, X₃₁: 7168⋅X₃₁ {O(n)}
t₁₄₅, X₁₁: 0 {O(1)}
t₁₄₅, X₁₄: 7168⋅X₂₁+56 {O(n)}
t₁₄₅, X₁₆: 7168⋅X₁₆+56 {O(n)}
t₁₄₅, X₂₁: 7168⋅X₂₁+1 {O(n)}
t₁₄₅, X₃₁: 7168⋅X₃₁ {O(n)}
t₁₄₆, X₁₄: 43008⋅X₂₁+336 {O(n)}
t₁₄₆, X₁₆: 43008⋅X₁₆+336 {O(n)}
t₁₄₆, X₂₁: 43008⋅X₂₁+6 {O(n)}
t₁₄₆, X₃₁: 43008⋅X₃₁ {O(n)}
t₁₄₇, X₇: 128⋅X₇ {O(n)}
t₁₄₇, X₁₁: 128⋅X₁₁ {O(n)}
t₁₄₇, X₁₄: 128⋅X₁₄+128⋅X₁₆+64 {O(n)}
t₁₄₇, X₁₆: 128⋅X₁₆+1 {O(n)}
t₁₄₇, X₂₁: 128⋅X₂₁ {O(n)}
t₁₄₇, X₃₁: 128⋅X₃₁ {O(n)}
t₁₄₈, X₇: 128⋅X₇ {O(n)}
t₁₄₈, X₁₁: 128⋅X₁₁ {O(n)}
t₁₄₈, X₁₄: 128⋅X₁₄+128⋅X₁₆+64 {O(n)}
t₁₄₈, X₁₆: 128⋅X₁₆+1 {O(n)}
t₁₄₈, X₂₁: 128⋅X₂₁ {O(n)}
t₁₄₈, X₃₁: 128⋅X₃₁ {O(n)}
t₁₄₉, X₇: 128⋅X₇ {O(n)}
t₁₄₉, X₁₁: 128⋅X₁₁ {O(n)}
t₁₄₉, X₁₄: 128⋅X₁₄+128⋅X₁₆+64 {O(n)}
t₁₄₉, X₁₆: 128⋅X₁₆+1 {O(n)}
t₁₄₉, X₂₁: 128⋅X₂₁ {O(n)}
t₁₄₉, X₃₁: 128⋅X₃₁ {O(n)}
t₁₅₀, X₇: 128⋅X₇ {O(n)}
t₁₅₀, X₁₁: 128⋅X₁₁ {O(n)}
t₁₅₀, X₁₄: 128⋅X₁₄+128⋅X₁₆+64 {O(n)}
t₁₅₀, X₁₆: 128⋅X₁₆+1 {O(n)}
t₁₅₀, X₂₁: 128⋅X₂₁ {O(n)}
t₁₅₀, X₃₁: 128⋅X₃₁ {O(n)}
t₁₅₁, X₇: 128⋅X₇ {O(n)}
t₁₅₁, X₁₁: 128⋅X₁₁ {O(n)}
t₁₅₁, X₁₄: 128⋅X₁₄+128⋅X₁₆+64 {O(n)}
t₁₅₁, X₁₆: 128⋅X₁₆+1 {O(n)}
t₁₅₁, X₂₁: 128⋅X₂₁ {O(n)}
t₁₅₁, X₃₁: 128⋅X₃₁ {O(n)}
t₁₅₂, X₇: 128⋅X₇ {O(n)}
t₁₅₂, X₁₁: 128⋅X₁₁ {O(n)}
t₁₅₂, X₁₄: 128⋅X₁₄+128⋅X₁₆+64 {O(n)}
t₁₅₂, X₁₆: 128⋅X₁₆+1 {O(n)}
t₁₅₂, X₂₁: 128⋅X₂₁ {O(n)}
t₁₅₂, X₃₁: 128⋅X₃₁ {O(n)}
t₁₅₃, X₇: 128⋅X₇ {O(n)}
t₁₅₃, X₁₁: 128⋅X₁₁ {O(n)}
t₁₅₃, X₁₄: 128⋅X₁₄+128⋅X₁₆+64 {O(n)}
t₁₅₃, X₁₆: 128⋅X₁₆+1 {O(n)}
t₁₅₃, X₂₁: 128⋅X₂₁ {O(n)}
t₁₅₃, X₃₁: 128⋅X₃₁ {O(n)}
t₁₅₄, X₇: 128⋅X₇ {O(n)}
t₁₅₄, X₁₁: 128⋅X₁₁ {O(n)}
t₁₅₄, X₁₄: 128⋅X₁₄+128⋅X₁₆+64 {O(n)}
t₁₅₄, X₁₆: 128⋅X₁₆+1 {O(n)}
t₁₅₄, X₂₁: 128⋅X₂₁ {O(n)}
t₁₅₄, X₃₁: 128⋅X₃₁ {O(n)}
t₁₅₅, X₁₁: 0 {O(1)}
t₁₅₅, X₁₄: 512⋅X₂₁+4 {O(n)}
t₁₅₅, X₁₆: 512⋅X₁₆+4 {O(n)}
t₁₅₅, X₂₁: 512⋅X₂₁ {O(n)}
t₁₅₅, X₃₁: 512⋅X₃₁ {O(n)}
t₁₅₆, X₁₁: 0 {O(1)}
t₁₅₆, X₁₄: 512⋅X₂₁+4 {O(n)}
t₁₅₆, X₁₆: 512⋅X₁₆+4 {O(n)}
t₁₅₆, X₂₁: 512⋅X₂₁ {O(n)}
t₁₅₆, X₃₁: 512⋅X₃₁ {O(n)}
t₁₅₇, X₇: X₇ {O(n)}
t₁₅₇, X₁₁: X₁₁ {O(n)}
t₁₅₇, X₁₄: X₁₄ {O(n)}
t₁₅₇, X₁₆: X₁₆ {O(n)}
t₁₅₇, X₂₁: X₂₁ {O(n)}
t₁₅₇, X₂₂: X₂₂ {O(n)}
t₁₅₇, X₃₁: X₃₁ {O(n)}
t₁₅₇, X₄₈: X₄₈ {O(n)}
t₁₅₈, X₇: 2⋅X₇ {O(n)}
t₁₅₈, X₁₁: 2⋅X₁₁ {O(n)}
t₁₅₈, X₁₄: 2⋅X₁₄ {O(n)}
t₁₅₈, X₁₆: 2⋅X₁₆ {O(n)}
t₁₅₈, X₂₁: 2⋅X₂₁ {O(n)}
t₁₅₈, X₃₁: 2⋅X₃₁ {O(n)}
t₁₅₉, X₇: 2⋅X₇ {O(n)}
t₁₅₉, X₁₁: 2⋅X₁₁ {O(n)}
t₁₅₉, X₁₄: 2⋅X₁₄ {O(n)}
t₁₅₉, X₁₆: 2⋅X₁₆ {O(n)}
t₁₅₉, X₂₁: 2⋅X₂₁ {O(n)}
t₁₅₉, X₃₁: 2⋅X₃₁ {O(n)}
t₁₆₀, X₇: 2⋅X₇ {O(n)}
t₁₆₀, X₁₁: 2⋅X₁₁ {O(n)}
t₁₆₀, X₁₄: 2⋅X₁₄ {O(n)}
t₁₆₀, X₁₆: 2⋅X₁₆ {O(n)}
t₁₆₀, X₂₁: 2⋅X₂₁ {O(n)}
t₁₆₀, X₃₁: 2⋅X₃₁ {O(n)}
t₁₆₁, X₇: 2⋅X₇ {O(n)}
t₁₆₁, X₁₁: 2⋅X₁₁ {O(n)}
t₁₆₁, X₁₄: 2⋅X₁₄ {O(n)}
t₁₆₁, X₁₆: 2⋅X₁₆ {O(n)}
t₁₆₁, X₂₁: 2⋅X₂₁ {O(n)}
t₁₆₁, X₃₁: 2⋅X₃₁ {O(n)}
t₁₆₂, X₇: 2⋅X₇ {O(n)}
t₁₆₂, X₁₁: 2⋅X₁₁ {O(n)}
t₁₆₂, X₁₄: 2⋅X₁₄ {O(n)}
t₁₆₂, X₁₆: 2⋅X₁₆ {O(n)}
t₁₆₂, X₂₁: 2⋅X₂₁ {O(n)}
t₁₆₂, X₃₁: 2⋅X₃₁ {O(n)}
t₁₆₃, X₇: 2⋅X₇ {O(n)}
t₁₆₃, X₁₁: 2⋅X₁₁ {O(n)}
t₁₆₃, X₁₄: 2⋅X₁₄ {O(n)}
t₁₆₃, X₁₆: 2⋅X₁₆ {O(n)}
t₁₆₃, X₂₁: 2⋅X₂₁ {O(n)}
t₁₆₃, X₃₁: 2⋅X₃₁ {O(n)}
t₁₆₄, X₇: 2⋅X₇ {O(n)}
t₁₆₄, X₁₁: 2⋅X₁₁ {O(n)}
t₁₆₄, X₁₄: 2⋅X₁₄ {O(n)}
t₁₆₄, X₁₆: 2⋅X₁₆ {O(n)}
t₁₆₄, X₂₁: 2⋅X₂₁ {O(n)}
t₁₆₄, X₃₁: 2⋅X₃₁ {O(n)}
t₁₆₅, X₇: 2⋅X₇ {O(n)}
t₁₆₅, X₁₁: 2⋅X₁₁ {O(n)}
t₁₆₅, X₁₄: 2⋅X₁₄ {O(n)}
t₁₆₅, X₁₆: 2⋅X₁₆ {O(n)}
t₁₆₅, X₂₁: 2⋅X₂₁ {O(n)}
t₁₆₅, X₃₁: 2⋅X₃₁ {O(n)}