Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃
Temp_Vars: O, P, Q, R, S, T, U, V, W, X, Y
Locations: l0, l1, l2
Transitions:
t₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(P, 2, R, Q, R, X₅, X₆, P, R, X₉, X₁₀, X₁₁, O, S) :|: 2 ≤ P
t₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(R, S, Q, V, U, X₅, X₆, P, T, W, Y, 0, O, X₁₃) :|: P ≤ 0 ∧ X ≤ 0
t₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(P, Q, R, U, T, X₅, X₆, 1, S, V, W, X₃, O, X₁₃)
t₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, 1+X₁, X₃, O, X₃, P, X₁, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁+1 ≤ X₀ ∧ 0 ≤ X₁
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(P, Q, R, U, T, X₅, X₆, O, S, V, W, X₂, X₁₂, X₁₃) :|: X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ O ≤ Q ∧ 2 ≤ O
Eliminate variables {T,U,V,W,Y,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃} that do not contribute to the problem
Found invariant X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Start: l0
Program_Vars: X₀, X₁
Temp_Vars: O, P, Q, R, S, X
Locations: l0, l1, l2
Transitions:
t₁₀: l0(X₀, X₁) → l1(P, 2) :|: 2 ≤ P
t₉: l0(X₀, X₁) → l2(R, S) :|: P ≤ 0 ∧ X ≤ 0
t₁₁: l0(X₀, X₁) → l2(P, Q)
t₁₂: l1(X₀, X₁) → l1(X₀, 1+X₁) :|: X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₃: l1(X₀, X₁) → l2(P, Q) :|: X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ O ≤ Q ∧ 2 ≤ O ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
Found invariant X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Found invariant X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___1
Overall timebound:inf {Infinity}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: inf {Infinity}
t₁₃: 1 {O(1)}
Overall costbound: inf {Infinity}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: inf {Infinity}
t₁₃: 1 {O(1)}
t₁₀, X₁: 2 {O(1)}