Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < X₆
t₁₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₄, X₈) :|: X₆ ≤ X₃
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈)
t₂₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇)
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ ≤ X₆+X₇
t₁₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆+X₇ < X₈
t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈)
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇, X₈)

Preprocessing

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l11

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l6

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l19

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l23

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location l7

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l20

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l21

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location l5

Found invariant X₂ ≤ X₆ for location l13

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l22

Found invariant X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l8

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l10

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l9

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < X₆ ∧ X₂ ≤ X₆
t₁₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₄, X₈) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈)
t₂₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁

MPRF for transition t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l11 [X₃-X₆ ]
l22 [X₃+1-X₆ ]
l21 [X₃+1-X₆ ]
l6 [X₃+1-X₆ ]
l7 [X₃+1-X₆ ]
l5 [X₃+1-X₆ ]
l20 [X₃+1-X₆ ]
l8 [X₃+1-X₆ ]
l10 [X₃+1-X₆ ]
l9 [X₃-X₆ ]
l13 [X₃+1-X₆ ]

MPRF for transition t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l11 [X₃+2-X₁ ]
l22 [X₃+1-X₆ ]
l21 [X₃+1-X₆ ]
l6 [X₃+1-X₆ ]
l7 [X₃+1-X₆ ]
l5 [X₃+1-X₆ ]
l20 [X₃+1-X₆ ]
l8 [X₃+1-X₆ ]
l10 [X₃+1-X₆ ]
l9 [X₃+1-X₁ ]
l13 [X₃+1-X₆ ]

MPRF for transition t₁₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₄, X₈) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l11 [X₃+1-X₁ ]
l22 [X₃-X₆ ]
l21 [X₃-X₆ ]
l6 [X₃-X₆ ]
l7 [X₃-X₆ ]
l5 [X₃-X₆ ]
l20 [X₃-X₆ ]
l8 [X₃-X₆ ]
l10 [X₃-X₆ ]
l9 [X₃+1-X₁ ]
l13 [X₃+1-X₆ ]

MPRF for transition t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l11 [X₃-X₆ ]
l22 [X₃+1-X₆ ]
l21 [X₃+1-X₆ ]
l6 [X₃+1-X₆ ]
l7 [X₃+1-X₆ ]
l5 [X₃+1-X₆ ]
l20 [X₃+1-X₆ ]
l8 [X₃+1-X₆ ]
l10 [X₃-X₆ ]
l9 [X₃+1-X₁ ]
l13 [X₃+1-X₆ ]

MPRF for transition t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l11 [X₃+1-X₆ ]
l22 [X₃+1-X₆ ]
l21 [X₃+1-X₆ ]
l6 [X₃+1-X₆ ]
l7 [X₃+1-X₆ ]
l5 [X₃+1-X₆ ]
l20 [X₃+1-X₆ ]
l8 [X₃+1-X₆ ]
l10 [X₃+1-X₆ ]
l9 [X₃+1-X₆ ]
l13 [X₃+1-X₆ ]

MPRF for transition t₁₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅-X₇ ]
l9 [X₅-X₇ ]
l13 [X₅+1-X₄ ]
l22 [X₅-X₇ ]
l21 [X₅-X₇ ]
l6 [X₅-X₇ ]
l7 [X₅+1-X₀ ]
l5 [X₅+1-X₀ ]
l20 [X₅+1-X₇ ]
l8 [X₅+1-X₇ ]
l10 [X₅-X₇ ]

MPRF for transition t₁₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅-X₇ ]
l9 [X₅-X₇ ]
l13 [X₅+1-X₄ ]
l22 [X₅+1-X₇ ]
l21 [X₅+1-X₇ ]
l6 [X₅-X₇ ]
l7 [X₅+1-X₀ ]
l5 [X₅+1-X₀ ]
l20 [X₅+1-X₇ ]
l8 [X₅+1-X₇ ]
l10 [X₅-X₇ ]

MPRF for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅-X₇ ]
l9 [X₅-X₇ ]
l13 [X₅+1-X₄ ]
l22 [X₅+1-X₇ ]
l21 [X₅+1-X₇ ]
l6 [X₅+1-X₇ ]
l7 [X₅+1-X₇ ]
l5 [X₅+2-X₀ ]
l20 [X₅+1-X₇ ]
l8 [X₅+1-X₇ ]
l10 [X₅-X₇ ]

MPRF for transition t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅-X₇ ]
l9 [X₅-X₇ ]
l13 [X₅+1-X₄ ]
l22 [X₅+1-X₇ ]
l21 [X₅+1-X₇ ]
l6 [X₅+1-X₇ ]
l7 [X₅-X₇ ]
l5 [X₅+1-X₀ ]
l20 [X₅+1-X₇ ]
l8 [X₅+1-X₇ ]
l10 [X₅-X₇ ]

MPRF for transition t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅-X₇ ]
l9 [X₅-X₇ ]
l13 [X₅+1-X₄ ]
l22 [X₅+1-X₇ ]
l21 [X₅+1-X₇ ]
l6 [X₅+1-X₇ ]
l7 [X₅+2-X₀ ]
l5 [X₅+1-X₀ ]
l20 [X₅+1-X₇ ]
l8 [X₅+1-X₇ ]
l10 [X₅-X₇ ]

MPRF for transition t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅-X₇ ]
l9 [X₅-X₇ ]
l13 [X₅+1-X₄ ]
l22 [X₅-X₇ ]
l21 [X₅-X₇ ]
l6 [X₅-X₇ ]
l7 [X₅+1-X₀ ]
l5 [X₅+1-X₀ ]
l20 [X₅-X₇ ]
l8 [X₅+1-X₇ ]
l10 [X₅-X₇ ]

MPRF for transition t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₂⋅X₄⋅X₅+2⋅X₂⋅X₃⋅X₄⋅X₄+2⋅X₂⋅X₃⋅X₅⋅X₅+2⋅X₃⋅X₃⋅X₄⋅X₅+4⋅X₂⋅X₃⋅X₄⋅X₅+X₂⋅X₂⋅X₄⋅X₄+X₂⋅X₂⋅X₅⋅X₅+X₃⋅X₃⋅X₄⋅X₄+X₃⋅X₃⋅X₅⋅X₅+11⋅X₂⋅X₄⋅X₅+11⋅X₃⋅X₄⋅X₅+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₂⋅X₅+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₃⋅X₅+5⋅X₂⋅X₅⋅X₅+5⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₄⋅X₄+6⋅X₃⋅X₄⋅X₄+8⋅X₂⋅X₃⋅X₄+8⋅X₂⋅X₃⋅X₅+14⋅X₄⋅X₅+16⋅X₂⋅X₅+16⋅X₃⋅X₅+17⋅X₂⋅X₄+17⋅X₃⋅X₄+3⋅X₂⋅X₂+3⋅X₃⋅X₃+6⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₄+11⋅X₃+12⋅X₂+16⋅X₅+19⋅X₄+X₈+11 {O(n^4)}

MPRF:

l11 [X₂+X₄+1-X₈ ]
l20 [X₃+X₅+X₇+2-X₆ ]
l22 [X₃+X₅+1-X₈ ]
l21 [X₃+X₅+2-X₈ ]
l6 [X₃+X₅+2-X₈ ]
l7 [X₃+X₅+2-X₈ ]
l5 [X₃+X₇+2-X₈ ]
l8 [X₂+X₇+1-X₈ ]
l10 [X₂+X₄+1-X₈ ]
l9 [X₂+X₄+1-X₈ ]
l13 [X₂+X₄+1-X₈ ]

knowledge_propagation leads to new time bound 2⋅X₂⋅X₂⋅X₄⋅X₅+2⋅X₂⋅X₃⋅X₄⋅X₄+2⋅X₂⋅X₃⋅X₅⋅X₅+2⋅X₃⋅X₃⋅X₄⋅X₅+4⋅X₂⋅X₃⋅X₄⋅X₅+X₂⋅X₂⋅X₄⋅X₄+X₂⋅X₂⋅X₅⋅X₅+X₃⋅X₃⋅X₄⋅X₄+X₃⋅X₃⋅X₅⋅X₅+11⋅X₂⋅X₄⋅X₅+11⋅X₃⋅X₄⋅X₅+4⋅X₂⋅X₂⋅X₄+4⋅X₂⋅X₂⋅X₅+4⋅X₃⋅X₃⋅X₄+4⋅X₃⋅X₃⋅X₅+5⋅X₂⋅X₅⋅X₅+5⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₄⋅X₄+6⋅X₃⋅X₄⋅X₄+8⋅X₂⋅X₃⋅X₄+8⋅X₂⋅X₃⋅X₅+14⋅X₄⋅X₅+16⋅X₂⋅X₅+16⋅X₃⋅X₅+17⋅X₂⋅X₄+17⋅X₃⋅X₄+3⋅X₂⋅X₂+3⋅X₃⋅X₃+6⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₄+11⋅X₃+12⋅X₂+16⋅X₅+19⋅X₄+X₈+11 {O(n^4)} for transition t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃

Analysing control-flow refined program

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l11

Found invariant 1+X₆ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 for location n_l5___1

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l5___5

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l21___12

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l19

Found invariant X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l20___13

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l6___10

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l7___6

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l23

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l22___8

Found invariant 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 for location n_l7___2

Found invariant X₇ ≤ X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l20___3

Found invariant X₂ ≤ X₆ for location l13

Found invariant X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l8

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l21___9

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l6___7

Found invariant X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l8___4

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l10

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l9

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l22___11

knowledge_propagation leads to new time bound X₂+X₃+1 {O(n)} for transition t₁₈₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃

knowledge_propagation leads to new time bound X₂+X₃+1 {O(n)} for transition t₁₇₀: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃

MPRF for transition t₁₇₁: n_l20___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₀ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₅ {O(n^2)}

MPRF:

l11 [0 ]
l8 [0 ]
n_l20___13 [X₇-X₄ ]
l9 [0 ]
l13 [0 ]
n_l21___12 [X₅-X₇ ]
n_l22___11 [X₅-X₇ ]
n_l22___8 [X₅-X₇ ]
n_l21___9 [X₅-X₇ ]
n_l6___10 [X₅-X₇ ]
n_l6___7 [X₅-X₇ ]
n_l7___2 [X₅-X₇ ]
n_l5___1 [X₅-X₇ ]
n_l7___6 [X₅+1-X₀ ]
n_l5___5 [X₅+1-X₀ ]
n_l20___3 [X₅+1-X₀ ]
n_l8___4 [X₅+1-X₀ ]
l10 [0 ]

MPRF for transition t₁₇₂: n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l22___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₂+X₃+X₅+1 {O(n^2)}

MPRF:

l11 [0 ]
l8 [0 ]
n_l20___13 [0 ]
l9 [0 ]
l13 [0 ]
n_l21___12 [X₅+1-X₇ ]
n_l22___11 [X₅-X₇ ]
n_l22___8 [X₅-X₇ ]
n_l21___9 [X₅-X₇ ]
n_l6___10 [X₅-X₇ ]
n_l6___7 [X₅-X₇ ]
n_l7___2 [X₅-X₇ ]
n_l5___1 [X₅+1-X₀ ]
n_l7___6 [X₅+1-X₀ ]
n_l5___5 [X₅+1-X₀ ]
n_l20___3 [X₅+1-X₇ ]
n_l8___4 [X₅+1-X₀ ]
l10 [0 ]

MPRF for transition t₁₇₃: n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l6___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

4⋅X₂⋅X₄+4⋅X₃⋅X₄+2⋅X₅+4⋅X₄+2 {O(n^2)}

MPRF:

l11 [-2⋅X₅-2 ]
l8 [-2⋅X₅-2 ]
n_l20___13 [2⋅X₇-2⋅X₄-2⋅X₅-2 ]
l9 [-2⋅X₅-2 ]
l13 [-2⋅X₅-2 ]
n_l21___12 [-2⋅X₇ ]
n_l22___11 [-2⋅X₇ ]
n_l22___8 [-2⋅X₇ ]
n_l21___9 [-2⋅X₇ ]
n_l6___10 [-2⋅X₇-2 ]
n_l6___7 [-2⋅X₇ ]
n_l7___2 [-2⋅X₇-2 ]
n_l5___1 [2⋅X₈-2⋅X₆-2 ]
n_l7___6 [2-2⋅X₀ ]
n_l5___5 [2-2⋅X₀ ]
n_l20___3 [-2⋅X₀ ]
n_l8___4 [-2⋅X₀ ]
l10 [-2⋅X₅-2 ]

MPRF for transition t₁₇₅: n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}

MPRF:

l11 [0 ]
l8 [0 ]
n_l20___13 [X₇-X₄ ]
l9 [0 ]
l13 [0 ]
n_l21___12 [X₅+X₈+1-X₆ ]
n_l22___11 [X₅+X₈+1-X₆ ]
n_l22___8 [X₅+1-X₇ ]
n_l21___9 [X₅+1-X₇ ]
n_l6___10 [X₅+X₈-X₆ ]
n_l6___7 [X₅-X₇ ]
n_l7___2 [X₅+1-X₀ ]
n_l5___1 [X₅+1-X₀ ]
n_l7___6 [X₅-X₇ ]
n_l5___5 [X₅+1-X₀ ]
n_l20___3 [X₅+1-X₀ ]
n_l8___4 [X₅+1-X₇ ]
l10 [0 ]

MPRF for transition t₁₇₆: n_l22___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₂ ≤ X₆ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₆ ≤ X₃ ∧ X₈ ≤ X₆ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+5⋅X₃+7⋅X₂+X₀+4 {O(n^2)}

MPRF:

l11 [X₅+1-X₀ ]
l8 [X₅+1-X₀ ]
n_l20___13 [X₅+X₇+1-X₀-X₄ ]
l9 [X₅+1-X₀ ]
l13 [X₅+1-X₀ ]
n_l21___12 [X₅+X₈+1-X₆ ]
n_l22___11 [X₅+X₈+1-X₆ ]
n_l22___8 [X₅-X₇ ]
n_l21___9 [X₅-X₇ ]
n_l6___10 [X₅+X₈-X₆ ]
n_l6___7 [X₅-X₇ ]
n_l7___2 [X₅+X₈-X₆ ]
n_l5___1 [X₅+1-X₀ ]
n_l7___6 [X₅+1-X₀ ]
n_l5___5 [X₅+1-X₀ ]
n_l20___3 [X₅+1-X₇ ]
n_l8___4 [X₅+1-X₇ ]
l10 [X₅+1-X₀ ]

MPRF for transition t₁₇₈: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₀ < 1 ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₈ ≤ X₆+1 ∧ 1+X₆ ≤ X₀+X₈ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ 1+X₆ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+2⋅X₄+4⋅X₃+6⋅X₂+X₅+3 {O(n^2)}

MPRF:

l11 [-X₅-1 ]
l8 [-X₅-1 ]
n_l20___13 [X₇-X₄-X₅-1 ]
l9 [-X₅-1 ]
l13 [-X₅-1 ]
n_l21___12 [X₈-X₆ ]
n_l22___11 [X₈-X₆-1 ]
n_l22___8 [-X₇-1 ]
n_l21___9 [-X₇-1 ]
n_l6___10 [X₈-X₆ ]
n_l6___7 [-X₇-1 ]
n_l7___2 [-X₇ ]
n_l5___1 [-X₇ ]
n_l7___6 [-X₇-1 ]
n_l5___5 [-X₀ ]
n_l20___3 [-X₇ ]
n_l8___4 [-X₇ ]
l10 [-X₅-1 ]

MPRF for transition t₁₇₉: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₆ < 1+X₈ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀+X₂+X₃+2 {O(n^2)}

MPRF:

l11 [X₅+1-X₀ ]
l8 [X₅+1-X₀ ]
n_l20___13 [X₅+X₇+1-X₀-X₄ ]
l9 [X₅+1-X₀ ]
l13 [X₅+1-X₀ ]
n_l21___12 [X₅+1-X₇ ]
n_l22___11 [X₅+1-X₇ ]
n_l22___8 [X₅+1-X₇ ]
n_l21___9 [X₅+1-X₇ ]
n_l6___10 [X₅-X₇ ]
n_l6___7 [X₅+1-X₇ ]
n_l7___2 [X₅+1-X₀ ]
n_l5___1 [X₅+1-X₀ ]
n_l7___6 [X₅+1-X₇ ]
n_l5___5 [X₅+2-X₀ ]
n_l20___3 [X₅+1-X₀ ]
n_l8___4 [X₅+1-X₇ ]
l10 [X₅+1-X₀ ]

MPRF for transition t₁₈₀: n_l6___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___2(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2⋅X₇ < 0 ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

12⋅X₂⋅X₃+4⋅X₃⋅X₃+6⋅X₂⋅X₄+6⋅X₃⋅X₄+8⋅X₂⋅X₂+12⋅X₂+2⋅X₅+8⋅X₃+8⋅X₄+6 {O(n^2)}

MPRF:

l11 [-2⋅X₄-2⋅X₅-2 ]
l8 [-2⋅X₅-2⋅X₇-2 ]
n_l20___13 [-2⋅X₄-2⋅X₅-2 ]
l9 [-2⋅X₄-2⋅X₅-2 ]
l13 [-2⋅X₄-2⋅X₅-2 ]
n_l21___12 [2⋅X₈-2⋅X₄-2⋅X₆ ]
n_l22___11 [2⋅X₈-2⋅X₄-2⋅X₆ ]
n_l22___8 [-2⋅X₄-2⋅X₇ ]
n_l21___9 [-2⋅X₄-2⋅X₇ ]
n_l6___10 [2⋅X₈-2⋅X₄-2⋅X₆ ]
n_l6___7 [-2⋅X₄-2⋅X₇-2 ]
n_l7___2 [2⋅X₈-2⋅X₄-2⋅X₆-2 ]
n_l5___1 [2⋅X₈-2⋅X₄-2⋅X₆-2 ]
n_l7___6 [-2⋅X₀-2⋅X₄ ]
n_l5___5 [-2⋅X₀-2⋅X₄ ]
n_l20___3 [-2⋅X₄-2⋅X₇ ]
n_l8___4 [-2⋅X₀-2⋅X₄ ]
l10 [-2⋅X₄-2⋅X₅-2 ]

MPRF for transition t₁₈₁: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___6(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₆+X₇ < X₈ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+4⋅X₄+X₂+X₃+1 {O(n^2)}

MPRF:

l11 [X₅-X₄ ]
l8 [X₅-X₇ ]
n_l20___13 [X₅-X₄ ]
l9 [X₅-X₄ ]
l13 [X₅-X₄ ]
n_l21___12 [2⋅X₅+1-X₄-X₇ ]
n_l22___11 [2⋅X₅+X₆+1-X₄-2⋅X₇-X₈ ]
n_l22___8 [2⋅X₅+1-X₄-X₇ ]
n_l21___9 [2⋅X₅+1-X₄-X₇ ]
n_l6___10 [2⋅X₅-X₄-X₇ ]
n_l6___7 [2⋅X₅+1-X₄-X₇ ]
n_l7___2 [2⋅X₅-X₄-X₇ ]
n_l5___1 [2⋅X₅+1-X₀-X₄ ]
n_l7___6 [2⋅X₅-X₄-X₇ ]
n_l5___5 [2⋅X₅+1-X₀-X₄ ]
n_l20___3 [2⋅X₅+1-X₀-X₄ ]
n_l8___4 [2⋅X₅+1-X₄-X₇ ]
l10 [X₅-X₄ ]

MPRF for transition t₁₈₂: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀-1, X₈) :|: X₀ < 1 ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₈ ≤ X₆+1 ∧ 1+X₆ ≤ X₀+X₈ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+2⋅X₄+4⋅X₃+6⋅X₂+X₀+2 {O(n^2)}

MPRF:

l11 [-X₀ ]
l8 [-X₀ ]
n_l20___13 [X₇-X₀-X₄ ]
l9 [-X₀ ]
l13 [-X₀ ]
n_l21___12 [X₈-X₆ ]
n_l22___11 [X₈-X₆-1 ]
n_l22___8 [-X₇-1 ]
n_l21___9 [-X₇-1 ]
n_l6___10 [X₆-2⋅X₇-X₈ ]
n_l6___7 [-X₇-1 ]
n_l7___2 [1-X₀ ]
n_l5___1 [-X₀ ]
n_l7___6 [-X₇-1 ]
n_l5___5 [-X₀ ]
n_l20___3 [-X₇ ]
n_l8___4 [-X₇ ]
l10 [-X₀ ]

MPRF for transition t₁₈₃: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀-1, X₈) :|: X₀ ≤ 1+X₅ ∧ X₀+X₆ < 1+X₈ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₂+X₃+X₅+1 {O(n^2)}

MPRF:

l11 [0 ]
l8 [0 ]
n_l20___13 [X₇-X₄ ]
l9 [0 ]
l13 [0 ]
n_l21___12 [X₅+1-X₇ ]
n_l22___11 [X₅+1-X₇ ]
n_l22___8 [X₅+1-X₇ ]
n_l21___9 [X₅+1-X₇ ]
n_l6___10 [X₅-X₇ ]
n_l6___7 [X₅+1-X₇ ]
n_l7___2 [X₅-X₇ ]
n_l5___1 [X₅+1-X₀ ]
n_l7___6 [X₅+2-X₀ ]
n_l5___5 [X₅+1-X₀ ]
n_l20___3 [X₅+1-X₇ ]
n_l8___4 [X₅+1-X₇ ]
l10 [0 ]

MPRF for transition t₁₈₅: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l20___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₅+2⋅X₃⋅X₃+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+3⋅X₅+4⋅X₃+4⋅X₄+6⋅X₂+2 {O(n^2)}

MPRF:

l11 [X₅-X₄ ]
l8 [X₅-X₇ ]
n_l20___13 [X₅-X₄ ]
l9 [X₅-X₄ ]
l13 [X₅-X₄ ]
n_l21___12 [2⋅X₅+X₈-X₄-X₆ ]
n_l22___11 [2⋅X₅+X₈-X₄-X₆ ]
n_l22___8 [2⋅X₅-X₄-X₇ ]
n_l21___9 [2⋅X₅-X₄-X₇ ]
n_l6___10 [2⋅X₅-X₄-X₇ ]
n_l6___7 [2⋅X₅-X₄-X₇ ]
n_l7___2 [2⋅X₅-X₄-X₇ ]
n_l5___1 [2⋅X₅+1-X₀-X₄ ]
n_l7___6 [2⋅X₅-X₄-X₇ ]
n_l5___5 [2⋅X₅+1-X₀-X₄ ]
n_l20___3 [2⋅X₅-X₀-X₄ ]
n_l8___4 [2⋅X₅+1-X₄-X₇ ]
l10 [X₅-X₄ ]

MPRF for transition t₁₉₇: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l11 [X₃-X₆ ]
l8 [X₃+1-X₆ ]
l9 [X₃-X₆ ]
l13 [X₃+1-X₆ ]
n_l20___13 [X₃+1-X₆ ]
n_l21___12 [X₃+1-X₇-X₈ ]
n_l22___11 [X₃+1-X₆ ]
n_l22___8 [X₃+1-X₆ ]
n_l21___9 [X₃+1-X₆ ]
n_l6___10 [X₃+1-X₇-X₈ ]
n_l6___7 [X₃+1-X₆ ]
n_l7___2 [X₃+1-X₇-X₈ ]
n_l5___1 [X₃+1-X₆ ]
n_l7___6 [X₃+1-X₆ ]
n_l5___5 [X₃+1-X₆ ]
n_l20___3 [X₃+1-X₆ ]
n_l8___4 [X₃+1-X₆ ]
l10 [X₃-X₆ ]

MPRF for transition t₁₇₄: n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l22___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

12⋅X₂⋅X₂⋅X₂⋅X₄+12⋅X₂⋅X₂⋅X₄⋅X₅+12⋅X₃⋅X₃⋅X₄⋅X₅+16⋅X₂⋅X₃⋅X₃⋅X₅+18⋅X₂⋅X₃⋅X₄⋅X₄+20⋅X₂⋅X₂⋅X₃⋅X₅+24⋅X₂⋅X₃⋅X₃⋅X₄+24⋅X₂⋅X₃⋅X₄⋅X₅+30⋅X₂⋅X₂⋅X₃⋅X₄+4⋅X₂⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃⋅X₅+4⋅X₃⋅X₃⋅X₅⋅X₅+6⋅X₃⋅X₃⋅X₃⋅X₄+8⋅X₂⋅X₂⋅X₂⋅X₅+8⋅X₂⋅X₃⋅X₅⋅X₅+9⋅X₂⋅X₂⋅X₄⋅X₄+9⋅X₃⋅X₃⋅X₄⋅X₄+10⋅X₂⋅X₂⋅X₃+14⋅X₂⋅X₅⋅X₅+14⋅X₃⋅X₅⋅X₅+18⋅X₃⋅X₃⋅X₅+2⋅X₃⋅X₃⋅X₃+30⋅X₂⋅X₂⋅X₅+31⋅X₃⋅X₃⋅X₄+36⋅X₂⋅X₄⋅X₄+36⋅X₃⋅X₄⋅X₄+4⋅X₂⋅X₂⋅X₂+45⋅X₂⋅X₄⋅X₅+45⋅X₃⋅X₄⋅X₅+48⋅X₂⋅X₃⋅X₅+53⋅X₂⋅X₂⋅X₄+8⋅X₂⋅X₃⋅X₃+84⋅X₂⋅X₃⋅X₄+10⋅X₂⋅X₂+12⋅X₅⋅X₅+16⋅X₂⋅X₃+26⋅X₃⋅X₅+32⋅X₄⋅X₄+34⋅X₂⋅X₅+40⋅X₄⋅X₅+46⋅X₃⋅X₄+6⋅X₃⋅X₃+62⋅X₂⋅X₄+13⋅X₅+22⋅X₄+6⋅X₃+8⋅X₂+2 {O(n^4)}

MPRF:

l11 [X₄+X₅ ]
l10 [X₄+X₅ ]
l8 [X₄+X₅ ]
l9 [X₄+X₅ ]
l13 [X₄+X₅ ]
n_l20___13 [X₅+X₇ ]
n_l20___3 [X₅+X₇ ]
n_l21___12 [X₅+X₇ ]
n_l22___11 [X₅+X₇ ]
n_l22___8 [X₅+X₆-X₈ ]
n_l21___9 [X₅+X₆+1-X₈ ]
n_l8___4 [X₅+X₆-X₈ ]
n_l6___10 [X₅+X₆-X₈ ]
n_l6___7 [X₅+X₆-X₈ ]
n_l7___2 [X₅+X₆-X₈ ]
n_l5___1 [X₅+X₆-X₈ ]
n_l7___6 [X₅+X₆-X₈ ]
n_l5___5 [X₅+X₆-X₈ ]

MPRF for transition t₁₇₇: n_l22___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₂⋅X₄+11⋅X₃⋅X₃+11⋅X₃⋅X₄+17⋅X₂⋅X₂+18⋅X₃⋅X₅+22⋅X₂⋅X₅+28⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₅+10⋅X₃+11⋅X₅+12⋅X₂+4⋅X₄+2 {O(n^3)}

MPRF:

l11 [X₃+2⋅X₅-X₂ ]
l10 [X₃+2⋅X₅-X₂ ]
l8 [X₃+2⋅X₅-X₂ ]
l9 [X₃+2⋅X₅-X₂ ]
l13 [X₃+2⋅X₅-X₂ ]
n_l20___13 [X₃+2⋅X₅-X₆ ]
n_l20___3 [X₃+2⋅X₅-X₆ ]
n_l21___12 [X₃+2⋅X₅-X₆ ]
n_l22___11 [X₃+X₇-X₈ ]
n_l22___8 [X₃+X₇+1-X₈ ]
n_l21___9 [X₃+X₇+1-X₈ ]
n_l8___4 [X₃+X₇-X₈-1 ]
n_l6___10 [X₃+2⋅X₅-X₇-X₈ ]
n_l6___7 [X₃+X₇-X₈ ]
n_l7___2 [X₃+2⋅X₅-X₇-X₈ ]
n_l5___1 [X₀+X₃+2⋅X₅-2⋅X₇-X₈-1 ]
n_l7___6 [X₃+X₇-X₈ ]
n_l5___5 [X₀+X₃-X₈-1 ]

knowledge_propagation leads to new time bound 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+13⋅X₂⋅X₄+13⋅X₃⋅X₃+13⋅X₃⋅X₄+19⋅X₃⋅X₅+21⋅X₂⋅X₂+23⋅X₂⋅X₅+34⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₅+13⋅X₅+15⋅X₃+19⋅X₂+6⋅X₄+X₀+6 {O(n^3)} for transition t₁₇₄: n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l22___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃

CFR: Improvement to new bound with the following program:

new bound:

12⋅X₂⋅X₂⋅X₄+12⋅X₂⋅X₄⋅X₅+12⋅X₃⋅X₃⋅X₄+12⋅X₃⋅X₄⋅X₅+16⋅X₂⋅X₂⋅X₂+16⋅X₃⋅X₃⋅X₅+24⋅X₂⋅X₂⋅X₅+24⋅X₂⋅X₃⋅X₄+32⋅X₂⋅X₃⋅X₃+40⋅X₂⋅X₂⋅X₃+40⋅X₂⋅X₃⋅X₅+8⋅X₂⋅X₅⋅X₅+8⋅X₃⋅X₃⋅X₃+8⋅X₃⋅X₅⋅X₅+104⋅X₂⋅X₃+12⋅X₅⋅X₅+16⋅X₄⋅X₅+38⋅X₃⋅X₃+47⋅X₃⋅X₅+55⋅X₂⋅X₅+56⋅X₂⋅X₄+56⋅X₃⋅X₄+66⋅X₂⋅X₂+4⋅X₀+43⋅X₅+46⋅X₄+67⋅X₃+87⋅X₂+43 {O(n^3)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l23, l3, l4, l8, l9, n_l20___13, n_l20___3, n_l21___12, n_l21___9, n_l22___11, n_l22___8, n_l5___1, n_l5___5, n_l6___10, n_l6___7, n_l7___2, n_l7___6, n_l8___4
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < X₆ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆
t₁₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₄, X₈) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈)
t₂₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₁₈₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁
t₁₇₀: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₇₁: n_l20___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₀ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₁₇₂: n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l22___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₇₃: n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l6___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₇₄: n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l22___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₇₅: n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₇₆: n_l22___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₂ ≤ X₆ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₆ ≤ X₃ ∧ X₈ ≤ X₆ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₇₇: n_l22___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₇₈: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₀ < 1 ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₈ ≤ X₆+1 ∧ 1+X₆ ≤ X₀+X₈ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ 1+X₆ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0
t₁₇₉: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₆ < 1+X₈ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₁₈₀: n_l6___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___2(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2⋅X₇ < 0 ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₈₁: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___6(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₆+X₇ < X₈ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₈₂: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀-1, X₈) :|: X₀ < 1 ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₈ ≤ X₆+1 ∧ 1+X₆ ≤ X₀+X₈ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0
t₁₈₃: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀-1, X₈) :|: X₀ ≤ 1+X₅ ∧ X₀+X₆ < 1+X₈ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₇+1 ∧ 1+X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₁₉₇: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₁₈₅: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l20___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃

All Bounds

Timebounds

Overall timebound:12⋅X₂⋅X₂⋅X₄+12⋅X₂⋅X₄⋅X₅+12⋅X₃⋅X₃⋅X₄+12⋅X₃⋅X₄⋅X₅+16⋅X₂⋅X₂⋅X₂+16⋅X₃⋅X₃⋅X₅+24⋅X₂⋅X₂⋅X₅+24⋅X₂⋅X₃⋅X₄+32⋅X₂⋅X₃⋅X₃+40⋅X₂⋅X₂⋅X₃+40⋅X₂⋅X₃⋅X₅+8⋅X₂⋅X₅⋅X₅+8⋅X₃⋅X₃⋅X₃+8⋅X₃⋅X₅⋅X₅+104⋅X₂⋅X₃+12⋅X₅⋅X₅+16⋅X₄⋅X₅+38⋅X₃⋅X₃+47⋅X₃⋅X₅+55⋅X₂⋅X₅+56⋅X₂⋅X₄+56⋅X₃⋅X₄+66⋅X₂⋅X₂+4⋅X₀+43⋅X₅+46⋅X₄+67⋅X₃+87⋅X₂+56 {O(n^3)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₂: X₂+X₃+1 {O(n)}
t₂₃: X₂+X₃+1 {O(n)}
t₅: 1 {O(1)}
t₁₁: X₂+X₃+1 {O(n)}
t₁₂: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₂₅: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₄: X₂+X₃+1 {O(n)}
t₁₈₄: X₂+X₃+1 {O(n)}
t₂₄: X₂+X₃+1 {O(n)}
t₁₇₀: X₂+X₃+1 {O(n)}
t₁₇₁: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₅ {O(n^2)}
t₁₇₂: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₂+X₃+X₅+1 {O(n^2)}
t₁₇₃: 4⋅X₂⋅X₄+4⋅X₃⋅X₄+2⋅X₅+4⋅X₄+2 {O(n^2)}
t₁₇₄: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+13⋅X₂⋅X₄+13⋅X₃⋅X₃+13⋅X₃⋅X₄+19⋅X₃⋅X₅+21⋅X₂⋅X₂+23⋅X₂⋅X₅+34⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₅+13⋅X₅+15⋅X₃+19⋅X₂+6⋅X₄+X₀+6 {O(n^3)}
t₁₇₅: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}
t₁₇₆: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+5⋅X₃+7⋅X₂+X₀+4 {O(n^2)}
t₁₇₇: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₂⋅X₄+11⋅X₃⋅X₃+11⋅X₃⋅X₄+17⋅X₂⋅X₂+18⋅X₃⋅X₅+22⋅X₂⋅X₅+28⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₅+10⋅X₃+11⋅X₅+12⋅X₂+4⋅X₄+2 {O(n^3)}
t₁₇₈: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+2⋅X₄+4⋅X₃+6⋅X₂+X₅+3 {O(n^2)}
t₁₇₉: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀+X₂+X₃+2 {O(n^2)}
t₁₈₀: 12⋅X₂⋅X₃+4⋅X₃⋅X₃+6⋅X₂⋅X₄+6⋅X₃⋅X₄+8⋅X₂⋅X₂+12⋅X₂+2⋅X₅+8⋅X₃+8⋅X₄+6 {O(n^2)}
t₁₈₁: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+4⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₈₂: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+2⋅X₄+4⋅X₃+6⋅X₂+X₀+2 {O(n^2)}
t₁₈₃: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₂+X₃+X₅+1 {O(n^2)}
t₁₈₅: 2⋅X₂⋅X₅+2⋅X₃⋅X₃+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+3⋅X₅+4⋅X₃+4⋅X₄+6⋅X₂+2 {O(n^2)}
t₁₉₇: X₂+X₃+1 {O(n)}

Costbounds

Overall costbound: 12⋅X₂⋅X₂⋅X₄+12⋅X₂⋅X₄⋅X₅+12⋅X₃⋅X₃⋅X₄+12⋅X₃⋅X₄⋅X₅+16⋅X₂⋅X₂⋅X₂+16⋅X₃⋅X₃⋅X₅+24⋅X₂⋅X₂⋅X₅+24⋅X₂⋅X₃⋅X₄+32⋅X₂⋅X₃⋅X₃+40⋅X₂⋅X₂⋅X₃+40⋅X₂⋅X₃⋅X₅+8⋅X₂⋅X₅⋅X₅+8⋅X₃⋅X₃⋅X₃+8⋅X₃⋅X₅⋅X₅+104⋅X₂⋅X₃+12⋅X₅⋅X₅+16⋅X₄⋅X₅+38⋅X₃⋅X₃+47⋅X₃⋅X₅+55⋅X₂⋅X₅+56⋅X₂⋅X₄+56⋅X₃⋅X₄+66⋅X₂⋅X₂+4⋅X₀+43⋅X₅+46⋅X₄+67⋅X₃+87⋅X₂+56 {O(n^3)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₂: X₂+X₃+1 {O(n)}
t₂₃: X₂+X₃+1 {O(n)}
t₅: 1 {O(1)}
t₁₁: X₂+X₃+1 {O(n)}
t₁₂: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₂₅: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₄: X₂+X₃+1 {O(n)}
t₁₈₄: X₂+X₃+1 {O(n)}
t₂₄: X₂+X₃+1 {O(n)}
t₁₇₀: X₂+X₃+1 {O(n)}
t₁₇₁: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₅ {O(n^2)}
t₁₇₂: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₂+X₃+X₅+1 {O(n^2)}
t₁₇₃: 4⋅X₂⋅X₄+4⋅X₃⋅X₄+2⋅X₅+4⋅X₄+2 {O(n^2)}
t₁₇₄: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+13⋅X₂⋅X₄+13⋅X₃⋅X₃+13⋅X₃⋅X₄+19⋅X₃⋅X₅+21⋅X₂⋅X₂+23⋅X₂⋅X₅+34⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₅+13⋅X₅+15⋅X₃+19⋅X₂+6⋅X₄+X₀+6 {O(n^3)}
t₁₇₅: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+5⋅X₃+7⋅X₂+X₅+3 {O(n^2)}
t₁₇₆: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+5⋅X₃+7⋅X₂+X₀+4 {O(n^2)}
t₁₇₇: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₂⋅X₄+11⋅X₃⋅X₃+11⋅X₃⋅X₄+17⋅X₂⋅X₂+18⋅X₃⋅X₅+22⋅X₂⋅X₅+28⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₅+10⋅X₃+11⋅X₅+12⋅X₂+4⋅X₄+2 {O(n^3)}
t₁₇₈: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+2⋅X₄+4⋅X₃+6⋅X₂+X₅+3 {O(n^2)}
t₁₇₉: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀+X₂+X₃+2 {O(n^2)}
t₁₈₀: 12⋅X₂⋅X₃+4⋅X₃⋅X₃+6⋅X₂⋅X₄+6⋅X₃⋅X₄+8⋅X₂⋅X₂+12⋅X₂+2⋅X₅+8⋅X₃+8⋅X₄+6 {O(n^2)}
t₁₈₁: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+4⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₈₂: 2⋅X₂⋅X₄+2⋅X₃⋅X₃+2⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+2⋅X₄+4⋅X₃+6⋅X₂+X₀+2 {O(n^2)}
t₁₈₃: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₂+X₃+X₅+1 {O(n^2)}
t₁₈₅: 2⋅X₂⋅X₅+2⋅X₃⋅X₃+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+4⋅X₂⋅X₂+6⋅X₂⋅X₃+3⋅X₅+4⋅X₃+4⋅X₄+6⋅X₂+2 {O(n^2)}
t₁₉₇: X₂+X₃+1 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₂₂, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₂₂, X₁: 2⋅X₂+X₃+1 {O(n)}
t₂₂, X₂: X₂ {O(n)}
t₂₂, X₃: X₃ {O(n)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: 2⋅X₂+X₃+1 {O(n)}
t₂₂, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₂, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+20⋅X₂⋅X₄+20⋅X₃⋅X₄+24⋅X₃⋅X₅+28⋅X₂⋅X₃+28⋅X₂⋅X₅+6⋅X₅⋅X₅+8⋅X₄⋅X₅+19⋅X₃+20⋅X₅+27⋅X₂+34⋅X₄+X₈+13 {O(n^3)}
t₂₃, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₂₃, X₁: 2⋅X₂+X₃+1 {O(n)}
t₂₃, X₂: X₂ {O(n)}
t₂₃, X₃: X₃ {O(n)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: 2⋅X₂+X₃+1 {O(n)}
t₂₃, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₃, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+20⋅X₂⋅X₄+20⋅X₃⋅X₄+24⋅X₃⋅X₅+28⋅X₂⋅X₃+28⋅X₂⋅X₅+6⋅X₅⋅X₅+8⋅X₄⋅X₅+19⋅X₃+20⋅X₅+27⋅X₂+34⋅X₄+X₈+13 {O(n^3)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₁₁, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₁₁, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₁, X₇: 2⋅X₄ {O(n)}
t₁₁, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+20⋅X₂⋅X₄+20⋅X₃⋅X₄+24⋅X₃⋅X₅+28⋅X₂⋅X₃+28⋅X₂⋅X₅+6⋅X₅⋅X₅+8⋅X₄⋅X₅+19⋅X₃+20⋅X₅+27⋅X₂+34⋅X₄+X₈+13 {O(n^3)}
t₁₂, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₀+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₂, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₂, X₂: 2⋅X₂ {O(n)}
t₁₂, X₃: 2⋅X₃ {O(n)}
t₁₂, X₄: 2⋅X₄ {O(n)}
t₁₂, X₅: 2⋅X₅ {O(n)}
t₁₂, X₆: 3⋅X₂+X₃+1 {O(n)}
t₁₂, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+X₇+2 {O(n^2)}
t₁₂, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+20⋅X₂⋅X₄+20⋅X₃⋅X₄+24⋅X₃⋅X₅+28⋅X₂⋅X₃+28⋅X₂⋅X₅+6⋅X₅⋅X₅+8⋅X₄⋅X₅+19⋅X₃+2⋅X₈+20⋅X₅+27⋅X₂+34⋅X₄+13 {O(n^3)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₈, X₈: X₈ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₉, X₈: X₈ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₂ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₀, X₈: X₈ {O(n)}
t₂₅, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₀+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₅, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₂₅, X₂: 2⋅X₂ {O(n)}
t₂₅, X₃: 2⋅X₃ {O(n)}
t₂₅, X₄: 2⋅X₄ {O(n)}
t₂₅, X₅: 2⋅X₅ {O(n)}
t₂₅, X₆: 3⋅X₂+X₃+1 {O(n)}
t₂₅, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+X₇+2 {O(n^2)}
t₂₅, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+20⋅X₂⋅X₄+20⋅X₃⋅X₄+24⋅X₃⋅X₅+28⋅X₂⋅X₃+28⋅X₂⋅X₅+6⋅X₅⋅X₅+8⋅X₄⋅X₅+19⋅X₃+2⋅X₈+20⋅X₅+27⋅X₂+34⋅X₄+13 {O(n^3)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₁₄, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₁₄, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₄, X₇: 2⋅X₄ {O(n)}
t₁₄, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+20⋅X₂⋅X₄+20⋅X₃⋅X₄+24⋅X₃⋅X₅+28⋅X₂⋅X₃+28⋅X₂⋅X₅+6⋅X₅⋅X₅+8⋅X₄⋅X₅+19⋅X₃+20⋅X₅+27⋅X₂+34⋅X₄+X₈+13 {O(n^3)}
t₁₈₄, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₁₈₄, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₈₄, X₂: X₂ {O(n)}
t₁₈₄, X₃: X₃ {O(n)}
t₁₈₄, X₄: X₄ {O(n)}
t₁₈₄, X₅: X₅ {O(n)}
t₁₈₄, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₈₄, X₇: 2⋅X₄ {O(n)}
t₁₈₄, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+20⋅X₂⋅X₄+20⋅X₃⋅X₄+24⋅X₃⋅X₅+28⋅X₂⋅X₃+28⋅X₂⋅X₅+6⋅X₅⋅X₅+8⋅X₄⋅X₅+19⋅X₃+20⋅X₅+27⋅X₂+34⋅X₄+X₈+13 {O(n^3)}
t₂₄, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₂₄, X₁: 2⋅X₂+X₃+1 {O(n)}
t₂₄, X₂: X₂ {O(n)}
t₂₄, X₃: X₃ {O(n)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: X₅ {O(n)}
t₂₄, X₆: 2⋅X₂+X₃+1 {O(n)}
t₂₄, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₄, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+20⋅X₂⋅X₄+20⋅X₃⋅X₄+24⋅X₃⋅X₅+28⋅X₂⋅X₃+28⋅X₂⋅X₅+6⋅X₅⋅X₅+8⋅X₄⋅X₅+19⋅X₃+20⋅X₅+27⋅X₂+34⋅X₄+X₈+13 {O(n^3)}
t₁₇₀, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₁₇₀, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₇₀, X₂: X₂ {O(n)}
t₁₇₀, X₃: X₃ {O(n)}
t₁₇₀, X₄: X₄ {O(n)}
t₁₇₀, X₅: X₅ {O(n)}
t₁₇₀, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₇₀, X₇: 2⋅X₄ {O(n)}
t₁₇₀, X₈: 2⋅X₂+2⋅X₄+X₃+1 {O(n)}
t₁₇₁, X₀: 4⋅X₂⋅X₅+4⋅X₃⋅X₅+6⋅X₂⋅X₄+6⋅X₃⋅X₄+16⋅X₄+2⋅X₂+2⋅X₃+6⋅X₅+2 {O(n^2)}
t₁₇₁, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₇₁, X₂: X₂ {O(n)}
t₁₇₁, X₃: X₃ {O(n)}
t₁₇₁, X₄: X₄ {O(n)}
t₁₇₁, X₅: X₅ {O(n)}
t₁₇₁, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₇₁, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₇₁, X₈: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+2⋅X₃+3⋅X₂+3⋅X₅+8⋅X₄+2 {O(n^2)}
t₁₇₂, X₀: 5⋅X₂⋅X₅+5⋅X₃⋅X₅+7⋅X₂⋅X₄+7⋅X₃⋅X₄+20⋅X₄+3⋅X₂+3⋅X₃+8⋅X₅+X₀+4 {O(n^2)}
t₁₇₂, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₇₂, X₂: X₂ {O(n)}
t₁₇₂, X₃: X₃ {O(n)}
t₁₇₂, X₄: X₄ {O(n)}
t₁₇₂, X₅: X₅ {O(n)}
t₁₇₂, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₇₂, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₇₂, X₈: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+10⋅X₄+3⋅X₃+3⋅X₅+5⋅X₂+3 {O(n^2)}
t₁₇₃, X₀: 5⋅X₂⋅X₅+5⋅X₃⋅X₅+7⋅X₂⋅X₄+7⋅X₃⋅X₄+20⋅X₄+3⋅X₂+3⋅X₃+8⋅X₅+X₀+4 {O(n^2)}
t₁₇₃, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₇₃, X₂: X₂ {O(n)}
t₁₇₃, X₃: X₃ {O(n)}
t₁₇₃, X₄: X₄ {O(n)}
t₁₇₃, X₅: X₅ {O(n)}
t₁₇₃, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₇₃, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₇₃, X₈: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+10⋅X₄+3⋅X₃+3⋅X₅+5⋅X₂+3 {O(n^2)}
t₁₇₄, X₀: 5⋅X₂⋅X₅+5⋅X₃⋅X₅+7⋅X₂⋅X₄+7⋅X₃⋅X₄+20⋅X₄+3⋅X₂+3⋅X₃+8⋅X₅+X₀+4 {O(n^2)}
t₁₇₄, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₇₄, X₂: X₂ {O(n)}
t₁₇₄, X₃: X₃ {O(n)}
t₁₇₄, X₄: X₄ {O(n)}
t₁₇₄, X₅: X₅ {O(n)}
t₁₇₄, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₇₄, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₇₄, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+14⋅X₂⋅X₄+14⋅X₃⋅X₄+17⋅X₂⋅X₂+20⋅X₃⋅X₅+24⋅X₂⋅X₅+28⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₅+13⋅X₃+14⋅X₄+14⋅X₅+17⋅X₂+6 {O(n^3)}
t₁₇₅, X₀: 10⋅X₂⋅X₅+10⋅X₃⋅X₅+14⋅X₂⋅X₄+14⋅X₃⋅X₄+16⋅X₅+2⋅X₀+40⋅X₄+6⋅X₂+6⋅X₃+8 {O(n^2)}
t₁₇₅, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₇₅, X₂: X₂ {O(n)}
t₁₇₅, X₃: X₃ {O(n)}
t₁₇₅, X₄: X₄ {O(n)}
t₁₇₅, X₅: X₅ {O(n)}
t₁₇₅, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₇₅, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₇₅, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+17⋅X₂⋅X₄+17⋅X₃⋅X₄+22⋅X₃⋅X₅+26⋅X₂⋅X₅+28⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₅+16⋅X₃+17⋅X₅+22⋅X₂+24⋅X₄+10 {O(n^3)}
t₁₇₆, X₀: 5⋅X₂⋅X₅+5⋅X₃⋅X₅+7⋅X₂⋅X₄+7⋅X₃⋅X₄+20⋅X₄+3⋅X₂+3⋅X₃+8⋅X₅+X₀+4 {O(n^2)}
t₁₇₆, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₇₆, X₂: X₂ {O(n)}
t₁₇₆, X₃: X₃ {O(n)}
t₁₇₆, X₄: X₄ {O(n)}
t₁₇₆, X₅: X₅ {O(n)}
t₁₇₆, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₇₆, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₇₆, X₈: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+10⋅X₄+3⋅X₃+3⋅X₅+5⋅X₂+4 {O(n^2)}
t₁₇₇, X₀: 5⋅X₂⋅X₅+5⋅X₃⋅X₅+7⋅X₂⋅X₄+7⋅X₃⋅X₄+20⋅X₄+3⋅X₂+3⋅X₃+8⋅X₅+X₀+4 {O(n^2)}
t₁₇₇, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₇₇, X₂: X₂ {O(n)}
t₁₇₇, X₃: X₃ {O(n)}
t₁₇₇, X₄: X₄ {O(n)}
t₁₇₇, X₅: X₅ {O(n)}
t₁₇₇, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₇₇, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₇₇, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+14⋅X₂⋅X₄+14⋅X₃⋅X₄+17⋅X₂⋅X₂+20⋅X₃⋅X₅+24⋅X₂⋅X₅+28⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₅+13⋅X₃+14⋅X₄+14⋅X₅+17⋅X₂+6 {O(n^3)}
t₁₇₈, X₀: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₇₈, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₇₈, X₂: X₂ {O(n)}
t₁₇₈, X₃: X₃ {O(n)}
t₁₇₈, X₄: X₄ {O(n)}
t₁₇₈, X₅: X₅ {O(n)}
t₁₇₈, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₇₈, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₇₈, X₈: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+10⋅X₄+3⋅X₃+3⋅X₅+5⋅X₂+3 {O(n^2)}
t₁₇₉, X₀: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₇₉, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₇₉, X₂: X₂ {O(n)}
t₁₇₉, X₃: X₃ {O(n)}
t₁₇₉, X₄: X₄ {O(n)}
t₁₇₉, X₅: X₅ {O(n)}
t₁₇₉, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₇₉, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₇₉, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+17⋅X₂⋅X₄+17⋅X₃⋅X₄+22⋅X₃⋅X₅+26⋅X₂⋅X₅+28⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₅+16⋅X₃+17⋅X₅+22⋅X₂+24⋅X₄+10 {O(n^3)}
t₁₈₀, X₀: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₈₀, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₈₀, X₂: X₂ {O(n)}
t₁₈₀, X₃: X₃ {O(n)}
t₁₈₀, X₄: X₄ {O(n)}
t₁₈₀, X₅: X₅ {O(n)}
t₁₈₀, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₈₀, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₈₀, X₈: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+10⋅X₄+3⋅X₃+3⋅X₅+5⋅X₂+3 {O(n^2)}
t₁₈₁, X₀: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₈₁, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₈₁, X₂: X₂ {O(n)}
t₁₈₁, X₃: X₃ {O(n)}
t₁₈₁, X₄: X₄ {O(n)}
t₁₈₁, X₅: X₅ {O(n)}
t₁₈₁, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₈₁, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₈₁, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+17⋅X₂⋅X₄+17⋅X₃⋅X₄+22⋅X₃⋅X₅+26⋅X₂⋅X₅+28⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₅+16⋅X₃+17⋅X₅+22⋅X₂+24⋅X₄+10 {O(n^3)}
t₁₈₂, X₀: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₈₂, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₈₂, X₂: X₂ {O(n)}
t₁₈₂, X₃: X₃ {O(n)}
t₁₈₂, X₄: X₄ {O(n)}
t₁₈₂, X₅: X₅ {O(n)}
t₁₈₂, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₈₂, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₈₂, X₈: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+10⋅X₄+3⋅X₃+3⋅X₅+5⋅X₂+3 {O(n^2)}
t₁₈₃, X₀: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₈₃, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₈₃, X₂: X₂ {O(n)}
t₁₈₃, X₃: X₃ {O(n)}
t₁₈₃, X₄: X₄ {O(n)}
t₁₈₃, X₅: X₅ {O(n)}
t₁₈₃, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₈₃, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₈₃, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+17⋅X₂⋅X₄+17⋅X₃⋅X₄+22⋅X₃⋅X₅+26⋅X₂⋅X₅+28⋅X₂⋅X₃+6⋅X₅⋅X₅+8⋅X₄⋅X₅+16⋅X₃+17⋅X₅+22⋅X₂+24⋅X₄+10 {O(n^3)}
t₁₈₅, X₀: 4⋅X₂⋅X₅+4⋅X₃⋅X₅+6⋅X₂⋅X₄+6⋅X₃⋅X₄+16⋅X₄+2⋅X₂+2⋅X₃+6⋅X₅+2 {O(n^2)}
t₁₈₅, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₈₅, X₂: X₂ {O(n)}
t₁₈₅, X₃: X₃ {O(n)}
t₁₈₅, X₄: X₄ {O(n)}
t₁₈₅, X₅: X₅ {O(n)}
t₁₈₅, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₈₅, X₇: 2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+8⋅X₄+X₂+X₃+1 {O(n^2)}
t₁₈₅, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+20⋅X₂⋅X₄+20⋅X₃⋅X₄+24⋅X₃⋅X₅+28⋅X₂⋅X₃+28⋅X₂⋅X₅+6⋅X₅⋅X₅+8⋅X₄⋅X₅+19⋅X₃+20⋅X₅+27⋅X₂+34⋅X₄+13 {O(n^3)}
t₁₉₇, X₀: 4⋅X₂⋅X₅+4⋅X₃⋅X₅+6⋅X₂⋅X₄+6⋅X₃⋅X₄+16⋅X₄+2⋅X₂+2⋅X₃+6⋅X₅+2 {O(n^2)}
t₁₉₇, X₁: 4⋅X₁+4⋅X₃+8⋅X₂+4 {O(n)}
t₁₉₇, X₂: X₂ {O(n)}
t₁₉₇, X₃: X₃ {O(n)}
t₁₉₇, X₄: X₄ {O(n)}
t₁₉₇, X₅: X₅ {O(n)}
t₁₉₇, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₉₇, X₇: 4⋅X₂⋅X₅+4⋅X₃⋅X₅+6⋅X₂⋅X₄+6⋅X₃⋅X₄+16⋅X₄+2⋅X₂+2⋅X₃+6⋅X₅+2 {O(n^2)}
t₁₉₇, X₈: 12⋅X₂⋅X₂⋅X₅+12⋅X₂⋅X₃⋅X₄+16⋅X₂⋅X₃⋅X₃+20⋅X₂⋅X₂⋅X₃+20⋅X₂⋅X₃⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₅⋅X₅+6⋅X₂⋅X₂⋅X₄+6⋅X₂⋅X₄⋅X₅+6⋅X₃⋅X₃⋅X₄+6⋅X₃⋅X₄⋅X₅+8⋅X₂⋅X₂⋅X₂+8⋅X₃⋅X₃⋅X₅+11⋅X₃⋅X₃+17⋅X₂⋅X₂+20⋅X₂⋅X₄+20⋅X₃⋅X₄+24⋅X₃⋅X₅+28⋅X₂⋅X₃+28⋅X₂⋅X₅+6⋅X₅⋅X₅+8⋅X₄⋅X₅+19⋅X₃+20⋅X₅+27⋅X₂+34⋅X₄+13 {O(n^3)}