Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₂₅: l10(X₀, X₁, X₂, X₃, X₄) → l15(X₀, X₁, X₂, X₃, X₄)
t₁₈: l11(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄)
t₂₂: l12(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₄ < 1
t₂₃: l12(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₄
t₂₄: l12(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₄, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ < X₁
t₁₂: l13(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 1
t₁₃: l13(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₂
t₁₄: l13(X₀, X₁, X₂, X₃, X₄) → l14(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ X₂ ≤ X₃
t₁₅: l14(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 0
t₁₆: l14(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₂+1
t₁₇: l14(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂+1 ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₄: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄)
t₁₁: l5(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂
t₁₀: l5(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ X₁
t₁₉: l6(X₀, X₁, X₂, X₃, X₄) → l7(nondef_0, X₁, X₂, X₃, X₄)
t₂₀: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀
t₂₁: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0
t₆: l8(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₅: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₃, X₂, X₃, X₄) :|: 0 < X₃
t₇: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1
t₈: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₉: l9(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 1, X₃, 0) :|: 1 ≤ X₁ ∧ 0 < X₃

Preprocessing

Cut unsatisfiable transition t₁₅: l14→l10

Cut unsatisfiable transition t₇: l9→l10

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l11

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l6

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l12

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l7

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l5

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l13

Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l9

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l14

Cut unsatisfiable transition t₂₃: l12→l10

Cut unsatisfiable transition t₁₂: l13→l10

Cut unsatisfiable transition t₁₃: l13→l10

Cut unsatisfiable transition t₁₆: l14→l10

Cut unsatisfiable transition t₈: l9→l10

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₂₅: l10(X₀, X₁, X₂, X₃, X₄) → l15(X₀, X₁, X₂, X₃, X₄)
t₁₈: l11(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₂: l12(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₄ < 1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₂₄: l12(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₄, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ < X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₄: l13(X₀, X₁, X₂, X₃, X₄) → l14(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₇: l14(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂+1 ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₄: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄)
t₁₁: l5(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₀: l5(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₉: l6(X₀, X₁, X₂, X₃, X₄) → l7(nondef_0, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₀: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₁: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₆: l8(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₅: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₃, X₂, X₃, X₄) :|: 0 < X₃
t₉: l9(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 1, X₃, 0) :|: 1 ≤ X₁ ∧ 0 < X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁

MPRF for transition t₂₄: l12(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₄, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ < X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

l14 [X₁+1 ]
l11 [X₁+1 ]
l13 [X₁+1 ]
l12 [X₄+2 ]
l6 [X₁+1 ]
l7 [X₁+1 ]
l9 [X₁+1 ]
l5 [X₁+1 ]

MPRF for transition t₁₁: l5(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

l14 [X₁+1 ]
l11 [X₁+1 ]
l13 [X₁+1 ]
l12 [X₂ ]
l6 [X₁+1 ]
l7 [X₁+1 ]
l9 [X₁+1 ]
l5 [X₁+1 ]

MPRF for transition t₉: l9(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 1, X₃, 0) :|: 1 ≤ X₁ ∧ 0 < X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

l14 [X₁ ]
l11 [X₁ ]
l13 [X₁ ]
l12 [X₄+1 ]
l6 [X₁ ]
l7 [X₁ ]
l9 [X₁+1 ]
l5 [X₁ ]

MPRF for transition t₁₈: l11(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}

MPRF:

l9 [X₃ ]
l14 [X₁+X₃+1-X₂ ]
l11 [X₁+X₃+1-X₂ ]
l13 [X₁+X₃+1-X₂ ]
l12 [X₁+X₃-X₂ ]
l6 [X₁+X₃-X₂ ]
l7 [X₁+X₃-X₂ ]
l5 [X₁+X₃+1-X₂ ]

MPRF for transition t₁₄: l13(X₀, X₁, X₂, X₃, X₄) → l14(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}

MPRF:

l9 [X₃-1 ]
l14 [X₁+X₃-X₂-2 ]
l11 [X₁+X₃-X₂-2 ]
l13 [X₁+X₃-X₂-1 ]
l12 [X₁+X₃-X₂-1 ]
l6 [X₁+X₃-X₂-2 ]
l7 [X₁+X₃-X₂-2 ]
l5 [X₁+X₃-X₂-1 ]

MPRF for transition t₁₇: l14(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂+1 ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+5⋅X₃+3 {O(n^2)}

MPRF:

l9 [X₃-2 ]
l14 [X₁+X₃-X₂-2 ]
l11 [X₁+X₃-X₂-3 ]
l13 [X₁+X₃-X₂-2 ]
l12 [X₃-2 ]
l6 [X₁+X₃-X₂-3 ]
l7 [X₁+X₃-X₂-3 ]
l5 [X₁+X₃-X₂-2 ]

MPRF for transition t₁₀: l5(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+3⋅X₃+2 {O(n^2)}

MPRF:

l9 [0 ]
l14 [X₁-X₂ ]
l11 [X₁-X₂ ]
l13 [X₁-X₂ ]
l12 [X₁-X₂ ]
l6 [X₁-X₂ ]
l7 [X₁-X₂ ]
l5 [X₁+1-X₂ ]

MPRF for transition t₁₉: l6(X₀, X₁, X₂, X₃, X₄) → l7(nondef_0, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}

MPRF:

l9 [X₃ ]
l14 [X₁+X₃-X₂ ]
l11 [X₁+X₃-X₂ ]
l13 [X₁+X₃-X₂ ]
l12 [X₁+X₃-X₂ ]
l6 [X₁+X₃-X₂ ]
l7 [X₁+X₃-X₂-1 ]
l5 [X₁+X₃-X₂ ]

MPRF for transition t₂₀: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

3⋅X₃⋅X₃+6⋅X₃+3 {O(n^2)}

MPRF:

l9 [2⋅X₁ ]
l14 [3⋅X₁-X₂-2 ]
l11 [3⋅X₁-X₂-2 ]
l13 [3⋅X₁-X₂-2 ]
l12 [2⋅X₄ ]
l6 [3⋅X₁-X₂-2 ]
l7 [3⋅X₁-X₂-2 ]
l5 [3⋅X₁-X₂-2 ]

MPRF for transition t₂₁: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃+1 {O(n^2)}

MPRF:

l9 [0 ]
l14 [X₁-X₂ ]
l11 [X₁-X₂ ]
l13 [X₁-X₂ ]
l12 [X₁-X₂ ]
l6 [X₁-X₂ ]
l7 [X₁-X₂ ]
l5 [X₁-X₂ ]

Analysing control-flow refined program

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l13___17

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l14___9

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l6___2

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l14___4

Found invariant 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l5___11

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l13___5

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l6___14

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l11___8

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l7___6

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l12

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l11___15

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l13___10

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___12

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l7___13

Found invariant X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l5

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l14___16

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___7

Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l9

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l11___3

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l7___1

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₈₇: l5(X₀, X₁, X₂, X₃, X₄) → n_l13___17(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₈₀: n_l13___17(X₀, X₁, X₂, X₃, X₄) → n_l14___16(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₈₂: n_l14___16(X₀, X₁, X₂, X₃, X₄) → n_l11___15(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₇₆: n_l11___15(X₀, X₁, X₂, X₃, X₄) → n_l6___14(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₈₈: n_l6___14(X₀, X₁, X₂, X₃, X₄) → n_l7___13(NoDet0, X₁, Arg2_P, X₃, Arg4_P) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1+Arg2_P ≤ X₁ ∧ 1+Arg4_P ≤ Arg2_P ∧ 0 ≤ Arg4_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₉₃: n_l7___13(X₀, X₁, X₂, X₃, X₄) → n_l5___11(X₀, X₁, X₂+1, X₃, X₄) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ 0 ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₉₄: n_l7___13(X₀, X₁, X₂, X₃, X₄) → n_l5___12(X₀, X₁, X₂+1, X₃, X₂) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 < X₀ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

MPRF for transition t₁₇₇: n_l11___3(X₀, X₁, X₂, X₃, X₄) → n_l6___2(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

4⋅X₃⋅X₃+9⋅X₃+4 {O(n^2)}

MPRF:

l9 [X₁ ]
l5 [X₁ ]
n_l13___17 [X₁ ]
n_l14___16 [X₁ ]
n_l11___15 [X₁ ]
n_l14___4 [2⋅X₁-X₂ ]
n_l11___3 [2⋅X₁-X₂ ]
n_l14___9 [2⋅X₁-X₄-1 ]
n_l11___8 [2⋅X₁-X₄-1 ]
n_l13___5 [2⋅X₁-X₂ ]
n_l13___10 [2⋅X₁-X₄-1 ]
l12 [X₄ ]
n_l6___14 [X₁ ]
n_l7___13 [X₁ ]
n_l6___2 [2⋅X₁-X₂-1 ]
n_l6___7 [2⋅X₁-X₄-1 ]
n_l7___1 [2⋅X₁-X₂-1 ]
n_l5___11 [2⋅X₁-X₂ ]
n_l7___6 [2⋅X₁-X₄-1 ]
n_l5___12 [2⋅X₁-X₄-1 ]

MPRF for transition t₁₇₈: n_l11___8(X₀, X₁, X₂, X₃, X₄) → n_l6___7(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₃⋅X₃+7⋅X₃+2 {O(n^2)}

MPRF:

l9 [X₃ ]
l5 [X₃ ]
n_l13___17 [X₃ ]
n_l14___16 [X₃ ]
n_l11___15 [X₃ ]
n_l14___4 [X₁+X₃-X₄ ]
n_l11___3 [X₁+X₃-X₄ ]
n_l14___9 [X₁+X₃+1-X₄ ]
n_l11___8 [X₁+X₃+1-X₄ ]
n_l13___5 [X₁+X₃-X₄ ]
n_l13___10 [X₁+X₃+1-X₄ ]
l12 [X₃ ]
n_l6___14 [X₃ ]
n_l7___13 [X₃ ]
n_l6___2 [X₁+X₃-X₄ ]
n_l6___7 [X₁+X₃-X₄ ]
n_l7___1 [X₁+X₃-X₄ ]
n_l5___11 [X₁+X₃-X₄ ]
n_l7___6 [X₁+X₃-X₄ ]
n_l5___12 [X₁+X₃+1-X₄ ]

MPRF for transition t₁₇₉: n_l13___10(X₀, X₁, X₂, X₃, X₄) → n_l14___9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₃⋅X₃+11⋅X₃+6 {O(n^2)}

MPRF:

l9 [X₃ ]
l5 [X₃ ]
n_l13___17 [X₃ ]
n_l14___16 [X₃ ]
n_l11___15 [X₃ ]
n_l14___4 [X₁+X₃+1-X₂ ]
n_l11___3 [X₁+X₃+1-X₂ ]
n_l14___9 [X₁+X₃-X₂ ]
n_l11___8 [X₁+X₃-X₂ ]
n_l13___5 [X₁+X₃+1-X₂ ]
n_l13___10 [X₁+X₃+1-X₂ ]
l12 [X₃ ]
n_l6___14 [X₃-X₂ ]
n_l7___13 [X₃-X₂ ]
n_l6___2 [X₁+X₃+1-X₂ ]
n_l6___7 [X₁+X₃-X₂ ]
n_l7___1 [X₁+X₃+1-X₂ ]
n_l5___11 [X₁+X₃+1-X₂ ]
n_l7___6 [X₁+X₃-X₂ ]
n_l5___12 [X₁+X₃+1-X₂ ]

MPRF for transition t₁₈₁: n_l13___5(X₀, X₁, X₂, X₃, X₄) → n_l14___4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

6⋅X₃⋅X₃+12⋅X₃+4 {O(n^2)}

MPRF:

l9 [2⋅X₁ ]
l5 [2⋅X₁ ]
n_l13___17 [2⋅X₁ ]
n_l14___16 [2⋅X₁ ]
n_l11___15 [2⋅X₁ ]
n_l14___4 [3⋅X₁-X₂-1 ]
n_l11___3 [3⋅X₁-X₂-1 ]
n_l14___9 [3⋅X₁-X₂ ]
n_l11___8 [3⋅X₁-X₂ ]
n_l13___5 [3⋅X₁-X₂ ]
n_l13___10 [3⋅X₁-X₂ ]
l12 [2⋅X₂ ]
n_l6___14 [2⋅X₁ ]
n_l7___13 [2⋅X₁ ]
n_l6___2 [3⋅X₁-X₂-1 ]
n_l6___7 [3⋅X₁-X₂ ]
n_l7___1 [3⋅X₁-X₂-1 ]
n_l5___11 [3⋅X₁-X₂ ]
n_l7___6 [3⋅X₁-X₂ ]
n_l5___12 [3⋅X₁-X₂ ]

MPRF for transition t₁₈₃: n_l14___4(X₀, X₁, X₂, X₃, X₄) → n_l11___3(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

4⋅X₃⋅X₃+11⋅X₃+6 {O(n^2)}

MPRF:

l9 [X₁ ]
l5 [X₁ ]
n_l13___17 [X₁ ]
n_l14___16 [X₁ ]
n_l11___15 [X₁ ]
n_l14___4 [2⋅X₁-X₂-1 ]
n_l11___3 [2⋅X₁-X₂-2 ]
n_l14___9 [2⋅X₁-X₂-1 ]
n_l11___8 [2⋅X₁-X₂-1 ]
n_l13___5 [2⋅X₁-X₂-1 ]
n_l13___10 [2⋅X₁-X₂-1 ]
l12 [X₁+X₄-X₂ ]
n_l6___14 [X₁ ]
n_l7___13 [X₁ ]
n_l6___2 [2⋅X₁-X₂-2 ]
n_l6___7 [2⋅X₁-X₂-1 ]
n_l7___1 [2⋅X₁-X₂-2 ]
n_l5___11 [2⋅X₁-X₂-1 ]
n_l7___6 [2⋅X₁-X₂-1 ]
n_l5___12 [2⋅X₁-X₂-1 ]

MPRF for transition t₁₈₄: n_l14___9(X₀, X₁, X₂, X₃, X₄) → n_l11___8(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₃⋅X₃+6⋅X₃+4 {O(n^2)}

MPRF:

l9 [0 ]
l5 [0 ]
n_l13___17 [0 ]
n_l14___16 [0 ]
n_l11___15 [0 ]
n_l14___4 [X₁-X₄-2 ]
n_l11___3 [X₁-X₄-2 ]
n_l14___9 [X₁-X₄-1 ]
n_l11___8 [X₁-X₄-2 ]
n_l13___5 [X₁-X₄-2 ]
n_l13___10 [X₁-X₄-1 ]
l12 [0 ]
n_l6___14 [0 ]
n_l7___13 [-X₂ ]
n_l6___2 [X₁-X₄-2 ]
n_l6___7 [X₁-X₄-2 ]
n_l7___1 [X₁-X₄-2 ]
n_l5___11 [X₁-X₄-2 ]
n_l7___6 [X₁-X₄-2 ]
n_l5___12 [X₁-X₄-1 ]

MPRF for transition t₁₈₅: n_l5___11(X₀, X₁, X₂, X₃, X₄) → n_l13___5(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅X₃⋅X₃+8⋅X₃+6 {O(n^2)}

MPRF:

l9 [0 ]
l5 [0 ]
n_l13___17 [0 ]
n_l14___16 [0 ]
n_l11___15 [0 ]
n_l14___4 [X₁-X₂ ]
n_l11___3 [X₁-X₂ ]
n_l14___9 [X₁+1-X₂ ]
n_l11___8 [X₁+1-X₂ ]
n_l13___5 [X₁-X₂ ]
n_l13___10 [X₁+1-X₂ ]
l12 [0 ]
n_l6___14 [0 ]
n_l7___13 [0 ]
n_l6___2 [X₁-X₂ ]
n_l6___7 [X₁+1-X₂ ]
n_l7___1 [X₁-X₂ ]
n_l5___11 [X₁+1-X₂ ]
n_l7___6 [X₁+1-X₂ ]
n_l5___12 [X₁+1-X₂ ]

MPRF for transition t₂₀₇: n_l5___11(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

l9 [X₁-1 ]
l5 [X₁-X₂ ]
n_l13___17 [X₁-X₂ ]
n_l14___16 [X₁-1 ]
n_l11___15 [X₁-X₂ ]
n_l14___4 [X₁-1 ]
n_l11___3 [X₁-1 ]
n_l14___9 [X₁-1 ]
n_l11___8 [X₁-1 ]
n_l13___5 [X₁-1 ]
n_l13___10 [X₁-1 ]
l12 [X₁-2 ]
n_l6___14 [X₁-1 ]
n_l6___2 [X₁-1 ]
n_l6___7 [X₁-1 ]
n_l7___1 [X₁-1 ]
n_l7___13 [X₁-1 ]
n_l5___11 [X₁-1 ]
n_l7___6 [X₁-1 ]
n_l5___12 [X₁-1 ]

MPRF for transition t₁₈₆: n_l5___12(X₀, X₁, X₂, X₃, X₄) → n_l13___10(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₃⋅X₃+9⋅X₃+4 {O(n^2)}

MPRF:

l9 [X₃ ]
l5 [X₃ ]
n_l13___17 [X₃ ]
n_l14___16 [X₃ ]
n_l11___15 [X₃ ]
n_l14___4 [X₁+X₃-X₄-2 ]
n_l11___3 [X₁+X₃-X₄-2 ]
n_l14___9 [X₁+X₃-X₄-2 ]
n_l11___8 [X₁+X₃-X₄-2 ]
n_l13___5 [X₁+X₃-X₄-2 ]
n_l13___10 [X₁+X₃-X₄-2 ]
l12 [X₃ ]
n_l6___14 [X₃ ]
n_l7___13 [X₃-X₂ ]
n_l6___2 [X₁+X₃-X₄-2 ]
n_l6___7 [X₁+X₃-X₄-2 ]
n_l7___1 [X₁+X₃-X₄-2 ]
n_l5___11 [X₁+X₃-X₄-2 ]
n_l7___6 [X₁+X₃-X₄-2 ]
n_l5___12 [X₁+X₃-X₄-1 ]

MPRF for transition t₂₀₈: n_l5___12(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

l9 [X₁+1 ]
l5 [X₁+1 ]
n_l13___17 [X₁+1 ]
n_l14___16 [X₁+X₂ ]
n_l11___15 [X₁+X₂ ]
n_l14___4 [X₁+1 ]
n_l11___3 [X₁+1 ]
n_l14___9 [X₁+1 ]
n_l11___8 [X₁+1 ]
n_l13___5 [X₁+1 ]
n_l13___10 [X₁+1 ]
l12 [X₂ ]
n_l6___14 [X₁+1 ]
n_l6___2 [X₁+1 ]
n_l6___7 [X₁+1 ]
n_l7___1 [X₁+1 ]
n_l7___13 [X₁+1 ]
n_l5___11 [X₁+1 ]
n_l7___6 [X₁+1 ]
n_l5___12 [X₁+1 ]

MPRF for transition t₁₈₉: n_l6___2(X₀, X₁, X₂, X₃, X₄) → n_l7___1(NoDet0, X₁, Arg2_P, X₃, Arg4_P) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1+Arg2_P ≤ X₁ ∧ 1+Arg4_P ≤ Arg2_P ∧ 0 ≤ Arg4_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅X₃⋅X₃+10⋅X₃+8 {O(n^2)}

MPRF:

l9 [0 ]
l5 [0 ]
n_l13___17 [0 ]
n_l14___16 [0 ]
n_l11___15 [0 ]
n_l14___4 [X₁+1-X₂ ]
n_l11___3 [X₁+1-X₂ ]
n_l14___9 [X₁+X₂-2⋅X₄-1 ]
n_l11___8 [X₁+X₂-2⋅X₄-1 ]
n_l13___5 [X₁+1-X₂ ]
n_l13___10 [X₁+X₂-2⋅X₄-1 ]
l12 [0 ]
n_l6___14 [0 ]
n_l7___13 [0 ]
n_l6___2 [X₁+1-X₂ ]
n_l6___7 [X₁+X₂-2⋅X₄-1 ]
n_l7___1 [X₁-X₂ ]
n_l5___11 [X₁+1-X₂ ]
n_l7___6 [X₁+X₂-2⋅X₄-1 ]
n_l5___12 [X₁+X₂-2⋅X₄-1 ]

MPRF for transition t₁₉₀: n_l6___7(X₀, X₁, X₂, X₃, X₄) → n_l7___6(NoDet0, X₁, Arg2_P, X₃, Arg4_P) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1+Arg2_P ≤ X₁ ∧ 1+Arg4_P ≤ Arg2_P ∧ 0 ≤ Arg4_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₃⋅X₃+6⋅X₃+4 {O(n^2)}

MPRF:

l9 [0 ]
l5 [0 ]
n_l13___17 [0 ]
n_l14___16 [0 ]
n_l11___15 [0 ]
n_l14___4 [X₁-X₂ ]
n_l11___3 [X₁-X₂ ]
n_l14___9 [X₁-X₂ ]
n_l11___8 [X₁-X₂ ]
n_l13___5 [X₁-X₂ ]
n_l13___10 [X₁-X₂ ]
l12 [X₁-X₂ ]
n_l6___14 [0 ]
n_l7___13 [0 ]
n_l6___2 [X₁-X₂ ]
n_l6___7 [X₁-X₂ ]
n_l7___1 [X₁-X₂-1 ]
n_l5___11 [X₁-X₂ ]
n_l7___6 [X₁-X₂-1 ]
n_l5___12 [X₁-X₂ ]

MPRF for transition t₁₉₁: n_l7___1(X₀, X₁, X₂, X₃, X₄) → n_l5___11(X₀, X₁, X₂+1, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ 0 ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

4⋅X₃⋅X₃+8⋅X₃+3 {O(n^2)}

MPRF:

l9 [X₃ ]
l5 [X₃ ]
n_l13___17 [X₃ ]
n_l14___16 [X₃ ]
n_l11___15 [X₃ ]
n_l14___4 [X₁+X₃-X₂ ]
n_l11___3 [X₁+X₃-X₂ ]
n_l14___9 [X₁+X₃-X₄ ]
n_l11___8 [X₁+X₃-X₄ ]
n_l13___5 [X₁+X₃-X₂ ]
n_l13___10 [X₁+X₃-X₄ ]
l12 [X₃ ]
n_l6___14 [X₃ ]
n_l7___13 [X₃ ]
n_l6___2 [X₁+X₃-X₂ ]
n_l6___7 [X₁+X₃-X₄ ]
n_l7___1 [X₁+X₃-X₂ ]
n_l5___11 [X₁+X₃-X₂ ]
n_l7___6 [X₁+X₃-X₄ ]
n_l5___12 [X₁+X₃-X₄ ]

MPRF for transition t₁₉₂: n_l7___1(X₀, X₁, X₂, X₃, X₄) → n_l5___12(X₀, X₁, X₂+1, X₃, X₂) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 < X₀ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+8⋅X₃+6 {O(n^2)}

MPRF:

l9 [0 ]
l5 [0 ]
n_l13___17 [0 ]
n_l14___16 [0 ]
n_l11___15 [0 ]
n_l14___4 [X₁+2-X₂ ]
n_l11___3 [X₁+2-X₂ ]
n_l14___9 [X₁+1-X₄ ]
n_l11___8 [X₁+1-X₄ ]
n_l13___5 [X₁+2-X₂ ]
n_l13___10 [X₁+1-X₄ ]
l12 [0 ]
n_l6___14 [0 ]
n_l7___13 [0 ]
n_l6___2 [X₁+2-X₂ ]
n_l6___7 [X₁-X₄ ]
n_l7___1 [X₁+2-X₂ ]
n_l5___11 [X₁+2-X₂ ]
n_l7___6 [X₁-X₄ ]
n_l5___12 [X₁+1-X₄ ]

MPRF for transition t₁₉₅: n_l7___6(X₀, X₁, X₂, X₃, X₄) → n_l5___11(X₀, X₁, X₂+1, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+7⋅X₃+7 {O(n^2)}

MPRF:

l9 [-2 ]
l5 [-2⋅X₂ ]
n_l13___17 [-2 ]
n_l14___16 [-2⋅X₂ ]
n_l11___15 [-2⋅X₂ ]
n_l14___4 [X₁-X₄-3 ]
n_l11___3 [X₁-X₄-3 ]
n_l14___9 [X₁-X₄-1 ]
n_l11___8 [X₁-X₄-1 ]
n_l13___5 [X₁-X₄-3 ]
n_l13___10 [X₁-X₄-1 ]
l12 [X₁-X₄-3 ]
n_l6___14 [-2 ]
n_l7___13 [-2⋅X₂ ]
n_l6___2 [X₁-X₄-3 ]
n_l6___7 [X₁-X₄-1 ]
n_l7___1 [X₁-X₄-3 ]
n_l5___11 [X₁-X₄-3 ]
n_l7___6 [X₁-X₄-1 ]
n_l5___12 [X₁-X₄-1 ]

MPRF for transition t₁₉₆: n_l7___6(X₀, X₁, X₂, X₃, X₄) → n_l5___12(X₀, X₁, X₂+1, X₃, X₂) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 < X₀ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+5⋅X₃+3 {O(n^2)}

MPRF:

l9 [0 ]
l5 [0 ]
n_l13___17 [0 ]
n_l14___16 [0 ]
n_l11___15 [0 ]
n_l14___4 [X₁-X₄-1 ]
n_l11___3 [X₁-X₄-1 ]
n_l14___9 [X₁-X₂ ]
n_l11___8 [X₁-X₂ ]
n_l13___5 [X₁-X₄-1 ]
n_l13___10 [X₁-X₂ ]
l12 [0 ]
n_l6___14 [0 ]
n_l7___13 [0 ]
n_l6___2 [X₁-X₄-1 ]
n_l6___7 [X₁-X₂ ]
n_l7___1 [X₁-X₄-1 ]
n_l5___11 [X₁-X₄-1 ]
n_l7___6 [X₁-X₄-1 ]
n_l5___12 [X₁-X₂ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:13⋅X₃⋅X₃+30⋅X₃+26 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₅: 1 {O(1)}
t₁₈: 2⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₂₂: 1 {O(1)}
t₂₄: X₃+1 {O(n)}
t₁₄: 2⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₇: 2⋅X₃⋅X₃+5⋅X₃+3 {O(n^2)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₀: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₁: X₃+1 {O(n)}
t₁₉: 2⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₂₀: 3⋅X₃⋅X₃+6⋅X₃+3 {O(n^2)}
t₂₁: X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₉: X₃+1 {O(n)}

Costbounds

Overall costbound: 13⋅X₃⋅X₃+30⋅X₃+26 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₂₅: 1 {O(1)}
t₁₈: 2⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₂₂: 1 {O(1)}
t₂₄: X₃+1 {O(n)}
t₁₄: 2⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₇: 2⋅X₃⋅X₃+5⋅X₃+3 {O(n^2)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 1 {O(1)}
t₁₀: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₁: X₃+1 {O(n)}
t₁₉: 2⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₂₀: 3⋅X₃⋅X₃+6⋅X₃+3 {O(n^2)}
t₂₁: X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₉: X₃+1 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₂₅, X₁: X₁+X₃ {O(n)}
t₂₅, X₂: 8⋅X₃⋅X₃+16⋅X₃+X₂+11 {O(n^2)}
t₂₅, X₃: 2⋅X₃ {O(n)}
t₂₅, X₄: X₄ {O(n)}
t₁₈, X₁: X₃ {O(n)}
t₁₈, X₂: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₄: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₂₂, X₁: X₃ {O(n)}
t₂₂, X₂: 8⋅X₃⋅X₃+16⋅X₃+11 {O(n^2)}
t₂₂, X₃: X₃ {O(n)}
t₂₂, X₄: 0 {O(1)}
t₂₄, X₁: X₃ {O(n)}
t₂₄, X₂: 8⋅X₃⋅X₃+16⋅X₃+11 {O(n^2)}
t₂₄, X₃: X₃ {O(n)}
t₂₄, X₄: 8⋅X₃⋅X₃+16⋅X₃+10 {O(n^2)}
t₁₄, X₁: X₃ {O(n)}
t₁₄, X₂: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₁₇, X₁: X₃ {O(n)}
t₁₇, X₂: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₁₀, X₁: X₃ {O(n)}
t₁₀, X₂: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₁₁, X₁: X₃ {O(n)}
t₁₁, X₂: 8⋅X₃⋅X₃+16⋅X₃+11 {O(n^2)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: 8⋅X₃⋅X₃+16⋅X₃+10 {O(n^2)}
t₁₉, X₁: X₃ {O(n)}
t₁₉, X₂: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₂₀, X₁: X₃ {O(n)}
t₂₀, X₂: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₄: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₂₁, X₁: X₃ {O(n)}
t₂₁, X₂: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₂₁, X₃: X₃ {O(n)}
t₂₁, X₄: 4⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₃ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₉, X₁: X₃ {O(n)}
t₉, X₂: 1 {O(1)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: 0 {O(1)}