Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: H, I
Locations: l0, l1, l2, l3, l4
Transitions:
t₅: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(2⋅I+1, H, 0, X₃, H, 2⋅I+1, I) :|: 1 ≤ H ∧ 0 ≤ 2⋅I
t₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀-1, X₁-1, X₂+1, H, X₄, X₅, X₆) :|: 1 ≤ X₀ ∧ 1 ≤ H
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀-1, X₁, X₂, H, X₄, X₅, X₆) :|: H ≤ 0 ∧ 1 ≤ X₀ ∧ X₁+1 ≤ X₀
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
Cut unreachable locations [l3; l4] from the program graph
Eliminate variables {X₂,X₃,X₄,X₅,X₆} that do not contribute to the problem
Found invariant X₀ ≤ 0 ∧ 0 ≤ X₀ for location l2
Found invariant 0 ≤ X₀ for location l1
Start: l0
Program_Vars: X₀, X₁
Temp_Vars: H, I
Locations: l0, l1, l2
Transitions:
t₁₃: l0(X₀, X₁) → l1(2⋅I+1, H) :|: 1 ≤ H ∧ 0 ≤ 2⋅I
t₁₄: l1(X₀, X₁) → l1(X₀-1, X₁-1) :|: 1 ≤ X₀ ∧ 1 ≤ H ∧ 0 ≤ X₀
t₁₅: l1(X₀, X₁) → l1(X₀-1, X₁) :|: H ≤ 0 ∧ 1 ≤ X₀ ∧ X₁+1 ≤ X₀ ∧ 0 ≤ X₀
t₁₆: l1(X₀, X₁) → l2(X₀, X₁) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₇: l2(X₀, X₁) → l2(X₀, X₁) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
Cut unsatisfiable transition t₁₆: l1→l2
Cut unsatisfiable transition t₆₄: n_l1___2→l2
Found invariant X₀ ≤ 0 ∧ 0 ≤ X₀ for location l2
Found invariant X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___2
Found invariant 0 ≤ X₀ for location n_l1___3
Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location n_l1___1
Found invariant X₀ ≤ 0 ∧ 0 ≤ X₀ for location l2
Found invariant 0 ≤ X₀ for location l1
Overall timebound:inf {Infinity}
t₁₃: 1 {O(1)}
t₁₄: inf {Infinity}
t₁₅: inf {Infinity}
t₁₆: 1 {O(1)}
t₁₇: inf {Infinity}
Overall costbound: inf {Infinity}
t₁₃: 1 {O(1)}
t₁₄: inf {Infinity}
t₁₅: inf {Infinity}
t₁₆: 1 {O(1)}
t₁₇: inf {Infinity}
t₁₆, X₀: 0 {O(1)}
t₁₇, X₀: 0 {O(1)}