Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1, nondef_2, nondef_3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l34, l35, l36, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₁: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₃: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇)
t₅₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+2 ≤ X₂
t₅₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 2+X₆
t₇₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇)
t₇₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇)
t₇₃: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃
t₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₁₀: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_0 ≤ 0 ∧ 0 ≤ nondef_0
t₁₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_0+1
t₁₂: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_0 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_0 ∧ 2⋅nondef_0 < X₃+3
t₁₃: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_0 ≤ 0 ∧ 0 ≤ nondef_0
t₁₄: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_0+1
t₁₅: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_0 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_0 ∧ 2⋅nondef_0 < X₃+3
t₆₇: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₄+1)
t₆₈: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₄+2)
t₆₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ ≤ X₂ ∧ X₂ ≤ X₆+3+2⋅X₄
t₆₃: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ < X₂
t₆₄: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆+3+2⋅X₄
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆₅: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆₆: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆₉: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇₀: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, X₂, X₅, X₆, X₇)
t₇₁: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, X₇, X₅, X₆, X₇)
t₆₁: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆+3+2⋅X₄
t₆₀: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ ≤ X₂
t₁₆: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₁₇: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₁₈: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₁₉: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₂₀: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₂₁: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₂₂: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₂₃: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₂₄: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₂₅: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₂₆: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₂₇: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₂₈: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₂₉: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₃₀: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₃₁: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₃₂: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₃₃: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₃₄: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₃₅: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₃₆: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₃₇: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₃₈: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₃₉: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₄₀: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₄₁: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₄₂: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₅₉: l36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 2
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇) :|: 2 < X₂
t₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 1+X₅
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, X₅, X₄, X₅, X₆, X₇) :|: X₅+1 ≤ X₂
t₄₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₀, X₆, X₇)
t₄₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₅+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
Preprocessing
Cut unsatisfiable transition t₁₀: l26→l35
Cut unsatisfiable transition t₁₂: l26→l35
Cut unsatisfiable transition t₁₃: l26→l8
Cut unsatisfiable transition t₁₅: l26→l8
Cut unsatisfiable transition t₆₄: l29→l30
Cut unsatisfiable transition t₁₇: l35→l25
Cut unsatisfiable transition t₁₈: l35→l25
Cut unsatisfiable transition t₁₉: l35→l25
Cut unsatisfiable transition t₂₀: l35→l25
Cut unsatisfiable transition t₂₁: l35→l25
Cut unsatisfiable transition t₂₂: l35→l25
Cut unsatisfiable transition t₂₃: l35→l25
Cut unsatisfiable transition t₂₄: l35→l25
Cut unsatisfiable transition t₂₅: l35→l25
Cut unsatisfiable transition t₂₆: l35→l25
Cut unsatisfiable transition t₂₇: l35→l25
Cut unsatisfiable transition t₂₈: l35→l25
Cut unsatisfiable transition t₃₀: l35→l25
Cut unsatisfiable transition t₃₁: l35→l25
Cut unsatisfiable transition t₃₂: l35→l25
Cut unsatisfiable transition t₃₃: l35→l25
Cut unsatisfiable transition t₃₄: l35→l25
Cut unsatisfiable transition t₃₅: l35→l25
Cut unsatisfiable transition t₃₆: l35→l25
Cut unsatisfiable transition t₃₇: l35→l25
Cut unsatisfiable transition t₃₈: l35→l25
Cut unsatisfiable transition t₃₉: l35→l25
Cut unsatisfiable transition t₄₀: l35→l25
Cut unsatisfiable transition t₄₁: l35→l25
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l11
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l25
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l27
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l24
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l32
Found invariant X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂ for location l6
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l15
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l31
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l33
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location l30
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l35
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l19
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l26
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l29
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l23
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l12
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l17
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location l28
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location l7
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l21
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l20
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l13
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l8
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l22
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l16
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location l9
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l10
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l18
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l36
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l14
Cut unsatisfiable transition t₁₆: l35→l25
Cut unsatisfiable transition t₄₂: l35→l25
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1, nondef_2, nondef_3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l34, l35, l36, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₄₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₄₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₄₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₁: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₃: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+2 ≤ X₂ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 2+X₆ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₇₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁
t₇₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₇₃: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁
t₈: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₁₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_0+1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₁₄: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_0+1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₆₇: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₄+1) :|: 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₆₈: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₄+2) :|: 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
t₆₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ ≤ X₂ ∧ X₂ ≤ X₆+3+2⋅X₄ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₆₃: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ < X₂ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆₅: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
t₆₆: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
t₆₉: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₇₀: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, X₂, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₇₁: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, X₇, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₆₁: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆+3+2⋅X₄ ∧ 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₆₀: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₂₉: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₅₉: l36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 2
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇) :|: 2 < X₂
t₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 1+X₅ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, X₅, X₄, X₅, X₆, X₇) :|: X₅+1 ≤ X₂ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂
t₄₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₀, X₆, X₇) :|: 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
t₄₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₅+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₄₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF:
l26 [X₂-X₅ ]
l35 [X₂-X₅ ]
l25 [X₂-X₅ ]
l6 [X₂-X₅ ]
l8 [X₂-X₅-1 ]
l9 [X₂-X₀ ]
l7 [X₂-X₀ ]
MPRF for transition t₁₄: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_0+1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF:
l26 [X₂-X₅ ]
l35 [X₂-X₅ ]
l25 [X₂-X₅ ]
l6 [X₂-X₅ ]
l8 [X₂-X₅-1 ]
l9 [X₂-X₀ ]
l7 [X₂-X₀ ]
MPRF for transition t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, X₅, X₄, X₅, X₆, X₇) :|: X₅+1 ≤ X₂ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+2 {O(n)}
MPRF:
l26 [X₂-X₅ ]
l35 [X₂-X₅ ]
l25 [X₂-X₅ ]
l6 [X₂+1-X₅ ]
l8 [X₂-X₅ ]
l9 [X₂-X₅ ]
l7 [X₂-X₅ ]
MPRF for transition t₄₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₀, X₆, X₇) :|: 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF:
l26 [X₂-X₅ ]
l35 [X₂-X₅ ]
l25 [X₂-X₅ ]
l6 [X₂-X₅ ]
l8 [X₂-X₅ ]
l9 [X₂-X₅ ]
l7 [X₂-X₅ ]
MPRF for transition t₄₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₅+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+2 {O(n)}
MPRF:
l26 [X₂+1-X₅ ]
l35 [X₂+1-X₅ ]
l25 [X₂+1-X₅ ]
l6 [X₂+1-X₅ ]
l8 [X₂+1-X₅ ]
l9 [X₂-X₅ ]
l7 [X₂+1-X₀ ]
MPRF for transition t₄₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF:
l26 [X₂-X₅ ]
l35 [X₂-X₅ ]
l25 [X₂-X₅ ]
l6 [X₂-X₅ ]
l8 [X₂-X₅ ]
l9 [X₂+1-X₀ ]
l7 [X₂-X₀ ]
MPRF for transition t₈: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
8⋅X₂⋅X₂+35⋅X₂+32 {O(n^2)}
MPRF:
l26 [2⋅X₃+2⋅X₅-3 ]
l35 [2⋅X₃+2⋅X₅-3 ]
l25 [2⋅X₃+2⋅X₅-1 ]
l7 [4⋅X₅+3 ]
l6 [4⋅X₅-1 ]
l8 [2⋅X₅-3 ]
l9 [2⋅X₅-3 ]
MPRF for transition t₁₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_0+1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
2⋅X₂⋅X₂+8⋅X₂+8 {O(n^2)}
MPRF:
l26 [2⋅X₃-1 ]
l35 [2⋅X₃-3 ]
l25 [2⋅X₃-1 ]
l7 [2⋅X₀ ]
l6 [2⋅X₅ ]
l8 [-1 ]
l9 [-1 ]
MPRF for transition t₂₉: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
4⋅X₂⋅X₂+19⋅X₂+18 {O(n^2)}
MPRF:
l26 [2⋅X₃+1 ]
l35 [X₃+2 ]
l25 [2⋅X₃+1 ]
l7 [2⋅X₅+3 ]
l6 [2⋅X₅+1 ]
l8 [X₃ ]
l9 [X₃ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₇: l6→l11
Cut unsatisfiable transition t₄₆₉: n_l25___15→l8
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l27
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l26___10
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 4 ≤ X₂+X₇ ∧ 4 ≤ X₀+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l32
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 5 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l6___5
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂ for location l6
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l8___8
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l19
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l29
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l26___14
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l7___6
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l9___2
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l12
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l20
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l35___9
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l22
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l10
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l18
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l7___1
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l14
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l11
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 4 ≤ X₂+X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l25___11
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l24
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l15
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 4 ≤ X₂+X₇ ∧ 4 ≤ X₀+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l31
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l33
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l9___4
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l9___7
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 4+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 8 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 4+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 4 ≤ X₂ ∧ 8 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 4 ≤ X₀ for location l30
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l7___3
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l8___12
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l23
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l17
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 4+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 8 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 4+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 4 ≤ X₂ ∧ 8 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 4 ≤ X₀ for location l28
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l25___15
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l21
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l13
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l8
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l16
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l36
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l35___13
MPRF for transition t₅₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+2 ≤ X₂ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂ {O(n)}
MPRF:
l21 [X₂-X₆ ]
l24 [X₅-X₆-1 ]
l22 [X₅-X₁ ]
l27 [X₂-X₆-1 ]
l30 [X₅-X₆-1 ]
l28 [X₂-X₆-1 ]
l31 [X₂-X₆-1 ]
l32 [X₅-X₆-1 ]
l29 [X₂-X₆-1 ]
l23 [X₅-X₆-1 ]
l36 [X₂-X₆-1 ]
l33 [X₂-X₆-1 ]
MPRF for transition t₇₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₂ {O(n)}
MPRF:
l21 [X₂-X₆ ]
l24 [X₅-X₆ ]
l22 [X₂+1-X₁ ]
l27 [X₂-X₆ ]
l30 [X₂-X₆ ]
l28 [X₂-X₆ ]
l31 [X₅-X₆ ]
l32 [X₂-X₆ ]
l29 [X₅-X₆ ]
l23 [X₅-X₆ ]
l36 [X₅-X₆ ]
l33 [X₅-X₆ ]
MPRF for transition t₇₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂ {O(n)}
MPRF:
l21 [X₂-X₆ ]
l24 [X₂-X₁ ]
l22 [X₂-X₁ ]
l27 [X₅-X₆ ]
l30 [X₂-X₆ ]
l28 [X₅-X₆ ]
l31 [X₂-X₆ ]
l32 [X₅-X₆ ]
l29 [X₂-X₆ ]
l23 [X₅-X₆ ]
l36 [X₅-X₆ ]
l33 [X₅-X₆ ]
MPRF for transition t₇₃: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₂+3 {O(n)}
MPRF:
l21 [X₅-X₆ ]
l24 [X₅-X₆ ]
l22 [X₅-X₆-1 ]
l27 [X₂-X₆ ]
l30 [X₅-X₆ ]
l28 [X₅-X₆ ]
l31 [X₅-X₆ ]
l32 [X₂-X₆ ]
l29 [X₅-X₆ ]
l23 [X₂-X₆ ]
l36 [X₅-X₆ ]
l33 [X₂-X₆ ]
MPRF for transition t₆₁: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆+3+2⋅X₄ ∧ 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+4 {O(n)}
MPRF:
l21 [X₅-X₆-1 ]
l24 [X₅-X₆-2 ]
l22 [X₂-X₆-2 ]
l27 [X₅-X₆-1 ]
l30 [X₂-X₆-1 ]
l28 [X₂-X₆-1 ]
l31 [X₅-X₆-1 ]
l32 [X₅-X₆-1 ]
l29 [X₂-X₆-1 ]
l23 [X₂-X₆-2 ]
l36 [X₂-X₆-1 ]
l33 [X₅-X₆-1 ]
MPRF for transition t₅₉: l36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂+4 {O(n)}
MPRF:
l21 [2⋅X₂-X₅-X₆-1 ]
l24 [X₂-X₆-2 ]
l22 [2⋅X₂-X₁-X₅-1 ]
l27 [X₅-X₆-2 ]
l30 [X₅-X₆-2 ]
l28 [X₂-X₆-2 ]
l31 [X₂-X₆-2 ]
l32 [X₅-X₆-2 ]
l29 [X₂-X₆-2 ]
l23 [X₂-X₆-2 ]
l36 [X₅-X₆-1 ]
l33 [X₂-X₆-2 ]
MPRF for transition t₆₇: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₄+1) :|: 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+19⋅X₂+X₄+20 {O(n^2)}
MPRF:
l36 [-X₄ ]
l21 [-X₄ ]
l24 [-X₄ ]
l22 [-X₄ ]
l27 [X₂-X₄-2 ]
l30 [3⋅X₅-2⋅X₂-X₄-2 ]
l28 [3⋅X₅-2⋅X₂-X₄-2 ]
l31 [X₅-X₄-3 ]
l32 [X₂-X₇-2 ]
l29 [X₂-X₄-2 ]
l33 [X₅-X₄-2 ]
l23 [-X₄ ]
MPRF for transition t₆₈: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₄+2) :|: 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ of depth 1:
new bound:
6⋅X₂⋅X₂+44⋅X₂+X₄+48 {O(n^2)}
MPRF:
l36 [-X₄ ]
l21 [-X₄ ]
l24 [-X₄ ]
l22 [-X₄ ]
l27 [2⋅X₅-X₄-6 ]
l30 [X₂+X₅-X₄-6 ]
l28 [2⋅X₂-X₄-6 ]
l31 [2⋅X₅-X₄-7 ]
l32 [2⋅X₅-X₇-6 ]
l29 [X₂+X₅-X₄-6 ]
l33 [2⋅X₅-X₄-6 ]
l23 [2⋅X₅-2⋅X₂-X₄ ]
MPRF for transition t₆₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ ≤ X₂ ∧ X₂ ≤ X₆+3+2⋅X₄ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+20⋅X₂+X₄+20 {O(n^2)}
MPRF:
l36 [-X₂-X₄ ]
l21 [-X₂-X₄ ]
l24 [X₂-X₄-2 ]
l22 [X₅-X₄-2 ]
l27 [X₅-X₄-3 ]
l30 [X₂-X₄-2 ]
l28 [X₅-X₄-2 ]
l31 [X₅-X₄-3 ]
l32 [X₅-X₄-3 ]
l29 [X₂-X₄-2 ]
l33 [X₅-X₄-2 ]
l23 [X₅-X₄-2 ]
MPRF for transition t₆₃: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ < X₂ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+19⋅X₂+X₄+20 {O(n^2)}
MPRF:
l36 [-X₄ ]
l21 [-X₄ ]
l24 [-X₄ ]
l22 [-X₄ ]
l27 [X₅-X₄-3 ]
l30 [X₅-X₄-3 ]
l28 [X₅-X₄-3 ]
l31 [X₂-X₄-3 ]
l32 [X₅-X₇-2 ]
l29 [X₂-X₄-2 ]
l33 [X₅-X₄-2 ]
l23 [X₅-X₂-X₄ ]
MPRF for transition t₆₅: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+13⋅X₂+X₄+12 {O(n^2)}
MPRF:
l36 [-X₄ ]
l21 [-X₄ ]
l24 [-X₄ ]
l22 [-X₄ ]
l27 [X₂-X₄-4 ]
l30 [X₅-X₄-3 ]
l28 [X₅-X₄-3 ]
l31 [X₅-X₄-4 ]
l32 [X₂-X₄-4 ]
l29 [X₂-X₄-3 ]
l33 [X₂-X₄-3 ]
l23 [-X₄ ]
MPRF for transition t₆₆: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ of depth 1:
new bound:
6⋅X₂⋅X₂+2⋅X₄+35⋅X₂+36 {O(n^2)}
MPRF:
l36 [-2⋅X₄ ]
l21 [-2⋅X₄ ]
l24 [-2⋅X₄ ]
l22 [-2⋅X₄ ]
l27 [2⋅X₅-2⋅X₄-3 ]
l30 [2⋅X₂-2⋅X₄-3 ]
l28 [2⋅X₅-2⋅X₄-5 ]
l31 [2⋅X₂-2⋅X₄-5 ]
l32 [2⋅X₅-2⋅X₇-3 ]
l29 [2⋅X₅-2⋅X₄-3 ]
l33 [2⋅X₅-2⋅X₄-3 ]
l23 [-2⋅X₄ ]
MPRF for transition t₆₉: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+16⋅X₂+X₄+16 {O(n^2)}
MPRF:
l36 [-X₄ ]
l21 [-X₄ ]
l24 [-X₄ ]
l22 [-X₄ ]
l27 [X₅+1-X₄ ]
l30 [X₂+1-X₄ ]
l28 [X₅+1-X₄ ]
l31 [X₂+1-X₄ ]
l32 [X₅-X₄ ]
l29 [X₅+1-X₄ ]
l33 [X₅+1-X₄ ]
l23 [-X₄ ]
MPRF for transition t₇₀: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, X₂, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+16⋅X₂+X₄+16 {O(n^2)}
MPRF:
l36 [-X₄ ]
l21 [-X₄ ]
l24 [-X₄ ]
l22 [-X₄ ]
l27 [X₅+1-X₄ ]
l30 [X₂+1-X₄ ]
l28 [X₅+1-X₄ ]
l31 [X₂+1-X₄ ]
l32 [X₅+1-X₇ ]
l29 [X₂+1-X₄ ]
l33 [X₅+1-X₄ ]
l23 [X₂-X₄ ]
MPRF for transition t₇₁: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, X₇, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+13⋅X₂+X₄+12 {O(n^2)}
MPRF:
l36 [-X₄ ]
l21 [-X₄ ]
l24 [-X₄ ]
l22 [-X₄ ]
l27 [X₂-X₄ ]
l30 [X₅-X₄ ]
l28 [X₂-X₄ ]
l31 [X₅-X₄ ]
l32 [X₅-X₄ ]
l29 [X₂-X₄ ]
l33 [X₅-X₄ ]
l23 [X₂-X₄ ]
MPRF for transition t₆₀: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+13⋅X₂+2⋅X₄+12 {O(n^2)}
MPRF:
l36 [-2⋅X₄ ]
l21 [-2⋅X₄ ]
l24 [-2⋅X₄ ]
l22 [-2⋅X₄ ]
l27 [X₅-2⋅X₄-2 ]
l30 [X₂-2⋅X₄-2 ]
l28 [X₂-2⋅X₄-2 ]
l31 [X₂-2⋅X₄-2 ]
l32 [X₅-2⋅X₇ ]
l29 [X₂-2⋅X₄-2 ]
l33 [X₅-2⋅X₄ ]
l23 [-2⋅X₄ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₈₁₅: n_l33___20→n_l29___19
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 8 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 8 ≤ X₂+X₇ ∧ 5+X₆ ≤ X₅ ∧ 5+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 5 ≤ X₂ for location n_l31___16
Found invariant 5+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 5+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 7 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l27___12
Found invariant X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂ for location l6
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 9 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 9 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l32___9
Found invariant 5+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 5+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 7 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l30___17
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l19
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 5 ≤ X₄+X₇ ∧ 5 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₄ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 8 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 4 ≤ X₄ ∧ 8 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₂ for location n_l33___14
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l12
Found invariant 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 10 ≤ X₅+X₇ ∧ 5 ≤ X₄+X₇ ∧ 3+X₄ ≤ X₇ ∧ 10 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l31___8
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l30___24
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l20
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l27___6
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l22
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 3+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 3+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l31___4
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location n_l33___20
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l10
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l18
Found invariant 4+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 4+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 6 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ 5+X₆ ≤ X₅ ∧ 5+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 5 ≤ X₂ for location n_l29___19
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l14
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 9 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 9 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l31___10
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l11
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l25
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 2+X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 6 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l31___2
Found invariant X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l33___13
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ 2+X₇ ≤ X₄ ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 3 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₂ for location n_l33___21
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l24
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 2+X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 6 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l32___1
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l15
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l33
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location n_l27___25
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l35
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l26
Found invariant 5+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 5+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 7 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l28___11
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location n_l31___23
Found invariant 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 10 ≤ X₅+X₇ ∧ 5 ≤ X₄+X₇ ∧ 3+X₄ ≤ X₇ ∧ 10 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l32___7
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l23
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l17
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location l7
Found invariant 2+X₇ ≤ X₅ ∧ 2+X₇ ≤ X₂ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 8 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 8 ≤ X₂+X₇ ∧ 5+X₆ ≤ X₅ ∧ 5+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 5 ≤ X₂ for location n_l32___15
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l21
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l13
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l8
Found invariant 4+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 4+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ 5+X₆ ≤ X₅ ∧ 5+X₆ ≤ X₂ ∧ X₅ ≤ X₂ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 5 ≤ X₂ for location n_l27___18
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l16
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location l9
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l28___5
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location n_l29___26
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l36
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location n_l32___22
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 3+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 3+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l32___3
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₈₁₆: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l29___26(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₇) :|: 0 ≤ X₆ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 3+2⋅X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅ ∧ 2+X₆ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3+2⋅X₄+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₇₉₀: n_l29___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l27___25(X₀, X₁, X₂, X₃, X₄, X₂, X₂-2⋅X₄-3, X₇) :|: 3+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 3+2⋅X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₂ ≤ 2⋅X₄+X₆+3 ∧ 3+2⋅X₄+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₇₉₁: n_l29___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l30___24(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₇) :|: 3+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₆ ∧ 3+2⋅X₄+X₆ < X₂ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₇₉₄: n_l30___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l27___6(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₇) :|: 3+X₆ < X₅ ∧ 0 ≤ X₆ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4+X₄ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₇₉₅: n_l30___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l28___5(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₇) :|: 3+X₆ < X₅ ∧ 0 ≤ X₆ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4+X₄ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₇₈₄: n_l27___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l31___23(X₀, X₁, X₂, X₃, X₄, X₂, X₆, 2⋅X₄+1) :|: 3 ≤ X₅ ∧ X₅ ≤ X₆+3 ∧ 3+X₆ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3+X₄ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₇₈₅: n_l27___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l31___4(X₀, X₁, X₂, X₃, X₄, X₂, X₆, 2⋅X₄+1) :|: 4+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3+X₄ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₇₈₇: n_l28___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l31___2(X₀, X₁, X₂, X₃, X₄, X₂, X₆, 2⋅X₄+2) :|: 4+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4+X₄ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₈₀₀: n_l31___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l32___1(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₇) :|: 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₇ ≤ 2 ∧ 2 ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄ ∧ 3+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₇ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 2+X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 6 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₈₀₁: n_l31___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l33___14(X₀, X₁, X₂, X₃, X₂, X₂, X₆, X₇) :|: 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₇ ≤ 2 ∧ 2 ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄ ∧ 3+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₇ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 2+X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 6 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₈₀₂: n_l31___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l32___22(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₇) :|: 0 ≤ X₆ ∧ X₂ ≤ X₆+3 ∧ 3+X₆ ≤ X₂ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ X₆+3 ∧ 3+X₆ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄ ∧ 3+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₇ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₈₀₃: n_l31___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l33___21(X₀, X₁, X₂, X₃, X₂, X₂, X₆, X₇) :|: 0 ≤ X₆ ∧ X₂ ≤ X₆+3 ∧ 3+X₆ ≤ X₂ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ X₆+3 ∧ 3+X₆ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄ ∧ 3+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₇ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₈₀₄: n_l31___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l32___3(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₇) :|: 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄ ∧ 3+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₇ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 3+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 3+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₈₀₅: n_l31___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l33___14(X₀, X₁, X₂, X₃, X₂, X₂, X₆, X₇) :|: 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄ ∧ 3+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₇ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 3+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 3+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₈₀₈: n_l32___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l33___13(X₀, X₁, X₂, X₃, X₇, X₂, X₆, X₇) :|: 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₇ ≤ 2 ∧ 2 ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄ ∧ 3+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₇ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 2+X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 6 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₈₁₀: n_l32___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l33___20(X₀, X₁, X₂, X₃, X₇, X₂, X₆, X₇) :|: 0 ≤ X₆ ∧ X₂ ≤ X₆+3 ∧ 3+X₆ ≤ X₂ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ X₆+3 ∧ 3+X₆ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄ ∧ 3+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₇ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₈₁₁: n_l32___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l33___13(X₀, X₁, X₂, X₃, X₇, X₂, X₆, X₇) :|: 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄ ∧ 3+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₇ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 3+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 3+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₈₃₅: n_l33___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆+3+2⋅X₄ ∧ 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₂+4 {O(n)} for transition t₈₃₆: n_l33___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆+3+2⋅X₄ ∧ 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ 2+X₇ ≤ X₄ ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 3 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₂
All Bounds
Timebounds
Overall timebound:50⋅X₂⋅X₂+12⋅X₄+284⋅X₂+309 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄₈: 1 {O(1)}
t₄₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₉: 1 {O(1)}
t₅₀: 1 {O(1)}
t₅₁: 1 {O(1)}
t₅₂: 1 {O(1)}
t₅₃: 1 {O(1)}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₁: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: X₂ {O(n)}
t₅₈: 1 {O(1)}
t₇₄: X₂ {O(n)}
t₇₂: X₂ {O(n)}
t₇₃: X₂+3 {O(n)}
t₈: 8⋅X₂⋅X₂+35⋅X₂+32 {O(n^2)}
t₉: X₂+1 {O(n)}
t₁₁: 2⋅X₂⋅X₂+8⋅X₂+8 {O(n^2)}
t₁₄: X₂+1 {O(n)}
t₆₇: 3⋅X₂⋅X₂+19⋅X₂+X₄+20 {O(n^2)}
t₆₈: 6⋅X₂⋅X₂+44⋅X₂+X₄+48 {O(n^2)}
t₆₂: 3⋅X₂⋅X₂+20⋅X₂+X₄+20 {O(n^2)}
t₆₃: 3⋅X₂⋅X₂+19⋅X₂+X₄+20 {O(n^2)}
t₂: 1 {O(1)}
t₆₅: 3⋅X₂⋅X₂+13⋅X₂+X₄+12 {O(n^2)}
t₆₆: 6⋅X₂⋅X₂+2⋅X₄+35⋅X₂+36 {O(n^2)}
t₆₉: 3⋅X₂⋅X₂+16⋅X₂+X₄+16 {O(n^2)}
t₇₀: 3⋅X₂⋅X₂+16⋅X₂+X₄+16 {O(n^2)}
t₇₁: 3⋅X₂⋅X₂+13⋅X₂+X₄+12 {O(n^2)}
t₆₀: 3⋅X₂⋅X₂+13⋅X₂+2⋅X₄+12 {O(n^2)}
t₆₁: X₂+4 {O(n)}
t₂₉: 4⋅X₂⋅X₂+19⋅X₂+18 {O(n^2)}
t₅₉: 3⋅X₂+4 {O(n)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₇₅: 1 {O(1)}
t₆: X₂+2 {O(n)}
t₇: 1 {O(1)}
t₄₅: X₂+1 {O(n)}
t₄₃: X₂+2 {O(n)}
t₄₄: X₂+1 {O(n)}
Costbounds
Overall costbound: 50⋅X₂⋅X₂+12⋅X₄+284⋅X₂+309 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄₈: 1 {O(1)}
t₄₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₉: 1 {O(1)}
t₅₀: 1 {O(1)}
t₅₁: 1 {O(1)}
t₅₂: 1 {O(1)}
t₅₃: 1 {O(1)}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₁: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: X₂ {O(n)}
t₅₈: 1 {O(1)}
t₇₄: X₂ {O(n)}
t₇₂: X₂ {O(n)}
t₇₃: X₂+3 {O(n)}
t₈: 8⋅X₂⋅X₂+35⋅X₂+32 {O(n^2)}
t₉: X₂+1 {O(n)}
t₁₁: 2⋅X₂⋅X₂+8⋅X₂+8 {O(n^2)}
t₁₄: X₂+1 {O(n)}
t₆₇: 3⋅X₂⋅X₂+19⋅X₂+X₄+20 {O(n^2)}
t₆₈: 6⋅X₂⋅X₂+44⋅X₂+X₄+48 {O(n^2)}
t₆₂: 3⋅X₂⋅X₂+20⋅X₂+X₄+20 {O(n^2)}
t₆₃: 3⋅X₂⋅X₂+19⋅X₂+X₄+20 {O(n^2)}
t₂: 1 {O(1)}
t₆₅: 3⋅X₂⋅X₂+13⋅X₂+X₄+12 {O(n^2)}
t₆₆: 6⋅X₂⋅X₂+2⋅X₄+35⋅X₂+36 {O(n^2)}
t₆₉: 3⋅X₂⋅X₂+16⋅X₂+X₄+16 {O(n^2)}
t₇₀: 3⋅X₂⋅X₂+16⋅X₂+X₄+16 {O(n^2)}
t₇₁: 3⋅X₂⋅X₂+13⋅X₂+X₄+12 {O(n^2)}
t₆₀: 3⋅X₂⋅X₂+13⋅X₂+2⋅X₄+12 {O(n^2)}
t₆₁: X₂+4 {O(n)}
t₂₉: 4⋅X₂⋅X₂+19⋅X₂+18 {O(n^2)}
t₅₉: 3⋅X₂+4 {O(n)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₇₅: 1 {O(1)}
t₆: X₂+2 {O(n)}
t₇: 1 {O(1)}
t₄₅: X₂+1 {O(n)}
t₄₃: X₂+2 {O(n)}
t₄₄: X₂+1 {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄₈, X₀: X₂+3 {O(n)}
t₄₈, X₁: X₁ {O(n)}
t₄₈, X₂: X₂ {O(n)}
t₄₈, X₃: X₂+4 {O(n)}
t₄₈, X₄: X₄ {O(n)}
t₄₈, X₅: X₂+3 {O(n)}
t₄₈, X₆: X₆ {O(n)}
t₄₈, X₇: X₇ {O(n)}
t₄₆, X₀: X₂+3 {O(n)}
t₄₆, X₁: X₁ {O(n)}
t₄₆, X₂: X₂ {O(n)}
t₄₆, X₃: X₂+4 {O(n)}
t₄₆, X₄: X₄ {O(n)}
t₄₆, X₅: X₂+3 {O(n)}
t₄₆, X₆: X₆ {O(n)}
t₄₆, X₇: X₇ {O(n)}
t₄₇, X₀: X₂+3 {O(n)}
t₄₇, X₁: X₁ {O(n)}
t₄₇, X₂: X₂ {O(n)}
t₄₇, X₃: X₂+4 {O(n)}
t₄₇, X₄: X₄ {O(n)}
t₄₇, X₅: X₂+3 {O(n)}
t₄₇, X₆: X₆ {O(n)}
t₄₇, X₇: X₇ {O(n)}
t₄₉, X₀: X₂+3 {O(n)}
t₄₉, X₁: X₁ {O(n)}
t₄₉, X₂: X₂ {O(n)}
t₄₉, X₃: X₂+4 {O(n)}
t₄₉, X₄: X₄ {O(n)}
t₄₉, X₅: X₂+3 {O(n)}
t₄₉, X₆: X₆ {O(n)}
t₄₉, X₇: X₇ {O(n)}
t₅₀, X₀: X₂+3 {O(n)}
t₅₀, X₁: X₁ {O(n)}
t₅₀, X₂: X₂ {O(n)}
t₅₀, X₃: X₂+4 {O(n)}
t₅₀, X₄: X₄ {O(n)}
t₅₀, X₅: X₂+3 {O(n)}
t₅₀, X₆: X₆ {O(n)}
t₅₀, X₇: X₇ {O(n)}
t₅₁, X₀: X₂+3 {O(n)}
t₅₁, X₁: X₁ {O(n)}
t₅₁, X₂: X₂ {O(n)}
t₅₁, X₃: X₂+4 {O(n)}
t₅₁, X₄: X₄ {O(n)}
t₅₁, X₅: X₂+3 {O(n)}
t₅₁, X₆: X₆ {O(n)}
t₅₁, X₇: X₇ {O(n)}
t₅₂, X₀: X₂+3 {O(n)}
t₅₂, X₁: X₁ {O(n)}
t₅₂, X₂: X₂ {O(n)}
t₅₂, X₃: X₂+4 {O(n)}
t₅₂, X₄: X₄ {O(n)}
t₅₂, X₅: X₂+3 {O(n)}
t₅₂, X₆: X₆ {O(n)}
t₅₂, X₇: X₇ {O(n)}
t₅₃, X₀: X₂+3 {O(n)}
t₅₃, X₁: X₁ {O(n)}
t₅₃, X₂: X₂ {O(n)}
t₅₃, X₃: X₂+4 {O(n)}
t₅₃, X₄: X₄ {O(n)}
t₅₃, X₅: X₂+3 {O(n)}
t₅₃, X₆: X₆ {O(n)}
t₅₃, X₇: X₇ {O(n)}
t₅₄, X₀: X₂+3 {O(n)}
t₅₄, X₁: X₁ {O(n)}
t₅₄, X₂: X₂ {O(n)}
t₅₄, X₃: X₂+4 {O(n)}
t₅₄, X₄: X₄ {O(n)}
t₅₄, X₅: X₂+3 {O(n)}
t₅₄, X₆: X₆ {O(n)}
t₅₄, X₇: X₇ {O(n)}
t₅₅, X₀: X₂+3 {O(n)}
t₅₅, X₁: X₁ {O(n)}
t₅₅, X₂: X₂ {O(n)}
t₅₅, X₃: X₂+4 {O(n)}
t₅₅, X₄: X₄ {O(n)}
t₅₅, X₅: X₂+3 {O(n)}
t₅₅, X₆: X₆ {O(n)}
t₅₅, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₅₆, X₀: X₂+3 {O(n)}
t₅₆, X₁: X₁ {O(n)}
t₅₆, X₂: X₂ {O(n)}
t₅₆, X₃: X₂+4 {O(n)}
t₅₆, X₄: X₄ {O(n)}
t₅₆, X₅: X₂+3 {O(n)}
t₅₆, X₆: 0 {O(1)}
t₅₆, X₇: X₇ {O(n)}
t₅₇, X₀: X₂+3 {O(n)}
t₅₇, X₁: X₁+X₂ {O(n)}
t₅₇, X₂: X₂ {O(n)}
t₅₇, X₃: X₂+4 {O(n)}
t₅₇, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+2⋅X₂+X₄ {O(EXP)}
t₅₇, X₅: X₂+3 {O(n)}
t₅₇, X₆: X₂ {O(n)}
t₅₇, X₇: 126⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+136⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+18⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂⋅X₂+2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅4⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+X₇ {O(EXP)}
t₅₈, X₀: X₂+3 {O(n)}
t₅₈, X₁: X₂ {O(n)}
t₅₈, X₂: X₂ {O(n)}
t₅₈, X₃: X₂+4 {O(n)}
t₅₈, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+2⋅X₂ {O(EXP)}
t₅₈, X₅: X₂+3 {O(n)}
t₅₈, X₆: X₂ {O(n)}
t₅₈, X₇: 126⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+136⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+18⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂⋅X₂+2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅4⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+X₇ {O(EXP)}
t₇₄, X₀: X₂+3 {O(n)}
t₇₄, X₁: X₂ {O(n)}
t₇₄, X₂: X₂ {O(n)}
t₇₄, X₃: X₂+4 {O(n)}
t₇₄, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+2⋅X₂ {O(EXP)}
t₇₄, X₅: X₂+3 {O(n)}
t₇₄, X₆: X₂ {O(n)}
t₇₄, X₇: 126⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+136⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+18⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂⋅X₂+2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅4⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+X₇ {O(EXP)}
t₇₂, X₀: X₂+3 {O(n)}
t₇₂, X₁: X₂ {O(n)}
t₇₂, X₂: X₂ {O(n)}
t₇₂, X₃: X₂+4 {O(n)}
t₇₂, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+2⋅X₂ {O(EXP)}
t₇₂, X₅: X₂+3 {O(n)}
t₇₂, X₆: X₂ {O(n)}
t₇₂, X₇: 126⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+136⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+18⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂⋅X₂+2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅4⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+X₇ {O(EXP)}
t₇₃, X₀: X₂+3 {O(n)}
t₇₃, X₁: X₂ {O(n)}
t₇₃, X₂: X₂ {O(n)}
t₇₃, X₃: X₂+4 {O(n)}
t₇₃, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+2⋅X₂ {O(EXP)}
t₇₃, X₅: X₂+3 {O(n)}
t₇₃, X₆: X₂ {O(n)}
t₇₃, X₇: 126⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+136⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+18⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂⋅X₂+2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅4⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+X₇ {O(EXP)}
t₈, X₀: X₀+X₂+3 {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₂+4 {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₂+3 {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₉, X₀: X₀+X₂+3 {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: 0 {O(1)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₂+3 {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₁₁, X₀: X₀+X₂+3 {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₂+4 {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₂+3 {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₇ {O(n)}
t₁₄, X₀: X₀+X₂+3 {O(n)}
t₁₄, X₁: X₁ {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₂+4 {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: X₂+3 {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: X₇ {O(n)}
t₆₇, X₀: X₂+3 {O(n)}
t₆₇, X₁: X₁+X₂ {O(n)}
t₆₇, X₂: X₂ {O(n)}
t₆₇, X₃: X₂+4 {O(n)}
t₆₇, X₄: 126⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+136⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+18⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅4⋅X₄ {O(EXP)}
t₆₇, X₅: X₂+3 {O(n)}
t₆₇, X₆: X₂ {O(n)}
t₆₇, X₇: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂ {O(EXP)}
t₆₈, X₀: X₂+3 {O(n)}
t₆₈, X₁: X₁+X₂ {O(n)}
t₆₈, X₂: X₂ {O(n)}
t₆₈, X₃: X₂+4 {O(n)}
t₆₈, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂ {O(EXP)}
t₆₈, X₅: X₂+3 {O(n)}
t₆₈, X₆: X₂ {O(n)}
t₆₈, X₇: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂ {O(EXP)}
t₆₂, X₀: X₂+3 {O(n)}
t₆₂, X₁: X₁+X₂ {O(n)}
t₆₂, X₂: X₂ {O(n)}
t₆₂, X₃: X₂+4 {O(n)}
t₆₂, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂ {O(EXP)}
t₆₂, X₅: X₂+3 {O(n)}
t₆₂, X₆: X₂ {O(n)}
t₆₂, X₇: 252⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+272⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅36⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅8⋅X₄+X₇ {O(EXP)}
t₆₃, X₀: X₂+3 {O(n)}
t₆₃, X₁: X₁+X₂ {O(n)}
t₆₃, X₂: X₂ {O(n)}
t₆₃, X₃: X₂+4 {O(n)}
t₆₃, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂ {O(EXP)}
t₆₃, X₅: X₂+3 {O(n)}
t₆₃, X₆: X₂ {O(n)}
t₆₃, X₇: 252⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+272⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅36⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅8⋅X₄+X₇ {O(EXP)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₆₅, X₀: X₂+3 {O(n)}
t₆₅, X₁: X₁+X₂ {O(n)}
t₆₅, X₂: X₂ {O(n)}
t₆₅, X₃: X₂+4 {O(n)}
t₆₅, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂ {O(EXP)}
t₆₅, X₅: X₂+3 {O(n)}
t₆₅, X₆: X₂ {O(n)}
t₆₅, X₇: 252⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+272⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅36⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅8⋅X₄+X₇ {O(EXP)}
t₆₆, X₀: X₂+3 {O(n)}
t₆₆, X₁: X₁+X₂ {O(n)}
t₆₆, X₂: X₂ {O(n)}
t₆₆, X₃: X₂+4 {O(n)}
t₆₆, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂ {O(EXP)}
t₆₆, X₅: X₂+3 {O(n)}
t₆₆, X₆: X₂ {O(n)}
t₆₆, X₇: 252⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+272⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅36⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅8⋅X₄+X₇ {O(EXP)}
t₆₉, X₀: X₂+3 {O(n)}
t₆₉, X₁: X₁+X₂ {O(n)}
t₆₉, X₂: X₂ {O(n)}
t₆₉, X₃: X₂+4 {O(n)}
t₆₉, X₄: 126⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+136⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+18⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂⋅X₂+2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅4⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂ {O(EXP)}
t₆₉, X₅: X₂+3 {O(n)}
t₆₉, X₆: X₂ {O(n)}
t₆₉, X₇: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂ {O(EXP)}
t₇₀, X₀: X₂+3 {O(n)}
t₇₀, X₁: 2⋅X₁+2⋅X₂ {O(n)}
t₇₀, X₂: X₂ {O(n)}
t₇₀, X₃: X₂+4 {O(n)}
t₇₀, X₄: 2⋅X₂ {O(n)}
t₇₀, X₅: X₂+3 {O(n)}
t₇₀, X₆: X₂ {O(n)}
t₇₀, X₇: 126⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+136⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+18⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅4⋅X₄ {O(EXP)}
t₇₁, X₀: X₂+3 {O(n)}
t₇₁, X₁: X₁+X₂ {O(n)}
t₇₁, X₂: X₂ {O(n)}
t₇₁, X₃: X₂+4 {O(n)}
t₇₁, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂ {O(EXP)}
t₇₁, X₅: X₂+3 {O(n)}
t₇₁, X₆: X₂ {O(n)}
t₇₁, X₇: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂ {O(EXP)}
t₆₀, X₀: X₂+3 {O(n)}
t₆₀, X₁: X₁+X₂ {O(n)}
t₆₀, X₂: X₂ {O(n)}
t₆₀, X₃: X₂+4 {O(n)}
t₆₀, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂ {O(EXP)}
t₆₀, X₅: X₂+3 {O(n)}
t₆₀, X₆: X₂ {O(n)}
t₆₀, X₇: 252⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+272⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅36⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅8⋅X₄+X₇ {O(EXP)}
t₆₁, X₀: X₂+3 {O(n)}
t₆₁, X₁: 4⋅X₁+4⋅X₂ {O(n)}
t₆₁, X₂: X₂ {O(n)}
t₆₁, X₃: X₂+4 {O(n)}
t₆₁, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+2⋅X₂ {O(EXP)}
t₆₁, X₅: X₂+3 {O(n)}
t₆₁, X₆: X₂ {O(n)}
t₆₁, X₇: 126⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+136⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+18⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂⋅X₂+2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅4⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+X₇ {O(EXP)}
t₂₉, X₀: X₀+X₂+3 {O(n)}
t₂₉, X₁: X₁ {O(n)}
t₂₉, X₂: X₂ {O(n)}
t₂₉, X₃: X₂+4 {O(n)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₅: X₂+3 {O(n)}
t₂₉, X₆: X₆ {O(n)}
t₂₉, X₇: X₇ {O(n)}
t₅₉, X₀: X₂+3 {O(n)}
t₅₉, X₁: X₁+X₂ {O(n)}
t₅₉, X₂: X₂ {O(n)}
t₅₉, X₃: X₂+4 {O(n)}
t₅₉, X₄: 0 {O(1)}
t₅₉, X₅: X₂+3 {O(n)}
t₅₉, X₆: X₂ {O(n)}
t₅₉, X₇: 126⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+136⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+18⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂⋅X₂+2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅4⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+X₇ {O(EXP)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: 1 {O(1)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₇₅, X₀: X₀+X₂+3 {O(n)}
t₇₅, X₁: X₁+X₂ {O(n)}
t₇₅, X₂: 2⋅X₂ {O(n)}
t₇₅, X₃: X₂+X₃+4 {O(n)}
t₇₅, X₄: 2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+2⋅X₂+X₄ {O(EXP)}
t₇₅, X₅: X₂+X₅+3 {O(n)}
t₇₅, X₆: X₂+X₆ {O(n)}
t₇₅, X₇: 126⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂+136⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)+18⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₂⋅X₂+2⋅2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅4⋅X₄+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅63⋅X₂+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅68+2^(3⋅X₂⋅X₂+19⋅X₂+X₄+20)⋅2^(6⋅X₂⋅X₂+44⋅X₂+X₄+48)⋅9⋅X₂⋅X₂+2⋅X₇ {O(EXP)}
t₆, X₀: X₀+X₂+3 {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₂+4 {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₂+3 {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: X₂+3 {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₂+4 {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₂+3 {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₄₅, X₀: X₂+3 {O(n)}
t₄₅, X₁: X₁ {O(n)}
t₄₅, X₂: X₂ {O(n)}
t₄₅, X₃: X₂+4 {O(n)}
t₄₅, X₄: X₄ {O(n)}
t₄₅, X₅: X₂+3 {O(n)}
t₄₅, X₆: X₆ {O(n)}
t₄₅, X₇: X₇ {O(n)}
t₄₃, X₀: X₂+3 {O(n)}
t₄₃, X₁: X₁ {O(n)}
t₄₃, X₂: X₂ {O(n)}
t₄₃, X₃: X₂+4 {O(n)}
t₄₃, X₄: X₄ {O(n)}
t₄₃, X₅: 2⋅X₂+6 {O(n)}
t₄₃, X₆: X₆ {O(n)}
t₄₃, X₇: X₇ {O(n)}
t₄₄, X₀: X₂+3 {O(n)}
t₄₄, X₁: X₁ {O(n)}
t₄₄, X₂: X₂ {O(n)}
t₄₄, X₃: X₂+4 {O(n)}
t₄₄, X₄: X₄ {O(n)}
t₄₄, X₅: 2⋅X₂+6 {O(n)}
t₄₄, X₆: X₆ {O(n)}
t₄₄, X₇: X₇ {O(n)}