Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: I, J, K
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₁
t₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, 0, X₁, X₄, X₅, X₆, X₇) :|: X₁+1 ≤ X₀
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, J) :|: X₄ ≤ X₀
t₁₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, J) :|: X₄ ≤ X₀
t₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄
t₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄+1, J, I, X₇) :|: X₄ ≤ X₀ ∧ J ≤ I
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, J, X₄, X₄+1, I, K, X₇) :|: X₄ ≤ X₀ ∧ 1+K ≤ I
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁+1, 0, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂+1 ≤ 0
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₂
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₃
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, 0) :|: X₃ ≤ X₀
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, J) :|: X₃ ≤ X₀ ∧ I+1 ≤ 0
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, J) :|: X₃ ≤ X₀ ∧ 1 ≤ I
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇) :|: X₄ ≤ X₀
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄
t₁₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄
t₁₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇) :|: X₄ ≤ X₀
Preprocessing
Cut unsatisfiable transition t₃: l3→l3
Cut unsatisfiable transition t₄: l4→l4
Cut unsatisfiable transition t₁₀: l9→l9
Eliminate variables {X₅,X₆,X₇} that do not contribute to the problem
Found invariant X₀ ≤ X₁ for location l2
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l6
Found invariant X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ for location l7
Found invariant X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l5
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l8
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l4
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l9
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3
Cut unsatisfiable transition t₆₉: l8→l8
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: I, J, K
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₅₂: l0(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₅₄: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₁
t₅₃: l1(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 0, X₁, X₄) :|: X₁+1 ≤ X₀
t₅₅: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₆: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₀: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₁: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₇: l5(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₀ ∧ J ≤ I ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₈: l5(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, J, X₄, X₄+1) :|: X₄ ≤ X₀ ∧ 1+K ≤ I ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₉: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₁, X₄) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₄: l6(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁+1, 0, X₃, X₄) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₂: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0 ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₃: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₈: l7(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁+1, X₂, X₃, X₄) :|: 1+X₀ ≤ X₃ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀
t₆₇: l7(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₀ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀
t₆₅: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₀ ∧ I+1 ≤ 0 ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀
t₆₆: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₀ ∧ 1 ≤ I ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀
t₇₀: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₇₁: l9(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
MPRF for transition t₅₃: l1(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 0, X₁, X₄) :|: X₁+1 ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF:
l4 [X₀-X₁-1 ]
l5 [X₀-X₁-1 ]
l3 [X₀-X₁-1 ]
l6 [X₀-X₁-1 ]
l1 [X₀-X₁ ]
l8 [X₀-X₁-1 ]
l9 [X₀-X₁-1 ]
l7 [X₀-X₁-1 ]
MPRF for transition t₅₅: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF:
l4 [X₀-X₁-1 ]
l5 [X₀-X₁ ]
l3 [X₀-X₁ ]
l6 [X₀-X₁-1 ]
l1 [X₀-X₁ ]
l8 [X₀-X₁-1 ]
l9 [X₀-X₁-1 ]
l7 [X₀-X₁-1 ]
MPRF for transition t₅₆: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF:
l4 [X₀-X₁ ]
l5 [X₀-X₁ ]
l3 [X₀-X₁ ]
l6 [X₀-X₁-1 ]
l1 [X₀-X₁ ]
l8 [X₀-X₁-1 ]
l9 [X₀-X₁-1 ]
l7 [X₀-X₁-1 ]
MPRF for transition t₅₇: l5(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₀ ∧ J ≤ I ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₄+1 {O(n)}
MPRF:
l4 [X₀+1-X₄ ]
l5 [X₀+1-X₄ ]
l3 [X₀+1-X₄ ]
l6 [X₀+1-X₄ ]
l1 [X₀+1-X₄ ]
l8 [X₀+1-X₄ ]
l9 [X₀+1-X₄ ]
l7 [X₀+1-X₄ ]
MPRF for transition t₅₈: l5(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, J, X₄, X₄+1) :|: X₄ ≤ X₀ ∧ 1+K ≤ I ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₄+1 {O(n)}
MPRF:
l4 [X₀+1-X₄ ]
l5 [X₀+1-X₄ ]
l3 [X₀+1-X₄ ]
l6 [X₀+1-X₄ ]
l1 [X₀+1-X₄ ]
l8 [X₀+1-X₄ ]
l9 [X₀+1-X₄ ]
l7 [X₀+1-X₄ ]
MPRF for transition t₅₉: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₁, X₄) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁+1 {O(n)}
MPRF:
l4 [X₀-X₁ ]
l5 [X₀+1-X₁ ]
l3 [X₀-X₁ ]
l6 [X₀-X₁ ]
l1 [X₀+1-X₁ ]
l8 [X₀-X₁ ]
l9 [X₀-X₁ ]
l7 [X₀-X₁ ]
MPRF for transition t₆₀: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF:
l4 [X₀-X₁-1 ]
l5 [X₀-X₁ ]
l3 [X₀-X₁-1 ]
l6 [X₀-X₁-1 ]
l1 [X₀-X₁ ]
l8 [X₀-X₁-1 ]
l9 [X₀-X₁-1 ]
l7 [X₀-X₁-1 ]
MPRF for transition t₆₁: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF:
l4 [X₀-X₁-1 ]
l5 [X₀-X₁ ]
l3 [X₀-X₁-1 ]
l6 [X₀-X₁-1 ]
l1 [X₀-X₁ ]
l8 [X₀-X₁-1 ]
l9 [X₀-X₁-1 ]
l7 [X₀-X₁-1 ]
MPRF for transition t₆₂: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0 ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁+1 {O(n)}
MPRF:
l4 [X₀+1-X₁ ]
l5 [X₀+1-X₁ ]
l3 [X₀+1-X₁ ]
l6 [X₀+1-X₁ ]
l1 [X₀+1-X₁ ]
l8 [X₀-X₁ ]
l9 [X₀-X₁ ]
l7 [X₀-X₁ ]
MPRF for transition t₆₃: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF:
l4 [X₀-X₁ ]
l5 [X₀-X₁ ]
l3 [X₀-X₁ ]
l6 [X₀-X₁ ]
l1 [X₀-X₁ ]
l8 [X₀-X₁-1 ]
l9 [X₀-X₁-1 ]
l7 [X₀-X₁-1 ]
MPRF for transition t₆₄: l6(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁+1, 0, X₃, X₄) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF:
l4 [X₀-X₁ ]
l5 [X₀-X₁ ]
l3 [X₀-X₁ ]
l6 [X₀-X₁ ]
l1 [X₀-X₁ ]
l8 [X₀-X₁ ]
l9 [X₀-X₁ ]
l7 [X₀-X₁ ]
MPRF for transition t₆₈: l7(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁+1, X₂, X₃, X₄) :|: 1+X₀ ≤ X₃ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF:
l4 [X₀-X₁ ]
l5 [X₀-X₁ ]
l3 [X₀-X₁ ]
l6 [X₀-X₁ ]
l1 [X₀-X₁ ]
l8 [X₀-X₁ ]
l9 [X₀-X₁ ]
l7 [X₀-X₁ ]
MPRF for transition t₆₅: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₀ ∧ I+1 ≤ 0 ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+30⋅X₄+62⋅X₁+74⋅X₀+21 {O(n^2)}
MPRF:
l4 [0 ]
l5 [0 ]
l3 [0 ]
l6 [0 ]
l1 [0 ]
l8 [X₄-X₃ ]
l9 [X₄-X₃ ]
l7 [X₄+1-X₃ ]
MPRF for transition t₆₆: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₀ ∧ 1 ≤ I ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
102⋅X₀⋅X₁+40⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+62⋅X₀⋅X₀+27⋅X₄+58⋅X₁+69⋅X₀+19 {O(n^2)}
MPRF:
l4 [0 ]
l5 [0 ]
l3 [0 ]
l6 [0 ]
l1 [0 ]
l8 [X₀-X₃ ]
l9 [X₀-X₃ ]
l7 [X₀+1-X₃ ]
MPRF for transition t₆₇: l7(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₀ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+30⋅X₄+62⋅X₁+74⋅X₀+21 {O(n^2)}
MPRF:
l4 [0 ]
l5 [0 ]
l3 [0 ]
l6 [0 ]
l1 [0 ]
l8 [X₄-X₃ ]
l9 [X₄-X₃ ]
l7 [X₄+1-X₃ ]
MPRF for transition t₇₀: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
102⋅X₀⋅X₁+40⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+62⋅X₀⋅X₀+27⋅X₄+58⋅X₁+69⋅X₀+19 {O(n^2)}
MPRF:
l4 [0 ]
l5 [0 ]
l3 [0 ]
l6 [0 ]
l1 [0 ]
l8 [X₀+1-X₃ ]
l9 [X₀-X₃ ]
l7 [X₀+1-X₃ ]
MPRF for transition t₇₁: l9(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
116⋅X₀⋅X₁+46⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+70⋅X₀⋅X₀+30⋅X₄+65⋅X₁+77⋅X₀+21 {O(n^2)}
MPRF:
l4 [0 ]
l5 [0 ]
l3 [0 ]
l6 [0 ]
l1 [0 ]
l8 [X₀+X₄+1-X₁-X₃ ]
l9 [X₀+X₄+1-X₁-X₃ ]
l7 [X₀+X₄+1-X₁-X₃ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₆₈: l7→l1
Found invariant X₀ ≤ X₁ for location l2
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l8___2
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l6
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location n_l9___4
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l9___1
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location n_l8___5
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ for location n_l8___6
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ for location n_l9___3
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l7
Found invariant X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l5
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l4
Found invariant X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ for location n_l7___7
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3
knowledge_propagation leads to new time bound X₀+X₁ {O(n)} for transition t₂₁₈: l7(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₁ {O(n)} for transition t₂₁₉: l7(X₀, X₁, X₂, X₃, X₄) → n_l8___2(X₀, Arg1_P, X₂, Arg3_P, Arg4_P) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg1_P ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₁ {O(n)} for transition t₂₂₀: l7(X₀, X₁, X₂, X₃, X₄) → n_l8___2(X₀, Arg1_P, X₂, Arg3_P, Arg4_P) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg1_P ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₂₂₁: l7(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₂₂₂: l7(X₀, X₁, X₂, X₃, X₄) → n_l8___6(X₀, Arg1_P, X₂, Arg3_P, Arg4_P) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg1_P ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₂₂₃: l7(X₀, X₁, X₂, X₃, X₄) → n_l8___6(X₀, Arg1_P, X₂, Arg3_P, Arg4_P) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg1_P ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁ {O(n)} for transition t₂₂₄: n_l8___2(X₀, X₁, X₂, X₃, X₄) → n_l9___1(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁+2 {O(n)} for transition t₂₂₆: n_l8___6(X₀, X₁, X₂, X₃, X₄) → n_l9___3(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁ {O(n)} for transition t₂₂₇: n_l9___1(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁+2 {O(n)} for transition t₂₂₈: n_l9___3(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀
MPRF for transition t₂₁₅: n_l7___7(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
200⋅X₁⋅X₁+270⋅X₀⋅X₄+270⋅X₁⋅X₄+306⋅X₀⋅X₀+506⋅X₀⋅X₁+135⋅X₄+292⋅X₁+345⋅X₀+96 {O(n^2)}
MPRF:
l4 [0 ]
l5 [0 ]
l3 [0 ]
l6 [0 ]
l7 [0 ]
l1 [0 ]
n_l8___2 [0 ]
n_l9___1 [X₀-X₄ ]
n_l8___5 [X₀-X₃ ]
n_l8___6 [0 ]
n_l9___3 [X₀-X₄ ]
n_l9___4 [X₀-X₃ ]
n_l7___7 [X₀+1-X₃ ]
MPRF for transition t₂₁₆: n_l7___7(X₀, X₁, X₂, X₃, X₄) → n_l8___5(X₀, Arg1_P, X₂, Arg3_P, Arg4_P) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg1_P ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
200⋅X₁⋅X₁+270⋅X₀⋅X₄+270⋅X₁⋅X₄+306⋅X₀⋅X₀+506⋅X₀⋅X₁+135⋅X₄+292⋅X₁+345⋅X₀+96 {O(n^2)}
MPRF:
l4 [0 ]
l5 [0 ]
l3 [0 ]
l6 [0 ]
l7 [0 ]
l1 [0 ]
n_l8___2 [0 ]
n_l9___1 [X₀-X₄ ]
n_l8___5 [X₀-X₃ ]
n_l8___6 [0 ]
n_l9___3 [X₀-X₄ ]
n_l9___4 [X₀-X₃ ]
n_l7___7 [X₀+1-X₃ ]
MPRF for transition t₂₁₇: n_l7___7(X₀, X₁, X₂, X₃, X₄) → n_l8___5(X₀, Arg1_P, X₂, Arg3_P, Arg4_P) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg1_P ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
200⋅X₁⋅X₁+270⋅X₀⋅X₄+270⋅X₁⋅X₄+306⋅X₀⋅X₀+506⋅X₀⋅X₁+135⋅X₄+292⋅X₁+345⋅X₀+96 {O(n^2)}
MPRF:
l4 [0 ]
l5 [0 ]
l3 [0 ]
l6 [0 ]
l7 [0 ]
l1 [0 ]
n_l8___2 [0 ]
n_l9___1 [X₀-X₄ ]
n_l8___5 [X₀-X₃ ]
n_l8___6 [0 ]
n_l9___3 [X₀-X₄ ]
n_l9___4 [X₀-X₃ ]
n_l7___7 [X₀+1-X₃ ]
MPRF for transition t₂₄₁: n_l7___7(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁+1, X₂, X₃, X₄) :|: 1+X₀ ≤ X₃ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁+1 {O(n)}
MPRF:
l4 [X₀+1-X₁ ]
l5 [X₀+1-X₁ ]
l3 [X₀+1-X₁ ]
l6 [X₀+1-X₁ ]
l7 [X₀+1-X₁ ]
l1 [X₀+1-X₁ ]
n_l8___2 [X₀+1-X₁ ]
n_l8___5 [X₀+1-X₁ ]
n_l8___6 [X₀+1-X₁ ]
n_l9___1 [X₀+1-X₁ ]
n_l9___3 [X₀+1-X₁ ]
n_l9___4 [X₀+1-X₁ ]
n_l7___7 [X₀+1-X₁ ]
MPRF for transition t₂₂₅: n_l8___5(X₀, X₁, X₂, X₃, X₄) → n_l9___4(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
200⋅X₁⋅X₁+270⋅X₀⋅X₄+270⋅X₁⋅X₄+306⋅X₀⋅X₀+506⋅X₀⋅X₁+135⋅X₄+292⋅X₁+345⋅X₀+96 {O(n^2)}
MPRF:
l4 [0 ]
l5 [0 ]
l3 [0 ]
l6 [0 ]
l7 [0 ]
l1 [0 ]
n_l8___2 [0 ]
n_l9___1 [X₀-X₄ ]
n_l8___5 [X₀+1-X₃ ]
n_l8___6 [0 ]
n_l9___3 [X₀-X₄ ]
n_l9___4 [X₀-X₃ ]
n_l7___7 [X₀+1-X₃ ]
MPRF for transition t₂₂₉: n_l9___4(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
200⋅X₁⋅X₁+270⋅X₀⋅X₄+270⋅X₁⋅X₄+306⋅X₀⋅X₀+506⋅X₀⋅X₁+135⋅X₄+292⋅X₁+345⋅X₀+96 {O(n^2)}
MPRF:
l4 [0 ]
l5 [0 ]
l3 [0 ]
l6 [0 ]
l7 [0 ]
l1 [0 ]
n_l8___2 [0 ]
n_l9___1 [X₀-X₄ ]
n_l8___5 [X₀+1-X₃ ]
n_l8___6 [0 ]
n_l9___3 [X₀-X₄ ]
n_l9___4 [X₀+1-X₃ ]
n_l7___7 [X₀+1-X₃ ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:206⋅X₁⋅X₁+288⋅X₀⋅X₄+288⋅X₁⋅X₄+322⋅X₀⋅X₀+528⋅X₀⋅X₁+146⋅X₄+315⋅X₁+375⋅X₀+107 {O(n^2)}
t₅₂: 1 {O(1)}
t₅₃: X₀+X₁ {O(n)}
t₅₄: 1 {O(1)}
t₅₅: X₀+X₁ {O(n)}
t₅₆: X₀+X₁ {O(n)}
t₅₇: X₀+X₄+1 {O(n)}
t₅₈: X₀+X₄+1 {O(n)}
t₅₉: X₀+X₁+1 {O(n)}
t₆₀: X₀+X₁ {O(n)}
t₆₁: X₀+X₁ {O(n)}
t₆₂: X₀+X₁+1 {O(n)}
t₆₃: X₀+X₁ {O(n)}
t₆₄: X₀+X₁ {O(n)}
t₆₅: 104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+30⋅X₄+62⋅X₁+74⋅X₀+21 {O(n^2)}
t₆₆: 102⋅X₀⋅X₁+40⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+62⋅X₀⋅X₀+27⋅X₄+58⋅X₁+69⋅X₀+19 {O(n^2)}
t₆₇: 104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+30⋅X₄+62⋅X₁+74⋅X₀+21 {O(n^2)}
t₆₈: X₀+X₁ {O(n)}
t₇₀: 102⋅X₀⋅X₁+40⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+62⋅X₀⋅X₀+27⋅X₄+58⋅X₁+69⋅X₀+19 {O(n^2)}
t₇₁: 116⋅X₀⋅X₁+46⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+70⋅X₀⋅X₀+30⋅X₄+65⋅X₁+77⋅X₀+21 {O(n^2)}
Costbounds
Overall costbound: 206⋅X₁⋅X₁+288⋅X₀⋅X₄+288⋅X₁⋅X₄+322⋅X₀⋅X₀+528⋅X₀⋅X₁+146⋅X₄+315⋅X₁+375⋅X₀+107 {O(n^2)}
t₅₂: 1 {O(1)}
t₅₃: X₀+X₁ {O(n)}
t₅₄: 1 {O(1)}
t₅₅: X₀+X₁ {O(n)}
t₅₆: X₀+X₁ {O(n)}
t₅₇: X₀+X₄+1 {O(n)}
t₅₈: X₀+X₄+1 {O(n)}
t₅₉: X₀+X₁+1 {O(n)}
t₆₀: X₀+X₁ {O(n)}
t₆₁: X₀+X₁ {O(n)}
t₆₂: X₀+X₁+1 {O(n)}
t₆₃: X₀+X₁ {O(n)}
t₆₄: X₀+X₁ {O(n)}
t₆₅: 104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+30⋅X₄+62⋅X₁+74⋅X₀+21 {O(n^2)}
t₆₆: 102⋅X₀⋅X₁+40⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+62⋅X₀⋅X₀+27⋅X₄+58⋅X₁+69⋅X₀+19 {O(n^2)}
t₆₇: 104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+30⋅X₄+62⋅X₁+74⋅X₀+21 {O(n^2)}
t₆₈: X₀+X₁ {O(n)}
t₇₀: 102⋅X₀⋅X₁+40⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+62⋅X₀⋅X₀+27⋅X₄+58⋅X₁+69⋅X₀+19 {O(n^2)}
t₇₁: 116⋅X₀⋅X₁+46⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+70⋅X₀⋅X₀+30⋅X₄+65⋅X₁+77⋅X₀+21 {O(n^2)}
Sizebounds
t₅₂, X₀: X₀ {O(n)}
t₅₂, X₁: X₁ {O(n)}
t₅₂, X₂: X₂ {O(n)}
t₅₂, X₃: X₃ {O(n)}
t₅₂, X₄: X₄ {O(n)}
t₅₃, X₀: X₀ {O(n)}
t₅₃, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₃, X₂: 0 {O(1)}
t₅₃, X₃: 4⋅X₀+7⋅X₁ {O(n)}
t₅₃, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₄, X₀: 3⋅X₀ {O(n)}
t₅₄, X₁: 4⋅X₀+7⋅X₁ {O(n)}
t₅₄, X₃: 172⋅X₁⋅X₁+240⋅X₀⋅X₄+240⋅X₁⋅X₄+268⋅X₀⋅X₀+440⋅X₀⋅X₁+471⋅X₄+514⋅X₁+692⋅X₀+X₃+318 {O(n^2)}
t₅₄, X₄: 4⋅X₀+7⋅X₄+4 {O(n)}
t₅₅, X₀: X₀ {O(n)}
t₅₅, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₅, X₃: 14⋅X₁+26⋅X₀+27⋅X₄+18 {O(n)}
t₅₅, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₆, X₀: X₀ {O(n)}
t₅₆, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₆, X₃: 14⋅X₁+26⋅X₀+27⋅X₄+18 {O(n)}
t₅₆, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₇, X₀: X₀ {O(n)}
t₅₇, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₇, X₃: 10⋅X₀+7⋅X₁+9⋅X₄+6 {O(n)}
t₅₇, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₈, X₀: X₀ {O(n)}
t₅₈, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₈, X₃: 6⋅X₀+9⋅X₄+6 {O(n)}
t₅₈, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₉, X₀: X₀ {O(n)}
t₅₉, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₉, X₃: 4⋅X₀+6⋅X₁ {O(n)}
t₅₉, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₀, X₀: X₀ {O(n)}
t₆₀, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₀, X₃: 10⋅X₀+7⋅X₁+9⋅X₄+6 {O(n)}
t₆₀, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₁, X₀: X₀ {O(n)}
t₆₁, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₁, X₃: 16⋅X₀+18⋅X₄+7⋅X₁+12 {O(n)}
t₆₁, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₂, X₀: X₀ {O(n)}
t₆₂, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₂, X₃: 20⋅X₁+27⋅X₄+30⋅X₀+18 {O(n)}
t₆₂, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₃, X₀: X₀ {O(n)}
t₆₃, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₃, X₃: 20⋅X₁+27⋅X₄+30⋅X₀+18 {O(n)}
t₆₃, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₄, X₀: X₀ {O(n)}
t₆₄, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₄, X₂: 0 {O(1)}
t₆₄, X₃: 20⋅X₁+27⋅X₄+30⋅X₀+18 {O(n)}
t₆₄, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₅, X₀: X₀ {O(n)}
t₆₅, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₅, X₃: 120⋅X₀⋅X₄+120⋅X₁⋅X₄+134⋅X₀⋅X₀+220⋅X₀⋅X₁+86⋅X₁⋅X₁+222⋅X₄+247⋅X₁+331⋅X₀+150 {O(n^2)}
t₆₅, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₆, X₀: X₀ {O(n)}
t₆₆, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₆, X₃: 120⋅X₀⋅X₄+120⋅X₁⋅X₄+134⋅X₀⋅X₀+220⋅X₀⋅X₁+86⋅X₁⋅X₁+222⋅X₄+247⋅X₁+331⋅X₀+150 {O(n^2)}
t₆₆, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₇, X₀: X₀ {O(n)}
t₆₇, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₇, X₃: 120⋅X₀⋅X₄+120⋅X₁⋅X₄+134⋅X₀⋅X₀+220⋅X₀⋅X₁+86⋅X₁⋅X₁+222⋅X₄+247⋅X₁+331⋅X₀+150 {O(n^2)}
t₆₇, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₈, X₀: X₀ {O(n)}
t₆₈, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₈, X₃: 172⋅X₁⋅X₁+240⋅X₀⋅X₄+240⋅X₁⋅X₄+268⋅X₀⋅X₀+440⋅X₀⋅X₁+444⋅X₄+494⋅X₁+662⋅X₀+300 {O(n^2)}
t₆₈, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₇₀, X₀: X₀ {O(n)}
t₇₀, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₇₀, X₃: 120⋅X₀⋅X₄+120⋅X₁⋅X₄+134⋅X₀⋅X₀+220⋅X₀⋅X₁+86⋅X₁⋅X₁+222⋅X₄+247⋅X₁+331⋅X₀+150 {O(n^2)}
t₇₀, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₇₁, X₀: X₀ {O(n)}
t₇₁, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₇₁, X₃: 120⋅X₀⋅X₄+120⋅X₁⋅X₄+134⋅X₀⋅X₀+220⋅X₀⋅X₁+86⋅X₁⋅X₁+222⋅X₄+247⋅X₁+331⋅X₀+150 {O(n^2)}
t₇₁, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}