Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₀
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆)
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆)
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₁, X₂, X₃, X₀, X₄, X₅, X₆)
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆) :|: 1 ≤ X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+1 ≤ X₆
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1)
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆)
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁+1 ≤ X₅
t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₁
Preprocessing
Found invariant X₃ ≤ 0 for location l11
Found invariant X₃ ≤ 0 for location l2
Found invariant X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l1
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l10
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l9
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₁, X₂, X₃, X₀, X₄, X₅, X₆)
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆) :|: 1 ≤ X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+1 ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁+1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₀ {O(n)}
MPRF:
l3 [X₃-1 ]
l5 [X₃ ]
l1 [X₃ ]
l7 [X₃ ]
l8 [X₃ ]
l6 [X₃ ]
l9 [X₃ ]
l10 [X₃ ]
MPRF for transition t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₀ {O(n)}
MPRF:
l3 [X₃ ]
l5 [X₃ ]
l1 [X₃ ]
l7 [X₃ ]
l8 [X₃ ]
l6 [X₃ ]
l9 [X₃ ]
l10 [X₃ ]
MPRF for transition t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆) :|: 1 ≤ X₃ of depth 1:
new bound:
X₀ {O(n)}
MPRF:
l3 [X₃-1 ]
l5 [X₃ ]
l1 [X₃-1 ]
l7 [X₃-1 ]
l8 [X₃-1 ]
l6 [X₃-1 ]
l9 [X₃-1 ]
l10 [X₃-1 ]
MPRF for transition t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₀⋅X₁+2⋅X₀ {O(n^2)}
MPRF:
l1 [X₀+1-X₄ ]
l3 [X₀-X₄ ]
l5 [X₀-X₄ ]
l7 [X₀-X₄ ]
l8 [X₀-X₄ ]
l6 [X₀-X₄ ]
l9 [X₀-X₄ ]
l10 [X₀-X₄ ]
MPRF for transition t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₁+X₀ {O(n^2)}
MPRF:
l1 [2⋅X₀-X₄ ]
l3 [2⋅X₀-X₄ ]
l5 [2⋅X₀-X₄ ]
l7 [2⋅X₀-X₄ ]
l8 [2⋅X₀-X₄ ]
l6 [2⋅X₀-X₄ ]
l9 [2⋅X₀-X₄ ]
l10 [2⋅X₀-X₄ ]
MPRF for transition t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁+1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+2⋅X₀ {O(n^2)}
MPRF:
l1 [X₀+1-X₄ ]
l3 [X₀-X₄ ]
l5 [X₀-X₄ ]
l7 [X₀+1-X₄ ]
l8 [X₀+1-X₄ ]
l6 [X₀+1-X₄ ]
l9 [X₀+1-X₄ ]
l10 [X₀-X₄ ]
MPRF for transition t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+1 ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+X₂ {O(n^3)}
MPRF:
l10 [X₁ ]
l3 [X₁ ]
l5 [X₁ ]
l1 [X₁ ]
l7 [X₁+1-X₅ ]
l8 [X₁-X₅ ]
l9 [X₁+1-X₅ ]
l6 [X₁+1-X₅ ]
MPRF for transition t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+X₂ {O(n^3)}
MPRF:
l10 [X₁ ]
l3 [X₁ ]
l5 [X₁ ]
l1 [X₁ ]
l7 [X₁+1-X₅ ]
l8 [X₁+1-X₅ ]
l9 [X₁+1-X₅ ]
l6 [X₁+1-X₅ ]
MPRF for transition t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+X₂ {O(n^3)}
MPRF:
l10 [X₁ ]
l3 [X₁ ]
l5 [X₁ ]
l1 [X₁ ]
l7 [X₁+X₃-X₅-1 ]
l8 [X₁+X₃-X₅-1 ]
l9 [X₁+X₃-X₅ ]
l6 [X₁+X₃-X₅-1 ]
Analysing control-flow refined program
Found invariant X₃ ≤ 0 for location l11
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___3
Found invariant X₃ ≤ 0 for location l2
Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l9___10
Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l1___11
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___8
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___4
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l9___1
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___12
Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l10___13
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___2
Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l7___6
Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___7
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l7___9
Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l1
Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l9___14
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ for location l3
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l9___5
knowledge_propagation leads to new time bound X₀ {O(n)} for transition t₁₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___14(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₀ {O(n)} for transition t₁₃₂: n_l9___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₀ {O(n)} for transition t₁₃₃: n_l9___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___12(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
MPRF for transition t₁₁₈: n_l10___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___11(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1+X₁ ≤ X₅ ∧ 1 ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+2⋅X₀ {O(n^2)}
MPRF:
l5 [0 ]
l1 [0 ]
n_l1___11 [X₀+1-X₄ ]
n_l1___2 [0 ]
l3 [0 ]
n_l8___8 [0 ]
n_l9___1 [0 ]
n_l9___10 [X₀+1-X₄ ]
n_l10___13 [X₀+1-X₄ ]
n_l9___14 [0 ]
n_l6___12 [0 ]
n_l10___4 [0 ]
n_l9___5 [0 ]
n_l6___3 [0 ]
MPRF for transition t₁₁₉: n_l10___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___2(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₆ ≤ X₂ ∧ 1+X₄ ≤ X₆ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₁+1 ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+2⋅X₀ {O(n^2)}
MPRF:
l5 [0 ]
l1 [0 ]
n_l1___11 [0 ]
n_l1___2 [X₀+1-X₄ ]
l3 [0 ]
n_l8___8 [X₀+1-X₄ ]
n_l9___1 [X₀+1-X₄ ]
n_l6___12 [X₀+1-X₄ ]
n_l9___10 [0 ]
n_l9___14 [0 ]
n_l10___13 [0 ]
n_l10___4 [X₀+1-X₄ ]
n_l9___5 [X₀+1-X₄ ]
n_l6___3 [X₀+1-X₄ ]
MPRF for transition t₁₂₀: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___10(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+2⋅X₀ {O(n^2)}
MPRF:
l5 [0 ]
l1 [0 ]
n_l1___11 [X₀+2-X₄ ]
n_l1___2 [0 ]
l3 [0 ]
n_l8___8 [0 ]
n_l9___1 [0 ]
n_l9___10 [X₀+1-X₄ ]
n_l10___13 [X₀+1-X₄ ]
n_l9___14 [0 ]
n_l6___12 [0 ]
n_l10___4 [0 ]
n_l9___5 [0 ]
n_l6___3 [0 ]
MPRF for transition t₁₄₉: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF:
l5 [X₃ ]
l1 [X₃ ]
n_l1___11 [X₅ ]
n_l1___2 [X₃ ]
l3 [X₃-1 ]
n_l8___8 [X₃ ]
n_l9___1 [X₃ ]
n_l9___10 [X₃ ]
n_l10___13 [X₅ ]
n_l9___14 [X₅ ]
n_l6___12 [X₃ ]
n_l10___4 [X₃ ]
n_l9___5 [X₃ ]
n_l6___3 [X₃ ]
MPRF for transition t₁₂₂: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___1(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₃+X₀ {O(n^2)}
MPRF:
l5 [0 ]
l1 [0 ]
n_l1___11 [0 ]
n_l1___2 [X₂+1-X₄ ]
l3 [0 ]
n_l8___8 [X₆-X₄ ]
n_l9___1 [X₂-X₄ ]
n_l6___12 [X₆-X₄ ]
n_l9___10 [0 ]
n_l9___14 [0 ]
n_l10___13 [0 ]
n_l10___4 [X₆-X₄ ]
n_l9___5 [X₆-X₄ ]
n_l6___3 [X₆-X₄ ]
MPRF for transition t₁₅₀: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF:
l5 [X₃+1 ]
l1 [X₃+X₄ ]
n_l1___11 [X₃+1 ]
n_l1___2 [X₃+1 ]
l3 [X₃ ]
n_l8___8 [X₃+1 ]
n_l9___1 [X₃+1 ]
n_l9___10 [X₅+1 ]
n_l10___13 [X₅+1 ]
n_l9___14 [X₄+X₅ ]
n_l6___12 [X₅+1 ]
n_l10___4 [X₃+1 ]
n_l9___5 [X₃+1 ]
n_l6___3 [X₃+1 ]
MPRF for transition t₁₂₄: n_l6___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₀+X₀⋅X₃+2⋅X₀ {O(n^2)}
MPRF:
l5 [0 ]
l1 [0 ]
n_l1___11 [0 ]
n_l1___2 [X₂+X₃-X₄-1 ]
l3 [0 ]
n_l8___8 [X₃+X₆-X₄-2 ]
n_l9___1 [X₂+X₅-X₄-1 ]
n_l6___12 [X₂+X₃-X₄-1 ]
n_l9___10 [0 ]
n_l9___14 [0 ]
n_l10___13 [0 ]
n_l10___4 [X₂+X₃-X₄-2 ]
n_l9___5 [X₃+X₆-X₄-2 ]
n_l6___3 [X₃+X₆-X₄-2 ]
MPRF for transition t₁₃₀: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___12(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₀⋅X₃+X₀ {O(n^2)}
MPRF:
l5 [0 ]
l1 [0 ]
n_l1___11 [0 ]
n_l1___2 [X₂+1-X₄ ]
l3 [0 ]
n_l8___8 [X₂-X₄ ]
n_l9___1 [X₂+1-X₄ ]
n_l6___12 [X₆-X₄ ]
n_l9___10 [0 ]
n_l9___14 [0 ]
n_l10___13 [0 ]
n_l10___4 [X₂-X₄ ]
n_l9___5 [X₆-X₄ ]
n_l6___3 [X₆-X₄ ]
MPRF for transition t₁₃₁: n_l9___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₁ ≤ X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₁+X₀+X₁ {O(n^2)}
MPRF:
l5 [X₀ ]
l1 [X₀ ]
n_l1___11 [2⋅X₀+1-X₄ ]
n_l1___2 [X₀ ]
l3 [X₀ ]
n_l8___8 [X₀ ]
n_l9___1 [X₀ ]
n_l9___10 [2⋅X₀+1-X₄ ]
n_l10___13 [2⋅X₀-X₄ ]
n_l9___14 [X₀ ]
n_l6___12 [X₀ ]
n_l10___4 [X₀ ]
n_l9___5 [X₀ ]
n_l6___3 [X₀ ]
MPRF for transition t₁₃₄: n_l9___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₁+X₀⋅X₃+2⋅X₁+X₀ {O(n^2)}
MPRF:
l5 [2⋅X₀ ]
l1 [2⋅X₀ ]
n_l1___11 [2⋅X₀ ]
n_l1___2 [2⋅X₀+X₆-X₄ ]
l3 [2⋅X₀ ]
n_l8___8 [2⋅X₀+X₆-X₄ ]
n_l9___1 [2⋅X₀+X₆-X₄ ]
n_l6___12 [2⋅X₀+X₆-X₄ ]
n_l9___10 [2⋅X₀ ]
n_l9___14 [2⋅X₀ ]
n_l10___13 [2⋅X₀ ]
n_l10___4 [2⋅X₀+X₆-X₄-1 ]
n_l9___5 [2⋅X₀+X₆-X₄ ]
n_l6___3 [2⋅X₀+X₆-X₄ ]
MPRF for transition t₁₂₅: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₁⋅X₂+X₀⋅X₂⋅X₃+2⋅X₀⋅X₁+2⋅X₁⋅X₂+X₀⋅X₂+X₀⋅X₃+2⋅X₁+X₀+X₂ {O(n^3)}
MPRF:
l5 [X₁ ]
l1 [X₁ ]
n_l10___4 [X₁+1 ]
n_l1___11 [X₁ ]
n_l1___2 [X₅ ]
l3 [X₁ ]
n_l8___8 [X₁-X₅ ]
n_l9___1 [X₁ ]
n_l9___10 [X₁ ]
n_l10___13 [X₁ ]
n_l9___14 [X₁ ]
n_l6___12 [X₁-X₅ ]
n_l9___5 [X₁+1-X₅ ]
n_l6___3 [X₁+1-X₅ ]
MPRF for transition t₁₂₉: n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___5(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 1+X₄ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₁⋅X₂+X₀⋅X₂⋅X₃+2⋅X₁⋅X₂+X₀⋅X₂+X₂ {O(n^3)}
MPRF:
l5 [X₁ ]
l1 [X₁ ]
n_l10___4 [X₁ ]
n_l1___11 [X₁ ]
n_l1___2 [X₁ ]
l3 [X₁ ]
n_l8___8 [X₁+1-X₅ ]
n_l9___1 [X₁ ]
n_l9___10 [X₁ ]
n_l10___13 [X₁ ]
n_l9___14 [X₁ ]
n_l6___12 [X₁+1-X₅ ]
n_l9___5 [X₁+1-X₅ ]
n_l6___3 [X₁+1-X₅ ]
MPRF for transition t₁₃₅: n_l9___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₁⋅X₂+X₀⋅X₂⋅X₃+2⋅X₀⋅X₁+2⋅X₁⋅X₂+X₀⋅X₂+X₀⋅X₃+2⋅X₁+X₀+X₂ {O(n^3)}
MPRF:
l5 [X₁ ]
l1 [X₁ ]
n_l10___4 [X₁+1 ]
n_l1___11 [X₁ ]
n_l1___2 [X₅ ]
l3 [X₁ ]
n_l8___8 [X₁-X₅ ]
n_l9___1 [X₁-X₅ ]
n_l9___10 [X₁ ]
n_l10___13 [X₁ ]
n_l9___14 [X₁ ]
n_l6___12 [X₁-X₅ ]
n_l9___5 [X₁+1-X₅ ]
n_l6___3 [X₁-X₅ ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₄: X₀⋅X₁+2⋅X₀ {O(n^2)}
t₅: X₀ {O(n)}
t₁₂: 2⋅X₀⋅X₁+X₀ {O(n^2)}
t₁₄: 1 {O(1)}
t₁₃: X₀ {O(n)}
t₁: 1 {O(1)}
t₂: X₀ {O(n)}
t₃: 1 {O(1)}
t₈: inf {Infinity}
t₉: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+X₂ {O(n^3)}
t₁₀: inf {Infinity}
t₁₁: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+X₂ {O(n^3)}
t₆: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+X₂ {O(n^3)}
t₇: X₀⋅X₁+2⋅X₀ {O(n^2)}
Costbounds
Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₄: X₀⋅X₁+2⋅X₀ {O(n^2)}
t₅: X₀ {O(n)}
t₁₂: 2⋅X₀⋅X₁+X₀ {O(n^2)}
t₁₄: 1 {O(1)}
t₁₃: X₀ {O(n)}
t₁: 1 {O(1)}
t₂: X₀ {O(n)}
t₃: 1 {O(1)}
t₈: inf {Infinity}
t₉: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+X₂ {O(n^3)}
t₁₀: inf {Infinity}
t₁₁: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+X₂ {O(n^3)}
t₆: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+X₂ {O(n^3)}
t₇: X₀⋅X₁+2⋅X₀ {O(n^2)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₄, X₀: X₁ {O(n)}
t₄, X₁: X₂ {O(n)}
t₄, X₂: X₃ {O(n)}
t₄, X₃: X₀ {O(n)}
t₄, X₄: 2⋅X₀⋅X₁+X₀+1 {O(n^2)}
t₄, X₅: 2⋅X₀ {O(n)}
t₄, X₆: 2⋅X₃+X₆ {O(n)}
t₅, X₀: X₁ {O(n)}
t₅, X₁: X₂ {O(n)}
t₅, X₂: X₃ {O(n)}
t₅, X₃: X₀ {O(n)}
t₅, X₄: 2⋅X₀⋅X₁+X₀+2 {O(n^2)}
t₅, X₅: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+4⋅X₀+X₂+X₅ {O(n^3)}
t₅, X₆: 2⋅X₃+X₆ {O(n)}
t₁₂, X₀: X₁ {O(n)}
t₁₂, X₁: X₂ {O(n)}
t₁₂, X₂: X₃ {O(n)}
t₁₂, X₃: X₀ {O(n)}
t₁₂, X₄: 2⋅X₀⋅X₁+X₀+1 {O(n^2)}
t₁₂, X₅: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+4⋅X₀+X₂ {O(n^3)}
t₁₂, X₆: 2⋅X₃+X₆ {O(n)}
t₁₄, X₀: 2⋅X₁ {O(n)}
t₁₄, X₁: 2⋅X₂ {O(n)}
t₁₄, X₂: 2⋅X₃ {O(n)}
t₁₄, X₃: 2⋅X₀ {O(n)}
t₁₄, X₄: 2⋅X₀⋅X₁+X₀+X₄+2 {O(n^2)}
t₁₄, X₅: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₅+4⋅X₀+X₂ {O(n^3)}
t₁₄, X₆: 2⋅X₃+2⋅X₆ {O(n)}
t₁₃, X₀: X₁ {O(n)}
t₁₃, X₁: X₂ {O(n)}
t₁₃, X₂: X₃ {O(n)}
t₁₃, X₃: X₀ {O(n)}
t₁₃, X₄: 2⋅X₀⋅X₁+X₀+2 {O(n^2)}
t₁₃, X₅: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+4⋅X₀+X₂+X₅ {O(n^3)}
t₁₃, X₆: 2⋅X₃+X₆ {O(n)}
t₁, X₀: X₁ {O(n)}
t₁, X₁: X₂ {O(n)}
t₁, X₂: X₃ {O(n)}
t₁, X₃: X₀ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: X₁ {O(n)}
t₂, X₁: X₂ {O(n)}
t₂, X₂: X₃ {O(n)}
t₂, X₃: X₀ {O(n)}
t₂, X₄: 1 {O(1)}
t₂, X₅: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+4⋅X₀+X₂+X₅ {O(n^3)}
t₂, X₆: 2⋅X₃+X₆ {O(n)}
t₃, X₀: 2⋅X₁ {O(n)}
t₃, X₁: 2⋅X₂ {O(n)}
t₃, X₂: 2⋅X₃ {O(n)}
t₃, X₃: 2⋅X₀ {O(n)}
t₃, X₄: 2⋅X₀⋅X₁+X₀+X₄+2 {O(n^2)}
t₃, X₅: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₅+4⋅X₀+X₂ {O(n^3)}
t₃, X₆: 2⋅X₃+2⋅X₆ {O(n)}
t₈, X₀: X₁ {O(n)}
t₈, X₁: X₂ {O(n)}
t₈, X₂: X₃ {O(n)}
t₈, X₃: X₀ {O(n)}
t₈, X₄: 2⋅X₀⋅X₁+X₀+1 {O(n^2)}
t₈, X₅: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₀+X₂ {O(n^3)}
t₉, X₀: X₁ {O(n)}
t₉, X₁: X₂ {O(n)}
t₉, X₂: X₃ {O(n)}
t₉, X₃: X₀ {O(n)}
t₉, X₄: 2⋅X₀⋅X₁+X₀+1 {O(n^2)}
t₉, X₅: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₀+X₂ {O(n^3)}
t₉, X₆: 2⋅X₃ {O(n)}
t₁₀, X₀: X₁ {O(n)}
t₁₀, X₁: X₂ {O(n)}
t₁₀, X₂: X₃ {O(n)}
t₁₀, X₃: X₀ {O(n)}
t₁₀, X₄: 2⋅X₀⋅X₁+X₀+1 {O(n^2)}
t₁₀, X₅: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₀+X₂ {O(n^3)}
t₁₁, X₀: X₁ {O(n)}
t₁₁, X₁: X₂ {O(n)}
t₁₁, X₂: X₃ {O(n)}
t₁₁, X₃: X₀ {O(n)}
t₁₁, X₄: 2⋅X₀⋅X₁+X₀+1 {O(n^2)}
t₁₁, X₅: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₀+X₂ {O(n^3)}
t₁₁, X₆: 2⋅X₃ {O(n)}
t₆, X₀: X₁ {O(n)}
t₆, X₁: X₂ {O(n)}
t₆, X₂: X₃ {O(n)}
t₆, X₃: X₀ {O(n)}
t₆, X₄: 2⋅X₀⋅X₁+X₀+1 {O(n^2)}
t₆, X₅: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₀+X₂ {O(n^3)}
t₆, X₆: 2⋅X₃ {O(n)}
t₇, X₀: X₁ {O(n)}
t₇, X₁: X₂ {O(n)}
t₇, X₂: X₃ {O(n)}
t₇, X₃: X₀ {O(n)}
t₇, X₄: 2⋅X₀⋅X₁+X₀+1 {O(n^2)}
t₇, X₅: X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+4⋅X₀+X₂ {O(n^3)}
t₇, X₆: 2⋅X₃+X₆ {O(n)}