Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁
Temp_Vars: A2, B2, C2, D2, E2, F2, G2, H2, I2, J2, K2, L2, M2, N2, O2, P2, Q2, R2, S2, T2, U2, V2
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₄₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l4(2, X₁, E2, X₃, F2, X₅, A2, X₇, X₈, X₉, X₁₀, X₁₁, A2, X₁₃, E2, X₁₅, A2, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, F2, X₂₃, F2, X₂₅, G2, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₄₂, D2, X₄₄, H2, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: 2 ≤ E2
t₅₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(H2, X₁, E2, X₃, G2, X₅, X₄₁, X₇, X₈, X₉, X₁₀, X₁₁, X₄₁, X₁₃, D2, X₁₅, F2, X₁₇, I2, X₁₉, J2, X₂₁, B2, X₂₃, K2, U2, O2, X₂₇, X₄₁, T2, P2, S2, Q2, V2, R2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, A2, X₄₂, C2, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
t₅₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(H2, X₁, E2, X₃, G2, X₅, X₂₆, X₇, X₈, X₉, X₁₀, X₁₁, A2, X₁₃, 1, X₁₅, F2, X₁₇, I2, X₁₉, J2, X₂₁, B2, X₂₃, K2, V2, O2, X₂₇, P2, U2, Q2, T2, R2, L2, S2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₄₂, D2, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: 1 ≤ 0 ∧ P2+1 ≤ A2
t₅₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(H2, X₁, E2, X₃, G2, X₅, X₂₆, X₇, X₈, X₉, X₁₀, X₁₁, A2, X₁₃, 1, X₁₅, F2, X₁₇, I2, X₁₉, J2, X₂₁, B2, X₂₃, K2, V2, O2, X₂₇, P2, U2, Q2, T2, R2, L2, S2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₄₂, D2, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: 1 ≤ 0 ∧ A2+1 ≤ P2
t₅₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(H2, X₁, E2, X₃, G2, X₅, X₂₆, X₇, X₈, X₉, X₁₀, X₁₁, A2, X₁₃, 1, X₁₅, F2, X₁₇, I2, X₁₉, J2, X₂₁, B2, X₂₃, K2, V2, O2, X₂₇, P2, U2, Q2, T2, R2, L2, S2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₄₂, D2, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: 1 ≤ 0 ∧ P2+1 ≤ A2
t₅₅: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(H2, X₁, E2, X₃, G2, X₅, X₂₆, X₇, X₈, X₉, X₁₀, X₁₁, A2, X₁₃, 1, X₁₅, F2, X₁₇, I2, X₁₉, J2, X₂₁, B2, X₂₃, K2, V2, O2, X₂₇, P2, U2, Q2, T2, R2, L2, S2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₄₂, D2, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: 1 ≤ 0 ∧ A2+1 ≤ P2
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈-1, X₉, 1+X₁₀, X₁₁, X₃₂, X₁₃, A2, X₃₄, X₁₆, E2, X₁₈, X₃₈, X₂₀, 1+X₁₀, X₂₂, X₈-1, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈-1, X₉, 1+X₁₀, X₁₁, X₃₂, X₁₃, A2, X₃₄, X₁₆, E2, X₁₈, X₃₈, X₂₀, 1+X₁₀, X₂₂, X₈-1, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈-1, X₉, 1+X₁₀, X₁₁, X₃₂, X₁₃, A2, X₃₄, X₁₆, E2, X₁₈, X₃₈, X₂₀, 1+X₁₀, X₂₂, X₈-1, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₁₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈-1, X₉, 1+X₁₀, X₁₁, X₃₂, X₁₃, A2, X₃₄, X₁₆, E2, X₁₈, X₃₈, X₂₀, 1+X₁₀, X₂₂, X₈-1, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈-1, X₉, 1+X₁₀, X₁₁, X₃₂, X₁₃, A2, X₃₄, X₁₆, E2, X₁₈, X₃₈, X₂₀, 1+X₁₀, X₂₂, X₈-1, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈-1, X₉, 1+X₁₀, X₁₁, X₃₂, X₁₃, A2, X₃₄, X₁₆, E2, X₁₈, X₃₈, X₂₀, 1+X₁₀, X₂₂, X₈-1, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈-1, X₉, 1+X₁₀, X₁₁, X₃₂, X₁₃, A2, X₃₄, X₁₆, E2, X₁₈, X₃₈, X₂₀, 1+X₁₀, X₂₂, X₈-1, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈-1, X₉, 1+X₁₀, X₁₁, X₃₂, X₁₃, A2, X₃₄, X₁₆, E2, X₁₈, X₃₈, X₂₀, 1+X₁₀, X₂₂, X₈-1, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₄₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₃₅+1, X₁₁, X₆, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₈, X₂₆, X₃₅, X₂₈, X₆, C2, X₂₈, D2, X₂₈, E2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₃₈, X₅₀, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂
t₄₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₃₅+1, X₁₁, X₆, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₈, X₂₆, X₃₅, X₂₈, X₆, C2, X₂₈, D2, X₂₈, E2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₃₈, X₅₀, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂
t₄₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₃₅+1, X₁₁, X₆, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₈, X₂₆, X₃₅, X₂₈, X₆, C2, X₂₈, D2, X₂₈, E2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₃₈, X₅₀, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂
t₅₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₃₅+1, X₁₁, X₆, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₈, X₂₆, X₃₅, X₂₈, X₆, C2, X₂₈, D2, X₂₈, E2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₃₈, X₅₀, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂
t₃₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅-1, X₃₆, X₃₈, X₃₈, X₃₅-1, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2
t₃₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅-1, X₃₆, X₃₈, X₃₈, X₃₅-1, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2
t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅-1, X₃₆, X₃₈, X₃₈, X₃₅-1, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2
t₃₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅-1, X₃₆, X₃₈, X₃₈, X₃₅-1, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2
t₃₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅-1, X₃₆, X₃₈, X₃₈, X₃₅-1, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2
t₃₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅-1, X₃₆, X₃₈, X₃₈, X₃₅-1, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2
t₃₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅-1, X₃₆, X₃₈, X₃₈, X₃₅-1, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2
t₄₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅-1, X₃₆, X₃₈, X₃₈, X₃₅-1, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2
t₄₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, C2, X₂₁, X₂₂, X₂₃, X₂₄, F2, X₂₆, X₂₇, X₂₈, E2, X₃₀, D2, X₃₂, G2, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈, X₉, X₁₀, D2, X₃₂, E2, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₃₄+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₉ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈, X₉, X₁₀, D2, X₃₂, E2, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₃₄+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₉ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈, X₉, X₁₀, D2, X₃₂, E2, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₃₄+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₉ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈, X₉, X₁₀, D2, X₃₂, E2, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₃₄+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₉ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈, X₉, X₁₀, D2, X₃₂, E2, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: F2+1 ≤ X₃₄ ∧ E2+1 ≤ F2 ∧ 0 ≤ X₉ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈, X₉, X₁₀, D2, X₃₂, E2, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: F2+1 ≤ X₃₄ ∧ E2+1 ≤ F2 ∧ 0 ≤ X₉ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈, X₉, X₁₀, D2, X₃₂, E2, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: F2+1 ≤ X₃₄ ∧ F2+1 ≤ E2 ∧ 0 ≤ X₉ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃₂, X₇, X₈, X₉, X₁₀, D2, X₃₂, E2, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: F2+1 ≤ X₃₄ ∧ F2+1 ≤ E2 ∧ 0 ≤ X₉ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₄₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₃₅+1, X₁₁, X₆, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₈, X₂₆, X₃₅, X₂₈, X₆, C2, X₂₈, D2, X₂₈, E2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₃₈, X₄₈, X₃₈, X₅₀, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₉ ∧ X₆+1 ≤ X₂₈ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
t₄₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₃₅+1, X₁₁, X₆, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₈, X₂₆, X₃₅, X₂₈, X₆, C2, X₂₈, D2, X₂₈, E2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₃₈, X₄₈, X₃₈, X₅₀, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₉ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
t₄₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₃₅+1, X₁₁, X₆, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₈, X₂₆, X₃₅, X₂₈, X₆, C2, X₂₈, D2, X₂₈, E2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₃₈, X₄₈, X₃₈, X₅₀, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₉ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
t₄₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₃₅+1, X₁₁, X₆, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₈, X₂₆, X₃₅, X₂₈, X₆, C2, X₂₈, D2, X₂₈, E2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₃₈, X₄₈, X₃₈, X₅₀, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₉ ∧ X₂₈+1 ≤ X₆ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
t₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₈, X₁, C2, X₃, E2, X₅, X₆, X₇, X₈, X₉, 0, X₁₁, X₆, X₁₃, A2, X₁₅, D2, X₁₇, F2, X₁₉, G2, X₂₁, H2, X₂₃, I2, X₂₅, J2, X₂₇, X₄, X₂₉, X₄, X₃₁, X₆, X₃₃, X₄, X₃₅, X₃₈, X₃₇, X₃₈, X₃₉, B2, X₄₁, K2, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₈, X₁, C2, X₃, E2, X₅, X₆, X₇, X₈, X₉, 0, X₁₁, X₆, X₁₃, A2, X₁₅, D2, X₁₇, F2, X₁₉, G2, X₂₁, H2, X₂₃, I2, X₂₅, J2, X₂₇, X₄, X₂₉, X₄, X₃₁, X₆, X₃₃, X₄, X₃₅, X₃₈, X₃₇, X₃₈, X₃₉, B2, X₄₁, K2, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l4(1+X₀, X₁, X₂, X₃, X₂₆, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₆, X₂₅, A2, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, C2, X₄₅, X₀, X₄₇, X₃₈, X₄₉, X₅₀, X₅₁) :|: X₀+1 ≤ X₂ ∧ 0 ≤ X₀
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, 1+X₈, X₂, X₃₈, X₄, E2, X₃₂, F2, X₈, X₈, 1, X₁₁, X₃₂, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: X₃₄+1 ≤ G2 ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ G2+1 ≤ C2 ∧ A2 ≤ H2 ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
t₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, 1+X₈, X₂, X₃₈, X₄, E2, X₃₂, F2, X₈, X₈, 1, X₁₁, X₃₂, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: X₃₄+1 ≤ G2 ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ C2+1 ≤ G2 ∧ A2 ≤ H2 ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, 1+X₈, X₂, X₃₈, X₄, E2, X₃₂, F2, X₈, X₈, 1, X₁₁, X₃₂, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: G2+1 ≤ X₃₄ ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ G2+1 ≤ C2 ∧ A2 ≤ H2 ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, 1+X₈, X₂, X₃₈, X₄, E2, X₃₂, F2, X₈, X₈, 1, X₁₁, X₃₂, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, C2, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, D2, X₅₁) :|: G2+1 ≤ X₃₄ ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ C2+1 ≤ G2 ∧ A2 ≤ H2 ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
t₂₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₂₅+1 ≤ D2 ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ D2+1 ≤ C2
t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₂₅+1 ≤ D2 ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ D2
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₂₅+1 ≤ D2 ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ D2+1 ≤ C2
t₂₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₂₅+1 ≤ D2 ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ D2
t₂₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: D2+1 ≤ X₂₅ ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ D2+1 ≤ C2
t₂₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: D2+1 ≤ X₂₅ ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ D2
t₂₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: D2+1 ≤ X₂₅ ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ D2+1 ≤ C2
t₃₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₂₉, X₇, X₈, X₉, X₁₀, X₁₁, X₂₉, X₁₃, A2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, C2, X₂₉, X₃₀, C2, X₃₂, X₂₅, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: D2+1 ≤ X₂₅ ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ D2
t₃₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, A2, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, D2, X₂₁, X₂₂, X₂₃, X₂₄, H2, X₂₆, X₂₇, E2, G2, X₃₀, F2, X₃₂, I2, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: 0 ≤ X₂₇ ∧ E2+1 ≤ A2 ∧ 2 ≤ C2 ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉
t₃₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, A2, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, D2, X₂₁, X₂₂, X₂₃, X₂₄, H2, X₂₆, X₂₇, E2, G2, X₃₀, F2, X₃₂, I2, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: 0 ≤ X₂₇ ∧ A2+1 ≤ E2 ∧ 2 ≤ C2 ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉
Show Graph
G
l0
l0
l4
l4
l0->l4
t₄₂
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₁₂) = A2
η (X₁₄) = E2
η (X₁₆) = A2
η (X₂₂) = F2
η (X₂₄) = F2
η (X₂₆) = G2
η (X₄₁) = C2
η (X₄₃) = D2
η (X₄₅) = H2
τ = 2 ≤ E2
l6
l6
l0->l6
t₅₁
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₁₂) = X₄₁
η (X₁₄) = D2
η (X₁₆) = F2
η (X₁₈) = I2
η (X₂₀) = J2
η (X₂₂) = B2
η (X₂₄) = K2
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₀) = P2
η (X₃₁) = S2
η (X₃₂) = Q2
η (X₃₃) = V2
η (X₃₄) = R2
η (X₄₁) = A2
η (X₄₃) = C2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l0->l6
t₅₂
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₂₆
η (X₁₂) = A2
η (X₁₄) = 1
η (X₁₆) = F2
η (X₁₈) = I2
η (X₂₀) = J2
η (X₂₂) = B2
η (X₂₄) = K2
η (X₂₅) = V2
η (X₂₆) = O2
η (X₂₈) = P2
η (X₂₉) = U2
η (X₃₀) = Q2
η (X₃₁) = T2
η (X₃₂) = R2
η (X₃₃) = L2
η (X₃₄) = S2
η (X₄₁) = C2
η (X₄₃) = D2
τ = 1 ≤ 0 ∧ P2+1 ≤ A2
l0->l6
t₅₃
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₂₆
η (X₁₂) = A2
η (X₁₄) = 1
η (X₁₆) = F2
η (X₁₈) = I2
η (X₂₀) = J2
η (X₂₂) = B2
η (X₂₄) = K2
η (X₂₅) = V2
η (X₂₆) = O2
η (X₂₈) = P2
η (X₂₉) = U2
η (X₃₀) = Q2
η (X₃₁) = T2
η (X₃₂) = R2
η (X₃₃) = L2
η (X₃₄) = S2
η (X₄₁) = C2
η (X₄₃) = D2
τ = 1 ≤ 0 ∧ A2+1 ≤ P2
l0->l6
t₅₄
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₂₆
η (X₁₂) = A2
η (X₁₄) = 1
η (X₁₆) = F2
η (X₁₈) = I2
η (X₂₀) = J2
η (X₂₂) = B2
η (X₂₄) = K2
η (X₂₅) = V2
η (X₂₆) = O2
η (X₂₈) = P2
η (X₂₉) = U2
η (X₃₀) = Q2
η (X₃₁) = T2
η (X₃₂) = R2
η (X₃₃) = L2
η (X₃₄) = S2
η (X₄₁) = C2
η (X₄₃) = D2
τ = 1 ≤ 0 ∧ P2+1 ≤ A2
l0->l6
t₅₅
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₂₆
η (X₁₂) = A2
η (X₁₄) = 1
η (X₁₆) = F2
η (X₁₈) = I2
η (X₂₀) = J2
η (X₂₂) = B2
η (X₂₄) = K2
η (X₂₅) = V2
η (X₂₆) = O2
η (X₂₈) = P2
η (X₂₉) = U2
η (X₃₀) = Q2
η (X₃₁) = T2
η (X₃₂) = R2
η (X₃₃) = L2
η (X₃₄) = S2
η (X₄₁) = C2
η (X₄₃) = D2
τ = 1 ≤ 0 ∧ A2+1 ≤ P2
l1
l1
l1->l1
t₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₁₂) = X₃₂
η (X₁₄) = A2
η (X₁₅) = X₃₄
η (X₁₇) = E2
η (X₁₉) = X₃₈
η (X₂₁) = 1+X₁₀
η (X₂₃) = X₈-1
η (X₂₈) = C2
η (X₃₀) = C2
η (X₅₀) = D2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l1->l1
t₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₁₂) = X₃₂
η (X₁₄) = A2
η (X₁₅) = X₃₄
η (X₁₇) = E2
η (X₁₉) = X₃₈
η (X₂₁) = 1+X₁₀
η (X₂₃) = X₈-1
η (X₂₈) = C2
η (X₃₀) = C2
η (X₅₀) = D2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l1->l1
t₁₇
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₁₂) = X₃₂
η (X₁₄) = A2
η (X₁₅) = X₃₄
η (X₁₇) = E2
η (X₁₉) = X₃₈
η (X₂₁) = 1+X₁₀
η (X₂₃) = X₈-1
η (X₂₈) = C2
η (X₃₀) = C2
η (X₅₀) = D2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l1->l1
t₁₈
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₁₂) = X₃₂
η (X₁₄) = A2
η (X₁₅) = X₃₄
η (X₁₇) = E2
η (X₁₉) = X₃₈
η (X₂₁) = 1+X₁₀
η (X₂₃) = X₈-1
η (X₂₈) = C2
η (X₃₀) = C2
η (X₅₀) = D2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l1->l1
t₁₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₁₂) = X₃₂
η (X₁₄) = A2
η (X₁₅) = X₃₄
η (X₁₇) = E2
η (X₁₉) = X₃₈
η (X₂₁) = 1+X₁₀
η (X₂₃) = X₈-1
η (X₂₈) = C2
η (X₃₀) = C2
η (X₅₀) = D2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l1->l1
t₂₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₁₂) = X₃₂
η (X₁₄) = A2
η (X₁₅) = X₃₄
η (X₁₇) = E2
η (X₁₉) = X₃₈
η (X₂₁) = 1+X₁₀
η (X₂₃) = X₈-1
η (X₂₈) = C2
η (X₃₀) = C2
η (X₅₀) = D2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l1->l1
t₂₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₁₂) = X₃₂
η (X₁₄) = A2
η (X₁₅) = X₃₄
η (X₁₇) = E2
η (X₁₉) = X₃₈
η (X₂₁) = 1+X₁₀
η (X₂₃) = X₈-1
η (X₂₈) = C2
η (X₃₀) = C2
η (X₅₀) = D2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l1->l1
t₂₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₁₂) = X₃₂
η (X₁₄) = A2
η (X₁₅) = X₃₄
η (X₁₇) = E2
η (X₁₉) = X₃₈
η (X₂₁) = 1+X₁₀
η (X₂₃) = X₈-1
η (X₂₈) = C2
η (X₃₀) = C2
η (X₅₀) = D2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l2
l2
l1->l2
t₄₇
η (X₁₀) = X₃₅+1
η (X₁₂) = X₆
η (X₁₄) = A2
η (X₂₅) = X₂₈
η (X₂₇) = X₃₅
η (X₂₉) = X₆
η (X₃₀) = C2
η (X₃₁) = X₂₈
η (X₃₂) = D2
η (X₃₃) = X₂₈
η (X₃₄) = E2
η (X₄₉) = X₃₈
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂
l1->l2
t₄₈
η (X₁₀) = X₃₅+1
η (X₁₂) = X₆
η (X₁₄) = A2
η (X₂₅) = X₂₈
η (X₂₇) = X₃₅
η (X₂₉) = X₆
η (X₃₀) = C2
η (X₃₁) = X₂₈
η (X₃₂) = D2
η (X₃₃) = X₂₈
η (X₃₄) = E2
η (X₄₉) = X₃₈
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂
l1->l2
t₄₉
η (X₁₀) = X₃₅+1
η (X₁₂) = X₆
η (X₁₄) = A2
η (X₂₅) = X₂₈
η (X₂₇) = X₃₅
η (X₂₉) = X₆
η (X₃₀) = C2
η (X₃₁) = X₂₈
η (X₃₂) = D2
η (X₃₃) = X₂₈
η (X₃₄) = E2
η (X₄₉) = X₃₈
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂
l1->l2
t₅₀
η (X₁₀) = X₃₅+1
η (X₁₂) = X₆
η (X₁₄) = A2
η (X₂₅) = X₂₈
η (X₂₇) = X₃₅
η (X₂₉) = X₆
η (X₃₀) = C2
η (X₃₁) = X₂₈
η (X₃₂) = D2
η (X₃₃) = X₂₈
η (X₃₄) = E2
η (X₄₉) = X₃₈
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂
l2->l2
t₃₃
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
η (X₃₅) = X₃₅-1
η (X₃₇) = X₃₈
η (X₃₉) = X₃₅-1
η (X₅₀) = D2
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2
l2->l2
t₃₄
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
η (X₃₅) = X₃₅-1
η (X₃₇) = X₃₈
η (X₃₉) = X₃₅-1
η (X₅₀) = D2
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2
l2->l2
t₃₅
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
η (X₃₅) = X₃₅-1
η (X₃₇) = X₃₈
η (X₃₉) = X₃₅-1
η (X₅₀) = D2
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2
l2->l2
t₃₆
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
η (X₃₅) = X₃₅-1
η (X₃₇) = X₃₈
η (X₃₉) = X₃₅-1
η (X₅₀) = D2
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2
l2->l2
t₃₇
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
η (X₃₅) = X₃₅-1
η (X₃₇) = X₃₈
η (X₃₉) = X₃₅-1
η (X₅₀) = D2
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2
l2->l2
t₃₈
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
η (X₃₅) = X₃₅-1
η (X₃₇) = X₃₈
η (X₃₉) = X₃₅-1
η (X₅₀) = D2
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2
l2->l2
t₃₉
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
η (X₃₅) = X₃₅-1
η (X₃₇) = X₃₈
η (X₃₉) = X₃₅-1
η (X₅₀) = D2
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2
l2->l2
t₄₀
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
η (X₃₅) = X₃₅-1
η (X₃₇) = X₃₈
η (X₃₉) = X₃₅-1
η (X₅₀) = D2
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2
l2->l6
t₄₁
η (X₁₄) = A2
η (X₂₀) = C2
η (X₂₅) = F2
η (X₂₉) = E2
η (X₃₁) = D2
η (X₃₃) = G2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉
l3
l3
l3->l1
t₇
η (X₆) = X₃₂
η (X₁₁) = D2
η (X₁₂) = X₃₂
η (X₁₃) = E2
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₀) = C2
τ = X₃₄+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₉ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l3->l1
t₈
η (X₆) = X₃₂
η (X₁₁) = D2
η (X₁₂) = X₃₂
η (X₁₃) = E2
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₀) = C2
τ = X₃₄+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₉ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l3->l1
t₉
η (X₆) = X₃₂
η (X₁₁) = D2
η (X₁₂) = X₃₂
η (X₁₃) = E2
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₀) = C2
τ = X₃₄+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₉ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l3->l1
t₁₀
η (X₆) = X₃₂
η (X₁₁) = D2
η (X₁₂) = X₃₂
η (X₁₃) = E2
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₀) = C2
τ = X₃₄+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₉ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l3->l1
t₁₁
η (X₆) = X₃₂
η (X₁₁) = D2
η (X₁₂) = X₃₂
η (X₁₃) = E2
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₀) = C2
τ = F2+1 ≤ X₃₄ ∧ E2+1 ≤ F2 ∧ 0 ≤ X₉ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l3->l1
t₁₂
η (X₆) = X₃₂
η (X₁₁) = D2
η (X₁₂) = X₃₂
η (X₁₃) = E2
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₀) = C2
τ = F2+1 ≤ X₃₄ ∧ E2+1 ≤ F2 ∧ 0 ≤ X₉ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l3->l1
t₁₃
η (X₆) = X₃₂
η (X₁₁) = D2
η (X₁₂) = X₃₂
η (X₁₃) = E2
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₀) = C2
τ = F2+1 ≤ X₃₄ ∧ F2+1 ≤ E2 ∧ 0 ≤ X₉ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l3->l1
t₁₄
η (X₆) = X₃₂
η (X₁₁) = D2
η (X₁₂) = X₃₂
η (X₁₃) = E2
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₀) = C2
τ = F2+1 ≤ X₃₄ ∧ F2+1 ≤ E2 ∧ 0 ≤ X₉ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l3->l2
t₄₃
η (X₁₀) = X₃₅+1
η (X₁₂) = X₆
η (X₁₄) = A2
η (X₂₅) = X₂₈
η (X₂₇) = X₃₅
η (X₂₉) = X₆
η (X₃₀) = C2
η (X₃₁) = X₂₈
η (X₃₂) = D2
η (X₃₃) = X₂₈
η (X₃₄) = E2
η (X₄₇) = X₃₈
η (X₄₉) = X₃₈
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₉ ∧ X₆+1 ≤ X₂₈ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
l3->l2
t₄₄
η (X₁₀) = X₃₅+1
η (X₁₂) = X₆
η (X₁₄) = A2
η (X₂₅) = X₂₈
η (X₂₇) = X₃₅
η (X₂₉) = X₆
η (X₃₀) = C2
η (X₃₁) = X₂₈
η (X₃₂) = D2
η (X₃₃) = X₂₈
η (X₃₄) = E2
η (X₄₇) = X₃₈
η (X₄₉) = X₃₈
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₉ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
l3->l2
t₄₅
η (X₁₀) = X₃₅+1
η (X₁₂) = X₆
η (X₁₄) = A2
η (X₂₅) = X₂₈
η (X₂₇) = X₃₅
η (X₂₉) = X₆
η (X₃₀) = C2
η (X₃₁) = X₂₈
η (X₃₂) = D2
η (X₃₃) = X₂₈
η (X₃₄) = E2
η (X₄₇) = X₃₈
η (X₄₉) = X₃₈
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₉ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
l3->l2
t₄₆
η (X₁₀) = X₃₅+1
η (X₁₂) = X₆
η (X₁₄) = A2
η (X₂₅) = X₂₈
η (X₂₇) = X₃₅
η (X₂₉) = X₆
η (X₃₀) = C2
η (X₃₁) = X₂₈
η (X₃₂) = D2
η (X₃₃) = X₂₈
η (X₃₄) = E2
η (X₄₇) = X₃₈
η (X₄₉) = X₃₈
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₉ ∧ X₂₈+1 ≤ X₆ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
l4->l1
t₀
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₁₂) = X₆
η (X₁₄) = A2
η (X₁₆) = D2
η (X₁₈) = F2
η (X₂₀) = G2
η (X₂₂) = H2
η (X₂₄) = I2
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₀) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
η (X₃₆) = X₃₈
η (X₄₀) = B2
η (X₄₂) = K2
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀
l4->l1
t₁
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₁₂) = X₆
η (X₁₄) = A2
η (X₁₆) = D2
η (X₁₈) = F2
η (X₂₀) = G2
η (X₂₂) = H2
η (X₂₄) = I2
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₀) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
η (X₃₆) = X₃₈
η (X₄₀) = B2
η (X₄₂) = K2
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀
l4->l4
t₂
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₄) = X₂₆
η (X₂₆) = A2
η (X₄₄) = C2
η (X₄₆) = X₀
η (X₄₈) = X₃₈
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀
l5
l5
l5->l1
t₃
η (X₁) = 1+X₈
η (X₃) = X₃₈
η (X₅) = E2
η (X₆) = X₃₂
η (X₇) = F2
η (X₉) = X₈
η (X₁₀) = 1
η (X₁₂) = X₃₂
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₀) = C2
η (X₅₀) = D2
τ = X₃₄+1 ≤ G2 ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ G2+1 ≤ C2 ∧ A2 ≤ H2 ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
l5->l1
t₄
η (X₁) = 1+X₈
η (X₃) = X₃₈
η (X₅) = E2
η (X₆) = X₃₂
η (X₇) = F2
η (X₉) = X₈
η (X₁₀) = 1
η (X₁₂) = X₃₂
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₀) = C2
η (X₅₀) = D2
τ = X₃₄+1 ≤ G2 ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ C2+1 ≤ G2 ∧ A2 ≤ H2 ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
l5->l1
t₅
η (X₁) = 1+X₈
η (X₃) = X₃₈
η (X₅) = E2
η (X₆) = X₃₂
η (X₇) = F2
η (X₉) = X₈
η (X₁₀) = 1
η (X₁₂) = X₃₂
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₀) = C2
η (X₅₀) = D2
τ = G2+1 ≤ X₃₄ ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ G2+1 ≤ C2 ∧ A2 ≤ H2 ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
l5->l1
t₆
η (X₁) = 1+X₈
η (X₃) = X₃₈
η (X₅) = E2
η (X₆) = X₃₂
η (X₇) = F2
η (X₉) = X₈
η (X₁₀) = 1
η (X₁₂) = X₃₂
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₀) = C2
η (X₅₀) = D2
τ = G2+1 ≤ X₃₄ ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ C2+1 ≤ G2 ∧ A2 ≤ H2 ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
l7
l7
l7->l2
t₂₃
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
τ = X₂₅+1 ≤ D2 ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ D2+1 ≤ C2
l7->l2
t₂₄
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
τ = X₂₅+1 ≤ D2 ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ D2
l7->l2
t₂₅
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
τ = X₂₅+1 ≤ D2 ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ D2+1 ≤ C2
l7->l2
t₂₆
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
τ = X₂₅+1 ≤ D2 ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ D2
l7->l2
t₂₇
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
τ = D2+1 ≤ X₂₅ ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ D2+1 ≤ C2
l7->l2
t₂₈
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
τ = D2+1 ≤ X₂₅ ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ D2
l7->l2
t₂₉
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
τ = D2+1 ≤ X₂₅ ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ D2+1 ≤ C2
l7->l2
t₃₀
η (X₆) = X₂₉
η (X₁₂) = X₂₉
η (X₁₄) = A2
η (X₂₈) = C2
η (X₃₁) = C2
η (X₃₃) = X₂₅
τ = D2+1 ≤ X₂₅ ∧ 0 ≤ X₂₇ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ D2
l7->l6
t₃₁
η (X₁₂) = A2
η (X₁₄) = C2
η (X₂₀) = D2
η (X₂₅) = H2
η (X₂₈) = E2
η (X₂₉) = G2
η (X₃₁) = F2
η (X₃₃) = I2
τ = 0 ≤ X₂₇ ∧ E2+1 ≤ A2 ∧ 2 ≤ C2 ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉
l7->l6
t₃₂
η (X₁₂) = A2
η (X₁₄) = C2
η (X₂₀) = D2
η (X₂₅) = H2
η (X₂₈) = E2
η (X₂₉) = G2
η (X₃₁) = F2
η (X₃₃) = I2
τ = 0 ≤ X₂₇ ∧ A2+1 ≤ E2 ∧ 2 ≤ C2 ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉
Preprocessing
Cut unreachable locations [l3; l5; l7] from the program graph
Cut unsatisfiable transition t₅₂: l0→l6
Cut unsatisfiable transition t₅₃: l0→l6
Cut unsatisfiable transition t₅₄: l0→l6
Cut unsatisfiable transition t₅₅: l0→l6
Cut unsatisfiable transition t₄₇: l1→l2
Cut unsatisfiable transition t₅₀: l1→l2
Eliminate variables {I2,K2,P2,S2,V2,X₁,X₃,X₅,X₇,X₉,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₇,X₃₀,X₃₁,X₃₃,X₃₆,X₃₇,X₃₈,X₃₉,X₄₀,X₄₂,X₄₃,X₄₄,X₄₅,X₄₆,X₄₇,X₄₈,X₄₉,X₅₀,X₅₁} that do not contribute to the problem
Found invariant X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀ for location l2
Found invariant X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀ for location l1
Found invariant 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁
Temp_Vars: A2, B2, C2, D2, E2, F2, G2, H2, J2, L2, M2, N2, O2, Q2, R2, T2, U2
Locations: l0, l1, l2, l4, l6
Transitions:
t₁₀₇: l0(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l4(2, E2, F2, A2, X₈, X₁₀, X₂₅, G2, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, C2) :|: 2 ≤ E2
t₁₀₈: l0(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l6(H2, E2, G2, X₄₁, X₈, X₁₀, U2, O2, X₄₁, T2, Q2, R2, X₃₅, A2) :|: L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
t₁₀₉: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
t₁₁₀: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
t₁₁₁: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
t₁₁₂: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
t₁₁₃: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
t₁₁₄: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
t₁₁₅: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
t₁₁₆: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
t₁₁₇: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₆, X₈, X₃₅+1, X₂₈, X₂₆, X₂₈, X₆, D2, E2, X₃₅, X₄₁) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
t₁₁₈: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₆, X₈, X₃₅+1, X₂₈, X₂₆, X₂₈, X₆, D2, E2, X₃₅, X₄₁) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
t₁₁₉: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
t₁₂₀: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
t₁₂₁: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
t₁₂₂: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
t₁₂₃: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
t₁₂₄: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
t₁₂₅: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
t₁₂₆: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
t₁₂₇: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l6(X₀, X₂, X₄, X₆, X₈, X₁₀, F2, X₂₆, X₂₈, E2, X₃₂, X₃₄, X₃₅, X₄₁) :|: 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
t₁₂₈: l4(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₈, C2, E2, X₆, X₈, 0, X₂₅, J2, X₄, X₂₉, X₆, X₄, X₃₅, X₄₁) :|: X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
t₁₂₉: l4(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₈, C2, E2, X₆, X₈, 0, X₂₅, J2, X₄, X₂₉, X₆, X₄, X₃₅, X₄₁) :|: X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
t₁₃₀: l4(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l4(1+X₀, X₂, X₂₆, X₆, X₈, X₁₀, X₂₅, A2, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
Analysing control-flow refined program
Found invariant X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀ for location l2
Found invariant 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location n_l4___1
Found invariant X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀ for location l1
Found invariant 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l4
CFR did not improve the program. Rolling back
MPRF for transition t₁₀₉: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
MPRF:
l1 [X₈+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₁₀: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
MPRF:
l1 [X₈+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₁₁: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
MPRF:
l1 [X₈+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₁₂: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
MPRF:
l1 [X₈+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₁₃: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
MPRF:
l1 [X₈+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₁₄: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
MPRF:
l1 [X₈+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₁₅: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
MPRF:
l1 [X₈+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₁₆: l1(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l1(X₀, X₂, X₄, X₃₂, X₈-1, 1+X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) :|: F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
MPRF:
l1 [X₈+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₁₉: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
512⋅X₃₅+2 {O(n)}
MPRF:
l2 [X₃₅+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₂₀: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
512⋅X₃₅+2 {O(n)}
MPRF:
l2 [X₃₅+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₂₁: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
512⋅X₃₅+2 {O(n)}
MPRF:
l2 [X₃₅+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₂₂: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
512⋅X₃₅+2 {O(n)}
MPRF:
l2 [X₃₅+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₂₃: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
512⋅X₃₅+2 {O(n)}
MPRF:
l2 [X₃₅+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₂₄: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
512⋅X₃₅+2 {O(n)}
MPRF:
l2 [X₃₅+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₂₅: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
512⋅X₃₅+2 {O(n)}
MPRF:
l2 [X₃₅+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₁₂₆: l2(X₀, X₂, X₄, X₆, X₈, X₁₀, X₂₅, X₂₆, X₂₈, X₂₉, X₃₂, X₃₄, X₃₅, X₄₁) → l2(X₀, X₂, X₄, X₂₉, X₈, X₁₀, X₂₅, X₂₆, C2, X₂₉, X₃₂, X₃₄, X₃₅-1, X₄₁) :|: E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
512⋅X₃₅+2 {O(n)}
MPRF:
l2 [X₃₅+1 ]
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₇
η (X₀) = 2
η (X₂) = E2
η (X₄) = F2
η (X₆) = A2
η (X₂₆) = G2
η (X₄₁) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₈
η (X₀) = H2
η (X₂) = E2
η (X₄) = G2
η (X₆) = X₄₁
η (X₂₅) = U2
η (X₂₆) = O2
η (X₂₈) = X₄₁
η (X₂₉) = T2
η (X₃₂) = Q2
η (X₃₄) = R2
η (X₄₁) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₉
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l1
t₁₁₆
η (X₆) = X₃₂
η (X₈) = X₈-1
η (X₁₀) = 1+X₁₀
η (X₂₈) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₇
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆+1 ≤ X₂₈ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l1->l2
t₁₁₈
η (X₁₀) = X₃₅+1
η (X₂₅) = X₂₈
η (X₂₉) = X₆
η (X₃₂) = D2
η (X₃₄) = E2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₂₈+1 ≤ X₆ ∧ X₃₂ ≤ X₃₄ ∧ X₃₄ ≤ X₃₂ ∧ X₈ ≤ X₀ ∧ 0 ≤ 1+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₆ ≤ X₃₂ ∧ X₃₂ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = X₂₅+1 ≤ E2 ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₂₉ ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l2
t₁₂₆
η (X₆) = X₂₉
η (X₂₈) = C2
η (X₃₅) = X₃₅-1
τ = E2+1 ≤ X₂₅ ∧ 0 ≤ X₃₅ ∧ 2 ≤ A2 ∧ X₂₉+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l2->l6
t₁₂₇
η (X₂₅) = F2
η (X₂₉) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₃₅ ∧ X₂₉ ≤ X₂₅ ∧ X₂₅ ≤ X₂₉ ∧ X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂₉ ∧ X₂₉ ≤ X₆ ∧ 1+X₃₅ ≤ X₁₀ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l1
t₁₂₉
η (X₀) = X₈
η (X₂) = C2
η (X₄) = E2
η (X₁₀) = 0
η (X₂₆) = J2
η (X₂₈) = X₄
η (X₃₂) = X₆
η (X₃₄) = X₄
τ = X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₄+1 ≤ X₆ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₈ ∧ X₁₀ ≤ 0 ∧ 0 ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
l4->l4
t₁₃₀
η (X₀) = 1+X₀
η (X₄) = X₂₆
η (X₂₆) = A2
τ = X₀+1 ≤ X₂ ∧ 0 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₁₀₇: 1 {O(1)}
t₁₀₈: 1 {O(1)}
t₁₀₉: 4⋅X₈+2 {O(n)}
t₁₁₀: 4⋅X₈+2 {O(n)}
t₁₁₁: 4⋅X₈+2 {O(n)}
t₁₁₂: 4⋅X₈+2 {O(n)}
t₁₁₃: 4⋅X₈+2 {O(n)}
t₁₁₄: 4⋅X₈+2 {O(n)}
t₁₁₅: 4⋅X₈+2 {O(n)}
t₁₁₆: 4⋅X₈+2 {O(n)}
t₁₁₇: 1 {O(1)}
t₁₁₈: 1 {O(1)}
t₁₁₉: 512⋅X₃₅+2 {O(n)}
t₁₂₀: 512⋅X₃₅+2 {O(n)}
t₁₂₁: 512⋅X₃₅+2 {O(n)}
t₁₂₂: 512⋅X₃₅+2 {O(n)}
t₁₂₃: 512⋅X₃₅+2 {O(n)}
t₁₂₄: 512⋅X₃₅+2 {O(n)}
t₁₂₅: 512⋅X₃₅+2 {O(n)}
t₁₂₆: 512⋅X₃₅+2 {O(n)}
t₁₂₇: 1 {O(1)}
t₁₂₈: 1 {O(1)}
t₁₂₉: 1 {O(1)}
t₁₃₀: inf {Infinity}
Costbounds
Overall costbound: inf {Infinity}
t₁₀₇: 1 {O(1)}
t₁₀₈: 1 {O(1)}
t₁₀₉: 4⋅X₈+2 {O(n)}
t₁₁₀: 4⋅X₈+2 {O(n)}
t₁₁₁: 4⋅X₈+2 {O(n)}
t₁₁₂: 4⋅X₈+2 {O(n)}
t₁₁₃: 4⋅X₈+2 {O(n)}
t₁₁₄: 4⋅X₈+2 {O(n)}
t₁₁₅: 4⋅X₈+2 {O(n)}
t₁₁₆: 4⋅X₈+2 {O(n)}
t₁₁₇: 1 {O(1)}
t₁₁₈: 1 {O(1)}
t₁₁₉: 512⋅X₃₅+2 {O(n)}
t₁₂₀: 512⋅X₃₅+2 {O(n)}
t₁₂₁: 512⋅X₃₅+2 {O(n)}
t₁₂₂: 512⋅X₃₅+2 {O(n)}
t₁₂₃: 512⋅X₃₅+2 {O(n)}
t₁₂₄: 512⋅X₃₅+2 {O(n)}
t₁₂₅: 512⋅X₃₅+2 {O(n)}
t₁₂₆: 512⋅X₃₅+2 {O(n)}
t₁₂₇: 1 {O(1)}
t₁₂₈: 1 {O(1)}
t₁₂₉: 1 {O(1)}
t₁₃₀: inf {Infinity}
Sizebounds
t₁₀₇, X₀: 2 {O(1)}
t₁₀₇, X₈: X₈ {O(n)}
t₁₀₇, X₁₀: X₁₀ {O(n)}
t₁₀₇, X₂₅: X₂₅ {O(n)}
t₁₀₇, X₂₈: X₂₈ {O(n)}
t₁₀₇, X₂₉: X₂₉ {O(n)}
t₁₀₇, X₃₂: X₃₂ {O(n)}
t₁₀₇, X₃₄: X₃₄ {O(n)}
t₁₀₇, X₃₅: X₃₅ {O(n)}
t₁₀₈, X₆: X₄₁ {O(n)}
t₁₀₈, X₈: X₈ {O(n)}
t₁₀₈, X₁₀: X₁₀ {O(n)}
t₁₀₈, X₂₈: X₄₁ {O(n)}
t₁₀₈, X₃₅: X₃₅ {O(n)}
t₁₀₉, X₀: 32⋅X₈ {O(n)}
t₁₀₉, X₈: 32⋅X₈+1 {O(n)}
t₁₀₉, X₁₀: 32⋅X₈+16 {O(n)}
t₁₀₉, X₂₅: 32⋅X₂₅ {O(n)}
t₁₀₉, X₂₉: 32⋅X₂₉ {O(n)}
t₁₀₉, X₃₅: 32⋅X₃₅ {O(n)}
t₁₁₀, X₀: 32⋅X₈ {O(n)}
t₁₁₀, X₈: 32⋅X₈+1 {O(n)}
t₁₁₀, X₁₀: 32⋅X₈+16 {O(n)}
t₁₁₀, X₂₅: 32⋅X₂₅ {O(n)}
t₁₁₀, X₂₉: 32⋅X₂₉ {O(n)}
t₁₁₀, X₃₅: 32⋅X₃₅ {O(n)}
t₁₁₁, X₀: 32⋅X₈ {O(n)}
t₁₁₁, X₈: 32⋅X₈+1 {O(n)}
t₁₁₁, X₁₀: 32⋅X₈+16 {O(n)}
t₁₁₁, X₂₅: 32⋅X₂₅ {O(n)}
t₁₁₁, X₂₉: 32⋅X₂₉ {O(n)}
t₁₁₁, X₃₅: 32⋅X₃₅ {O(n)}
t₁₁₂, X₀: 32⋅X₈ {O(n)}
t₁₁₂, X₈: 32⋅X₈+1 {O(n)}
t₁₁₂, X₁₀: 32⋅X₈+16 {O(n)}
t₁₁₂, X₂₅: 32⋅X₂₅ {O(n)}
t₁₁₂, X₂₉: 32⋅X₂₉ {O(n)}
t₁₁₂, X₃₅: 32⋅X₃₅ {O(n)}
t₁₁₃, X₀: 32⋅X₈ {O(n)}
t₁₁₃, X₈: 32⋅X₈+1 {O(n)}
t₁₁₃, X₁₀: 32⋅X₈+16 {O(n)}
t₁₁₃, X₂₅: 32⋅X₂₅ {O(n)}
t₁₁₃, X₂₉: 32⋅X₂₉ {O(n)}
t₁₁₃, X₃₅: 32⋅X₃₅ {O(n)}
t₁₁₄, X₀: 32⋅X₈ {O(n)}
t₁₁₄, X₈: 32⋅X₈+1 {O(n)}
t₁₁₄, X₁₀: 32⋅X₈+16 {O(n)}
t₁₁₄, X₂₅: 32⋅X₂₅ {O(n)}
t₁₁₄, X₂₉: 32⋅X₂₉ {O(n)}
t₁₁₄, X₃₅: 32⋅X₃₅ {O(n)}
t₁₁₅, X₀: 32⋅X₈ {O(n)}
t₁₁₅, X₈: 32⋅X₈+1 {O(n)}
t₁₁₅, X₁₀: 32⋅X₈+16 {O(n)}
t₁₁₅, X₂₅: 32⋅X₂₅ {O(n)}
t₁₁₅, X₂₉: 32⋅X₂₉ {O(n)}
t₁₁₅, X₃₅: 32⋅X₃₅ {O(n)}
t₁₁₆, X₀: 32⋅X₈ {O(n)}
t₁₁₆, X₈: 32⋅X₈+1 {O(n)}
t₁₁₆, X₁₀: 32⋅X₈+16 {O(n)}
t₁₁₆, X₂₅: 32⋅X₂₅ {O(n)}
t₁₁₆, X₂₉: 32⋅X₂₉ {O(n)}
t₁₁₆, X₃₅: 32⋅X₃₅ {O(n)}
t₁₁₇, X₀: 256⋅X₈ {O(n)}
t₁₁₇, X₈: 256⋅X₈+8 {O(n)}
t₁₁₇, X₁₀: 256⋅X₃₅+8 {O(n)}
t₁₁₇, X₃₅: 256⋅X₃₅ {O(n)}
t₁₁₈, X₀: 256⋅X₈ {O(n)}
t₁₁₈, X₈: 256⋅X₈+8 {O(n)}
t₁₁₈, X₁₀: 256⋅X₃₅+8 {O(n)}
t₁₁₈, X₃₅: 256⋅X₃₅ {O(n)}
t₁₁₉, X₀: 3584⋅X₈ {O(n)}
t₁₁₉, X₈: 3584⋅X₈+112 {O(n)}
t₁₁₉, X₁₀: 3584⋅X₃₅+112 {O(n)}
t₁₁₉, X₃₅: 3584⋅X₃₅+1 {O(n)}
t₁₂₀, X₀: 3584⋅X₈ {O(n)}
t₁₂₀, X₈: 3584⋅X₈+112 {O(n)}
t₁₂₀, X₁₀: 3584⋅X₃₅+112 {O(n)}
t₁₂₀, X₃₅: 3584⋅X₃₅+1 {O(n)}
t₁₂₁, X₀: 3584⋅X₈ {O(n)}
t₁₂₁, X₈: 3584⋅X₈+112 {O(n)}
t₁₂₁, X₁₀: 3584⋅X₃₅+112 {O(n)}
t₁₂₁, X₃₅: 3584⋅X₃₅+1 {O(n)}
t₁₂₂, X₀: 3584⋅X₈ {O(n)}
t₁₂₂, X₈: 3584⋅X₈+112 {O(n)}
t₁₂₂, X₁₀: 3584⋅X₃₅+112 {O(n)}
t₁₂₂, X₃₅: 3584⋅X₃₅+1 {O(n)}
t₁₂₃, X₀: 3584⋅X₈ {O(n)}
t₁₂₃, X₈: 3584⋅X₈+112 {O(n)}
t₁₂₃, X₁₀: 3584⋅X₃₅+112 {O(n)}
t₁₂₃, X₃₅: 3584⋅X₃₅+1 {O(n)}
t₁₂₄, X₀: 3584⋅X₈ {O(n)}
t₁₂₄, X₈: 3584⋅X₈+112 {O(n)}
t₁₂₄, X₁₀: 3584⋅X₃₅+112 {O(n)}
t₁₂₄, X₃₅: 3584⋅X₃₅+1 {O(n)}
t₁₂₅, X₀: 3584⋅X₈ {O(n)}
t₁₂₅, X₈: 3584⋅X₈+112 {O(n)}
t₁₂₅, X₁₀: 3584⋅X₃₅+112 {O(n)}
t₁₂₅, X₃₅: 3584⋅X₃₅+1 {O(n)}
t₁₂₆, X₀: 3584⋅X₈ {O(n)}
t₁₂₆, X₈: 3584⋅X₈+112 {O(n)}
t₁₂₆, X₁₀: 3584⋅X₃₅+112 {O(n)}
t₁₂₆, X₃₅: 3584⋅X₃₅+1 {O(n)}
t₁₂₇, X₀: 21504⋅X₈ {O(n)}
t₁₂₇, X₈: 21504⋅X₈+672 {O(n)}
t₁₂₇, X₁₀: 21504⋅X₃₅+672 {O(n)}
t₁₂₇, X₃₅: 21504⋅X₃₅+6 {O(n)}
t₁₂₈, X₀: 2⋅X₈ {O(n)}
t₁₂₈, X₈: 2⋅X₈ {O(n)}
t₁₂₈, X₁₀: 0 {O(1)}
t₁₂₈, X₂₅: 2⋅X₂₅ {O(n)}
t₁₂₈, X₂₉: 2⋅X₂₉ {O(n)}
t₁₂₈, X₃₅: 2⋅X₃₅ {O(n)}
t₁₂₉, X₀: 2⋅X₈ {O(n)}
t₁₂₉, X₈: 2⋅X₈ {O(n)}
t₁₂₉, X₁₀: 0 {O(1)}
t₁₂₉, X₂₅: 2⋅X₂₅ {O(n)}
t₁₂₉, X₂₉: 2⋅X₂₉ {O(n)}
t₁₂₉, X₃₅: 2⋅X₃₅ {O(n)}
t₁₃₀, X₈: X₈ {O(n)}
t₁₃₀, X₁₀: X₁₀ {O(n)}
t₁₃₀, X₂₅: X₂₅ {O(n)}
t₁₃₀, X₂₈: X₂₈ {O(n)}
t₁₃₀, X₂₉: X₂₉ {O(n)}
t₁₃₀, X₃₂: X₃₂ {O(n)}
t₁₃₀, X₃₄: X₃₄ {O(n)}
t₁₃₀, X₃₅: X₃₅ {O(n)}