Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₅: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₁, X₄) :|: X₂ ≤ X₀
t₁₂: l10(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂+1, X₃, X₄)
t₁₄: l2(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₁₃: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁-1, X₂, X₃, X₄)
t₁: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₁, X₀, X₂, X₃, X₄)
t₂: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, 1, X₃, X₄) :|: 1 ≤ X₁
t₃: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 0
t₈: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃
t₉: l6(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₄
t₁₀: l7(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄+1)
t₁₁: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃+1, X₄)
t₇: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁+X₂+1 ≤ X₃
t₆: l9(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₁+X₂

Preprocessing

Found invariant X₁ ≤ 0 for location l11

Found invariant X₁ ≤ 0 for location l2

Found invariant X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7

Found invariant X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l1

Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₅: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₁, X₄) :|: X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₂: l10(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂+1, X₃, X₄) :|: 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄: l2(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 0
t₁₃: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁-1, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁
t₁: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₁, X₀, X₂, X₃, X₄)
t₂: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, 1, X₃, X₄) :|: 1 ≤ X₁
t₃: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 0
t₈: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₉: l6(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₀: l7(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₁: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃+1, X₄) :|: X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁+X₂+1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆: l9(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₁+X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₀ {O(n)}

MPRF:

l3 [X₁-1 ]
l5 [X₁ ]
l1 [X₁ ]
l7 [X₁ ]
l8 [X₁+X₃+1-X₄ ]
l6 [X₁ ]
l9 [X₁ ]
l10 [X₁ ]

MPRF for transition t₁₃: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁-1, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₀ {O(n)}

MPRF:

l3 [X₁ ]
l5 [X₁ ]
l1 [X₁ ]
l7 [X₁ ]
l8 [X₁ ]
l6 [X₁ ]
l9 [X₁ ]
l10 [X₁ ]

MPRF for transition t₂: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, 1, X₃, X₄) :|: 1 ≤ X₁ of depth 1:

new bound:

X₀ {O(n)}

MPRF:

l3 [X₁-1 ]
l5 [X₁ ]
l1 [X₁-1 ]
l7 [X₁-1 ]
l8 [X₁-1 ]
l6 [X₁-1 ]
l9 [X₁-1 ]
l10 [X₁-1 ]

MPRF for transition t₄: l1(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₁, X₄) :|: X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₀⋅X₁+2⋅X₀ {O(n^2)}

MPRF:

l1 [X₀+1-X₂ ]
l3 [X₀-X₂ ]
l5 [X₀-X₂ ]
l7 [X₀-X₂ ]
l8 [X₀-X₂ ]
l6 [X₀-X₂ ]
l9 [X₀-X₂ ]
l10 [X₀-X₂ ]

MPRF for transition t₁₂: l10(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂+1, X₃, X₄) :|: 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+X₀⋅X₁+X₀ {O(n^2)}

MPRF:

l1 [X₀+X₁-X₂ ]
l3 [X₀+X₁-X₂ ]
l5 [X₀+X₁-X₂ ]
l7 [X₀+X₁-X₂ ]
l8 [X₀+X₁-X₂ ]
l6 [X₀+X₁-X₂ ]
l9 [X₀+X₁-X₂ ]
l10 [X₀+X₁-X₂ ]

MPRF for transition t₇: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁+X₂+1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₁+2⋅X₀ {O(n^2)}

MPRF:

l1 [X₀+1-X₂ ]
l3 [X₀-X₂ ]
l5 [X₀-X₂ ]
l7 [X₀+1-X₂ ]
l8 [X₀+1-X₂ ]
l6 [X₀+1-X₂ ]
l9 [X₀+1-X₂ ]
l10 [X₀-X₂ ]

MPRF for transition t₆: l9(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₁+X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₁⋅X₁+3⋅X₀⋅X₁+2⋅X₀+X₁+1 {O(n^3)}

MPRF:

l10 [X₀+1 ]
l3 [X₀+1 ]
l5 [X₀+1 ]
l1 [X₀+1 ]
l7 [X₀+X₁-X₃ ]
l8 [X₀+X₁-X₃ ]
l9 [X₀+X₁+1-X₃ ]
l6 [X₀+X₁-X₃ ]

MPRF for transition t₉: l6(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₁⋅X₁+3⋅X₀⋅X₁+2⋅X₀+X₁+1 {O(n^3)}

MPRF:

l3 [0 ]
l5 [0 ]
l1 [0 ]
l7 [1 ]
l6 [1 ]
l8 [0 ]
l9 [0 ]
l10 [0 ]

MPRF for transition t₁₁: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃+1, X₄) :|: X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₁⋅X₁⋅X₁+3⋅X₀⋅X₀⋅X₁+3⋅X₀⋅X₁⋅X₁+2⋅X₀⋅X₀+3⋅X₀⋅X₁+X₁⋅X₁+2⋅X₁+X₀ {O(n^4)}

MPRF:

l3 [X₀ ]
l5 [X₀ ]
l1 [X₀ ]
l7 [X₀+X₁ ]
l6 [X₀+X₁ ]
l8 [X₀+X₁ ]
l9 [X₀ ]
l10 [X₀ ]

knowledge_propagation leads to new time bound X₀⋅X₁⋅X₁+3⋅X₀⋅X₁+2⋅X₀+X₁+1 {O(n^3)} for transition t₁₁: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃+1, X₄) :|: X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₈: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁⋅X₁+12⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+30⋅X₀⋅X₀⋅X₁⋅X₁+4⋅X₀⋅X₁⋅X₁⋅X₁+19⋅X₀⋅X₁⋅X₁+36⋅X₀⋅X₀⋅X₁+16⋅X₀⋅X₀+2⋅X₁⋅X₁+33⋅X₀⋅X₁+19⋅X₀+7⋅X₁+5 {O(n^6)}

MPRF:

l3 [X₁ ]
l5 [X₁ ]
l1 [X₁ ]
l7 [2⋅X₃+1-X₄ ]
l6 [2⋅X₃+2-X₄ ]
l8 [X₃+1 ]
l9 [X₃ ]
l10 [X₁ ]

MPRF for transition t₁₀: l7(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁⋅X₁+12⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+31⋅X₀⋅X₀⋅X₁⋅X₁+4⋅X₀⋅X₁⋅X₁⋅X₁+18⋅X₀⋅X₁⋅X₁+39⋅X₀⋅X₀⋅X₁+18⋅X₀⋅X₀+2⋅X₁⋅X₁+31⋅X₀⋅X₁+17⋅X₀+6⋅X₁+4 {O(n^6)}

MPRF:

l3 [0 ]
l5 [0 ]
l1 [0 ]
l7 [2⋅X₃+1-X₁-X₄ ]
l6 [2⋅X₃+1-X₁-X₄ ]
l8 [2⋅X₃-X₁-X₄ ]
l9 [X₃-X₁-2 ]
l10 [X₃-X₁-2 ]

Analysing control-flow refined program

Found invariant X₁ ≤ 0 for location l11

Found invariant X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___6

Found invariant X₁ ≤ 0 for location l2

Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l9___9

Found invariant X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___2

Found invariant X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l9___3

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___8

Found invariant X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___4

Found invariant X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l1

Found invariant X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l7___5

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l7___7

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ for location l3

Found invariant X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___1

knowledge_propagation leads to new time bound X₀ {O(n)} for transition t₁₂₃: l1(X₀, X₁, X₂, X₃, X₄) → n_l9___9(X₀, X₁, X₂, X₁, X₄) :|: 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁

MPRF for transition t₁₂₁: n_l10___2(X₀, X₁, X₂, X₃, X₄) → n_l1___1(X₀, X₁, X₂+1, X₃, X₄) :|: 1+X₁+X₂ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2+X₂ ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+X₀⋅X₁+X₀ {O(n^2)}

MPRF:

l1 [X₀+X₁-X₂ ]
l5 [X₀+X₁-X₂ ]
n_l1___1 [X₀+X₁-X₂ ]
l3 [X₀+X₁-X₂ ]
n_l7___5 [X₀+X₁-X₂ ]
n_l7___7 [X₀+X₁-X₂ ]
n_l6___6 [X₀+X₁-X₂ ]
n_l8___4 [X₀+X₁-X₂ ]
n_l10___2 [X₀+X₁-X₂ ]
n_l9___3 [X₀+X₁-X₂ ]
n_l9___9 [X₀+X₁-X₂ ]
n_l6___8 [X₀+X₁-X₂ ]

MPRF for transition t₁₂₂: n_l1___1(X₀, X₁, X₂, X₃, X₄) → n_l9___9(X₀, X₁, X₂, X₁, X₄) :|: 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₁ {O(n^2)}

MPRF:

l1 [X₀ ]
l5 [X₀-X₁-X₂-1 ]
n_l1___1 [X₀+1-X₂ ]
l3 [X₀-X₁-X₂ ]
n_l7___5 [X₀-X₂ ]
n_l7___7 [X₀-X₂ ]
n_l6___6 [X₀-X₂ ]
n_l8___4 [X₀-X₂ ]
n_l10___2 [X₀-X₂ ]
n_l9___3 [X₀+X₄-X₂-X₃ ]
n_l9___9 [X₀-X₂ ]
n_l6___8 [X₀-X₂ ]

MPRF for transition t₁₄₆: n_l1___1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF:

l5 [X₁+1 ]
l1 [X₁+X₂ ]
n_l1___1 [X₁+1 ]
l3 [X₁ ]
n_l7___5 [X₁+1 ]
n_l7___7 [X₁+X₄ ]
n_l6___6 [X₁+1 ]
n_l8___4 [X₁+1 ]
n_l10___2 [X₁+1 ]
n_l9___3 [X₁+1 ]
n_l9___9 [X₃+1 ]
n_l6___8 [X₁+1 ]

MPRF for transition t₁₃₀: n_l9___3(X₀, X₁, X₂, X₃, X₄) → n_l10___2(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₁+X₂ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₁ {O(n^2)}

MPRF:

l1 [X₀ ]
l5 [X₀-X₂ ]
n_l1___1 [X₀+1-X₂ ]
l3 [X₀-X₂ ]
n_l7___5 [X₀+1-X₂ ]
n_l7___7 [X₀+X₄-X₂ ]
n_l6___6 [X₀+1-X₂ ]
n_l8___4 [X₀+1-X₂ ]
n_l10___2 [X₀-X₂ ]
n_l9___3 [X₀+1-X₂ ]
n_l9___9 [X₀+1-X₂ ]
n_l6___8 [X₀+1-X₂ ]

MPRF for transition t₁₃₂: n_l9___9(X₀, X₁, X₂, X₃, X₄) → n_l6___8(X₀, X₁, X₂, X₃, 1) :|: 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁+X₂ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁+X₂ ∧ X₃ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₁+X₀ {O(n^2)}

MPRF:

l1 [2⋅X₀-X₂ ]
l5 [2⋅X₀-X₂ ]
n_l1___1 [2⋅X₀-X₂ ]
l3 [2⋅X₀-X₂ ]
n_l7___5 [2⋅X₀-X₂-1 ]
n_l7___7 [2⋅X₀-X₂-1 ]
n_l6___6 [2⋅X₀-X₂-1 ]
n_l8___4 [2⋅X₀-X₂-1 ]
n_l10___2 [2⋅X₀-X₂-1 ]
n_l9___3 [2⋅X₀+X₃-X₂-X₄-1 ]
n_l9___9 [2⋅X₀-X₂ ]
n_l6___8 [2⋅X₀-X₂-1 ]

MPRF for transition t₁₂₆: n_l6___8(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁+X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₁⋅X₁+6⋅X₀⋅X₀⋅X₁+3⋅X₀⋅X₀+3⋅X₀⋅X₁+X₀+X₄ {O(n^3)}

MPRF:

l5 [-X₄ ]
l1 [-X₄ ]
n_l9___9 [-X₄ ]
n_l1___1 [-X₃ ]
l3 [-X₄ ]
n_l7___5 [X₀+X₁-X₃ ]
n_l7___7 [X₀+X₁-X₃ ]
n_l6___6 [X₀+X₁-X₃ ]
n_l8___4 [X₀+X₁-X₃ ]
n_l10___2 [X₁+X₂-X₄ ]
n_l9___3 [X₀+X₁+1-X₃ ]
n_l6___8 [X₀+X₁+1-X₃ ]

MPRF for transition t₁₂₈: n_l7___7(X₀, X₁, X₂, X₃, X₄) → n_l6___6(X₀, X₁, X₂, X₃, X₄+1) :|: X₃ ≤ X₁+X₂ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₁⋅X₁+6⋅X₀⋅X₀⋅X₁+3⋅X₀⋅X₀+3⋅X₀⋅X₁+X₀+X₄ {O(n^3)}

MPRF:

l5 [-X₄ ]
l1 [-X₄ ]
n_l9___9 [-X₄ ]
n_l1___1 [-X₃ ]
l3 [-X₄ ]
n_l7___5 [X₀+X₁-X₃ ]
n_l7___7 [X₀+X₁+1-X₃ ]
n_l6___6 [X₀+X₁-X₃ ]
n_l8___4 [X₀+X₁-X₃ ]
n_l10___2 [-X₄ ]
n_l9___3 [X₀+X₁+1-X₃ ]
n_l6___8 [X₀+X₁+1-X₃ ]

MPRF for transition t₁₃₁: n_l9___3(X₀, X₁, X₂, X₃, X₄) → n_l6___8(X₀, X₁, X₂, X₃, 1) :|: 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁+9⋅X₀⋅X₀⋅X₁+X₀⋅X₀⋅X₀+2⋅X₀⋅X₁+4⋅X₀⋅X₀+X₀+X₄ {O(n^4)}

MPRF:

l5 [-X₄ ]
l1 [-X₄ ]
n_l9___9 [-X₄ ]
n_l1___1 [-X₃ ]
l3 [-X₄ ]
n_l7___5 [X₁+X₂-X₃ ]
n_l7___7 [X₁+X₂-X₃ ]
n_l6___6 [X₁+X₂-X₃ ]
n_l8___4 [X₁+X₂-X₃ ]
n_l10___2 [X₁-X₄ ]
n_l9___3 [X₁+X₂+1-X₃ ]
n_l6___8 [X₁+X₂-X₃ ]

MPRF for transition t₁₂₄: n_l6___6(X₀, X₁, X₂, X₃, X₄) → n_l7___5(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+15⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+16⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+X₀⋅X₀⋅X₀⋅X₀⋅X₀+37⋅X₀⋅X₀⋅X₀⋅X₁+6⋅X₀⋅X₀⋅X₁⋅X₁+7⋅X₀⋅X₀⋅X₀⋅X₀+15⋅X₀⋅X₀⋅X₀+23⋅X₀⋅X₀⋅X₁+X₀⋅X₀⋅X₄+X₀⋅X₁⋅X₄+10⋅X₀⋅X₀+3⋅X₀⋅X₄+4⋅X₀⋅X₁+3⋅X₀+X₄ {O(n^6)}

MPRF:

l5 [X₁ ]
l1 [X₁ ]
n_l9___9 [X₁ ]
n_l1___1 [X₁ ]
l3 [X₁ ]
n_l6___8 [2⋅X₁+X₂ ]
n_l7___5 [X₁+X₃-X₄ ]
n_l7___7 [2⋅X₁+X₂ ]
n_l6___6 [X₁+X₃+1-X₄ ]
n_l8___4 [X₁ ]
n_l9___3 [X₁ ]
n_l10___2 [X₁ ]

MPRF for transition t₁₂₅: n_l6___6(X₀, X₁, X₂, X₃, X₄) → n_l8___4(X₀, X₁, X₂, X₃, X₃+1) :|: X₁ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+14⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+17⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀⋅X₀+24⋅X₀⋅X₀⋅X₁⋅X₁+30⋅X₀⋅X₀⋅X₀⋅X₁+6⋅X₀⋅X₀⋅X₀⋅X₀+11⋅X₀⋅X₀⋅X₀+27⋅X₀⋅X₀⋅X₁+8⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₄+X₀⋅X₁⋅X₄+2⋅X₀⋅X₄+2⋅X₁⋅X₄+8⋅X₀⋅X₀+8⋅X₀⋅X₁+3⋅X₀+X₁+X₄ {O(n^6)}

MPRF:

l5 [X₀+X₁ ]
l1 [X₀+X₁ ]
n_l9___9 [X₀+X₁ ]
n_l1___1 [2⋅X₀+X₁-X₂ ]
l3 [X₀+X₁-1 ]
n_l6___8 [2⋅X₀+X₁-X₂ ]
n_l7___5 [2⋅X₀+X₃-2⋅X₂ ]
n_l7___7 [2⋅X₀+X₃-2⋅X₂ ]
n_l6___6 [2⋅X₀+X₃-2⋅X₂ ]
n_l8___4 [2⋅X₀+X₃-2⋅X₂-1 ]
n_l9___3 [2⋅X₀+X₃-2⋅X₂-2 ]
n_l10___2 [2⋅X₀+X₁-X₂-1 ]

MPRF for transition t₁₂₇: n_l7___5(X₀, X₁, X₂, X₃, X₄) → n_l6___6(X₀, X₁, X₂, X₃, X₄+1) :|: X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄ {O(n^5)}

MPRF:

l5 [0 ]
l1 [0 ]
n_l9___9 [X₁-X₃ ]
n_l1___1 [0 ]
l3 [0 ]
n_l6___8 [X₀+X₁ ]
n_l7___5 [X₃+1-X₄ ]
n_l7___7 [X₀+X₃-X₂ ]
n_l6___6 [X₃+1-X₄ ]
n_l8___4 [0 ]
n_l9___3 [0 ]
n_l10___2 [0 ]

MPRF for transition t₁₂₉: n_l8___4(X₀, X₁, X₂, X₃, X₄) → n_l9___3(X₀, X₁, X₂, X₃+1, X₃+1) :|: X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+X₀+X₁ {O(n^5)}

MPRF:

l5 [X₀+X₁ ]
l1 [X₀+X₁ ]
n_l9___9 [X₀+X₁+1-X₂ ]
n_l1___1 [X₀+X₁-1 ]
l3 [X₀+X₁-1 ]
n_l6___8 [X₀+X₁ ]
n_l7___5 [X₀+X₃-X₂ ]
n_l7___7 [X₀+X₃-X₂ ]
n_l6___6 [X₀+X₃-X₂ ]
n_l8___4 [X₀+X₃-X₂ ]
n_l9___3 [X₀+3⋅X₄-X₂-2⋅X₃-2 ]
n_l10___2 [X₀+X₁-1 ]

knowledge_propagation leads to new time bound 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+14⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₀+6⋅X₀⋅X₁⋅X₁+5⋅X₀⋅X₀+5⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+X₀+X₄ {O(n^5)} for transition t₁₂₄: n_l6___6(X₀, X₁, X₂, X₃, X₄) → n_l7___5(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+14⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₀+6⋅X₀⋅X₁⋅X₁+5⋅X₀⋅X₀+5⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+X₀+X₄ {O(n^5)} for transition t₁₂₅: n_l6___6(X₀, X₁, X₂, X₃, X₄) → n_l8___4(X₀, X₁, X₂, X₃, X₃+1) :|: X₁ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

CFR: Improvement to new bound with the following program:

new bound:

16⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+8⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+38⋅X₀⋅X₀⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₀+42⋅X₀⋅X₀⋅X₀⋅X₁+17⋅X₀⋅X₀⋅X₀+24⋅X₀⋅X₁⋅X₁+65⋅X₀⋅X₀⋅X₁+25⋅X₀⋅X₀+27⋅X₀⋅X₁+4⋅X₀⋅X₄+4⋅X₁⋅X₄+13⋅X₀+5⋅X₄+X₁+1 {O(n^5)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l11, l2, l3, l4, l5, n_l10___2, n_l1___1, n_l6___6, n_l6___8, n_l7___5, n_l7___7, n_l8___4, n_l9___3, n_l9___9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₅: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₂₃: l1(X₀, X₁, X₂, X₃, X₄) → n_l9___9(X₀, X₁, X₂, X₁, X₄) :|: 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₄: l2(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 0 ∧ X₁ ≤ 0
t₁₃: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁-1, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁
t₁: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₁, X₀, X₂, X₃, X₄)
t₂: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, 1, X₃, X₄) :|: 1 ≤ X₁
t₃: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 0
t₁₂₁: n_l10___2(X₀, X₁, X₂, X₃, X₄) → n_l1___1(X₀, X₁, X₂+1, X₃, X₄) :|: 1+X₁+X₂ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 2+X₂ ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₆: n_l1___1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₂: n_l1___1(X₀, X₁, X₂, X₃, X₄) → n_l9___9(X₀, X₁, X₂, X₁, X₄) :|: 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₄: n_l6___6(X₀, X₁, X₂, X₃, X₄) → n_l7___5(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₅: n_l6___6(X₀, X₁, X₂, X₃, X₄) → n_l8___4(X₀, X₁, X₂, X₃, X₃+1) :|: X₁ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₆: n_l6___8(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁+X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₇: n_l7___5(X₀, X₁, X₂, X₃, X₄) → n_l6___6(X₀, X₁, X₂, X₃, X₄+1) :|: X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₈: n_l7___7(X₀, X₁, X₂, X₃, X₄) → n_l6___6(X₀, X₁, X₂, X₃, X₄+1) :|: X₃ ≤ X₁+X₂ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₉: n_l8___4(X₀, X₁, X₂, X₃, X₄) → n_l9___3(X₀, X₁, X₂, X₃+1, X₃+1) :|: X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₀: n_l9___3(X₀, X₁, X₂, X₃, X₄) → n_l10___2(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₁+X₂ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₁: n_l9___3(X₀, X₁, X₂, X₃, X₄) → n_l6___8(X₀, X₁, X₂, X₃, 1) :|: 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₂: n_l9___9(X₀, X₁, X₂, X₃, X₄) → n_l6___8(X₀, X₁, X₂, X₃, 1) :|: 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁+X₂ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁+X₂ ∧ X₃ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:16⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+8⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+38⋅X₀⋅X₀⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₀+42⋅X₀⋅X₀⋅X₀⋅X₁+17⋅X₀⋅X₀⋅X₀+24⋅X₀⋅X₁⋅X₁+65⋅X₀⋅X₀⋅X₁+25⋅X₀⋅X₀+27⋅X₀⋅X₁+4⋅X₀⋅X₄+4⋅X₁⋅X₄+13⋅X₀+5⋅X₄+X₁+5 {O(n^5)}
t₀: 1 {O(1)}
t₅: X₀ {O(n)}
t₁₂₃: X₀ {O(n)}
t₁₄: 1 {O(1)}
t₁₃: X₀ {O(n)}
t₁: 1 {O(1)}
t₂: X₀ {O(n)}
t₃: 1 {O(1)}
t₁₂₁: X₀⋅X₀+X₀⋅X₁+X₀ {O(n^2)}
t₁₂₂: X₀⋅X₁ {O(n^2)}
t₁₄₆: X₀+1 {O(n)}
t₁₂₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+14⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₀+6⋅X₀⋅X₁⋅X₁+5⋅X₀⋅X₀+5⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+X₀+X₄ {O(n^5)}
t₁₂₅: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+14⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₀+6⋅X₀⋅X₁⋅X₁+5⋅X₀⋅X₀+5⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+X₀+X₄ {O(n^5)}
t₁₂₆: 2⋅X₀⋅X₁⋅X₁+6⋅X₀⋅X₀⋅X₁+3⋅X₀⋅X₀+3⋅X₀⋅X₁+X₀+X₄ {O(n^3)}
t₁₂₇: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄ {O(n^5)}
t₁₂₈: 2⋅X₀⋅X₁⋅X₁+6⋅X₀⋅X₀⋅X₁+3⋅X₀⋅X₀+3⋅X₀⋅X₁+X₀+X₄ {O(n^3)}
t₁₂₉: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+X₀+X₁ {O(n^5)}
t₁₃₀: X₀⋅X₁ {O(n^2)}
t₁₃₁: 2⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁+9⋅X₀⋅X₀⋅X₁+X₀⋅X₀⋅X₀+2⋅X₀⋅X₁+4⋅X₀⋅X₀+X₀+X₄ {O(n^4)}
t₁₃₂: 2⋅X₀⋅X₁+X₀ {O(n^2)}

Costbounds

Overall costbound: 16⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+8⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+38⋅X₀⋅X₀⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₀+42⋅X₀⋅X₀⋅X₀⋅X₁+17⋅X₀⋅X₀⋅X₀+24⋅X₀⋅X₁⋅X₁+65⋅X₀⋅X₀⋅X₁+25⋅X₀⋅X₀+27⋅X₀⋅X₁+4⋅X₀⋅X₄+4⋅X₁⋅X₄+13⋅X₀+5⋅X₄+X₁+5 {O(n^5)}
t₀: 1 {O(1)}
t₅: X₀ {O(n)}
t₁₂₃: X₀ {O(n)}
t₁₄: 1 {O(1)}
t₁₃: X₀ {O(n)}
t₁: 1 {O(1)}
t₂: X₀ {O(n)}
t₃: 1 {O(1)}
t₁₂₁: X₀⋅X₀+X₀⋅X₁+X₀ {O(n^2)}
t₁₂₂: X₀⋅X₁ {O(n^2)}
t₁₄₆: X₀+1 {O(n)}
t₁₂₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+14⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₀+6⋅X₀⋅X₁⋅X₁+5⋅X₀⋅X₀+5⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+X₀+X₄ {O(n^5)}
t₁₂₅: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+14⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₀+6⋅X₀⋅X₁⋅X₁+5⋅X₀⋅X₀+5⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+X₀+X₄ {O(n^5)}
t₁₂₆: 2⋅X₀⋅X₁⋅X₁+6⋅X₀⋅X₀⋅X₁+3⋅X₀⋅X₀+3⋅X₀⋅X₁+X₀+X₄ {O(n^3)}
t₁₂₇: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄ {O(n^5)}
t₁₂₈: 2⋅X₀⋅X₁⋅X₁+6⋅X₀⋅X₀⋅X₁+3⋅X₀⋅X₀+3⋅X₀⋅X₁+X₀+X₄ {O(n^3)}
t₁₂₉: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+X₀+X₁ {O(n^5)}
t₁₃₀: X₀⋅X₁ {O(n^2)}
t₁₃₁: 2⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁+9⋅X₀⋅X₀⋅X₁+X₀⋅X₀⋅X₀+2⋅X₀⋅X₁+4⋅X₀⋅X₀+X₀+X₄ {O(n^4)}
t₁₃₂: 2⋅X₀⋅X₁+X₀ {O(n^2)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₅, X₀: X₁ {O(n)}
t₅, X₁: X₀ {O(n)}
t₅, X₂: 1 {O(1)}
t₅, X₃: X₀⋅X₁⋅X₁+3⋅X₀⋅X₁+4⋅X₀+X₁+X₃+1 {O(n^3)}
t₅, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁+X₄+1 {O(n^5)}
t₁₂₃, X₀: X₁ {O(n)}
t₁₂₃, X₁: X₀ {O(n)}
t₁₂₃, X₂: 1 {O(1)}
t₁₂₃, X₃: X₀ {O(n)}
t₁₂₃, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁+X₄+1 {O(n^5)}
t₁₄, X₀: 2⋅X₁ {O(n)}
t₁₄, X₁: 2⋅X₀ {O(n)}
t₁₄, X₂: X₀⋅X₀+X₀⋅X₁+X₀+X₂+2 {O(n^2)}
t₁₄, X₃: X₀⋅X₁⋅X₁+3⋅X₀⋅X₁+2⋅X₃+4⋅X₀+X₁+1 {O(n^3)}
t₁₄, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+2⋅X₄+3⋅X₀+X₁+1 {O(n^5)}
t₁₃, X₀: X₁ {O(n)}
t₁₃, X₁: X₀ {O(n)}
t₁₃, X₂: X₀⋅X₀+X₀⋅X₁+X₀+2 {O(n^2)}
t₁₃, X₃: X₀⋅X₁⋅X₁+3⋅X₀⋅X₁+4⋅X₀+X₁+X₃+1 {O(n^3)}
t₁₃, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁+X₄+1 {O(n^5)}
t₁, X₀: X₁ {O(n)}
t₁, X₁: X₀ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₂, X₀: X₁ {O(n)}
t₂, X₁: X₀ {O(n)}
t₂, X₂: 1 {O(1)}
t₂, X₃: X₀⋅X₁⋅X₁+3⋅X₀⋅X₁+4⋅X₀+X₁+X₃+1 {O(n^3)}
t₂, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁+X₄+1 {O(n^5)}
t₃, X₀: 2⋅X₁ {O(n)}
t₃, X₁: 2⋅X₀ {O(n)}
t₃, X₂: X₀⋅X₀+X₀⋅X₁+X₀+X₂+2 {O(n^2)}
t₃, X₃: X₀⋅X₁⋅X₁+3⋅X₀⋅X₁+2⋅X₃+4⋅X₀+X₁+1 {O(n^3)}
t₃, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+2⋅X₄+3⋅X₀+X₁+1 {O(n^5)}
t₁₂₁, X₀: X₁ {O(n)}
t₁₂₁, X₁: X₀ {O(n)}
t₁₂₁, X₂: X₀⋅X₀+X₀⋅X₁+X₀+1 {O(n^2)}
t₁₂₁, X₃: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁ {O(n^5)}
t₁₂₁, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁+1 {O(n^5)}
t₁₂₂, X₀: X₁ {O(n)}
t₁₂₂, X₁: X₀ {O(n)}
t₁₂₂, X₂: X₀⋅X₀+X₀⋅X₁+X₀+1 {O(n^2)}
t₁₂₂, X₃: X₀ {O(n)}
t₁₂₂, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁+1 {O(n^5)}
t₁₄₆, X₀: X₁ {O(n)}
t₁₄₆, X₁: X₀ {O(n)}
t₁₄₆, X₂: X₀⋅X₀+X₀⋅X₁+X₀+1 {O(n^2)}
t₁₄₆, X₃: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁ {O(n^5)}
t₁₄₆, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁+1 {O(n^5)}
t₁₂₄, X₀: X₁ {O(n)}
t₁₂₄, X₁: X₀ {O(n)}
t₁₂₄, X₂: X₀⋅X₀+X₀⋅X₁+X₀+1 {O(n^2)}
t₁₂₄, X₃: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁ {O(n^5)}
t₁₂₄, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+2 {O(n^5)}
t₁₂₅, X₀: X₁ {O(n)}
t₁₂₅, X₁: X₀ {O(n)}
t₁₂₅, X₂: X₀⋅X₀+X₀⋅X₁+X₀+1 {O(n^2)}
t₁₂₅, X₃: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁ {O(n^5)}
t₁₂₅, X₄: 4⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+18⋅X₀⋅X₀⋅X₁⋅X₁+2⋅X₀⋅X₀⋅X₀⋅X₀+20⋅X₀⋅X₀⋅X₀⋅X₁+16⋅X₀⋅X₀⋅X₁+8⋅X₀⋅X₀⋅X₀+8⋅X₀⋅X₁⋅X₁+2⋅X₀⋅X₄+2⋅X₁⋅X₄+4⋅X₀⋅X₀+4⋅X₀⋅X₁+2⋅X₁+6⋅X₀+2 {O(n^5)}
t₁₂₆, X₀: X₁ {O(n)}
t₁₂₆, X₁: X₀ {O(n)}
t₁₂₆, X₂: X₀⋅X₀+X₀⋅X₁+X₀+1 {O(n^2)}
t₁₂₆, X₃: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁ {O(n^5)}
t₁₂₆, X₄: 1 {O(1)}
t₁₂₇, X₀: X₁ {O(n)}
t₁₂₇, X₁: X₀ {O(n)}
t₁₂₇, X₂: X₀⋅X₀+X₀⋅X₁+X₀+1 {O(n^2)}
t₁₂₇, X₃: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁ {O(n^5)}
t₁₂₇, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+2 {O(n^5)}
t₁₂₈, X₀: X₁ {O(n)}
t₁₂₈, X₁: X₀ {O(n)}
t₁₂₈, X₂: X₀⋅X₀+X₀⋅X₁+X₀+1 {O(n^2)}
t₁₂₈, X₃: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁ {O(n^5)}
t₁₂₈, X₄: 2 {O(1)}
t₁₂₉, X₀: X₁ {O(n)}
t₁₂₉, X₁: X₀ {O(n)}
t₁₂₉, X₂: X₀⋅X₀+X₀⋅X₁+X₀+1 {O(n^2)}
t₁₂₉, X₃: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁ {O(n^5)}
t₁₂₉, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁+1 {O(n^5)}
t₁₃₀, X₀: X₁ {O(n)}
t₁₃₀, X₁: X₀ {O(n)}
t₁₃₀, X₂: X₀⋅X₀+X₀⋅X₁+X₀+1 {O(n^2)}
t₁₃₀, X₃: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁ {O(n^5)}
t₁₃₀, X₄: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁+1 {O(n^5)}
t₁₃₁, X₀: X₁ {O(n)}
t₁₃₁, X₁: X₀ {O(n)}
t₁₃₁, X₂: X₀⋅X₀+X₀⋅X₁+X₀+1 {O(n^2)}
t₁₃₁, X₃: 2⋅X₀⋅X₀⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀⋅X₁⋅X₁⋅X₁+4⋅X₀⋅X₀⋅X₀⋅X₁⋅X₁+10⋅X₀⋅X₀⋅X₀⋅X₁+9⋅X₀⋅X₀⋅X₁⋅X₁+X₀⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₀⋅X₀+4⋅X₀⋅X₁⋅X₁+8⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₀+2⋅X₀⋅X₁+X₀⋅X₄+X₁⋅X₄+3⋅X₀+X₁ {O(n^5)}
t₁₃₁, X₄: 1 {O(1)}
t₁₃₂, X₀: X₁ {O(n)}
t₁₃₂, X₁: X₀ {O(n)}
t₁₃₂, X₂: X₀⋅X₀+X₀⋅X₁+X₀+1 {O(n^2)}
t₁₃₂, X₃: 2⋅X₀ {O(n)}
t₁₃₂, X₄: 1 {O(1)}