Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₅-1, X₃, X₄, X₅, X₆, X₇)
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₃)
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇) :|: 0 < X₅
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ 0
t₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₀, X₆, X₄)
t₁₅: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₆
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₅
t₂₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < 0
t₂₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇
t₂₉: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ 0 ≤ X₇
t₁₇: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₅, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₂₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₇, X₄, X₅, X₆, X₇) :|: X₆ < 0
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₇, X₄, X₅, X₆, X₇) :|: 0 < X₆
t₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₇-X₅, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
Preprocessing
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l11
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l6
Found invariant 2 ≤ X₄ for location l15
Found invariant X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l19
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l12
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l23
Found invariant 2 ≤ X₄ for location l17
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l7
Found invariant X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l20
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l21
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l13
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l22
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l8
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l10
Found invariant 2 ≤ X₄ for location l16
Found invariant X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l18
Found invariant 2 ≤ X₄ for location l4
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l9
Found invariant 2 ≤ X₄ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₅-1, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₃) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇) :|: 0 < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ 0 ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₀, X₆, X₄) :|: X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁₅: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₂₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < 0 ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₂₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₂₉: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁₇: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₅, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₃₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₂₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₇, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₇, X₄, X₅, X₆, X₇) :|: 0 < X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₇-X₅, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
MPRF for transition t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₅-1, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l11 [X₅-1 ]
l12 [X₂ ]
l13 [X₅ ]
l23 [X₅ ]
l21 [X₅ ]
l7 [X₅ ]
l8 [X₅ ]
l6 [X₅ ]
l9 [X₅ ]
l10 [X₅ ]
MPRF for transition t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l11 [X₂+1 ]
l12 [X₂ ]
l13 [X₅ ]
l23 [X₅ ]
l21 [X₅ ]
l7 [X₅ ]
l8 [X₅ ]
l6 [X₅ ]
l9 [X₅ ]
l10 [X₅ ]
MPRF for transition t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₃) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l11 [X₂+X₄-X₀ ]
l12 [X₂+1 ]
l13 [X₅ ]
l23 [X₅ ]
l21 [X₅ ]
l7 [X₅ ]
l8 [X₅ ]
l6 [X₅ ]
l9 [X₅ ]
l10 [X₄+X₅-X₀-1 ]
MPRF for transition t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇) :|: 0 < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₄ {O(n)}
MPRF:
l11 [X₄+X₅-1 ]
l12 [X₂+X₄ ]
l13 [X₄+X₅ ]
l23 [X₀+X₅ ]
l21 [X₄+X₅-1 ]
l7 [X₀+X₅ ]
l8 [X₀+X₅ ]
l6 [X₀+X₅ ]
l9 [X₄+X₅-1 ]
l10 [X₄+X₅-1 ]
MPRF for transition t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l11 [X₂ ]
l12 [X₂ ]
l13 [X₅ ]
l23 [X₀+X₅+1-X₄ ]
l21 [X₅ ]
l7 [X₅-1 ]
l8 [X₅-1 ]
l6 [X₅-1 ]
l9 [X₅-1 ]
l10 [X₅-1 ]
MPRF for transition t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF:
l11 [X₅ ]
l12 [X₅ ]
l13 [X₅+1 ]
l23 [X₄+X₅-X₀ ]
l21 [X₅+1 ]
l7 [X₄+X₅-X₀ ]
l8 [X₄+X₅-X₀ ]
l6 [X₅+1 ]
l9 [X₅ ]
l10 [X₅ ]
MPRF for transition t₂₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₇, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l11 [X₂ ]
l12 [X₂ ]
l13 [X₅ ]
l23 [X₅ ]
l21 [X₅ ]
l7 [X₅ ]
l8 [X₅ ]
l6 [X₅ ]
l9 [X₅-1 ]
l10 [X₅-1 ]
MPRF for transition t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₇, X₄, X₅, X₆, X₇) :|: 0 < X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₄ {O(n)}
MPRF:
l11 [X₀+X₂ ]
l12 [X₀+X₂ ]
l13 [X₀+X₅ ]
l23 [X₄+X₅-1 ]
l21 [X₀+X₅ ]
l7 [X₄+X₅-1 ]
l8 [X₄+X₅-1 ]
l6 [X₀+X₅ ]
l9 [X₄+X₅-2 ]
l10 [X₀+X₅-1 ]
MPRF for transition t₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₇-X₅, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l11 [X₅-1 ]
l12 [X₅-1 ]
l13 [X₅ ]
l23 [X₅ ]
l21 [X₅ ]
l7 [X₅ ]
l8 [X₅-1 ]
l6 [X₅-1 ]
l9 [X₅-1 ]
l10 [X₅-1 ]
MPRF for transition t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₄ {O(n)}
MPRF:
l11 [X₄+X₅-1 ]
l12 [X₄+X₅-1 ]
l13 [X₄+X₅ ]
l23 [X₄+X₅ ]
l21 [X₄+X₅ ]
l7 [X₄+X₅ ]
l8 [X₄+X₅ ]
l6 [X₄+X₅-1 ]
l9 [X₄+X₅-1 ]
l10 [X₄+X₅-1 ]
MPRF for transition t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l11 [X₂ ]
l12 [X₂ ]
l13 [X₅ ]
l23 [X₅ ]
l21 [X₅ ]
l7 [X₅ ]
l8 [X₅ ]
l6 [X₅ ]
l9 [X₅ ]
l10 [X₅-1 ]
MPRF for transition t₁₅: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:
new bound:
5⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
MPRF:
l10 [3⋅X₄+2⋅X₅ ]
l11 [3⋅X₄+2⋅X₅ ]
l12 [2⋅X₂+3⋅X₄ ]
l13 [3⋅X₄+2⋅X₅ ]
l23 [2⋅X₄+X₆ ]
l21 [2⋅X₄+X₅+X₆ ]
l9 [2⋅X₀ ]
l7 [X₀+X₄+X₅+X₆+1 ]
l8 [X₀+X₄+X₅+X₆+1 ]
l6 [2⋅X₄+X₅+X₆ ]
MPRF for transition t₁₇: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₅, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF:
l10 [X₀+X₅ ]
l11 [X₀+X₅ ]
l12 [X₀+X₅ ]
l13 [X₀+X₅ ]
l23 [X₆ ]
l21 [X₆ ]
l9 [X₁-X₇ ]
l7 [X₆ ]
l8 [X₁-X₇ ]
l6 [X₁-X₇ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₁₆: l21→l7
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l11
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l6
Found invariant 2 ≤ X₄ for location l15
Found invariant X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l19
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location n_l21___2
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location n_l23___3
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l12
Found invariant 2 ≤ X₄ for location l17
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l7
Found invariant X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l20
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l21
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l13
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l22
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l8
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l10
Found invariant 2 ≤ X₄ for location l16
Found invariant X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location l18
Found invariant 2 ≤ X₄ for location l4
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l9
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ for location n_l23___1
Found invariant 2 ≤ X₄ for location l14
knowledge_propagation leads to new time bound 2⋅X₄ {O(n)} for transition t₁₈₅: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l23___3(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆, X₇) :|: X₆ ≤ 1+X₀ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₇ ≤ 1+X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₄ {O(n)} for transition t₁₈₇: n_l23___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l21___2(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆-X₅, X₇) :|: X₆ ≤ 1+X₀ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ X₅ ≤ X₆ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀
MPRF for transition t₁₈₄: n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l23___1(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆, X₇) :|: X₆ ≤ 1+X₀ ∧ X₅ ≤ X₀ ∧ X₇ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ 0 ≤ X₆ ∧ X₅+X₆ ≤ 1+X₀ ∧ X₅ ≤ X₀ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₄⋅X₄+2⋅X₄+1 {O(n^2)}
MPRF:
l11 [X₀-X₂-1 ]
l12 [X₀-X₂-1 ]
l13 [X₀-X₅-1 ]
l21 [X₀-X₆ ]
n_l23___3 [X₀-X₆ ]
l8 [X₀+X₆ ]
l6 [X₀-X₅ ]
l9 [X₄-X₅-1 ]
l10 [X₀-X₅ ]
l7 [X₀+X₆ ]
n_l23___1 [X₀+X₆-1 ]
n_l21___2 [X₀+X₆ ]
MPRF for transition t₁₉₁: n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₄ {O(n)}
MPRF:
l11 [X₄+X₅-X₀-1 ]
l12 [X₄+X₅-X₀-1 ]
l13 [X₄+X₅-X₀ ]
l21 [X₅+X₆-X₀ ]
l8 [X₅ ]
l6 [X₅ ]
l9 [X₅ ]
l10 [X₄+X₅-X₀-1 ]
l7 [X₅ ]
n_l23___1 [X₅+1 ]
n_l23___3 [X₅+X₆-X₀ ]
n_l21___2 [X₅+1 ]
MPRF for transition t₁₈₆: n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l21___2(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆-X₅, X₇) :|: X₇ ≤ 1+X₀ ∧ X₅+X₆ ≤ 1+X₀ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₇ ≤ 1+X₀ ∧ X₅ ≤ X₆ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₀ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF:
l11 [0 ]
l12 [0 ]
l13 [0 ]
l21 [0 ]
n_l23___3 [0 ]
l8 [0 ]
l6 [0 ]
l9 [0 ]
l10 [0 ]
l7 [0 ]
n_l23___1 [X₆ ]
n_l21___2 [X₅+X₆-1 ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:7⋅X₄⋅X₄+21⋅X₄+19 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₂₄: X₄ {O(n)}
t₂₅: X₄ {O(n)}
t₂₆: X₄ {O(n)}
t₁₃: 2⋅X₄ {O(n)}
t₁₄: 1 {O(1)}
t₇: 1 {O(1)}
t₆: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₁₅: 5⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₆: X₄ {O(n)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₁₇: 2⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂: 1 {O(1)}
t₅: 1 {O(1)}
t₃₀: 1 {O(1)}
t₂₀: X₄+1 {O(n)}
t₂₁: X₄ {O(n)}
t₂₂: 2⋅X₄ {O(n)}
t₁₈: X₄ {O(n)}
t₁₉: 2⋅X₄ {O(n)}
t₂₃: X₄ {O(n)}
Costbounds
Overall costbound: 7⋅X₄⋅X₄+21⋅X₄+19 {O(n^2)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₂₄: X₄ {O(n)}
t₂₅: X₄ {O(n)}
t₂₆: X₄ {O(n)}
t₁₃: 2⋅X₄ {O(n)}
t₁₄: 1 {O(1)}
t₇: 1 {O(1)}
t₆: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₁₅: 5⋅X₄⋅X₄+5⋅X₄ {O(n^2)}
t₁₆: X₄ {O(n)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₁₇: 2⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂: 1 {O(1)}
t₅: 1 {O(1)}
t₃₀: 1 {O(1)}
t₂₀: X₄+1 {O(n)}
t₂₁: X₄ {O(n)}
t₂₂: 2⋅X₄ {O(n)}
t₁₈: X₄ {O(n)}
t₁₉: 2⋅X₄ {O(n)}
t₂₃: X₄ {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₂₄, X₀: X₄ {O(n)}
t₂₄, X₁: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₄, X₂: X₄ {O(n)}
t₂₄, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: X₄ {O(n)}
t₂₄, X₆: 4⋅X₄ {O(n)}
t₂₄, X₇: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₅, X₀: X₄ {O(n)}
t₂₅, X₁: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₅, X₂: X₄ {O(n)}
t₂₅, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₅, X₄: X₄ {O(n)}
t₂₅, X₅: X₄ {O(n)}
t₂₅, X₆: 4⋅X₄ {O(n)}
t₂₅, X₇: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₆, X₀: X₄ {O(n)}
t₂₆, X₁: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₆, X₂: X₄ {O(n)}
t₂₆, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₆, X₄: X₄ {O(n)}
t₂₆, X₅: X₄ {O(n)}
t₂₆, X₆: 4⋅X₄ {O(n)}
t₂₆, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₃, X₀: X₄ {O(n)}
t₁₃, X₁: 3⋅X₄⋅X₄+6⋅X₄+X₁ {O(n^2)}
t₁₃, X₂: X₂+X₄ {O(n)}
t₁₃, X₃: X₄⋅X₄+2⋅X₄+X₃ {O(n^2)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: X₄ {O(n)}
t₁₃, X₆: 2⋅X₄ {O(n)}
t₁₃, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₄, X₀: X₄ {O(n)}
t₁₄, X₁: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₁₄, X₂: X₄ {O(n)}
t₁₄, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: 0 {O(1)}
t₁₄, X₆: 4⋅X₄ {O(n)}
t₁₄, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₉, X₀: X₄ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₁₀, X₀: X₄ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₁, X₀: X₄ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁₂, X₀: X₄ {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₄ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₄ {O(n)}
t₁₅, X₀: X₄ {O(n)}
t₁₅, X₁: 3⋅X₄⋅X₄+6⋅X₄+X₁ {O(n^2)}
t₁₅, X₂: X₂+X₄ {O(n)}
t₁₅, X₃: X₄⋅X₄+2⋅X₄+X₃ {O(n^2)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: X₄ {O(n)}
t₁₅, X₆: 2⋅X₄ {O(n)}
t₁₅, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₆, X₀: X₄ {O(n)}
t₁₆, X₁: 3⋅X₄⋅X₄+6⋅X₄+X₁ {O(n^2)}
t₁₆, X₂: X₂+X₄ {O(n)}
t₁₆, X₃: X₄⋅X₄+2⋅X₄+X₃ {O(n^2)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: X₄ {O(n)}
t₁₆, X₆: 2⋅X₄ {O(n)}
t₁₆, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₇, X₀: X₄ {O(n)}
t₂₇, X₁: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₇, X₂: X₄ {O(n)}
t₂₇, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₅: 0 {O(1)}
t₂₇, X₆: 4⋅X₄ {O(n)}
t₂₇, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₈, X₀: X₄ {O(n)}
t₂₈, X₁: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₈, X₂: X₄ {O(n)}
t₂₈, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₈, X₄: X₄ {O(n)}
t₂₈, X₅: 0 {O(1)}
t₂₈, X₆: 4⋅X₄ {O(n)}
t₂₈, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₉, X₀: X₄ {O(n)}
t₂₉, X₁: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₉, X₂: X₄ {O(n)}
t₂₉, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₅: 0 {O(1)}
t₂₉, X₆: 4⋅X₄ {O(n)}
t₂₉, X₇: 0 {O(1)}
t₁₇, X₀: X₄ {O(n)}
t₁₇, X₁: 3⋅X₄⋅X₄+6⋅X₄+X₁ {O(n^2)}
t₁₇, X₂: X₂+X₄ {O(n)}
t₁₇, X₃: X₄⋅X₄+2⋅X₄+X₃ {O(n^2)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₄ {O(n)}
t₁₇, X₆: 2⋅X₄ {O(n)}
t₁₇, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₃₀, X₀: 3⋅X₄+X₀ {O(n)}
t₃₀, X₁: 9⋅X₄⋅X₄+18⋅X₄+X₁ {O(n^2)}
t₃₀, X₂: 3⋅X₄+X₂ {O(n)}
t₃₀, X₃: 3⋅X₄⋅X₄+6⋅X₄+X₃ {O(n^2)}
t₃₀, X₄: 4⋅X₄ {O(n)}
t₃₀, X₅: X₅ {O(n)}
t₃₀, X₆: 12⋅X₄+X₆ {O(n)}
t₃₀, X₇: 2⋅X₄⋅X₄+4⋅X₄+X₇ {O(n^2)}
t₂₀, X₀: X₄ {O(n)}
t₂₀, X₁: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₀, X₂: X₂+X₄ {O(n)}
t₂₀, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: X₄ {O(n)}
t₂₀, X₆: 0 {O(1)}
t₂₀, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₁, X₀: X₄ {O(n)}
t₂₁, X₁: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₁, X₂: X₂+X₄ {O(n)}
t₂₁, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: X₄ {O(n)}
t₂₁, X₆: 2⋅X₄ {O(n)}
t₂₁, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₂, X₀: X₄ {O(n)}
t₂₂, X₁: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₂, X₂: X₂+X₄ {O(n)}
t₂₂, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: X₄ {O(n)}
t₂₂, X₆: 2⋅X₄ {O(n)}
t₂₂, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₈, X₀: X₄ {O(n)}
t₁₈, X₁: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₈, X₂: X₂+X₄ {O(n)}
t₁₈, X₃: X₄⋅X₄+2⋅X₄+X₃ {O(n^2)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: X₄ {O(n)}
t₁₈, X₆: 2⋅X₄ {O(n)}
t₁₈, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₉, X₀: X₄ {O(n)}
t₁₉, X₁: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₉, X₂: X₂+X₄ {O(n)}
t₁₉, X₃: X₄⋅X₄+2⋅X₄+X₃ {O(n^2)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: X₄ {O(n)}
t₁₉, X₆: 2⋅X₄ {O(n)}
t₁₉, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₃, X₀: X₄ {O(n)}
t₂₃, X₁: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₃, X₂: 3⋅X₂+3⋅X₄ {O(n)}
t₂₃, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: X₄ {O(n)}
t₂₃, X₆: 4⋅X₄ {O(n)}
t₂₃, X₇: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}