Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₁₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ 1
t₁₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 1
t₁₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₂
t₂₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < (X₄)² ∧ 0 < X₃
t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: (X₄)² ≤ X₃
t₂₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ ≤ 0
t₂₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, 5⋅X₃+(X₁₃)², 2⋅X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₅, X₁₆, X₆, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₀ < 1
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₈, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.2, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
Preprocessing
Eliminate variables {X₁₄,X₁₅} that do not contribute to the problem
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11
Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l6
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l15
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12
Found invariant X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l7
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l13
Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l8
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l16
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₅₅: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₅₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₅₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁
t₅₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
t₅₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₁ ≤ 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₃ < (X₄)² ∧ 0 < X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: (X₄)² ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₃ ≤ 0 ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, 5⋅X₃+(X₁₃)², 2⋅X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₆₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₇₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l5(X₅, X₁₆, X₆, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l5(X₈, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.2, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
MPRF for transition t₅₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁₆+1 {O(n)}
MPRF:
l11 [X₁+1-X₂ ]
l10 [X₁+2-X₂ ]
l12 [X₁+1 ]
l7 [X₁+1 ]
l8 [X₁+1 ]
l6 [X₁+1 ]
l9 [X₁₀+1 ]
l5 [X₁+1 ]
MPRF for transition t₅₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁₆+1 {O(n)}
MPRF:
l11 [X₁+1 ]
l10 [X₁+1 ]
l12 [X₁+1 ]
l7 [X₁+1 ]
l8 [X₁+1 ]
l6 [X₁+1 ]
l9 [X₁ ]
l5 [X₁+1 ]
MPRF for transition t₅₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:
new bound:
X₁₆+1 {O(n)}
MPRF:
l11 [X₁ ]
l10 [X₁ ]
l12 [X₁+1 ]
l7 [X₁+1 ]
l8 [X₁+1 ]
l6 [X₁+1 ]
l9 [X₁₀+1 ]
l5 [X₁+1 ]
MPRF for transition t₇₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁₆ {O(n)}
MPRF:
l11 [X₁ ]
l10 [X₁ ]
l12 [X₁ ]
l7 [X₁ ]
l8 [X₁ ]
l6 [X₁ ]
l9 [X₁ ]
l5 [X₁ ]
knowledge_propagation leads to new time bound X₁₆+1 {O(n)} for transition t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
MPRF for transition t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:
new bound:
X₁₆+1 {O(n)}
MPRF:
l11 [0 ]
l9 [0 ]
l10 [0 ]
l12 [0 ]
l5 [1 ]
l7 [1 ]
l8 [1 ]
l6 [1 ]
MPRF for transition t₇₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:
new bound:
X₁₆+1 {O(n)}
MPRF:
l11 [0 ]
l9 [0 ]
l10 [0 ]
l12 [0 ]
l5 [1 ]
l7 [1 ]
l8 [1 ]
l6 [1 ]
MPRF for transition t₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:
new bound:
X₁₆+1 {O(n)}
MPRF:
l11 [0 ]
l9 [1-X₂ ]
l10 [0 ]
l12 [0 ]
l5 [1 ]
l7 [1 ]
l8 [1 ]
l6 [1 ]
Analysing control-flow refined program
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l15
Found invariant X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12
Found invariant X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l13
Found invariant X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l16
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l14
knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₅₉₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₉₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₀₀: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₆₀₁: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₆₀₃: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l6___1(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg16_P) :|: X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₀₅: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l6___8(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg16_P) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₅₉₇: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₉₉: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
MPRF for transition t₅₉₆: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 4 ∧ X₁ ≤ X₁₆ ∧ 1+X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:
new bound:
10⋅X₁₆+2 {O(n)}
MPRF:
l11 [X₁+X₁₀+1-2⋅X₁₆ ]
l10 [2⋅X₁-2⋅X₁₆ ]
l9 [2⋅X₁₀+2-2⋅X₁₆ ]
l5 [2⋅X₁+2-2⋅X₁₆ ]
l12 [2⋅X₁-2⋅X₁₆ ]
n_l6___1 [3-X₀ ]
n_l5___7 [4-X₈ ]
n_l7___10 [2 ]
n_l7___3 [2⋅X₁+3-X₀-2⋅X₁₆ ]
n_l8___2 [2⋅X₁+3-X₀-2⋅X₁₆ ]
n_l7___6 [3-X₈ ]
n_l8___5 [3-X₀ ]
n_l6___4 [3-X₀ ]
n_l8___9 [2 ]
n_l6___8 [X₅+2-X₀ ]
MPRF for transition t₆₁₄: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:
new bound:
5⋅X₁₆+1 {O(n)}
MPRF:
l11 [2⋅X₁-X₂-2⋅X₁₆ ]
l10 [2⋅X₁-2⋅X₁₆-1 ]
l9 [2⋅X₁₀+1-2⋅X₁₆ ]
l5 [2⋅X₁+1-2⋅X₁₆ ]
l12 [2⋅X₁-2⋅X₁₆-1 ]
n_l6___1 [1 ]
n_l5___7 [1 ]
n_l7___10 [2⋅X₁+1-2⋅X₁₆ ]
n_l7___3 [2⋅X₁+1-2⋅X₁₆ ]
n_l8___2 [2⋅X₁+4-X₀-3⋅X₁₆ ]
n_l7___6 [1 ]
n_l8___5 [1 ]
n_l6___4 [1 ]
n_l8___9 [X₈-X₅ ]
n_l6___8 [1 ]
MPRF for transition t₆₁₅: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:
new bound:
13⋅X₁₆+5 {O(n)}
MPRF:
l11 [4⋅X₁+1-4⋅X₁₆ ]
l10 [4⋅X₁+X₂-4⋅X₁₆ ]
l9 [4⋅X₁+1-4⋅X₁₆ ]
l5 [4⋅X₁+5-4⋅X₁₆ ]
l12 [4⋅X₁+1-4⋅X₁₆ ]
n_l6___1 [5 ]
n_l5___7 [X₀+5-X₈ ]
n_l7___10 [5 ]
n_l7___3 [5⋅X₁₀+6-5⋅X₁₆ ]
n_l8___2 [5⋅X₁₀+6-5⋅X₁₆ ]
n_l7___6 [5 ]
n_l8___5 [5 ]
n_l6___4 [5 ]
n_l8___9 [5 ]
n_l6___8 [X₈+4-X₅ ]
MPRF for transition t₆₁₆: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:
new bound:
6⋅X₁₆+4 {O(n)}
MPRF:
l11 [X₁+3-X₁₆ ]
l10 [X₁+3⋅X₂-X₁₆ ]
l9 [4⋅X₂+X₁₀-X₁₆ ]
l5 [X₁+4-X₁₆ ]
l12 [X₁+3-X₁₆ ]
n_l6___1 [4 ]
n_l5___7 [X₀+4-X₈ ]
n_l7___10 [X₁+4-X₁₆ ]
n_l7___3 [X₁+4-X₁₆ ]
n_l8___2 [X₁+4-X₁₆ ]
n_l7___6 [4 ]
n_l8___5 [4 ]
n_l6___4 [4 ]
n_l8___9 [4 ]
n_l6___8 [4 ]
MPRF for transition t₅₉₈: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₈ ≤ 4 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ X₁ ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:
new bound:
10⋅X₁₆+2 {O(n)}
MPRF:
l11 [2⋅X₁-2⋅X₁₆ ]
l10 [2⋅X₁-2⋅X₁₆ ]
l9 [2⋅X₁₀+2-2⋅X₁₆ ]
l5 [2⋅X₁+2-2⋅X₁₆ ]
l12 [2⋅X₁-2⋅X₁₆ ]
n_l6___1 [3-X₀ ]
n_l5___7 [4-X₀ ]
n_l7___10 [2 ]
n_l7___3 [2⋅X₁₀+2-2⋅X₁₆ ]
n_l8___2 [X₁+2⋅X₈+2-3⋅X₀-2⋅X₁₆ ]
n_l7___6 [4-X₀ ]
n_l8___5 [5-X₈ ]
n_l6___4 [5-X₈ ]
n_l8___9 [2 ]
n_l6___8 [4⋅X₈-X₀-4⋅X₅-1 ]
MPRF for transition t₆₀₂: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:
new bound:
24⋅X₁₆⋅X₁₆+14⋅X₁₆+2 {O(n^2)}
MPRF:
l11 [2⋅X₁₀+2-2⋅X₁₆ ]
l10 [2⋅X₁-2⋅X₁₆ ]
l9 [2⋅X₂+2⋅X₁₀-2⋅X₁₆ ]
l5 [2⋅X₁+2-2⋅X₁₆ ]
l12 [2⋅X₁-2⋅X₁₆ ]
n_l6___1 [4⋅X₁₀+7-X₀ ]
n_l5___7 [4-X₈ ]
n_l7___10 [2 ]
n_l7___3 [2⋅X₁+2-2⋅X₁₆ ]
n_l8___2 [2⋅X₁₀+2-2⋅X₁₆ ]
n_l7___6 [4-X₈ ]
n_l8___5 [3-X₀ ]
n_l6___4 [3-X₀ ]
n_l8___9 [3-X₅ ]
n_l6___8 [X₈+2-X₀-X₅ ]
MPRF for transition t₆₀₄: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l6___4(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg16_P) :|: X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:
new bound:
19⋅X₁₆+9 {O(n)}
MPRF:
l11 [4⋅X₁+5⋅X₂-4⋅X₁₆ ]
l10 [4⋅X₁+5-4⋅X₁₆ ]
l9 [9⋅X₂+4⋅X₁₀-4⋅X₁₆ ]
l5 [4⋅X₁+9-4⋅X₁₆ ]
l12 [4⋅X₁+5-4⋅X₁₆ ]
n_l6___1 [8-X₀ ]
n_l5___7 [9-X₀ ]
n_l7___10 [4⋅X₁+9-4⋅X₁₆ ]
n_l7___3 [4⋅X₁₀+9-4⋅X₁₆ ]
n_l8___2 [6⋅X₈+4⋅X₁₀+3-6⋅X₀-4⋅X₁₆ ]
n_l7___6 [9-X₈ ]
n_l8___5 [9-X₀ ]
n_l6___4 [8-X₀ ]
n_l8___9 [X₀+4⋅X₁+6-4⋅X₁₆ ]
n_l6___8 [2⋅X₅+6-X₀ ]
knowledge_propagation leads to new time bound 10⋅X₁₆+2 {O(n)} for transition t₆₀₂: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
CFR: Improvement to new bound with the following program:
new bound:
85⋅X₁₆+36 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆
Temp_Vars: Arg16_P, Arg5_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l9, n_l5___7, n_l6___1, n_l6___4, n_l6___8, n_l7___10, n_l7___3, n_l7___6, n_l8___2, n_l8___5, n_l8___9
Transitions:
t₅₅: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₅₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₅₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁
t₅₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
t₅₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₁ ≤ 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₃ < (X₄)² ∧ 0 < X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: (X₄)² ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₃ ≤ 0 ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, 5⋅X₃+(X₁₃)², 2⋅X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₆₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₇₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l5(X₅, X₁₆, X₆, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₅₉₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₅₉₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
t₆₁₄: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₆₁₅: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₆₁₆: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₅₉₆: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 4 ∧ X₁ ≤ X₁₆ ∧ 1+X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₅₉₇: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₅₉₈: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₈ ≤ 4 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ X₁ ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₅₉₉: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₆₀₀: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₆₀₁: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₆₀₂: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₆₀₃: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l6___1(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg16_P) :|: X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₆₀₄: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l6___4(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg16_P) :|: X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₆₀₅: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l6___8(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg16_P) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ X₁ ≤ X₁₆ for location l15
Found invariant X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12
Found invariant X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ X₁ ≤ X₁₆ for location l13
Found invariant X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ X₁ ≤ X₁₆ for location l16
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ X₁ ≤ X₁₆ for location l14
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₁ ≤ X₁₆ for location l15
Found invariant X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12
Found invariant X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₁ ≤ X₁₆ for location l13
Found invariant X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₁ ≤ X₁₆ for location l16
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₁ ≤ X₁₆ for location l14
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ 1 for location l15
Found invariant X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12
Found invariant X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ 1 for location l13
Found invariant X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ 1 for location l16
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ 1 for location l14
Time-Bound by TWN-Loops:
TWN-Loops: t₆₃ 19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48 {O(n^2)}
TWN-Loops:
entry: t₆₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
results in twn-loop: twn:Inv: [X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₆) -> (X₀,X₁,X₂,5⋅X₃+(X₁₃)²,2⋅X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₆) :|: X₃ < (X₄)² ∧ 0 < X₃
entry: t₆₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
results in twn-loop: twn:Inv: [X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₆) -> (X₀,X₁,X₂,5⋅X₃+(X₁₃)²,2⋅X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₆) :|: X₃ < (X₄)² ∧ 0 < X₃
entry: t₆₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₁ ≤ 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
results in twn-loop: twn:Inv: [X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₆) -> (X₀,X₁,X₂,5⋅X₃+(X₁₃)²,2⋅X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₆) :|: X₃ < (X₄)² ∧ 0 < X₃
order: [X₀; X₁; X₂; X₁₃; X₃; X₄; X₅; X₁₁; X₁₆]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂
X₁₃: X₁₃
X₃: X₃ * 5^n + [[n != 0]] * 1/4⋅(X₁₃)² * 5^n + [[n != 0]] * -1/4⋅(X₁₃)²
X₄: X₄ * 2^n
X₅: X₅
X₁₁: X₁₁
X₁₆: X₁₆
Termination: true
Formula:
4⋅X₃+(X₁₃)² < 0 ∧ 0 < 4⋅X₃+(X₁₃)²
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ 0 < 4⋅(X₄)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅X₃+(X₁₃)²
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅(X₄)² ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ 0 < (X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 0 < 4⋅X₃+(X₁₃)²
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < (X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < (X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 0 < 4⋅X₃+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ (X₁₃)² < 0 ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅X₃+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ (X₁₃)² < 0 ∧ 0 < 4⋅(X₄)² ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 0 < 4⋅X₃+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
Stabilization-Threshold for: 0 < X₃
alphas_abs: (X₁₃)²
M: 0
N: 1
Bound: 2⋅X₁₃⋅X₁₃+2 {O(n^2)}
Stabilization-Threshold for: X₃ < (X₄)²
alphas_abs: 4⋅(X₄)²+(X₁₃)²
M: 11
N: 1
Bound: 2⋅X₁₃⋅X₁₃+8⋅X₄⋅X₄+12 {O(n^2)}
relevant size-bounds w.r.t. t₆₂:
X₄: 30⋅X₁₂ {O(n)}
X₁₃: 30⋅X₁₃ {O(n)}
Runtime-bound of t₆₂: 1 {O(1)}
Results in: 3600⋅X₁₃⋅X₁₃+7200⋅X₁₂⋅X₁₂+16 {O(n^2)}
order: [X₀; X₁; X₂; X₁₃; X₃; X₄; X₅; X₁₁; X₁₆]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂
X₁₃: X₁₃
X₃: X₃ * 5^n + [[n != 0]] * 1/4⋅(X₁₃)² * 5^n + [[n != 0]] * -1/4⋅(X₁₃)²
X₄: X₄ * 2^n
X₅: X₅
X₁₁: X₁₁
X₁₆: X₁₆
Termination: true
Formula:
4⋅X₃+(X₁₃)² < 0 ∧ 0 < 4⋅X₃+(X₁₃)²
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ 0 < 4⋅(X₄)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅X₃+(X₁₃)²
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅(X₄)² ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ 0 < (X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 0 < 4⋅X₃+(X₁₃)²
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < (X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < (X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 0 < 4⋅X₃+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ (X₁₃)² < 0 ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅X₃+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ (X₁₃)² < 0 ∧ 0 < 4⋅(X₄)² ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 0 < 4⋅X₃+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
Stabilization-Threshold for: 0 < X₃
alphas_abs: (X₁₃)²
M: 0
N: 1
Bound: 2⋅X₁₃⋅X₁₃+2 {O(n^2)}
Stabilization-Threshold for: X₃ < (X₄)²
alphas_abs: 4⋅(X₄)²+(X₁₃)²
M: 11
N: 1
Bound: 2⋅X₁₃⋅X₁₃+8⋅X₄⋅X₄+12 {O(n^2)}
relevant size-bounds w.r.t. t₆₁:
X₄: 38⋅X₁₂ {O(n)}
X₁₃: 38⋅X₁₃ {O(n)}
Runtime-bound of t₆₁: 1 {O(1)}
Results in: 11552⋅X₁₂⋅X₁₂+5776⋅X₁₃⋅X₁₃+16 {O(n^2)}
order: [X₀; X₁; X₁₃; X₃; X₄; X₅; X₁₁; X₁₆]
closed-form:
X₀: X₀
X₁: X₁
X₁₃: X₁₃
X₃: X₃ * 5^n + [[n != 0]] * 1/4⋅(X₁₃)² * 5^n + [[n != 0]] * -1/4⋅(X₁₃)²
X₄: X₄ * 2^n
X₅: X₅
X₁₁: X₁₁
X₁₆: X₁₆
Termination: true
Formula:
4⋅X₃+(X₁₃)² < 0 ∧ 0 < 4⋅X₃+(X₁₃)²
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ 0 < 4⋅(X₄)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅X₃+(X₁₃)²
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅(X₄)² ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ 0 < (X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 0 < 4⋅X₃+(X₁₃)²
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < (X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < (X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 0 < 4⋅X₃+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ (X₁₃)² < 0 ∧ 4⋅X₃+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅X₃+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ (X₁₃)² < 0 ∧ 0 < 4⋅(X₄)² ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 0 < 4⋅X₃+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₁₁+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₁₁+(X₁₃)²
Stabilization-Threshold for: 0 < X₃
alphas_abs: (X₁₃)²
M: 0
N: 1
Bound: 2⋅X₁₃⋅X₁₃+2 {O(n^2)}
Stabilization-Threshold for: X₃ < (X₄)²
alphas_abs: 4⋅(X₄)²+(X₁₃)²
M: 11
N: 1
Bound: 2⋅X₁₃⋅X₁₃+8⋅X₄⋅X₄+12 {O(n^2)}
relevant size-bounds w.r.t. t₆₀:
X₄: 50⋅X₁₂ {O(n)}
X₁₃: 50⋅X₁₃ {O(n)}
Runtime-bound of t₆₀: 1 {O(1)}
Results in: 10000⋅X₁₃⋅X₁₃+20000⋅X₁₂⋅X₁₂+16 {O(n^2)}
19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48 {O(n^2)}
Time-Bound by TWN-Loops:
TWN-Loops: t₆₆ 19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48 {O(n^2)}
relevant size-bounds w.r.t. t₆₂:
X₄: 30⋅X₁₂ {O(n)}
X₁₃: 30⋅X₁₃ {O(n)}
Runtime-bound of t₆₂: 1 {O(1)}
Results in: 3600⋅X₁₃⋅X₁₃+7200⋅X₁₂⋅X₁₂+16 {O(n^2)}
relevant size-bounds w.r.t. t₆₁:
X₄: 38⋅X₁₂ {O(n)}
X₁₃: 38⋅X₁₃ {O(n)}
Runtime-bound of t₆₁: 1 {O(1)}
Results in: 11552⋅X₁₂⋅X₁₂+5776⋅X₁₃⋅X₁₃+16 {O(n^2)}
relevant size-bounds w.r.t. t₆₀:
X₄: 50⋅X₁₂ {O(n)}
X₁₃: 50⋅X₁₃ {O(n)}
Runtime-bound of t₆₀: 1 {O(1)}
Results in: 10000⋅X₁₃⋅X₁₃+20000⋅X₁₂⋅X₁₂+16 {O(n^2)}
19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48 {O(n^2)}
Analysing control-flow refined program
Eliminate variables {X₁₃} that do not contribute to the problem
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₁ for location n_l13___2
Found invariant X₅ ≤ X₀ ∧ X₄ ≤ X₁₂ ∧ X₁₂ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₁ ∧ X₁ ≤ X₁₁ ∧ X₁ ≤ 1 for location n_l14___3
Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l15
Found invariant X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12
Found invariant X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5
Found invariant X₅ ≤ X₀ ∧ X₄ ≤ X₁₂ ∧ X₁₂ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l13
Found invariant X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l16
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₁ for location n_l14___1
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₉₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₉₃₉: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₉₄₄: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l6___8(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, Arg16_P) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₉₃₈: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
All Bounds
Timebounds
Overall timebound:38752⋅X₁₃⋅X₁₃+77504⋅X₁₂⋅X₁₂+85⋅X₁₆+143 {O(n^2)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: X₁₆+1 {O(n)}
t₅₈: X₁₆+1 {O(n)}
t₅₉: X₁₆+1 {O(n)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: 19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48 {O(n^2)}
t₆₄: 1 {O(1)}
t₆₅: 1 {O(1)}
t₆₆: 19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48 {O(n^2)}
t₆₇: 1 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: 1 {O(1)}
t₇₀: 1 {O(1)}
t₇₂: X₁₆+1 {O(n)}
t₇₃: X₁₆+1 {O(n)}
t₇₄: X₁₆+1 {O(n)}
t₇₅: X₁₆+1 {O(n)}
t₅₉₄: X₁₆ {O(n)}
t₅₉₅: 1 {O(1)}
t₇₉: X₁₆ {O(n)}
t₅₉₆: 10⋅X₁₆+2 {O(n)}
t₆₁₄: 5⋅X₁₆+1 {O(n)}
t₆₁₅: 13⋅X₁₆+5 {O(n)}
t₆₁₆: 6⋅X₁₆+4 {O(n)}
t₅₉₇: X₁₆ {O(n)}
t₅₉₈: 10⋅X₁₆+2 {O(n)}
t₅₉₉: 1 {O(1)}
t₆₀₀: 1 {O(1)}
t₆₀₁: X₁₆ {O(n)}
t₆₀₂: 10⋅X₁₆+2 {O(n)}
t₆₀₃: X₁₆ {O(n)}
t₆₀₄: 19⋅X₁₆+9 {O(n)}
t₆₀₅: 1 {O(1)}
Costbounds
Overall costbound: 38752⋅X₁₃⋅X₁₃+77504⋅X₁₂⋅X₁₂+85⋅X₁₆+143 {O(n^2)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: X₁₆+1 {O(n)}
t₅₈: X₁₆+1 {O(n)}
t₅₉: X₁₆+1 {O(n)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: 19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48 {O(n^2)}
t₆₄: 1 {O(1)}
t₆₅: 1 {O(1)}
t₆₆: 19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48 {O(n^2)}
t₆₇: 1 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: 1 {O(1)}
t₇₀: 1 {O(1)}
t₇₂: X₁₆+1 {O(n)}
t₇₃: X₁₆+1 {O(n)}
t₇₄: X₁₆+1 {O(n)}
t₇₅: X₁₆+1 {O(n)}
t₅₉₄: X₁₆ {O(n)}
t₅₉₅: 1 {O(1)}
t₇₉: X₁₆ {O(n)}
t₅₉₆: 10⋅X₁₆+2 {O(n)}
t₆₁₄: 5⋅X₁₆+1 {O(n)}
t₆₁₅: 13⋅X₁₆+5 {O(n)}
t₆₁₆: 6⋅X₁₆+4 {O(n)}
t₅₉₇: X₁₆ {O(n)}
t₅₉₈: 10⋅X₁₆+2 {O(n)}
t₅₉₉: 1 {O(1)}
t₆₀₀: 1 {O(1)}
t₆₀₁: X₁₆ {O(n)}
t₆₀₂: 10⋅X₁₆+2 {O(n)}
t₆₀₃: X₁₆ {O(n)}
t₆₀₄: 19⋅X₁₆+9 {O(n)}
t₆₀₅: 1 {O(1)}
Sizebounds
t₅₅, X₀: X₀ {O(n)}
t₅₅, X₁: X₁ {O(n)}
t₅₅, X₂: X₂ {O(n)}
t₅₅, X₃: X₃ {O(n)}
t₅₅, X₄: X₄ {O(n)}
t₅₅, X₅: X₅ {O(n)}
t₅₅, X₆: X₆ {O(n)}
t₅₅, X₇: X₇ {O(n)}
t₅₅, X₈: X₈ {O(n)}
t₅₅, X₉: X₉ {O(n)}
t₅₅, X₁₀: X₁₀ {O(n)}
t₅₅, X₁₁: X₁₁ {O(n)}
t₅₅, X₁₂: X₁₂ {O(n)}
t₅₅, X₁₃: X₁₃ {O(n)}
t₅₅, X₁₆: X₁₆ {O(n)}
t₅₆, X₀: X₀ {O(n)}
t₅₆, X₁: X₁ {O(n)}
t₅₆, X₂: X₂ {O(n)}
t₅₆, X₃: X₃ {O(n)}
t₅₆, X₄: X₄ {O(n)}
t₅₆, X₇: X₇ {O(n)}
t₅₆, X₈: X₈ {O(n)}
t₅₆, X₉: X₉ {O(n)}
t₅₆, X₁₀: X₁₀ {O(n)}
t₅₆, X₁₁: X₁₁ {O(n)}
t₅₆, X₁₂: X₁₂ {O(n)}
t₅₆, X₁₃: X₁₃ {O(n)}
t₅₆, X₁₆: X₁₆ {O(n)}
t₅₇, X₁: 6⋅X₁₆ {O(n)}
t₅₇, X₂: 1 {O(1)}
t₅₇, X₃: 6⋅X₃ {O(n)}
t₅₇, X₄: 6⋅X₄ {O(n)}
t₅₇, X₈: 3⋅X₈+8 {O(n)}
t₅₇, X₁₀: 6⋅X₁₆ {O(n)}
t₅₇, X₁₁: 6⋅X₁₁ {O(n)}
t₅₇, X₁₂: 6⋅X₁₂ {O(n)}
t₅₇, X₁₃: 6⋅X₁₃ {O(n)}
t₅₇, X₁₆: 6⋅X₁₆ {O(n)}
t₅₈, X₁: 6⋅X₁₆ {O(n)}
t₅₈, X₂: 1 {O(1)}
t₅₈, X₃: 6⋅X₃ {O(n)}
t₅₈, X₄: 6⋅X₄ {O(n)}
t₅₈, X₈: 3⋅X₈+8 {O(n)}
t₅₈, X₁₀: 6⋅X₁₆ {O(n)}
t₅₈, X₁₁: 6⋅X₁₁ {O(n)}
t₅₈, X₁₂: 6⋅X₁₂ {O(n)}
t₅₈, X₁₃: 6⋅X₁₃ {O(n)}
t₅₈, X₁₆: 6⋅X₁₆ {O(n)}
t₅₉, X₁: 6⋅X₁₆ {O(n)}
t₅₉, X₂: 1 {O(1)}
t₅₉, X₃: 6⋅X₃ {O(n)}
t₅₉, X₄: 6⋅X₄ {O(n)}
t₅₉, X₈: 3⋅X₈+8 {O(n)}
t₅₉, X₁₀: 42⋅X₁₆+7⋅X₁₀ {O(n)}
t₅₉, X₁₁: 6⋅X₁₁ {O(n)}
t₅₉, X₁₂: 6⋅X₁₂ {O(n)}
t₅₉, X₁₃: 6⋅X₁₃ {O(n)}
t₅₉, X₁₆: 6⋅X₁₆ {O(n)}
t₆₀, X₁: 50⋅X₁₆ {O(n)}
t₆₀, X₃: 50⋅X₁₁ {O(n)}
t₆₀, X₄: 50⋅X₁₂ {O(n)}
t₆₀, X₈: 13⋅X₈+44 {O(n)}
t₆₀, X₁₀: 28⋅X₁₆+7⋅X₁₀ {O(n)}
t₆₀, X₁₁: 50⋅X₁₁ {O(n)}
t₆₀, X₁₂: 50⋅X₁₂ {O(n)}
t₆₀, X₁₃: 50⋅X₁₃ {O(n)}
t₆₀, X₁₆: 50⋅X₁₆ {O(n)}
t₆₁, X₁: 38⋅X₁₆ {O(n)}
t₆₁, X₃: 38⋅X₁₁ {O(n)}
t₆₁, X₄: 38⋅X₁₂ {O(n)}
t₆₁, X₈: 10⋅X₈+32 {O(n)}
t₆₁, X₁₀: 42⋅X₁₆+7⋅X₁₀ {O(n)}
t₆₁, X₁₁: 38⋅X₁₁ {O(n)}
t₆₁, X₁₂: 38⋅X₁₂ {O(n)}
t₆₁, X₁₃: 38⋅X₁₃ {O(n)}
t₆₁, X₁₆: 38⋅X₁₆ {O(n)}
t₆₂, X₁: 30⋅X₁₆ {O(n)}
t₆₂, X₃: 30⋅X₁₁ {O(n)}
t₆₂, X₄: 30⋅X₁₂ {O(n)}
t₆₂, X₈: 9⋅X₈+32 {O(n)}
t₆₂, X₁₀: 42⋅X₁₆+7⋅X₁₀ {O(n)}
t₆₂, X₁₁: 30⋅X₁₁ {O(n)}
t₆₂, X₁₂: 30⋅X₁₂ {O(n)}
t₆₂, X₁₃: 30⋅X₁₃ {O(n)}
t₆₂, X₁₆: 30⋅X₁₆ {O(n)}
t₆₃, X₁: 118⋅X₁₆ {O(n)}
t₆₃, X₄: 118⋅2^(19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48)⋅X₁₂ {O(EXP)}
t₆₃, X₈: 32⋅X₈+108 {O(n)}
t₆₃, X₁₀: 112⋅X₁₆+21⋅X₁₀ {O(n)}
t₆₃, X₁₁: 118⋅X₁₁ {O(n)}
t₆₃, X₁₂: 118⋅X₁₂ {O(n)}
t₆₃, X₁₃: 118⋅X₁₃ {O(n)}
t₆₃, X₁₆: 118⋅X₁₆ {O(n)}
t₆₄, X₁: 236⋅X₁₆ {O(n)}
t₆₄, X₄: 118⋅2^(19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48)⋅X₁₂+118⋅X₁₂ {O(EXP)}
t₆₄, X₈: 64⋅X₈+216 {O(n)}
t₆₄, X₁₀: 224⋅X₁₆+42⋅X₁₀ {O(n)}
t₆₄, X₁₁: 236⋅X₁₁ {O(n)}
t₆₄, X₁₂: 236⋅X₁₂ {O(n)}
t₆₄, X₁₃: 236⋅X₁₃ {O(n)}
t₆₄, X₁₆: 236⋅X₁₆ {O(n)}
t₆₅, X₁: 236⋅X₁₆ {O(n)}
t₆₅, X₄: 118⋅2^(19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48)⋅X₁₂+118⋅X₁₂ {O(EXP)}
t₆₅, X₈: 64⋅X₈+216 {O(n)}
t₆₅, X₁₀: 224⋅X₁₆+42⋅X₁₀ {O(n)}
t₆₅, X₁₁: 236⋅X₁₁ {O(n)}
t₆₅, X₁₂: 236⋅X₁₂ {O(n)}
t₆₅, X₁₃: 236⋅X₁₃ {O(n)}
t₆₅, X₁₆: 236⋅X₁₆ {O(n)}
t₆₆, X₁: 118⋅X₁₆ {O(n)}
t₆₆, X₄: 118⋅2^(19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48)⋅X₁₂ {O(EXP)}
t₆₆, X₈: 32⋅X₈+108 {O(n)}
t₆₆, X₁₀: 112⋅X₁₆+21⋅X₁₀ {O(n)}
t₆₆, X₁₁: 118⋅X₁₁ {O(n)}
t₆₆, X₁₂: 118⋅X₁₂ {O(n)}
t₆₆, X₁₃: 118⋅X₁₃ {O(n)}
t₆₆, X₁₆: 118⋅X₁₆ {O(n)}
t₆₇, X₁: 472⋅X₁₆ {O(n)}
t₆₇, X₄: 236⋅2^(19376⋅X₁₃⋅X₁₃+38752⋅X₁₂⋅X₁₂+48)⋅X₁₂+236⋅X₁₂ {O(EXP)}
t₆₇, X₈: 128⋅X₈+432 {O(n)}
t₆₇, X₁₀: 448⋅X₁₆+84⋅X₁₀ {O(n)}
t₆₇, X₁₁: 472⋅X₁₁ {O(n)}
t₆₇, X₁₂: 472⋅X₁₂ {O(n)}
t₆₇, X₁₃: 472⋅X₁₃ {O(n)}
t₆₇, X₁₆: 472⋅X₁₆ {O(n)}
t₆₈, X₀: X₀ {O(n)}
t₆₈, X₁: X₁ {O(n)}
t₆₈, X₂: X₂ {O(n)}
t₆₈, X₃: X₃ {O(n)}
t₆₈, X₄: X₄ {O(n)}
t₆₈, X₅: X₅ {O(n)}
t₆₈, X₆: X₆ {O(n)}
t₆₈, X₇: X₇ {O(n)}
t₆₈, X₈: X₈ {O(n)}
t₆₈, X₉: X₉ {O(n)}
t₆₈, X₁₀: X₁₀ {O(n)}
t₆₈, X₁₁: X₁₁ {O(n)}
t₆₈, X₁₂: X₁₂ {O(n)}
t₆₈, X₁₃: X₁₃ {O(n)}
t₆₈, X₁₆: X₁₆ {O(n)}
t₆₉, X₀: X₀ {O(n)}
t₆₉, X₁: X₁ {O(n)}
t₆₉, X₂: X₂ {O(n)}
t₆₉, X₃: X₃ {O(n)}
t₆₉, X₄: X₄ {O(n)}
t₆₉, X₆: X₆ {O(n)}
t₆₉, X₇: X₇ {O(n)}
t₆₉, X₈: X₈ {O(n)}
t₆₉, X₉: X₉ {O(n)}
t₆₉, X₁₀: X₁₀ {O(n)}
t₆₉, X₁₁: X₁₁ {O(n)}
t₆₉, X₁₂: X₁₂ {O(n)}
t₆₉, X₁₃: X₁₃ {O(n)}
t₆₉, X₁₆: X₁₆ {O(n)}
t₇₀, X₁: X₁₆ {O(n)}
t₇₀, X₃: X₃ {O(n)}
t₇₀, X₄: X₄ {O(n)}
t₇₀, X₇: X₇ {O(n)}
t₇₀, X₈: X₈ {O(n)}
t₇₀, X₉: X₉ {O(n)}
t₇₀, X₁₀: X₁₀ {O(n)}
t₇₀, X₁₁: X₁₁ {O(n)}
t₇₀, X₁₂: X₁₂ {O(n)}
t₇₀, X₁₃: X₁₃ {O(n)}
t₇₀, X₁₆: X₁₆ {O(n)}
t₇₂, X₁: 6⋅X₁₆ {O(n)}
t₇₂, X₃: 6⋅X₃ {O(n)}
t₇₂, X₄: 6⋅X₄ {O(n)}
t₇₂, X₈: 3⋅X₈+8 {O(n)}
t₇₂, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₇₂, X₁₁: 6⋅X₁₁ {O(n)}
t₇₂, X₁₂: 6⋅X₁₂ {O(n)}
t₇₂, X₁₃: 6⋅X₁₃ {O(n)}
t₇₂, X₁₆: 6⋅X₁₆ {O(n)}
t₇₃, X₁: 6⋅X₁₆ {O(n)}
t₇₃, X₃: 6⋅X₃ {O(n)}
t₇₃, X₄: 6⋅X₄ {O(n)}
t₇₃, X₈: 3⋅X₈+8 {O(n)}
t₇₃, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₇₃, X₁₁: 6⋅X₁₁ {O(n)}
t₇₃, X₁₂: 6⋅X₁₂ {O(n)}
t₇₃, X₁₃: 6⋅X₁₃ {O(n)}
t₇₃, X₁₆: 6⋅X₁₆ {O(n)}
t₇₄, X₁: 7⋅X₁₆ {O(n)}
t₇₄, X₃: 7⋅X₃ {O(n)}
t₇₄, X₄: 7⋅X₄ {O(n)}
t₇₄, X₈: 4⋅X₈+8 {O(n)}
t₇₄, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₇₄, X₁₁: 7⋅X₁₁ {O(n)}
t₇₄, X₁₂: 7⋅X₁₂ {O(n)}
t₇₄, X₁₃: 7⋅X₁₃ {O(n)}
t₇₄, X₁₆: 7⋅X₁₆ {O(n)}
t₇₅, X₁: 6⋅X₁₆ {O(n)}
t₇₅, X₃: 6⋅X₃ {O(n)}
t₇₅, X₄: 6⋅X₄ {O(n)}
t₇₅, X₈: 3⋅X₈+8 {O(n)}
t₇₅, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₇₅, X₁₁: 6⋅X₁₁ {O(n)}
t₇₅, X₁₂: 6⋅X₁₂ {O(n)}
t₇₅, X₁₃: 6⋅X₁₃ {O(n)}
t₇₅, X₁₆: 6⋅X₁₆ {O(n)}
t₅₉₄, X₀: 3 {O(1)}
t₅₉₄, X₁: 6⋅X₁₆ {O(n)}
t₅₉₄, X₂: 0 {O(1)}
t₅₉₄, X₃: 6⋅X₃ {O(n)}
t₅₉₄, X₄: 6⋅X₄ {O(n)}
t₅₉₄, X₇: 0 {O(1)}
t₅₉₄, X₈: 3⋅X₈+8 {O(n)}
t₅₉₄, X₁₀: 6⋅X₁₆ {O(n)}
t₅₉₄, X₁₁: 6⋅X₁₁ {O(n)}
t₅₉₄, X₁₂: 6⋅X₁₂ {O(n)}
t₅₉₄, X₁₃: 6⋅X₁₃ {O(n)}
t₅₉₄, X₁₆: 6⋅X₁₆ {O(n)}
t₅₉₅, X₀: 3 {O(1)}
t₅₉₅, X₁: X₁₆ {O(n)}
t₅₉₅, X₂: 0 {O(1)}
t₅₉₅, X₃: X₃ {O(n)}
t₅₉₅, X₄: X₄ {O(n)}
t₅₉₅, X₅: 3 {O(1)}
t₅₉₅, X₆: 0 {O(1)}
t₅₉₅, X₇: X₇ {O(n)}
t₅₉₅, X₈: X₈ {O(n)}
t₅₉₅, X₉: X₉ {O(n)}
t₅₉₅, X₁₀: X₁₀ {O(n)}
t₅₉₅, X₁₁: X₁₁ {O(n)}
t₅₉₅, X₁₂: X₁₂ {O(n)}
t₅₉₅, X₁₃: X₁₃ {O(n)}
t₅₉₅, X₁₆: X₁₆ {O(n)}
t₇₉, X₁: 6⋅X₁₆ {O(n)}
t₇₉, X₃: 6⋅X₃ {O(n)}
t₇₉, X₄: 6⋅X₄ {O(n)}
t₇₉, X₈: 3⋅X₈+8 {O(n)}
t₇₉, X₁₀: 6⋅X₁₆ {O(n)}
t₇₉, X₁₁: 6⋅X₁₁ {O(n)}
t₇₉, X₁₂: 6⋅X₁₂ {O(n)}
t₇₉, X₁₃: 6⋅X₁₃ {O(n)}
t₇₉, X₁₆: 6⋅X₁₆ {O(n)}
t₅₉₆, X₀: 3 {O(1)}
t₅₉₆, X₁: 6⋅X₁₆ {O(n)}
t₅₉₆, X₂: 0 {O(1)}
t₅₉₆, X₃: 6⋅X₃ {O(n)}
t₅₉₆, X₄: 6⋅X₄ {O(n)}
t₅₉₆, X₇: X₇ {O(n)}
t₅₉₆, X₈: 3 {O(1)}
t₅₉₆, X₉: 0 {O(1)}
t₅₉₆, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₅₉₆, X₁₁: 6⋅X₁₁ {O(n)}
t₅₉₆, X₁₂: 6⋅X₁₂ {O(n)}
t₅₉₆, X₁₃: 6⋅X₁₃ {O(n)}
t₅₉₆, X₁₆: 6⋅X₁₆ {O(n)}
t₆₁₄, X₀: 4 {O(1)}
t₆₁₄, X₁: 6⋅X₁₆ {O(n)}
t₆₁₄, X₃: 6⋅X₃ {O(n)}
t₆₁₄, X₄: 6⋅X₄ {O(n)}
t₆₁₄, X₇: 2⋅X₇ {O(n)}
t₆₁₄, X₈: 4 {O(1)}
t₆₁₄, X₁₀: 12⋅X₁₆+2⋅X₁₀ {O(n)}
t₆₁₄, X₁₁: 6⋅X₁₁ {O(n)}
t₆₁₄, X₁₂: 6⋅X₁₂ {O(n)}
t₆₁₄, X₁₃: 6⋅X₁₃ {O(n)}
t₆₁₄, X₁₆: 6⋅X₁₆ {O(n)}
t₆₁₅, X₀: 4 {O(1)}
t₆₁₅, X₁: 13⋅X₁₆ {O(n)}
t₆₁₅, X₃: 13⋅X₃ {O(n)}
t₆₁₅, X₄: 13⋅X₄ {O(n)}
t₆₁₅, X₇: 2⋅X₇ {O(n)}
t₆₁₅, X₈: 4 {O(1)}
t₆₁₅, X₁₀: 12⋅X₁₆+2⋅X₁₀ {O(n)}
t₆₁₅, X₁₁: 13⋅X₁₁ {O(n)}
t₆₁₅, X₁₂: 13⋅X₁₂ {O(n)}
t₆₁₅, X₁₃: 13⋅X₁₃ {O(n)}
t₆₁₅, X₁₆: 13⋅X₁₆ {O(n)}
t₆₁₆, X₀: 4 {O(1)}
t₆₁₆, X₁: 6⋅X₁₆ {O(n)}
t₆₁₆, X₃: 6⋅X₃ {O(n)}
t₆₁₆, X₄: 6⋅X₄ {O(n)}
t₆₁₆, X₇: 2⋅X₇ {O(n)}
t₆₁₆, X₈: 4 {O(1)}
t₆₁₆, X₁₀: 12⋅X₁₆+2⋅X₁₀ {O(n)}
t₆₁₆, X₁₁: 6⋅X₁₁ {O(n)}
t₆₁₆, X₁₂: 6⋅X₁₂ {O(n)}
t₆₁₆, X₁₃: 6⋅X₁₃ {O(n)}
t₆₁₆, X₁₆: 6⋅X₁₆ {O(n)}
t₅₉₇, X₀: 4 {O(1)}
t₅₉₇, X₁: 6⋅X₁₆ {O(n)}
t₅₉₇, X₃: 6⋅X₃ {O(n)}
t₅₉₇, X₄: 6⋅X₄ {O(n)}
t₅₉₇, X₇: 0 {O(1)}
t₅₉₇, X₈: 4 {O(1)}
t₅₉₇, X₁₀: 6⋅X₁₆ {O(n)}
t₅₉₇, X₁₁: 6⋅X₁₁ {O(n)}
t₅₉₇, X₁₂: 6⋅X₁₂ {O(n)}
t₅₉₇, X₁₃: 6⋅X₁₃ {O(n)}
t₅₉₇, X₁₆: 6⋅X₁₆ {O(n)}
t₅₉₈, X₀: 4 {O(1)}
t₅₉₈, X₁: 6⋅X₁₆ {O(n)}
t₅₉₈, X₃: 6⋅X₃ {O(n)}
t₅₉₈, X₄: 6⋅X₄ {O(n)}
t₅₉₈, X₇: X₇ {O(n)}
t₅₉₈, X₈: 4 {O(1)}
t₅₉₈, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₅₉₈, X₁₁: 6⋅X₁₁ {O(n)}
t₅₉₈, X₁₂: 6⋅X₁₂ {O(n)}
t₅₉₈, X₁₃: 6⋅X₁₃ {O(n)}
t₅₉₈, X₁₆: 6⋅X₁₆ {O(n)}
t₅₉₉, X₀: 4 {O(1)}
t₅₉₉, X₁: X₁₆ {O(n)}
t₅₉₉, X₃: X₃ {O(n)}
t₅₉₉, X₄: X₄ {O(n)}
t₅₉₉, X₅: 3 {O(1)}
t₅₉₉, X₆: 0 {O(1)}
t₅₉₉, X₇: X₇ {O(n)}
t₅₉₉, X₈: 4 {O(1)}
t₅₉₉, X₁₀: X₁₀ {O(n)}
t₅₉₉, X₁₁: X₁₁ {O(n)}
t₅₉₉, X₁₂: X₁₂ {O(n)}
t₅₉₉, X₁₃: X₁₃ {O(n)}
t₅₉₉, X₁₆: X₁₆ {O(n)}
t₆₀₀, X₀: 3 {O(1)}
t₆₀₀, X₁: X₁₆ {O(n)}
t₆₀₀, X₂: 0 {O(1)}
t₆₀₀, X₃: X₃ {O(n)}
t₆₀₀, X₄: X₄ {O(n)}
t₆₀₀, X₅: 3 {O(1)}
t₆₀₀, X₆: 0 {O(1)}
t₆₀₀, X₇: X₇ {O(n)}
t₆₀₀, X₈: 4 {O(1)}
t₆₀₀, X₉: X₉ {O(n)}
t₆₀₀, X₁₀: X₁₀ {O(n)}
t₆₀₀, X₁₁: X₁₁ {O(n)}
t₆₀₀, X₁₂: X₁₂ {O(n)}
t₆₀₀, X₁₃: X₁₃ {O(n)}
t₆₀₀, X₁₆: X₁₆ {O(n)}
t₆₀₁, X₀: 3 {O(1)}
t₆₀₁, X₁: 6⋅X₁₆ {O(n)}
t₆₀₁, X₂: 0 {O(1)}
t₆₀₁, X₃: 6⋅X₃ {O(n)}
t₆₀₁, X₄: 6⋅X₄ {O(n)}
t₆₀₁, X₇: 0 {O(1)}
t₆₀₁, X₈: 4 {O(1)}
t₆₀₁, X₁₀: 6⋅X₁₆ {O(n)}
t₆₀₁, X₁₁: 6⋅X₁₁ {O(n)}
t₆₀₁, X₁₂: 6⋅X₁₂ {O(n)}
t₆₀₁, X₁₃: 6⋅X₁₃ {O(n)}
t₆₀₁, X₁₆: 6⋅X₁₆ {O(n)}
t₆₀₂, X₀: 3 {O(1)}
t₆₀₂, X₁: 6⋅X₁₆ {O(n)}
t₆₀₂, X₂: 0 {O(1)}
t₆₀₂, X₃: 6⋅X₃ {O(n)}
t₆₀₂, X₄: 6⋅X₄ {O(n)}
t₆₀₂, X₇: X₇ {O(n)}
t₆₀₂, X₈: 4 {O(1)}
t₆₀₂, X₉: 0 {O(1)}
t₆₀₂, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₆₀₂, X₁₁: 6⋅X₁₁ {O(n)}
t₆₀₂, X₁₂: 6⋅X₁₂ {O(n)}
t₆₀₂, X₁₃: 6⋅X₁₃ {O(n)}
t₆₀₂, X₁₆: 6⋅X₁₆ {O(n)}
t₆₀₃, X₀: 3 {O(1)}
t₆₀₃, X₁: 6⋅X₁₆ {O(n)}
t₆₀₃, X₂: 0 {O(1)}
t₆₀₃, X₃: 6⋅X₃ {O(n)}
t₆₀₃, X₄: 6⋅X₄ {O(n)}
t₆₀₃, X₇: 0 {O(1)}
t₆₀₃, X₈: 4 {O(1)}
t₆₀₃, X₁₀: 6⋅X₁₆ {O(n)}
t₆₀₃, X₁₁: 6⋅X₁₁ {O(n)}
t₆₀₃, X₁₂: 6⋅X₁₂ {O(n)}
t₆₀₃, X₁₃: 6⋅X₁₃ {O(n)}
t₆₀₃, X₁₆: 6⋅X₁₆ {O(n)}
t₆₀₄, X₀: 3 {O(1)}
t₆₀₄, X₁: 6⋅X₁₆ {O(n)}
t₆₀₄, X₂: 0 {O(1)}
t₆₀₄, X₃: 6⋅X₃ {O(n)}
t₆₀₄, X₄: 6⋅X₄ {O(n)}
t₆₀₄, X₇: X₇ {O(n)}
t₆₀₄, X₈: 4 {O(1)}
t₆₀₄, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₆₀₄, X₁₁: 6⋅X₁₁ {O(n)}
t₆₀₄, X₁₂: 6⋅X₁₂ {O(n)}
t₆₀₄, X₁₃: 6⋅X₁₃ {O(n)}
t₆₀₄, X₁₆: 6⋅X₁₆ {O(n)}
t₆₀₅, X₀: 3 {O(1)}
t₆₀₅, X₁: X₁₆ {O(n)}
t₆₀₅, X₂: 0 {O(1)}
t₆₀₅, X₃: X₃ {O(n)}
t₆₀₅, X₄: X₄ {O(n)}
t₆₀₅, X₅: 3 {O(1)}
t₆₀₅, X₆: 0 {O(1)}
t₆₀₅, X₇: X₇ {O(n)}
t₆₀₅, X₈: 4 {O(1)}
t₆₀₅, X₁₀: X₁₀ {O(n)}
t₆₀₅, X₁₁: X₁₁ {O(n)}
t₆₀₅, X₁₂: X₁₂ {O(n)}
t₆₀₅, X₁₃: X₁₃ {O(n)}
t₆₀₅, X₁₆: X₁₆ {O(n)}