Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₀ ≤ 0
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₀
t₂₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₇ ≤ 0
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₇
t₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₁₂, X₀, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ 5+X₁₁ ∧ X₁₁ ≤ 5
t₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₁₁+5 < 0
t₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 5 < X₁₁
t₁₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, 3⋅X₂-(X₁₁)³, -2⋅X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₂₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, 3⋅X₄-(X₁₁)³, -2⋅X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₃ < 0
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₃
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₃ ≤ 0 ∧ 0 ≤ X₃
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: (X₃)²+(X₁₁)⁵ < X₂
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₂ ≤ (X₃)²+(X₁₁)⁵
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, X₁₂, X₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₁₁
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₁₁ ≤ 0
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₅ < 0
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₅
t₁₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: (X₅)²+(X₁₁)⁵ < X₄
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₄ ≤ (X₅)²+(X₁₁)⁵
t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀-1, X₆, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₈, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁₂)

Preprocessing

Eliminate variables {X₁₀} that do not contribute to the problem

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0 for location l11

Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l15

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l12

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l13

Found invariant X₀ ≤ X₈ for location l1

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l10

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l4

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l9

Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l3

Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₅₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂)
t₅₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁, X₈, X₉, X₁₁, X₁₂) :|: X₀ ≤ 0 ∧ X₀ ≤ X₈
t₅₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 0 < X₀ ∧ X₀ ≤ X₈
t₅₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0
t₅₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₇ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0
t₅₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 0 < X₇ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0
t₅₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l2(X₀, X₁, X₁₂, X₀, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 0 ≤ 5+X₁₁ ∧ X₁₁ ≤ 5 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₆₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₁₁+5 < 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₆₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 5 < X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₆₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l2(X₀, X₁, 3⋅X₂-(X₁₁)³, -2⋅X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀
t₆₃: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, 3⋅X₄-(X₁₁)³, -2⋅X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₆₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₃ < 0 ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀
t₆₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 0 < X₃ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀
t₆₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀
t₆₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: (X₃)²+(X₁₁)⁵ < X₂ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀
t₆₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₂ ≤ (X₃)²+(X₁₁)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀
t₆₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, X₁₂, X₀, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 0 < X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₇₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₁₁ ≤ 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₇₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₅ < 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 0 < X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₇₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: (X₅)²+(X₁₁)⁵ < X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₇₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₄ ≤ (X₅)²+(X₁₁)⁵ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₇₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l1(X₀-1, X₆, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₇₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l1(X₈, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂)
t₇₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₁, X₁₂) :|: X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0

MPRF for transition t₅₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 0 < X₀ ∧ X₀ ≤ X₈ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l13 [X₀ ]
l2 [X₀ ]
l14 [X₀ ]
l3 [X₀ ]
l4 [X₀ ]
l5 [X₀ ]
l15 [X₀ ]
l6 [X₀ ]
l7 [X₀ ]
l1 [X₀+1 ]

MPRF for transition t₅₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l2(X₀, X₁, X₁₂, X₀, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 0 ≤ 5+X₁₁ ∧ X₁₁ ≤ 5 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈ {O(n)}

MPRF:

l13 [X₀ ]
l2 [X₀-1 ]
l14 [X₀-1 ]
l3 [X₀-1 ]
l4 [X₀ ]
l5 [X₀ ]
l15 [X₀ ]
l6 [X₀ ]
l7 [X₀-1 ]
l1 [X₀ ]

MPRF for transition t₆₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₁₁+5 < 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l13 [X₀+1 ]
l2 [X₀ ]
l14 [X₀ ]
l3 [X₀ ]
l4 [X₀ ]
l5 [X₀ ]
l15 [X₀ ]
l6 [X₀ ]
l7 [X₀ ]
l1 [X₀+1 ]

MPRF for transition t₆₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 5 < X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l13 [X₀+1 ]
l2 [X₀ ]
l14 [X₀ ]
l3 [X₀ ]
l4 [X₀ ]
l5 [X₀ ]
l15 [X₀ ]
l6 [X₀ ]
l7 [X₀ ]
l1 [X₀+1 ]

MPRF for transition t₆₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈ {O(n)}

MPRF:

l13 [X₀ ]
l2 [X₀ ]
l14 [X₀ ]
l3 [X₀ ]
l4 [X₀ ]
l5 [X₀ ]
l15 [X₀ ]
l6 [X₀ ]
l7 [X₀-1 ]
l1 [X₀ ]

MPRF for transition t₆₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₂ ≤ (X₃)²+(X₁₁)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈ {O(n)}

MPRF:

l13 [X₀ ]
l2 [X₀ ]
l14 [X₀ ]
l3 [X₀ ]
l4 [X₀ ]
l5 [X₀ ]
l15 [X₀ ]
l6 [X₀ ]
l7 [X₀-1 ]
l1 [X₀ ]

MPRF for transition t₆₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, X₁₂, X₀, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 0 < X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈+1 {O(n)}

MPRF:

l13 [X₀+1 ]
l2 [X₀ ]
l14 [X₀ ]
l3 [X₀ ]
l4 [X₀+1 ]
l5 [X₀ ]
l15 [X₀ ]
l6 [X₀ ]
l7 [X₀ ]
l1 [X₀+1 ]

MPRF for transition t₇₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₁₁ ≤ 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈ {O(n)}

MPRF:

l13 [X₀ ]
l2 [X₀ ]
l14 [X₀ ]
l3 [X₀ ]
l4 [X₀ ]
l5 [X₀ ]
l15 [X₀ ]
l6 [X₀ ]
l7 [X₀-1 ]
l1 [X₀ ]

MPRF for transition t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈ {O(n)}

MPRF:

l13 [X₀ ]
l2 [X₀ ]
l14 [X₀ ]
l3 [X₀ ]
l4 [X₀ ]
l5 [X₀ ]
l15 [X₀ ]
l6 [X₀ ]
l7 [X₀-1 ]
l1 [X₀ ]

MPRF for transition t₇₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₄ ≤ (X₅)²+(X₁₁)⁵ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₈+1 {O(n)}

MPRF:

l13 [X₀+X₈-1 ]
l2 [X₀+X₈-2 ]
l14 [X₀+X₈-2 ]
l3 [X₀+X₈-2 ]
l4 [X₀+X₈-1 ]
l5 [X₀+X₈-1 ]
l15 [X₀+X₈-1 ]
l6 [X₀+X₈-1 ]
l7 [X₀+X₈-2 ]
l1 [X₀+X₈-1 ]

MPRF for transition t₇₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l1(X₀-1, X₆, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈ {O(n)}

MPRF:

l13 [X₀ ]
l2 [X₀ ]
l14 [X₀ ]
l3 [X₀ ]
l4 [X₀ ]
l5 [X₀ ]
l15 [X₀ ]
l6 [X₀ ]
l7 [X₀ ]
l1 [X₀ ]

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0 for location l11

Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l15

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l12

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l13

Found invariant X₀ ≤ X₈ for location l1

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l10

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l4

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l9

Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l3

Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l14

Time-Bound by TWN-Loops:

TWN-Loops: t₆₂ 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}

TWN-Loops:

entry: t₅₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l2(X₀, X₁, X₁₂, X₀, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 0 ≤ 5+X₁₁ ∧ X₁₁ ≤ 5 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₁,X₁₂) -> (X₀,X₁,3⋅X₂-(X₁₁)³,-2⋅X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₁,X₁₂) :|: X₃ < 0 ∧ (X₃)²+(X₁₁)⁵ < X₂ ∨ 0 < X₃ ∧ (X₃)²+(X₁₁)⁵ < X₂
order: [X₀; X₁₁; X₂; X₃; X₈]
closed-form:
X₀: X₀
X₁₁: X₁₁
X₂: X₂ * 9^n + [[n != 0]] * -1/2⋅(X₁₁)³ * 9^n + [[n != 0]] * 1/2⋅(X₁₁)³
X₃: X₃ * 4^n
X₈: X₈

Termination: true
Formula:

8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0 ∧ X₃ < 0
∨ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ (X₁₁)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ X₃ < 0
∨ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₁)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₁)³ ∧ X₃ < 0
∨ 3⋅(X₁₁)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0 ∧ X₃ < 0
∨ 3⋅(X₁₁)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ (X₁₁)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ X₃ < 0
∨ 3⋅(X₁₁)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₁)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₁)³ ∧ X₃ < 0
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₁)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0 ∧ X₃ < 0
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₁)³ ∧ 0 < 2⋅X₃ ∧ (X₁₁)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ X₃ < 0
∨ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₁)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₁)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₁)³ ∧ X₃ < 0
∨ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0 ∧ X₃ < 0
∨ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ (X₁₁)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ X₃ < 0
∨ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₁)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₁)³ ∧ X₃ < 0
∨ 3⋅(X₁₁)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0 ∧ X₃ < 0
∨ 3⋅(X₁₁)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ (X₁₁)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ X₃ < 0
∨ 3⋅(X₁₁)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₁)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₁)³ ∧ X₃ < 0
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₁)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0 ∧ X₃ < 0
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₁)³ ∧ 2⋅X₃ < 0 ∧ (X₁₁)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ X₃ < 0
∨ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₁)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₁)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₁)³ ∧ X₃ < 0
∨ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0 ∧ 0 < X₃
∨ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ (X₁₁)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ 0 < X₃
∨ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₁)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₁)³ ∧ 0 < X₃
∨ 3⋅(X₁₁)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0 ∧ 0 < X₃
∨ 3⋅(X₁₁)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ (X₁₁)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ 0 < X₃
∨ 3⋅(X₁₁)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₁)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₁)³ ∧ 0 < X₃
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₁)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0 ∧ 0 < X₃
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₁)³ ∧ 0 < 2⋅X₃ ∧ (X₁₁)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ 0 < X₃
∨ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₁)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₁)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₁)³ ∧ 0 < X₃
∨ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0 ∧ 0 < X₃
∨ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ (X₁₁)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ 0 < X₃
∨ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₁)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₁)³ ∧ 0 < X₃
∨ 3⋅(X₁₁)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0 ∧ 0 < X₃
∨ 3⋅(X₁₁)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ (X₁₁)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ 0 < X₃
∨ 3⋅(X₁₁)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₁)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₁)³ ∧ 0 < X₃
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₁)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0 ∧ 0 < X₃
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₁)³ ∧ 2⋅X₃ < 0 ∧ (X₁₁)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ 0 < X₃
∨ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₁)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₁)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₁)³ ∧ 0 < X₃

Stabilization-Threshold for: 4⋅(X₃)²+(X₁₁)⁵+(X₁₁)³ < 3⋅X₂
alphas_abs: 6⋅X₂+3⋅(X₁₁)³+2⋅(X₁₁)⁵
M: 0
N: 1
Bound: 4⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+6⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₂+2 {O(n^5)}
Stabilization-Threshold for: (X₃)²+(X₁₁)⁵ < X₂
alphas_abs: 2⋅X₂+(X₁₁)³+2⋅(X₁₁)⁵
M: 0
N: 1
Bound: 4⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₂+2 {O(n^5)}

relevant size-bounds w.r.t. t₅₉:
X₂: X₁₂ {O(n)}
X₁₁: 5 {O(1)}
Runtime-bound of t₅₉: X₈ {O(n)}
Results in: 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}

32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0 for location l11

Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l15

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l12

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l13

Found invariant X₀ ≤ X₈ for location l1

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l10

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l4

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l9

Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l3

Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l14

Time-Bound by TWN-Loops:

TWN-Loops: t₆₃ 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}

TWN-Loops:

entry: t₆₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, X₁₂, X₀, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 0 < X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₁,X₁₂) -> (X₀,X₁,X₂,X₃,3⋅X₄-(X₁₁)³,-2⋅X₅,X₆,X₇,X₈,X₉,X₁₁,X₁₂) :|: X₅ < 0 ∧ (X₅)²+(X₁₁)⁵ < X₄ ∨ 0 < X₅ ∧ (X₅)²+(X₁₁)⁵ < X₄
order: [X₀; X₁₁; X₄; X₅; X₈]
closed-form:
X₀: X₀
X₁₁: X₁₁
X₄: X₄ * 9^n + [[n != 0]] * -1/2⋅(X₁₁)³ * 9^n + [[n != 0]] * 1/2⋅(X₁₁)³
X₅: X₅ * 4^n
X₈: X₈

Termination: true
Formula:

8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0 ∧ X₅ < 0
∨ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ (X₁₁)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ X₅ < 0
∨ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₁)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₁)³ ∧ X₅ < 0
∨ 3⋅(X₁₁)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0 ∧ X₅ < 0
∨ 3⋅(X₁₁)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ (X₁₁)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ X₅ < 0
∨ 3⋅(X₁₁)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₁)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₁)³ ∧ X₅ < 0
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₁)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0 ∧ X₅ < 0
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₁)³ ∧ 0 < 2⋅X₅ ∧ (X₁₁)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ X₅ < 0
∨ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₁)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₁)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₁)³ ∧ X₅ < 0
∨ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0 ∧ X₅ < 0
∨ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ (X₁₁)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ X₅ < 0
∨ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₁)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₁)³ ∧ X₅ < 0
∨ 3⋅(X₁₁)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0 ∧ X₅ < 0
∨ 3⋅(X₁₁)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ (X₁₁)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ X₅ < 0
∨ 3⋅(X₁₁)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₁)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₁)³ ∧ X₅ < 0
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₁)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0 ∧ X₅ < 0
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₁)³ ∧ 2⋅X₅ < 0 ∧ (X₁₁)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ X₅ < 0
∨ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₁)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₁)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₁)³ ∧ X₅ < 0
∨ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0 ∧ 0 < X₅
∨ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ (X₁₁)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ 0 < X₅
∨ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₁)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₁)³ ∧ 0 < X₅
∨ 3⋅(X₁₁)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0 ∧ 0 < X₅
∨ 3⋅(X₁₁)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ (X₁₁)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ 0 < X₅
∨ 3⋅(X₁₁)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₁)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₁)³ ∧ 0 < X₅
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₁)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0 ∧ 0 < X₅
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₁)³ ∧ 0 < 2⋅X₅ ∧ (X₁₁)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ 0 < X₅
∨ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₁)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₁)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₁)³ ∧ 0 < X₅
∨ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0 ∧ 0 < X₅
∨ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ (X₁₁)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ 0 < X₅
∨ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₁)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₁)³ ∧ 0 < X₅
∨ 3⋅(X₁₁)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0 ∧ 0 < X₅
∨ 3⋅(X₁₁)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ (X₁₁)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ 0 < X₅
∨ 3⋅(X₁₁)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₁)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₁)³ ∧ 0 < X₅
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₁)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0 ∧ 0 < X₅
∨ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₁)³ ∧ 2⋅X₅ < 0 ∧ (X₁₁)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ 0 < X₅
∨ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₁)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₁)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₁)⁵ < (X₁₁)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₁)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₁)³ ∧ 0 < X₅

Stabilization-Threshold for: 4⋅(X₅)²+(X₁₁)⁵+(X₁₁)³ < 3⋅X₄
alphas_abs: 6⋅X₄
M: 0
N: 1
Bound: 12⋅X₄+2 {O(n)}
Stabilization-Threshold for: (X₅)²+(X₁₁)⁵ < X₄
alphas_abs: 2⋅X₄
M: 0
N: 1
Bound: 4⋅X₄+2 {O(n)}

relevant size-bounds w.r.t. t₆₉:
X₄: X₁₂ {O(n)}
Runtime-bound of t₆₉: X₈+1 {O(n)}
Results in: 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}

32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}

Time-Bound by TWN-Loops:

TWN-Loops: t₆₄ 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}

relevant size-bounds w.r.t. t₅₉:
X₂: X₁₂ {O(n)}
X₁₁: 5 {O(1)}
Runtime-bound of t₅₉: X₈ {O(n)}
Results in: 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}

32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}

Time-Bound by TWN-Loops:

TWN-Loops: t₆₅ 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}

relevant size-bounds w.r.t. t₅₉:
X₂: X₁₂ {O(n)}
X₁₁: 5 {O(1)}
Runtime-bound of t₅₉: X₈ {O(n)}
Results in: 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}

32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}

Time-Bound by TWN-Loops:

TWN-Loops: t₆₇ 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}

relevant size-bounds w.r.t. t₅₉:
X₂: X₁₂ {O(n)}
X₁₁: 5 {O(1)}
Runtime-bound of t₅₉: X₈ {O(n)}
Results in: 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}

32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}

Time-Bound by TWN-Loops:

TWN-Loops: t₇₁ 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}

relevant size-bounds w.r.t. t₆₉:
X₄: X₁₂ {O(n)}
Runtime-bound of t₆₉: X₈+1 {O(n)}
Results in: 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}

32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}

Time-Bound by TWN-Loops:

TWN-Loops: t₇₂ 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}

relevant size-bounds w.r.t. t₆₉:
X₄: X₁₂ {O(n)}
Runtime-bound of t₆₉: X₈+1 {O(n)}
Results in: 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}

32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}

Time-Bound by TWN-Loops:

TWN-Loops: t₇₄ 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}

relevant size-bounds w.r.t. t₆₉:
X₄: X₁₂ {O(n)}
Runtime-bound of t₆₉: X₈+1 {O(n)}
Results in: 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}

32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}

Analysing control-flow refined program

Cut unsatisfiable transition t₆₆: l2→l7

Cut unsatisfiable transition t₇₃: l5→l7

Cut unsatisfiable transition t₂₇₅: n_l2___3→l7

Cut unsatisfiable transition t₂₇₆: n_l2___6→l7

Cut unsatisfiable transition t₃₀₉: n_l5___1→l7

Cut unsatisfiable transition t₃₁₀: n_l5___4→l7

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0 for location l11

Found invariant 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₁ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l6___3

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l6___6

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₁+X₃ ∧ X₁₁ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₂ ∧ X₁₂ ≤ X₂ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₁ ∧ X₁₁+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l2___6

Found invariant 1 ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₅ ∧ 5 ≤ X₁₁+X₅ ∧ 5 ≤ X₀+X₅ ∧ 3+X₀ ≤ X₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l5___1

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₁+X₃ ∧ X₁₁ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₂ ∧ X₁₂ ≤ X₂ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l14___7

Found invariant 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₁ ∧ X₁₁+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l14___4

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l15___5

Found invariant 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₁ ∧ X₁₁+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l3___5

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l12

Found invariant 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₁ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l15___2

Found invariant 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₁+X₃ ∧ X₁₁ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l2___3

Found invariant 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₁ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l5___4

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₁+X₃ ∧ X₁₁ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₂ ∧ X₁₂ ≤ X₂ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l3___8

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₂ ∧ X₁₂ ≤ X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l13

Found invariant 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₁+X₃ ∧ X₁₁ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l3___2

Found invariant X₀ ≤ X₈ for location l1

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l10

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l4

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l9

Found invariant 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₁+X₃ ∧ X₁₁ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l14___1

knowledge_propagation leads to new time bound X₈ {O(n)} for transition t₂₆₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₁₁ ≤ 5 ∧ 0 ≤ 5+X₁₁ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 0 < X₃ ∧ X₂ ≤ X₁₂ ∧ X₁₂ ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ 5+X₁₁ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ 5 ∧ X₃ ≤ X₈ ∧ 0 ≤ 5+X₁₁ ∧ 1 ≤ X₀ ∧ X₁₁ ≤ 5 ∧ X₀ ≤ X₈ ∧ 0 ≤ 5+X₁₁ ∧ X₁₁ ≤ 5 ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₈ ∧ 0 < X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₁₁ ∧ X₁₁ ≤ 5 ∧ X₀ ≤ X₈ ∧ 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₁+X₃ ∧ X₁₁ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₂ ∧ X₁₂ ≤ X₂ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₈+1 {O(n)} for transition t₂₉₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 0 < X₅ ∧ 0 < X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁₁ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₂ ∧ X₁₂ ≤ X₄ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₈ {O(n)} for transition t₂₆₃: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → n_l14___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, Arg8_P, X₉, Arg11_P, X₁₂) :|: X₁₁ ≤ 5 ∧ 0 ≤ 5+X₁₁ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁₂ ∧ X₁₂ ≤ X₂ ∧ Arg11_P ≤ 5 ∧ 0 ≤ 5+Arg11_P ∧ X₀ ≤ Arg8_P ∧ 1 ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₁+X₃ ∧ X₁₁ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₂ ∧ X₁₂ ≤ X₂ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₈ {O(n)} for transition t₂₇₄: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₂ ≤ (X₃)²+(X₁₁)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₁+X₃ ∧ X₁₁ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₂ ∧ X₁₂ ≤ X₂ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₈ {O(n)} for transition t₂₅₇: n_l14___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → n_l2___6(X₀, X₁, NoDet0, -2⋅X₃, X₄, X₅, X₆, X₇, Arg8_P, X₉, Arg11_P, X₁₂) :|: X₁₁ ≤ 5 ∧ 0 ≤ 5+X₁₁ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁₂ ∧ X₁₂ ≤ X₂ ∧ Arg11_P ≤ 5 ∧ 0 ≤ 5+Arg11_P ∧ X₀ ≤ Arg8_P ∧ 1 ≤ X₀ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₁+X₃ ∧ X₁₁ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₂ ∧ X₁₂ ≤ X₂ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀

MPRF for transition t₂₇₂: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₂ ≤ (X₃)²+(X₁₁)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₁+X₃ ∧ X₁₁ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈ {O(n)}

MPRF:

l13 [X₀ ]
l2 [X₀ ]
l4 [X₀ ]
l5 [X₅ ]
l1 [X₀ ]
n_l2___3 [X₀ ]
n_l2___6 [X₀ ]
n_l14___1 [X₀ ]
n_l3___2 [X₀ ]
n_l14___4 [X₀ ]
n_l3___5 [X₀ ]
n_l14___7 [X₀ ]
n_l3___8 [X₃ ]
n_l5___1 [X₀ ]
n_l5___4 [X₀ ]
n_l15___2 [X₀ ]
n_l6___3 [X₀ ]
n_l15___5 [X₀ ]
n_l6___6 [X₀ ]
l7 [X₀-1 ]

MPRF for transition t₂₇₃: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₂ ≤ (X₃)²+(X₁₁)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₁ ∧ X₁₁+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈ {O(n)}

MPRF:

l13 [X₀ ]
l2 [X₃ ]
l4 [X₀ ]
l5 [X₀ ]
l1 [X₀ ]
n_l2___3 [X₀ ]
n_l2___6 [X₀ ]
n_l14___1 [X₀ ]
n_l3___2 [X₀ ]
n_l14___4 [X₀ ]
n_l3___5 [X₀ ]
n_l14___7 [X₃ ]
n_l3___8 [X₀ ]
n_l5___1 [X₀ ]
n_l5___4 [X₀ ]
n_l15___2 [X₀ ]
n_l6___3 [X₀ ]
n_l15___5 [X₀ ]
n_l6___6 [X₀ ]
l7 [X₀-1 ]

MPRF for transition t₃₀₇: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₄ ≤ (X₅)²+(X₁₁)⁵ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₁ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₈+2 {O(n)}

MPRF:

l13 [X₀+2⋅X₈-2 ]
l2 [X₀+2⋅X₈-2 ]
l4 [X₀+2⋅X₈-2 ]
l5 [X₅+2⋅X₈-2 ]
l1 [X₀+2⋅X₈-2 ]
n_l2___3 [X₀+2⋅X₈-2 ]
n_l2___6 [X₀+2⋅X₈-2 ]
n_l14___1 [X₀+2⋅X₈-2 ]
n_l3___2 [X₀+2⋅X₈-2 ]
n_l14___4 [X₀+2⋅X₈-2 ]
n_l3___5 [X₀+2⋅X₈-2 ]
n_l14___7 [X₃+2⋅X₈-2 ]
n_l3___8 [X₃+2⋅X₈-2 ]
n_l5___1 [X₀+2⋅X₈-2 ]
n_l5___4 [X₀+2⋅X₈-2 ]
n_l15___2 [X₀+2⋅X₈-2 ]
n_l6___3 [X₀+2⋅X₈-2 ]
n_l15___5 [X₀+2⋅X₈-2 ]
n_l6___6 [X₀+2⋅X₈-2 ]
l7 [X₀+2⋅X₈-3 ]

MPRF for transition t₃₀₈: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₄ ≤ (X₅)²+(X₁₁)⁵ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₈ {O(n)}

MPRF:

l13 [X₀ ]
l2 [X₃ ]
l4 [X₀ ]
l5 [X₀ ]
l1 [X₀ ]
n_l2___3 [X₀ ]
n_l2___6 [X₀ ]
n_l14___1 [X₀ ]
n_l3___2 [X₀ ]
n_l14___4 [X₀ ]
n_l3___5 [X₀ ]
n_l14___7 [X₀ ]
n_l3___8 [X₃ ]
n_l5___1 [X₀ ]
n_l5___4 [X₀ ]
n_l15___2 [X₀ ]
n_l6___3 [X₀ ]
n_l15___5 [X₀ ]
n_l6___6 [X₀ ]
l7 [X₀-1 ]

CFR did not improve the program. Rolling back

MPRF for transition t₅₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: 0 < X₇ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}

MPRF:

l9 [X₇-1 ]
l11 [X₇ ]

MPRF for transition t₇₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₁, X₁₂) :|: X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}

MPRF:

l9 [X₇ ]
l11 [X₇ ]

Analysing control-flow refined program

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₀ ≤ 0 for location l11

Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l15

Found invariant X₀ ≤ X₈ ∧ 1+X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l9___1

Found invariant X₀ ≤ X₈ ∧ 1+X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l11___2

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l9___3

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l12

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l13

Found invariant X₀ ≤ X₈ for location l1

Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l10

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l3

Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₁+X₈ ∧ X₁₁ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₁ ≤ 5 ∧ X₁₁ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₁ ∧ 0 ≤ 4+X₀+X₁₁ ∧ 1 ≤ X₀ for location l14

MPRF for transition t₂₇₂₇: n_l11___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) :|: X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 1+X₇ ≤ X₁ ∧ X₀ ≤ X₈ ∧ X₀ ≤ 0 ∧ X₇ ≤ X₁ ∧ 0 < X₇ ∧ X₀ ≤ X₈ ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ 1+X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉+1 {O(EXP)}

MPRF:

n_l9___1 [X₇ ]
n_l11___2 [X₇+1 ]

MPRF for transition t₂₇₂₉: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₁, X₁₂) → n_l11___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₁, X₁₂) :|: X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ 1+X₇ ≤ X₁ ∧ 0 < X₇ ∧ 1 ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₀ ≤ X₈ ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ 1+X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}

MPRF:

n_l9___1 [X₇ ]
n_l11___2 [X₇ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅4⋅X₈+2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅4⋅X₈+256⋅X₁₂⋅X₈+128⋅X₁₂+2⋅X₉+208182⋅X₈+94 {O(EXP)}
t₅₃: 1 {O(1)}
t₅₄: X₈+1 {O(n)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₅₈: 1 {O(1)}
t₅₉: X₈ {O(n)}
t₆₀: X₈+1 {O(n)}
t₆₁: X₈+1 {O(n)}
t₆₂: 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}
t₆₃: 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}
t₆₄: 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}
t₆₅: 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}
t₆₆: X₈ {O(n)}
t₆₇: 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}
t₆₈: X₈ {O(n)}
t₆₉: X₈+1 {O(n)}
t₇₀: X₈ {O(n)}
t₇₁: 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}
t₇₂: 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}
t₇₃: X₈ {O(n)}
t₇₄: 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}
t₇₅: 2⋅X₈+1 {O(n)}
t₇₆: X₈ {O(n)}
t₇₇: 1 {O(1)}
t₇₈: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}

Costbounds

Overall costbound: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅4⋅X₈+2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅4⋅X₈+256⋅X₁₂⋅X₈+128⋅X₁₂+2⋅X₉+208182⋅X₈+94 {O(EXP)}
t₅₃: 1 {O(1)}
t₅₄: X₈+1 {O(n)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₅₈: 1 {O(1)}
t₅₉: X₈ {O(n)}
t₆₀: X₈+1 {O(n)}
t₆₁: X₈+1 {O(n)}
t₆₂: 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}
t₆₃: 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}
t₆₄: 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}
t₆₅: 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}
t₆₆: X₈ {O(n)}
t₆₇: 32⋅X₁₂⋅X₈+52021⋅X₈ {O(n^2)}
t₆₈: X₈ {O(n)}
t₆₉: X₈+1 {O(n)}
t₇₀: X₈ {O(n)}
t₇₁: 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}
t₇₂: 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}
t₇₃: X₈ {O(n)}
t₇₄: 32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21 {O(n^2)}
t₇₅: 2⋅X₈+1 {O(n)}
t₇₆: X₈ {O(n)}
t₇₇: 1 {O(1)}
t₇₈: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}

Sizebounds

t₅₃, X₀: X₀ {O(n)}
t₅₃, X₁: X₁ {O(n)}
t₅₃, X₂: X₂ {O(n)}
t₅₃, X₃: X₃ {O(n)}
t₅₃, X₄: X₄ {O(n)}
t₅₃, X₅: X₅ {O(n)}
t₅₃, X₆: X₆ {O(n)}
t₅₃, X₇: X₇ {O(n)}
t₅₃, X₈: X₈ {O(n)}
t₅₃, X₉: X₉ {O(n)}
t₅₃, X₁₁: X₁₁ {O(n)}
t₅₃, X₁₂: X₁₂ {O(n)}
t₅₄, X₀: X₈ {O(n)}
t₅₄, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₅₄, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₃ {O(EXP)}
t₅₄, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+X₅ {O(EXP)}
t₅₄, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₅₄, X₇: X₇ {O(n)}
t₅₄, X₈: X₈ {O(n)}
t₅₄, X₉: X₉ {O(n)}
t₅₄, X₁₁: X₁₁+10 {O(n)}
t₅₄, X₁₂: X₁₂ {O(n)}
t₅₅, X₀: 2⋅X₈ {O(n)}
t₅₅, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₅₅, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+2⋅X₃ {O(EXP)}
t₅₅, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅X₅ {O(EXP)}
t₅₅, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₅₅, X₇: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₅₅, X₈: 2⋅X₈ {O(n)}
t₅₅, X₉: 2⋅X₉ {O(n)}
t₅₅, X₁₁: 2⋅X₁₁+10 {O(n)}
t₅₅, X₁₂: 2⋅X₁₂ {O(n)}
t₅₆, X₀: 4⋅X₈ {O(n)}
t₅₆, X₁: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅4⋅X₈+2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅4⋅X₈+2⋅X₈+2⋅X₉ {O(EXP)}
t₅₆, X₃: 2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅4⋅X₈+4⋅X₃ {O(EXP)}
t₅₆, X₅: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅4⋅X₈+4⋅X₅ {O(EXP)}
t₅₆, X₆: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅4⋅X₈+2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅4⋅X₈+2⋅X₆+2⋅X₈ {O(EXP)}
t₅₆, X₇: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅4⋅X₈+2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅4⋅X₈+2⋅X₈+2⋅X₉ {O(EXP)}
t₅₆, X₈: 4⋅X₈ {O(n)}
t₅₆, X₉: 4⋅X₉ {O(n)}
t₅₆, X₁₁: 4⋅X₁₁+20 {O(n)}
t₅₆, X₁₂: 4⋅X₁₂ {O(n)}
t₅₇, X₀: 2⋅X₈ {O(n)}
t₅₇, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₅₇, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+2⋅X₃ {O(EXP)}
t₅₇, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅X₅ {O(EXP)}
t₅₇, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₅₇, X₇: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₅₇, X₈: 2⋅X₈ {O(n)}
t₅₇, X₉: 2⋅X₉ {O(n)}
t₅₇, X₁₁: 2⋅X₁₁+10 {O(n)}
t₅₇, X₁₂: 2⋅X₁₂ {O(n)}
t₅₈, X₀: 4⋅X₈ {O(n)}
t₅₈, X₁: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅4⋅X₈+2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅4⋅X₈+2⋅X₈+2⋅X₉ {O(EXP)}
t₅₈, X₃: 2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅4⋅X₈+4⋅X₃ {O(EXP)}
t₅₈, X₅: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅4⋅X₈+4⋅X₅ {O(EXP)}
t₅₈, X₆: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅4⋅X₈+2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅4⋅X₈+2⋅X₆+2⋅X₈ {O(EXP)}
t₅₈, X₇: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅4⋅X₈+2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅4⋅X₈+2⋅X₈+2⋅X₉ {O(EXP)}
t₅₈, X₈: 4⋅X₈ {O(n)}
t₅₈, X₉: 4⋅X₉ {O(n)}
t₅₈, X₁₁: 4⋅X₁₁+20 {O(n)}
t₅₈, X₁₂: 4⋅X₁₂ {O(n)}
t₅₉, X₀: X₈ {O(n)}
t₅₉, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₅₉, X₂: X₁₂ {O(n)}
t₅₉, X₃: X₈ {O(n)}
t₅₉, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+X₅ {O(EXP)}
t₅₉, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₅₉, X₇: X₇ {O(n)}
t₅₉, X₈: X₈ {O(n)}
t₅₉, X₉: X₉ {O(n)}
t₅₉, X₁₁: 5 {O(1)}
t₅₉, X₁₂: X₁₂ {O(n)}
t₆₀, X₀: X₈ {O(n)}
t₆₀, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₆₀, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₃ {O(EXP)}
t₆₀, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+X₅ {O(EXP)}
t₆₀, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₆₀, X₇: X₇ {O(n)}
t₆₀, X₈: X₈ {O(n)}
t₆₀, X₉: X₉ {O(n)}
t₆₀, X₁₁: X₁₁+10 {O(n)}
t₆₀, X₁₂: X₁₂ {O(n)}
t₆₁, X₀: X₈ {O(n)}
t₆₁, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₆₁, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₃ {O(EXP)}
t₆₁, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+X₅ {O(EXP)}
t₆₁, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₆₁, X₇: X₇ {O(n)}
t₆₁, X₈: X₈ {O(n)}
t₆₁, X₉: X₉ {O(n)}
t₆₁, X₁₁: X₁₁+10 {O(n)}
t₆₁, X₁₂: X₁₂ {O(n)}
t₆₂, X₀: X₈ {O(n)}
t₆₂, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₆₂, X₃: 2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈ {O(EXP)}
t₆₂, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+X₅ {O(EXP)}
t₆₂, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₆₂, X₇: X₇ {O(n)}
t₆₂, X₈: X₈ {O(n)}
t₆₂, X₉: X₉ {O(n)}
t₆₂, X₁₁: 5 {O(1)}
t₆₂, X₁₂: X₁₂ {O(n)}
t₆₃, X₀: X₈ {O(n)}
t₆₃, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₆₃, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₃ {O(EXP)}
t₆₃, X₅: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈ {O(EXP)}
t₆₃, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₆₃, X₇: X₇ {O(n)}
t₆₃, X₈: X₈ {O(n)}
t₆₃, X₉: X₉ {O(n)}
t₆₃, X₁₁: X₁₁+10 {O(n)}
t₆₃, X₁₂: X₁₂ {O(n)}
t₆₄, X₀: X₈ {O(n)}
t₆₄, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₆₄, X₃: 2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈ {O(EXP)}
t₆₄, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+X₅ {O(EXP)}
t₆₄, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₆₄, X₇: X₇ {O(n)}
t₆₄, X₈: X₈ {O(n)}
t₆₄, X₉: X₉ {O(n)}
t₆₄, X₁₁: 5 {O(1)}
t₆₄, X₁₂: X₁₂ {O(n)}
t₆₅, X₀: X₈ {O(n)}
t₆₅, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₆₅, X₃: 2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈ {O(EXP)}
t₆₅, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+X₅ {O(EXP)}
t₆₅, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₆₅, X₇: X₇ {O(n)}
t₆₅, X₈: X₈ {O(n)}
t₆₅, X₉: X₉ {O(n)}
t₆₅, X₁₁: 5 {O(1)}
t₆₅, X₁₂: X₁₂ {O(n)}
t₆₆, X₀: X₈ {O(n)}
t₆₆, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₆₆, X₃: 0 {O(1)}
t₆₆, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+X₅ {O(EXP)}
t₆₆, X₆: 0 {O(1)}
t₆₆, X₇: X₇ {O(n)}
t₆₆, X₈: X₈ {O(n)}
t₆₆, X₉: X₉ {O(n)}
t₆₆, X₁₁: 5 {O(1)}
t₆₆, X₁₂: X₁₂ {O(n)}
t₆₇, X₀: X₈ {O(n)}
t₆₇, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₆₇, X₃: 2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈ {O(EXP)}
t₆₇, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+X₅ {O(EXP)}
t₆₇, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₆₇, X₇: X₇ {O(n)}
t₆₇, X₈: X₈ {O(n)}
t₆₇, X₉: X₉ {O(n)}
t₆₇, X₁₁: 5 {O(1)}
t₆₇, X₁₂: X₁₂ {O(n)}
t₆₈, X₀: X₈ {O(n)}
t₆₈, X₁: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅4⋅X₈+2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅4⋅X₈+2⋅X₈+2⋅X₉ {O(EXP)}
t₆₈, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈ {O(EXP)}
t₆₈, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+X₅ {O(EXP)}
t₆₈, X₆: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈ {O(EXP)}
t₆₈, X₇: X₇ {O(n)}
t₆₈, X₈: X₈ {O(n)}
t₆₈, X₉: X₉ {O(n)}
t₆₈, X₁₁: 5 {O(1)}
t₆₈, X₁₂: X₁₂ {O(n)}
t₆₉, X₀: X₈ {O(n)}
t₆₉, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₆₉, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₃ {O(EXP)}
t₆₉, X₄: X₁₂ {O(n)}
t₆₉, X₅: X₈ {O(n)}
t₆₉, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₆₉, X₇: X₇ {O(n)}
t₆₉, X₈: X₈ {O(n)}
t₆₉, X₉: X₉ {O(n)}
t₆₉, X₁₁: X₁₁+10 {O(n)}
t₆₉, X₁₂: X₁₂ {O(n)}
t₇₀, X₀: X₈ {O(n)}
t₇₀, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₇₀, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₃ {O(EXP)}
t₇₀, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+X₅ {O(EXP)}
t₇₀, X₆: X₈ {O(n)}
t₇₀, X₇: X₇ {O(n)}
t₇₀, X₈: X₈ {O(n)}
t₇₀, X₉: X₉ {O(n)}
t₇₀, X₁₁: X₁₁+10 {O(n)}
t₇₀, X₁₂: X₁₂ {O(n)}
t₇₁, X₀: X₈ {O(n)}
t₇₁, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₇₁, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₃ {O(EXP)}
t₇₁, X₅: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈ {O(EXP)}
t₇₁, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₇₁, X₇: X₇ {O(n)}
t₇₁, X₈: X₈ {O(n)}
t₇₁, X₉: X₉ {O(n)}
t₇₁, X₁₁: X₁₁+10 {O(n)}
t₇₁, X₁₂: X₁₂ {O(n)}
t₇₂, X₀: X₈ {O(n)}
t₇₂, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₇₂, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₃ {O(EXP)}
t₇₂, X₅: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈ {O(EXP)}
t₇₂, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₇₂, X₇: X₇ {O(n)}
t₇₂, X₈: X₈ {O(n)}
t₇₂, X₉: X₉ {O(n)}
t₇₂, X₁₁: X₁₁+10 {O(n)}
t₇₂, X₁₂: X₁₂ {O(n)}
t₇₃, X₀: X₈ {O(n)}
t₇₃, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₇₃, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₃ {O(EXP)}
t₇₃, X₅: 0 {O(1)}
t₇₃, X₆: 0 {O(1)}
t₇₃, X₇: X₇ {O(n)}
t₇₃, X₈: X₈ {O(n)}
t₇₃, X₉: X₉ {O(n)}
t₇₃, X₁₁: X₁₁+10 {O(n)}
t₇₃, X₁₂: X₁₂ {O(n)}
t₇₄, X₀: X₈ {O(n)}
t₇₄, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₇₄, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₃ {O(EXP)}
t₇₄, X₅: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈ {O(EXP)}
t₇₄, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₇₄, X₇: X₇ {O(n)}
t₇₄, X₈: X₈ {O(n)}
t₇₄, X₉: X₉ {O(n)}
t₇₄, X₁₁: X₁₁+10 {O(n)}
t₇₄, X₁₂: X₁₂ {O(n)}
t₇₅, X₀: X₈ {O(n)}
t₇₅, X₁: 2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅4⋅X₈+2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅4⋅X₈+2⋅X₈+2⋅X₉ {O(EXP)}
t₇₅, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₃ {O(EXP)}
t₇₅, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈ {O(EXP)}
t₇₅, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈ {O(EXP)}
t₇₅, X₇: X₇ {O(n)}
t₇₅, X₈: X₈ {O(n)}
t₇₅, X₉: X₉ {O(n)}
t₇₅, X₁₁: X₁₁+10 {O(n)}
t₇₅, X₁₂: X₁₂ {O(n)}
t₇₆, X₀: X₈ {O(n)}
t₇₆, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈ {O(EXP)}
t₇₆, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₃ {O(EXP)}
t₇₆, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+X₅ {O(EXP)}
t₇₆, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈ {O(EXP)}
t₇₆, X₇: X₇ {O(n)}
t₇₆, X₈: X₈ {O(n)}
t₇₆, X₉: X₉ {O(n)}
t₇₆, X₁₁: X₁₁+10 {O(n)}
t₇₆, X₁₂: X₁₂ {O(n)}
t₇₇, X₀: X₈ {O(n)}
t₇₇, X₁: X₉ {O(n)}
t₇₇, X₂: X₂ {O(n)}
t₇₇, X₃: X₃ {O(n)}
t₇₇, X₄: X₄ {O(n)}
t₇₇, X₅: X₅ {O(n)}
t₇₇, X₆: X₆ {O(n)}
t₇₇, X₇: X₇ {O(n)}
t₇₇, X₈: X₈ {O(n)}
t₇₇, X₉: X₉ {O(n)}
t₇₇, X₁₁: X₁₁ {O(n)}
t₇₇, X₁₂: X₁₂ {O(n)}
t₇₈, X₀: 2⋅X₈ {O(n)}
t₇₈, X₁: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₇₈, X₃: 2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+2⋅X₃ {O(EXP)}
t₇₈, X₅: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅X₅ {O(EXP)}
t₇₈, X₆: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₆+X₈ {O(EXP)}
t₇₈, X₇: 2⋅2^(32⋅X₁₂⋅X₈+21⋅X₈+32⋅X₁₂+21)⋅X₈+2⋅2^(32⋅X₁₂⋅X₈+52021⋅X₈)⋅X₈+X₈+X₉ {O(EXP)}
t₇₈, X₈: 2⋅X₈ {O(n)}
t₇₈, X₉: 2⋅X₉ {O(n)}
t₇₈, X₁₁: 2⋅X₁₁+10 {O(n)}
t₇₈, X₁₂: 2⋅X₁₂ {O(n)}