Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₆, X₇, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₅, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₆
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: (X₂)² ≤ X₁
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < (X₂)² ∧ 0 < X₁
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, 5⋅X₁+(X₀)², 2⋅X₂, X₃, X₄, X₅, X₆, X₇)

Preprocessing

Eliminate variables {X₃,X₄} that do not contribute to the problem

Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₆ ∧ X₀ ≤ X₅ for location l1

Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₂₂: l0(X₀, X₁, X₂, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₅, X₆, X₇)
t₂₄: l1(X₀, X₁, X₂, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅
t₂₃: l1(X₀, X₁, X₂, X₅, X₆, X₇) → l4(X₀, X₆, X₇, X₅, X₆, X₇) :|: 0 < X₀ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅
t₂₅: l2(X₀, X₁, X₂, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₅, X₆, X₇)
t₂₆: l3(X₀, X₁, X₂, X₅, X₆, X₇) → l1(X₅, X₁, X₂, X₅, X₆, X₇) :|: 0 < X₆
t₂₇: l3(X₀, X₁, X₂, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₅, X₆, X₇) :|: X₆ ≤ 0
t₂₉: l4(X₀, X₁, X₂, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₅, X₆, X₇) :|: (X₂)² ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₀: l4(X₀, X₁, X₂, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₈: l4(X₀, X₁, X₂, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₅, X₆, X₇) :|: X₁ < (X₂)² ∧ 0 < X₁ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₁: l5(X₀, X₁, X₂, X₅, X₆, X₇) → l1(X₀-1, X₁, X₂, X₅, X₆, X₇) :|: X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₂: l6(X₀, X₁, X₂, X₅, X₆, X₇) → l4(X₀, 5⋅X₁+(X₀)², 2⋅X₂, X₅, X₆, X₇) :|: X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₂₃: l1(X₀, X₁, X₂, X₅, X₆, X₇) → l4(X₀, X₆, X₇, X₅, X₆, X₇) :|: 0 < X₀ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l5 [X₀-1 ]
l1 [X₀ ]
l6 [X₀-1 ]
l4 [X₀-1 ]

MPRF for transition t₂₉: l4(X₀, X₁, X₂, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₅, X₆, X₇) :|: (X₂)² ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l5 [X₀-1 ]
l1 [X₀ ]
l6 [X₀ ]
l4 [X₀ ]

MPRF for transition t₃₀: l4(X₀, X₁, X₂, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l5 [X₀-1 ]
l1 [X₀ ]
l6 [X₀ ]
l4 [X₀ ]

MPRF for transition t₃₁: l5(X₀, X₁, X₂, X₅, X₆, X₇) → l1(X₀-1, X₁, X₂, X₅, X₆, X₇) :|: X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l5 [X₀ ]
l1 [X₀ ]
l6 [X₀ ]
l4 [X₀ ]

Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₆ ∧ X₀ ≤ X₅ for location l1

Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4

Time-Bound by TWN-Loops:

TWN-Loops: t₂₈ 32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅ {O(n^3)}

TWN-Loops:

entry: t₂₃: l1(X₀, X₁, X₂, X₅, X₆, X₇) → l4(X₀, X₆, X₇, X₅, X₆, X₇) :|: 0 < X₀ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅
results in twn-loop: twn:Inv: [X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂,X₅,X₆,X₇) -> (X₀,5⋅X₁+(X₀)²,2⋅X₂,X₅,X₆,X₇) :|: X₁ < (X₂)² ∧ 0 < X₁
order: [X₀; X₁; X₂; X₅; X₆]
closed-form:
X₀: X₀
X₁: X₁ * 5^n + [[n != 0]] * 1/4⋅(X₀)² * 5^n + [[n != 0]] * -1/4⋅(X₀)²
X₂: X₂ * 2^n
X₅: X₅
X₆: X₆

Termination: true
Formula:

4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 4⋅X₁+(X₀)² < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 4⋅X₁+(X₀)² < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < 4⋅(X₂)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅(X₂)² ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅(X₂)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅(X₂)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅(X₂)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < 4⋅(X₂)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅(X₂)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅(X₂)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < 4⋅(X₂)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < (X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ 0 < 4⋅X₁+(X₀)² ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 4⋅X₁+(X₀)² < 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < 4⋅(X₂)² ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² < 4⋅X₅ ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² < 4⋅X₆ ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 < 4⋅X₁+(X₀)²
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ (X₀)²+4⋅X₆ < 0 ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0
∨ (X₀)² < 0 ∧ 0 < (X₀)² ∧ 0 ≤ 4⋅(X₂)² ∧ 4⋅(X₂)² ≤ 0 ∧ 8+(X₀)² ≤ 4⋅X₅ ∧ 4⋅X₅ ≤ 8+(X₀)² ∧ 8+(X₀)² ≤ 4⋅X₆ ∧ 4⋅X₆ ≤ 8+(X₀)² ∧ 0 ≤ 4⋅X₁+(X₀)² ∧ 4⋅X₁+(X₀)² ≤ 0 ∧ (X₀)²+4⋅X₆ ≤ 0 ∧ 0 ≤ (X₀)²+4⋅X₆

Stabilization-Threshold for: 0 < X₁
alphas_abs: (X₀)²
M: 0
N: 1
Bound: 2⋅X₀⋅X₀+2 {O(n^2)}
Stabilization-Threshold for: X₁ < (X₂)²
alphas_abs: (X₀)²+4⋅(X₂)²
M: 11
N: 1
Bound: 2⋅X₀⋅X₀+8⋅X₂⋅X₂+12 {O(n^2)}

relevant size-bounds w.r.t. t₂₃:
X₀: X₅ {O(n)}
X₂: 2⋅X₇ {O(n)}
Runtime-bound of t₂₃: X₅ {O(n)}
Results in: 32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅ {O(n^3)}

32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅ {O(n^3)}

Time-Bound by TWN-Loops:

TWN-Loops: t₃₂ 32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅ {O(n^3)}

relevant size-bounds w.r.t. t₂₃:
X₀: X₅ {O(n)}
X₂: 2⋅X₇ {O(n)}
Runtime-bound of t₂₃: X₅ {O(n)}
Results in: 32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅ {O(n^3)}

32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅ {O(n^3)}

Analysing control-flow refined program

Cut unsatisfiable transition t₃₀: l4→l5

Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___2

Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location n_l4___1

Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₆ ∧ X₀ ≤ X₅ for location l1

Found invariant X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4

knowledge_propagation leads to new time bound X₅ {O(n)} for transition t₉₀: l4(X₀, X₁, X₂, X₅, X₆, X₇) → n_l6___2(X₀, X₁, X₂, X₅, Arg6_P, X₇) :|: X₀ ≤ X₅ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅ ∧ Arg6_P ≤ X₁ ∧ 1 ≤ Arg6_P ∧ 1 ≤ X₀ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₉₆: n_l4___1(X₀, X₁, X₂, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₅, X₆, X₇) :|: (X₂)² ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l4 [X₀+X₁-X₆ ]
l1 [X₀ ]
l5 [X₀-1 ]
n_l6___2 [X₀ ]
n_l4___1 [X₀ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:64⋅X₅⋅X₇⋅X₇+8⋅X₅⋅X₅⋅X₅+36⋅X₅+5 {O(n^3)}
t₂₂: 1 {O(1)}
t₂₃: X₅ {O(n)}
t₂₄: 1 {O(1)}
t₂₅: 1 {O(1)}
t₂₆: 1 {O(1)}
t₂₇: 1 {O(1)}
t₂₈: 32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅ {O(n^3)}
t₂₉: X₅ {O(n)}
t₃₀: X₅ {O(n)}
t₃₁: X₅ {O(n)}
t₃₂: 32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅ {O(n^3)}

Costbounds

Overall costbound: 64⋅X₅⋅X₇⋅X₇+8⋅X₅⋅X₅⋅X₅+36⋅X₅+5 {O(n^3)}
t₂₂: 1 {O(1)}
t₂₃: X₅ {O(n)}
t₂₄: 1 {O(1)}
t₂₅: 1 {O(1)}
t₂₆: 1 {O(1)}
t₂₇: 1 {O(1)}
t₂₈: 32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅ {O(n^3)}
t₂₉: X₅ {O(n)}
t₃₀: X₅ {O(n)}
t₃₁: X₅ {O(n)}
t₃₂: 32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅ {O(n^3)}

Sizebounds

t₂₂, X₀: X₀ {O(n)}
t₂₂, X₁: X₁ {O(n)}
t₂₂, X₂: X₂ {O(n)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₇: X₇ {O(n)}
t₂₃, X₀: X₅ {O(n)}
t₂₃, X₁: 2⋅X₆ {O(n)}
t₂₃, X₂: 2⋅X₇ {O(n)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₇: X₇ {O(n)}
t₂₄, X₀: 2⋅X₅ {O(n)}
t₂₄, X₂: 2⋅2^(32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅)⋅X₇+2⋅X₇+X₂ {O(EXP)}
t₂₄, X₅: 2⋅X₅ {O(n)}
t₂₄, X₆: 2⋅X₆ {O(n)}
t₂₄, X₇: 2⋅X₇ {O(n)}
t₂₅, X₀: 2⋅X₅+X₀ {O(n)}
t₂₅, X₂: 2⋅2^(32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅)⋅X₇+2⋅X₂+2⋅X₇ {O(EXP)}
t₂₅, X₅: 3⋅X₅ {O(n)}
t₂₅, X₆: 3⋅X₆ {O(n)}
t₂₅, X₇: 3⋅X₇ {O(n)}
t₂₆, X₀: X₅ {O(n)}
t₂₆, X₁: X₁ {O(n)}
t₂₆, X₂: X₂ {O(n)}
t₂₆, X₅: X₅ {O(n)}
t₂₆, X₆: X₆ {O(n)}
t₂₆, X₇: X₇ {O(n)}
t₂₇, X₀: X₀ {O(n)}
t₂₇, X₁: X₁ {O(n)}
t₂₇, X₂: X₂ {O(n)}
t₂₇, X₅: X₅ {O(n)}
t₂₇, X₆: X₆ {O(n)}
t₂₇, X₇: X₇ {O(n)}
t₂₈, X₀: X₅ {O(n)}
t₂₈, X₂: 2⋅2^(32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅)⋅X₇ {O(EXP)}
t₂₈, X₅: X₅ {O(n)}
t₂₈, X₆: X₆ {O(n)}
t₂₈, X₇: X₇ {O(n)}
t₂₉, X₀: X₅ {O(n)}
t₂₉, X₂: 2⋅2^(32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅)⋅X₇+2⋅X₇ {O(EXP)}
t₂₉, X₅: X₅ {O(n)}
t₂₉, X₆: X₆ {O(n)}
t₂₉, X₇: X₇ {O(n)}
t₃₀, X₀: 0 {O(1)}
t₃₀, X₁: 0 {O(1)}
t₃₀, X₂: 0 {O(1)}
t₃₀, X₅: 0 {O(1)}
t₃₀, X₆: 0 {O(1)}
t₃₀, X₇: 0 {O(1)}
t₃₁, X₀: X₅ {O(n)}
t₃₁, X₂: 2⋅2^(32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅)⋅X₇+2⋅X₇ {O(EXP)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: X₇ {O(n)}
t₃₂, X₀: X₅ {O(n)}
t₃₂, X₂: 2⋅2^(32⋅X₅⋅X₇⋅X₇+4⋅X₅⋅X₅⋅X₅+16⋅X₅)⋅X₇ {O(EXP)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: X₆ {O(n)}
t₃₂, X₇: X₇ {O(n)}