Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁+X₂
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁+X₂ ≤ 0
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆)
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+1, -2⋅X₁-2, X₀+1, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆)

Preprocessing

Eliminate variables {X₃} that do not contribute to the problem

Found invariant X₄ ≤ X₀ ∧ X₁+X₂ ≤ 0 for location l5

Found invariant X₄ ≤ X₀ for location l1

Found invariant X₄ ≤ X₀ ∧ X₁+X₂ ≤ 0 for location l4

Found invariant X₄ ≤ X₀ ∧ 1 ≤ X₁+X₂ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₁₂: l0(X₀, X₁, X₂, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₄, X₅, X₆)
t₁₃: l1(X₀, X₁, X₂, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₄, X₅, X₆) :|: 0 < X₁+X₂ ∧ X₄ ≤ X₀
t₁₄: l1(X₀, X₁, X₂, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₄, X₅, X₆) :|: X₁+X₂ ≤ 0 ∧ X₄ ≤ X₀
t₁₅: l2(X₀, X₁, X₂, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₄, X₅, X₆)
t₁₆: l3(X₀, X₁, X₂, X₄, X₅, X₆) → l1(X₀+1, -2⋅X₁-2, X₀+1, X₄, X₅, X₆) :|: X₄ ≤ X₀ ∧ 1 ≤ X₁+X₂
t₁₇: l4(X₀, X₁, X₂, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₄, X₅, X₆) :|: X₄ ≤ X₀ ∧ X₁+X₂ ≤ 0

Found invariant X₄ ≤ X₀ ∧ X₁+X₂ ≤ 0 for location l5

Found invariant X₄ ≤ X₀ for location l1

Found invariant X₄ ≤ X₀ ∧ X₁+X₂ ≤ 0 for location l4

Found invariant X₄ ≤ X₀ ∧ 1 ≤ X₁+X₂ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₁₃ 24⋅X₄+65 {O(n)}

TWN-Loops:

entry: t₁₅: l2(X₀, X₁, X₂, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₄, X₅, X₆)
results in twn-loop: twn:Inv: [X₄ ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁+X₂] , (X₀,X₁,X₂,X₄,X₅,X₆) -> (X₀+1,-2⋅X₁-2,X₀+1,X₄,X₅,X₆) :|: 0 < X₁+X₂
order: [X₀; X₁; X₂; X₄]
closed-form:
X₀: X₀ + [[n != 0]] * 2 * n^1
X₁: X₁ * 4^n + [[n != 0]] * 2/3 * 4^n + [[n != 0]] * -2/3
X₂: [[n == 0]] * X₂ + [[n != 0]] * 2+X₀ + [[n != 0, n != 1]] * 2 * n^1 + [[n != 0, n != 1]] * -2
X₄: X₄

Termination: true
Formula:

6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2
∨ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 < 0 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 < 0 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 6⋅X₁+4 < 0 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 6⋅X₁+4 < 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 6 ∧ 6⋅X₁+4 < 0 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 6 ∧ 6⋅X₁+4 < 0 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 6⋅X₁+4 < 0 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 < 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 < 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 2 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2
∨ 2 < 3⋅X₀ ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 2 < 3⋅X₀ ∧ 6⋅X₁+4 < 0 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 2 < 3⋅X₀ ∧ 6⋅X₁+4 < 0 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 6⋅X₁+4 < 0 ∧ 2 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 < 0 ∧ 2 < 3⋅X₀ ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 2 < 3⋅X₀ ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 2 < 3⋅X₀ ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 6⋅X₁+4 < 0 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 < 0 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 6⋅X₁+4 < 0 ∧ 2 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 < 0 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 6⋅X₁+4 < 0 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 < 0 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 < 0 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2
∨ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 3⋅X₁+2 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 3⋅X₁+2 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 6 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 3⋅X₁+2
∨ 0 < 3⋅X₁+2 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 6 ∧ 0 < 3⋅X₁+2 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 6 ∧ 0 < 3⋅X₁+2 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 3⋅X₁+2
∨ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 6 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 6 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 6⋅X₁+4 < 0 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 6⋅X₁+4 < 0 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2
∨ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 < 3⋅X₀ ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 < 0 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 < 0 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 2 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2
∨ 2 < 3⋅X₀ ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 2 < 3⋅X₀ ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 2 < 3⋅X₀ ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 3⋅X₁+2
∨ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 6 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 6 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 6 ∧ 2 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 3⋅X₁+2
∨ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 6 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 6 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 < 0 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 < 0 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 1+3⋅X₀ ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2
∨ 0 < 1+3⋅X₀ ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 0 < 3⋅X₁+2 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 0 < 3⋅X₁+2 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 1+3⋅X₀ ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 3⋅X₁+2
∨ 0 < 1+3⋅X₀ ∧ 0 < 3⋅X₁+2 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 0 < 3⋅X₁+2 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 0 < 3⋅X₁+2 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 3⋅X₁+2
∨ 0 < 1+3⋅X₀ ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 0 < 3⋅X₁+2 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 6⋅X₁+4 < 0 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 6⋅X₁+4 < 0 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 1+3⋅X₀ ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2
∨ 0 < 1+3⋅X₀ ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 1+3⋅X₀ ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 3⋅X₁+2
∨ 0 < 1+3⋅X₀ ∧ 0 < 6 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 0 < 6 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 1+3⋅X₀ ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 3⋅X₁+2
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 6⋅X₁+4 < 0 ∧ 0 < 3⋅X₁+2
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 < 3⋅X₀ ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 6⋅X₁+4 < 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 < 0 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 < 0 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 1+3⋅X₀ ∧ 2 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 3⋅X₁+2
∨ 0 < 1+3⋅X₀ ∧ 2 < 3⋅X₀ ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 2 < 3⋅X₀ ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 2 < 3⋅X₀ ∧ 0 < 6 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 1+3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 3⋅X₁+2
∨ 0 < 1+3⋅X₀ ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5
∨ 0 < 1+3⋅X₀ ∧ 2 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 3⋅X₁+2
∨ 0 < 1+3⋅X₀ ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 < 6 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 5 < 3⋅X₀ ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0
∨ 0 < 1+3⋅X₀ ∧ 2 < 3⋅X₀ ∧ 6⋅X₁+4 ≤ 0 ∧ 0 ≤ 6⋅X₁+4 ∧ 2 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 2 ∧ 0 ≤ 3⋅X₁+2 ∧ 3⋅X₁+2 ≤ 0 ∧ 0 ≤ 6 ∧ 6 ≤ 0 ∧ 5 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 5

Stabilization-Threshold for: 1+2⋅X₁ < X₀
alphas_abs: 6+3⋅X₀
M: 0
N: 2
Bound: 6⋅X₀+15 {O(n)}
Stabilization-Threshold for: 0 < X₁+X₂
alphas_abs: 6+3⋅X₀
M: 0
N: 2
Bound: 6⋅X₀+15 {O(n)}

relevant size-bounds w.r.t. t₁₅:
X₀: X₄ {O(n)}
Runtime-bound of t₁₅: 1 {O(1)}
Results in: 24⋅X₄+65 {O(n)}

24⋅X₄+65 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₁₆ 24⋅X₄+65 {O(n)}

relevant size-bounds w.r.t. t₁₅:
X₀: X₄ {O(n)}
Runtime-bound of t₁₅: 1 {O(1)}
Results in: 24⋅X₄+65 {O(n)}

24⋅X₄+65 {O(n)}

All Bounds

Timebounds

Overall timebound:48⋅X₄+134 {O(n)}
t₁₂: 1 {O(1)}
t₁₃: 24⋅X₄+65 {O(n)}
t₁₄: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₆: 24⋅X₄+65 {O(n)}
t₁₇: 1 {O(1)}

Costbounds

Overall costbound: 48⋅X₄+134 {O(n)}
t₁₂: 1 {O(1)}
t₁₃: 24⋅X₄+65 {O(n)}
t₁₄: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₆: 24⋅X₄+65 {O(n)}
t₁₇: 1 {O(1)}

Sizebounds

t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₅ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₃, X₀: 25⋅X₄+65 {O(n)}
t₁₃, X₁: 24⋅2^(24⋅X₄+65)⋅X₄+2^(24⋅X₄+65)⋅65+2^(24⋅X₄+65)⋅X₅ {O(EXP)}
t₁₃, X₂: 25⋅X₄+X₆+66 {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁₄, X₀: 26⋅X₄+65 {O(n)}
t₁₄, X₁: 24⋅2^(24⋅X₄+65)⋅X₄+2^(24⋅X₄+65)⋅65+2^(24⋅X₄+65)⋅X₅+X₅ {O(EXP)}
t₁₄, X₂: 25⋅X₄+X₆+66 {O(n)}
t₁₄, X₄: 2⋅X₄ {O(n)}
t₁₄, X₅: 2⋅X₅ {O(n)}
t₁₄, X₆: 2⋅X₆ {O(n)}
t₁₅, X₀: X₄ {O(n)}
t₁₅, X₁: X₅ {O(n)}
t₁₅, X₂: X₆ {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: X₅ {O(n)}
t₁₅, X₆: X₆ {O(n)}
t₁₆, X₀: 25⋅X₄+65 {O(n)}
t₁₆, X₁: 24⋅2^(24⋅X₄+65)⋅X₄+2^(24⋅X₄+65)⋅65+2^(24⋅X₄+65)⋅X₅ {O(EXP)}
t₁₆, X₂: 25⋅X₄+66 {O(n)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: X₅ {O(n)}
t₁₆, X₆: X₆ {O(n)}
t₁₇, X₀: 26⋅X₄+65 {O(n)}
t₁₇, X₁: 24⋅2^(24⋅X₄+65)⋅X₄+2^(24⋅X₄+65)⋅65+2^(24⋅X₄+65)⋅X₅+X₅ {O(EXP)}
t₁₇, X₂: 25⋅X₄+X₆+66 {O(n)}
t₁₇, X₄: 2⋅X₄ {O(n)}
t₁₇, X₅: 2⋅X₅ {O(n)}
t₁₇, X₆: 2⋅X₆ {O(n)}