Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₆, X₇, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₅, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₆
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: (X₂)² ≤ X₁
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < (X₂)² ∧ 0 < X₁
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, 5⋅X₁+(X₀)², 2⋅X₂, X₃, X₄, X₅, X₆, X₇)
Eliminate variables {X₃,X₄} that do not contribute to the problem
Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₆ ∧ X₀ ≤ X₅ for location l1
Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Start: l0
Program_Vars: X₀, X₁, X₂, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₂₂: l0(X₀, X₁, X₂, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₅, X₆, X₇)
t₂₄: l1(X₀, X₁, X₂, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅
t₂₃: l1(X₀, X₁, X₂, X₅, X₆, X₇) → l4(X₀, X₆, X₇, X₅, X₆, X₇) :|: 0 < X₀ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅
t₂₅: l2(X₀, X₁, X₂, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₅, X₆, X₇)
t₂₆: l3(X₀, X₁, X₂, X₅, X₆, X₇) → l1(X₅, X₁, X₂, X₅, X₆, X₇) :|: 0 < X₆
t₂₇: l3(X₀, X₁, X₂, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₅, X₆, X₇) :|: X₆ ≤ 0
t₂₉: l4(X₀, X₁, X₂, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₅, X₆, X₇) :|: (X₂)² ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₀: l4(X₀, X₁, X₂, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₈: l4(X₀, X₁, X₂, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₅, X₆, X₇) :|: X₁ < (X₂)² ∧ 0 < X₁ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₁: l5(X₀, X₁, X₂, X₅, X₆, X₇) → l1(X₀-1, X₁, X₂, X₅, X₆, X₇) :|: X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₂: l6(X₀, X₁, X₂, X₅, X₆, X₇) → l4(X₀, 5⋅X₁+(X₀)², 2⋅X₂, X₅, X₆, X₇) :|: X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
Eliminate variables {X₂,X₇} that do not contribute to the problem
Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___3
Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l1___2
Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___5
Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___4
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location n_l4___1
Found invariant 1 ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ for location l1
Overall timebound:inf {Infinity}
t₂₂: 1 {O(1)}
t₂₃: inf {Infinity}
t₂₄: 1 {O(1)}
t₂₅: 1 {O(1)}
t₂₆: 1 {O(1)}
t₂₇: 1 {O(1)}
t₂₈: inf {Infinity}
t₂₉: inf {Infinity}
t₃₀: inf {Infinity}
t₃₁: inf {Infinity}
t₃₂: inf {Infinity}
Overall costbound: inf {Infinity}
t₂₂: 1 {O(1)}
t₂₃: inf {Infinity}
t₂₄: 1 {O(1)}
t₂₅: 1 {O(1)}
t₂₆: 1 {O(1)}
t₂₇: 1 {O(1)}
t₂₈: inf {Infinity}
t₂₉: inf {Infinity}
t₃₀: inf {Infinity}
t₃₁: inf {Infinity}
t₃₂: inf {Infinity}
t₂₂, X₀: X₀ {O(n)}
t₂₂, X₁: X₁ {O(n)}
t₂₂, X₂: X₂ {O(n)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₇: X₇ {O(n)}
t₂₃, X₀: X₅ {O(n)}
t₂₃, X₁: 2⋅X₆ {O(n)}
t₂₃, X₂: 2⋅X₇ {O(n)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₇: X₇ {O(n)}
t₂₄, X₀: 2⋅X₅ {O(n)}
t₂₄, X₅: 2⋅X₅ {O(n)}
t₂₄, X₆: 2⋅X₆ {O(n)}
t₂₄, X₇: 2⋅X₇ {O(n)}
t₂₅, X₀: 2⋅X₅+X₀ {O(n)}
t₂₅, X₅: 3⋅X₅ {O(n)}
t₂₅, X₆: 3⋅X₆ {O(n)}
t₂₅, X₇: 3⋅X₇ {O(n)}
t₂₆, X₀: X₅ {O(n)}
t₂₆, X₁: X₁ {O(n)}
t₂₆, X₂: X₂ {O(n)}
t₂₆, X₅: X₅ {O(n)}
t₂₆, X₆: X₆ {O(n)}
t₂₆, X₇: X₇ {O(n)}
t₂₇, X₀: X₀ {O(n)}
t₂₇, X₁: X₁ {O(n)}
t₂₇, X₂: X₂ {O(n)}
t₂₇, X₅: X₅ {O(n)}
t₂₇, X₆: X₆ {O(n)}
t₂₇, X₇: X₇ {O(n)}
t₂₈, X₀: X₅ {O(n)}
t₂₈, X₅: X₅ {O(n)}
t₂₈, X₆: X₆ {O(n)}
t₂₈, X₇: X₇ {O(n)}
t₂₉, X₀: X₅ {O(n)}
t₂₉, X₅: X₅ {O(n)}
t₂₉, X₆: X₆ {O(n)}
t₂₉, X₇: X₇ {O(n)}
t₃₀, X₀: 0 {O(1)}
t₃₀, X₁: 0 {O(1)}
t₃₀, X₂: 0 {O(1)}
t₃₀, X₅: 0 {O(1)}
t₃₀, X₆: 0 {O(1)}
t₃₀, X₇: 0 {O(1)}
t₃₁, X₀: X₅ {O(n)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: X₇ {O(n)}
t₃₂, X₀: X₅ {O(n)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: X₆ {O(n)}
t₃₂, X₇: X₇ {O(n)}