Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₁₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ 1
t₁₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 1
t₁₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₂
t₂₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < (X₄)² ∧ 0 < X₃
t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: (X₄)² ≤ X₃
t₂₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ ≤ 0
t₂₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, 5⋅X₃+(X₁₃)², 2⋅X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₅, X₁₆, X₆, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₀ < 1
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₈, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.2, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)

Preprocessing

Eliminate variables {X₁₄,X₁₅} that do not contribute to the problem

Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11

Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l6

Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l15

Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12

Found invariant X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l7

Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5

Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l13

Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l8

Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10

Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l16

Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9

Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₅₅: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₅₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₅₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁
t₅₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
t₅₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₁ ≤ 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₃ < (X₄)² ∧ 0 < X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: (X₄)² ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₃ ≤ 0 ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, 5⋅X₃+(X₁₃)², 2⋅X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₆₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₇₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l5(X₅, X₁₆, X₆, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l5(X₈, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.2, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁

MPRF for transition t₅₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₁₆+1 {O(n)}

MPRF:

l11 [X₁+1-X₂ ]
l10 [X₁+2-X₂ ]
l12 [X₁+1 ]
l7 [X₁+1 ]
l8 [X₁+1 ]
l6 [X₁+1 ]
l9 [X₁₀+1 ]
l5 [X₁+1 ]

MPRF for transition t₅₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₁₆+1 {O(n)}

MPRF:

l11 [X₁+1 ]
l10 [X₁+1 ]
l12 [X₁+1 ]
l7 [X₁+1 ]
l8 [X₁+1 ]
l6 [X₁+1 ]
l9 [X₁ ]
l5 [X₁+1 ]

MPRF for transition t₅₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

X₁₆+1 {O(n)}

MPRF:

l11 [X₁ ]
l10 [X₁ ]
l12 [X₁+1 ]
l7 [X₁+1 ]
l8 [X₁+1 ]
l6 [X₁+1 ]
l9 [X₁₀+1 ]
l5 [X₁+1 ]

MPRF for transition t₇₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₁₆ {O(n)}

MPRF:

l11 [X₁ ]
l10 [X₁ ]
l12 [X₁ ]
l7 [X₁ ]
l8 [X₁ ]
l6 [X₁ ]
l9 [X₁ ]
l5 [X₁ ]

knowledge_propagation leads to new time bound X₁₆+1 {O(n)} for transition t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆

MPRF for transition t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

X₁₆+1 {O(n)}

MPRF:

l11 [X₁₀+1-X₁ ]
l9 [X₂+X₁₀-X₁ ]
l10 [0 ]
l12 [0 ]
l5 [1 ]
l7 [1 ]
l8 [1 ]
l6 [1 ]

MPRF for transition t₇₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

X₁₆+1 {O(n)}

MPRF:

l11 [0 ]
l9 [X₁₀+1-X₁ ]
l10 [0 ]
l12 [0 ]
l5 [1 ]
l7 [1 ]
l8 [1 ]
l6 [1 ]

MPRF for transition t₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

X₁₆+1 {O(n)}

MPRF:

l11 [0 ]
l9 [1-X₂ ]
l10 [0 ]
l12 [0 ]
l5 [1 ]
l7 [1 ]
l8 [1 ]
l6 [1 ]

Analysing control-flow refined program

Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11

Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1

Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2

Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4

Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l15

Found invariant X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5

Found invariant X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3

Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6

Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12

Found invariant X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10

Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9

Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5

Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l13

Found invariant X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7

Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8

Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10

Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l16

Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9

Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l14

knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₁₈₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₈₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₉₂: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₁₉₃: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₁₉₅: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l6___1(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg16_P) :|: X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₉₇: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l6___8(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg16_P) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₁₈₉: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₉₁: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

MPRF for transition t₁₈₈: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 4 ∧ X₁ ≤ X₁₆ ∧ 1+X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:

new bound:

28⋅X₁₆+4 {O(n)}

MPRF:

l11 [6⋅X₁₀+4-6⋅X₁₆ ]
l10 [6⋅X₁-6⋅X₁₆-2 ]
l9 [6⋅X₁₀+4-6⋅X₁₆ ]
l5 [6⋅X₁+4-6⋅X₁₆ ]
l12 [6⋅X₁-6⋅X₁₆-2 ]
n_l6___1 [7-3⋅X₀ ]
n_l5___7 [10-3⋅X₈ ]
n_l7___10 [6⋅X₁+4-6⋅X₁₆ ]
n_l7___3 [6⋅X₁+7-3⋅X₀-6⋅X₁₆ ]
n_l8___2 [13-3⋅X₀-6⋅X₁₆ ]
n_l7___6 [7-3⋅X₈ ]
n_l8___5 [7-3⋅X₀ ]
n_l6___4 [7-3⋅X₀ ]
n_l8___9 [6⋅X₁+4-6⋅X₁₆ ]
n_l6___8 [6⋅X₁+3⋅X₅+4-3⋅X₀-6⋅X₁₆ ]

MPRF for transition t₂₀₆: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:

new bound:

13⋅X₁₆+1 {O(n)}

MPRF:

l11 [2⋅X₁-X₂-2⋅X₁₆ ]
l10 [2⋅X₁-2⋅X₁₆-1 ]
l9 [2⋅X₁₀+1-2⋅X₁₆ ]
l5 [2⋅X₁+1-2⋅X₁₆ ]
l12 [2⋅X₁-2⋅X₁₆-1 ]
n_l6___1 [X₀+2-X₈ ]
n_l5___7 [1 ]
n_l7___10 [2⋅X₁+1-2⋅X₁₆ ]
n_l7___3 [2⋅X₁+1-2⋅X₁₆ ]
n_l8___2 [3⋅X₁+2-3⋅X₁₆ ]
n_l7___6 [1 ]
n_l8___5 [X₈-X₀ ]
n_l6___4 [1 ]
n_l8___9 [2⋅X₁+1-2⋅X₁₆ ]
n_l6___8 [2⋅X₁+1-2⋅X₁₆ ]

MPRF for transition t₂₀₇: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:

new bound:

5⋅X₁₆+1 {O(n)}

MPRF:

l11 [2⋅X₁₀+1-2⋅X₁₆ ]
l10 [2⋅X₁-2⋅X₁₆-1 ]
l9 [X₂+2⋅X₁₀-2⋅X₁₆ ]
l5 [2⋅X₁+1-2⋅X₁₆ ]
l12 [2⋅X₁-2⋅X₁₆-1 ]
n_l6___1 [1 ]
n_l5___7 [1 ]
n_l7___10 [1 ]
n_l7___3 [2⋅X₁+1-2⋅X₁₆ ]
n_l8___2 [2⋅X₁+1-2⋅X₁₆ ]
n_l7___6 [1 ]
n_l8___5 [1 ]
n_l6___4 [6⋅X₀+7-6⋅X₈ ]
n_l8___9 [6⋅X₀+7-6⋅X₈ ]
n_l6___8 [2⋅X₀+1-2⋅X₅ ]

MPRF for transition t₂₀₈: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:

new bound:

6⋅X₁₆⋅X₁₆+23⋅X₁₆+5 {O(n^2)}

MPRF:

l11 [6⋅X₁-6⋅X₁₆-1 ]
l10 [6⋅X₁-6⋅X₁₆-1 ]
l9 [5⋅X₂+6⋅X₁₀-6⋅X₁₆ ]
l5 [6⋅X₁+5-6⋅X₁₆ ]
l12 [6⋅X₁-6⋅X₁₆-1 ]
n_l6___1 [X₁₆+5-2⋅X₀ ]
n_l5___7 [9-2⋅X₈ ]
n_l7___10 [7-2⋅X₀ ]
n_l7___3 [6⋅X₁+5-6⋅X₁₆ ]
n_l8___2 [2⋅X₁+3-2⋅X₀-6⋅X₁₆ ]
n_l7___6 [9-2⋅X₈ ]
n_l8___5 [3 ]
n_l6___4 [7-2⋅X₀ ]
n_l8___9 [7-2⋅X₀ ]
n_l6___8 [9-2⋅X₈ ]

MPRF for transition t₁₉₀: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₈ ≤ 4 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ X₁ ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:

new bound:

10⋅X₁₆+2 {O(n)}

MPRF:

l11 [2⋅X₁-2⋅X₁₆ ]
l10 [2⋅X₁-2⋅X₁₆ ]
l9 [2⋅X₁₀+2-2⋅X₁₆ ]
l5 [2⋅X₁+2-2⋅X₁₆ ]
l12 [2⋅X₁-2⋅X₁₆ ]
n_l6___1 [3-X₀ ]
n_l5___7 [4-X₀ ]
n_l7___10 [2 ]
n_l7___3 [2⋅X₁₀+3-X₀-2⋅X₁₆ ]
n_l8___2 [2⋅X₁+3-X₀-2⋅X₁₆ ]
n_l7___6 [4-X₀ ]
n_l8___5 [5-X₈ ]
n_l6___4 [5-X₈ ]
n_l8___9 [2 ]
n_l6___8 [4⋅X₈-X₀-4⋅X₅-1 ]

MPRF for transition t₁₉₄: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:

new bound:

10⋅X₁₆+2 {O(n)}

MPRF:

l11 [2⋅X₁₀+2-2⋅X₁₆ ]
l10 [2⋅X₁-2⋅X₁₆ ]
l9 [2⋅X₂+2⋅X₁₀-2⋅X₁₆ ]
l5 [2⋅X₁+2-2⋅X₁₆ ]
l12 [2⋅X₁-2⋅X₁₆ ]
n_l6___1 [3-X₀ ]
n_l5___7 [4-X₈ ]
n_l7___10 [X₀+3-2⋅X₅ ]
n_l7___3 [2⋅X₁₀+2-2⋅X₁₆ ]
n_l8___2 [2⋅X₁+2-2⋅X₁₆ ]
n_l7___6 [4-X₈ ]
n_l8___5 [3-X₀ ]
n_l6___4 [3-X₀ ]
n_l8___9 [X₈+2-2⋅X₅ ]
n_l6___8 [3-X₀ ]

MPRF for transition t₁₉₆: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l6___4(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg16_P) :|: X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:

new bound:

19⋅X₁₆+8 {O(n)}

MPRF:

l11 [8⋅X₁+3⋅X₂-3⋅X₁₀-5⋅X₁₆-3 ]
l10 [5⋅X₁+3⋅X₂-5⋅X₁₆ ]
l9 [8⋅X₁-3⋅X₁₀-5⋅X₁₆ ]
l5 [5⋅X₁+8-5⋅X₁₆ ]
l12 [5⋅X₁+3-5⋅X₁₆ ]
n_l6___1 [6-X₀ ]
n_l5___7 [7-X₀ ]
n_l7___10 [8 ]
n_l7___3 [5⋅X₁₀+8-5⋅X₁₆ ]
n_l8___2 [X₈+5⋅X₁₀+7-X₀-5⋅X₁₆ ]
n_l7___6 [7-X₈ ]
n_l8___5 [7-X₀ ]
n_l6___4 [6-X₀ ]
n_l8___9 [8 ]
n_l6___8 [6-X₀ ]

knowledge_propagation leads to new time bound 11⋅X₁₆+3 {O(n)} for transition t₂₀₈: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀

CFR: Improvement to new bound with the following program:

new bound:

108⋅X₁₆+32 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆
Temp_Vars: Arg16_P, Arg5_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l9, n_l5___7, n_l6___1, n_l6___4, n_l6___8, n_l7___10, n_l7___3, n_l7___6, n_l8___2, n_l8___5, n_l8___9
Transitions:
t₅₅: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₅₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₅₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁
t₅₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
t₅₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₁ ≤ 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₃ < (X₄)² ∧ 0 < X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: (X₄)² ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₃ ≤ 0 ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l13(X₀, X₁, X₂, 5⋅X₃+(X₁₃)², 2⋅X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆
t₆₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₆₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₇₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l5(X₅, X₁₆, X₆, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆)
t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₁₈₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₁₈₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
t₂₀₆: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₂₀₇: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₂₀₈: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₁₈₈: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 4 ∧ X₁ ≤ X₁₆ ∧ 1+X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₁₈₉: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₁₉₀: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₈ ≤ 4 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ X₁ ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₁₉₁: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₁₉₂: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₁₉₃: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₁₉₄: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) :|: X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₁₉₅: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l6___1(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg16_P) :|: X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₁₉₆: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l6___4(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg16_P) :|: X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₁₉₇: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₆) → n_l6___8(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg16_P) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

Analysing control-flow refined program

Eliminate variables {X₁₃} that do not contribute to the problem

Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11

Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1

Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2

Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₁ for location n_l13___2

Found invariant X₅ ≤ X₀ ∧ X₄ ≤ X₁₂ ∧ X₁₂ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₁ ∧ X₁ ≤ X₁₁ ∧ X₁ ≤ 1 for location n_l14___3

Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4

Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l15

Found invariant X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5

Found invariant X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3

Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6

Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12

Found invariant X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10

Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9

Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5

Found invariant X₅ ≤ X₀ ∧ X₄ ≤ X₁₂ ∧ X₁₂ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l13

Found invariant X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7

Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8

Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10

Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l16

Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9

Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₁ for location n_l14___1

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₉₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₁₂: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₁₇: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l6___8(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, Arg16_P) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₁₁: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

MPRF for transition t₄₈₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₁₆ {O(n)}

MPRF:

l11 [X₁-1 ]
l10 [X₁ ]
l9 [X₂+2⋅X₁₀-X₁ ]
l5 [X₁ ]
l12 [X₁ ]
n_l5___7 [X₁ ]
n_l7___10 [X₁ ]
n_l7___3 [X₁ ]
n_l7___6 [X₁ ]
n_l8___2 [X₁ ]
n_l6___1 [X₁₀ ]
n_l8___5 [X₁ ]
n_l6___4 [X₁ ]
n_l8___9 [X₁ ]
n_l6___8 [X₁ ]

MPRF for transition t₄₈₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₁₆ {O(n)}

MPRF:

l11 [X₁₀+1 ]
l10 [X₁ ]
l9 [X₁₀ ]
l5 [X₁ ]
l12 [X₁ ]
n_l5___7 [X₁ ]
n_l7___10 [X₁ ]
n_l7___3 [X₁ ]
n_l7___6 [X₁ ]
n_l8___2 [X₁ ]
n_l6___1 [4⋅X₁-3⋅X₁₀ ]
n_l8___5 [X₁ ]
n_l6___4 [X₁ ]
n_l8___9 [X₁ ]
n_l6___8 [X₁ ]

MPRF for transition t₄₈₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

X₁₆ {O(n)}

MPRF:

l11 [X₁-1 ]
l10 [X₁-1 ]
l9 [X₁₀ ]
l5 [X₁ ]
l12 [X₁ ]
n_l5___7 [X₁ ]
n_l7___10 [X₁ ]
n_l7___3 [X₁ ]
n_l7___6 [X₁ ]
n_l8___2 [X₁ ]
n_l6___1 [X₁ ]
n_l8___5 [X₁ ]
n_l6___4 [X₁ ]
n_l8___9 [X₁ ]
n_l6___8 [X₁ ]

MPRF for transition t₄₉₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

2⋅X₁₆+1 {O(n)}

MPRF:

l11 [2⋅X₁-3 ]
l10 [2⋅X₁-3 ]
l9 [2⋅X₁-3 ]
l5 [2⋅X₁-1 ]
l12 [2⋅X₁-3 ]
n_l5___7 [2⋅X₁-3 ]
n_l7___10 [2⋅X₁-1 ]
n_l7___3 [2⋅X₁-3 ]
n_l7___6 [2⋅X₁-3 ]
n_l8___2 [2⋅X₁₀-3 ]
n_l6___1 [2⋅X₁₀-3 ]
n_l8___5 [2⋅X₁-3 ]
n_l6___4 [2⋅X₁-3 ]
n_l8___9 [X₀+2⋅X₁-X₅-1 ]
n_l6___8 [2⋅X₁₆-X₅ ]

MPRF for transition t₅₀₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₁₆ {O(n)}

MPRF:

l11 [X₁ ]
l10 [X₁ ]
l9 [X₁ ]
l5 [X₁ ]
l12 [X₁ ]
n_l5___7 [X₁ ]
n_l7___10 [X₁ ]
n_l7___3 [X₁ ]
n_l7___6 [X₁ ]
n_l8___2 [X₁ ]
n_l6___1 [X₁ ]
n_l8___5 [X₁ ]
n_l6___4 [X₁ ]
n_l8___9 [X₁ ]
n_l6___8 [X₁ ]

MPRF for transition t₅₀₉: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₁₆+3 {O(n)}

MPRF:

l11 [4⋅X₁-7 ]
l10 [4⋅X₁-7⋅X₂ ]
l9 [4⋅X₁-7 ]
l5 [4⋅X₁-3 ]
l12 [4⋅X₁-7 ]
n_l5___7 [4⋅X₁-7 ]
n_l7___10 [4⋅X₁-3 ]
n_l7___3 [4⋅X₁₀-3 ]
n_l7___6 [4⋅X₁-7 ]
n_l8___2 [7⋅X₀+4⋅X₁+4-7⋅X₈ ]
n_l6___1 [4⋅X₁+X₈-X₀-4 ]
n_l8___5 [4⋅X₁-7 ]
n_l6___4 [4⋅X₁+4⋅X₈-4⋅X₀-11 ]
n_l8___9 [4⋅X₁+X₅+8⋅X₈-9⋅X₀-11 ]
n_l6___8 [4⋅X₅+4⋅X₁₆-4⋅X₀-7 ]

MPRF for transition t₅₁₃: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁₆+1 {O(n)}

MPRF:

l11 [2⋅X₁-3⋅X₂ ]
l10 [2⋅X₁+1-4⋅X₂ ]
l9 [2⋅X₁+1-4⋅X₂ ]
l5 [2⋅X₁-1 ]
l12 [2⋅X₁-3 ]
n_l5___7 [2⋅X₁-3 ]
n_l7___10 [2⋅X₁₆-1 ]
n_l7___3 [2⋅X₁₀-1 ]
n_l7___6 [2⋅X₁-3 ]
n_l8___2 [2⋅X₁₀-3 ]
n_l6___1 [2⋅X₁-3 ]
n_l8___5 [2⋅X₁-3 ]
n_l6___4 [2⋅X₁-3 ]
n_l8___9 [4⋅X₀+2⋅X₁₆+4-X₅-4⋅X₈ ]
n_l6___8 [2⋅X₁-3 ]

MPRF for transition t₅₁₅: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l6___1(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, Arg16_P) :|: X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₆ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₆+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₆ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₆+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₆ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₀+X₁₆ ∧ 1+X₁₀ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₆ {O(n)}

MPRF:

l11 [X₁-1 ]
l10 [X₁-1 ]
l9 [X₁₀ ]
l5 [X₁ ]
l12 [X₁-1 ]
n_l5___7 [X₁-1 ]
n_l7___10 [X₁ ]
n_l7___3 [X₁ ]
n_l7___6 [X₁-1 ]
n_l8___2 [X₁₀ ]
n_l6___1 [X₁-1 ]
n_l8___5 [X₁+X₈-X₀-2 ]
n_l6___4 [X₁-1 ]
n_l8___9 [X₁₆ ]
n_l6___8 [2⋅X₅+X₁₆-2⋅X₀-1 ]

knowledge_propagation leads to new time bound X₁₆+1 {O(n)} for transition t₄₉₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₀ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆

knowledge_propagation leads to new time bound X₁₆+1 {O(n)} for transition t₄₉₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆

knowledge_propagation leads to new time bound X₁₆+1 {O(n)} for transition t₄₉₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆

knowledge_propagation leads to new time bound X₁₆+1 {O(n)} for transition t₄₉₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆

MPRF for transition t₅₀₅: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 4 ∧ X₁ ≤ X₁₆ ∧ 1+X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:

new bound:

10⋅X₁₆+2 {O(n)}

MPRF:

l11 [2⋅X₁-2⋅X₁₆ ]
l10 [2⋅X₁-2⋅X₁₆ ]
l9 [2⋅X₂+2⋅X₁₀-2⋅X₁₆ ]
l5 [2⋅X₁+2-2⋅X₁₆ ]
l12 [2⋅X₁-2⋅X₁₆ ]
n_l6___1 [3-X₀ ]
n_l5___7 [4-X₈ ]
n_l7___10 [2 ]
n_l7___3 [2⋅X₁+2-2⋅X₁₆ ]
n_l8___2 [4⋅X₀+2⋅X₁+6-4⋅X₈-2⋅X₁₆ ]
n_l7___6 [3-X₈ ]
n_l8___5 [3-X₀ ]
n_l6___4 [3-X₀ ]
n_l8___9 [2 ]
n_l6___8 [3-X₀ ]

MPRF for transition t₅₀₆: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:

new bound:

8⋅X₁₆+4 {O(n)}

MPRF:

l11 [2⋅X₁₀+4-2⋅X₁₆ ]
l10 [2⋅X₁+2-2⋅X₁₆ ]
l9 [2⋅X₁₀+4-2⋅X₁₆ ]
l5 [2⋅X₁+4-2⋅X₁₆ ]
l12 [2⋅X₁+2-2⋅X₁₆ ]
n_l6___1 [4 ]
n_l5___7 [4 ]
n_l7___10 [4 ]
n_l7___3 [2⋅X₁₀+4-2⋅X₁₆ ]
n_l8___2 [3⋅X₀+2⋅X₁₀+7-3⋅X₈-2⋅X₁₆ ]
n_l7___6 [4 ]
n_l8___5 [4 ]
n_l6___4 [4 ]
n_l8___9 [4 ]
n_l6___8 [4 ]

MPRF for transition t₅₀₇: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:

new bound:

5⋅X₁₆+1 {O(n)}

MPRF:

l11 [2⋅X₁-2⋅X₁₆-1 ]
l10 [2⋅X₁-X₂-2⋅X₁₆ ]
l9 [X₂+2⋅X₁₀-2⋅X₁₆ ]
l5 [2⋅X₁+1-2⋅X₁₆ ]
l12 [2⋅X₁-2⋅X₁₆-1 ]
n_l6___1 [1 ]
n_l5___7 [1 ]
n_l7___10 [1 ]
n_l7___3 [2⋅X₁+1-2⋅X₁₆ ]
n_l8___2 [6⋅X₀+2⋅X₁+7-6⋅X₈-2⋅X₁₆ ]
n_l7___6 [1 ]
n_l8___5 [1 ]
n_l6___4 [1 ]
n_l8___9 [1 ]
n_l6___8 [1 ]

MPRF for transition t₅₀₈: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:

new bound:

10⋅X₁₆+2 {O(n)}

MPRF:

l11 [2⋅X₂+4⋅X₁₀-4⋅X₁₆ ]
l10 [4⋅X₁-4⋅X₁₆-2 ]
l9 [4⋅X₁₀+2-4⋅X₁₆ ]
l5 [4⋅X₁+2-4⋅X₁₆ ]
l12 [4⋅X₁-4⋅X₁₆-2 ]
n_l6___1 [2 ]
n_l5___7 [2⋅X₀+2-2⋅X₈ ]
n_l7___10 [2 ]
n_l7___3 [4⋅X₁₀+2-4⋅X₁₆ ]
n_l8___2 [2⋅X₈+4⋅X₁₀-2⋅X₀-4⋅X₁₆ ]
n_l7___6 [2 ]
n_l8___5 [2 ]
n_l6___4 [2 ]
n_l8___9 [2 ]
n_l6___8 [2⋅X₅+2-2⋅X₀ ]

MPRF for transition t₅₁₀: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₈ ≤ 4 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ X₁ ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:

new bound:

10⋅X₁₆+2 {O(n)}

MPRF:

l11 [2⋅X₁-2⋅X₁₆ ]
l10 [2⋅X₁-2⋅X₁₆ ]
l9 [2⋅X₁₀+2-2⋅X₁₆ ]
l5 [2⋅X₁+2-2⋅X₁₆ ]
l12 [2⋅X₁-2⋅X₁₆ ]
n_l6___1 [3-X₀ ]
n_l5___7 [4-X₈ ]
n_l7___10 [2 ]
n_l7___3 [2⋅X₁+2-2⋅X₁₆ ]
n_l8___2 [2⋅X₁+3-X₀-2⋅X₁₆ ]
n_l7___6 [4-X₈ ]
n_l8___5 [4-X₀ ]
n_l6___4 [5-X₈ ]
n_l8___9 [3-X₀ ]
n_l6___8 [3-X₀ ]

MPRF for transition t₅₁₄: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₆) :|: X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:

new bound:

14⋅X₁₆+6 {O(n)}

MPRF:

l11 [2⋅X₁+4-2⋅X₁₆ ]
l10 [2⋅X₁+4⋅X₂-2⋅X₁₆ ]
l9 [2⋅X₁₀+6-2⋅X₁₆ ]
l5 [2⋅X₁+6-2⋅X₁₆ ]
l12 [2⋅X₁+4-2⋅X₁₆ ]
n_l6___1 [7-X₀ ]
n_l5___7 [8-X₀ ]
n_l7___10 [6 ]
n_l7___3 [2⋅X₁+6-2⋅X₁₆ ]
n_l8___2 [2⋅X₁+7-X₀-2⋅X₁₆ ]
n_l7___6 [8-X₈ ]
n_l8___5 [7-X₀ ]
n_l6___4 [7-X₀ ]
n_l8___9 [2⋅X₈+5-3⋅X₀ ]
n_l6___8 [7-X₀ ]

MPRF for transition t₅₁₆: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₆) → n_l6___4(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, Arg16_P) :|: X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 1+X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ ∧ X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:

new bound:

10⋅X₁₆+2 {O(n)}

MPRF:

l11 [2⋅X₁+2⋅X₂-2⋅X₁₆-2 ]
l10 [2⋅X₁-2⋅X₁₆ ]
l9 [2⋅X₂+2⋅X₁₀-2⋅X₁₆ ]
l5 [2⋅X₁+2-2⋅X₁₆ ]
l12 [2⋅X₁-2⋅X₁₆ ]
n_l6___1 [3-X₀ ]
n_l5___7 [4-X₈ ]
n_l7___10 [2⋅X₁+2-2⋅X₁₆ ]
n_l7___3 [2⋅X₁+2-2⋅X₁₆ ]
n_l8___2 [2⋅X₀+2⋅X₁+4-2⋅X₈-2⋅X₁₆ ]
n_l7___6 [4-X₈ ]
n_l8___5 [5-X₈ ]
n_l6___4 [3-X₀ ]
n_l8___9 [2 ]
n_l6___8 [X₅+2-X₀ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: X₁₆+1 {O(n)}
t₅₈: X₁₆+1 {O(n)}
t₅₉: X₁₆+1 {O(n)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: inf {Infinity}
t₆₄: 1 {O(1)}
t₆₅: 1 {O(1)}
t₆₆: inf {Infinity}
t₆₇: 1 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: 1 {O(1)}
t₇₀: 1 {O(1)}
t₇₂: X₁₆+1 {O(n)}
t₇₃: X₁₆+1 {O(n)}
t₇₄: X₁₆+1 {O(n)}
t₇₅: X₁₆+1 {O(n)}
t₁₈₆: X₁₆ {O(n)}
t₁₈₇: 1 {O(1)}
t₇₉: X₁₆ {O(n)}
t₁₈₈: 28⋅X₁₆+4 {O(n)}
t₂₀₆: 13⋅X₁₆+1 {O(n)}
t₂₀₇: 5⋅X₁₆+1 {O(n)}
t₂₀₈: 11⋅X₁₆+3 {O(n)}
t₁₈₉: X₁₆ {O(n)}
t₁₉₀: 10⋅X₁₆+2 {O(n)}
t₁₉₁: 1 {O(1)}
t₁₉₂: 1 {O(1)}
t₁₉₃: X₁₆ {O(n)}
t₁₉₄: 10⋅X₁₆+2 {O(n)}
t₁₉₅: X₁₆ {O(n)}
t₁₉₆: 19⋅X₁₆+8 {O(n)}
t₁₉₇: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: X₁₆+1 {O(n)}
t₅₈: X₁₆+1 {O(n)}
t₅₉: X₁₆+1 {O(n)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: inf {Infinity}
t₆₄: 1 {O(1)}
t₆₅: 1 {O(1)}
t₆₆: inf {Infinity}
t₆₇: 1 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: 1 {O(1)}
t₇₀: 1 {O(1)}
t₇₂: X₁₆+1 {O(n)}
t₇₃: X₁₆+1 {O(n)}
t₇₄: X₁₆+1 {O(n)}
t₇₅: X₁₆+1 {O(n)}
t₁₈₆: X₁₆ {O(n)}
t₁₈₇: 1 {O(1)}
t₇₉: X₁₆ {O(n)}
t₁₈₈: 28⋅X₁₆+4 {O(n)}
t₂₀₆: 13⋅X₁₆+1 {O(n)}
t₂₀₇: 5⋅X₁₆+1 {O(n)}
t₂₀₈: 11⋅X₁₆+3 {O(n)}
t₁₈₉: X₁₆ {O(n)}
t₁₉₀: 10⋅X₁₆+2 {O(n)}
t₁₉₁: 1 {O(1)}
t₁₉₂: 1 {O(1)}
t₁₉₃: X₁₆ {O(n)}
t₁₉₄: 10⋅X₁₆+2 {O(n)}
t₁₉₅: X₁₆ {O(n)}
t₁₉₆: 19⋅X₁₆+8 {O(n)}
t₁₉₇: 1 {O(1)}

Sizebounds

t₅₅, X₀: X₀ {O(n)}
t₅₅, X₁: X₁ {O(n)}
t₅₅, X₂: X₂ {O(n)}
t₅₅, X₃: X₃ {O(n)}
t₅₅, X₄: X₄ {O(n)}
t₅₅, X₅: X₅ {O(n)}
t₅₅, X₆: X₆ {O(n)}
t₅₅, X₇: X₇ {O(n)}
t₅₅, X₈: X₈ {O(n)}
t₅₅, X₉: X₉ {O(n)}
t₅₅, X₁₀: X₁₀ {O(n)}
t₅₅, X₁₁: X₁₁ {O(n)}
t₅₅, X₁₂: X₁₂ {O(n)}
t₅₅, X₁₃: X₁₃ {O(n)}
t₅₅, X₁₆: X₁₆ {O(n)}
t₅₆, X₀: X₀ {O(n)}
t₅₆, X₁: X₁ {O(n)}
t₅₆, X₂: X₂ {O(n)}
t₅₆, X₃: X₃ {O(n)}
t₅₆, X₄: X₄ {O(n)}
t₅₆, X₇: X₇ {O(n)}
t₅₆, X₈: X₈ {O(n)}
t₅₆, X₉: X₉ {O(n)}
t₅₆, X₁₀: X₁₀ {O(n)}
t₅₆, X₁₁: X₁₁ {O(n)}
t₅₆, X₁₂: X₁₂ {O(n)}
t₅₆, X₁₃: X₁₃ {O(n)}
t₅₆, X₁₆: X₁₆ {O(n)}
t₅₇, X₁: 6⋅X₁₆ {O(n)}
t₅₇, X₂: 1 {O(1)}
t₅₇, X₃: 6⋅X₃ {O(n)}
t₅₇, X₄: 6⋅X₄ {O(n)}
t₅₇, X₈: 3⋅X₈+8 {O(n)}
t₅₇, X₁₀: 6⋅X₁₆ {O(n)}
t₅₇, X₁₁: 6⋅X₁₁ {O(n)}
t₅₇, X₁₂: 6⋅X₁₂ {O(n)}
t₅₇, X₁₃: 6⋅X₁₃ {O(n)}
t₅₇, X₁₆: 6⋅X₁₆ {O(n)}
t₅₈, X₁: 6⋅X₁₆ {O(n)}
t₅₈, X₂: 1 {O(1)}
t₅₈, X₃: 6⋅X₃ {O(n)}
t₅₈, X₄: 6⋅X₄ {O(n)}
t₅₈, X₈: 3⋅X₈+8 {O(n)}
t₅₈, X₁₀: 6⋅X₁₆ {O(n)}
t₅₈, X₁₁: 6⋅X₁₁ {O(n)}
t₅₈, X₁₂: 6⋅X₁₂ {O(n)}
t₅₈, X₁₃: 6⋅X₁₃ {O(n)}
t₅₈, X₁₆: 6⋅X₁₆ {O(n)}
t₅₉, X₁: 6⋅X₁₆ {O(n)}
t₅₉, X₂: 1 {O(1)}
t₅₉, X₃: 6⋅X₃ {O(n)}
t₅₉, X₄: 6⋅X₄ {O(n)}
t₅₉, X₈: 3⋅X₈+8 {O(n)}
t₅₉, X₁₀: 42⋅X₁₆+7⋅X₁₀ {O(n)}
t₅₉, X₁₁: 6⋅X₁₁ {O(n)}
t₅₉, X₁₂: 6⋅X₁₂ {O(n)}
t₅₉, X₁₃: 6⋅X₁₃ {O(n)}
t₅₉, X₁₆: 6⋅X₁₆ {O(n)}
t₆₀, X₁: 50⋅X₁₆ {O(n)}
t₆₀, X₃: 50⋅X₁₁ {O(n)}
t₆₀, X₄: 50⋅X₁₂ {O(n)}
t₆₀, X₈: 13⋅X₈+44 {O(n)}
t₆₀, X₁₀: 28⋅X₁₆+7⋅X₁₀ {O(n)}
t₆₀, X₁₁: 50⋅X₁₁ {O(n)}
t₆₀, X₁₂: 50⋅X₁₂ {O(n)}
t₆₀, X₁₃: 50⋅X₁₃ {O(n)}
t₆₀, X₁₆: 50⋅X₁₆ {O(n)}
t₆₁, X₁: 38⋅X₁₆ {O(n)}
t₆₁, X₃: 38⋅X₁₁ {O(n)}
t₆₁, X₄: 38⋅X₁₂ {O(n)}
t₆₁, X₈: 10⋅X₈+32 {O(n)}
t₆₁, X₁₀: 42⋅X₁₆+7⋅X₁₀ {O(n)}
t₆₁, X₁₁: 38⋅X₁₁ {O(n)}
t₆₁, X₁₂: 38⋅X₁₂ {O(n)}
t₆₁, X₁₃: 38⋅X₁₃ {O(n)}
t₆₁, X₁₆: 38⋅X₁₆ {O(n)}
t₆₂, X₁: 30⋅X₁₆ {O(n)}
t₆₂, X₃: 30⋅X₁₁ {O(n)}
t₆₂, X₄: 30⋅X₁₂ {O(n)}
t₆₂, X₈: 9⋅X₈+32 {O(n)}
t₆₂, X₁₀: 42⋅X₁₆+7⋅X₁₀ {O(n)}
t₆₂, X₁₁: 30⋅X₁₁ {O(n)}
t₆₂, X₁₂: 30⋅X₁₂ {O(n)}
t₆₂, X₁₃: 30⋅X₁₃ {O(n)}
t₆₂, X₁₆: 30⋅X₁₆ {O(n)}
t₆₃, X₁: 118⋅X₁₆ {O(n)}
t₆₃, X₈: 32⋅X₈+108 {O(n)}
t₆₃, X₁₀: 112⋅X₁₆+21⋅X₁₀ {O(n)}
t₆₃, X₁₁: 118⋅X₁₁ {O(n)}
t₆₃, X₁₂: 118⋅X₁₂ {O(n)}
t₆₃, X₁₃: 118⋅X₁₃ {O(n)}
t₆₃, X₁₆: 118⋅X₁₆ {O(n)}
t₆₄, X₁: 236⋅X₁₆ {O(n)}
t₆₄, X₈: 64⋅X₈+216 {O(n)}
t₆₄, X₁₀: 224⋅X₁₆+42⋅X₁₀ {O(n)}
t₆₄, X₁₁: 236⋅X₁₁ {O(n)}
t₆₄, X₁₂: 236⋅X₁₂ {O(n)}
t₆₄, X₁₃: 236⋅X₁₃ {O(n)}
t₆₄, X₁₆: 236⋅X₁₆ {O(n)}
t₆₅, X₁: 236⋅X₁₆ {O(n)}
t₆₅, X₈: 64⋅X₈+216 {O(n)}
t₆₅, X₁₀: 224⋅X₁₆+42⋅X₁₀ {O(n)}
t₆₅, X₁₁: 236⋅X₁₁ {O(n)}
t₆₅, X₁₂: 236⋅X₁₂ {O(n)}
t₆₅, X₁₃: 236⋅X₁₃ {O(n)}
t₆₅, X₁₆: 236⋅X₁₆ {O(n)}
t₆₆, X₁: 118⋅X₁₆ {O(n)}
t₆₆, X₈: 32⋅X₈+108 {O(n)}
t₆₆, X₁₀: 112⋅X₁₆+21⋅X₁₀ {O(n)}
t₆₆, X₁₁: 118⋅X₁₁ {O(n)}
t₆₆, X₁₂: 118⋅X₁₂ {O(n)}
t₆₆, X₁₃: 118⋅X₁₃ {O(n)}
t₆₆, X₁₆: 118⋅X₁₆ {O(n)}
t₆₇, X₁: 472⋅X₁₆ {O(n)}
t₆₇, X₈: 128⋅X₈+432 {O(n)}
t₆₇, X₁₀: 448⋅X₁₆+84⋅X₁₀ {O(n)}
t₆₇, X₁₁: 472⋅X₁₁ {O(n)}
t₆₇, X₁₂: 472⋅X₁₂ {O(n)}
t₆₇, X₁₃: 472⋅X₁₃ {O(n)}
t₆₇, X₁₆: 472⋅X₁₆ {O(n)}
t₆₈, X₀: X₀ {O(n)}
t₆₈, X₁: X₁ {O(n)}
t₆₈, X₂: X₂ {O(n)}
t₆₈, X₃: X₃ {O(n)}
t₆₈, X₄: X₄ {O(n)}
t₆₈, X₅: X₅ {O(n)}
t₆₈, X₆: X₆ {O(n)}
t₆₈, X₇: X₇ {O(n)}
t₆₈, X₈: X₈ {O(n)}
t₆₈, X₉: X₉ {O(n)}
t₆₈, X₁₀: X₁₀ {O(n)}
t₆₈, X₁₁: X₁₁ {O(n)}
t₆₈, X₁₂: X₁₂ {O(n)}
t₆₈, X₁₃: X₁₃ {O(n)}
t₆₈, X₁₆: X₁₆ {O(n)}
t₆₉, X₀: X₀ {O(n)}
t₆₉, X₁: X₁ {O(n)}
t₆₉, X₂: X₂ {O(n)}
t₆₉, X₃: X₃ {O(n)}
t₆₉, X₄: X₄ {O(n)}
t₆₉, X₆: X₆ {O(n)}
t₆₉, X₇: X₇ {O(n)}
t₆₉, X₈: X₈ {O(n)}
t₆₉, X₉: X₉ {O(n)}
t₆₉, X₁₀: X₁₀ {O(n)}
t₆₉, X₁₁: X₁₁ {O(n)}
t₆₉, X₁₂: X₁₂ {O(n)}
t₆₉, X₁₃: X₁₃ {O(n)}
t₆₉, X₁₆: X₁₆ {O(n)}
t₇₀, X₁: X₁₆ {O(n)}
t₇₀, X₃: X₃ {O(n)}
t₇₀, X₄: X₄ {O(n)}
t₇₀, X₇: X₇ {O(n)}
t₇₀, X₈: X₈ {O(n)}
t₇₀, X₉: X₉ {O(n)}
t₇₀, X₁₀: X₁₀ {O(n)}
t₇₀, X₁₁: X₁₁ {O(n)}
t₇₀, X₁₂: X₁₂ {O(n)}
t₇₀, X₁₃: X₁₃ {O(n)}
t₇₀, X₁₆: X₁₆ {O(n)}
t₇₂, X₁: 6⋅X₁₆ {O(n)}
t₇₂, X₃: 6⋅X₃ {O(n)}
t₇₂, X₄: 6⋅X₄ {O(n)}
t₇₂, X₈: 3⋅X₈+8 {O(n)}
t₇₂, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₇₂, X₁₁: 6⋅X₁₁ {O(n)}
t₇₂, X₁₂: 6⋅X₁₂ {O(n)}
t₇₂, X₁₃: 6⋅X₁₃ {O(n)}
t₇₂, X₁₆: 6⋅X₁₆ {O(n)}
t₇₃, X₁: 6⋅X₁₆ {O(n)}
t₇₃, X₃: 6⋅X₃ {O(n)}
t₇₃, X₄: 6⋅X₄ {O(n)}
t₇₃, X₈: 3⋅X₈+8 {O(n)}
t₇₃, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₇₃, X₁₁: 6⋅X₁₁ {O(n)}
t₇₃, X₁₂: 6⋅X₁₂ {O(n)}
t₇₃, X₁₃: 6⋅X₁₃ {O(n)}
t₇₃, X₁₆: 6⋅X₁₆ {O(n)}
t₇₄, X₁: 7⋅X₁₆ {O(n)}
t₇₄, X₃: 7⋅X₃ {O(n)}
t₇₄, X₄: 7⋅X₄ {O(n)}
t₇₄, X₈: 4⋅X₈+8 {O(n)}
t₇₄, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₇₄, X₁₁: 7⋅X₁₁ {O(n)}
t₇₄, X₁₂: 7⋅X₁₂ {O(n)}
t₇₄, X₁₃: 7⋅X₁₃ {O(n)}
t₇₄, X₁₆: 7⋅X₁₆ {O(n)}
t₇₅, X₁: 6⋅X₁₆ {O(n)}
t₇₅, X₃: 6⋅X₃ {O(n)}
t₇₅, X₄: 6⋅X₄ {O(n)}
t₇₅, X₈: 3⋅X₈+8 {O(n)}
t₇₅, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₇₅, X₁₁: 6⋅X₁₁ {O(n)}
t₇₅, X₁₂: 6⋅X₁₂ {O(n)}
t₇₅, X₁₃: 6⋅X₁₃ {O(n)}
t₇₅, X₁₆: 6⋅X₁₆ {O(n)}
t₁₈₆, X₀: 3 {O(1)}
t₁₈₆, X₁: 6⋅X₁₆ {O(n)}
t₁₈₆, X₂: 0 {O(1)}
t₁₈₆, X₃: 6⋅X₃ {O(n)}
t₁₈₆, X₄: 6⋅X₄ {O(n)}
t₁₈₆, X₇: 0 {O(1)}
t₁₈₆, X₈: 3⋅X₈+8 {O(n)}
t₁₈₆, X₁₀: 6⋅X₁₆ {O(n)}
t₁₈₆, X₁₁: 6⋅X₁₁ {O(n)}
t₁₈₆, X₁₂: 6⋅X₁₂ {O(n)}
t₁₈₆, X₁₃: 6⋅X₁₃ {O(n)}
t₁₈₆, X₁₆: 6⋅X₁₆ {O(n)}
t₁₈₇, X₀: 3 {O(1)}
t₁₈₇, X₁: X₁₆ {O(n)}
t₁₈₇, X₂: 0 {O(1)}
t₁₈₇, X₃: X₃ {O(n)}
t₁₈₇, X₄: X₄ {O(n)}
t₁₈₇, X₅: 3 {O(1)}
t₁₈₇, X₆: 0 {O(1)}
t₁₈₇, X₇: X₇ {O(n)}
t₁₈₇, X₈: X₈ {O(n)}
t₁₈₇, X₉: X₉ {O(n)}
t₁₈₇, X₁₀: X₁₀ {O(n)}
t₁₈₇, X₁₁: X₁₁ {O(n)}
t₁₈₇, X₁₂: X₁₂ {O(n)}
t₁₈₇, X₁₃: X₁₃ {O(n)}
t₁₈₇, X₁₆: X₁₆ {O(n)}
t₇₉, X₁: 6⋅X₁₆ {O(n)}
t₇₉, X₃: 6⋅X₃ {O(n)}
t₇₉, X₄: 6⋅X₄ {O(n)}
t₇₉, X₈: 3⋅X₈+8 {O(n)}
t₇₉, X₁₀: 6⋅X₁₆ {O(n)}
t₇₉, X₁₁: 6⋅X₁₁ {O(n)}
t₇₉, X₁₂: 6⋅X₁₂ {O(n)}
t₇₉, X₁₃: 6⋅X₁₃ {O(n)}
t₇₉, X₁₆: 6⋅X₁₆ {O(n)}
t₁₈₈, X₀: 3 {O(1)}
t₁₈₈, X₁: 6⋅X₁₆ {O(n)}
t₁₈₈, X₂: 0 {O(1)}
t₁₈₈, X₃: 6⋅X₃ {O(n)}
t₁₈₈, X₄: 6⋅X₄ {O(n)}
t₁₈₈, X₇: X₇ {O(n)}
t₁₈₈, X₈: 3 {O(1)}
t₁₈₈, X₉: 0 {O(1)}
t₁₈₈, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₁₈₈, X₁₁: 6⋅X₁₁ {O(n)}
t₁₈₈, X₁₂: 6⋅X₁₂ {O(n)}
t₁₈₈, X₁₃: 6⋅X₁₃ {O(n)}
t₁₈₈, X₁₆: 6⋅X₁₆ {O(n)}
t₂₀₆, X₀: 4 {O(1)}
t₂₀₆, X₁: 6⋅X₁₆ {O(n)}
t₂₀₆, X₃: 6⋅X₃ {O(n)}
t₂₀₆, X₄: 6⋅X₄ {O(n)}
t₂₀₆, X₇: 2⋅X₇ {O(n)}
t₂₀₆, X₈: 4 {O(1)}
t₂₀₆, X₁₀: 12⋅X₁₆+2⋅X₁₀ {O(n)}
t₂₀₆, X₁₁: 6⋅X₁₁ {O(n)}
t₂₀₆, X₁₂: 6⋅X₁₂ {O(n)}
t₂₀₆, X₁₃: 6⋅X₁₃ {O(n)}
t₂₀₆, X₁₆: 6⋅X₁₆ {O(n)}
t₂₀₇, X₀: 4 {O(1)}
t₂₀₇, X₁: 13⋅X₁₆ {O(n)}
t₂₀₇, X₃: 13⋅X₃ {O(n)}
t₂₀₇, X₄: 13⋅X₄ {O(n)}
t₂₀₇, X₇: 2⋅X₇ {O(n)}
t₂₀₇, X₈: 4 {O(1)}
t₂₀₇, X₁₀: 12⋅X₁₆+2⋅X₁₀ {O(n)}
t₂₀₇, X₁₁: 13⋅X₁₁ {O(n)}
t₂₀₇, X₁₂: 13⋅X₁₂ {O(n)}
t₂₀₇, X₁₃: 13⋅X₁₃ {O(n)}
t₂₀₇, X₁₆: 13⋅X₁₆ {O(n)}
t₂₀₈, X₀: 4 {O(1)}
t₂₀₈, X₁: 6⋅X₁₆ {O(n)}
t₂₀₈, X₃: 6⋅X₃ {O(n)}
t₂₀₈, X₄: 6⋅X₄ {O(n)}
t₂₀₈, X₇: 2⋅X₇ {O(n)}
t₂₀₈, X₈: 4 {O(1)}
t₂₀₈, X₁₀: 12⋅X₁₆+2⋅X₁₀ {O(n)}
t₂₀₈, X₁₁: 6⋅X₁₁ {O(n)}
t₂₀₈, X₁₂: 6⋅X₁₂ {O(n)}
t₂₀₈, X₁₃: 6⋅X₁₃ {O(n)}
t₂₀₈, X₁₆: 6⋅X₁₆ {O(n)}
t₁₈₉, X₀: 4 {O(1)}
t₁₈₉, X₁: 6⋅X₁₆ {O(n)}
t₁₈₉, X₃: 6⋅X₃ {O(n)}
t₁₈₉, X₄: 6⋅X₄ {O(n)}
t₁₈₉, X₇: 0 {O(1)}
t₁₈₉, X₈: 4 {O(1)}
t₁₈₉, X₁₀: 6⋅X₁₆ {O(n)}
t₁₈₉, X₁₁: 6⋅X₁₁ {O(n)}
t₁₈₉, X₁₂: 6⋅X₁₂ {O(n)}
t₁₈₉, X₁₃: 6⋅X₁₃ {O(n)}
t₁₈₉, X₁₆: 6⋅X₁₆ {O(n)}
t₁₉₀, X₀: 4 {O(1)}
t₁₉₀, X₁: 6⋅X₁₆ {O(n)}
t₁₉₀, X₃: 6⋅X₃ {O(n)}
t₁₉₀, X₄: 6⋅X₄ {O(n)}
t₁₉₀, X₇: X₇ {O(n)}
t₁₉₀, X₈: 4 {O(1)}
t₁₉₀, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₁₉₀, X₁₁: 6⋅X₁₁ {O(n)}
t₁₉₀, X₁₂: 6⋅X₁₂ {O(n)}
t₁₉₀, X₁₃: 6⋅X₁₃ {O(n)}
t₁₉₀, X₁₆: 6⋅X₁₆ {O(n)}
t₁₉₁, X₀: 4 {O(1)}
t₁₉₁, X₁: X₁₆ {O(n)}
t₁₉₁, X₃: X₃ {O(n)}
t₁₉₁, X₄: X₄ {O(n)}
t₁₉₁, X₅: 3 {O(1)}
t₁₉₁, X₆: 0 {O(1)}
t₁₉₁, X₇: X₇ {O(n)}
t₁₉₁, X₈: 4 {O(1)}
t₁₉₁, X₁₀: X₁₀ {O(n)}
t₁₉₁, X₁₁: X₁₁ {O(n)}
t₁₉₁, X₁₂: X₁₂ {O(n)}
t₁₉₁, X₁₃: X₁₃ {O(n)}
t₁₉₁, X₁₆: X₁₆ {O(n)}
t₁₉₂, X₀: 3 {O(1)}
t₁₉₂, X₁: X₁₆ {O(n)}
t₁₉₂, X₂: 0 {O(1)}
t₁₉₂, X₃: X₃ {O(n)}
t₁₉₂, X₄: X₄ {O(n)}
t₁₉₂, X₅: 3 {O(1)}
t₁₉₂, X₆: 0 {O(1)}
t₁₉₂, X₇: X₇ {O(n)}
t₁₉₂, X₈: 4 {O(1)}
t₁₉₂, X₉: X₉ {O(n)}
t₁₉₂, X₁₀: X₁₀ {O(n)}
t₁₉₂, X₁₁: X₁₁ {O(n)}
t₁₉₂, X₁₂: X₁₂ {O(n)}
t₁₉₂, X₁₃: X₁₃ {O(n)}
t₁₉₂, X₁₆: X₁₆ {O(n)}
t₁₉₃, X₀: 3 {O(1)}
t₁₉₃, X₁: 6⋅X₁₆ {O(n)}
t₁₉₃, X₂: 0 {O(1)}
t₁₉₃, X₃: 6⋅X₃ {O(n)}
t₁₉₃, X₄: 6⋅X₄ {O(n)}
t₁₉₃, X₇: 0 {O(1)}
t₁₉₃, X₈: 4 {O(1)}
t₁₉₃, X₁₀: 6⋅X₁₆ {O(n)}
t₁₉₃, X₁₁: 6⋅X₁₁ {O(n)}
t₁₉₃, X₁₂: 6⋅X₁₂ {O(n)}
t₁₉₃, X₁₃: 6⋅X₁₃ {O(n)}
t₁₉₃, X₁₆: 6⋅X₁₆ {O(n)}
t₁₉₄, X₀: 3 {O(1)}
t₁₉₄, X₁: 6⋅X₁₆ {O(n)}
t₁₉₄, X₂: 0 {O(1)}
t₁₉₄, X₃: 6⋅X₃ {O(n)}
t₁₉₄, X₄: 6⋅X₄ {O(n)}
t₁₉₄, X₇: X₇ {O(n)}
t₁₉₄, X₈: 4 {O(1)}
t₁₉₄, X₉: 0 {O(1)}
t₁₉₄, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₁₉₄, X₁₁: 6⋅X₁₁ {O(n)}
t₁₉₄, X₁₂: 6⋅X₁₂ {O(n)}
t₁₉₄, X₁₃: 6⋅X₁₃ {O(n)}
t₁₉₄, X₁₆: 6⋅X₁₆ {O(n)}
t₁₉₅, X₀: 3 {O(1)}
t₁₉₅, X₁: 6⋅X₁₆ {O(n)}
t₁₉₅, X₂: 0 {O(1)}
t₁₉₅, X₃: 6⋅X₃ {O(n)}
t₁₉₅, X₄: 6⋅X₄ {O(n)}
t₁₉₅, X₇: 0 {O(1)}
t₁₉₅, X₈: 4 {O(1)}
t₁₉₅, X₁₀: 6⋅X₁₆ {O(n)}
t₁₉₅, X₁₁: 6⋅X₁₁ {O(n)}
t₁₉₅, X₁₂: 6⋅X₁₂ {O(n)}
t₁₉₅, X₁₃: 6⋅X₁₃ {O(n)}
t₁₉₅, X₁₆: 6⋅X₁₆ {O(n)}
t₁₉₆, X₀: 3 {O(1)}
t₁₉₆, X₁: 6⋅X₁₆ {O(n)}
t₁₉₆, X₂: 0 {O(1)}
t₁₉₆, X₃: 6⋅X₃ {O(n)}
t₁₉₆, X₄: 6⋅X₄ {O(n)}
t₁₉₆, X₇: X₇ {O(n)}
t₁₉₆, X₈: 4 {O(1)}
t₁₉₆, X₁₀: 6⋅X₁₆+X₁₀ {O(n)}
t₁₉₆, X₁₁: 6⋅X₁₁ {O(n)}
t₁₉₆, X₁₂: 6⋅X₁₂ {O(n)}
t₁₉₆, X₁₃: 6⋅X₁₃ {O(n)}
t₁₉₆, X₁₆: 6⋅X₁₆ {O(n)}
t₁₉₇, X₀: 3 {O(1)}
t₁₉₇, X₁: X₁₆ {O(n)}
t₁₉₇, X₂: 0 {O(1)}
t₁₉₇, X₃: X₃ {O(n)}
t₁₉₇, X₄: X₄ {O(n)}
t₁₉₇, X₅: 3 {O(1)}
t₁₉₇, X₆: 0 {O(1)}
t₁₉₇, X₇: X₇ {O(n)}
t₁₉₇, X₈: 4 {O(1)}
t₁₉₇, X₁₀: X₁₀ {O(n)}
t₁₉₇, X₁₁: X₁₁ {O(n)}
t₁₉₇, X₁₂: X₁₂ {O(n)}
t₁₉₇, X₁₃: X₁₃ {O(n)}
t₁₉₇, X₁₆: X₁₆ {O(n)}