Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < 2
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₀
t₁₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < 0
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₄
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ < X₃
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₂
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₃-1, X₂+1-X₃, X₂, X₃, X₄, X₅, X₆)
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆)
t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆)
t₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₁+X₀-1, X₀-1, X₄, X₅, X₆)

Preprocessing

Found invariant X₀ ≤ X₅ ∧ X₀ ≤ 1 for location l11

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l2

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l6

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l7

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l5

Found invariant X₀ ≤ X₅ for location l1

Found invariant X₀ ≤ X₅ ∧ X₀ ≤ 1 for location l10

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₀ for location l4

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀ for location l9

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < 2 ∧ X₀ ≤ X₅
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₀ ∧ X₀ ≤ X₅
t₁₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₅ ∧ X₀ ≤ 1
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < 0 ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₄ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ < X₃ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₀
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₀
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₃-1, X₂+1-X₃, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₀
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆) :|: 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆) :|: 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₁+X₀-1, X₀-1, X₄, X₅, X₆) :|: 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀

MPRF for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₀ ∧ X₀ ≤ X₅ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF:

l4 [X₀-3 ]
l1 [X₀-1 ]
l5 [X₃-2 ]
l6 [X₀-3 ]
l2 [X₀-3 ]
l7 [X₃-2 ]
l9 [X₀-3 ]
l3 [X₃-2 ]

MPRF for transition t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < 0 ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

3⋅X₅+3⋅X₆+2 {O(n)}

MPRF:

l4 [3⋅X₂+X₅-X₀ ]
l1 [2⋅X₀+3⋅X₁+X₅-2 ]
l5 [3⋅X₂+X₅-X₃ ]
l6 [3⋅X₂+X₅-X₃ ]
l2 [3⋅X₂+X₅-X₃-1 ]
l7 [3⋅X₂+X₅-X₃-2 ]
l9 [2⋅X₀+3⋅X₁+X₅-2 ]
l3 [3⋅X₂+X₅-X₃ ]

MPRF for transition t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₄ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₅+2⋅X₆+1 {O(n)}

MPRF:

l4 [2⋅X₂+X₅+1-X₀ ]
l1 [X₀+2⋅X₁+X₅-1 ]
l5 [2⋅X₂+X₅-X₃ ]
l6 [2⋅X₂+X₅-X₃ ]
l2 [2⋅X₂+X₅-X₃ ]
l7 [2⋅X₂+X₅-X₃-1 ]
l9 [X₀+2⋅X₁+X₅-1 ]
l3 [2⋅X₂+X₅-X₃ ]

MPRF for transition t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₅+2 {O(n)}

MPRF:

l4 [2⋅X₃+X₅-X₀-2 ]
l1 [X₀+X₅-2 ]
l5 [2⋅X₃+X₅-X₀ ]
l6 [2⋅X₃+X₅-X₀ ]
l2 [2⋅X₃+X₅-X₀ ]
l7 [X₃+X₅-1 ]
l9 [X₀+X₅-2 ]
l3 [X₀+X₅-2 ]

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₅+X₆ {O(n)}

MPRF:

l4 [X₂ ]
l1 [X₀+X₁ ]
l5 [X₂ ]
l6 [X₂ ]
l2 [X₂ ]
l7 [X₂ ]
l9 [X₀+X₁ ]
l3 [X₂+1 ]

MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ < X₃ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF:

l4 [X₃-2 ]
l1 [X₀-1 ]
l5 [X₃ ]
l6 [X₃ ]
l2 [X₃ ]
l7 [X₀-1 ]
l9 [X₀-1 ]
l3 [X₃ ]

MPRF for transition t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₃-1, X₂+1-X₃, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l4 [X₀ ]
l1 [X₀ ]
l5 [X₃+1 ]
l6 [X₃+1 ]
l2 [X₀ ]
l7 [X₃+1 ]
l9 [X₀ ]
l3 [X₀ ]

MPRF for transition t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₅+X₆ {O(n)}

MPRF:

l4 [X₂ ]
l1 [X₀+X₁ ]
l5 [X₂+1 ]
l6 [X₂ ]
l2 [X₂ ]
l7 [X₂ ]
l9 [X₀+X₁ ]
l3 [X₂+1 ]

MPRF for transition t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆) :|: 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₅+X₆+2 {O(n)}

MPRF:

l4 [X₂+X₅-2 ]
l1 [X₀+X₁+X₅-2 ]
l5 [X₂+X₅-1 ]
l6 [X₂+X₃+X₅-X₀ ]
l2 [X₂+X₃+X₅-X₀-1 ]
l7 [X₂+X₅-2 ]
l9 [X₀+X₁+X₅-2 ]
l3 [X₂+X₅-1 ]

MPRF for transition t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆) :|: 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₅+X₆ {O(n)}

MPRF:

l4 [X₂ ]
l1 [X₀+X₁ ]
l5 [X₂ ]
l6 [X₂ ]
l2 [X₂ ]
l7 [X₂ ]
l9 [X₀+X₁ ]
l3 [X₂ ]

MPRF for transition t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₁+X₀-1, X₀-1, X₄, X₅, X₆) :|: 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF:

l4 [X₃-2 ]
l1 [X₀-1 ]
l5 [X₀-3 ]
l6 [X₀-3 ]
l2 [X₀-3 ]
l7 [X₃-2 ]
l9 [X₀-1 ]
l3 [X₀-3 ]

All Bounds

Timebounds

Overall timebound:16⋅X₅+9⋅X₆+14 {O(n)}
t₀: 1 {O(1)}
t₂: X₅+1 {O(n)}
t₃: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₀: 3⋅X₅+3⋅X₆+2 {O(n)}
t₁₁: 2⋅X₅+2⋅X₆+1 {O(n)}
t₁₂: 2⋅X₅+2 {O(n)}
t₅: X₅+X₆ {O(n)}
t₆: X₅+1 {O(n)}
t₁₄: X₅ {O(n)}
t₇: X₅+X₆ {O(n)}
t₉: 2⋅X₅+X₆+2 {O(n)}
t₁₃: X₅+X₆ {O(n)}
t₁: 1 {O(1)}
t₄: X₅+1 {O(n)}

Costbounds

Overall costbound: 16⋅X₅+9⋅X₆+14 {O(n)}
t₀: 1 {O(1)}
t₂: X₅+1 {O(n)}
t₃: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₀: 3⋅X₅+3⋅X₆+2 {O(n)}
t₁₁: 2⋅X₅+2⋅X₆+1 {O(n)}
t₁₂: 2⋅X₅+2 {O(n)}
t₅: X₅+X₆ {O(n)}
t₆: X₅+1 {O(n)}
t₁₄: X₅ {O(n)}
t₇: X₅+X₆ {O(n)}
t₉: 2⋅X₅+X₆+2 {O(n)}
t₁₃: X₅+X₆ {O(n)}
t₁: 1 {O(1)}
t₄: X₅+1 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₂, X₀: X₅ {O(n)}
t₂, X₁: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₂, X₂: 8⋅X₅⋅X₅+10⋅X₅+2⋅X₆+X₂ {O(n^2)}
t₂, X₃: 3⋅X₅+X₃ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₃, X₀: 2⋅X₅ {O(n)}
t₃, X₁: 4⋅X₅⋅X₅+2⋅X₆+5⋅X₅ {O(n^2)}
t₃, X₂: 8⋅X₅⋅X₅+10⋅X₅+2⋅X₆+X₂ {O(n^2)}
t₃, X₃: 3⋅X₅+X₃ {O(n)}
t₃, X₅: 2⋅X₅ {O(n)}
t₃, X₆: 2⋅X₆ {O(n)}
t₁₅, X₀: 2⋅X₅ {O(n)}
t₁₅, X₁: 4⋅X₅⋅X₅+2⋅X₆+5⋅X₅ {O(n^2)}
t₁₅, X₂: 8⋅X₅⋅X₅+10⋅X₅+2⋅X₆+X₂ {O(n^2)}
t₁₅, X₃: 3⋅X₅+X₃ {O(n)}
t₁₅, X₅: 2⋅X₅ {O(n)}
t₁₅, X₆: 2⋅X₆ {O(n)}
t₁₀, X₀: X₅ {O(n)}
t₁₀, X₁: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₁₀, X₂: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₁₀, X₃: X₅ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₁, X₀: X₅ {O(n)}
t₁₁, X₁: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₁₁, X₂: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₁₁, X₃: X₅ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₂, X₀: X₅ {O(n)}
t₁₂, X₁: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₁₂, X₂: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₁₂, X₃: X₅ {O(n)}
t₁₂, X₄: 0 {O(1)}
t₁₂, X₅: X₅ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₅, X₀: X₅ {O(n)}
t₅, X₁: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₅, X₂: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₅, X₃: X₅ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₆, X₀: X₅ {O(n)}
t₆, X₁: 8⋅X₅⋅X₅+10⋅X₅+2⋅X₆ {O(n^2)}
t₆, X₂: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₆, X₃: 2⋅X₅ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₁₄, X₀: X₅ {O(n)}
t₁₄, X₁: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₁₄, X₂: 8⋅X₅⋅X₅+10⋅X₅+2⋅X₆ {O(n^2)}
t₁₄, X₃: 3⋅X₅ {O(n)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₇, X₀: X₅ {O(n)}
t₇, X₁: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₇, X₂: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₇, X₃: X₅ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₉, X₀: X₅ {O(n)}
t₉, X₁: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₉, X₂: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₉, X₃: X₅ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₁₃, X₀: X₅ {O(n)}
t₁₃, X₁: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₁₃, X₂: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₁₃, X₃: X₅ {O(n)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁, X₀: X₅ {O(n)}
t₁, X₁: X₆ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₄, X₀: X₅ {O(n)}
t₄, X₁: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₄, X₂: 4⋅X₅⋅X₅+5⋅X₅+X₆ {O(n^2)}
t₄, X₃: X₅ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}