Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₀, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆) :|: 0 < X₆
t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1)
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇)
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: 0 < X₃
t₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₅, X₄, X₅, X₆, X₇)
t₂₅: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0
t₁₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: X₁ < 0
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: 0 < X₁
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₄
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃-X₀, X₇)
t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 0
t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇)

Preprocessing

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l11

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l2

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l6

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l15

Found invariant X₃ ≤ X₅ for location l12

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l7

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l5

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l8

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l1

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l10

Found invariant X₃ ≤ X₅ ∧ X₃ ≤ 0 for location l16

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l4

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l9

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l3

Found invariant X₃ ≤ X₅ ∧ X₃ ≤ 0 for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₀, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆) :|: 0 < X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ X₃ ≤ X₅
t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: 0 < X₃ ∧ X₃ ≤ X₅
t₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₅, X₄, X₅, X₆, X₇)
t₂₅: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₅ ∧ X₃ ≤ 0
t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₁₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: X₁ < 0 ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: 0 < X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃-X₀, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀

MPRF for transition t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₀, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₅+1 {O(n)}

MPRF:

l12 [X₃+X₅-1 ]
l15 [X₀+X₅ ]
l3 [X₄+X₅-1 ]
l4 [X₀+X₅ ]
l1 [2⋅X₀+X₅+1-X₄ ]
l5 [X₄+X₅-1 ]
l6 [X₄+X₅-1 ]
l2 [X₀+X₅ ]
l10 [X₀+X₅ ]
l11 [2⋅X₀+X₅+1-X₄ ]
l8 [X₀+X₅ ]
l9 [X₄+X₅-1 ]
l7 [X₄+X₅-1 ]

MPRF for transition t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: 0 < X₃ ∧ X₃ ≤ X₅ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF:

l12 [X₃+1 ]
l15 [X₄ ]
l3 [X₄ ]
l4 [X₄ ]
l1 [X₀+1 ]
l5 [X₄ ]
l6 [X₄ ]
l2 [X₀+1 ]
l10 [X₄ ]
l11 [X₄ ]
l8 [X₄ ]
l9 [X₄ ]
l7 [X₄ ]

MPRF for transition t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: X₁ < 0 ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF:

l12 [X₃-1 ]
l15 [X₀-1 ]
l3 [X₄-1 ]
l4 [X₀-1 ]
l1 [2⋅X₀-X₄ ]
l5 [X₄-1 ]
l6 [X₀ ]
l2 [X₀ ]
l10 [2⋅X₀-X₄ ]
l11 [2⋅X₀-X₄ ]
l8 [2⋅X₀-X₄ ]
l9 [2⋅X₀-X₄ ]
l7 [2⋅X₀-X₄ ]

MPRF for transition t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: 0 < X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF:

l12 [X₃-1 ]
l15 [X₀-1 ]
l3 [X₄-1 ]
l4 [2⋅X₀-X₄ ]
l1 [2⋅X₀-X₄ ]
l5 [X₄-1 ]
l6 [X₄-1 ]
l2 [X₄-1 ]
l10 [X₀-1 ]
l11 [2⋅X₀-X₄ ]
l8 [X₀-1 ]
l9 [X₀-1 ]
l7 [X₀-1 ]

MPRF for transition t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₅+2 {O(n)}

MPRF:

l12 [X₃+2 ]
l15 [X₀+2 ]
l3 [X₄+2 ]
l4 [X₄+1 ]
l1 [X₄+1 ]
l5 [X₄+2 ]
l6 [X₄+2 ]
l2 [X₄+2 ]
l10 [X₀+2 ]
l11 [2⋅X₄-X₀ ]
l8 [2⋅X₄-X₀ ]
l9 [2⋅X₄-X₀ ]
l7 [X₀+2 ]

MPRF for transition t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

2⋅X₅ {O(n)}

MPRF:

l12 [X₃+X₅ ]
l15 [X₀+X₅ ]
l3 [X₄+X₅ ]
l4 [X₀+X₅ ]
l1 [X₄+X₅-1 ]
l5 [X₀+X₅ ]
l6 [X₀+X₅ ]
l2 [X₀+X₅ ]
l10 [X₀+X₅ ]
l11 [X₄+X₅-1 ]
l8 [X₄+X₅-1 ]
l9 [X₄+X₅-1 ]
l7 [X₄+X₅-1 ]

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF:

l12 [X₃+1 ]
l15 [X₄ ]
l3 [X₄+1 ]
l4 [X₄ ]
l1 [X₄ ]
l5 [X₀+1 ]
l6 [X₀+1 ]
l2 [X₀+1 ]
l10 [X₄ ]
l11 [X₄ ]
l8 [X₄ ]
l9 [X₄ ]
l7 [X₄ ]

MPRF for transition t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃-X₀, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₅+2 {O(n)}

MPRF:

l12 [X₃+2 ]
l15 [X₃+1 ]
l3 [X₃+2 ]
l4 [X₃+2 ]
l1 [X₃+1 ]
l5 [X₃+2 ]
l6 [X₃+2 ]
l2 [X₃+2 ]
l10 [X₃+1 ]
l11 [X₃+1 ]
l8 [X₃+1 ]
l9 [X₃+1 ]
l7 [X₃+1 ]

MPRF for transition t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₅+2 {O(n)}

MPRF:

l12 [X₃+2 ]
l15 [2⋅X₄-X₀ ]
l3 [X₄+2 ]
l4 [2⋅X₄-X₀ ]
l1 [X₄+1 ]
l5 [X₄+2 ]
l6 [X₄+1 ]
l2 [X₀+2 ]
l10 [X₀+2 ]
l11 [X₄+1 ]
l8 [2⋅X₄-X₀ ]
l9 [2⋅X₄-X₀ ]
l7 [X₄+1 ]

MPRF for transition t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₅ {O(n)}

MPRF:

l12 [X₃ ]
l15 [X₀ ]
l3 [X₄ ]
l4 [X₀ ]
l1 [X₄-1 ]
l5 [X₀+1 ]
l6 [X₀+1 ]
l2 [X₀ ]
l10 [X₀ ]
l11 [X₄-1 ]
l8 [X₀ ]
l9 [X₀ ]
l7 [X₀ ]

MPRF for transition t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆) :|: 0 < X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

5⋅X₅⋅X₅+2⋅X₅ {O(n^2)}

MPRF:

l12 [2⋅X₃ ]
l15 [3⋅X₀+X₆ ]
l2 [X₀+2⋅X₃ ]
l3 [2⋅X₃ ]
l4 [2⋅X₃+X₄-1 ]
l1 [3⋅X₀+X₆+1 ]
l5 [2⋅X₃ ]
l6 [2⋅X₃ ]
l10 [3⋅X₀+X₆ ]
l11 [3⋅X₀+X₆ ]
l8 [3⋅X₀+X₆ ]
l9 [3⋅X₀+X₆ ]
l7 [3⋅X₀+X₆ ]

MPRF for transition t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

4⋅X₅⋅X₅+3⋅X₅ {O(n^2)}

MPRF:

l12 [2⋅X₃ ]
l15 [3⋅X₀+X₆ ]
l2 [2⋅X₀+X₃+1 ]
l3 [X₃+X₄ ]
l4 [X₀+X₃+X₄ ]
l1 [3⋅X₀+X₆ ]
l5 [X₃+X₄ ]
l6 [X₀+X₃ ]
l10 [3⋅X₀+X₆ ]
l11 [3⋅X₀+X₆ ]
l8 [3⋅X₀+X₆ ]
l9 [3⋅X₀+X₆ ]
l7 [3⋅X₀+X₆ ]

MPRF for transition t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

4⋅X₅⋅X₅+2⋅X₅ {O(n^2)}

MPRF:

l12 [X₃ ]
l15 [2⋅X₀+X₆ ]
l2 [2⋅X₃-1 ]
l3 [2⋅X₃-X₄ ]
l4 [2⋅X₃-1 ]
l1 [2⋅X₀+X₆ ]
l5 [2⋅X₃-X₄ ]
l6 [2⋅X₃-X₀-1 ]
l10 [2⋅X₀+X₆ ]
l11 [2⋅X₀+X₆-1 ]
l8 [2⋅X₄+X₆-2 ]
l9 [2⋅X₄+X₆-2 ]
l7 [2⋅X₄+X₆-2 ]

MPRF for transition t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₅⋅X₅+X₅ {O(n^2)}

MPRF:

l12 [X₃ ]
l15 [2⋅X₀+X₆ ]
l2 [X₀+X₃ ]
l3 [X₃ ]
l4 [X₀+X₃ ]
l1 [2⋅X₀+X₆ ]
l5 [X₃ ]
l6 [X₃ ]
l10 [2⋅X₀+X₆ ]
l11 [2⋅X₄+X₆-3 ]
l8 [2⋅X₀+X₆ ]
l9 [2⋅X₀+X₆ ]
l7 [2⋅X₄+X₆-2 ]

MPRF for transition t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

98⋅X₅⋅X₅⋅X₅+56⋅X₅⋅X₅+9⋅X₅ {O(n^3)}

MPRF:

l11 [X₃+2⋅X₄ ]
l12 [3⋅X₃ ]
l15 [2⋅X₀+X₃+X₇-X₆ ]
l3 [3⋅X₃-2 ]
l4 [3⋅X₃-2 ]
l1 [X₃+2⋅X₄-2 ]
l5 [3⋅X₃-2 ]
l6 [2⋅X₀+3⋅X₃-2⋅X₄ ]
l2 [2⋅X₀+3⋅X₃-2⋅X₄ ]
l10 [3⋅X₀+X₃+X₇+1-X₄-X₆ ]
l8 [X₃+2⋅X₄+X₇-X₆-2 ]
l9 [X₃+2⋅X₄+X₇-X₆-2 ]
l7 [3⋅X₀+X₃+X₇+1-X₄-X₆ ]

MPRF for transition t₁₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

210⋅X₅⋅X₅⋅X₅+111⋅X₅⋅X₅+15⋅X₅ {O(n^3)}

MPRF:

l11 [5⋅X₅+3-X₀-3⋅X₆ ]
l12 [5⋅X₅-X₃ ]
l15 [5⋅X₅+X₇-X₀-4⋅X₆ ]
l3 [2⋅X₄+5⋅X₅-3⋅X₃ ]
l4 [2⋅X₄+5⋅X₅-3⋅X₃-2 ]
l1 [5⋅X₅-X₀-3⋅X₆ ]
l5 [2⋅X₀+5⋅X₅-3⋅X₃ ]
l6 [2⋅X₀+5⋅X₅-3⋅X₃ ]
l2 [2⋅X₀+5⋅X₅-3⋅X₃ ]
l10 [5⋅X₅+X₇-X₀-4⋅X₆-1 ]
l8 [5⋅X₅+X₇-X₀-4⋅X₆-1 ]
l9 [5⋅X₅+X₇-X₄-4⋅X₆ ]
l7 [5⋅X₅+X₇-X₀-4⋅X₆-1 ]

MPRF for transition t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

21⋅X₅⋅X₅⋅X₅+23⋅X₅⋅X₅+9⋅X₅+2 {O(n^3)}

MPRF:

l11 [2⋅X₀+X₅+2 ]
l12 [2⋅X₃+X₅+2 ]
l15 [2⋅X₀+X₅+X₇-X₆ ]
l3 [2⋅X₄+X₅+2 ]
l4 [2⋅X₄+X₅+2 ]
l1 [2⋅X₀+X₅+2 ]
l5 [2⋅X₀+X₅+4 ]
l6 [2⋅X₀+X₅+4 ]
l2 [2⋅X₀+X₅+4 ]
l10 [2⋅X₀+X₅+X₇-X₆-1 ]
l8 [2⋅X₀+X₅+X₇-X₆ ]
l9 [2⋅X₄+X₅+X₇-X₆-2 ]
l7 [2⋅X₀+X₅+X₇-X₆ ]

MPRF for transition t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

56⋅X₅⋅X₅⋅X₅+24⋅X₅⋅X₅+X₅ {O(n^3)}

MPRF:

l11 [X₃ ]
l12 [X₃ ]
l15 [X₃+X₇-X₆ ]
l3 [X₃ ]
l4 [X₃ ]
l1 [X₃ ]
l5 [X₃ ]
l6 [X₃ ]
l2 [X₃ ]
l10 [X₃+X₇-X₆-1 ]
l8 [X₃+X₇-X₆ ]
l9 [X₃+X₇-X₆ ]
l7 [X₃+X₇-X₆ ]

MPRF for transition t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

21⋅X₅⋅X₅⋅X₅+23⋅X₅⋅X₅+9⋅X₅+2 {O(n^3)}

MPRF:

l11 [2⋅X₀+X₅+2 ]
l12 [2⋅X₃+X₅+2 ]
l15 [2⋅X₀+X₅+X₇-X₆ ]
l3 [2⋅X₃+X₅+2 ]
l4 [2⋅X₃+X₅+2 ]
l1 [2⋅X₄+X₅ ]
l5 [2⋅X₃+X₅+2 ]
l6 [2⋅X₃+X₅+2 ]
l2 [2⋅X₃+X₅+2 ]
l10 [2⋅X₀+X₅+X₇-X₆-1 ]
l8 [2⋅X₄+X₅+X₇-X₆-2 ]
l9 [2⋅X₄+X₅+X₇-X₆-3 ]
l7 [2⋅X₀+X₅+X₇-X₆-1 ]

MPRF for transition t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

35⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+10⋅X₅+1 {O(n^3)}

MPRF:

l11 [X₀+X₅+2-X₄ ]
l12 [X₅+1 ]
l15 [X₅+X₇-X₆ ]
l3 [X₅+1 ]
l4 [X₀+X₅+2-X₄ ]
l1 [X₀+X₅+2-X₄ ]
l5 [X₅+1 ]
l6 [X₀+X₅+2-X₄ ]
l2 [X₀+X₅+2-X₄ ]
l10 [X₅+X₇-X₆-1 ]
l8 [X₅+X₇-X₆ ]
l9 [X₅+X₇-X₆ ]
l7 [X₅+X₇-X₆-1 ]

Analysing control-flow refined program

Cut unsatisfiable transition t₁₄: l1→l12

Cut unsatisfiable transition t₉₄₅: n_l1___1→l12

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 2+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 3+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location n_l10___4

Found invariant X₃ ≤ X₅ for location l12

Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 2+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location n_l10___9

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l15___24

Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l9___6

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l1

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l4

Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l15___13

Found invariant X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l1___14

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l3

Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l1___1

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l9___22

Found invariant X₃ ≤ X₅ ∧ X₃ ≤ 0 for location l14

Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l10___8

Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l15___17

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l2

Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l10___3

Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l9___11

Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l11___2

Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l8___12

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location n_l10___20

Found invariant X₇ ≤ 0 ∧ 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₄ ∧ 1+X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l11___16

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l8___23

Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l7___10

Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l11___7

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l5

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l10___19

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l7___21

Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l8___15

Found invariant X₃ ≤ X₅ ∧ X₃ ≤ 0 for location l16

Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l7___5

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l11___18

knowledge_propagation leads to new time bound X₅+2 {O(n)} for transition t₉₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l15___24(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆, X₆) :|: X₆ ≤ X₃ ∧ 0 < X₆ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 1+X₃ ≤ X₄+X₆ ∧ X₄+X₆ ≤ 1+X₃ ∧ X₀+X₆ ≤ X₃ ∧ X₃ ≤ X₀+X₆ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ X₃ ≤ X₅ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 0 < X₆ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀

All Bounds

Timebounds

Overall timebound:441⋅X₅⋅X₅⋅X₅+289⋅X₅⋅X₅+73⋅X₅+20 {O(n^3)}
t₀: 1 {O(1)}
t₁₃: 5⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₁₄: 2⋅X₅+1 {O(n)}
t₂₃: 98⋅X₅⋅X₅⋅X₅+56⋅X₅⋅X₅+9⋅X₅ {O(n^3)}
t₂₄: 4⋅X₅⋅X₅+3⋅X₅ {O(n^2)}
t₂: X₅+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂₅: 1 {O(1)}
t₁₅: 210⋅X₅⋅X₅⋅X₅+111⋅X₅⋅X₅+15⋅X₅ {O(n^3)}
t₁₆: 4⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₉: X₅+1 {O(n)}
t₁₀: X₅+1 {O(n)}
t₁₁: X₅+2 {O(n)}
t₄: 2⋅X₅ {O(n)}
t₅: X₅+1 {O(n)}
t₁₂: X₅+2 {O(n)}
t₆: X₅+2 {O(n)}
t₈: X₅ {O(n)}
t₂₀: 21⋅X₅⋅X₅⋅X₅+23⋅X₅⋅X₅+9⋅X₅+2 {O(n^3)}
t₂₁: 56⋅X₅⋅X₅⋅X₅+24⋅X₅⋅X₅+X₅ {O(n^3)}
t₂₂: 3⋅X₅⋅X₅+X₅ {O(n^2)}
t₁₇: 21⋅X₅⋅X₅⋅X₅+23⋅X₅⋅X₅+9⋅X₅+2 {O(n^3)}
t₁₉: 35⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+10⋅X₅+1 {O(n^3)}

Costbounds

Overall costbound: 441⋅X₅⋅X₅⋅X₅+289⋅X₅⋅X₅+73⋅X₅+20 {O(n^3)}
t₀: 1 {O(1)}
t₁₃: 5⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₁₄: 2⋅X₅+1 {O(n)}
t₂₃: 98⋅X₅⋅X₅⋅X₅+56⋅X₅⋅X₅+9⋅X₅ {O(n^3)}
t₂₄: 4⋅X₅⋅X₅+3⋅X₅ {O(n^2)}
t₂: X₅+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂₅: 1 {O(1)}
t₁₅: 210⋅X₅⋅X₅⋅X₅+111⋅X₅⋅X₅+15⋅X₅ {O(n^3)}
t₁₆: 4⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₉: X₅+1 {O(n)}
t₁₀: X₅+1 {O(n)}
t₁₁: X₅+2 {O(n)}
t₄: 2⋅X₅ {O(n)}
t₅: X₅+1 {O(n)}
t₁₂: X₅+2 {O(n)}
t₆: X₅+2 {O(n)}
t₈: X₅ {O(n)}
t₂₀: 21⋅X₅⋅X₅⋅X₅+23⋅X₅⋅X₅+9⋅X₅+2 {O(n^3)}
t₂₁: 56⋅X₅⋅X₅⋅X₅+24⋅X₅⋅X₅+X₅ {O(n^3)}
t₂₂: 3⋅X₅⋅X₅+X₅ {O(n^2)}
t₁₇: 21⋅X₅⋅X₅⋅X₅+23⋅X₅⋅X₅+9⋅X₅+2 {O(n^3)}
t₁₉: 35⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+10⋅X₅+1 {O(n^3)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁₃, X₀: X₅ {O(n)}
t₁₃, X₃: 8⋅X₅ {O(n)}
t₁₃, X₄: 3⋅X₅+1 {O(n)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: 8⋅X₅ {O(n)}
t₁₃, X₇: 16⋅X₅ {O(n)}
t₁₄, X₀: X₅ {O(n)}
t₁₄, X₃: X₅ {O(n)}
t₁₄, X₄: 3⋅X₅+1 {O(n)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: 8⋅X₅ {O(n)}
t₁₄, X₇: 16⋅X₅ {O(n)}
t₂₃, X₀: X₅ {O(n)}
t₂₃, X₃: 8⋅X₅ {O(n)}
t₂₃, X₄: 3⋅X₅+1 {O(n)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: 8⋅X₅ {O(n)}
t₂₃, X₇: 16⋅X₅ {O(n)}
t₂₄, X₀: X₅ {O(n)}
t₂₄, X₃: 8⋅X₅ {O(n)}
t₂₄, X₄: 3⋅X₅+1 {O(n)}
t₂₄, X₅: X₅ {O(n)}
t₂₄, X₆: 8⋅X₅ {O(n)}
t₂₄, X₇: 16⋅X₅ {O(n)}
t₂, X₀: X₀+X₅ {O(n)}
t₂, X₃: 2⋅X₅ {O(n)}
t₂, X₄: X₅ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: 8⋅X₅+X₆ {O(n)}
t₂, X₇: 16⋅X₅+X₇ {O(n)}
t₃, X₀: X₀+X₅ {O(n)}
t₃, X₃: 2⋅X₅ {O(n)}
t₃, X₄: 3⋅X₅+X₄+1 {O(n)}
t₃, X₅: 2⋅X₅ {O(n)}
t₃, X₆: 8⋅X₅+X₆ {O(n)}
t₃, X₇: 16⋅X₅+X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₅ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂₅, X₀: X₀+X₅ {O(n)}
t₂₅, X₃: 2⋅X₅ {O(n)}
t₂₅, X₄: 3⋅X₅+X₄+1 {O(n)}
t₂₅, X₅: 2⋅X₅ {O(n)}
t₂₅, X₆: 8⋅X₅+X₆ {O(n)}
t₂₅, X₇: 16⋅X₅+X₇ {O(n)}
t₁₅, X₀: X₅ {O(n)}
t₁₅, X₃: 8⋅X₅ {O(n)}
t₁₅, X₄: 3⋅X₅+1 {O(n)}
t₁₅, X₅: X₅ {O(n)}
t₁₅, X₆: 8⋅X₅ {O(n)}
t₁₅, X₇: 16⋅X₅ {O(n)}
t₁₆, X₀: X₅ {O(n)}
t₁₆, X₃: 8⋅X₅ {O(n)}
t₁₆, X₄: 3⋅X₅+1 {O(n)}
t₁₆, X₅: X₅ {O(n)}
t₁₆, X₆: 8⋅X₅ {O(n)}
t₁₆, X₇: 0 {O(1)}
t₉, X₀: X₅ {O(n)}
t₉, X₃: 2⋅X₅ {O(n)}
t₉, X₄: X₅ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: 8⋅X₅+X₆ {O(n)}
t₉, X₇: 16⋅X₅+X₇ {O(n)}
t₁₀, X₀: X₅ {O(n)}
t₁₀, X₃: 2⋅X₅ {O(n)}
t₁₀, X₄: X₅ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: 8⋅X₅+X₆ {O(n)}
t₁₀, X₇: 16⋅X₅+X₇ {O(n)}
t₁₁, X₀: X₅ {O(n)}
t₁₁, X₁: 0 {O(1)}
t₁₁, X₃: 2⋅X₅ {O(n)}
t₁₁, X₄: 3⋅X₅ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: 8⋅X₅+X₆ {O(n)}
t₁₁, X₇: 16⋅X₅+X₇ {O(n)}
t₄, X₀: X₅ {O(n)}
t₄, X₃: 2⋅X₅ {O(n)}
t₄, X₄: 3⋅X₅ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: 8⋅X₅+X₆ {O(n)}
t₄, X₇: 16⋅X₅+X₇ {O(n)}
t₅, X₀: 0 {O(1)}
t₅, X₃: 6⋅X₅ {O(n)}
t₅, X₄: 1 {O(1)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: 24⋅X₅+3⋅X₆ {O(n)}
t₅, X₇: 3⋅X₇+48⋅X₅ {O(n)}
t₁₂, X₀: X₅ {O(n)}
t₁₂, X₃: 8⋅X₅ {O(n)}
t₁₂, X₄: 3⋅X₅+1 {O(n)}
t₁₂, X₅: X₅ {O(n)}
t₁₂, X₆: 8⋅X₅ {O(n)}
t₁₂, X₇: 4⋅X₇+64⋅X₅ {O(n)}
t₆, X₀: X₅ {O(n)}
t₆, X₃: 2⋅X₅ {O(n)}
t₆, X₄: 3⋅X₅ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: 8⋅X₅+X₆ {O(n)}
t₆, X₇: 16⋅X₅+X₇ {O(n)}
t₈, X₀: X₅ {O(n)}
t₈, X₃: 2⋅X₅ {O(n)}
t₈, X₄: 3⋅X₅ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: 8⋅X₅+X₆ {O(n)}
t₈, X₇: 16⋅X₅+X₇ {O(n)}
t₂₀, X₀: X₅ {O(n)}
t₂₀, X₃: 8⋅X₅ {O(n)}
t₂₀, X₄: 3⋅X₅+1 {O(n)}
t₂₀, X₅: X₅ {O(n)}
t₂₀, X₆: 8⋅X₅ {O(n)}
t₂₀, X₇: 16⋅X₅ {O(n)}
t₂₁, X₀: X₅ {O(n)}
t₂₁, X₃: 8⋅X₅ {O(n)}
t₂₁, X₄: 3⋅X₅+1 {O(n)}
t₂₁, X₅: X₅ {O(n)}
t₂₁, X₆: 8⋅X₅ {O(n)}
t₂₁, X₇: 16⋅X₅ {O(n)}
t₂₂, X₀: X₅ {O(n)}
t₂₂, X₂: 0 {O(1)}
t₂₂, X₃: 8⋅X₅ {O(n)}
t₂₂, X₄: 3⋅X₅+1 {O(n)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: 8⋅X₅ {O(n)}
t₂₂, X₇: 16⋅X₅ {O(n)}
t₁₇, X₀: X₅ {O(n)}
t₁₇, X₃: 8⋅X₅ {O(n)}
t₁₇, X₄: 3⋅X₅+1 {O(n)}
t₁₇, X₅: X₅ {O(n)}
t₁₇, X₆: 8⋅X₅ {O(n)}
t₁₇, X₇: 16⋅X₅ {O(n)}
t₁₉, X₀: X₅ {O(n)}
t₁₉, X₃: 8⋅X₅ {O(n)}
t₁₉, X₄: 3⋅X₅+1 {O(n)}
t₁₉, X₅: X₅ {O(n)}
t₁₉, X₆: 8⋅X₅ {O(n)}
t₁₉, X₇: 16⋅X₅ {O(n)}