Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₂: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₁, X₃, X₄) :|: X₀ < 10
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: 10 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l1(0, 3, X₂, X₃, X₄)
t₅: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 12 ≤ X₂
t₄: l3(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 12
t₈: l4(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₇: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀+1, X₂, X₂, X₃, X₄)
t₆: l6(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂+1, X₃, X₄)

Preprocessing

Eliminate variables {X₃,X₄} that do not contribute to the problem

Found invariant X₂ ≤ 11 ∧ X₂ ≤ 8+X₁ ∧ X₁+X₂ ≤ 22 ∧ X₂ ≤ 11+X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 11 ∧ X₁ ≤ 11+X₀ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6

Found invariant 3 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 10 ≤ X₀ for location l7

Found invariant 12 ≤ X₂ ∧ 15 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l1

Found invariant 3 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 10 ≤ X₀ for location l4

Found invariant 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₁₈: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₁₉: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₁) :|: X₀ < 10 ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₂₀: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 10 ≤ X₀ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₂₁: l2(X₀, X₁, X₂) → l1(0, 3, X₂)
t₂₃: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: 12 ≤ X₂ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₂₂: l3(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₂ < 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₂₄: l4(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: 3 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 10 ≤ X₀
t₂₅: l5(X₀, X₁, X₂) → l1(X₀+1, X₂, X₂) :|: 12 ≤ X₂ ∧ 15 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₂₆: l6(X₀, X₁, X₂) → l3(X₀, X₁, X₂+1) :|: X₂ ≤ 11 ∧ X₂ ≤ 8+X₁ ∧ X₁+X₂ ≤ 22 ∧ X₂ ≤ 11+X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 11 ∧ X₁ ≤ 11+X₀ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀

MPRF for transition t₁₉: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₁) :|: X₀ < 10 ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF:

l5 [9-X₀ ]
l1 [10-X₀ ]
l6 [9-X₀ ]
l3 [9-X₀ ]

MPRF for transition t₂₂: l3(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₂ < 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

15 {O(1)}

MPRF:

l5 [12-X₂ ]
l1 [12-X₁ ]
l6 [11-X₂ ]
l3 [12-X₂ ]

MPRF for transition t₂₆: l6(X₀, X₁, X₂) → l3(X₀, X₁, X₂+1) :|: X₂ ≤ 11 ∧ X₂ ≤ 8+X₁ ∧ X₁+X₂ ≤ 22 ∧ X₂ ≤ 11+X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 11 ∧ X₁ ≤ 11+X₀ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

15 {O(1)}

MPRF:

l5 [12-X₂ ]
l1 [12-X₁ ]
l6 [12-X₂ ]
l3 [12-X₂ ]

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

Found invariant X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ 3+X₀ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 3 ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l6

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant X₁ ≤ 3 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 3 ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l1

Found invariant 1 ≤ 0 for location l4

Found invariant X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ 3+X₀ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 3 ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₂₃ 640 {O(1)}

TWN-Loops:

entry: t₂₆: l6(X₀, X₁, X₂) → l3(X₀, X₁, X₂+1) :|: X₂ ≤ 11 ∧ X₂ ≤ 8+X₁ ∧ X₁+X₂ ≤ 22 ∧ X₂ ≤ 11+X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 11 ∧ X₁ ≤ 11+X₀ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀
results in twn-loop: twn:Inv: [3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 12 ≤ X₂ ∧ 15 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 3 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ 1+X₀] , (X₀,X₁,X₂) -> (1+X₀,X₂,X₂) :|: 12 ≤ X₂ ∧ X₀ < 9
entry: t₂₁: l2(X₀, X₁, X₂) → l1(0, 3, X₂)
results in twn-loop: twn:Inv: [3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ 2⋅X₁ ∧ 0 ≤ 0 ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 12 ≤ X₁ ∧ 15 ≤ 2⋅X₁ ∧ 0 ≤ 0 ∧ 12 ≤ X₀+X₁ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 0 ≤ X₀] , (X₀,X₁,X₂) -> (X₀+1,X₁,X₁) :|: X₀ < 10 ∧ 12 ≤ X₁
order: [X₀; X₂; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₂: X₂
X₁: [[n == 0]] * X₁ + [[n != 0]] * X₂

Termination: true
Formula:

1 < 0 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ 1 < 0 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 < X₂ ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 < X₂ ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 < 1 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 3 < X₀+X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 < X₂ ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 < 2⋅X₂ ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 < 2⋅X₂
∨ X₀ < 9 ∧ 12 ≤ X₂ ∧ X₂ ≤ 12 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 ≤ X₀+X₂ ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₂ ≤ 3 ∧ 15 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 15 ∧ 6 ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 6

Stabilization-Threshold for: X₀ < 9
alphas_abs: 9+X₀
M: 0
N: 1
Bound: 2⋅X₀+20 {O(n)}

relevant size-bounds w.r.t. t₂₆:
X₀: 9 {O(1)}
Runtime-bound of t₂₆: 15 {O(1)}
Results in: 615 {O(1)}

order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁

Termination: true
Formula:

12 < X₁ ∧ 1 < 0
∨ 12 < X₁ ∧ X₀ < 10 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 12 ≤ X₁ ∧ X₁ ≤ 12 ∧ 1 < 0
∨ 12 ≤ X₁ ∧ X₁ ≤ 12 ∧ X₀ < 10 ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: X₀ < 10
alphas_abs: X₀+10
M: 0
N: 1
Bound: 2⋅X₀+22 {O(n)}

relevant size-bounds w.r.t. t₂₁:
X₀: 0 {O(1)}
Runtime-bound of t₂₁: 1 {O(1)}
Results in: 25 {O(1)}

640 {O(1)}

Time-Bound by TWN-Loops:

TWN-Loops: t₂₅ 640 {O(1)}

relevant size-bounds w.r.t. t₂₆:
X₀: 9 {O(1)}
Runtime-bound of t₂₆: 15 {O(1)}
Results in: 615 {O(1)}

relevant size-bounds w.r.t. t₂₁:
X₀: 0 {O(1)}
Runtime-bound of t₂₁: 1 {O(1)}
Results in: 25 {O(1)}

640 {O(1)}

All Bounds

Timebounds

Overall timebound:1324 {O(1)}
t₁₈: 1 {O(1)}
t₁₉: 10 {O(1)}
t₂₀: 1 {O(1)}
t₂₁: 1 {O(1)}
t₂₂: 15 {O(1)}
t₂₃: 640 {O(1)}
t₂₄: 1 {O(1)}
t₂₅: 640 {O(1)}
t₂₆: 15 {O(1)}

Costbounds

Overall costbound: 1324 {O(1)}
t₁₈: 1 {O(1)}
t₁₉: 10 {O(1)}
t₂₀: 1 {O(1)}
t₂₁: 1 {O(1)}
t₂₂: 15 {O(1)}
t₂₃: 640 {O(1)}
t₂₄: 1 {O(1)}
t₂₅: 640 {O(1)}
t₂₆: 15 {O(1)}

Sizebounds

t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₉, X₀: 9 {O(1)}
t₁₉, X₁: 18 {O(1)}
t₁₉, X₂: 15 {O(1)}
t₂₀, X₀: 19 {O(1)}
t₂₀, X₁: 15 {O(1)}
t₂₀, X₂: 15 {O(1)}
t₂₁, X₀: 0 {O(1)}
t₂₁, X₁: 3 {O(1)}
t₂₁, X₂: X₂ {O(n)}
t₂₂, X₀: 9 {O(1)}
t₂₂, X₁: 11 {O(1)}
t₂₂, X₂: 11 {O(1)}
t₂₃, X₀: 18 {O(1)}
t₂₃, X₁: 29 {O(1)}
t₂₃, X₂: 15 {O(1)}
t₂₄, X₀: 19 {O(1)}
t₂₄, X₁: 15 {O(1)}
t₂₄, X₂: 15 {O(1)}
t₂₅, X₀: 19 {O(1)}
t₂₅, X₁: 15 {O(1)}
t₂₅, X₂: 15 {O(1)}
t₂₆, X₀: 9 {O(1)}
t₂₆, X₁: 11 {O(1)}
t₂₆, X₂: 12 {O(1)}