Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₃
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆)
t₁₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆)
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₄, X₄, X₅, X₆)
t₂₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 1
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: 1 < X₆
t₁₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: X₂ < 0
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: 0 < X₂
t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆)
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < 0
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₄ ≤ X₅
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₄
t₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆)
Preprocessing
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l11
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l2
Found invariant 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l6
Found invariant X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l7
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l5
Found invariant X₃ ≤ X₄ ∧ X₃ ≤ 0 for location l13
Found invariant 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l8
Found invariant X₃ ≤ X₄ for location l1
Found invariant 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l10
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ for location l4
Found invariant 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l9
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l3
Found invariant X₃ ≤ X₄ ∧ X₃ ≤ 0 for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ X₃ ≤ X₄
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₃ ∧ X₃ ≤ X₄
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₄, X₄, X₅, X₆)
t₂₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₄ ∧ X₃ ≤ 0
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: 1 < X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: X₂ < 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: 0 < X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < 0 ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₄ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
MPRF for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₃ ∧ X₃ ≤ X₄ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l3 [X₃-1 ]
l4 [X₃-1 ]
l1 [X₃ ]
l5 [X₃-1 ]
l11 [X₃-1 ]
l10 [X₃-1 ]
l7 [X₃-1 ]
l2 [X₃-1 ]
l8 [X₃-1 ]
l9 [X₃-1 ]
l6 [X₃-1 ]
MPRF for transition t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l3 [X₃ ]
l4 [X₃-1 ]
l1 [X₃ ]
l5 [X₃ ]
l11 [X₃ ]
l10 [X₃ ]
l7 [X₃ ]
l2 [X₃ ]
l8 [X₃ ]
l9 [X₃ ]
l6 [X₃ ]
MPRF for transition t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l3 [X₃ ]
l4 [X₃-1 ]
l1 [X₃ ]
l5 [X₃ ]
l11 [X₃ ]
l10 [X₃ ]
l7 [X₃ ]
l2 [X₃ ]
l8 [X₃ ]
l9 [X₃ ]
l6 [X₃ ]
MPRF for transition t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l3 [X₃ ]
l4 [X₃ ]
l1 [X₃ ]
l5 [X₃ ]
l11 [X₃ ]
l10 [X₃ ]
l7 [X₃ ]
l2 [X₃ ]
l8 [X₃ ]
l9 [X₃ ]
l6 [X₃ ]
MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l3 [X₃-1 ]
l4 [X₃-1 ]
l1 [X₃ ]
l5 [X₃-1 ]
l11 [X₃-1 ]
l10 [X₃ ]
l7 [X₃ ]
l2 [X₃-1 ]
l8 [X₃ ]
l9 [X₃ ]
l6 [X₃ ]
MPRF for transition t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
2⋅X₄+1 {O(n)}
MPRF:
l3 [X₃+X₄-2 ]
l4 [2⋅X₁+X₃+X₄-2⋅X₆ ]
l1 [X₃+X₄-1 ]
l5 [X₃+X₄-2 ]
l11 [X₃+X₄-2 ]
l10 [X₃+X₄-1 ]
l7 [X₃+X₄-1 ]
l2 [X₃+X₄-2 ]
l8 [X₃+X₄-1 ]
l9 [X₃+X₄-1 ]
l6 [X₃+X₄-1 ]
MPRF for transition t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF:
l2 [X₄ ]
l3 [X₄ ]
l4 [X₄ ]
l1 [X₄ ]
l5 [X₁+X₄+1-X₆ ]
l11 [X₁+X₄+1-X₆ ]
l10 [X₄-X₅ ]
l7 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]
l6 [X₄-X₅ ]
MPRF for transition t₁₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
2⋅X₄⋅X₄+3⋅X₄+1 {O(n^2)}
MPRF:
l1 [X₃+X₄-1 ]
l3 [X₄+X₆-X₅-2 ]
l4 [X₄-X₅-1 ]
l5 [X₄+X₆-X₅-1 ]
l11 [X₄+X₆-X₅-1 ]
l10 [X₄ ]
l7 [X₄ ]
l2 [X₄+X₆-X₅-1 ]
l8 [X₄ ]
l9 [X₄ ]
l6 [X₄ ]
MPRF for transition t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: 1 < X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
3⋅X₄⋅X₄+4⋅X₄+1 {O(n^2)}
MPRF:
l1 [3⋅X₄+1 ]
l3 [2⋅X₄+X₆ ]
l4 [2⋅X₄+X₆-X₁ ]
l5 [2⋅X₄+2⋅X₆-X₁-1 ]
l11 [2⋅X₄+2⋅X₆-X₁-1 ]
l10 [3⋅X₄+1 ]
l7 [3⋅X₄+1 ]
l2 [2⋅X₄+X₆+1 ]
l8 [3⋅X₄+1 ]
l9 [3⋅X₄+1 ]
l6 [3⋅X₄+1 ]
MPRF for transition t₁₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: X₂ < 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
6⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
MPRF:
l1 [5⋅X₃+X₄ ]
l3 [5⋅X₃+X₆ ]
l4 [5⋅X₃ ]
l5 [5⋅X₃+X₆ ]
l11 [5⋅X₃+X₆ ]
l10 [5⋅X₃+X₄ ]
l7 [5⋅X₃+X₄ ]
l2 [5⋅X₃+X₆ ]
l8 [5⋅X₃+X₄ ]
l9 [5⋅X₃+X₄ ]
l6 [5⋅X₃+X₄ ]
MPRF for transition t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: 0 < X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF:
l1 [X₄ ]
l3 [X₁+1 ]
l4 [0 ]
l5 [X₁+1 ]
l11 [X₁+1 ]
l10 [X₄ ]
l7 [X₄ ]
l2 [X₆ ]
l8 [X₄ ]
l9 [X₄ ]
l6 [X₄ ]
MPRF for transition t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF:
l1 [X₄ ]
l3 [X₁+X₄-X₅ ]
l4 [X₄-X₅ ]
l5 [X₁+X₄+1-X₅ ]
l11 [X₁+X₄-X₅ ]
l10 [X₄ ]
l7 [X₄ ]
l2 [X₄+X₆-X₅ ]
l8 [X₄ ]
l9 [X₄ ]
l6 [X₄ ]
MPRF for transition t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < 0 ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF:
l2 [X₄ ]
l3 [X₄ ]
l4 [X₄ ]
l1 [X₄ ]
l5 [X₄ ]
l11 [X₄ ]
l10 [X₄-X₅-1 ]
l7 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]
l6 [X₄-X₅ ]
MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF:
l2 [X₄ ]
l3 [X₄ ]
l4 [X₄ ]
l1 [X₄ ]
l5 [X₄ ]
l11 [X₄ ]
l10 [X₄-X₅-1 ]
l7 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]
l6 [X₄-X₅ ]
MPRF for transition t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₄ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
MPRF:
l2 [2⋅X₄ ]
l3 [2⋅X₄ ]
l4 [2⋅X₄ ]
l1 [2⋅X₄ ]
l5 [2⋅X₄ ]
l11 [2⋅X₄ ]
l10 [2⋅X₄-X₅-1 ]
l7 [2⋅X₄-X₅ ]
l8 [2⋅X₄-X₅-1 ]
l9 [2⋅X₄-X₅-1 ]
l6 [2⋅X₄-X₅-1 ]
MPRF for transition t₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF:
l2 [X₄ ]
l3 [X₄ ]
l4 [X₄ ]
l1 [X₄ ]
l5 [X₄ ]
l11 [X₄ ]
l10 [X₄-X₅-1 ]
l7 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅-1 ]
l6 [X₄-X₅-1 ]
MPRF for transition t₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF:
l2 [X₄ ]
l3 [X₄ ]
l4 [X₄ ]
l1 [X₄ ]
l5 [X₄ ]
l11 [X₄ ]
l10 [X₄-X₅-1 ]
l7 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]
l6 [X₄-X₅-1 ]
Analysing control-flow refined program
Cut unsatisfiable transition t₅: l7→l2
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₀+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₀ ≤ 0 for location n_l10___8
Found invariant 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l6___3
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l6___9
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l2
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l9___10
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l2___7
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l3___4
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l8___11
Found invariant 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₀ ≤ 0 for location n_l10___2
Found invariant 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l9___4
Found invariant 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l10___1
Found invariant 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l8___5
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l11___2
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l11___5
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l11___9
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l5___10
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l5___6
Found invariant X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l7___6
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l7
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l3___8
Found invariant X₃ ≤ X₄ ∧ X₃ ≤ 0 for location l13
Found invariant X₃ ≤ X₄ for location l1
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ 1+X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ 1+X₁ for location l4
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___1
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l10___7
Found invariant X₃ ≤ X₄ ∧ X₃ ≤ 0 for location l14
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l5___3
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₁₂₀₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₅ < X₄ ∧ 1 ≤ X₃ ∧ X₅ < X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₁₂₀₄: n_l8___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₁₂₀₆: n_l9___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___9(NoDet0, X₁, X₂, Arg3_P, Arg4_P, Arg5_P, X₆) :|: 1+X₅ ≤ X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ 1+Arg5_P ≤ Arg4_P ∧ Arg3_P ≤ Arg4_P ∧ 0 ≤ Arg5_P ∧ 1 ≤ Arg3_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₁₂₀₀: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ 0 < X₀ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₁₂₀₁: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₀ < 0 ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₁₂₁₈: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₁₁₉₆: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 1+X₅ ≤ X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ 0 < X₀ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₁₁₉₇: n_l10___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 1+X₅ ≤ X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ X₀ < 0 ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₀+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₀ ≤ 0
MPRF for transition t₁₂₄₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___3(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1+X₅ ≤ X₄ ∧ 1 ≤ X₃ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₅ ∧ 1 < X₆ ∧ X₃ ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
3⋅X₄+1 {O(n)}
MPRF:
l1 [X₃+2⋅X₄+1 ]
l7 [X₃+2⋅X₄+1 ]
n_l3___1 [X₃+2⋅X₄ ]
n_l3___4 [X₃+2⋅X₄ ]
n_l2___7 [X₃+2⋅X₄ ]
n_l3___8 [2⋅X₁+X₃+2 ]
l4 [X₃+2⋅X₄ ]
n_l5___10 [X₃+2⋅X₄ ]
n_l11___9 [2⋅X₁+X₃+2 ]
n_l5___3 [X₃+2⋅X₄ ]
n_l11___2 [X₃+2⋅X₄ ]
n_l5___6 [X₃+2⋅X₄ ]
n_l11___5 [X₃+2⋅X₄ ]
n_l10___1 [X₃+2⋅X₄+1 ]
n_l10___2 [X₃+2⋅X₄+1 ]
n_l10___7 [X₃+2⋅X₄+1 ]
n_l10___8 [X₃+2⋅X₄+1 ]
n_l7___6 [X₃+2⋅X₄+1 ]
l2 [X₃+2⋅X₄+1 ]
n_l8___11 [X₃+2⋅X₄+1 ]
n_l8___5 [X₃+2⋅X₄+1 ]
n_l9___10 [X₃+2⋅X₄+1 ]
n_l6___9 [X₃+2⋅X₄+1 ]
n_l9___4 [X₃+2⋅X₄+1 ]
n_l6___3 [X₃+2⋅X₄+1 ]
MPRF for transition t₁₂₄₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___10(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₅ ∧ 1 < X₆ ∧ X₃ ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l1 [X₃ ]
l7 [X₃ ]
n_l3___1 [X₃-1 ]
n_l3___4 [X₃-1 ]
n_l2___7 [X₃-1 ]
n_l3___8 [X₁+X₃-X₄ ]
l4 [X₃-1 ]
n_l5___10 [X₃-1 ]
n_l11___9 [X₁+X₃-X₅ ]
n_l5___3 [X₃ ]
n_l11___2 [X₃ ]
n_l5___6 [X₃-1 ]
n_l11___5 [X₃-1 ]
n_l10___1 [X₃ ]
n_l10___2 [X₃ ]
n_l10___7 [X₃ ]
n_l10___8 [X₃ ]
n_l7___6 [X₃ ]
l2 [X₃ ]
n_l8___11 [X₃ ]
n_l8___5 [X₃ ]
n_l9___10 [X₃ ]
n_l6___9 [X₃ ]
n_l9___4 [X₃ ]
n_l6___3 [X₃ ]
MPRF for transition t₁₁₉₄: n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄⋅X₄ {O(n^2)}
MPRF:
l1 [0 ]
l7 [0 ]
n_l3___1 [0 ]
n_l3___4 [0 ]
n_l2___7 [0 ]
n_l3___8 [0 ]
l4 [0 ]
n_l5___10 [0 ]
n_l11___9 [0 ]
n_l5___3 [0 ]
n_l11___2 [0 ]
n_l5___6 [0 ]
n_l11___5 [0 ]
n_l10___1 [X₄-X₅ ]
n_l10___2 [X₄-X₅ ]
n_l10___7 [X₄ ]
n_l10___8 [X₄ ]
n_l6___9 [X₄ ]
n_l7___6 [X₄-X₅ ]
l2 [0 ]
n_l8___11 [0 ]
n_l9___10 [0 ]
n_l8___5 [X₄-X₅ ]
n_l9___4 [X₄-X₅ ]
n_l6___3 [X₄-X₅ ]
MPRF for transition t₁₁₉₅: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 1+X₅ ≤ X₄ ∧ X₀ < 0 ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₀ ≤ 0 of depth 1:
new bound:
X₄⋅X₄ {O(n^2)}
MPRF:
l1 [0 ]
l7 [0 ]
n_l3___1 [0 ]
n_l3___4 [0 ]
n_l2___7 [0 ]
n_l3___8 [0 ]
l4 [0 ]
n_l5___10 [0 ]
n_l11___9 [0 ]
n_l5___3 [0 ]
n_l11___2 [0 ]
n_l5___6 [0 ]
n_l11___5 [0 ]
n_l10___1 [X₄-X₅-1 ]
n_l10___2 [X₄-X₅ ]
n_l10___7 [X₄ ]
n_l10___8 [X₄ ]
n_l6___9 [X₄ ]
n_l7___6 [X₄-X₅ ]
l2 [0 ]
n_l8___11 [0 ]
n_l9___10 [0 ]
n_l8___5 [X₄-X₅ ]
n_l9___4 [X₄-X₅ ]
n_l6___3 [X₄-X₅ ]
MPRF for transition t₁₂₄₄: n_l11___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___1(X₀, X₁, NoDet0, Arg3_P, X₄, Arg5_P, X₁+1) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ Arg3_P ≤ X₄ ∧ 1 ≤ Arg3_P ∧ 1 ≤ X₁ ∧ Arg5_P ≤ X₄ ∧ 1+X₁ ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF:
l1 [X₃+1 ]
l7 [X₃+1 ]
n_l3___1 [X₃ ]
n_l3___4 [X₃ ]
n_l2___7 [X₃ ]
n_l3___8 [X₃ ]
l4 [X₃ ]
n_l5___10 [X₃ ]
n_l11___9 [X₃ ]
n_l5___3 [X₃+1 ]
n_l11___2 [X₃+1 ]
n_l5___6 [X₃ ]
n_l11___5 [X₃ ]
n_l10___1 [X₃+1 ]
n_l10___2 [X₃+1 ]
n_l10___7 [X₃+1 ]
n_l10___8 [X₃+1 ]
n_l7___6 [X₃+1 ]
l2 [X₃+1 ]
n_l8___11 [X₃+1 ]
n_l8___5 [X₃+1 ]
n_l9___10 [X₃+1 ]
n_l6___9 [X₃+1 ]
n_l9___4 [X₃+1 ]
n_l6___3 [X₃+1 ]
MPRF for transition t₁₂₄₅: n_l11___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___4(X₀, X₁, NoDet0, Arg3_P, X₄, Arg5_P, X₁+1) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ Arg3_P ≤ X₄ ∧ 1 ≤ Arg3_P ∧ 1 ≤ X₁ ∧ Arg5_P ≤ X₄ ∧ 1+X₁ ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
2⋅X₄⋅X₄+X₄ {O(n^2)}
MPRF:
l1 [X₄ ]
l7 [X₄ ]
n_l3___1 [2⋅X₄ ]
n_l3___4 [X₁+X₄ ]
n_l2___7 [X₄+X₆ ]
n_l3___8 [2⋅X₅ ]
l4 [X₄ ]
n_l5___10 [2⋅X₆ ]
n_l11___9 [2⋅X₄ ]
n_l5___3 [2⋅X₄ ]
n_l11___2 [2⋅X₄ ]
n_l5___6 [X₄+X₆ ]
n_l11___5 [X₁+X₄+1 ]
n_l10___1 [2⋅X₄ ]
n_l10___2 [2⋅X₄ ]
n_l10___7 [2⋅X₄ ]
n_l10___8 [2⋅X₄ ]
n_l6___9 [2⋅X₄ ]
n_l7___6 [2⋅X₄ ]
l2 [2⋅X₄ ]
n_l8___11 [X₄ ]
n_l9___10 [X₄ ]
n_l8___5 [2⋅X₄ ]
n_l9___4 [2⋅X₄ ]
n_l6___3 [2⋅X₄ ]
MPRF for transition t₁₂₄₆: n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___8(X₀, X₁, NoDet0, Arg3_P, X₄, Arg5_P, X₁+1) :|: X₃ ≤ X₆ ∧ 1 ≤ X₃ ∧ 2 ≤ X₆ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ Arg3_P ≤ X₄ ∧ 1 ≤ Arg3_P ∧ 1 ≤ X₁ ∧ Arg5_P ≤ X₄ ∧ 1+X₁ ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l1 [X₃ ]
l7 [X₃ ]
n_l3___1 [X₃-1 ]
n_l3___4 [X₃-1 ]
n_l2___7 [X₃-1 ]
n_l3___8 [X₃-1 ]
l4 [X₃-1 ]
n_l5___10 [X₃ ]
n_l11___9 [X₃ ]
n_l5___3 [X₃ ]
n_l11___2 [X₃ ]
n_l5___6 [X₁+X₃-X₆ ]
n_l11___5 [X₃-1 ]
n_l10___1 [X₃ ]
n_l10___2 [X₃ ]
n_l10___7 [X₃ ]
n_l10___8 [X₃ ]
n_l7___6 [X₃ ]
l2 [X₃ ]
n_l8___11 [X₃ ]
n_l8___5 [X₃ ]
n_l9___10 [X₃ ]
n_l6___9 [X₃ ]
n_l9___4 [X₃ ]
n_l6___3 [X₃ ]
MPRF for transition t₁₂₄₉: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___6(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₅ ∧ 1 < X₆ ∧ X₃ ≤ X₄ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
2⋅X₄⋅X₄+X₄ {O(n^2)}
MPRF:
l1 [X₄ ]
l7 [X₄ ]
n_l3___1 [2⋅X₄-1 ]
n_l3___4 [X₄+X₆ ]
n_l2___7 [X₄+X₆+1 ]
n_l3___8 [2⋅X₄ ]
l4 [X₄ ]
n_l5___10 [2⋅X₆ ]
n_l11___9 [X₁+2⋅X₄+1-X₅ ]
n_l5___3 [X₁+2⋅X₄-X₆ ]
n_l11___2 [2⋅X₄-1 ]
n_l5___6 [X₄+X₆ ]
n_l11___5 [X₁+X₄+1 ]
n_l10___1 [2⋅X₄ ]
n_l10___2 [2⋅X₄ ]
n_l10___7 [2⋅X₄ ]
n_l10___8 [2⋅X₄ ]
n_l6___9 [2⋅X₄ ]
n_l7___6 [2⋅X₄ ]
l2 [2⋅X₄ ]
n_l8___11 [X₄ ]
n_l9___10 [X₄ ]
n_l8___5 [2⋅X₄ ]
n_l9___4 [2⋅X₄ ]
n_l6___3 [2⋅X₄ ]
MPRF for transition t₁₂₆₈: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄+5 {O(n)}
MPRF:
l1 [X₃+5 ]
l7 [X₃+5 ]
n_l3___1 [X₃+5 ]
n_l3___4 [X₃+5 ]
n_l2___7 [X₃+5 ]
n_l3___8 [X₃+5⋅X₄-5⋅X₁ ]
l4 [X₃+4 ]
n_l5___10 [3⋅X₁+X₃+6⋅X₅+8-9⋅X₆ ]
n_l11___9 [X₃+5⋅X₄-5⋅X₁ ]
n_l5___3 [X₃+5 ]
n_l11___2 [X₃+5 ]
n_l5___6 [X₃+5 ]
n_l11___5 [X₃+5 ]
n_l10___1 [X₃+5 ]
n_l10___2 [X₃+5 ]
n_l10___7 [X₃+5 ]
n_l10___8 [X₃+5 ]
n_l7___6 [X₃+5 ]
l2 [X₃+12⋅X₅+5-12⋅X₆ ]
n_l8___11 [X₃+5 ]
n_l8___5 [X₃+5 ]
n_l9___10 [X₃+5 ]
n_l6___9 [X₃+5 ]
n_l9___4 [X₃+5 ]
n_l6___3 [X₃+5 ]
MPRF for transition t₁₂₅₀: n_l3___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₂ < 0 ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l1 [X₃ ]
l7 [X₃ ]
n_l3___1 [X₃ ]
n_l3___4 [X₃-1 ]
n_l2___7 [X₃-1 ]
n_l3___8 [X₃-1 ]
l4 [X₃-1 ]
n_l5___10 [X₃ ]
n_l11___9 [X₃ ]
n_l5___3 [X₃ ]
n_l11___2 [X₃ ]
n_l5___6 [X₃-1 ]
n_l11___5 [X₃-1 ]
n_l10___1 [X₃ ]
n_l10___2 [X₃ ]
n_l10___7 [X₃ ]
n_l10___8 [X₃ ]
n_l7___6 [X₃ ]
l2 [X₃ ]
n_l8___11 [X₃ ]
n_l8___5 [X₃ ]
n_l9___10 [X₃ ]
n_l6___9 [X₃ ]
n_l9___4 [X₃ ]
n_l6___3 [X₃ ]
MPRF for transition t₁₂₅₁: n_l3___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₄ ∧ 0 < X₂ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l1 [X₃ ]
l7 [X₃ ]
n_l3___1 [X₃ ]
n_l3___4 [X₃-1 ]
n_l2___7 [X₃-1 ]
n_l3___8 [X₃-1 ]
l4 [X₁+X₃-X₆ ]
n_l5___10 [X₃ ]
n_l11___9 [X₃-1 ]
n_l5___3 [X₃ ]
n_l11___2 [X₃ ]
n_l5___6 [X₃-1 ]
n_l11___5 [X₃-1 ]
n_l10___1 [X₃ ]
n_l10___2 [X₃ ]
n_l10___7 [X₃ ]
n_l10___8 [X₃ ]
n_l7___6 [X₃ ]
l2 [X₃ ]
n_l8___11 [X₃ ]
n_l8___5 [X₃ ]
n_l9___10 [X₃ ]
n_l6___9 [X₃ ]
n_l9___4 [X₃ ]
n_l6___3 [X₃ ]
MPRF for transition t₁₂₆₉: n_l3___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l1 [X₃ ]
l7 [X₃ ]
n_l3___1 [X₃ ]
n_l3___4 [X₃-1 ]
n_l2___7 [X₃-1 ]
n_l3___8 [X₃-1 ]
l4 [X₃-1 ]
n_l5___10 [X₃-1 ]
n_l11___9 [X₃-1 ]
n_l5___3 [X₃ ]
n_l11___2 [X₃ ]
n_l5___6 [X₃-1 ]
n_l11___5 [X₃-1 ]
n_l10___1 [X₃ ]
n_l10___2 [X₃ ]
n_l10___7 [X₃ ]
n_l10___8 [X₃ ]
n_l7___6 [X₃ ]
l2 [X₃ ]
n_l8___11 [X₃ ]
n_l8___5 [X₃ ]
n_l9___10 [X₃ ]
n_l6___9 [X₃ ]
n_l9___4 [X₃ ]
n_l6___3 [X₃ ]
MPRF for transition t₁₂₅₂: n_l3___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₂ < 0 ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄⋅X₄ {O(n^2)}
MPRF:
l1 [0 ]
l7 [0 ]
n_l3___1 [X₄ ]
n_l3___4 [X₁ ]
n_l2___7 [X₆-1 ]
n_l3___8 [X₄ ]
l4 [0 ]
n_l5___10 [X₆ ]
n_l11___9 [X₅ ]
n_l5___3 [X₄ ]
n_l11___2 [X₄ ]
n_l5___6 [X₁ ]
n_l11___5 [X₁ ]
n_l10___1 [X₄ ]
n_l10___2 [X₄ ]
n_l10___7 [X₄ ]
n_l10___8 [X₄ ]
n_l6___9 [X₄ ]
n_l7___6 [X₄ ]
l2 [X₄ ]
n_l8___11 [0 ]
n_l9___10 [0 ]
n_l8___5 [X₄ ]
n_l9___4 [X₄ ]
n_l6___3 [X₄ ]
MPRF for transition t₁₂₅₃: n_l3___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₄ ∧ 0 < X₂ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄⋅X₄ {O(n^2)}
MPRF:
l1 [0 ]
l7 [0 ]
n_l3___1 [X₄ ]
n_l3___4 [X₁+1 ]
n_l2___7 [X₆ ]
n_l3___8 [X₄ ]
l4 [0 ]
n_l5___10 [X₄ ]
n_l11___9 [X₅ ]
n_l5___3 [X₄ ]
n_l11___2 [X₄ ]
n_l5___6 [X₆ ]
n_l11___5 [X₁+1 ]
n_l10___1 [X₄ ]
n_l10___2 [X₄ ]
n_l10___7 [X₄ ]
n_l10___8 [X₄ ]
n_l6___9 [X₄ ]
n_l7___6 [X₄ ]
l2 [X₄ ]
n_l8___11 [0 ]
n_l9___10 [0 ]
n_l8___5 [X₄ ]
n_l9___4 [X₄ ]
n_l6___3 [X₄ ]
MPRF for transition t₁₂₇₀: n_l3___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
3⋅X₄ {O(n)}
MPRF:
l1 [X₃+2⋅X₄ ]
l7 [X₃+2⋅X₄ ]
n_l3___1 [X₃+2⋅X₄ ]
n_l3___4 [X₃+2⋅X₄ ]
n_l2___7 [X₃+2⋅X₄ ]
n_l3___8 [X₃+4⋅X₅-2⋅X₆ ]
l4 [X₃+2⋅X₄-1 ]
n_l5___10 [X₃+4⋅X₄-2⋅X₅ ]
n_l11___9 [X₃+4⋅X₄-2⋅X₁-2 ]
n_l5___3 [X₃+2⋅X₄+2⋅X₆-2⋅X₅ ]
n_l11___2 [X₃+2⋅X₄ ]
n_l5___6 [X₃+2⋅X₄ ]
n_l11___5 [X₃+2⋅X₄ ]
n_l10___1 [X₃+2⋅X₄ ]
n_l10___2 [X₃+2⋅X₄ ]
n_l10___7 [X₃+2⋅X₄ ]
n_l10___8 [X₃+2⋅X₄ ]
n_l7___6 [X₃+2⋅X₄ ]
l2 [X₃+2⋅X₄+2⋅X₆-2⋅X₅ ]
n_l8___11 [X₃+2⋅X₄ ]
n_l8___5 [X₃+2⋅X₄ ]
n_l9___10 [X₃+2⋅X₄ ]
n_l6___9 [X₃+2⋅X₄ ]
n_l9___4 [X₃+2⋅X₄ ]
n_l6___3 [X₃+2⋅X₄ ]
MPRF for transition t₁₂₅₄: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: X₃ ≤ X₆ ∧ 1 ≤ X₃ ∧ 2 ≤ X₆ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₂ < 0 ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l1 [X₃ ]
l7 [X₃ ]
n_l3___1 [X₃ ]
n_l3___4 [X₃-1 ]
n_l2___7 [X₃-1 ]
n_l3___8 [X₃ ]
l4 [X₃-1 ]
n_l5___10 [X₃ ]
n_l11___9 [X₃ ]
n_l5___3 [X₃ ]
n_l11___2 [X₃ ]
n_l5___6 [X₃-1 ]
n_l11___5 [X₃-1 ]
n_l10___1 [X₃ ]
n_l10___2 [X₃ ]
n_l10___7 [X₃ ]
n_l10___8 [X₃ ]
n_l7___6 [X₃ ]
l2 [X₃ ]
n_l8___11 [X₃ ]
n_l8___5 [X₃ ]
n_l9___10 [X₃ ]
n_l6___9 [X₃ ]
n_l9___4 [X₃ ]
n_l6___3 [X₃ ]
MPRF for transition t₁₂₅₅: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: X₃ ≤ X₆ ∧ 1 ≤ X₃ ∧ 2 ≤ X₆ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₄ ∧ 0 < X₂ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
2⋅X₄+2 {O(n)}
MPRF:
l1 [X₃+X₄+2 ]
l7 [X₃+X₄+2 ]
n_l3___1 [X₃+X₄+1 ]
n_l3___4 [X₃+X₄+1 ]
n_l2___7 [X₃+X₄+1 ]
n_l3___8 [X₃+X₄+2 ]
l4 [X₃+X₄+1 ]
n_l5___10 [X₃+X₄+2 ]
n_l11___9 [X₃+X₅+2 ]
n_l5___3 [X₃+X₄+1 ]
n_l11___2 [X₃+X₄+1 ]
n_l5___6 [X₃+X₄+1 ]
n_l11___5 [X₃+X₄+1 ]
n_l10___1 [X₃+X₄+2 ]
n_l10___2 [X₃+X₄+2 ]
n_l10___7 [X₃+X₄+2 ]
n_l10___8 [X₃+X₄+2 ]
n_l7___6 [X₃+X₄+2 ]
l2 [X₃+X₄+2 ]
n_l8___11 [X₃+X₄+2 ]
n_l8___5 [X₃+X₄+2 ]
n_l9___10 [X₃+X₄+2 ]
n_l6___9 [X₃+X₄+2 ]
n_l9___4 [X₃+X₄+2 ]
n_l6___3 [X₃+X₄+2 ]
MPRF for transition t₁₂₇₁: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l1 [X₃ ]
l7 [X₃ ]
n_l3___1 [X₃-1 ]
n_l3___4 [X₃-1 ]
n_l2___7 [X₃-1 ]
n_l3___8 [X₃ ]
l4 [X₃-1 ]
n_l5___10 [X₃ ]
n_l11___9 [X₃ ]
n_l5___3 [X₃ ]
n_l11___2 [X₃ ]
n_l5___6 [X₃-1 ]
n_l11___5 [X₃-1 ]
n_l10___1 [X₃ ]
n_l10___2 [X₃ ]
n_l10___7 [X₃ ]
n_l10___8 [X₃ ]
n_l7___6 [X₃ ]
l2 [X₃ ]
n_l8___11 [X₃ ]
n_l8___5 [X₃ ]
n_l9___10 [X₃ ]
n_l6___9 [X₃ ]
n_l9___4 [X₃ ]
n_l6___3 [X₃ ]
MPRF for transition t₁₂₅₆: n_l5___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₁+1) :|: 1 < X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₁+1 ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄+2 {O(n)}
MPRF:
l1 [X₃+2 ]
l7 [X₃+2 ]
n_l3___1 [X₃+1 ]
n_l3___4 [X₃+1 ]
n_l2___7 [X₃+1 ]
n_l3___8 [X₃+1 ]
l4 [X₃+1 ]
n_l5___10 [X₃+2 ]
n_l11___9 [X₃+1 ]
n_l5___3 [X₃+X₆-X₁ ]
n_l11___2 [X₃+1 ]
n_l5___6 [X₃+1 ]
n_l11___5 [X₃+1 ]
n_l10___1 [X₃+2 ]
n_l10___2 [X₃+2 ]
n_l10___7 [X₃+2 ]
n_l10___8 [X₃+2 ]
n_l7___6 [X₃+2 ]
l2 [X₃+2 ]
n_l8___11 [X₃+2 ]
n_l8___5 [X₃+2 ]
n_l9___10 [X₃+2 ]
n_l6___9 [X₃+2 ]
n_l9___4 [X₃+2 ]
n_l6___3 [X₃+2 ]
MPRF for transition t₁₂₅₇: n_l5___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___2(X₀, X₁, X₂, X₃, X₄, X₅, X₁+1) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 < X₆ ∧ 1+X₆ ≤ X₄ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l1 [X₃ ]
l7 [X₃ ]
n_l3___1 [X₃-1 ]
n_l3___4 [X₁+X₃-X₆ ]
n_l2___7 [X₃-1 ]
n_l3___8 [X₃-1 ]
l4 [X₁+X₃-X₆ ]
n_l5___10 [X₃ ]
n_l11___9 [X₃-1 ]
n_l5___3 [X₃ ]
n_l11___2 [X₃-1 ]
n_l5___6 [X₃-1 ]
n_l11___5 [X₃-1 ]
n_l10___1 [X₃ ]
n_l10___2 [X₃ ]
n_l10___7 [X₃ ]
n_l10___8 [X₃ ]
n_l7___6 [X₃ ]
l2 [X₃ ]
n_l8___11 [X₃ ]
n_l8___5 [X₃ ]
n_l9___10 [X₃ ]
n_l6___9 [X₃ ]
n_l9___4 [X₃ ]
n_l6___3 [X₃ ]
MPRF for transition t₁₂₅₈: n_l5___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___5(X₀, X₁, X₂, X₃, X₄, X₅, X₁+1) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 < X₆ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄⋅X₄+1 {O(n^2)}
MPRF:
l1 [-1 ]
l7 [-1 ]
n_l3___1 [X₁ ]
n_l3___4 [X₁ ]
n_l2___7 [X₁ ]
n_l3___8 [X₁ ]
l4 [-1 ]
n_l5___10 [X₁+X₄-X₅ ]
n_l11___9 [X₁+X₄-X₅ ]
n_l5___3 [X₄+X₆-X₅ ]
n_l11___2 [X₁ ]
n_l5___6 [X₆ ]
n_l11___5 [X₁ ]
n_l10___1 [X₄ ]
n_l10___2 [X₄ ]
n_l10___7 [X₄ ]
n_l10___8 [X₄ ]
n_l6___9 [X₄ ]
n_l7___6 [X₄ ]
l2 [X₄ ]
n_l8___11 [-1 ]
n_l9___10 [-1 ]
n_l8___5 [X₄ ]
n_l9___4 [X₄ ]
n_l6___3 [X₄ ]
MPRF for transition t₁₁₉₈: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 0 < X₀ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
2⋅X₄⋅X₄+X₄ {O(n^2)}
MPRF:
l1 [X₄ ]
l7 [X₄ ]
n_l3___1 [X₄ ]
n_l3___4 [X₄ ]
n_l2___7 [X₄ ]
n_l3___8 [X₁+1 ]
l4 [X₄ ]
n_l5___10 [X₁+1 ]
n_l11___9 [X₁+1 ]
n_l5___3 [X₄ ]
n_l11___2 [X₄ ]
n_l5___6 [X₄ ]
n_l11___5 [X₄ ]
n_l10___1 [2⋅X₄-X₅-1 ]
n_l10___2 [2⋅X₄-X₅-1 ]
n_l10___7 [2⋅X₄-X₅ ]
n_l10___8 [2⋅X₄ ]
n_l6___9 [2⋅X₄-X₅ ]
n_l7___6 [2⋅X₄-X₅ ]
l2 [X₄ ]
n_l8___11 [X₄ ]
n_l9___10 [X₄ ]
n_l8___5 [2⋅X₄-X₅ ]
n_l9___4 [2⋅X₄-X₅ ]
n_l6___3 [2⋅X₄-X₅ ]
All Bounds
Timebounds
Overall timebound:34⋅X₄⋅X₄+36⋅X₄+7 {O(n^2)}
t₀: 1 {O(1)}
t₂: X₄ {O(n)}
t₃: 1 {O(1)}
t₁₂: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₇: 2⋅X₄⋅X₄+3⋅X₄+1 {O(n^2)}
t₁: 1 {O(1)}
t₂₂: 1 {O(1)}
t₁₃: 3⋅X₄⋅X₄+4⋅X₄+1 {O(n^2)}
t₁₄: X₄ {O(n)}
t₁₈: 6⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₁₉: X₄⋅X₄+X₄ {O(n^2)}
t₂₀: X₄ {O(n)}
t₂₁: X₄ {O(n)}
t₁₅: X₄⋅X₄+X₄ {O(n^2)}
t₉: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₀: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₁: X₄ {O(n)}
t₄: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₅: 2⋅X₄+1 {O(n)}
t₆: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₈: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
Costbounds
Overall costbound: 34⋅X₄⋅X₄+36⋅X₄+7 {O(n^2)}
t₀: 1 {O(1)}
t₂: X₄ {O(n)}
t₃: 1 {O(1)}
t₁₂: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₇: 2⋅X₄⋅X₄+3⋅X₄+1 {O(n^2)}
t₁: 1 {O(1)}
t₂₂: 1 {O(1)}
t₁₃: 3⋅X₄⋅X₄+4⋅X₄+1 {O(n^2)}
t₁₄: X₄ {O(n)}
t₁₈: 6⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₁₉: X₄⋅X₄+X₄ {O(n^2)}
t₂₀: X₄ {O(n)}
t₂₁: X₄ {O(n)}
t₁₅: X₄⋅X₄+X₄ {O(n^2)}
t₉: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₀: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₁: X₄ {O(n)}
t₄: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₅: 2⋅X₄+1 {O(n)}
t₆: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₈: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₂, X₁: 6⋅X₄⋅X₄+4⋅X₄+X₁+1 {O(n^2)}
t₂, X₃: X₄ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: 0 {O(1)}
t₂, X₆: 18⋅X₄⋅X₄+12⋅X₄+X₆+1 {O(n^2)}
t₃, X₁: 6⋅X₄⋅X₄+4⋅X₄+X₁+1 {O(n^2)}
t₃, X₃: 2⋅X₄ {O(n)}
t₃, X₄: 2⋅X₄ {O(n)}
t₃, X₅: 24⋅X₄⋅X₄+16⋅X₄+X₅ {O(n^2)}
t₃, X₆: 18⋅X₄⋅X₄+12⋅X₄+X₆+1 {O(n^2)}
t₁₂, X₁: 6⋅X₄⋅X₄+4⋅X₄+X₁+1 {O(n^2)}
t₁₂, X₃: X₄ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₂, X₆: 18⋅X₄⋅X₄+12⋅X₄+X₆+1 {O(n^2)}
t₁₇, X₁: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₇, X₃: X₄ {O(n)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₇, X₆: 18⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₄ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂₂, X₁: 6⋅X₄⋅X₄+4⋅X₄+X₁+1 {O(n^2)}
t₂₂, X₃: 2⋅X₄ {O(n)}
t₂₂, X₄: 2⋅X₄ {O(n)}
t₂₂, X₅: 24⋅X₄⋅X₄+16⋅X₄+X₅ {O(n^2)}
t₂₂, X₆: 18⋅X₄⋅X₄+12⋅X₄+X₆+1 {O(n^2)}
t₁₃, X₁: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₃, X₃: X₄ {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₃, X₆: 18⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₁₄, X₁: 1 {O(1)}
t₁₄, X₃: X₄ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: 18⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₁₄, X₆: 1 {O(1)}
t₁₈, X₁: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₈, X₃: X₄ {O(n)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₈, X₆: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₉, X₁: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₉, X₃: X₄ {O(n)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₉, X₆: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₀, X₁: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₀, X₂: 0 {O(1)}
t₂₀, X₃: X₄ {O(n)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₀, X₆: 18⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₂₁, X₁: 6⋅X₄⋅X₄+4⋅X₄+1 {O(n^2)}
t₂₁, X₃: X₄ {O(n)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: 24⋅X₄⋅X₄+16⋅X₄ {O(n^2)}
t₂₁, X₆: 18⋅X₄⋅X₄+12⋅X₄+1 {O(n^2)}
t₁₅, X₁: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₅, X₃: X₄ {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: 6⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₅, X₆: 18⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₉, X₁: 6⋅X₄⋅X₄+4⋅X₄+X₁+1 {O(n^2)}
t₉, X₃: X₄ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₉, X₆: 18⋅X₄⋅X₄+12⋅X₄+X₆+1 {O(n^2)}
t₁₀, X₁: 6⋅X₄⋅X₄+4⋅X₄+X₁+1 {O(n^2)}
t₁₀, X₃: X₄ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₀, X₆: 18⋅X₄⋅X₄+12⋅X₄+X₆+1 {O(n^2)}
t₁₁, X₀: 0 {O(1)}
t₁₁, X₁: 6⋅X₄⋅X₄+4⋅X₄+X₁+1 {O(n^2)}
t₁₁, X₃: X₄ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₁, X₆: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₄, X₁: 6⋅X₄⋅X₄+4⋅X₄+X₁+1 {O(n^2)}
t₄, X₃: X₄ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₄, X₆: 18⋅X₄⋅X₄+12⋅X₄+X₆+1 {O(n^2)}
t₅, X₁: 6⋅X₄⋅X₄+4⋅X₄+X₁+1 {O(n^2)}
t₅, X₃: X₄ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₅, X₆: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₆, X₁: 6⋅X₄⋅X₄+4⋅X₄+X₁+1 {O(n^2)}
t₆, X₃: X₄ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₆, X₆: 18⋅X₄⋅X₄+12⋅X₄+X₆+1 {O(n^2)}
t₈, X₁: 6⋅X₄⋅X₄+4⋅X₄+X₁+1 {O(n^2)}
t₈, X₃: X₄ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: 3⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₈, X₆: 18⋅X₄⋅X₄+12⋅X₄+X₆+1 {O(n^2)}