Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: X₃ < 0 ∧ X₃ < 0
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: X₃ < 0 ∧ 0 < X₃
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ X₃ < 0
t₁₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 0 < X₃
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₁+X₀, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₁+X₀, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ < 0
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 < X₃
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₁+X₀, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: X₁ < X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₁
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆)
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀
t₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0
t₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₄, X₅, X₂, X₃, X₄, X₅, X₆)
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)

Preprocessing

Cut unsatisfiable transition t₁₀: l1→l4

Cut unsatisfiable transition t₁₁: l1→l4

Cut unsatisfiable transition t₁₃: l1→l4

Cut unsatisfiable transition t₁₄: l1→l4

Cut unsatisfiable transition t₁₅: l1→l4

Cut unsatisfiable transition t₁₆: l1→l4

Eliminate variables {X₆} that do not contribute to the problem

Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2

Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l1

Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: nondef.0
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₃₇: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅)
t₃₈: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅) :|: X₃ < 0 ∧ X₃ < 0 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅) :|: 0 < X₃ ∧ 0 < X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₁+X₀, X₂-1, X₂, X₃, X₄, X₅) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₄₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₂: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₃: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅) :|: X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₄: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁ ∧ 0 < X₀
t₄₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0
t₄₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0
t₄₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₄, X₅, X₂, X₃, X₄, X₅)
t₄₈: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅)

Analysing control-flow refined program

Cut unsatisfiable transition t₉₄₁: n_l4___8→l6

Cut unsatisfiable transition t₉₄₅: n_l4___8→l6

Cut unsatisfiable transition t₉₄₉: n_l4___8→l6

Cut unsatisfiable transition t₉₄₀: n_l4___9→l6

Cut unsatisfiable transition t₉₄₄: n_l4___9→l6

Cut unsatisfiable transition t₉₄₈: n_l4___9→l6

Found invariant 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___7

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l4___9

Found invariant 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___3

Found invariant 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___6

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___10

Found invariant 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___2

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l3___12

Found invariant X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___11

Found invariant 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___5

Found invariant X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ for location l4

Found invariant 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l4___8

Found invariant X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___1

Found invariant X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___13

Found invariant 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l2___4

MPRF for transition t₉₀₆: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

5⋅X₄+X₅+2 {O(n)}

MPRF:

n_l3___3 [X₂ ]
n_l1___2 [X₁ ]
n_l3___6 [X₂ ]
n_l1___5 [X₀ ]
n_l4___8 [X₂-1 ]
n_l2___4 [X₂-1 ]
n_l4___9 [X₀ ]
n_l2___7 [X₀ ]

MPRF for transition t₉₀₇: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ < 0 ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

3⋅X₄+3⋅X₅+8 {O(n)}

MPRF:

n_l3___3 [X₂+3 ]
n_l1___2 [X₂+3 ]
n_l3___6 [X₀+2 ]
n_l1___5 [X₀+2 ]
n_l4___8 [X₂+2 ]
n_l2___4 [X₁+3 ]
n_l4___9 [X₂+1 ]
n_l2___7 [X₀+2 ]

MPRF for transition t₉₀₈: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 < X₃ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

3⋅X₄+3⋅X₅+10 {O(n)}

MPRF:

n_l3___3 [X₂ ]
n_l1___2 [X₂ ]
n_l3___6 [X₂-1 ]
n_l1___5 [X₂-1 ]
n_l4___8 [X₂-1 ]
n_l2___4 [X₁ ]
n_l4___9 [X₂-2 ]
n_l2___7 [X₀-1 ]

MPRF for transition t₉₀₉: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

10⋅X₅+2⋅X₄ {O(n)}

MPRF:

n_l3___3 [X₁+X₅ ]
n_l1___2 [X₂+X₅ ]
n_l3___6 [X₂+X₅+1 ]
n_l1___5 [X₂+X₅+1 ]
n_l4___8 [X₁+X₅ ]
n_l2___4 [X₁+X₅ ]
n_l4___9 [X₂+X₅ ]
n_l2___7 [X₂+X₅ ]

MPRF for transition t₉₁₀: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ < 0 ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₄+2 {O(n)}

MPRF:

n_l3___3 [X₁ ]
n_l1___2 [X₁ ]
n_l3___6 [X₀ ]
n_l1___5 [X₀ ]
n_l4___8 [X₁+1 ]
n_l2___4 [X₁ ]
n_l4___9 [X₀ ]
n_l2___7 [X₀ ]

MPRF for transition t₉₁₁: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 < X₃ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄+3⋅X₅+4 {O(n)}

MPRF:

n_l3___3 [X₂ ]
n_l1___2 [X₁ ]
n_l3___6 [X₀ ]
n_l1___5 [X₀ ]
n_l4___8 [X₂ ]
n_l2___4 [X₂ ]
n_l4___9 [X₂-1 ]
n_l2___7 [X₀ ]

MPRF for transition t₉₁₄: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___3(X₀, X₁, X₁, X₃, X₄, X₅) :|: 1 ≤ X₀ ∧ X₁ < X₀ ∧ 0 < X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ < X₀ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₄ {O(n)}

MPRF:

n_l3___3 [X₂-1 ]
n_l1___2 [X₂-1 ]
n_l3___6 [X₂ ]
n_l1___5 [X₂ ]
n_l4___8 [X₁ ]
n_l2___4 [X₁ ]
n_l4___9 [X₀ ]
n_l2___7 [X₀ ]

MPRF for transition t₉₁₅: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___6(X₀, X₁, X₀, X₃, X₄, X₅) :|: 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄+3⋅X₅ {O(n)}

MPRF:

n_l3___3 [X₂ ]
n_l1___2 [X₁ ]
n_l3___6 [X₀ ]
n_l1___5 [X₀ ]
n_l4___8 [X₂ ]
n_l2___4 [X₁ ]
n_l4___9 [X₂ ]
n_l2___7 [X₂ ]

MPRF for transition t₉₁₈: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___2(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₄ {O(n)}

MPRF:

n_l3___3 [X₁ ]
n_l1___2 [X₂-1 ]
n_l3___6 [X₂ ]
n_l1___5 [X₂ ]
n_l4___8 [X₁ ]
n_l2___4 [X₁ ]
n_l4___9 [X₀ ]
n_l2___7 [X₀ ]

MPRF for transition t₉₁₉: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___5(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄+3⋅X₅+6 {O(n)}

MPRF:

n_l3___3 [X₂ ]
n_l1___2 [X₁ ]
n_l3___6 [X₀ ]
n_l1___5 [X₀-1 ]
n_l4___8 [X₂-1 ]
n_l2___4 [X₁ ]
n_l4___9 [X₂-1 ]
n_l2___7 [X₀ ]

MPRF for transition t₉₂₁: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₄+2 {O(n)}

MPRF:

n_l3___3 [X₂ ]
n_l1___2 [X₂ ]
n_l3___6 [X₂ ]
n_l1___5 [X₀ ]
n_l4___8 [X₁+1 ]
n_l2___4 [X₁ ]
n_l4___9 [X₀ ]
n_l2___7 [X₀ ]

MPRF for transition t₉₂₂: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₄+3⋅X₅+4 {O(n)}

MPRF:

n_l3___3 [X₂+1 ]
n_l1___2 [X₂+1 ]
n_l3___6 [X₂+1 ]
n_l1___5 [X₂+1 ]
n_l4___8 [X₂ ]
n_l2___4 [X₁+1 ]
n_l4___9 [X₂+1 ]
n_l2___7 [X₂ ]

CFR: Improvement to new bound with the following program:

new bound:

37⋅X₅+41⋅X₄+38 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: Arg2_P, NoDet0
Locations: l0, l4, l5, l6, l7, n_l1___1, n_l1___10, n_l1___2, n_l1___5, n_l2___13, n_l2___4, n_l2___7, n_l3___11, n_l3___12, n_l3___3, n_l3___6, n_l4___8, n_l4___9
Transitions:
t₃₇: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅)
t₄₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
t₄₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
t₉₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ 0 < X₀ ∧ 0 < X₁ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
t₄₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₄, X₅, X₂, X₃, X₄, X₅)
t₄₈: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅)
t₉₀₀: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₀₁: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ < 0 ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₀₂: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 < X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₀₃: n_l1___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉₀₄: n_l1___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ < 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉₀₅: n_l1___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 < X₃ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉₀₆: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₉₀₇: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ < 0 ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₉₀₈: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 < X₃ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₉₀₉: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₁₀: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ < 0 ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₁₁: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 < X₃ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₁₂: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___11(X₀, X₁, X₀, X₃, X₄, X₅) :|: 0 < X₁ ∧ 0 < X₄ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₉₁₃: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___12(X₀, X₁, X₁, X₃, X₄, X₅) :|: 0 < X₁ ∧ 0 < X₄ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₉₁₄: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___3(X₀, X₁, X₁, X₃, X₄, X₅) :|: 1 ≤ X₀ ∧ X₁ < X₀ ∧ 0 < X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ < X₀ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₉₁₅: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___6(X₀, X₁, X₀, X₃, X₄, X₅) :|: 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₁₆: n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___1(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₁₇: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___10(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉₁₈: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___2(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₉₁₉: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___5(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉₃₉: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉₄₃: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉₄₇: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉₂₁: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉₄₂: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₉₄₆: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₉₅₀: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₉₂₂: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀

All Bounds

Timebounds

Overall timebound:37⋅X₅+41⋅X₄+60 {O(n)}
t₃₇: 1 {O(1)}
t₄₅: 1 {O(1)}
t₄₆: 1 {O(1)}
t₉₂₀: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈: 1 {O(1)}
t₉₀₀: 1 {O(1)}
t₉₀₁: 1 {O(1)}
t₉₀₂: 1 {O(1)}
t₉₀₃: 1 {O(1)}
t₉₀₄: 1 {O(1)}
t₉₀₅: 1 {O(1)}
t₉₀₆: 5⋅X₄+X₅+2 {O(n)}
t₉₀₇: 3⋅X₄+3⋅X₅+8 {O(n)}
t₉₀₈: 3⋅X₄+3⋅X₅+10 {O(n)}
t₉₀₉: 10⋅X₅+2⋅X₄ {O(n)}
t₉₁₀: 2⋅X₅+4⋅X₄+2 {O(n)}
t₉₁₁: 3⋅X₄+3⋅X₅+4 {O(n)}
t₉₁₂: 1 {O(1)}
t₉₁₃: 1 {O(1)}
t₉₁₄: 2⋅X₅+4⋅X₄ {O(n)}
t₉₁₅: 3⋅X₄+3⋅X₅ {O(n)}
t₉₁₆: 1 {O(1)}
t₉₁₇: 1 {O(1)}
t₉₁₈: 2⋅X₅+4⋅X₄ {O(n)}
t₉₁₉: 3⋅X₄+3⋅X₅+6 {O(n)}
t₉₂₁: 2⋅X₅+4⋅X₄+2 {O(n)}
t₉₃₉: 1 {O(1)}
t₉₄₃: 1 {O(1)}
t₉₄₇: 1 {O(1)}
t₉₂₂: 3⋅X₄+3⋅X₅+4 {O(n)}
t₉₄₂: 1 {O(1)}
t₉₄₆: 1 {O(1)}
t₉₅₀: 1 {O(1)}

Costbounds

Overall costbound: 37⋅X₅+41⋅X₄+60 {O(n)}
t₃₇: 1 {O(1)}
t₄₅: 1 {O(1)}
t₄₆: 1 {O(1)}
t₉₂₀: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈: 1 {O(1)}
t₉₀₀: 1 {O(1)}
t₉₀₁: 1 {O(1)}
t₉₀₂: 1 {O(1)}
t₉₀₃: 1 {O(1)}
t₉₀₄: 1 {O(1)}
t₉₀₅: 1 {O(1)}
t₉₀₆: 5⋅X₄+X₅+2 {O(n)}
t₉₀₇: 3⋅X₄+3⋅X₅+8 {O(n)}
t₉₀₈: 3⋅X₄+3⋅X₅+10 {O(n)}
t₉₀₉: 10⋅X₅+2⋅X₄ {O(n)}
t₉₁₀: 2⋅X₅+4⋅X₄+2 {O(n)}
t₉₁₁: 3⋅X₄+3⋅X₅+4 {O(n)}
t₉₁₂: 1 {O(1)}
t₉₁₃: 1 {O(1)}
t₉₁₄: 2⋅X₅+4⋅X₄ {O(n)}
t₉₁₅: 3⋅X₄+3⋅X₅ {O(n)}
t₉₁₆: 1 {O(1)}
t₉₁₇: 1 {O(1)}
t₉₁₈: 2⋅X₅+4⋅X₄ {O(n)}
t₉₁₉: 3⋅X₄+3⋅X₅+6 {O(n)}
t₉₂₁: 2⋅X₅+4⋅X₄+2 {O(n)}
t₉₃₉: 1 {O(1)}
t₉₄₃: 1 {O(1)}
t₉₄₇: 1 {O(1)}
t₉₂₂: 3⋅X₄+3⋅X₅+4 {O(n)}
t₉₄₂: 1 {O(1)}
t₉₄₆: 1 {O(1)}
t₉₅₀: 1 {O(1)}

Sizebounds

t₃₇, X₀: X₀ {O(n)}
t₃₇, X₁: X₁ {O(n)}
t₃₇, X₂: X₂ {O(n)}
t₃₇, X₃: X₃ {O(n)}
t₃₇, X₄: X₄ {O(n)}
t₃₇, X₅: X₅ {O(n)}
t₄₅, X₀: X₄ {O(n)}
t₄₅, X₁: X₅ {O(n)}
t₄₅, X₂: X₂ {O(n)}
t₄₅, X₃: X₃ {O(n)}
t₄₅, X₄: X₄ {O(n)}
t₄₅, X₅: X₅ {O(n)}
t₄₆, X₀: X₄ {O(n)}
t₄₆, X₁: X₅ {O(n)}
t₄₆, X₂: X₂ {O(n)}
t₄₆, X₃: X₃ {O(n)}
t₄₆, X₄: X₄ {O(n)}
t₄₆, X₅: X₅ {O(n)}
t₉₂₀, X₀: X₄ {O(n)}
t₉₂₀, X₁: X₅ {O(n)}
t₉₂₀, X₂: X₂ {O(n)}
t₉₂₀, X₃: X₃ {O(n)}
t₉₂₀, X₄: X₄ {O(n)}
t₉₂₀, X₅: X₅ {O(n)}
t₄₇, X₀: X₄ {O(n)}
t₄₇, X₁: X₅ {O(n)}
t₄₇, X₂: X₂ {O(n)}
t₄₇, X₃: X₃ {O(n)}
t₄₇, X₄: X₄ {O(n)}
t₄₇, X₅: X₅ {O(n)}
t₄₈, X₀: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅36⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅36⋅X₅+6⋅X₅+8⋅X₄ {O(EXP)}
t₄₈, X₁: 24⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+24⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅48⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅48⋅X₅+12⋅X₄+14⋅X₅ {O(EXP)}
t₄₈, X₂: 2⋅X₂+6 {O(n)}
t₄₈, X₄: 8⋅X₄ {O(n)}
t₄₈, X₅: 8⋅X₅ {O(n)}
t₉₀₀, X₀: 2⋅X₅ {O(n)}
t₉₀₀, X₁: X₅ {O(n)}
t₉₀₀, X₂: X₄ {O(n)}
t₉₀₀, X₃: 0 {O(1)}
t₉₀₀, X₄: X₄ {O(n)}
t₉₀₀, X₅: X₅ {O(n)}
t₉₀₁, X₀: X₄ {O(n)}
t₉₀₁, X₁: 2⋅X₅ {O(n)}
t₉₀₁, X₂: X₄ {O(n)}
t₉₀₁, X₄: X₄ {O(n)}
t₉₀₁, X₅: X₅ {O(n)}
t₉₀₂, X₀: X₄ {O(n)}
t₉₀₂, X₁: 2⋅X₅ {O(n)}
t₉₀₂, X₂: X₄ {O(n)}
t₉₀₂, X₄: X₄ {O(n)}
t₉₀₂, X₅: X₅ {O(n)}
t₉₀₃, X₀: 2⋅X₄ {O(n)}
t₉₀₃, X₁: X₅ {O(n)}
t₉₀₃, X₂: X₅ {O(n)}
t₉₀₃, X₃: 0 {O(1)}
t₉₀₃, X₄: X₄ {O(n)}
t₉₀₃, X₅: X₅ {O(n)}
t₉₀₄, X₀: X₄ {O(n)}
t₉₀₄, X₁: 2⋅X₄ {O(n)}
t₉₀₄, X₂: X₅ {O(n)}
t₉₀₄, X₄: X₄ {O(n)}
t₉₀₄, X₅: X₅ {O(n)}
t₉₀₅, X₀: X₄ {O(n)}
t₉₀₅, X₁: 2⋅X₄ {O(n)}
t₉₀₅, X₂: X₅ {O(n)}
t₉₀₅, X₄: X₄ {O(n)}
t₉₀₅, X₅: X₅ {O(n)}
t₉₀₆, X₀: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₀₆, X₁: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₉₀₆, X₂: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₉₀₆, X₃: 0 {O(1)}
t₉₀₆, X₄: 6⋅X₄ {O(n)}
t₉₀₆, X₅: 6⋅X₅ {O(n)}
t₉₀₇, X₀: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₀₇, X₁: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₀₇, X₂: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₉₀₇, X₄: 6⋅X₄ {O(n)}
t₉₀₇, X₅: 6⋅X₅ {O(n)}
t₉₀₈, X₀: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₀₈, X₁: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₀₈, X₂: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₉₀₈, X₄: 6⋅X₄ {O(n)}
t₉₀₈, X₅: 6⋅X₅ {O(n)}
t₉₀₉, X₀: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₀₉, X₁: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₀₉, X₂: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₉₀₉, X₃: 0 {O(1)}
t₉₀₉, X₄: 6⋅X₄ {O(n)}
t₉₀₉, X₅: 6⋅X₅ {O(n)}
t₉₁₀, X₀: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₉₁₀, X₁: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₁₀, X₂: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₉₁₀, X₄: 6⋅X₄ {O(n)}
t₉₁₀, X₅: 6⋅X₅ {O(n)}
t₉₁₁, X₀: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₉₁₁, X₁: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₁₁, X₂: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₉₁₁, X₄: 6⋅X₄ {O(n)}
t₉₁₁, X₅: 6⋅X₅ {O(n)}
t₉₁₂, X₀: X₄ {O(n)}
t₉₁₂, X₁: X₅ {O(n)}
t₉₁₂, X₂: X₄ {O(n)}
t₉₁₂, X₃: X₃ {O(n)}
t₉₁₂, X₄: X₄ {O(n)}
t₉₁₂, X₅: X₅ {O(n)}
t₉₁₃, X₀: X₄ {O(n)}
t₉₁₃, X₁: X₅ {O(n)}
t₉₁₃, X₂: X₅ {O(n)}
t₉₁₃, X₃: X₃ {O(n)}
t₉₁₃, X₄: X₄ {O(n)}
t₉₁₃, X₅: X₅ {O(n)}
t₉₁₄, X₀: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₁₄, X₁: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₉₁₄, X₂: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₉₁₄, X₃: 0 {O(1)}
t₉₁₄, X₄: 6⋅X₄ {O(n)}
t₉₁₄, X₅: 6⋅X₅ {O(n)}
t₉₁₅, X₀: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₉₁₅, X₁: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₁₅, X₂: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₉₁₅, X₄: 6⋅X₄ {O(n)}
t₉₁₅, X₅: 6⋅X₅ {O(n)}
t₉₁₆, X₀: X₄ {O(n)}
t₉₁₆, X₁: X₅ {O(n)}
t₉₁₆, X₂: X₄ {O(n)}
t₉₁₆, X₄: X₄ {O(n)}
t₉₁₆, X₅: X₅ {O(n)}
t₉₁₇, X₀: X₄ {O(n)}
t₉₁₇, X₁: X₅ {O(n)}
t₉₁₇, X₂: X₅ {O(n)}
t₉₁₇, X₄: X₄ {O(n)}
t₉₁₇, X₅: X₅ {O(n)}
t₉₁₈, X₀: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₁₈, X₁: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₉₁₈, X₂: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₉₁₈, X₄: 6⋅X₄ {O(n)}
t₉₁₈, X₅: 6⋅X₅ {O(n)}
t₉₁₉, X₀: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₉₁₉, X₁: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₁₉, X₂: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₉₁₉, X₄: 6⋅X₄ {O(n)}
t₉₁₉, X₅: 6⋅X₅ {O(n)}
t₉₂₁, X₀: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₂₁, X₁: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₉₂₁, X₂: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+3⋅X₅+5⋅X₄ {O(EXP)}
t₉₂₁, X₃: 0 {O(1)}
t₉₂₁, X₄: 6⋅X₄ {O(n)}
t₉₂₁, X₅: 6⋅X₅ {O(n)}
t₉₃₉, X₀: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+2⋅X₄+2⋅X₅ {O(EXP)}
t₉₃₉, X₁: 0 {O(1)}
t₉₃₉, X₂: 1 {O(1)}
t₉₃₉, X₃: 0 {O(1)}
t₉₃₉, X₄: 14⋅X₄ {O(n)}
t₉₃₉, X₅: 14⋅X₅ {O(n)}
t₉₄₃, X₀: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+2⋅X₄+2⋅X₅ {O(EXP)}
t₉₄₃, X₁: 0 {O(1)}
t₉₄₃, X₂: 1 {O(1)}
t₉₄₃, X₃: 0 {O(1)}
t₉₄₃, X₄: 14⋅X₄ {O(n)}
t₉₄₃, X₅: 14⋅X₅ {O(n)}
t₉₄₇, X₀: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+2⋅X₄+2⋅X₅ {O(EXP)}
t₉₄₇, X₁: 0 {O(1)}
t₉₄₇, X₂: 1 {O(1)}
t₉₄₇, X₃: 0 {O(1)}
t₉₄₇, X₄: 14⋅X₄ {O(n)}
t₉₄₇, X₅: 14⋅X₅ {O(n)}
t₉₂₂, X₀: 12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₉₂₂, X₁: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₉₂₂, X₂: 2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅36⋅X₄+2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅36⋅X₅+10⋅X₄+6⋅X₅ {O(EXP)}
t₉₂₂, X₄: 6⋅X₄ {O(n)}
t₉₂₂, X₅: 6⋅X₅ {O(n)}
t₉₄₂, X₀: 0 {O(1)}
t₉₄₂, X₁: 24⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+24⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄+4⋅X₅ {O(EXP)}
t₉₄₂, X₂: 1 {O(1)}
t₉₄₂, X₄: 28⋅X₄ {O(n)}
t₉₄₂, X₅: 28⋅X₅ {O(n)}
t₉₄₆, X₀: 0 {O(1)}
t₉₄₆, X₁: 24⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+24⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄+4⋅X₅ {O(EXP)}
t₉₄₆, X₂: 1 {O(1)}
t₉₄₆, X₄: 28⋅X₄ {O(n)}
t₉₄₆, X₅: 28⋅X₅ {O(n)}
t₉₅₀, X₀: 0 {O(1)}
t₉₅₀, X₁: 24⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₄+24⋅2^(10⋅X₅+2⋅X₄)⋅2^(2⋅X₅+4⋅X₄+2)⋅2^(3⋅X₄+3⋅X₅+10)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄+4⋅X₅ {O(EXP)}
t₉₅₀, X₂: 1 {O(1)}
t₉₅₀, X₄: 28⋅X₄ {O(n)}
t₉₅₀, X₅: 28⋅X₅ {O(n)}