Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆)
t₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₄-1, X₃, X₄, X₅, X₆)
t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂
t₂₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆)
t₁₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₁₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < 0
t₂₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₀
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ X₁
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆)
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, 1)
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, 0, X₄, 0, X₆) :|: 0 < X₂
t₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0
Preprocessing
Found invariant X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l11
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l2
Found invariant X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l6
Found invariant 1+X₂ ≤ X₄ for location l15
Found invariant 1+X₂ ≤ X₄ for location l12
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l7
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l5
Found invariant X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l13
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l8
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l1
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l4
Found invariant 1+X₂ ≤ X₄ for location l9
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l3
Found invariant X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l14
Cut unsatisfiable transition t₁₉: l14→l13
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₄-1, X₃, X₄, X₅, X₆)
t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₂₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₂ ≤ X₄
t₂₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂
t₁₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂
t₂₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₀ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ X₁ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, 1) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
t₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, 0, X₄, 0, X₆) :|: 0 < X₂ ∧ 1+X₂ ≤ X₄
t₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 1+X₂ ≤ X₄
MPRF for transition t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+2 {O(n)}
MPRF:
l14 [X₃ ]
l13 [X₂ ]
l2 [X₂+1 ]
l3 [X₂+1 ]
l1 [X₂+1 ]
l4 [X₂+1 ]
l5 [X₂+1 ]
l6 [X₂+1 ]
l8 [X₂+1 ]
l7 [X₂+1 ]
l9 [X₂+1 ]
l11 [X₂+1 ]
MPRF for transition t₂₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF:
l14 [X₃ ]
l13 [X₂+1-X₅ ]
l2 [X₂ ]
l3 [X₂ ]
l1 [X₂ ]
l4 [X₂ ]
l5 [X₂ ]
l6 [X₂ ]
l8 [X₂ ]
l7 [X₂ ]
l9 [X₂ ]
l11 [X₂ ]
MPRF for transition t₂₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+2 {O(n)}
MPRF:
l14 [X₂+1 ]
l13 [X₂ ]
l2 [X₂+1 ]
l3 [X₂+1 ]
l1 [X₂+1 ]
l4 [X₂+1 ]
l5 [X₂+1 ]
l6 [X₂+1 ]
l8 [X₂+1 ]
l7 [X₂+1 ]
l9 [X₂+1 ]
l11 [X₂+1 ]
MPRF for transition t₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, 0, X₄, 0, X₆) :|: 0 < X₂ ∧ 1+X₂ ≤ X₄ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF:
l14 [X₃-1 ]
l13 [2⋅X₃-X₂-1 ]
l2 [X₂-1 ]
l3 [X₂-1 ]
l1 [X₂-1 ]
l4 [X₂-1 ]
l5 [X₂-1 ]
l6 [X₂-1 ]
l8 [X₂-1 ]
l7 [X₂-1 ]
l9 [X₂ ]
l11 [X₂-1 ]
MPRF for transition t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄+1 {O(n^2)}
MPRF:
l9 [X₄-X₂-1 ]
l14 [X₄-X₃ ]
l13 [X₄-X₂ ]
l2 [X₄+1-X₃ ]
l3 [X₄+1-X₃ ]
l1 [X₄+1-X₃ ]
l4 [X₄-X₃ ]
l5 [X₄-X₃ ]
l11 [X₄+1-X₃ ]
l6 [X₄-X₃ ]
l8 [X₄-X₃ ]
l7 [X₄-X₃ ]
MPRF for transition t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+3⋅X₄+2 {O(n^2)}
MPRF:
l9 [0 ]
l14 [X₂-X₃ ]
l13 [0 ]
l2 [X₂-X₃ ]
l3 [X₂-X₃ ]
l1 [X₂-X₃ ]
l4 [X₂-X₃ ]
l5 [X₂-X₃ ]
l11 [X₂+1-X₃ ]
l6 [X₂-X₃ ]
l8 [X₂-X₃ ]
l7 [X₂-X₃ ]
MPRF for transition t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄+1 {O(n^2)}
MPRF:
l9 [0 ]
l14 [X₂-X₃ ]
l13 [0 ]
l2 [X₂-X₃ ]
l3 [X₂-X₃-1 ]
l1 [X₂-X₃-1 ]
l4 [X₂-X₃-1 ]
l5 [X₂-X₃-1 ]
l11 [X₂-X₃ ]
l6 [X₂-X₃-1 ]
l8 [X₂-X₃-1 ]
l7 [X₂-X₃-1 ]
MPRF for transition t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄+1 {O(n^2)}
MPRF:
l9 [0 ]
l14 [X₂-X₃ ]
l13 [0 ]
l2 [X₂-X₃ ]
l3 [X₂-X₃ ]
l1 [X₂-X₃-1 ]
l4 [X₂-X₃-1 ]
l5 [X₂-X₃-1 ]
l11 [X₂-X₃ ]
l6 [X₂-X₃-1 ]
l8 [X₂-X₃-1 ]
l7 [X₂-X₃-1 ]
MPRF for transition t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₀ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF:
l9 [X₄-X₂-1 ]
l14 [X₄-X₃ ]
l13 [X₄-X₃ ]
l2 [X₄-X₃ ]
l3 [X₄-X₃ ]
l1 [X₄-X₃ ]
l4 [X₄-X₃ ]
l5 [X₄-X₃-1 ]
l11 [X₄-X₃ ]
l6 [X₄-X₃-1 ]
l8 [X₄-X₃-1 ]
l7 [X₄-X₃-1 ]
MPRF for transition t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ X₁ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
MPRF:
l9 [X₂ ]
l14 [2⋅X₂-X₃-1 ]
l13 [2⋅X₂-X₃-1 ]
l2 [2⋅X₂-X₃-1 ]
l3 [2⋅X₂-X₃-1 ]
l1 [2⋅X₂-X₃-1 ]
l4 [2⋅X₂-X₃-1 ]
l5 [2⋅X₂-X₃-1 ]
l11 [2⋅X₂-X₃-1 ]
l6 [2⋅X₂-X₃-2 ]
l8 [2⋅X₂-X₃-1 ]
l7 [2⋅X₂-X₃-1 ]
MPRF for transition t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF:
l9 [2⋅X₄-X₂-2 ]
l14 [2⋅X₄-X₃-1 ]
l13 [2⋅X₄-X₂-X₅ ]
l2 [2⋅X₄-X₃-X₅ ]
l3 [2⋅X₄-X₃-X₅ ]
l1 [2⋅X₄-X₃-X₅ ]
l4 [2⋅X₄-X₃-X₅ ]
l5 [2⋅X₄-X₃-X₅ ]
l11 [2⋅X₄-X₃-X₅ ]
l6 [2⋅X₄-X₃-X₅-X₆ ]
l8 [2⋅X₄-X₃-X₅-1 ]
l7 [2⋅X₄-X₃-X₅-1 ]
MPRF for transition t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
MPRF:
l9 [X₂ ]
l14 [2⋅X₂-X₃-1 ]
l13 [X₂-1 ]
l2 [2⋅X₂-X₃-1 ]
l3 [2⋅X₂-X₃-1 ]
l1 [2⋅X₂-X₃-1 ]
l4 [2⋅X₂-X₃-1 ]
l5 [2⋅X₂-X₃-1 ]
l11 [2⋅X₂-X₃-1 ]
l6 [2⋅X₂-X₃-1 ]
l8 [2⋅X₂-X₃-1 ]
l7 [2⋅X₂-X₃-1 ]
MPRF for transition t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, 1) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄+1 {O(n^2)}
MPRF:
l9 [X₄-X₂-2 ]
l14 [X₄-X₃-1 ]
l13 [X₄-X₂-1 ]
l2 [X₄-X₃-1 ]
l3 [X₄-X₃-1 ]
l1 [X₄-X₃-1 ]
l4 [X₄-X₃-1 ]
l5 [X₄-X₃-1 ]
l11 [X₄-X₃-1 ]
l6 [X₄-X₃-2 ]
l8 [X₄-X₃-1 ]
l7 [X₄-X₃-1 ]
MPRF for transition t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₄⋅X₄+4⋅X₄+2 {O(n^2)}
MPRF:
l9 [X₄-1 ]
l14 [X₂+X₄-X₃-X₅ ]
l13 [X₂+X₄-X₃-X₅ ]
l2 [X₂+X₄-X₃ ]
l3 [X₂+X₄-X₃ ]
l1 [X₂+X₄-X₃ ]
l4 [X₂+X₄-X₃ ]
l5 [X₂+X₄-X₃ ]
l11 [X₂+X₄+1-X₃-X₅ ]
l6 [X₂+X₄-X₃-X₆ ]
l8 [X₂+X₄-X₃ ]
l7 [X₂+X₄-X₃-1 ]
Analysing control-flow refined program
Cut unsatisfiable transition t₅: l11→l14
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l11
Found invariant X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l6___1
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l11___10
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l2___19
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location n_l4___6
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ X₀ ≤ X₁ for location n_l6___4
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l7___12
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l8___13
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l8___3
Found invariant 1+X₂ ≤ X₄ for location l15
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l5___5
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l1___17
Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ for location n_l6___14
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location n_l1___7
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l4___16
Found invariant 1+X₂ ≤ X₄ for location l12
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location n_l2___9
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location n_l3___8
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l5___15
Found invariant X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 1 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₃+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l6___11
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l7___2
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l13
Found invariant 1+X₂ ≤ X₄ for location l9
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l14
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l3___18
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₆₆₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₃ < X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃ < X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₆₇₂: n_l2___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₃ < X₂ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₆₇₄: n_l3___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___17(NoDet0, X₁, X₂, Arg3_P, Arg4_P, Arg5_P, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ Arg5_P ≤ 1 ∧ 0 ≤ Arg5_P ∧ 1+Arg3_P ≤ X₂ ∧ 1+X₂ ≤ Arg4_P ∧ Arg5_P ≤ Arg3_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₆₇₀: n_l1___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___16(X₀, NoDet0, X₂, Arg3_P, Arg4_P, Arg5_P, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ Arg5_P ≤ 1 ∧ 0 ≤ Arg5_P ∧ 1+Arg3_P ≤ X₂ ∧ 1+X₂ ≤ Arg4_P ∧ Arg5_P ≤ Arg3_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₆₇₆: n_l4___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₃ ∧ X₁ < X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₆₇₇: n_l4___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₆₈₀: n_l5___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₁ < X₀ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₆₈₄: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___10(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₆ ≤ 1 ∧ 0 ≤ X₆ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1 ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₆₈₈: n_l8___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₆₈₆: n_l7___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, 1) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₆₈₃: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___10(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₆ ≤ 1 ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 1 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₃+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
MPRF for transition t₆₆₈: n_l11___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1 ∧ X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃ ∧ X₅ ≤ X₃ ∧ X₃ < X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
4⋅X₄⋅X₄+11⋅X₄+7 {O(n^2)}
MPRF:
l13 [X₂ ]
l9 [X₂ ]
l11 [X₂ ]
l14 [2⋅X₂-X₃ ]
n_l2___19 [X₂ ]
n_l2___9 [2⋅X₂-X₃ ]
n_l3___18 [X₂ ]
n_l1___17 [X₂ ]
n_l3___8 [2⋅X₂-X₃ ]
n_l1___7 [2⋅X₂-X₃ ]
n_l4___16 [X₂ ]
n_l6___14 [X₂ ]
n_l4___6 [2⋅X₂-X₃ ]
n_l5___15 [X₂ ]
n_l8___13 [X₂ ]
n_l5___5 [2⋅X₂-X₃ ]
n_l6___4 [2⋅X₂-X₃ ]
n_l11___10 [2⋅X₂+1-X₃ ]
n_l7___12 [2⋅X₂ ]
n_l6___11 [2⋅X₂-X₃ ]
n_l6___1 [2⋅X₂-X₃ ]
n_l8___3 [2⋅X₂-X₃ ]
n_l7___2 [2⋅X₂-X₃ ]
MPRF for transition t₇₀₂: n_l11___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+2 {O(n)}
MPRF:
l13 [X₃ ]
l9 [X₂+1 ]
l11 [X₂+1 ]
l14 [X₂ ]
n_l2___19 [X₂+1 ]
n_l2___9 [X₂+1 ]
n_l3___18 [X₂+1 ]
n_l1___17 [X₂+1 ]
n_l3___8 [X₂+1 ]
n_l1___7 [X₂+1 ]
n_l4___16 [X₂+1 ]
n_l4___6 [X₂+1 ]
n_l5___15 [X₂+1 ]
n_l5___5 [X₂+1 ]
n_l6___14 [X₂+1 ]
n_l6___4 [X₂+1 ]
n_l11___10 [X₂+1 ]
n_l6___11 [X₂+1 ]
n_l6___1 [X₂+1 ]
n_l8___13 [X₂+1 ]
n_l7___12 [X₂+1 ]
n_l8___3 [X₂+1 ]
n_l7___2 [X₂+1 ]
MPRF for transition t₆₇₁: n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___6(X₀, NoDet0, X₂, Arg3_P, Arg4_P, Arg5_P, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ Arg5_P ≤ 1 ∧ 0 ≤ Arg5_P ∧ 1+Arg3_P ≤ X₂ ∧ 1+X₂ ≤ Arg4_P ∧ Arg5_P ≤ Arg3_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
4⋅X₄⋅X₄+14⋅X₄+10 {O(n^2)}
MPRF:
l13 [X₂ ]
l9 [X₂ ]
l11 [X₂ ]
l14 [2⋅X₂-X₃ ]
n_l2___19 [X₂ ]
n_l2___9 [2⋅X₂+2-X₃ ]
n_l3___18 [X₂ ]
n_l1___17 [X₂ ]
n_l3___8 [2⋅X₂+2-X₃ ]
n_l1___7 [2⋅X₂+2-X₃ ]
n_l4___16 [X₂ ]
n_l6___14 [X₂ ]
n_l4___6 [2⋅X₂+1-X₃ ]
n_l5___15 [X₂ ]
n_l8___13 [X₂ ]
n_l5___5 [2⋅X₂+1-X₃ ]
n_l6___4 [2⋅X₂+1-X₃ ]
n_l11___10 [2⋅X₂+2-X₃ ]
n_l7___12 [2⋅X₂+2 ]
n_l6___11 [2⋅X₂+2-X₃ ]
n_l6___1 [2⋅X₂+1-X₃ ]
n_l8___3 [2⋅X₂+1-X₃ ]
n_l7___2 [2⋅X₂+1-X₃ ]
MPRF for transition t₆₇₃: n_l2___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ X₃ < X₂ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
4⋅X₄⋅X₄+11⋅X₄+7 {O(n^2)}
MPRF:
l13 [X₃ ]
l9 [X₂ ]
l11 [X₂ ]
l14 [X₃ ]
n_l2___19 [X₂ ]
n_l2___9 [2⋅X₂+1-X₃ ]
n_l3___18 [X₂ ]
n_l1___17 [X₂ ]
n_l3___8 [2⋅X₂-X₃ ]
n_l1___7 [2⋅X₂-X₃ ]
n_l4___16 [X₂ ]
n_l6___14 [X₂ ]
n_l4___6 [2⋅X₂-X₃ ]
n_l5___15 [X₂ ]
n_l8___13 [X₂ ]
n_l5___5 [2⋅X₂-X₃ ]
n_l6___4 [2⋅X₂-X₃ ]
n_l11___10 [2⋅X₂+1-X₃ ]
n_l7___12 [2⋅X₂-X₃ ]
n_l6___11 [2⋅X₂-X₃ ]
n_l6___1 [2⋅X₂-X₃ ]
n_l8___3 [2⋅X₂-X₃ ]
n_l7___2 [2⋅X₂-X₃ ]
MPRF for transition t₆₇₅: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___7(NoDet0, X₁, X₂, Arg3_P, Arg4_P, Arg5_P, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ Arg5_P ≤ 1 ∧ 0 ≤ Arg5_P ∧ 1+Arg3_P ≤ X₂ ∧ 1+X₂ ≤ Arg4_P ∧ Arg5_P ≤ Arg3_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
MPRF:
l13 [0 ]
l9 [0 ]
l11 [0 ]
l14 [0 ]
n_l2___19 [0 ]
n_l2___9 [X₂-X₃ ]
n_l3___18 [0 ]
n_l1___17 [0 ]
n_l3___8 [X₂-X₃ ]
n_l1___7 [X₂-X₃-1 ]
n_l4___16 [0 ]
n_l6___14 [0 ]
n_l4___6 [X₂-X₃-1 ]
n_l5___15 [0 ]
n_l8___13 [0 ]
n_l5___5 [X₂-X₃-1 ]
n_l6___4 [X₂-X₃-1 ]
n_l11___10 [X₂-X₃ ]
n_l7___12 [X₂ ]
n_l6___11 [X₂-X₃ ]
n_l6___1 [X₂-X₃-1 ]
n_l8___3 [X₂-X₃-1 ]
n_l7___2 [X₂-X₃-1 ]
MPRF for transition t₆₇₈: n_l4___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₁ < X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
MPRF:
l13 [0 ]
l9 [0 ]
l11 [0 ]
l14 [0 ]
n_l2___19 [0 ]
n_l2___9 [X₂-X₃ ]
n_l3___18 [0 ]
n_l1___17 [0 ]
n_l3___8 [X₂-X₃ ]
n_l1___7 [X₂-X₃ ]
n_l4___16 [0 ]
n_l6___14 [0 ]
n_l4___6 [X₂-X₃ ]
n_l5___15 [0 ]
n_l8___13 [0 ]
n_l5___5 [X₂-X₃-1 ]
n_l6___4 [X₂+X₅-X₃-1 ]
n_l11___10 [X₂-X₃ ]
n_l7___12 [X₂-X₃ ]
n_l6___11 [X₂-X₃ ]
n_l6___1 [X₂-X₃-1 ]
n_l8___3 [X₂-X₃-1 ]
n_l7___2 [X₂-X₃-1 ]
MPRF for transition t₆₇₉: n_l4___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
4⋅X₄⋅X₄+12⋅X₄+9 {O(n^2)}
MPRF:
l13 [2⋅X₂-X₃-2⋅X₆ ]
l9 [X₂-1 ]
l11 [X₂-1 ]
l14 [2⋅X₂+2⋅X₅-X₃-2⋅X₆-2 ]
n_l2___19 [X₂-1 ]
n_l2___9 [2⋅X₂-X₃-2 ]
n_l3___18 [X₂-1 ]
n_l1___17 [X₂-1 ]
n_l3___8 [2⋅X₂-X₃-2 ]
n_l1___7 [2⋅X₂-X₃-2 ]
n_l4___16 [X₂-1 ]
n_l6___14 [X₂-1 ]
n_l4___6 [2⋅X₂-X₃-2 ]
n_l5___15 [X₂-1 ]
n_l8___13 [X₂-1 ]
n_l5___5 [2⋅X₂-X₃-2 ]
n_l6___4 [2⋅X₂-X₃-3 ]
n_l11___10 [2⋅X₂-X₃-2 ]
n_l7___12 [2⋅X₂ ]
n_l6___11 [2⋅X₂ ]
n_l6___1 [2⋅X₂-X₃-3 ]
n_l8___3 [2⋅X₂-X₃-2 ]
n_l7___2 [2⋅X₂-X₃-2 ]
MPRF for transition t₆₈₁: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 1 ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₁ < X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
6⋅X₄⋅X₄+15⋅X₄+9 {O(n^2)}
MPRF:
l13 [2⋅X₂-X₆ ]
l9 [2⋅X₂ ]
l11 [2⋅X₂ ]
l14 [2⋅X₃-X₆ ]
n_l2___19 [2⋅X₂ ]
n_l2___9 [3⋅X₂-X₃-X₅ ]
n_l3___18 [2⋅X₂ ]
n_l1___17 [2⋅X₂ ]
n_l3___8 [3⋅X₂-X₃-X₆ ]
n_l1___7 [3⋅X₂-X₃-X₅ ]
n_l4___16 [2⋅X₂ ]
n_l6___14 [2⋅X₂ ]
n_l4___6 [3⋅X₂-X₃-X₆ ]
n_l5___15 [2⋅X₂ ]
n_l8___13 [2⋅X₂ ]
n_l5___5 [3⋅X₂-X₃-X₅ ]
n_l6___4 [3⋅X₂-X₃-X₆ ]
n_l11___10 [3⋅X₂-X₃-X₅ ]
n_l7___12 [3⋅X₂ ]
n_l6___11 [3⋅X₂-X₆ ]
n_l6___1 [3⋅X₂-X₃-X₅-X₆ ]
n_l8___3 [3⋅X₂-X₃-X₅-1 ]
n_l7___2 [3⋅X₂-X₃-X₆-1 ]
MPRF for transition t₆₈₂: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___10(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₆ ≤ 1 ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₄⋅X₄+6⋅X₄+5 {O(n^2)}
MPRF:
l13 [X₄-X₃-X₆ ]
l9 [X₄-X₂-2 ]
l11 [X₄-X₂-2 ]
l14 [X₄-X₃-1 ]
n_l2___19 [X₄-X₂-2 ]
n_l2___9 [X₄-X₃-1 ]
n_l3___18 [X₄-X₂-2 ]
n_l1___17 [X₄-X₂-2 ]
n_l3___8 [X₄-X₃-1 ]
n_l1___7 [X₄-X₃-1 ]
n_l4___16 [X₄-X₂-2 ]
n_l6___14 [X₄-X₂-2 ]
n_l4___6 [X₄-X₃-1 ]
n_l5___15 [X₄-X₂-2 ]
n_l8___13 [X₄-X₂-2 ]
n_l5___5 [X₄-X₃-1 ]
n_l6___4 [X₄+X₅-X₃-2 ]
n_l11___10 [X₄-X₃-1 ]
n_l7___12 [X₄ ]
n_l6___11 [X₄ ]
n_l6___1 [X₄-X₃-1 ]
n_l8___3 [X₄-X₃-1 ]
n_l7___2 [X₄-X₃-1 ]
MPRF for transition t₆₈₅: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___10(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1 ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ X₀ ≤ X₁ of depth 1:
new bound:
2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
MPRF:
l13 [0 ]
l9 [0 ]
l11 [0 ]
l14 [0 ]
n_l2___19 [0 ]
n_l2___9 [X₂-X₃ ]
n_l3___18 [0 ]
n_l1___17 [0 ]
n_l3___8 [X₂-X₃ ]
n_l1___7 [X₂-X₃ ]
n_l4___16 [0 ]
n_l6___14 [0 ]
n_l4___6 [X₂-X₃ ]
n_l5___15 [0 ]
n_l8___13 [0 ]
n_l5___5 [X₂-X₃ ]
n_l6___4 [X₂-X₃ ]
n_l11___10 [X₂-X₃ ]
n_l7___12 [X₂ ]
n_l6___11 [X₂ ]
n_l6___1 [X₂-X₃ ]
n_l8___3 [X₂-X₃ ]
n_l7___2 [X₂-X₃ ]
MPRF for transition t₆₈₇: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, 1) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
MPRF:
l13 [0 ]
l9 [0 ]
l11 [0 ]
l14 [0 ]
n_l2___19 [0 ]
n_l2___9 [X₂-X₃ ]
n_l3___18 [0 ]
n_l1___17 [0 ]
n_l3___8 [X₂-X₃ ]
n_l1___7 [X₂-X₃ ]
n_l4___16 [0 ]
n_l6___14 [0 ]
n_l4___6 [X₂-X₃ ]
n_l5___15 [0 ]
n_l8___13 [0 ]
n_l5___5 [X₂-X₃ ]
n_l6___4 [X₂-X₃ ]
n_l11___10 [X₂-X₃ ]
n_l7___12 [X₂ ]
n_l6___11 [X₂-X₃ ]
n_l6___1 [X₂-X₃-X₆ ]
n_l8___3 [X₂-X₃ ]
n_l7___2 [X₂-X₃ ]
MPRF for transition t₆₈₉: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
MPRF:
l13 [X₄-X₂ ]
l9 [X₄-X₂-1 ]
l11 [X₄-X₂-1 ]
l14 [X₄-X₃ ]
n_l2___19 [X₄-X₂-1 ]
n_l2___9 [X₄-X₃ ]
n_l3___18 [X₄-X₂-1 ]
n_l1___17 [X₄-X₂-1 ]
n_l3___8 [X₄-X₃ ]
n_l1___7 [X₄-X₃ ]
n_l4___16 [X₄-X₂-1 ]
n_l6___14 [1-X₂ ]
n_l4___6 [X₄-X₃ ]
n_l5___15 [X₄-X₂-1 ]
n_l8___13 [X₄-X₂-1 ]
n_l5___5 [X₄-X₃ ]
n_l6___4 [X₄-X₃-1 ]
n_l11___10 [X₄-X₃ ]
n_l7___12 [X₄ ]
n_l6___11 [X₄ ]
n_l6___1 [X₄-X₃-1 ]
n_l8___3 [X₄-X₃ ]
n_l7___2 [X₄-X₃-1 ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:14⋅X₄⋅X₄+32⋅X₄+25 {O(n^2)}
t₀: 1 {O(1)}
t₁₀: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₁: 1 {O(1)}
t₄: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₅: X₄+2 {O(n)}
t₂₂: 1 {O(1)}
t₂₁: X₄+1 {O(n)}
t₁₈: 1 {O(1)}
t₂₀: X₄+2 {O(n)}
t₆: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₈: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₁₁: X₄⋅X₄+X₄ {O(n^2)}
t₁₂: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₁₃: 2⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₇: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₁₆: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₁₅: 2⋅X₄⋅X₄+4⋅X₄+2 {O(n^2)}
t₂: X₄+1 {O(n)}
t₃: 1 {O(1)}
Costbounds
Overall costbound: 14⋅X₄⋅X₄+32⋅X₄+25 {O(n^2)}
t₀: 1 {O(1)}
t₁₀: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₁: 1 {O(1)}
t₄: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₅: X₄+2 {O(n)}
t₂₂: 1 {O(1)}
t₂₁: X₄+1 {O(n)}
t₁₈: 1 {O(1)}
t₂₀: X₄+2 {O(n)}
t₆: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₈: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₁₁: X₄⋅X₄+X₄ {O(n^2)}
t₁₂: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₁₃: 2⋅X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₇: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₁₆: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₁₅: 2⋅X₄⋅X₄+4⋅X₄+2 {O(n^2)}
t₂: X₄+1 {O(n)}
t₃: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁₀, X₂: X₄+1 {O(n)}
t₁₀, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: 1 {O(1)}
t₁₀, X₆: X₆+2 {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₄+1 {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₄, X₂: X₄+1 {O(n)}
t₄, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: 1 {O(1)}
t₄, X₆: X₆+2 {O(n)}
t₅, X₂: X₄+1 {O(n)}
t₅, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: 1 {O(1)}
t₅, X₆: 1 {O(1)}
t₂₂, X₂: 3⋅X₄+3 {O(n)}
t₂₂, X₃: 4⋅X₄⋅X₄+10⋅X₄+X₃+6 {O(n^2)}
t₂₂, X₄: 3⋅X₄ {O(n)}
t₂₂, X₅: X₅+1 {O(n)}
t₂₂, X₆: X₆+2 {O(n)}
t₂₁, X₂: X₄+1 {O(n)}
t₂₁, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: 1 {O(1)}
t₂₁, X₆: 1 {O(1)}
t₁₈, X₂: X₄+1 {O(n)}
t₁₈, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: 0 {O(1)}
t₁₈, X₆: 1 {O(1)}
t₂₀, X₂: X₄+1 {O(n)}
t₂₀, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: 1 {O(1)}
t₂₀, X₆: 1 {O(1)}
t₆, X₂: X₄+1 {O(n)}
t₆, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: 1 {O(1)}
t₆, X₆: X₆+2 {O(n)}
t₈, X₂: X₄+1 {O(n)}
t₈, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: 1 {O(1)}
t₈, X₆: X₆+2 {O(n)}
t₁₁, X₂: X₄+1 {O(n)}
t₁₁, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: 1 {O(1)}
t₁₁, X₆: X₆+2 {O(n)}
t₁₂, X₂: X₄+1 {O(n)}
t₁₂, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: 1 {O(1)}
t₁₂, X₆: 1 {O(1)}
t₁₃, X₂: X₄+1 {O(n)}
t₁₃, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: 1 {O(1)}
t₁₃, X₆: X₆+2 {O(n)}
t₁₇, X₂: X₄+1 {O(n)}
t₁₇, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: 1 {O(1)}
t₁₇, X₆: 1 {O(1)}
t₁₆, X₂: X₄+1 {O(n)}
t₁₆, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: 1 {O(1)}
t₁₆, X₆: 1 {O(1)}
t₁₅, X₂: X₄+1 {O(n)}
t₁₅, X₃: 2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: 1 {O(1)}
t₁₅, X₆: X₆+2 {O(n)}
t₂, X₂: X₄+1 {O(n)}
t₂, X₃: 0 {O(1)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: 0 {O(1)}
t₂, X₆: X₆+1 {O(n)}
t₃, X₂: 2⋅X₄+2 {O(n)}
t₃, X₃: 2⋅X₄⋅X₄+5⋅X₄+X₃+3 {O(n^2)}
t₃, X₄: 2⋅X₄ {O(n)}
t₃, X₅: X₅+1 {O(n)}
t₃, X₆: X₆+1 {O(n)}