Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3, nondef.4, nondef.5
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₀+1 ≤ X₉
t₃₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ < 1+X₀
t₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₃+1, X₁₁, X₁₂, X₁₃) :|: X₁ < 0
t₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₃+1, X₁₁, X₁₂, X₁₃) :|: 0 < X₁
t₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₃, X₁₁, X₁₂, X₁₃) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l10(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₂₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₂₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₂ < 0
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₂
t₃₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l15(X₀, X₁, nondef.4, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₄₉: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃₉: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₁₁+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₁+1, X₁₃)
t₂₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₁₃+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₂, X₁₃) :|: X₇ < 0
t₂₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₁₃+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₂, X₁₃) :|: 0 < X₇
t₂₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₁₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₂, X₁₃) :|: X₇ ≤ 0 ∧ 0 ≤ X₇
t₄₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₄₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(X₀, X₁, X₂, X₃, nondef.5, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, X₁₃)
t₉: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₁₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l7(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₁₅: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁, X₁₂, X₁₃)
t₁₉: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₆ < 0
t₂₀: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₆
t₂₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₃₁: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₁+1 < X₈
t₃₂: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₈ ≤ X₁₁+1
t₄₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₄ < 0
t₄₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₄
t₄₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₃) :|: X₄ ≤ 0 ∧ 0 ≤ X₄
t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₂ < X₈
t₄₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₃) :|: X₈ ≤ X₁₂
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₁₁, X₁₀, X₁₁, X₁₂, X₁₃)
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l26(X₀, X₁, X₂, X₃, X₄, X₅, nondef.2, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₅ < 0
t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₅
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₀ < X₈
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₈ ≤ X₁₀
t₁₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)

Preprocessing

Found invariant 1+X₁₀ ≤ X₈ for location l25

Found invariant 1+X₁₀ ≤ X₈ for location l24

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ for location l15

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ for location l19

Found invariant 1+X₁₀ ≤ X₈ for location l23

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ for location l17

Found invariant X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ for location l28

Found invariant 1+X₁₀ ≤ X₈ for location l7

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l20

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l21

Found invariant X₁₀ ≤ X₁₁ for location l5

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l22

Found invariant X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ for location l1

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ for location l16

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l4

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3, nondef.4, nondef.5
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₀+1 ≤ X₉ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁
t₃₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ < 1+X₀ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁
t₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₃+1, X₁₁, X₁₂, X₁₃) :|: X₁ < 0
t₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₃+1, X₁₁, X₁₂, X₁₃) :|: 0 < X₁
t₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₃, X₁₁, X₁₂, X₁₃) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l10(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₂₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₂₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁
t₃₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₂ < 0 ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₂ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁
t₃₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁
t₃₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l15(X₀, X₁, nondef.4, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁
t₄₉: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃₉: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₁₁+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₁+1, X₁₃) :|: 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁
t₂₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₁₃+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₂, X₁₃) :|: X₇ < 0
t₂₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₁₃+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₂, X₁₃) :|: 0 < X₇
t₂₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₁₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₂, X₁₃) :|: X₇ ≤ 0 ∧ 0 ≤ X₇
t₄₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₄₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(X₀, X₁, X₂, X₃, nondef.5, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, X₁₃) :|: 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₉: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₁₀ ≤ X₈
t₁₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l7(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₁₀ ≤ X₈
t₁₅: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁, X₁₂, X₁₃) :|: 1+X₁₀ ≤ X₈
t₁₉: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₆ < 0
t₂₀: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₆
t₂₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₃₁: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₁+1 < X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁
t₃₂: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₈ ≤ X₁₁+1 ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁
t₄₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₄ < 0 ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₄₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₄ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₄₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₃) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₂ < X₈ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₄₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₃) :|: X₈ ≤ X₁₂ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₁₁, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₀ ≤ X₁₁
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l26(X₀, X₁, X₂, X₃, X₄, X₅, nondef.2, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₅ < 0 ∧ 1+X₁₀ ≤ X₈
t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₅ ∧ 1+X₁₀ ≤ X₈
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₁₀ ≤ X₈
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₀ < X₈
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₈ ≤ X₁₀
t₁₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)

MPRF for transition t₉: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₁₀ ≤ X₈ of depth 1:

new bound:

3⋅X₁₃+3⋅X₈+2 {O(n)}

MPRF:

l24 [X₈-X₁₀-1 ]
l7 [X₈-X₁₀-1 ]
l25 [X₈-X₁₀-1 ]
l8 [X₈-X₁₀ ]
l23 [X₈-X₁₀ ]

MPRF for transition t₁₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l7(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₁₀ ≤ X₈ of depth 1:

new bound:

3⋅X₁₃+3⋅X₈+2 {O(n)}

MPRF:

l24 [X₈-X₁₀ ]
l7 [X₈-X₁₀-1 ]
l25 [X₈-X₁₀-1 ]
l8 [X₈-X₁₀ ]
l23 [X₈-X₁₀ ]

MPRF for transition t₁₅: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁, X₁₂, X₁₃) :|: 1+X₁₀ ≤ X₈ of depth 1:

new bound:

3⋅X₁₃+3⋅X₈+5 {O(n)}

MPRF:

l24 [X₈+1-X₁₀ ]
l7 [X₈+1-X₁₀ ]
l25 [X₈+1-X₁₀ ]
l8 [X₈+1-X₁₀ ]
l23 [X₈+1-X₁₀ ]

MPRF for transition t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₅ < 0 ∧ 1+X₁₀ ≤ X₈ of depth 1:

new bound:

3⋅X₁₃+3⋅X₈+2 {O(n)}

MPRF:

l24 [X₈-X₁₀ ]
l7 [X₈-X₁₀ ]
l25 [X₈-X₁₀-1 ]
l8 [X₈-X₁₀ ]
l23 [X₈-X₁₀ ]

MPRF for transition t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₅ ∧ 1+X₁₀ ≤ X₈ of depth 1:

new bound:

3⋅X₁₃+3⋅X₈+2 {O(n)}

MPRF:

l24 [X₈-X₁₀ ]
l7 [X₈-X₁₀ ]
l25 [X₈-X₁₀-1 ]
l8 [X₈-X₁₀ ]
l23 [X₈-X₁₀ ]

MPRF for transition t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₀ < X₈ of depth 1:

new bound:

3⋅X₁₃+3⋅X₈+2 {O(n)}

MPRF:

l24 [X₈-X₁₀-1 ]
l7 [X₈-X₁₀-1 ]
l25 [X₈-X₁₀-1 ]
l8 [X₈-X₁₀ ]
l23 [X₈-X₁₀-1 ]

MPRF for transition t₃₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₂ < 0 ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+99 {O(n)}

MPRF:

l17 [X₈-X₁₁-1 ]
l15 [X₈-X₁₁-1 ]
l19 [X₈-X₁₁-2 ]
l21 [X₈+X₁₁-2⋅X₃ ]
l28 [X₈-X₁₁-1 ]
l16 [X₈-X₁₁-1 ]
l22 [X₈+X₁₁-2⋅X₃ ]
l3 [X₈+X₁₁-2⋅X₃ ]
l20 [X₈+X₁₁-2⋅X₃ ]
l4 [X₈-X₁₁-2 ]
l5 [X₈-X₁₁-1 ]
l1 [X₈-X₁₁-1 ]

MPRF for transition t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₂ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+99 {O(n)}

MPRF:

l17 [X₈-X₁₁-1 ]
l15 [X₈-X₁₁-1 ]
l19 [X₈-X₁₁-2 ]
l21 [X₈-X₁₁-2 ]
l28 [X₈-X₁₁-1 ]
l16 [X₈-X₁₁-1 ]
l22 [X₈-X₃-1 ]
l3 [X₈-X₃-1 ]
l20 [X₈-X₁₁-2 ]
l4 [X₈+X₁₁-2⋅X₃ ]
l5 [X₈-X₁₁-1 ]
l1 [X₈-X₁₁-1 ]

MPRF for transition t₃₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+99 {O(n)}

MPRF:

l17 [X₈-X₁₁-2 ]
l15 [X₈-X₁₁-2 ]
l19 [X₈-X₁₁-2 ]
l21 [X₈-X₃-1 ]
l28 [X₈-X₁₁-1 ]
l16 [X₈-X₁₁-1 ]
l22 [X₈-X₃-1 ]
l3 [X₈-X₃-1 ]
l20 [X₈-X₃-1 ]
l4 [X₈-X₁₁-2 ]
l5 [X₈-X₁₁-1 ]
l1 [X₈-X₁₁-1 ]

MPRF for transition t₃₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l15(X₀, X₁, nondef.4, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+96 {O(n)}

MPRF:

l17 [X₈-X₁₁ ]
l15 [X₈-X₁₁-1 ]
l19 [X₈-X₁₁-1 ]
l21 [X₈-X₃ ]
l28 [X₈-X₁₁ ]
l16 [X₈-X₁₁ ]
l22 [X₈-X₃ ]
l3 [X₈-X₃ ]
l20 [X₈-X₃ ]
l4 [X₈-X₁₁-1 ]
l5 [X₈-X₁₁ ]
l1 [X₈-X₁₁ ]

MPRF for transition t₃₉: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₁₁+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₁+1, X₁₃) :|: 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+99 {O(n)}

MPRF:

l17 [X₈-X₁₁-1 ]
l15 [X₈-X₁₁-1 ]
l19 [X₈-X₁₁-1 ]
l21 [X₈-X₃-1 ]
l28 [X₈-X₁₁-1 ]
l16 [X₈-X₁₁-1 ]
l22 [X₈-X₃-1 ]
l3 [X₈-X₃-1 ]
l20 [X₈-X₃-1 ]
l4 [X₈-X₁₁-2 ]
l5 [X₈-X₁₁-1 ]
l1 [X₈-X₁₁-1 ]

MPRF for transition t₄₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+96 {O(n)}

MPRF:

l17 [X₈-X₁₁ ]
l15 [X₈-X₁₁ ]
l19 [X₈-X₁₁ ]
l21 [X₈-X₁₂ ]
l28 [X₈-X₁₁ ]
l16 [X₈-X₁₁ ]
l22 [X₈-X₁₂ ]
l3 [X₈-X₁₂ ]
l20 [X₈+1-X₁₂ ]
l4 [X₈+1-X₁₂ ]
l5 [X₈-X₁₁ ]
l1 [X₈-X₁₁ ]

MPRF for transition t₄₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(X₀, X₁, X₂, X₃, nondef.5, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+99 {O(n)}

MPRF:

l17 [X₈-X₁₁-1 ]
l15 [X₈-X₁₁-1 ]
l19 [X₈-X₁₁-1 ]
l21 [X₈-X₁₂ ]
l28 [X₈-X₁₁-1 ]
l16 [X₈-X₁₁-1 ]
l22 [X₈-X₁₂-1 ]
l3 [X₈-X₁₂-1 ]
l20 [X₈-X₁₂ ]
l4 [X₈-X₁₂ ]
l5 [X₈-X₁₁-1 ]
l1 [X₈-X₁₁-1 ]

MPRF for transition t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, X₁₃) :|: 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+96 {O(n)}

MPRF:

l17 [X₈-X₁₁ ]
l15 [X₈-X₁₁ ]
l19 [X₈-X₁₁ ]
l21 [X₈+X₁₁+1-X₃-X₁₂ ]
l28 [X₈-X₁₁ ]
l16 [X₈-X₁₁ ]
l22 [X₈-X₁₂ ]
l3 [X₈+X₁₁+1-X₃-X₁₂ ]
l20 [X₈+X₁₁+1-X₃-X₁₂ ]
l4 [X₈-X₁₂ ]
l5 [X₈-X₁₁ ]
l1 [X₈-X₁₁ ]

MPRF for transition t₃₁: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₁+1 < X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+99 {O(n)}

MPRF:

l17 [X₈-X₁₁-2 ]
l15 [X₈-X₁₁-2 ]
l19 [X₈-X₁₁-2 ]
l21 [X₈+X₁₁-2⋅X₃ ]
l28 [X₈-X₁₁-1 ]
l16 [X₈-X₁₁-2 ]
l22 [X₈+X₁₁-2⋅X₃ ]
l3 [X₈+X₁₁-2⋅X₃ ]
l20 [X₈+X₁₁-2⋅X₃ ]
l4 [X₈-X₃-1 ]
l5 [X₈-X₁₁-1 ]
l1 [X₈-X₁₁-1 ]

MPRF for transition t₄₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₄ < 0 ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+96 {O(n)}

MPRF:

l17 [X₈-X₁₁-1 ]
l15 [X₈-X₁₁-1 ]
l19 [X₈-X₁₁-1 ]
l21 [X₈-X₁₂ ]
l28 [X₈-X₁₁-1 ]
l16 [X₈-X₁₁-1 ]
l22 [X₈-X₁₂-1 ]
l3 [X₈-X₁₂ ]
l20 [X₈-X₁₂ ]
l4 [X₈-X₁₂ ]
l5 [X₈-X₁₁ ]
l1 [X₈-X₁₁-1 ]

MPRF for transition t₄₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₄ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+96 {O(n)}

MPRF:

l17 [X₈-X₁₁ ]
l15 [X₈-X₁₁ ]
l19 [X₈-X₁₁ ]
l21 [X₈-X₁₂ ]
l28 [X₈-X₁₁ ]
l16 [X₈-X₁₁ ]
l22 [X₈-X₁₂-1 ]
l3 [X₈-X₁₂ ]
l20 [X₈-X₁₂ ]
l4 [X₈-X₁₂ ]
l5 [X₈-X₁₁ ]
l1 [X₈-X₁₁ ]

MPRF for transition t₄₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₃) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+99 {O(n)}

MPRF:

l17 [X₈-X₁₁-1 ]
l15 [X₈-X₁₁-1 ]
l19 [X₈-X₁₁-1 ]
l21 [X₈-X₃ ]
l28 [X₈-X₁₁-1 ]
l16 [X₈-X₁₁-1 ]
l22 [X₈-X₃ ]
l3 [X₈-X₃ ]
l20 [X₈-X₃ ]
l4 [X₈-X₃ ]
l5 [X₈-X₁₁-1 ]
l1 [X₈-X₁₁-1 ]

MPRF for transition t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₂ < X₈ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+96 {O(n)}

MPRF:

l17 [X₈-X₁₁ ]
l15 [X₈-X₁₁ ]
l19 [X₈-X₁₁ ]
l21 [X₈-X₁₂ ]
l28 [X₈-X₁₁ ]
l16 [X₈-X₁₁ ]
l22 [X₈-X₁₂ ]
l3 [X₈-X₁₂ ]
l20 [X₈-X₁₂ ]
l4 [X₈+1-X₁₂ ]
l5 [X₈-X₁₁ ]
l1 [X₈-X₁₁ ]

MPRF for transition t₄₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₃) :|: X₈ ≤ X₁₂ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+96 {O(n)}

MPRF:

l17 [X₈-X₁₁ ]
l15 [X₈-X₁₁ ]
l19 [X₈-X₁₁ ]
l21 [X₈+1-X₃ ]
l28 [X₈-X₁₁ ]
l16 [X₈-X₁₁ ]
l22 [X₈+1-X₃ ]
l3 [X₈+1-X₃ ]
l20 [X₈+1-X₃ ]
l4 [X₈-X₁₁ ]
l5 [X₈-X₁₁ ]
l1 [X₈-X₁₁ ]

knowledge_propagation leads to new time bound 180⋅X₁₃+180⋅X₈+198 {O(n)} for transition t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₁₁, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₀ ≤ X₁₁

MPRF for transition t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₀+1 ≤ X₉ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+387900⋅X₈+434664⋅X₁₃+233186 {O(n^2)}

MPRF:

l17 [X₉-X₀ ]
l15 [X₉-X₀ ]
l19 [X₉-X₀ ]
l20 [X₁₁+X₁₂-X₃-X₁₀ ]
l21 [X₁₁+X₁₂-X₃-X₁₀ ]
l4 [X₉+X₁₀-X₀-X₈ ]
l28 [X₉-X₀ ]
l16 [X₉-X₀ ]
l22 [X₁₀-X₈ ]
l3 [X₁₁+X₁₂+1-2⋅X₃ ]
l5 [X₁₁-X₀ ]
l1 [X₉-X₀ ]

MPRF for transition t₃₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ < 1+X₀ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

360⋅X₁₃+360⋅X₈+396 {O(n)}

MPRF:

l1 [2 ]
l17 [1 ]
l15 [1 ]
l19 [1 ]
l21 [X₃-X₁₁ ]
l28 [1 ]
l16 [1 ]
l22 [X₃-X₁₁ ]
l3 [X₃-X₁₁ ]
l20 [X₃-X₁₁ ]
l4 [1 ]
l5 [1 ]

Analysing control-flow refined program

Found invariant 1+X₁₀ ≤ X₈ for location l25

Found invariant 1+X₁₀ ≤ X₈ for location l24

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ for location l15

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ for location l19

Found invariant 1+X₁₀ ≤ X₈ for location l23

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ for location l17

Found invariant X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ for location l28

Found invariant 1+X₁₀ ≤ X₈ for location l7

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l20

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l21

Found invariant X₁₀ ≤ X₁₁ for location l5

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l22

Found invariant X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ for location l1

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ for location l16

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l4

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l3

Found invariant 1+X₉ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ for location n_l1___1

knowledge_propagation leads to new time bound 180⋅X₁₃+180⋅X₈+198 {O(n)} for transition t₅₉₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₁₁ ∧ 1+X₀ ≤ X₉ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁

MPRF for transition t₅₉₆: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ 1+X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₁₁ ∧ 1+X₀ ≤ X₉ ∧ 1+X₉ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ of depth 1:

new bound:

101476800⋅X₁₃⋅X₁₃⋅X₈+28576800⋅X₈⋅X₈⋅X₈+36450000⋅X₁₃⋅X₁₃⋅X₁₃+93603600⋅X₁₃⋅X₈⋅X₈+100535580⋅X₈⋅X₈+117419220⋅X₁₃⋅X₁₃+217954800⋅X₁₃⋅X₈+117020250⋅X₈+126071622⋅X₁₃+45116162 {O(n^3)}

MPRF:

l17 [X₉-X₀ ]
l15 [X₉-X₀ ]
l19 [X₉-X₀ ]
l20 [X₈-X₉ ]
l21 [X₈-X₁₁ ]
l4 [X₉-X₀ ]
l16 [X₉-X₀ ]
l22 [X₈+X₉-X₀-X₃ ]
l3 [X₈-X₁₁ ]
l5 [X₁₁-X₀ ]
l1 [X₁₁-X₀ ]
n_l1___1 [X₉+1-X₀ ]
l28 [X₉-X₀ ]

MPRF for transition t₆₀₀: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ < 1+X₀ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₉ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ of depth 1:

new bound:

180⋅X₁₃+180⋅X₈+198 {O(n)}

MPRF:

l1 [1 ]
l17 [0 ]
l15 [0 ]
l19 [0 ]
l21 [0 ]
l16 [0 ]
l22 [0 ]
l3 [0 ]
l20 [0 ]
l4 [0 ]
l5 [2⋅X₁₀+2-2⋅X₁₁ ]
n_l1___1 [1 ]
l28 [0 ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+389718⋅X₈+436482⋅X₁₃+235181 {O(n^2)}
t₀: 1 {O(1)}
t₂₉: 158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+387900⋅X₈+434664⋅X₁₃+233186 {O(n^2)}
t₃₀: 360⋅X₁₃+360⋅X₈+396 {O(n)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₁: 1 {O(1)}
t₃: 1 {O(1)}
t₂₂: 1 {O(1)}
t₂₄: 1 {O(1)}
t₃₆: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₃₇: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₃₈: 1 {O(1)}
t₃₃: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₃₅: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₄₉: 1 {O(1)}
t₃₉: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₂₅: 1 {O(1)}
t₂₆: 1 {O(1)}
t₂₇: 1 {O(1)}
t₄₂: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₄₄: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₄₈: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₉: 3⋅X₁₃+3⋅X₈+2 {O(n)}
t₁₁: 3⋅X₁₃+3⋅X₈+2 {O(n)}
t₁₅: 3⋅X₁₃+3⋅X₈+5 {O(n)}
t₁₉: 1 {O(1)}
t₂₀: 1 {O(1)}
t₂₁: 1 {O(1)}
t₃₁: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₃₂: 1 {O(1)}
t₄₅: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₄₆: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₄₇: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₄₀: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₄₁: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₂₈: 180⋅X₁₃+180⋅X₈+198 {O(n)}
t₁₈: 1 {O(1)}
t₁₂: 3⋅X₁₃+3⋅X₈+2 {O(n)}
t₁₃: 3⋅X₁₃+3⋅X₈+2 {O(n)}
t₁₄: 1 {O(1)}
t₇: 3⋅X₁₃+3⋅X₈+2 {O(n)}
t₈: 1 {O(1)}
t₁₆: 1 {O(1)}

Costbounds

Overall costbound: 158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+389718⋅X₈+436482⋅X₁₃+235181 {O(n^2)}
t₀: 1 {O(1)}
t₂₉: 158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+387900⋅X₈+434664⋅X₁₃+233186 {O(n^2)}
t₃₀: 360⋅X₁₃+360⋅X₈+396 {O(n)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₁: 1 {O(1)}
t₃: 1 {O(1)}
t₂₂: 1 {O(1)}
t₂₄: 1 {O(1)}
t₃₆: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₃₇: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₃₈: 1 {O(1)}
t₃₃: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₃₅: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₄₉: 1 {O(1)}
t₃₉: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₂₅: 1 {O(1)}
t₂₆: 1 {O(1)}
t₂₇: 1 {O(1)}
t₄₂: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₄₄: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₄₈: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₉: 3⋅X₁₃+3⋅X₈+2 {O(n)}
t₁₁: 3⋅X₁₃+3⋅X₈+2 {O(n)}
t₁₅: 3⋅X₁₃+3⋅X₈+5 {O(n)}
t₁₉: 1 {O(1)}
t₂₀: 1 {O(1)}
t₂₁: 1 {O(1)}
t₃₁: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₃₂: 1 {O(1)}
t₄₅: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₄₆: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₄₇: 90⋅X₁₃+90⋅X₈+99 {O(n)}
t₄₀: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₄₁: 90⋅X₁₃+90⋅X₈+96 {O(n)}
t₂₈: 180⋅X₁₃+180⋅X₈+198 {O(n)}
t₁₈: 1 {O(1)}
t₁₂: 3⋅X₁₃+3⋅X₈+2 {O(n)}
t₁₃: 3⋅X₁₃+3⋅X₈+2 {O(n)}
t₁₄: 1 {O(1)}
t₇: 3⋅X₁₃+3⋅X₈+2 {O(n)}
t₈: 1 {O(1)}
t₁₆: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₀, X₁₂: X₁₂ {O(n)}
t₀, X₁₃: X₁₃ {O(n)}
t₂₉, X₀: 1134⋅X₁₃+864⋅X₈+1170 {O(n)}
t₂₉, X₃: 1080⋅X₁₃+54⋅X₃+864⋅X₈+1168 {O(n)}
t₂₉, X₈: 54⋅X₈ {O(n)}
t₂₉, X₉: 158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+388368⋅X₈+435294⋅X₁₃+233864 {O(n^2)}
t₂₉, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₂₉, X₁₁: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₂₉, X₁₂: 432⋅X₈+54⋅X₁₂+540⋅X₁₃+582 {O(n)}
t₂₉, X₁₃: 54⋅X₁₃ {O(n)}
t₃₀, X₀: 1728⋅X₈+2268⋅X₁₃+2340 {O(n)}
t₃₀, X₃: 108⋅X₃+1728⋅X₈+2160⋅X₁₃+2336 {O(n)}
t₃₀, X₈: 54⋅X₈ {O(n)}
t₃₀, X₉: 158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+388836⋅X₈+435924⋅X₁₃+234542 {O(n^2)}
t₃₀, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₃₀, X₁₁: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₃₀, X₁₂: 108⋅X₁₂+1080⋅X₁₃+864⋅X₈+1164 {O(n)}
t₃₀, X₁₃: 54⋅X₁₃ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: X₁₃+1 {O(n)}
t₄, X₁₁: X₁₁ {O(n)}
t₄, X₁₂: X₁₂ {O(n)}
t₄, X₁₃: X₁₃ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: X₁₃+1 {O(n)}
t₅, X₁₁: X₁₁ {O(n)}
t₅, X₁₂: X₁₂ {O(n)}
t₅, X₁₃: X₁₃ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: 0 {O(1)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₆, X₁₀: X₁₃ {O(n)}
t₆, X₁₁: X₁₁ {O(n)}
t₆, X₁₂: X₁₂ {O(n)}
t₆, X₁₃: X₁₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₁, X₁₂: X₁₂ {O(n)}
t₁, X₁₃: X₁₃ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₉ {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₃, X₁₂: X₁₂ {O(n)}
t₃, X₁₃: X₁₃ {O(n)}
t₂₂, X₀: 18⋅X₀ {O(n)}
t₂₂, X₂: 18⋅X₂ {O(n)}
t₂₂, X₃: 18⋅X₃ {O(n)}
t₂₂, X₄: 18⋅X₄ {O(n)}
t₂₂, X₇: 18⋅X₇ {O(n)}
t₂₂, X₈: 18⋅X₈ {O(n)}
t₂₂, X₉: 18⋅X₉ {O(n)}
t₂₂, X₁₀: 12⋅X₈+30⋅X₁₃+32 {O(n)}
t₂₂, X₁₁: 18⋅X₁₁ {O(n)}
t₂₂, X₁₂: 18⋅X₁₂ {O(n)}
t₂₂, X₁₃: 18⋅X₁₃ {O(n)}
t₂₄, X₀: 18⋅X₀ {O(n)}
t₂₄, X₂: 18⋅X₂ {O(n)}
t₂₄, X₃: 18⋅X₃ {O(n)}
t₂₄, X₄: 18⋅X₄ {O(n)}
t₂₄, X₈: 18⋅X₈ {O(n)}
t₂₄, X₉: 18⋅X₉ {O(n)}
t₂₄, X₁₀: 12⋅X₈+30⋅X₁₃+32 {O(n)}
t₂₄, X₁₁: 18⋅X₁₁ {O(n)}
t₂₄, X₁₂: 18⋅X₁₂ {O(n)}
t₂₄, X₁₃: 18⋅X₁₃ {O(n)}
t₃₆, X₀: 1728⋅X₈+2268⋅X₁₃+2340 {O(n)}
t₃₆, X₃: 108⋅X₃+1728⋅X₈+2160⋅X₁₃+2336 {O(n)}
t₃₆, X₈: 54⋅X₈ {O(n)}
t₃₆, X₉: 158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+388836⋅X₈+435924⋅X₁₃+234542 {O(n^2)}
t₃₆, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₃₆, X₁₁: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₃₆, X₁₂: 108⋅X₁₂+1080⋅X₁₃+864⋅X₈+1164 {O(n)}
t₃₆, X₁₃: 54⋅X₁₃ {O(n)}
t₃₇, X₀: 1728⋅X₈+2268⋅X₁₃+2340 {O(n)}
t₃₇, X₃: 108⋅X₃+1728⋅X₈+2160⋅X₁₃+2336 {O(n)}
t₃₇, X₈: 54⋅X₈ {O(n)}
t₃₇, X₉: 158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+388836⋅X₈+435924⋅X₁₃+234542 {O(n^2)}
t₃₇, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₃₇, X₁₁: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₃₇, X₁₂: 108⋅X₁₂+1080⋅X₁₃+864⋅X₈+1164 {O(n)}
t₃₇, X₁₃: 54⋅X₁₃ {O(n)}
t₃₈, X₀: 1728⋅X₈+2268⋅X₁₃+2340 {O(n)}
t₃₈, X₂: 0 {O(1)}
t₃₈, X₃: 108⋅X₃+1728⋅X₈+2160⋅X₁₃+2336 {O(n)}
t₃₈, X₈: 54⋅X₈ {O(n)}
t₃₈, X₉: 158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+388836⋅X₈+435924⋅X₁₃+234542 {O(n^2)}
t₃₈, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₃₈, X₁₁: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₃₈, X₁₂: 108⋅X₁₂+1080⋅X₁₃+864⋅X₈+1164 {O(n)}
t₃₈, X₁₃: 54⋅X₁₃ {O(n)}
t₃₃, X₀: 1728⋅X₈+2268⋅X₁₃+2340 {O(n)}
t₃₃, X₃: 108⋅X₃+1728⋅X₈+2160⋅X₁₃+2336 {O(n)}
t₃₃, X₈: 54⋅X₈ {O(n)}
t₃₃, X₉: 158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+388836⋅X₈+435924⋅X₁₃+234542 {O(n^2)}
t₃₃, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₃₃, X₁₁: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₃₃, X₁₂: 108⋅X₁₂+1080⋅X₁₃+864⋅X₈+1164 {O(n)}
t₃₃, X₁₃: 54⋅X₁₃ {O(n)}
t₃₅, X₀: 1728⋅X₈+2268⋅X₁₃+2340 {O(n)}
t₃₅, X₃: 108⋅X₃+1728⋅X₈+2160⋅X₁₃+2336 {O(n)}
t₃₅, X₈: 54⋅X₈ {O(n)}
t₃₅, X₉: 158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+388836⋅X₈+435924⋅X₁₃+234542 {O(n^2)}
t₃₅, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₃₅, X₁₁: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₃₅, X₁₂: 108⋅X₁₂+1080⋅X₁₃+864⋅X₈+1164 {O(n)}
t₃₅, X₁₃: 54⋅X₁₃ {O(n)}
t₄₉, X₀: 3456⋅X₈+4536⋅X₁₃+9⋅X₀+4680 {O(n)}
t₄₉, X₃: 225⋅X₃+3456⋅X₈+4320⋅X₁₃+4672 {O(n)}
t₄₉, X₈: 117⋅X₈ {O(n)}
t₄₉, X₉: 317520⋅X₈⋅X₈+405000⋅X₁₃⋅X₁₃+722520⋅X₁₃⋅X₈+777672⋅X₈+871848⋅X₁₃+9⋅X₉+469084 {O(n^2)}
t₄₉, X₁₀: 195⋅X₁₃+78⋅X₈+208 {O(n)}
t₄₉, X₁₁: 432⋅X₈+540⋅X₁₃+9⋅X₁₁+582 {O(n)}
t₄₉, X₁₂: 1728⋅X₈+2160⋅X₁₃+225⋅X₁₂+2328 {O(n)}
t₄₉, X₁₃: 117⋅X₁₃ {O(n)}
t₃₉, X₀: 3456⋅X₈+4536⋅X₁₃+4680 {O(n)}
t₃₉, X₃: 432⋅X₈+540⋅X₁₃+584 {O(n)}
t₃₉, X₈: 54⋅X₈ {O(n)}
t₃₉, X₉: 317520⋅X₈⋅X₈+405000⋅X₁₃⋅X₁₃+722520⋅X₁₃⋅X₈+777672⋅X₈+871848⋅X₁₃+469084 {O(n^2)}
t₃₉, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₃₉, X₁₁: 432⋅X₈+540⋅X₁₃+582 {O(n)}
t₃₉, X₁₂: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₃₉, X₁₃: 54⋅X₁₃ {O(n)}
t₂₅, X₀: 18⋅X₁₃+1 {O(n)}
t₂₅, X₂: 18⋅X₂ {O(n)}
t₂₅, X₃: 18⋅X₃ {O(n)}
t₂₅, X₄: 18⋅X₄ {O(n)}
t₂₅, X₈: 18⋅X₈ {O(n)}
t₂₅, X₉: 18⋅X₉ {O(n)}
t₂₅, X₁₀: 12⋅X₈+30⋅X₁₃+32 {O(n)}
t₂₅, X₁₁: 12⋅X₈+30⋅X₁₃+32 {O(n)}
t₂₅, X₁₂: 18⋅X₁₂ {O(n)}
t₂₅, X₁₃: 18⋅X₁₃ {O(n)}
t₂₆, X₀: 18⋅X₁₃+1 {O(n)}
t₂₆, X₂: 18⋅X₂ {O(n)}
t₂₆, X₃: 18⋅X₃ {O(n)}
t₂₆, X₄: 18⋅X₄ {O(n)}
t₂₆, X₈: 18⋅X₈ {O(n)}
t₂₆, X₉: 18⋅X₉ {O(n)}
t₂₆, X₁₀: 12⋅X₈+30⋅X₁₃+32 {O(n)}
t₂₆, X₁₁: 12⋅X₈+30⋅X₁₃+32 {O(n)}
t₂₆, X₁₂: 18⋅X₁₂ {O(n)}
t₂₆, X₁₃: 18⋅X₁₃ {O(n)}
t₂₇, X₀: 18⋅X₁₃ {O(n)}
t₂₇, X₂: 18⋅X₂ {O(n)}
t₂₇, X₃: 18⋅X₃ {O(n)}
t₂₇, X₄: 18⋅X₄ {O(n)}
t₂₇, X₇: 0 {O(1)}
t₂₇, X₈: 18⋅X₈ {O(n)}
t₂₇, X₉: 18⋅X₉ {O(n)}
t₂₇, X₁₀: 12⋅X₈+30⋅X₁₃+32 {O(n)}
t₂₇, X₁₁: 12⋅X₈+30⋅X₁₃+32 {O(n)}
t₂₇, X₁₂: 18⋅X₁₂ {O(n)}
t₂₇, X₁₃: 18⋅X₁₃ {O(n)}
t₄₂, X₀: 3456⋅X₈+4536⋅X₁₃+4680 {O(n)}
t₄₂, X₃: 432⋅X₈+540⋅X₁₃+584 {O(n)}
t₄₂, X₈: 54⋅X₈ {O(n)}
t₄₂, X₉: 317520⋅X₈⋅X₈+405000⋅X₁₃⋅X₁₃+722520⋅X₁₃⋅X₈+777672⋅X₈+871848⋅X₁₃+469084 {O(n^2)}
t₄₂, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₄₂, X₁₁: 432⋅X₈+540⋅X₁₃+582 {O(n)}
t₄₂, X₁₂: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₄₂, X₁₃: 54⋅X₁₃ {O(n)}
t₄₄, X₀: 3456⋅X₈+4536⋅X₁₃+4680 {O(n)}
t₄₄, X₃: 432⋅X₈+540⋅X₁₃+584 {O(n)}
t₄₄, X₈: 54⋅X₈ {O(n)}
t₄₄, X₉: 317520⋅X₈⋅X₈+405000⋅X₁₃⋅X₁₃+722520⋅X₁₃⋅X₈+777672⋅X₈+871848⋅X₁₃+469084 {O(n^2)}
t₄₄, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₄₄, X₁₁: 432⋅X₈+540⋅X₁₃+582 {O(n)}
t₄₄, X₁₂: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₄₄, X₁₃: 54⋅X₁₃ {O(n)}
t₄₈, X₀: 3456⋅X₈+4536⋅X₁₃+4680 {O(n)}
t₄₈, X₃: 432⋅X₈+540⋅X₁₃+584 {O(n)}
t₄₈, X₈: 54⋅X₈ {O(n)}
t₄₈, X₉: 317520⋅X₈⋅X₈+405000⋅X₁₃⋅X₁₃+722520⋅X₁₃⋅X₈+777672⋅X₈+871848⋅X₁₃+469084 {O(n^2)}
t₄₈, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₄₈, X₁₁: 432⋅X₈+540⋅X₁₃+582 {O(n)}
t₄₈, X₁₂: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₄₈, X₁₃: 54⋅X₁₃ {O(n)}
t₉, X₀: 3⋅X₀ {O(n)}
t₉, X₂: 3⋅X₂ {O(n)}
t₉, X₃: 3⋅X₃ {O(n)}
t₉, X₄: 3⋅X₄ {O(n)}
t₉, X₆: 3⋅X₆ {O(n)}
t₉, X₇: 3⋅X₇ {O(n)}
t₉, X₈: 3⋅X₈ {O(n)}
t₉, X₉: 3⋅X₉ {O(n)}
t₉, X₁₀: 3⋅X₈+6⋅X₁₃+7 {O(n)}
t₉, X₁₁: 3⋅X₁₁ {O(n)}
t₉, X₁₂: 3⋅X₁₂ {O(n)}
t₉, X₁₃: 3⋅X₁₃ {O(n)}
t₁₁, X₀: 3⋅X₀ {O(n)}
t₁₁, X₂: 3⋅X₂ {O(n)}
t₁₁, X₃: 3⋅X₃ {O(n)}
t₁₁, X₄: 3⋅X₄ {O(n)}
t₁₁, X₆: 3⋅X₆ {O(n)}
t₁₁, X₇: 3⋅X₇ {O(n)}
t₁₁, X₈: 3⋅X₈ {O(n)}
t₁₁, X₉: 3⋅X₉ {O(n)}
t₁₁, X₁₀: 3⋅X₈+6⋅X₁₃+7 {O(n)}
t₁₁, X₁₁: 3⋅X₁₁ {O(n)}
t₁₁, X₁₂: 3⋅X₁₂ {O(n)}
t₁₁, X₁₃: 3⋅X₁₃ {O(n)}
t₁₅, X₀: 3⋅X₀ {O(n)}
t₁₅, X₂: 3⋅X₂ {O(n)}
t₁₅, X₃: 3⋅X₃ {O(n)}
t₁₅, X₄: 3⋅X₄ {O(n)}
t₁₅, X₆: 3⋅X₆ {O(n)}
t₁₅, X₇: 3⋅X₇ {O(n)}
t₁₅, X₈: 3⋅X₈ {O(n)}
t₁₅, X₉: 3⋅X₉ {O(n)}
t₁₅, X₁₀: 3⋅X₈+6⋅X₁₃+7 {O(n)}
t₁₅, X₁₁: 3⋅X₁₁ {O(n)}
t₁₅, X₁₂: 3⋅X₁₂ {O(n)}
t₁₅, X₁₃: 3⋅X₁₃ {O(n)}
t₁₉, X₀: 9⋅X₀ {O(n)}
t₁₉, X₂: 9⋅X₂ {O(n)}
t₁₉, X₃: 9⋅X₃ {O(n)}
t₁₉, X₄: 9⋅X₄ {O(n)}
t₁₉, X₇: 9⋅X₇ {O(n)}
t₁₉, X₈: 9⋅X₈ {O(n)}
t₁₉, X₉: 9⋅X₉ {O(n)}
t₁₉, X₁₀: 15⋅X₁₃+6⋅X₈+16 {O(n)}
t₁₉, X₁₁: 9⋅X₁₁ {O(n)}
t₁₉, X₁₂: 9⋅X₁₂ {O(n)}
t₁₉, X₁₃: 9⋅X₁₃ {O(n)}
t₂₀, X₀: 9⋅X₀ {O(n)}
t₂₀, X₂: 9⋅X₂ {O(n)}
t₂₀, X₃: 9⋅X₃ {O(n)}
t₂₀, X₄: 9⋅X₄ {O(n)}
t₂₀, X₇: 9⋅X₇ {O(n)}
t₂₀, X₈: 9⋅X₈ {O(n)}
t₂₀, X₉: 9⋅X₉ {O(n)}
t₂₀, X₁₀: 15⋅X₁₃+6⋅X₈+16 {O(n)}
t₂₀, X₁₁: 9⋅X₁₁ {O(n)}
t₂₀, X₁₂: 9⋅X₁₂ {O(n)}
t₂₀, X₁₃: 9⋅X₁₃ {O(n)}
t₂₁, X₀: 9⋅X₀ {O(n)}
t₂₁, X₂: 9⋅X₂ {O(n)}
t₂₁, X₃: 9⋅X₃ {O(n)}
t₂₁, X₄: 9⋅X₄ {O(n)}
t₂₁, X₆: 0 {O(1)}
t₂₁, X₇: 9⋅X₇ {O(n)}
t₂₁, X₈: 9⋅X₈ {O(n)}
t₂₁, X₉: 9⋅X₉ {O(n)}
t₂₁, X₁₀: 15⋅X₁₃+6⋅X₈+16 {O(n)}
t₂₁, X₁₁: 9⋅X₁₁ {O(n)}
t₂₁, X₁₂: 9⋅X₁₂ {O(n)}
t₂₁, X₁₃: 9⋅X₁₃ {O(n)}
t₃₁, X₀: 1728⋅X₈+2268⋅X₁₃+2340 {O(n)}
t₃₁, X₃: 108⋅X₃+1728⋅X₈+2160⋅X₁₃+2336 {O(n)}
t₃₁, X₈: 54⋅X₈ {O(n)}
t₃₁, X₉: 158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+388836⋅X₈+435924⋅X₁₃+234542 {O(n^2)}
t₃₁, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₃₁, X₁₁: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₃₁, X₁₂: 108⋅X₁₂+1080⋅X₁₃+864⋅X₈+1164 {O(n)}
t₃₁, X₁₃: 54⋅X₁₃ {O(n)}
t₃₂, X₀: 1728⋅X₈+2268⋅X₁₃+2340 {O(n)}
t₃₂, X₃: 108⋅X₃+1728⋅X₈+2160⋅X₁₃+2336 {O(n)}
t₃₂, X₈: 54⋅X₈ {O(n)}
t₃₂, X₉: 158760⋅X₈⋅X₈+202500⋅X₁₃⋅X₁₃+361260⋅X₁₃⋅X₈+388836⋅X₈+435924⋅X₁₃+234542 {O(n^2)}
t₃₂, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₃₂, X₁₁: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₃₂, X₁₂: 108⋅X₁₂+1080⋅X₁₃+864⋅X₈+1164 {O(n)}
t₃₂, X₁₃: 54⋅X₁₃ {O(n)}
t₄₅, X₀: 3456⋅X₈+4536⋅X₁₃+4680 {O(n)}
t₄₅, X₃: 432⋅X₈+540⋅X₁₃+584 {O(n)}
t₄₅, X₈: 54⋅X₈ {O(n)}
t₄₅, X₉: 317520⋅X₈⋅X₈+405000⋅X₁₃⋅X₁₃+722520⋅X₁₃⋅X₈+777672⋅X₈+871848⋅X₁₃+469084 {O(n^2)}
t₄₅, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₄₅, X₁₁: 432⋅X₈+540⋅X₁₃+582 {O(n)}
t₄₅, X₁₂: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₄₅, X₁₃: 54⋅X₁₃ {O(n)}
t₄₆, X₀: 3456⋅X₈+4536⋅X₁₃+4680 {O(n)}
t₄₆, X₃: 432⋅X₈+540⋅X₁₃+584 {O(n)}
t₄₆, X₈: 54⋅X₈ {O(n)}
t₄₆, X₉: 317520⋅X₈⋅X₈+405000⋅X₁₃⋅X₁₃+722520⋅X₁₃⋅X₈+777672⋅X₈+871848⋅X₁₃+469084 {O(n^2)}
t₄₆, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₄₆, X₁₁: 432⋅X₈+540⋅X₁₃+582 {O(n)}
t₄₆, X₁₂: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₄₆, X₁₃: 54⋅X₁₃ {O(n)}
t₄₇, X₀: 432⋅X₈+540⋅X₁₃+584 {O(n)}
t₄₇, X₃: 432⋅X₈+540⋅X₁₃+584 {O(n)}
t₄₇, X₄: 0 {O(1)}
t₄₇, X₈: 54⋅X₈ {O(n)}
t₄₇, X₉: 317520⋅X₈⋅X₈+405000⋅X₁₃⋅X₁₃+722520⋅X₁₃⋅X₈+777672⋅X₈+871848⋅X₁₃+469084 {O(n^2)}
t₄₇, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₄₇, X₁₁: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₄₇, X₁₂: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₄₇, X₁₃: 54⋅X₁₃ {O(n)}
t₄₀, X₀: 3456⋅X₈+4536⋅X₁₃+4680 {O(n)}
t₄₀, X₃: 432⋅X₈+540⋅X₁₃+584 {O(n)}
t₄₀, X₈: 54⋅X₈ {O(n)}
t₄₀, X₉: 317520⋅X₈⋅X₈+405000⋅X₁₃⋅X₁₃+722520⋅X₁₃⋅X₈+777672⋅X₈+871848⋅X₁₃+469084 {O(n^2)}
t₄₀, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₄₀, X₁₁: 432⋅X₈+540⋅X₁₃+582 {O(n)}
t₄₀, X₁₂: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₄₀, X₁₃: 54⋅X₁₃ {O(n)}
t₄₁, X₀: 432⋅X₈+540⋅X₁₃+584 {O(n)}
t₄₁, X₃: 432⋅X₈+540⋅X₁₃+584 {O(n)}
t₄₁, X₈: 54⋅X₈ {O(n)}
t₄₁, X₉: 317520⋅X₈⋅X₈+405000⋅X₁₃⋅X₁₃+722520⋅X₁₃⋅X₈+777672⋅X₈+871848⋅X₁₃+469084 {O(n^2)}
t₄₁, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₄₁, X₁₁: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₄₁, X₁₂: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₄₁, X₁₃: 54⋅X₁₃ {O(n)}
t₂₈, X₀: 1134⋅X₁₃+864⋅X₈+1170 {O(n)}
t₂₈, X₃: 1080⋅X₁₃+54⋅X₃+864⋅X₈+1168 {O(n)}
t₂₈, X₈: 54⋅X₈ {O(n)}
t₂₈, X₉: 468⋅X₈+630⋅X₁₃+678 {O(n)}
t₂₈, X₁₀: 36⋅X₈+90⋅X₁₃+96 {O(n)}
t₂₈, X₁₁: 216⋅X₈+270⋅X₁₃+291 {O(n)}
t₂₈, X₁₂: 432⋅X₈+54⋅X₁₂+540⋅X₁₃+582 {O(n)}
t₂₈, X₁₃: 54⋅X₁₃ {O(n)}
t₁₈, X₀: 9⋅X₀ {O(n)}
t₁₈, X₂: 9⋅X₂ {O(n)}
t₁₈, X₃: 9⋅X₃ {O(n)}
t₁₈, X₄: 9⋅X₄ {O(n)}
t₁₈, X₇: 9⋅X₇ {O(n)}
t₁₈, X₈: 9⋅X₈ {O(n)}
t₁₈, X₉: 9⋅X₉ {O(n)}
t₁₈, X₁₀: 15⋅X₁₃+6⋅X₈+16 {O(n)}
t₁₈, X₁₁: 9⋅X₁₁ {O(n)}
t₁₈, X₁₂: 9⋅X₁₂ {O(n)}
t₁₈, X₁₃: 9⋅X₁₃ {O(n)}
t₁₂, X₀: 3⋅X₀ {O(n)}
t₁₂, X₂: 3⋅X₂ {O(n)}
t₁₂, X₃: 3⋅X₃ {O(n)}
t₁₂, X₄: 3⋅X₄ {O(n)}
t₁₂, X₆: 3⋅X₆ {O(n)}
t₁₂, X₇: 3⋅X₇ {O(n)}
t₁₂, X₈: 3⋅X₈ {O(n)}
t₁₂, X₉: 3⋅X₉ {O(n)}
t₁₂, X₁₀: 3⋅X₈+6⋅X₁₃+7 {O(n)}
t₁₂, X₁₁: 3⋅X₁₁ {O(n)}
t₁₂, X₁₂: 3⋅X₁₂ {O(n)}
t₁₂, X₁₃: 3⋅X₁₃ {O(n)}
t₁₃, X₀: 3⋅X₀ {O(n)}
t₁₃, X₂: 3⋅X₂ {O(n)}
t₁₃, X₃: 3⋅X₃ {O(n)}
t₁₃, X₄: 3⋅X₄ {O(n)}
t₁₃, X₆: 3⋅X₆ {O(n)}
t₁₃, X₇: 3⋅X₇ {O(n)}
t₁₃, X₈: 3⋅X₈ {O(n)}
t₁₃, X₉: 3⋅X₉ {O(n)}
t₁₃, X₁₀: 3⋅X₈+6⋅X₁₃+7 {O(n)}
t₁₃, X₁₁: 3⋅X₁₁ {O(n)}
t₁₃, X₁₂: 3⋅X₁₂ {O(n)}
t₁₃, X₁₃: 3⋅X₁₃ {O(n)}
t₁₄, X₀: 3⋅X₀ {O(n)}
t₁₄, X₂: 3⋅X₂ {O(n)}
t₁₄, X₃: 3⋅X₃ {O(n)}
t₁₄, X₄: 3⋅X₄ {O(n)}
t₁₄, X₅: 0 {O(1)}
t₁₄, X₆: 3⋅X₆ {O(n)}
t₁₄, X₇: 3⋅X₇ {O(n)}
t₁₄, X₈: 3⋅X₈ {O(n)}
t₁₄, X₉: 3⋅X₉ {O(n)}
t₁₄, X₁₀: 3⋅X₈+6⋅X₁₃+7 {O(n)}
t₁₄, X₁₁: 3⋅X₁₁ {O(n)}
t₁₄, X₁₂: 3⋅X₁₂ {O(n)}
t₁₄, X₁₃: 3⋅X₁₃ {O(n)}
t₇, X₀: 3⋅X₀ {O(n)}
t₇, X₂: 3⋅X₂ {O(n)}
t₇, X₃: 3⋅X₃ {O(n)}
t₇, X₄: 3⋅X₄ {O(n)}
t₇, X₆: 3⋅X₆ {O(n)}
t₇, X₇: 3⋅X₇ {O(n)}
t₇, X₈: 3⋅X₈ {O(n)}
t₇, X₉: 3⋅X₉ {O(n)}
t₇, X₁₀: 3⋅X₈+6⋅X₁₃+7 {O(n)}
t₇, X₁₁: 3⋅X₁₁ {O(n)}
t₇, X₁₂: 3⋅X₁₂ {O(n)}
t₇, X₁₃: 3⋅X₁₃ {O(n)}
t₈, X₀: 6⋅X₀ {O(n)}
t₈, X₂: 6⋅X₂ {O(n)}
t₈, X₃: 6⋅X₃ {O(n)}
t₈, X₄: 6⋅X₄ {O(n)}
t₈, X₆: 6⋅X₆ {O(n)}
t₈, X₇: 6⋅X₇ {O(n)}
t₈, X₈: 6⋅X₈ {O(n)}
t₈, X₉: 6⋅X₉ {O(n)}
t₈, X₁₀: 3⋅X₈+9⋅X₁₃+9 {O(n)}
t₈, X₁₁: 6⋅X₁₁ {O(n)}
t₈, X₁₂: 6⋅X₁₂ {O(n)}
t₈, X₁₃: 6⋅X₁₃ {O(n)}
t₁₆, X₀: 9⋅X₀ {O(n)}
t₁₆, X₂: 9⋅X₂ {O(n)}
t₁₆, X₃: 9⋅X₃ {O(n)}
t₁₆, X₄: 9⋅X₄ {O(n)}
t₁₆, X₆: 9⋅X₆ {O(n)}
t₁₆, X₇: 9⋅X₇ {O(n)}
t₁₆, X₈: 9⋅X₈ {O(n)}
t₁₆, X₉: 9⋅X₉ {O(n)}
t₁₆, X₁₀: 15⋅X₁₃+6⋅X₈+16 {O(n)}
t₁₆, X₁₁: 9⋅X₁₁ {O(n)}
t₁₆, X₁₂: 9⋅X₁₂ {O(n)}
t₁₆, X₁₃: 9⋅X₁₃ {O(n)}