Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.1, nondef.2, nondef.3, nondef.4
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, nondef.2, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, nondef.4, X₄, X₅, X₆, X₇)
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, nondef.3, X₃, X₄, X₅, X₆, X₇)
t₂₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₂ ≤ X₃
t₂₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₂
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆+3+2⋅X₅
t₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ ≤ X₄
t₃₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₇, X₆, X₇)
t₃₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 2+X₆
t₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+2 ≤ X₄
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 2
t₁: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇) :|: 2 < X₄
t₃₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇)
t₁₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ < X₄
t₁₃: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆+3+2⋅X₅
t₁₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ ≤ X₄ ∧ X₄ ≤ X₆+3+2⋅X₅
t₁₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < X₁
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₀
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+1)
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+2)
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇)
t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)

Preprocessing

Cut unsatisfiable transition t₁₃: l23→l2

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l11

Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location l2

Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ for location l6

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location l15

Found invariant 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l19

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l12

Found invariant 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l23

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location l17

Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l7

Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l21

Found invariant 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l5

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l13

Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l8

Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location l1

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l10

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location l16

Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location l4

Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l9

Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location l3

Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.1, nondef.2, nondef.3, nondef.4
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, nondef.2, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, nondef.4, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₂₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, nondef.3, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₂₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₂ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₂₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆+3+2⋅X₅ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₃₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂
t₃₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₇, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂
t₃₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂
t₃₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 2+X₆ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄
t₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+2 ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄
t₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 2
t₁: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇) :|: 2 < X₄
t₃₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₁₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ < X₄ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₁₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ ≤ X₄ ∧ X₄ ≤ X₆+3+2⋅X₅ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₁₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄
t₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₀ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+1) :|: 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+2) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄
t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄

MPRF for transition t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆+3+2⋅X₅ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄ {O(n)}

MPRF:

l12 [X₄-X₆ ]
l10 [X₄-X₆ ]
l13 [X₄-X₆ ]
l15 [X₄-X₆ ]
l17 [X₄-X₆ ]
l16 [X₄-X₆ ]
l21 [X₄-X₆-1 ]
l19 [X₄-X₆ ]
l23 [X₄-X₆ ]
l2 [X₄-X₆ ]
l3 [X₄-X₆ ]
l1 [X₄-X₆ ]
l4 [X₄-X₆ ]
l5 [X₄-X₆ ]
l6 [X₄-X₆ ]
l11 [X₄-X₆ ]
l14 [X₄-X₆ ]
l8 [X₄-X₆ ]
l9 [X₄-X₆ ]
l7 [X₄-X₆ ]

MPRF for transition t₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+2 ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF:

l12 [X₄-X₆ ]
l10 [X₄-X₆ ]
l13 [X₄-X₆ ]
l15 [X₄-X₆ ]
l17 [X₄-X₆ ]
l16 [X₄-X₆ ]
l21 [X₄-X₆ ]
l19 [X₄+1-X₆ ]
l23 [X₄-X₆ ]
l2 [X₄-X₆ ]
l3 [X₄-X₆ ]
l1 [X₄-X₆ ]
l4 [X₄-X₆ ]
l5 [X₄-X₆ ]
l6 [X₄-X₆ ]
l11 [X₄-X₆ ]
l14 [X₄-X₆ ]
l8 [X₄-X₆ ]
l9 [X₄-X₆ ]
l7 [X₄-X₆ ]

MPRF for transition t₃₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄ {O(n)}

MPRF:

l12 [X₄-X₆ ]
l10 [X₄-X₆ ]
l13 [X₄-X₆ ]
l15 [X₄-X₆ ]
l17 [X₄-X₆ ]
l16 [X₄-X₆ ]
l21 [X₄-X₆ ]
l19 [X₄-X₆ ]
l23 [X₄-X₆ ]
l2 [X₄-X₆ ]
l3 [X₄-X₆ ]
l1 [X₄-X₆ ]
l4 [X₄-X₆ ]
l5 [X₄-X₆ ]
l6 [X₄-X₆ ]
l11 [X₄-X₆ ]
l14 [X₄-X₆ ]
l8 [X₄-X₆ ]
l9 [X₄-X₆ ]
l7 [X₄-X₆ ]

MPRF for transition t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF:

l12 [X₄-X₆-2 ]
l10 [X₄-X₆-2 ]
l13 [X₄-X₆-2 ]
l15 [X₄-X₆-2 ]
l17 [X₄-X₆-2 ]
l16 [X₄-X₆-2 ]
l21 [X₄-X₆-2 ]
l19 [X₄-X₆-1 ]
l23 [X₄-X₆-2 ]
l2 [X₄-X₆-2 ]
l3 [X₄-X₆-2 ]
l1 [X₄-X₆-2 ]
l4 [X₄-X₆-2 ]
l5 [X₄-X₆-2 ]
l6 [X₄-X₆-2 ]
l11 [X₄-X₆-2 ]
l14 [X₄-X₆-2 ]
l8 [X₄-X₆-1 ]
l9 [X₄-X₆-1 ]
l7 [X₄-X₆-1 ]

MPRF for transition t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF:

l12 [X₄-X₆-2 ]
l10 [X₄-X₆-2 ]
l13 [X₄-X₆-2 ]
l15 [X₄-X₆-2 ]
l17 [X₄-X₆-2 ]
l16 [X₄-X₆-2 ]
l21 [X₄-X₆-2 ]
l19 [X₄-X₆-1 ]
l23 [X₄-X₆-2 ]
l2 [X₄-X₆-2 ]
l3 [X₄-X₆-2 ]
l1 [X₄-X₆-2 ]
l4 [X₄-X₆-2 ]
l5 [X₄-X₆-2 ]
l6 [X₄-X₆-2 ]
l11 [X₄-X₆-2 ]
l14 [X₄-X₆-2 ]
l8 [X₄-X₆-1 ]
l9 [X₄-X₆-2 ]
l7 [X₄-X₆-2 ]

MPRF for transition t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF:

l12 [X₄-X₆ ]
l10 [X₄-X₆ ]
l13 [X₄-X₆ ]
l15 [X₄-X₆ ]
l17 [X₄-X₆ ]
l16 [X₄-X₆ ]
l21 [X₄-X₆ ]
l19 [X₄+1-X₆ ]
l23 [X₄-X₆ ]
l2 [X₄-X₆ ]
l3 [X₄-X₆ ]
l1 [X₄-X₆ ]
l4 [X₄-X₆ ]
l5 [X₄-X₆ ]
l6 [X₄-X₆ ]
l11 [X₄-X₆ ]
l14 [X₄-X₆ ]
l8 [X₄+1-X₆ ]
l9 [X₄+1-X₆ ]
l7 [X₄-X₆ ]

MPRF for transition t₁₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, nondef.2, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅+3 {O(n^2)}

MPRF:

l12 [X₄-X₅-4 ]
l10 [X₄-X₅-4 ]
l13 [X₄-X₅-4 ]
l15 [X₄-X₅-4 ]
l17 [X₄-X₅-4 ]
l16 [X₄-X₅-4 ]
l21 [X₄-X₅-3 ]
l19 [X₄-X₅-3 ]
l23 [X₄-X₅-3 ]
l2 [X₄-X₅-3 ]
l3 [X₄-X₅-3 ]
l1 [X₄-X₅-3 ]
l4 [X₄-X₅-4 ]
l5 [X₄-X₅-4 ]
l6 [X₄-X₅-4 ]
l11 [X₄-X₅-4 ]
l7 [X₄ ]
l14 [X₄-X₅-3 ]
l8 [X₄-X₅-3 ]
l9 [X₄-X₅-3 ]

MPRF for transition t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, nondef.4, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅+1 {O(n^2)}

MPRF:

l12 [X₄+1-X₅ ]
l10 [X₄+1-X₅ ]
l13 [X₄-X₅ ]
l15 [X₄-X₅ ]
l17 [X₄+1-X₇ ]
l16 [X₄+1-X₇ ]
l21 [X₄-X₅ ]
l19 [-X₅ ]
l23 [X₄+1-X₅ ]
l2 [X₄+1-X₅ ]
l3 [X₄+1-X₅ ]
l1 [X₄+1-X₅ ]
l4 [X₄+1-X₅ ]
l5 [X₄+1-X₅ ]
l6 [X₄+1-X₅ ]
l11 [X₄+1-X₅ ]
l7 [X₄+1 ]
l14 [X₄+1-X₅ ]
l8 [-X₅ ]
l9 [-X₅ ]

MPRF for transition t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}

MPRF:

l12 [X₄-X₅-1 ]
l10 [X₄-X₅-1 ]
l13 [X₄-X₅-1 ]
l15 [X₄-X₅-1 ]
l17 [X₄-X₇ ]
l16 [X₄-X₇ ]
l21 [X₄-X₅ ]
l19 [X₄-X₅ ]
l23 [X₄-X₅ ]
l2 [X₄-X₅ ]
l3 [X₄-X₅ ]
l1 [X₄-X₅ ]
l4 [X₄-X₅ ]
l5 [X₄-X₅ ]
l6 [X₄-X₅ ]
l11 [X₄-X₅ ]
l7 [X₄ ]
l14 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]

MPRF for transition t₂₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, nondef.3, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}

MPRF:

l12 [X₄-X₅ ]
l10 [X₄-X₅-1 ]
l13 [X₄-X₅-1 ]
l15 [X₄-X₅-1 ]
l17 [X₄-X₅-1 ]
l16 [X₄-X₅-1 ]
l21 [X₄-X₅ ]
l19 [X₄-X₅ ]
l23 [X₄-X₅ ]
l2 [X₄-X₅ ]
l3 [X₄-X₅ ]
l1 [X₄-X₅ ]
l4 [X₄-X₅ ]
l5 [X₄-X₅ ]
l6 [X₄-X₅ ]
l11 [X₄-X₅ ]
l7 [X₄ ]
l14 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]

MPRF for transition t₂₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}

MPRF:

l12 [X₄-X₅ ]
l10 [X₄-X₅ ]
l13 [X₄-X₅ ]
l15 [X₄-X₇ ]
l17 [X₄-X₇ ]
l16 [X₄-X₇ ]
l21 [X₄-X₅ ]
l19 [X₄-X₅ ]
l23 [X₄-X₅ ]
l2 [X₄-X₅ ]
l3 [X₄-X₅ ]
l1 [X₄-X₅ ]
l4 [X₄-X₅ ]
l5 [X₄-X₅ ]
l6 [X₄-X₅ ]
l11 [X₄-X₅ ]
l7 [X₄ ]
l14 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]

MPRF for transition t₂₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₂ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}

MPRF:

l12 [X₄-X₅ ]
l10 [X₄-X₅ ]
l13 [X₄-X₅ ]
l15 [X₄-X₇ ]
l17 [X₄-X₇ ]
l16 [X₄-X₇ ]
l21 [X₄-X₅ ]
l19 [X₄-X₅ ]
l23 [X₄-X₅ ]
l2 [X₄-X₅ ]
l3 [X₄-X₅ ]
l1 [X₄-X₅ ]
l4 [X₄-X₅ ]
l5 [X₄-X₅ ]
l6 [X₄-X₅ ]
l11 [X₄-X₅ ]
l7 [X₄ ]
l14 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]

MPRF for transition t₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄⋅X₄+2⋅X₅+4⋅X₄+2 {O(n^2)}

MPRF:

l12 [X₄-2⋅X₅ ]
l10 [X₄-2⋅X₅ ]
l13 [X₄-2⋅X₅ ]
l15 [X₄-2⋅X₅ ]
l17 [X₄-2⋅X₅ ]
l16 [X₄+2-2⋅X₇ ]
l21 [X₄-2⋅X₅ ]
l19 [X₄-2⋅X₅ ]
l23 [X₄-2⋅X₅ ]
l2 [X₄-2⋅X₅ ]
l3 [X₄-2⋅X₅ ]
l1 [X₄-2⋅X₅ ]
l4 [X₄-2⋅X₅ ]
l5 [X₄-2⋅X₅ ]
l6 [X₄-2⋅X₅ ]
l11 [X₄-2⋅X₅ ]
l7 [X₄+2 ]
l14 [X₄+2-2⋅X₅ ]
l8 [X₄-2⋅X₅ ]
l9 [X₄-2⋅X₅ ]

MPRF for transition t₃₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅+2 {O(n^2)}

MPRF:

l12 [X₄-X₅-2 ]
l10 [X₄-X₅-2 ]
l13 [X₄-X₅-2 ]
l15 [X₄-X₅-2 ]
l17 [X₄-X₅-3 ]
l16 [X₄-X₅-3 ]
l21 [X₄-X₅-2 ]
l19 [X₄-X₅-2 ]
l23 [X₄-X₅-2 ]
l2 [X₄-X₅-2 ]
l3 [X₄-X₅-2 ]
l1 [X₄-X₅-2 ]
l4 [X₄-X₅-2 ]
l5 [X₄-X₅-2 ]
l6 [X₄-X₅-2 ]
l11 [X₄-X₅-2 ]
l7 [X₄ ]
l14 [X₄-X₅-2 ]
l8 [X₄-X₅-2 ]
l9 [X₄-X₅-2 ]

MPRF for transition t₃₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₇, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}

MPRF:

l12 [X₄-X₅ ]
l10 [X₄-X₅ ]
l13 [X₄-X₅ ]
l15 [X₄-X₅ ]
l17 [X₄-X₅ ]
l16 [X₄-X₅ ]
l21 [X₄-X₅ ]
l19 [X₄-X₅ ]
l23 [X₄-X₅ ]
l2 [X₄-X₅ ]
l3 [X₄-X₅ ]
l1 [X₄-X₅ ]
l4 [X₄-X₅ ]
l5 [X₄-X₅ ]
l6 [X₄-X₅ ]
l11 [X₄-X₅ ]
l7 [X₄ ]
l14 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]

MPRF for transition t₃₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}

MPRF:

l12 [X₄-X₅ ]
l10 [X₄-X₅ ]
l13 [X₄-X₅ ]
l15 [X₄-X₅ ]
l17 [X₄-X₅ ]
l16 [X₄-X₅-1 ]
l21 [X₄-X₅ ]
l19 [X₄-X₅ ]
l23 [X₄-X₅ ]
l2 [X₄-X₅ ]
l3 [X₄-X₅ ]
l1 [X₄-X₅ ]
l4 [X₄-X₅ ]
l5 [X₄-X₅ ]
l6 [X₄-X₅ ]
l11 [X₄-X₅ ]
l7 [X₄ ]
l14 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]

MPRF for transition t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ of depth 1:

new bound:

2⋅X₄⋅X₄+4⋅X₄+X₅+7 {O(n^2)}

MPRF:

l12 [2⋅X₄-X₅-8 ]
l10 [2⋅X₄-X₅-8 ]
l13 [2⋅X₄-X₅-8 ]
l15 [2⋅X₄-X₇-7 ]
l17 [2⋅X₄-X₇-7 ]
l16 [2⋅X₄-X₇-7 ]
l21 [2⋅X₄-X₅-7 ]
l19 [2⋅X₄-X₅-7 ]
l23 [2⋅X₄-X₅-7 ]
l2 [2⋅X₄-X₅-7 ]
l3 [2⋅X₄-X₅-8 ]
l1 [2⋅X₄-X₅-8 ]
l4 [2⋅X₄-X₅-8 ]
l5 [2⋅X₄-X₅-8 ]
l6 [2⋅X₄-X₅-8 ]
l11 [2⋅X₄-X₅-8 ]
l7 [2⋅X₄ ]
l14 [2⋅X₄-X₅-7 ]
l8 [2⋅X₄-X₅-7 ]
l9 [2⋅X₄-X₅-7 ]

MPRF for transition t₁₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ ≤ X₄ ∧ X₄ ≤ X₆+3+2⋅X₅ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}

MPRF:

l12 [X₄-X₅-1 ]
l10 [X₄-X₅-1 ]
l13 [X₄-X₅-1 ]
l15 [X₄-X₅-1 ]
l17 [X₄-X₅-1 ]
l16 [X₄-X₇ ]
l21 [X₄-X₅ ]
l19 [X₄-X₅ ]
l23 [X₄-X₅ ]
l2 [X₄-X₅ ]
l3 [X₄-X₅ ]
l1 [X₄-X₅ ]
l4 [X₄-X₅ ]
l5 [X₄-X₅-1 ]
l6 [X₄-X₅ ]
l11 [X₄-X₅-1 ]
l7 [X₄ ]
l14 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]

MPRF for transition t₁₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ < X₄ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:

new bound:

2⋅X₄⋅X₄+4⋅X₄+X₅+7 {O(n^2)}

MPRF:

l12 [2⋅X₄-X₅-8 ]
l10 [2⋅X₄-X₅-8 ]
l13 [2⋅X₄-X₅-8 ]
l15 [2⋅X₄-X₅-8 ]
l17 [2⋅X₄-X₅-8 ]
l16 [2⋅X₄-X₇-7 ]
l21 [2⋅X₄-X₅-7 ]
l19 [2⋅X₄-X₅-7 ]
l23 [2⋅X₄-X₅-7 ]
l2 [2⋅X₄-X₅-8 ]
l3 [2⋅X₄-X₅-8 ]
l1 [2⋅X₄-X₅-8 ]
l4 [2⋅X₄-X₅-8 ]
l5 [2⋅X₄-X₅-8 ]
l6 [2⋅X₄-X₅-8 ]
l11 [2⋅X₄-X₅-8 ]
l7 [2⋅X₄ ]
l14 [2⋅X₄-X₅-7 ]
l8 [2⋅X₄-X₅-7 ]
l9 [2⋅X₄-X₅-7 ]

MPRF for transition t₁₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}

MPRF:

l12 [X₄-X₅-1 ]
l10 [X₄-X₅-1 ]
l13 [X₄-X₅-1 ]
l15 [X₄-X₅-1 ]
l17 [X₄-X₇ ]
l16 [X₄-X₇ ]
l21 [X₄-X₅ ]
l19 [X₄-X₅ ]
l23 [X₄-X₅ ]
l2 [X₄-X₅ ]
l3 [X₄-X₅ ]
l1 [X₄-X₅-1 ]
l4 [X₄-X₅-1 ]
l5 [X₄-X₅-1 ]
l6 [X₄-X₅-1 ]
l11 [X₄-X₅-1 ]
l7 [X₄ ]
l14 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]

MPRF for transition t₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}

MPRF:

l12 [X₄-X₅-1 ]
l10 [X₄-X₅-1 ]
l13 [X₄-X₅-1 ]
l15 [X₄-X₇ ]
l17 [X₄-X₇ ]
l16 [X₄-X₇ ]
l21 [X₄-X₅ ]
l19 [X₄-X₅ ]
l23 [X₄-X₅ ]
l2 [X₄-X₅ ]
l3 [X₄-X₅ ]
l1 [X₄-X₅ ]
l4 [X₄-X₅ ]
l5 [X₄-X₅-1 ]
l6 [X₄-X₅ ]
l11 [X₄-X₅-1 ]
l7 [X₄ ]
l14 [X₄-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]

MPRF for transition t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₀ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ of depth 1:

new bound:

X₄⋅X₄+5⋅X₄+X₅+3 {O(n^2)}

MPRF:

l12 [X₄+2-X₅ ]
l10 [X₄+2-X₅ ]
l13 [X₄+2-X₅ ]
l15 [X₄+2-X₅ ]
l17 [X₄+3-X₇ ]
l16 [X₄+3-X₇ ]
l21 [X₄-X₅ ]
l19 [X₄-X₅ ]
l23 [X₄+3-X₅ ]
l2 [X₄+3-X₅ ]
l3 [X₄+3-X₅ ]
l1 [X₄+3-X₅ ]
l4 [X₄+3-X₅ ]
l5 [X₄+3-X₅ ]
l6 [X₄+2-X₅ ]
l11 [X₄+2-X₅ ]
l7 [X₄+3 ]
l14 [X₄+3-X₅ ]
l8 [X₄-X₅ ]
l9 [X₄-X₅ ]

MPRF for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+1) :|: 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅+2 {O(n^2)}

MPRF:

l12 [X₄-X₅-3 ]
l10 [X₄-X₅-3 ]
l13 [X₄-X₅-3 ]
l15 [X₄-X₇-2 ]
l17 [X₄-X₇-2 ]
l16 [X₄-X₇-2 ]
l21 [X₄-X₅-2 ]
l19 [X₄-X₅-2 ]
l23 [X₄-X₅-2 ]
l2 [X₄-X₅-2 ]
l3 [X₄-X₅-2 ]
l1 [X₄-X₅-2 ]
l4 [X₄-X₅-2 ]
l5 [X₄-X₅-2 ]
l6 [X₄-X₅-2 ]
l11 [X₄-X₅-3 ]
l7 [X₄ ]
l14 [X₄-X₅-2 ]
l8 [X₄-X₅-2 ]
l9 [X₄-X₅-2 ]

MPRF for transition t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+2) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄+X₅+3 {O(n^2)}

MPRF:

l12 [X₄-X₅-4 ]
l10 [X₄-X₅-4 ]
l13 [X₄-X₅-4 ]
l15 [X₄-X₅-4 ]
l17 [X₄-X₇-3 ]
l16 [X₄-X₇-3 ]
l21 [X₄-X₅-3 ]
l19 [X₄-X₅-3 ]
l23 [X₄-X₅-3 ]
l2 [X₄-X₅-3 ]
l3 [X₄-X₅-3 ]
l1 [X₄-X₅-3 ]
l4 [X₄-X₅-3 ]
l5 [X₄-X₅-3 ]
l6 [X₄-X₅-3 ]
l11 [X₄-X₅-4 ]
l7 [X₄ ]
l14 [X₄-X₅-3 ]
l8 [X₄-X₅-3 ]
l9 [X₄-X₅-3 ]

Analysing control-flow refined program

Cut unsatisfiable transition t₃₈₅₄: n_l14___1→n_l23___45

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ for location n_l10___21

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l16___2

Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l5___56

Found invariant X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 1 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l14___46

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l12___22

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l11___54

Found invariant 2+X₇ ≤ X₄ ∧ 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___29

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l12___36

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l15___4

Found invariant 2+X₇ ≤ X₄ ∧ 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l16___24

Found invariant X₇ ≤ X₅ ∧ 5+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l4___40

Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location n_l2___61

Found invariant X₇ ≤ X₅ ∧ 5+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l5___39

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l16___47

Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l14

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ X₄ ∧ 4 ≤ X₅ ∧ 8 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₄ ∧ X₂ ≤ X₃ for location n_l14___50

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location n_l13___6

Found invariant X₇ ≤ X₅ ∧ 4+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l5___43

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l10___35

Found invariant X₇ ≤ X₅ ∧ 5+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l2___44

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location n_l11___9

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location n_l12___8

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l11___16

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₄ ∧ X₂ ≤ X₃ for location n_l14___5

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l15___12

Found invariant X₇ ≤ X₅ ∧ 4+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l23___45

Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l7

Found invariant 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l11___30

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l12___15

Found invariant 2+X₇ ≤ X₄ ∧ 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l15___26

Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location n_l1___58

Found invariant 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location n_l5___60

Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l8

Found invariant 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location n_l23___62

Found invariant 2+X₇ ≤ X₄ ∧ 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l17___25

Found invariant X₇ ≤ X₅ ∧ 5+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l1___41

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l14___1

Found invariant 3+X₇ ≤ X₄ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l15___33

Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location n_l4___57

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l10___52

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l16___10

Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location n_l3___59

Found invariant 3+X₇ ≤ X₄ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l13___34

Found invariant X₇ ≤ X₅ ∧ 5+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l3___42

Found invariant 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l19

Found invariant 2+X₇ ≤ X₄ ∧ 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l10___28

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l15___49

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l17___11

Found invariant X₇ ≤ X₅ ∧ 5+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l6___38

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l13___13

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l12___53

Found invariant 3+X₇ ≤ X₄ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l16___31

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l16___17

Found invariant 2+X₇ ≤ X₄ ∧ 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l13___27

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l17___18

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l15___19

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ for location n_l13___20

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l11___23

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l17___3

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l13___51

Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l6___55

Found invariant 3+X₇ ≤ X₄ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l17___32

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l10___14

Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l21

Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l9

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location n_l10___7

Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___37

Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l17___48

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₅₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l23___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 3+2⋅X₅ ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 3+2⋅X₅+X₆ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₇₉: n_l23___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+2⋅X₅+X₆ < X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₈₀: n_l23___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___60(X₀, X₁, X₂, X₃, X₄, X₅, X₄-2⋅X₅-3, X₇) :|: 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₅ ∧ 3+2⋅X₅ ≤ X₄ ∧ X₄ ≤ 2⋅X₅+X₆+3 ∧ 3+2⋅X₅+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₈₂: n_l2___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3+X₆ < X₄ ∧ 0 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 4+X₆ ≤ X₄ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₈₄: n_l3___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___58(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, Arg6_P, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 4+Arg6_P ≤ Arg4_P ∧ 4+Arg5_P ≤ Arg4_P ∧ 0 ≤ Arg6_P ∧ 0 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₉₂: n_l5___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+1) :|: 3 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₄ ≤ X₆+3 ∧ 3+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₃₅: n_l11___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆ ∧ X₄ ≤ X₆+3 ∧ 3+X₆ ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 3+X₆ ≤ X₄ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₄₁: n_l12___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___7(X₀, X₁, NoDet0, X₃, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: 0 ≤ X₆ ∧ X₄ ≤ X₆+3 ∧ 3+X₆ ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ 3+Arg5_P ≤ Arg4_P ∧ 3+Arg6_P ≤ Arg4_P ∧ 0 ≤ Arg5_P ∧ 0 ≤ Arg6_P ∧ 1+Arg5_P ≤ Arg7_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₇₆: n_l1___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___57(X₀, NoDet0, X₂, X₃, Arg4_P, Arg5_P, Arg6_P, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 4+Arg6_P ≤ Arg4_P ∧ 4+Arg5_P ≤ Arg4_P ∧ 0 ≤ Arg6_P ∧ 0 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₈₇: n_l4___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 4+X₆ ≤ X₄ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₈₈: n_l4___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ ≤ X₀ ∧ 4+X₆ ≤ X₄ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₉₁: n_l5___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+1) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₉₄: n_l6___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+2) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ ≤ X₀ ∧ 4+X₆ ≤ X₄ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₂₉: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___6(X₀, X₁, X₂, NoDet0, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: 0 ≤ X₆ ∧ X₄ ≤ X₆+3 ∧ 3+X₆ ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ 3+Arg5_P ≤ Arg4_P ∧ 3+Arg6_P ≤ Arg4_P ∧ 0 ≤ Arg5_P ∧ 0 ≤ Arg6_P ∧ 1+Arg5_P ≤ Arg7_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₃₀: n_l11___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ 2 ∧ 2 ≤ X₇ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 3+X₆ ≤ X₄ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₃₄: n_l11___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 3+X₆ ≤ X₄ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₃₆: n_l12___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___14(X₀, X₁, NoDet0, X₃, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ 2 ∧ 2 ≤ X₇ ∧ 3+Arg5_P ≤ Arg4_P ∧ 3+Arg6_P ≤ Arg4_P ∧ 0 ≤ Arg5_P ∧ 0 ≤ Arg6_P ∧ 1+Arg5_P ≤ Arg7_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₄₀: n_l12___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___52(X₀, X₁, NoDet0, X₃, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+Arg5_P ≤ Arg4_P ∧ 3+Arg6_P ≤ Arg4_P ∧ 0 ≤ Arg5_P ∧ 0 ≤ Arg6_P ∧ 1+Arg5_P ≤ Arg7_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₅₂: n_l13___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: 0 ≤ X₆ ∧ X₄ ≤ X₆+3 ∧ 3+X₆ ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 3+X₆ ≤ X₄ ∧ 1+X₅ ≤ X₇ ∧ X₂ ≤ X₃ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₅₃: n_l13___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l15___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆ ∧ X₄ ≤ X₆+3 ∧ 3+X₆ ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ X₃ < X₂ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₉₂₀: n_l14___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆+3+2⋅X₅ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₄ ∧ X₂ ≤ X₃

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₆₁: n_l15___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆ ∧ X₃ < X₂ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₄ ≤ X₆+3 ∧ 3+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₇₂: n_l17___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₄ ≤ X₆+3 ∧ 3+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₂₄: n_l10___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___13(X₀, X₁, X₂, NoDet0, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ 2 ∧ 2 ≤ X₇ ∧ 3+Arg5_P ≤ Arg4_P ∧ 3+Arg6_P ≤ Arg4_P ∧ 0 ≤ Arg5_P ∧ 0 ≤ Arg6_P ∧ 1+Arg5_P ≤ Arg7_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₂₈: n_l10___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___51(X₀, X₁, X₂, NoDet0, Arg4_P, Arg5_P, Arg6_P, Arg7_P) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+Arg5_P ≤ Arg4_P ∧ 3+Arg6_P ≤ Arg4_P ∧ 0 ≤ Arg5_P ∧ 0 ≤ Arg6_P ∧ 1+Arg5_P ≤ Arg7_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₄₂: n_l13___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___50(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ 2 ∧ 2 ≤ X₇ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 3+X₆ ≤ X₄ ∧ 1+X₅ ≤ X₇ ∧ X₂ ≤ X₃ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₄₃: n_l13___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l15___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ 2 ∧ 2 ≤ X₇ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ X₃ < X₂ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₅₀: n_l13___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___50(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 3+X₆ ≤ X₄ ∧ 1+X₅ ≤ X₇ ∧ X₂ ≤ X₃ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₅₁: n_l13___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l15___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ X₃ < X₂ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₅₇: n_l15___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ X₇ ≤ 2 ∧ 2 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₆₂: n_l15___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ X₃ < X₂ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₆₅: n_l16___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___1(X₀, X₁, X₂, X₃, X₄, X₇, X₆, X₇) :|: 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₄ ≤ X₆+3 ∧ 3+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₆₉: n_l17___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₇ ≤ 2 ∧ 2 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₇₄: n_l17___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₉₁₈: n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆+3+2⋅X₅ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₆₃: n_l16___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___46(X₀, X₁, X₂, X₃, X₄, X₇, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₇ ≤ 2 ∧ 2 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₈₆₈: n_l16___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l14___46(X₀, X₁, X₂, X₃, X₄, X₇, X₆, X₇) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₇ ≤ 1 ∧ 1 ≤ X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁

All Bounds

Timebounds

Overall timebound:20⋅X₄⋅X₄+19⋅X₅+51⋅X₄+39 {O(n^2)}
t₀: 1 {O(1)}
t₁₈: X₄⋅X₄+2⋅X₄+X₅+3 {O(n^2)}
t₂₇: X₄⋅X₄+2⋅X₄+X₅+1 {O(n^2)}
t₂₃: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₂₅: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₂₈: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₂₉: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₉: X₄⋅X₄+2⋅X₅+4⋅X₄+2 {O(n^2)}
t₁₀: X₄ {O(n)}
t₃₀: X₄⋅X₄+2⋅X₄+X₅+2 {O(n^2)}
t₃₃: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₃₂: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₃₅: 1 {O(1)}
t₃: X₄+1 {O(n)}
t₄: 1 {O(1)}
t₁₄: 2⋅X₄⋅X₄+4⋅X₄+X₅+7 {O(n^2)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃₄: X₄ {O(n)}
t₁₁: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₁₂: 2⋅X₄⋅X₄+4⋅X₄+X₅+7 {O(n^2)}
t₁₆: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₁₉: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₂₀: X₄⋅X₄+5⋅X₄+X₅+3 {O(n^2)}
t₂₁: X₄⋅X₄+2⋅X₄+X₅+2 {O(n^2)}
t₂₂: X₄⋅X₄+2⋅X₄+X₅+3 {O(n^2)}
t₈: X₄+1 {O(n)}
t₅: X₄+1 {O(n)}
t₇: X₄+1 {O(n)}

Costbounds

Overall costbound: 20⋅X₄⋅X₄+19⋅X₅+51⋅X₄+39 {O(n^2)}
t₀: 1 {O(1)}
t₁₈: X₄⋅X₄+2⋅X₄+X₅+3 {O(n^2)}
t₂₇: X₄⋅X₄+2⋅X₄+X₅+1 {O(n^2)}
t₂₃: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₂₅: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₂₈: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₂₉: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₉: X₄⋅X₄+2⋅X₅+4⋅X₄+2 {O(n^2)}
t₁₀: X₄ {O(n)}
t₃₀: X₄⋅X₄+2⋅X₄+X₅+2 {O(n^2)}
t₃₃: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₃₂: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₃₅: 1 {O(1)}
t₃: X₄+1 {O(n)}
t₄: 1 {O(1)}
t₁₄: 2⋅X₄⋅X₄+4⋅X₄+X₅+7 {O(n^2)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃₄: X₄ {O(n)}
t₁₁: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₁₂: 2⋅X₄⋅X₄+4⋅X₄+X₅+7 {O(n^2)}
t₁₆: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₁₉: X₄⋅X₄+2⋅X₄+X₅ {O(n^2)}
t₂₀: X₄⋅X₄+5⋅X₄+X₅+3 {O(n^2)}
t₂₁: X₄⋅X₄+2⋅X₄+X₅+2 {O(n^2)}
t₂₂: X₄⋅X₄+2⋅X₄+X₅+3 {O(n^2)}
t₈: X₄+1 {O(n)}
t₅: X₄+1 {O(n)}
t₇: X₄+1 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₁₈, X₆: X₄ {O(n)}
t₁₈, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₅: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄ {O(EXP)}
t₂₇, X₆: X₄ {O(n)}
t₂₇, X₇: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄ {O(EXP)}
t₂₃, X₆: X₄ {O(n)}
t₂₃, X₇: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₂₅, X₄: X₄ {O(n)}
t₂₅, X₅: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄ {O(EXP)}
t₂₅, X₆: X₄ {O(n)}
t₂₅, X₇: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₂₈, X₄: X₄ {O(n)}
t₂₈, X₅: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄ {O(EXP)}
t₂₈, X₆: X₄ {O(n)}
t₂₈, X₇: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₅: X₄ {O(n)}
t₂₉, X₆: X₄ {O(n)}
t₂₉, X₇: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₉, X₆: X₄ {O(n)}
t₉, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+X₄ {O(EXP)}
t₁₀, X₆: X₄ {O(n)}
t₁₀, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₃₀, X₄: X₄ {O(n)}
t₃₀, X₅: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄ {O(EXP)}
t₃₀, X₆: X₄ {O(n)}
t₃₀, X₇: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₃₃, X₆: X₄ {O(n)}
t₃₃, X₇: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₃₂, X₄: X₄ {O(n)}
t₃₂, X₅: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄ {O(EXP)}
t₃₂, X₆: X₄ {O(n)}
t₃₂, X₇: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₃₅, X₄: 2⋅X₄ {O(n)}
t₃₅, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+X₄+X₅ {O(EXP)}
t₃₅, X₆: X₄+X₆ {O(n)}
t₃₅, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+2⋅X₇ {O(EXP)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+X₄+X₅ {O(EXP)}
t₃, X₆: X₄ {O(n)}
t₃, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+X₄ {O(EXP)}
t₄, X₆: X₄ {O(n)}
t₄, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₁₄, X₆: X₄ {O(n)}
t₁₄, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: 0 {O(1)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₃₄, X₄: X₄ {O(n)}
t₃₄, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+X₄ {O(EXP)}
t₃₄, X₆: X₄ {O(n)}
t₃₄, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₁₁, X₆: X₄ {O(n)}
t₁₁, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₁₂, X₆: X₄ {O(n)}
t₁₂, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₁₆, X₆: X₄ {O(n)}
t₁₆, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₁₉, X₆: X₄ {O(n)}
t₁₉, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₂₀, X₆: X₄ {O(n)}
t₂₀, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄ {O(EXP)}
t₂₁, X₆: X₄ {O(n)}
t₂₁, X₇: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₂₂, X₆: X₄ {O(n)}
t₂₂, X₇: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5 {O(EXP)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: 0 {O(1)}
t₈, X₆: X₄ {O(n)}
t₈, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+X₄+X₅ {O(EXP)}
t₅, X₆: X₄ {O(n)}
t₅, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: 2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₄⋅X₄+2⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅5+X₄+X₅ {O(EXP)}
t₇, X₆: X₄ {O(n)}
t₇, X₇: 10⋅2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₄⋅X₄+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅4⋅X₅+2^(X₄⋅X₄+2⋅X₄+X₅+2)⋅2^(X₄⋅X₄+2⋅X₄+X₅+3)⋅8⋅X₄+X₇ {O(EXP)}