Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₄
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ 0
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₉, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0
t₁₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, nondef.2, X₇, X₈, X₉)
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 0
t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₀
t₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₇, X₈, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉)
t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₅ ∧ 0 < X₂
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉)
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀-1, X₃, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)

Preprocessing

Found invariant 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l11

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₀ ≤ X₇ ∧ X₀ ≤ 0 for location l15

Found invariant X₀ ≤ X₇ for location l12

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l9

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l3

Found invariant X₀ ≤ X₇ ∧ X₀ ≤ 0 for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆ ∧ 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₉, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0 ∧ 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀
t₁₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, nondef.2, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 0 ∧ X₀ ≤ X₇
t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₀ ∧ X₀ ≤ X₇
t₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₇, X₈, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ X₇ ∧ X₀ ≤ 0
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀
t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₅ ∧ 0 < X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀-1, X₃, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀

MPRF for transition t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l10 [X₀-1 ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀ ]
l5 [X₀-1 ]
l11 [X₀-1 ]
l7 [X₀-1 ]
l6 [X₀-1 ]
l8 [X₀-1 ]
l4 [X₀-1 ]
l9 [X₀-1 ]
l12 [X₀ ]

MPRF for transition t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l10 [X₀-1 ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀ ]
l5 [X₀-1 ]
l11 [X₀-1 ]
l7 [X₀ ]
l6 [X₀ ]
l8 [X₀ ]
l4 [X₀ ]
l9 [X₀-1 ]
l12 [X₀ ]

MPRF for transition t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆ ∧ 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l10 [X₀ ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀ ]
l5 [X₀ ]
l11 [X₀ ]
l7 [X₀ ]
l6 [X₀ ]
l8 [X₀ ]
l4 [X₀ ]
l9 [X₀-1 ]
l12 [X₀ ]

MPRF for transition t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₉, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0 ∧ 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l10 [X₀ ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀ ]
l5 [X₀ ]
l11 [X₀ ]
l7 [X₀ ]
l6 [X₀ ]
l8 [X₀ ]
l4 [X₀ ]
l9 [X₀-1 ]
l12 [X₀ ]

MPRF for transition t₁₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, nondef.2, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₇+1 {O(n)}

MPRF:

l10 [X₀+X₇-2 ]
l2 [X₀+X₇-1 ]
l3 [X₀+X₇-1 ]
l1 [X₀+X₇-1 ]
l5 [X₀+X₇-1 ]
l11 [X₀+X₇-1 ]
l7 [X₀+X₇-1 ]
l6 [X₀+X₇-1 ]
l8 [X₀+X₇-1 ]
l4 [X₀+X₇-1 ]
l9 [X₀+X₇-2 ]
l12 [X₀+X₇-1 ]

MPRF for transition t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₀ ∧ X₀ ≤ X₇ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l10 [X₀-1 ]
l2 [X₀-1 ]
l3 [X₀-1 ]
l1 [X₀-1 ]
l5 [X₀-1 ]
l11 [X₀-1 ]
l7 [X₀-1 ]
l6 [X₀-1 ]
l8 [X₀-1 ]
l4 [X₀-1 ]
l9 [X₀-1 ]
l12 [X₀ ]

MPRF for transition t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l10 [X₀-1 ]
l2 [X₀ ]
l3 [X₀-1 ]
l1 [X₀-1 ]
l5 [X₀-1 ]
l11 [X₀-1 ]
l7 [X₀-1 ]
l6 [X₀-1 ]
l8 [X₀-1 ]
l4 [X₀-1 ]
l9 [X₀-1 ]
l12 [X₀ ]

MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l10 [X₀-1 ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀-1 ]
l5 [X₀-1 ]
l11 [X₀-1 ]
l7 [X₀-1 ]
l6 [X₀-1 ]
l8 [X₀-1 ]
l4 [X₀-1 ]
l9 [X₀-1 ]
l12 [X₀ ]

MPRF for transition t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l10 [X₀-1 ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀ ]
l5 [X₀ ]
l11 [X₀-1 ]
l7 [X₀ ]
l6 [X₀ ]
l8 [X₀ ]
l4 [X₀ ]
l9 [X₀-1 ]
l12 [X₀ ]

MPRF for transition t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₇ {O(n)}

MPRF:

l10 [X₀+X₇ ]
l2 [X₀+X₇ ]
l3 [X₀+X₇ ]
l1 [X₀+X₇ ]
l5 [X₀+X₇ ]
l11 [X₀+X₇ ]
l7 [X₀+X₇ ]
l6 [X₀+X₇ ]
l8 [X₀+X₇ ]
l4 [X₀+X₇ ]
l9 [X₀+X₇-1 ]
l12 [X₀+X₇ ]

MPRF for transition t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l10 [X₀ ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀ ]
l5 [X₀ ]
l11 [X₀ ]
l7 [X₀ ]
l6 [X₀ ]
l8 [X₀ ]
l4 [X₀ ]
l9 [X₀-1 ]
l12 [X₀ ]

MPRF for transition t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀-1, X₃, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l10 [X₀ ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀ ]
l5 [X₀ ]
l11 [X₀ ]
l7 [X₀ ]
l6 [X₀ ]
l8 [X₀ ]
l4 [X₀ ]
l9 [X₀ ]
l12 [X₀ ]

MPRF for transition t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₅ ∧ 0 < X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₈ {O(n^2)}

MPRF:

l9 [X₁ ]
l10 [X₁ ]
l12 [X₁ ]
l2 [X₁ ]
l3 [X₁ ]
l1 [X₁ ]
l5 [X₁ ]
l11 [X₁ ]
l7 [X₂ ]
l6 [X₂ ]
l8 [X₂-1 ]
l4 [X₂ ]

MPRF for transition t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₈ {O(n^2)}

MPRF:

l9 [X₁ ]
l10 [X₁ ]
l12 [X₁ ]
l2 [X₁ ]
l3 [X₁ ]
l1 [X₁ ]
l5 [X₁ ]
l11 [X₁ ]
l7 [X₂ ]
l6 [X₂ ]
l8 [X₂ ]
l4 [X₂ ]

knowledge_propagation leads to new time bound X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₇+X₈ {O(n^2)} for transition t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₇+X₈ {O(n^2)} for transition t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀

Analysing control-flow refined program

Found invariant 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l11

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l6___6

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___2

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___1

Found invariant X₀ ≤ X₇ ∧ X₀ ≤ 0 for location l15

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___4

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___5

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l7___3

Found invariant X₀ ≤ X₇ for location l12

Found invariant 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l9

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l7___7

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l3

Found invariant X₀ ≤ X₇ ∧ X₀ ≤ 0 for location l14

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₄₄₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ X₇ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₄₅₀: n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l6___6(X₀, X₁, X₂, X₃, Arg4_P, NoDet0, X₆, Arg7_P, X₈, X₉) :|: X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₀ ≤ Arg7_P ∧ 1 ≤ Arg4_P ∧ 1 ≤ X₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₄₄₈: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 0 < X₂ ∧ 1 ≤ X₄ ∧ 0 < X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₄₆₀: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₄₆₂: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₄₅₂: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l4___4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ X₇ ∧ 0 < X₅ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₁ ∧ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₄₄₅: n_l4___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₀ ≤ X₇ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₇ {O(n^2)}

MPRF:

l10 [0 ]
l2 [0 ]
l3 [0 ]
l1 [0 ]
l4 [0 ]
l5 [0 ]
l11 [0 ]
l12 [0 ]
n_l8___5 [0 ]
l9 [0 ]
n_l7___3 [X₂ ]
n_l6___2 [X₂ ]
n_l7___7 [0 ]
n_l6___6 [0 ]
n_l8___1 [X₂ ]
n_l4___4 [X₂+1 ]

MPRF for transition t₄₄₇: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l8___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 0 < X₂ ∧ 1 ≤ X₄ ∧ 0 < X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₇ {O(n^2)}

MPRF:

l10 [0 ]
l2 [0 ]
l3 [0 ]
l1 [0 ]
l4 [0 ]
l5 [0 ]
l11 [0 ]
l12 [0 ]
n_l8___5 [0 ]
l9 [0 ]
n_l7___3 [X₂+1 ]
n_l6___2 [X₂+1 ]
n_l7___7 [0 ]
n_l6___6 [0 ]
n_l8___1 [X₂ ]
n_l4___4 [X₂+1 ]

MPRF for transition t₄₅₉: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l10 [X₀-1 ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀ ]
l4 [X₀ ]
l5 [X₀ ]
l11 [X₀-1 ]
l12 [X₀ ]
l9 [X₀-1 ]
n_l7___3 [X₀ ]
n_l6___2 [X₀ ]
n_l7___7 [X₀ ]
n_l6___6 [X₀ ]
n_l8___1 [X₀ ]
n_l8___5 [X₀ ]
n_l4___4 [X₀ ]

MPRF for transition t₄₆₁: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF:

l10 [X₀-1 ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀ ]
l4 [X₀ ]
l5 [X₀ ]
l11 [X₀-1 ]
l12 [X₀ ]
l9 [X₀-1 ]
n_l7___3 [X₀ ]
n_l6___2 [X₀ ]
n_l7___7 [X₀ ]
n_l6___6 [X₀ ]
n_l8___1 [X₀ ]
n_l8___5 [X₀ ]
n_l4___4 [X₀ ]

MPRF for transition t₄₄₉: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l6___2(X₀, X₁, X₂, X₃, Arg4_P, NoDet0, X₆, Arg7_P, X₈, X₉) :|: X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₀ ≤ Arg7_P ∧ 1 ≤ Arg4_P ∧ 1 ≤ X₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₇ {O(n^2)}

MPRF:

l10 [0 ]
l2 [0 ]
l3 [0 ]
l1 [0 ]
l4 [0 ]
l5 [0 ]
l11 [0 ]
l12 [0 ]
n_l8___5 [0 ]
l9 [0 ]
n_l7___3 [X₂+1 ]
n_l6___2 [X₂ ]
n_l7___7 [0 ]
n_l6___6 [0 ]
n_l8___1 [X₂ ]
n_l4___4 [X₂+1 ]

MPRF for transition t₄₅₁: n_l8___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l4___4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ X₇ ∧ 0 < X₅ ∧ 1 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 < X₂ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇⋅X₈+X₇⋅X₉ {O(n^2)}

MPRF:

l10 [0 ]
l2 [0 ]
l3 [0 ]
l1 [0 ]
l4 [0 ]
l5 [0 ]
l11 [0 ]
l12 [0 ]
n_l8___5 [0 ]
l9 [0 ]
n_l7___3 [X₂ ]
n_l6___2 [X₂ ]
n_l7___7 [0 ]
n_l6___6 [0 ]
n_l8___1 [X₂ ]
n_l4___4 [X₂ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:4⋅X₇⋅X₇+4⋅X₇⋅X₈+4⋅X₇⋅X₉+16⋅X₇+4⋅X₈+5 {O(n^2)}
t₀: 1 {O(1)}
t₇: X₇ {O(n)}
t₈: X₇ {O(n)}
t₁₉: X₇ {O(n)}
t₂₀: X₇ {O(n)}
t₁₈: 2⋅X₇+1 {O(n)}
t₂: X₇ {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂₂: 1 {O(1)}
t₄: X₇ {O(n)}
t₆: X₇ {O(n)}
t₉: X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₇+X₈ {O(n^2)}
t₁₆: X₇ {O(n)}
t₁₂: X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₈ {O(n^2)}
t₁₃: 2⋅X₇ {O(n)}
t₁₄: X₇ {O(n)}
t₁₁: X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₇+X₈ {O(n^2)}
t₁₅: X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₈ {O(n^2)}
t₂₁: X₇ {O(n)}

Costbounds

Overall costbound: 4⋅X₇⋅X₇+4⋅X₇⋅X₈+4⋅X₇⋅X₉+16⋅X₇+4⋅X₈+5 {O(n^2)}
t₀: 1 {O(1)}
t₇: X₇ {O(n)}
t₈: X₇ {O(n)}
t₁₉: X₇ {O(n)}
t₂₀: X₇ {O(n)}
t₁₈: 2⋅X₇+1 {O(n)}
t₂: X₇ {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂₂: 1 {O(1)}
t₄: X₇ {O(n)}
t₆: X₇ {O(n)}
t₉: X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₇+X₈ {O(n^2)}
t₁₆: X₇ {O(n)}
t₁₂: X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₈ {O(n^2)}
t₁₃: 2⋅X₇ {O(n)}
t₁₄: X₇ {O(n)}
t₁₁: X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₇+X₈ {O(n^2)}
t₁₅: X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₈ {O(n^2)}
t₂₁: X₇ {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₇, X₀: X₇ {O(n)}
t₇, X₁: X₇+X₈+X₉ {O(n)}
t₇, X₂: X₇+X₈+X₉ {O(n)}
t₇, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₈, X₀: X₇ {O(n)}
t₈, X₁: X₇+X₈+X₉ {O(n)}
t₈, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂ {O(n)}
t₈, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₈, X₇: X₇ {O(n)}
t₈, X₈: X₈ {O(n)}
t₈, X₉: X₉ {O(n)}
t₁₉, X₀: X₇ {O(n)}
t₁₉, X₁: X₇+X₈+X₉ {O(n)}
t₁₉, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂ {O(n)}
t₁₉, X₃: X₇+X₈+X₉ {O(n)}
t₁₉, X₇: X₇ {O(n)}
t₁₉, X₈: X₈ {O(n)}
t₁₉, X₉: X₉ {O(n)}
t₂₀, X₀: X₇ {O(n)}
t₂₀, X₁: X₇+X₈+X₉ {O(n)}
t₂₀, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂ {O(n)}
t₂₀, X₃: X₉ {O(n)}
t₂₀, X₇: X₇ {O(n)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₉ {O(n)}
t₁₈, X₀: X₇ {O(n)}
t₁₈, X₁: X₇+X₈+X₉ {O(n)}
t₁₈, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂ {O(n)}
t₁₈, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₁₈, X₇: X₇ {O(n)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₉ {O(n)}
t₂, X₀: X₇ {O(n)}
t₂, X₁: X₇+X₈+X₉ {O(n)}
t₂, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂ {O(n)}
t₂, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₃, X₀: 2⋅X₇ {O(n)}
t₃, X₁: 2⋅X₈+X₇+X₉ {O(n)}
t₃, X₂: 2⋅X₂+2⋅X₇+2⋅X₈+2⋅X₉ {O(n)}
t₃, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₃, X₇: 2⋅X₇ {O(n)}
t₃, X₈: 2⋅X₈ {O(n)}
t₃, X₉: 2⋅X₉ {O(n)}
t₁, X₀: X₇ {O(n)}
t₁, X₁: X₈ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₂₂, X₀: 2⋅X₇ {O(n)}
t₂₂, X₁: 2⋅X₈+X₇+X₉ {O(n)}
t₂₂, X₂: 2⋅X₂+2⋅X₇+2⋅X₈+2⋅X₉ {O(n)}
t₂₂, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₂₂, X₇: 2⋅X₇ {O(n)}
t₂₂, X₈: 2⋅X₈ {O(n)}
t₂₂, X₉: 2⋅X₉ {O(n)}
t₄, X₀: X₇ {O(n)}
t₄, X₁: X₇+X₈+X₉ {O(n)}
t₄, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂ {O(n)}
t₄, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₆, X₀: X₇ {O(n)}
t₆, X₁: X₇+X₈+X₉ {O(n)}
t₆, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂ {O(n)}
t₆, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₉, X₀: X₇ {O(n)}
t₉, X₁: X₇+X₈+X₉ {O(n)}
t₉, X₂: X₇+X₈+X₉ {O(n)}
t₉, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₉, X₇: X₇ {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₁₆, X₀: X₇ {O(n)}
t₁₆, X₁: X₇+X₈+X₉ {O(n)}
t₁₆, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂ {O(n)}
t₁₆, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₁₆, X₇: X₇ {O(n)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₉ {O(n)}
t₁₂, X₀: X₇ {O(n)}
t₁₂, X₁: X₇+X₈+X₉ {O(n)}
t₁₂, X₂: X₇+X₈+X₉ {O(n)}
t₁₂, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₁₂, X₇: X₇ {O(n)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₉ {O(n)}
t₁₃, X₀: X₇ {O(n)}
t₁₃, X₁: X₇+X₈+X₉ {O(n)}
t₁₃, X₂: X₇+X₈+X₉ {O(n)}
t₁₃, X₃: X₇+X₈+X₉ {O(n)}
t₁₃, X₇: X₇ {O(n)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₉ {O(n)}
t₁₄, X₀: X₇ {O(n)}
t₁₄, X₁: X₇+X₈+X₉ {O(n)}
t₁₄, X₂: X₇+X₈+X₉ {O(n)}
t₁₄, X₃: X₇+X₈+X₉ {O(n)}
t₁₄, X₇: X₇ {O(n)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₁, X₀: X₇ {O(n)}
t₁₁, X₁: X₇+X₈+X₉ {O(n)}
t₁₁, X₂: X₇+X₈+X₉ {O(n)}
t₁₁, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₁₁, X₇: X₇ {O(n)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₅, X₀: X₇ {O(n)}
t₁₅, X₁: X₇+X₈+X₉ {O(n)}
t₁₅, X₂: X₇+X₈+X₉ {O(n)}
t₁₅, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃ {O(n)}
t₁₅, X₇: X₇ {O(n)}
t₁₅, X₈: X₈ {O(n)}
t₁₅, X₉: X₉ {O(n)}
t₂₁, X₀: X₇ {O(n)}
t₂₁, X₁: X₇+X₈+X₉ {O(n)}
t₂₁, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂ {O(n)}
t₂₁, X₃: 3⋅X₇+3⋅X₈+4⋅X₉ {O(n)}
t₂₁, X₇: X₇ {O(n)}
t₂₁, X₈: X₈ {O(n)}
t₂₁, X₉: X₉ {O(n)}