Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆)
t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₁ ≤ X₄
t₃₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₃
t₃₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁
t₃₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁
t₂₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀
t₂₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₃
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₁ ≤ X₄
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ < 0
t₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ 0 < X₂
t₁₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ X₂ < 0
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ 0 < X₂
t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ < 0
t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 < X₂
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆)
t₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
Preprocessing
Cut unsatisfiable transition t₁₈: l7→l3
Cut unsatisfiable transition t₁₉: l7→l3
Cut unsatisfiable transition t₂₁: l7→l3
Cut unsatisfiable transition t₂₂: l7→l3
Cut unsatisfiable transition t₂₃: l7→l3
Cut unsatisfiable transition t₂₄: l7→l3
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l11
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l2
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l6
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l12
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location l7
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l5
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l13
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location l8
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location l1
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l10
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l4
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₂₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₂₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₂₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ < 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ 0 < X₂ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
MPRF for transition t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ of depth 1:
new bound:
X₃+X₄+X₅+X₆+1 {O(n)}
MPRF:
l10 [X₃+X₄-X₀-X₁ ]
l11 [X₃+X₄+1-X₀-X₁ ]
l4 [X₃+X₄+1-X₀-X₁ ]
l5 [X₃+X₄+1-X₀-X₁ ]
l1 [X₃+X₄+1-X₀-X₁ ]
l6 [X₃+X₄+1-X₀-X₁ ]
l2 [X₃+X₄+1-X₀-X₁ ]
l3 [X₃+X₄+1-X₀-X₁ ]
l8 [X₃+X₄-X₀-X₁ ]
l7 [X₃+X₄-X₀-X₁ ]
MPRF for transition t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ of depth 1:
new bound:
X₃+X₅+1 {O(n)}
MPRF:
l10 [X₃+1-X₀ ]
l11 [X₃+1-X₀ ]
l4 [X₃+1-X₀ ]
l5 [X₃+1-X₀ ]
l1 [X₃+1-X₀ ]
l6 [X₃+1-X₀ ]
l2 [X₃+1-X₀ ]
l3 [X₃+1-X₀ ]
l8 [X₃+1-X₀ ]
l7 [X₃+1-X₀ ]
MPRF for transition t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ of depth 1:
new bound:
X₄+X₆+1 {O(n)}
MPRF:
l10 [X₄+1-X₁ ]
l11 [X₄+1-X₁ ]
l4 [X₄+1-X₁ ]
l5 [X₄+1-X₁ ]
l1 [X₄+1-X₁ ]
l6 [X₄+1-X₁ ]
l2 [X₄+1-X₁ ]
l3 [X₄+1-X₁ ]
l8 [X₄+1-X₁ ]
l7 [X₄+1-X₁ ]
MPRF for transition t₂₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ of depth 1:
new bound:
X₃+X₅+1 {O(n)}
MPRF:
l10 [X₃-X₀ ]
l11 [X₃+1-X₀ ]
l4 [X₃+1-X₀ ]
l5 [X₃+1-X₀ ]
l1 [X₃+1-X₀ ]
l6 [X₃+1-X₀ ]
l2 [X₃+1-X₀ ]
l3 [X₃+1-X₀ ]
l8 [X₃+1-X₀ ]
l7 [X₃+1-X₀ ]
MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ of depth 1:
new bound:
X₃+X₄+X₅+X₆+1 {O(n)}
MPRF:
l10 [X₃+X₄-X₀-X₁ ]
l11 [X₃+X₄+1-X₀-X₁ ]
l4 [X₃+X₄+1-X₀-X₁ ]
l5 [X₃+X₄+1-X₀-X₁ ]
l1 [X₃+X₄-X₀-X₁ ]
l6 [X₃+X₄+1-X₀-X₁ ]
l2 [X₃+X₄+1-X₀-X₁ ]
l3 [X₃+X₄+1-X₀-X₁ ]
l8 [X₃+X₄-X₀-X₁ ]
l7 [X₃+X₄-X₀-X₁ ]
MPRF for transition t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ < 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ of depth 1:
new bound:
X₄+X₆+1 {O(n)}
MPRF:
l10 [X₄+1-X₁ ]
l11 [X₄+1-X₁ ]
l4 [X₄+1-X₁ ]
l5 [X₄+1-X₁ ]
l1 [X₄+1-X₁ ]
l6 [X₄+1-X₁ ]
l2 [X₄+1-X₁ ]
l3 [X₄+1-X₁ ]
l8 [X₄+1-X₁ ]
l7 [X₄+1-X₁ ]
MPRF for transition t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ 0 < X₂ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ of depth 1:
new bound:
X₄+X₆+1 {O(n)}
MPRF:
l10 [X₄+1-X₁ ]
l11 [X₄+1-X₁ ]
l4 [X₄+1-X₁ ]
l5 [X₄+1-X₁ ]
l1 [X₄+1-X₁ ]
l6 [X₄+1-X₁ ]
l2 [X₄+1-X₁ ]
l3 [X₄+1-X₁ ]
l8 [X₄+1-X₁ ]
l7 [X₄+1-X₁ ]
MPRF for transition t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ of depth 1:
new bound:
X₃+X₅+1 {O(n)}
MPRF:
l10 [X₃-X₀ ]
l11 [X₃+1-X₀ ]
l4 [X₃+1-X₀ ]
l5 [X₃+1-X₀ ]
l1 [X₃+1-X₀ ]
l6 [X₃+1-X₀ ]
l2 [X₃+1-X₀ ]
l3 [X₃+1-X₀ ]
l8 [X₃+1-X₀ ]
l7 [X₃+1-X₀ ]
MPRF for transition t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ of depth 1:
new bound:
X₃+X₄+X₅+X₆+1 {O(n)}
MPRF:
l10 [X₃+X₄+1-X₀-X₁ ]
l11 [X₃+X₄+1-X₀-X₁ ]
l4 [X₃+X₄+1-X₀-X₁ ]
l5 [X₃+X₄+1-X₀-X₁ ]
l1 [X₃+X₄+1-X₀-X₁ ]
l6 [X₃+X₄+1-X₀-X₁ ]
l2 [X₃+X₄+1-X₀-X₁ ]
l3 [X₃+X₄+1-X₀-X₁ ]
l8 [X₃+X₄+1-X₀-X₁ ]
l7 [X₃+X₄-X₀-X₁ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₁₂₁₄₁: n_l2___14→l10
Cut unsatisfiable transition t₁₂₁₄₂: n_l2___18→l10
Cut unsatisfiable transition t₁₂₁₄₅: n_l2___31→l10
Cut unsatisfiable transition t₁₂₁₄₆: n_l2___34→l10
Cut unsatisfiable transition t₁₂₁₄₇: n_l2___38→l10
Cut unsatisfiable transition t₁₂₁₄₈: n_l2___47→l10
Cut unsatisfiable transition t₁₂₁₄₉: n_l2___8→l10
Cut unsatisfiable transition t₁₂₁₆₄: n_l5___10→l12
Cut unsatisfiable transition t₁₂₁₆₅: n_l5___20→l12
Cut unsatisfiable transition t₁₂₁₇₆: n_l5___20→l12
Cut unsatisfiable transition t₁₂₁₆₆: n_l5___21→l12
Cut unsatisfiable transition t₁₂₁₇₇: n_l5___21→l12
Cut unsatisfiable transition t₁₂₁₆₇: n_l5___3→l12
Cut unsatisfiable transition t₁₂₁₆₈: n_l5___30→l12
Cut unsatisfiable transition t₁₂₁₆₉: n_l5___33→l12
Cut unsatisfiable transition t₁₂₁₇₀: n_l5___4→l12
Cut unsatisfiable transition t₁₂₁₇₁: n_l5___40→l12
Cut unsatisfiable transition t₁₂₁₈₂: n_l5___40→l12
Cut unsatisfiable transition t₁₂₁₇₂: n_l5___41→l12
Cut unsatisfiable transition t₁₂₁₇₃: n_l5___49→l12
Cut unsatisfiable transition t₁₂₁₈₄: n_l5___49→l12
Cut unsatisfiable transition t₁₂₁₇₄: n_l5___50→l12
Cut unsatisfiable transition t₁₂₁₅₁: n_l6___15→l1
Cut unsatisfiable transition t₁₂₁₈₇: n_l6___15→l1
Cut unsatisfiable transition t₁₂₁₅₂: n_l6___19→l1
Cut unsatisfiable transition t₁₂₁₈₈: n_l6___19→l1
Cut unsatisfiable transition t₁₂₁₅₃: n_l6___2→l1
Cut unsatisfiable transition t₁₂₁₈₉: n_l6___2→l1
Cut unsatisfiable transition t₁₂₁₅₅: n_l6___25→l1
Cut unsatisfiable transition t₁₂₁₉₁: n_l6___25→l1
Cut unsatisfiable transition t₁₂₁₅₇: n_l6___29→l1
Cut unsatisfiable transition t₁₂₁₉₃: n_l6___29→l1
Cut unsatisfiable transition t₁₂₁₅₈: n_l6___32→l1
Cut unsatisfiable transition t₁₂₁₉₄: n_l6___32→l1
Cut unsatisfiable transition t₁₂₁₅₉: n_l6___35→l1
Cut unsatisfiable transition t₁₂₁₉₅: n_l6___35→l1
Cut unsatisfiable transition t₁₂₁₆₀: n_l6___39→l1
Cut unsatisfiable transition t₁₂₁₉₆: n_l6___39→l1
Cut unsatisfiable transition t₁₂₁₆₁: n_l6___48→l1
Cut unsatisfiable transition t₁₂₁₉₇: n_l6___48→l1
Cut unsatisfiable transition t₁₂₁₆₃: n_l6___9→l1
Cut unsatisfiable transition t₁₂₁₉₉: n_l6___9→l1
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l11___17
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___20
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l2___31
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l2___47
Found invariant 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l11___36
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l2___14
Found invariant 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l2___34
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ for location n_l4___43
Found invariant X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ for location n_l5___30
Found invariant X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ for location n_l5___50
Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l2___38
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l3___6
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l6___19
Found invariant X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l2___1
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l4___13
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ for location l12
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l5___4
Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l6___39
Found invariant 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l5___40
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l6___48
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location l1
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l10
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l4___27
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l3
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ for location n_l5___41
Found invariant X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ for location n_l4___53
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l5___3
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l6___9
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l11___45
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l5___49
Found invariant X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l6___2
Found invariant X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l6___29
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l2___24
Found invariant X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l2___28
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l4___23
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l6___25
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l11___46
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ for location n_l4___12
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location n_l6___51
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l11___16
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l2___18
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ for location n_l3___44
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l5___10
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l6___22
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location n_l6___26
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l6___32
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ for location n_l4___42
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l4___5
Found invariant X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ for location n_l4___52
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___21
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location l7
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l11___7
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location n_l6___11
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ for location l13
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location l8
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l2___8
Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l11___37
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ for location n_l5___33
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l6___15
Found invariant 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l6___35
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₁₂₀₅₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₁₂₀₅₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound X₃+X₅+1 {O(n)} for transition t₁₂₀₅₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₁₂₀₆₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₁₂₀₆₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₂₀₆₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₂₀₆₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₁₂₀₆₈: n_l4___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 1+X₃ ∧ 1+X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₁₂₀₇₂: n_l4___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₂₀₇₈: n_l4___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₁₂₁₅₀: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₁₂₁₈₆: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₁₂₀₉₀: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ 1+X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound X₃+X₅+1 {O(n)} for transition t₁₂₁₅₄: n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
knowledge_propagation leads to new time bound X₃+X₅+1 {O(n)} for transition t₁₂₁₉₀: n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₁₂₀₉₁: n_l6___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₁₂₁₅₆: n_l6___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₁₂₁₉₂: n_l6___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₂₀₉₂: n_l6___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₂₁₆₂: n_l6___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₂₁₉₈: n_l6___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₁₂₁₄₀: n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₁₂₁₄₃: n_l2___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₂₁₄₄: n_l2___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
MPRF for transition t₁₂₀₃₅: n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+20 {O(n)}
MPRF:
n_l11___36 [X₄+1-X₁ ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄+1-X₁ ]
n_l4___43 [X₄+1-X₁ ]
n_l5___40 [X₄+1-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄+1-X₁ ]
n_l2___34 [X₄+1-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₁₂₀₃₆: n_l11___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+20 {O(n)}
MPRF:
n_l11___36 [X₄-X₁ ]
n_l11___37 [X₄+1-X₁ ]
n_l3___44 [X₄+1-X₁ ]
n_l4___43 [X₄+1-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₁₂₀₄₆: n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+16 {O(n)}
MPRF:
n_l11___36 [X₄-X₁-1 ]
n_l11___37 [X₄-X₁-1 ]
n_l3___44 [X₄-X₁ ]
n_l4___43 [X₄-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁ ]
n_l6___39 [X₄-X₁ ]
n_l2___38 [X₄-X₁ ]
MPRF for transition t₁₂₀₄₇: n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+16 {O(n)}
MPRF:
n_l11___36 [X₄-X₁-1 ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄-X₁ ]
n_l4___43 [X₄-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁ ]
n_l6___39 [X₄-X₁ ]
n_l2___38 [X₄-X₁ ]
MPRF for transition t₁₂₀₄₈: n_l2___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+20 {O(n)}
MPRF:
n_l11___36 [X₄-X₁ ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄+1-X₁ ]
n_l4___43 [X₄+1-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₁₂₀₄₉: n_l2___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+20 {O(n)}
MPRF:
n_l11___36 [X₄-X₁ ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄+1-X₁ ]
n_l4___43 [X₄+1-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₁₂₀₅₄: n_l3___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+24 {O(n)}
MPRF:
n_l11___36 [X₄+1-X₁ ]
n_l11___37 [X₄+1-X₁ ]
n_l3___44 [X₄+2-X₁ ]
n_l4___43 [X₄+1-X₁ ]
n_l5___40 [X₄+1-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄+1-X₁ ]
n_l2___34 [X₄+1-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₁₂₀₇₄: n_l4___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+16 {O(n)}
MPRF:
n_l11___36 [X₄-X₁-1 ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄-X₁ ]
n_l4___43 [X₄-X₁ ]
n_l5___40 [X₄-X₁-1 ]
n_l5___41 [X₄-X₁ ]
n_l6___35 [X₄-X₁-1 ]
n_l2___34 [X₄-X₁-1 ]
n_l6___39 [X₄-X₁ ]
n_l2___38 [X₄-X₁ ]
MPRF for transition t₁₂₀₇₅: n_l4___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+24 {O(n)}
MPRF:
n_l11___36 [X₄+1-X₁ ]
n_l11___37 [X₄+1-X₁ ]
n_l3___44 [X₄+2-X₁ ]
n_l4___43 [X₄+2-X₁ ]
n_l5___40 [X₄+1-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄+1-X₁ ]
n_l2___34 [X₄+1-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₁₂₀₈₄: n_l5___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+36⋅X₅+4⋅X₃+20 {O(n)}
MPRF:
n_l11___36 [X₀+X₄-X₁-X₅-1 ]
n_l11___37 [X₀+X₄-X₁-X₅ ]
n_l3___44 [X₀+X₄-X₁-X₅ ]
n_l4___43 [X₀+X₄-X₁-X₅ ]
n_l5___40 [X₀+X₄-X₁-X₅ ]
n_l5___41 [X₀+X₄-X₁-X₅ ]
n_l6___35 [X₀+X₄-X₁-X₅-1 ]
n_l2___34 [X₀+X₄-X₁-X₅-1 ]
n_l6___39 [X₀+X₄-X₁-X₅ ]
n_l2___38 [X₀+X₄-X₁-X₅ ]
MPRF for transition t₁₂₀₈₅: n_l5___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+20 {O(n)}
MPRF:
n_l11___36 [X₄-X₁ ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄+1-X₁ ]
n_l4___43 [X₄+1-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁ ]
n_l6___39 [X₄-X₁ ]
n_l2___38 [X₄-X₁ ]
MPRF for transition t₁₂₀₉₄: n_l6___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+16 {O(n)}
MPRF:
n_l11___36 [X₄-X₁-1 ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄-X₁ ]
n_l4___43 [X₄-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁-1 ]
n_l6___39 [X₄-X₁ ]
n_l2___38 [X₄-X₁ ]
MPRF for transition t₁₂₀₉₅: n_l6___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
40⋅X₄+40⋅X₆+16 {O(n)}
MPRF:
n_l11___36 [2⋅X₄-X₁-X₆-1 ]
n_l11___37 [2⋅X₄-X₁-X₆-1 ]
n_l3___44 [2⋅X₄-X₁-X₆ ]
n_l4___43 [2⋅X₄-X₁-X₆ ]
n_l5___40 [2⋅X₄-X₁-X₆ ]
n_l5___41 [2⋅X₄-X₁-X₆ ]
n_l6___35 [2⋅X₄-X₁-X₆ ]
n_l2___34 [2⋅X₄-X₁-X₆ ]
n_l6___39 [2⋅X₄-X₁-X₆ ]
n_l2___38 [2⋅X₄-X₁-X₆-1 ]
CFR: Improvement to new bound with the following program:
new bound:
25⋅X₃+360⋅X₄+360⋅X₆+57⋅X₅+313 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l12, l13, l3, l7, l8, l9, n_l11___16, n_l11___17, n_l11___36, n_l11___37, n_l11___45, n_l11___46, n_l11___7, n_l2___1, n_l2___14, n_l2___18, n_l2___24, n_l2___28, n_l2___31, n_l2___34, n_l2___38, n_l2___47, n_l2___8, n_l3___44, n_l3___6, n_l4___12, n_l4___13, n_l4___23, n_l4___27, n_l4___42, n_l4___43, n_l4___5, n_l4___52, n_l4___53, n_l5___10, n_l5___20, n_l5___21, n_l5___3, n_l5___30, n_l5___33, n_l5___4, n_l5___40, n_l5___41, n_l5___49, n_l5___50, n_l6___11, n_l6___15, n_l6___19, n_l6___2, n_l6___22, n_l6___25, n_l6___26, n_l6___29, n_l6___32, n_l6___35, n_l6___39, n_l6___48, n_l6___51, n_l6___9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₃₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀
t₁₂₀₅₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₂₀₅₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₂₀₅₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₂₀₆₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₂₀₆₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₂₀₆₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₂₀₅₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₂₀₅₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₂₀₆₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₂₀₆₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ < 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ 0 < X₂ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
t₁₂₀₃₃: n_l11___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₀₃₄: n_l11___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₀₃₅: n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₃₆: n_l11___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₃₇: n_l11___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ < X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₃₈: n_l11___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₃₉: n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___6(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₁₂₁₄₀: n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₁₂₀₄₀: n_l2___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₀₄₁: n_l2___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₀₄₂: n_l2___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₀₄₃: n_l2___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₁₄₃: n_l2___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₁₂₁₄₄: n_l2___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₁₂₀₄₄: n_l2___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ < X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₄₅: n_l2___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ < X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₄₆: n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₄₇: n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₄₈: n_l2___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₄₉: n_l2___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₅₀: n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₅₁: n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₅₂: n_l2___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₁₂₀₅₃: n_l3___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₅₄: n_l3___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₆₅: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₄ ≤ X₁ ∧ X₄ < X₁ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₁₂₀₆₆: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₄ ≤ X₁ ∧ X₄ < X₁ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₁₂₀₆₇: n_l4___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 1+X₃ ∧ 1+X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃
t₁₂₀₆₈: n_l4___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 1+X₃ ∧ 1+X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃
t₁₂₀₆₉: n_l4___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₁₂₀₇₀: n_l4___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₀₇₁: n_l4___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₀₇₂: n_l4___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₁₂₀₇₃: n_l4___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___33(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ X₄ < X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₇₄: n_l4___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₇₅: n_l4___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₇₆: n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₃ < X₀ ∧ X₁ ≤ X₄+1 ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₁₂₀₇₇: n_l4___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁
t₁₂₀₇₈: n_l4___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁
t₁₂₀₇₉: n_l4___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀
t₁₂₀₈₀: n_l4___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀
t₁₂₁₇₅: n_l5___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₁₂₀₈₁: n_l5___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₁₂₀₈₂: n_l5___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₀₈₃: n_l5___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₁₇₈: n_l5___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₁₂₁₇₉: n_l5___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀
t₁₂₁₈₀: n_l5___33(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₁₂₁₈₁: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₁₂₀₈₄: n_l5___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₁₈₃: n_l5___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₈₅: n_l5___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₈₆: n_l5___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄ ∧ X₃ < X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₁₈₅: n_l5___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀
t₁₂₀₈₇: n_l5___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀
t₁₂₁₅₀: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁₂₁₈₆: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁₂₀₈₈: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₀₈₉: n_l6___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₀₉₀: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ 1+X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₁₂₁₅₄: n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₁₉₀: n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂₀₉₁: n_l6___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₁₂₁₅₆: n_l6___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁₂₁₉₂: n_l6___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁₂₀₉₂: n_l6___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₁₂₀₉₃: n_l6___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ < X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₉₄: n_l6___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₉₅: n_l6___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₀₉₆: n_l6___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₄ ∧ X₃ < X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₁₂₁₆₂: n_l6___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁₂₁₉₈: n_l6___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁₂₀₉₇: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
All Bounds
Timebounds
Overall timebound:25⋅X₃+360⋅X₄+360⋅X₆+57⋅X₅+362 {O(n)}
t₀: 1 {O(1)}
t₁₄: X₃+X₄+X₅+X₆+1 {O(n)}
t₂₉: X₃+X₅+1 {O(n)}
t₃₃: 1 {O(1)}
t₁₂₀₅₅: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₀₅₆: 1 {O(1)}
t₁₂₀₅₇: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₀₅₈: 1 {O(1)}
t₁₂₀₅₉: X₃+X₅+1 {O(n)}
t₁₂₀₆₀: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₀₆₁: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₀₆₂: 1 {O(1)}
t₁₂₀₆₃: 1 {O(1)}
t₁₂₀₆₄: 1 {O(1)}
t₁₇: X₄+X₆+1 {O(n)}
t₂₀: X₄+X₆+1 {O(n)}
t₂₅: X₃+X₅+1 {O(n)}
t₁₆: X₃+X₄+X₅+X₆+1 {O(n)}
t₁: 1 {O(1)}
t₁₂₀₃₃: 1 {O(1)}
t₁₂₀₃₄: 1 {O(1)}
t₁₂₀₃₅: 24⋅X₄+24⋅X₆+20 {O(n)}
t₁₂₀₃₆: 24⋅X₄+24⋅X₆+20 {O(n)}
t₁₂₀₃₇: 1 {O(1)}
t₁₂₀₃₈: 1 {O(1)}
t₁₂₀₃₉: 1 {O(1)}
t₁₂₁₄₀: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₀₄₀: 1 {O(1)}
t₁₂₀₄₁: 1 {O(1)}
t₁₂₀₄₂: 1 {O(1)}
t₁₂₀₄₃: 1 {O(1)}
t₁₂₁₄₃: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₁₄₄: 1 {O(1)}
t₁₂₀₄₄: 1 {O(1)}
t₁₂₀₄₅: 1 {O(1)}
t₁₂₀₄₆: 24⋅X₄+24⋅X₆+16 {O(n)}
t₁₂₀₄₇: 24⋅X₄+24⋅X₆+16 {O(n)}
t₁₂₀₄₈: 24⋅X₄+24⋅X₆+20 {O(n)}
t₁₂₀₄₉: 24⋅X₄+24⋅X₆+20 {O(n)}
t₁₂₀₅₀: 1 {O(1)}
t₁₂₀₅₁: 1 {O(1)}
t₁₂₀₅₂: 1 {O(1)}
t₁₂₀₅₃: 1 {O(1)}
t₁₂₀₅₄: 24⋅X₄+24⋅X₆+24 {O(n)}
t₁₂₀₆₅: 1 {O(1)}
t₁₂₀₆₆: 1 {O(1)}
t₁₂₀₆₇: 1 {O(1)}
t₁₂₀₆₈: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₀₆₉: 1 {O(1)}
t₁₂₀₇₀: 1 {O(1)}
t₁₂₀₇₁: 1 {O(1)}
t₁₂₀₇₂: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₀₇₃: 1 {O(1)}
t₁₂₀₇₄: 24⋅X₄+24⋅X₆+16 {O(n)}
t₁₂₀₇₅: 24⋅X₄+24⋅X₆+24 {O(n)}
t₁₂₀₇₆: 1 {O(1)}
t₁₂₀₇₇: 1 {O(1)}
t₁₂₀₇₈: 1 {O(1)}
t₁₂₀₇₉: 1 {O(1)}
t₁₂₀₈₀: 1 {O(1)}
t₁₂₀₈₁: 1 {O(1)}
t₁₂₁₇₅: 1 {O(1)}
t₁₂₀₈₂: 1 {O(1)}
t₁₂₀₈₃: 1 {O(1)}
t₁₂₁₇₈: 1 {O(1)}
t₁₂₁₇₉: 1 {O(1)}
t₁₂₁₈₀: 1 {O(1)}
t₁₂₁₈₁: 1 {O(1)}
t₁₂₀₈₄: 24⋅X₄+24⋅X₆+36⋅X₅+4⋅X₃+20 {O(n)}
t₁₂₀₈₅: 24⋅X₄+24⋅X₆+20 {O(n)}
t₁₂₁₈₃: 1 {O(1)}
t₁₂₀₈₆: 1 {O(1)}
t₁₂₀₈₇: 1 {O(1)}
t₁₂₁₈₅: 1 {O(1)}
t₁₂₁₅₀: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₁₈₆: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₀₈₈: 1 {O(1)}
t₁₂₀₈₉: 1 {O(1)}
t₁₂₀₉₀: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₁₅₄: X₃+X₅+1 {O(n)}
t₁₂₁₉₀: X₃+X₅+1 {O(n)}
t₁₂₀₉₁: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₁₅₆: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₁₉₂: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₀₉₂: 1 {O(1)}
t₁₂₀₉₃: 1 {O(1)}
t₁₂₀₉₄: 24⋅X₄+24⋅X₆+16 {O(n)}
t₁₂₀₉₅: 40⋅X₄+40⋅X₆+16 {O(n)}
t₁₂₀₉₆: 1 {O(1)}
t₁₂₁₆₂: 1 {O(1)}
t₁₂₁₉₈: 1 {O(1)}
t₁₂₀₉₇: 1 {O(1)}
Costbounds
Overall costbound: 25⋅X₃+360⋅X₄+360⋅X₆+57⋅X₅+362 {O(n)}
t₀: 1 {O(1)}
t₁₄: X₃+X₄+X₅+X₆+1 {O(n)}
t₂₉: X₃+X₅+1 {O(n)}
t₃₃: 1 {O(1)}
t₁₂₀₅₅: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₀₅₆: 1 {O(1)}
t₁₂₀₅₇: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₀₅₈: 1 {O(1)}
t₁₂₀₅₉: X₃+X₅+1 {O(n)}
t₁₂₀₆₀: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₀₆₁: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₀₆₂: 1 {O(1)}
t₁₂₀₆₃: 1 {O(1)}
t₁₂₀₆₄: 1 {O(1)}
t₁₇: X₄+X₆+1 {O(n)}
t₂₀: X₄+X₆+1 {O(n)}
t₂₅: X₃+X₅+1 {O(n)}
t₁₆: X₃+X₄+X₅+X₆+1 {O(n)}
t₁: 1 {O(1)}
t₁₂₀₃₃: 1 {O(1)}
t₁₂₀₃₄: 1 {O(1)}
t₁₂₀₃₅: 24⋅X₄+24⋅X₆+20 {O(n)}
t₁₂₀₃₆: 24⋅X₄+24⋅X₆+20 {O(n)}
t₁₂₀₃₇: 1 {O(1)}
t₁₂₀₃₈: 1 {O(1)}
t₁₂₀₃₉: 1 {O(1)}
t₁₂₁₄₀: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₀₄₀: 1 {O(1)}
t₁₂₀₄₁: 1 {O(1)}
t₁₂₀₄₂: 1 {O(1)}
t₁₂₀₄₃: 1 {O(1)}
t₁₂₁₄₃: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₁₄₄: 1 {O(1)}
t₁₂₀₄₄: 1 {O(1)}
t₁₂₀₄₅: 1 {O(1)}
t₁₂₀₄₆: 24⋅X₄+24⋅X₆+16 {O(n)}
t₁₂₀₄₇: 24⋅X₄+24⋅X₆+16 {O(n)}
t₁₂₀₄₈: 24⋅X₄+24⋅X₆+20 {O(n)}
t₁₂₀₄₉: 24⋅X₄+24⋅X₆+20 {O(n)}
t₁₂₀₅₀: 1 {O(1)}
t₁₂₀₅₁: 1 {O(1)}
t₁₂₀₅₂: 1 {O(1)}
t₁₂₀₅₃: 1 {O(1)}
t₁₂₀₅₄: 24⋅X₄+24⋅X₆+24 {O(n)}
t₁₂₀₆₅: 1 {O(1)}
t₁₂₀₆₆: 1 {O(1)}
t₁₂₀₆₇: 1 {O(1)}
t₁₂₀₆₈: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₀₆₉: 1 {O(1)}
t₁₂₀₇₀: 1 {O(1)}
t₁₂₀₇₁: 1 {O(1)}
t₁₂₀₇₂: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₀₇₃: 1 {O(1)}
t₁₂₀₇₄: 24⋅X₄+24⋅X₆+16 {O(n)}
t₁₂₀₇₅: 24⋅X₄+24⋅X₆+24 {O(n)}
t₁₂₀₇₆: 1 {O(1)}
t₁₂₀₇₇: 1 {O(1)}
t₁₂₀₇₈: 1 {O(1)}
t₁₂₀₇₉: 1 {O(1)}
t₁₂₀₈₀: 1 {O(1)}
t₁₂₀₈₁: 1 {O(1)}
t₁₂₁₇₅: 1 {O(1)}
t₁₂₀₈₂: 1 {O(1)}
t₁₂₀₈₃: 1 {O(1)}
t₁₂₁₇₈: 1 {O(1)}
t₁₂₁₇₉: 1 {O(1)}
t₁₂₁₈₀: 1 {O(1)}
t₁₂₁₈₁: 1 {O(1)}
t₁₂₀₈₄: 24⋅X₄+24⋅X₆+36⋅X₅+4⋅X₃+20 {O(n)}
t₁₂₀₈₅: 24⋅X₄+24⋅X₆+20 {O(n)}
t₁₂₁₈₃: 1 {O(1)}
t₁₂₀₈₆: 1 {O(1)}
t₁₂₀₈₇: 1 {O(1)}
t₁₂₁₈₅: 1 {O(1)}
t₁₂₁₅₀: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₁₈₆: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₀₈₈: 1 {O(1)}
t₁₂₀₈₉: 1 {O(1)}
t₁₂₀₉₀: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₁₂₁₅₄: X₃+X₅+1 {O(n)}
t₁₂₁₉₀: X₃+X₅+1 {O(n)}
t₁₂₀₉₁: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₁₅₆: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₁₉₂: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₁₂₀₉₂: 1 {O(1)}
t₁₂₀₉₃: 1 {O(1)}
t₁₂₀₉₄: 24⋅X₄+24⋅X₆+16 {O(n)}
t₁₂₀₉₅: 40⋅X₄+40⋅X₆+16 {O(n)}
t₁₂₀₉₆: 1 {O(1)}
t₁₂₁₆₂: 1 {O(1)}
t₁₂₁₉₈: 1 {O(1)}
t₁₂₀₉₇: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁₄, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₄, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₄, X₃: 3⋅X₃ {O(n)}
t₁₄, X₄: 3⋅X₄ {O(n)}
t₁₄, X₅: 3⋅X₅ {O(n)}
t₁₄, X₆: 3⋅X₆ {O(n)}
t₂₉, X₀: 2⋅X₃+5⋅X₅+2 {O(n)}
t₂₉, X₁: 3⋅X₄+6⋅X₆+3 {O(n)}
t₂₉, X₃: 3⋅X₃ {O(n)}
t₂₉, X₄: 3⋅X₄ {O(n)}
t₂₉, X₅: 3⋅X₅ {O(n)}
t₂₉, X₆: 3⋅X₆ {O(n)}
t₃₃, X₀: 10⋅X₅+4⋅X₃+4 {O(n)}
t₃₃, X₁: 12⋅X₆+6⋅X₄+6 {O(n)}
t₃₃, X₃: 6⋅X₃ {O(n)}
t₃₃, X₄: 6⋅X₄ {O(n)}
t₃₃, X₅: 6⋅X₅ {O(n)}
t₃₃, X₆: 6⋅X₆ {O(n)}
t₁₂₀₅₅, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₀₅₅, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₁₂₀₅₅, X₃: 14⋅X₃ {O(n)}
t₁₂₀₅₅, X₄: 14⋅X₄ {O(n)}
t₁₂₀₅₅, X₅: 14⋅X₅ {O(n)}
t₁₂₀₅₅, X₆: 14⋅X₆ {O(n)}
t₁₂₀₅₆, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₁₂₀₅₆, X₁: 11⋅X₆+5⋅X₄+5 {O(n)}
t₁₂₀₅₆, X₃: 6⋅X₃ {O(n)}
t₁₂₀₅₆, X₄: 6⋅X₄ {O(n)}
t₁₂₀₅₆, X₅: 6⋅X₅ {O(n)}
t₁₂₀₅₆, X₆: 6⋅X₆ {O(n)}
t₁₂₀₅₇, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₅₇, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₅₇, X₃: 3⋅X₃ {O(n)}
t₁₂₀₅₇, X₄: 3⋅X₄ {O(n)}
t₁₂₀₅₇, X₅: 3⋅X₅ {O(n)}
t₁₂₀₅₇, X₆: 3⋅X₆ {O(n)}
t₁₂₀₅₈, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₅₈, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₅₈, X₂: 0 {O(1)}
t₁₂₀₅₈, X₃: 3⋅X₃ {O(n)}
t₁₂₀₅₈, X₄: 3⋅X₄ {O(n)}
t₁₂₀₅₈, X₅: 3⋅X₅ {O(n)}
t₁₂₀₅₈, X₆: 3⋅X₆ {O(n)}
t₁₂₀₅₉, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₅₉, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₅₉, X₂: 0 {O(1)}
t₁₂₀₅₉, X₃: 3⋅X₃ {O(n)}
t₁₂₀₅₉, X₄: 3⋅X₄ {O(n)}
t₁₂₀₅₉, X₅: 3⋅X₅ {O(n)}
t₁₂₀₅₉, X₆: 3⋅X₆ {O(n)}
t₁₂₀₆₀, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₀₆₀, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₁₂₀₆₀, X₃: 14⋅X₃ {O(n)}
t₁₂₀₆₀, X₄: 14⋅X₄ {O(n)}
t₁₂₀₆₀, X₅: 14⋅X₅ {O(n)}
t₁₂₀₆₀, X₆: 14⋅X₆ {O(n)}
t₁₂₀₆₁, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₆₁, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₆₁, X₃: 3⋅X₃ {O(n)}
t₁₂₀₆₁, X₄: 3⋅X₄ {O(n)}
t₁₂₀₆₁, X₅: 3⋅X₅ {O(n)}
t₁₂₀₆₁, X₆: 3⋅X₆ {O(n)}
t₁₂₀₆₂, X₀: X₅ {O(n)}
t₁₂₀₆₂, X₁: X₆ {O(n)}
t₁₂₀₆₂, X₂: X₂ {O(n)}
t₁₂₀₆₂, X₃: X₃ {O(n)}
t₁₂₀₆₂, X₄: X₄ {O(n)}
t₁₂₀₆₂, X₅: X₅ {O(n)}
t₁₂₀₆₂, X₆: X₆ {O(n)}
t₁₂₀₆₃, X₀: X₅ {O(n)}
t₁₂₀₆₃, X₁: X₆ {O(n)}
t₁₂₀₆₃, X₂: X₂ {O(n)}
t₁₂₀₆₃, X₃: X₃ {O(n)}
t₁₂₀₆₃, X₄: X₄ {O(n)}
t₁₂₀₆₃, X₅: X₅ {O(n)}
t₁₂₀₆₃, X₆: X₆ {O(n)}
t₁₂₀₆₄, X₀: X₅ {O(n)}
t₁₂₀₆₄, X₁: X₆ {O(n)}
t₁₂₀₆₄, X₂: X₂ {O(n)}
t₁₂₀₆₄, X₃: X₃ {O(n)}
t₁₂₀₆₄, X₄: X₄ {O(n)}
t₁₂₀₆₄, X₅: X₅ {O(n)}
t₁₂₀₆₄, X₆: X₆ {O(n)}
t₁₇, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₇, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₇, X₃: 3⋅X₃ {O(n)}
t₁₇, X₄: 3⋅X₄ {O(n)}
t₁₇, X₅: 3⋅X₅ {O(n)}
t₁₇, X₆: 3⋅X₆ {O(n)}
t₂₀, X₀: 4⋅X₅+X₃+1 {O(n)}
t₂₀, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₂₀, X₃: 3⋅X₃ {O(n)}
t₂₀, X₄: 3⋅X₄ {O(n)}
t₂₀, X₅: 3⋅X₅ {O(n)}
t₂₀, X₆: 3⋅X₆ {O(n)}
t₂₅, X₀: 4⋅X₅+X₃+1 {O(n)}
t₂₅, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₂₅, X₂: 0 {O(1)}
t₂₅, X₃: 3⋅X₃ {O(n)}
t₂₅, X₄: 3⋅X₄ {O(n)}
t₂₅, X₅: 3⋅X₅ {O(n)}
t₂₅, X₆: 3⋅X₆ {O(n)}
t₁₆, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₆, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₆, X₃: 3⋅X₃ {O(n)}
t₁₆, X₄: 3⋅X₄ {O(n)}
t₁₆, X₅: 3⋅X₅ {O(n)}
t₁₆, X₆: 3⋅X₆ {O(n)}
t₁, X₀: X₅ {O(n)}
t₁, X₁: X₆ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁₂₀₃₃, X₀: 12⋅X₅+3⋅X₃+3 {O(n)}
t₁₂₀₃₃, X₁: 15⋅X₆+6⋅X₄+9 {O(n)}
t₁₂₀₃₃, X₂: 0 {O(1)}
t₁₂₀₃₃, X₃: 9⋅X₃ {O(n)}
t₁₂₀₃₃, X₄: 9⋅X₄ {O(n)}
t₁₂₀₃₃, X₅: 9⋅X₅ {O(n)}
t₁₂₀₃₃, X₆: 9⋅X₆ {O(n)}
t₁₂₀₃₄, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₃₄, X₁: 2⋅X₄+5⋅X₆+3 {O(n)}
t₁₂₀₃₄, X₂: 0 {O(1)}
t₁₂₀₃₄, X₃: 3⋅X₃ {O(n)}
t₁₂₀₃₄, X₄: 3⋅X₄ {O(n)}
t₁₂₀₃₄, X₅: 3⋅X₅ {O(n)}
t₁₂₀₃₄, X₆: 3⋅X₆ {O(n)}
t₁₂₀₃₅, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₃₅, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₃₅, X₂: 4⋅X₂ {O(n)}
t₁₂₀₃₅, X₃: 16⋅X₃ {O(n)}
t₁₂₀₃₅, X₄: 16⋅X₄ {O(n)}
t₁₂₀₃₅, X₅: 16⋅X₅ {O(n)}
t₁₂₀₃₅, X₆: 16⋅X₆ {O(n)}
t₁₂₀₃₆, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₃₆, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₃₆, X₂: 4⋅X₂ {O(n)}
t₁₂₀₃₆, X₃: 16⋅X₃ {O(n)}
t₁₂₀₃₆, X₄: 16⋅X₄ {O(n)}
t₁₂₀₃₆, X₅: 16⋅X₅ {O(n)}
t₁₂₀₃₆, X₆: 16⋅X₆ {O(n)}
t₁₂₀₃₇, X₀: 3⋅X₅ {O(n)}
t₁₂₀₃₇, X₁: 3⋅X₆+3 {O(n)}
t₁₂₀₃₇, X₂: 3⋅X₂ {O(n)}
t₁₂₀₃₇, X₃: 3⋅X₃ {O(n)}
t₁₂₀₃₇, X₄: 3⋅X₄ {O(n)}
t₁₂₀₃₇, X₅: 3⋅X₅ {O(n)}
t₁₂₀₃₇, X₆: 3⋅X₆ {O(n)}
t₁₂₀₃₈, X₀: X₅ {O(n)}
t₁₂₀₃₈, X₁: X₆+1 {O(n)}
t₁₂₀₃₈, X₂: X₂ {O(n)}
t₁₂₀₃₈, X₃: X₃ {O(n)}
t₁₂₀₃₈, X₄: X₄ {O(n)}
t₁₂₀₃₈, X₅: X₅ {O(n)}
t₁₂₀₃₈, X₆: X₆ {O(n)}
t₁₂₀₃₉, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₁₂₀₃₉, X₁: 11⋅X₆+5⋅X₄+6 {O(n)}
t₁₂₀₃₉, X₃: 6⋅X₃ {O(n)}
t₁₂₀₃₉, X₄: 6⋅X₄ {O(n)}
t₁₂₀₃₉, X₅: 6⋅X₅ {O(n)}
t₁₂₀₃₉, X₆: 6⋅X₆ {O(n)}
t₁₂₁₄₀, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₁₄₀, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₁₂₁₄₀, X₃: 14⋅X₃ {O(n)}
t₁₂₁₄₀, X₄: 14⋅X₄ {O(n)}
t₁₂₁₄₀, X₅: 14⋅X₅ {O(n)}
t₁₂₁₄₀, X₆: 14⋅X₆ {O(n)}
t₁₂₀₄₀, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₄₀, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₄₀, X₂: 0 {O(1)}
t₁₂₀₄₀, X₃: 3⋅X₃ {O(n)}
t₁₂₀₄₀, X₄: 3⋅X₄ {O(n)}
t₁₂₀₄₀, X₅: 3⋅X₅ {O(n)}
t₁₂₀₄₀, X₆: 3⋅X₆ {O(n)}
t₁₂₀₄₁, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₄₁, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₄₁, X₂: 0 {O(1)}
t₁₂₀₄₁, X₃: 3⋅X₃ {O(n)}
t₁₂₀₄₁, X₄: 3⋅X₄ {O(n)}
t₁₂₀₄₁, X₅: 3⋅X₅ {O(n)}
t₁₂₀₄₁, X₆: 3⋅X₆ {O(n)}
t₁₂₀₄₂, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₄₂, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₄₂, X₂: 0 {O(1)}
t₁₂₀₄₂, X₃: 3⋅X₃ {O(n)}
t₁₂₀₄₂, X₄: 3⋅X₄ {O(n)}
t₁₂₀₄₂, X₅: 3⋅X₅ {O(n)}
t₁₂₀₄₂, X₆: 3⋅X₆ {O(n)}
t₁₂₀₄₃, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₄₃, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₄₃, X₂: 0 {O(1)}
t₁₂₀₄₃, X₃: 3⋅X₃ {O(n)}
t₁₂₀₄₃, X₄: 3⋅X₄ {O(n)}
t₁₂₀₄₃, X₅: 3⋅X₅ {O(n)}
t₁₂₀₄₃, X₆: 3⋅X₆ {O(n)}
t₁₂₁₄₃, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₁₄₃, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₁₂₁₄₃, X₃: 14⋅X₃ {O(n)}
t₁₂₁₄₃, X₄: 14⋅X₄ {O(n)}
t₁₂₁₄₃, X₅: 14⋅X₅ {O(n)}
t₁₂₁₄₃, X₆: 14⋅X₆ {O(n)}
t₁₂₁₄₄, X₀: X₅ {O(n)}
t₁₂₁₄₄, X₁: X₆ {O(n)}
t₁₂₁₄₄, X₂: X₂ {O(n)}
t₁₂₁₄₄, X₃: X₃ {O(n)}
t₁₂₁₄₄, X₄: X₄ {O(n)}
t₁₂₁₄₄, X₅: X₅ {O(n)}
t₁₂₁₄₄, X₆: X₆ {O(n)}
t₁₂₀₄₄, X₀: X₅ {O(n)}
t₁₂₀₄₄, X₁: X₆ {O(n)}
t₁₂₀₄₄, X₂: X₂ {O(n)}
t₁₂₀₄₄, X₃: X₃ {O(n)}
t₁₂₀₄₄, X₄: X₄ {O(n)}
t₁₂₀₄₄, X₅: X₅ {O(n)}
t₁₂₀₄₄, X₆: X₆ {O(n)}
t₁₂₀₄₅, X₀: X₅ {O(n)}
t₁₂₀₄₅, X₁: X₆ {O(n)}
t₁₂₀₄₅, X₂: X₂ {O(n)}
t₁₂₀₄₅, X₃: X₃ {O(n)}
t₁₂₀₄₅, X₄: X₄ {O(n)}
t₁₂₀₄₅, X₅: X₅ {O(n)}
t₁₂₀₄₅, X₆: X₆ {O(n)}
t₁₂₀₄₆, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₄₆, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₄₆, X₂: 4⋅X₂ {O(n)}
t₁₂₀₄₆, X₃: 16⋅X₃ {O(n)}
t₁₂₀₄₆, X₄: 16⋅X₄ {O(n)}
t₁₂₀₄₆, X₅: 16⋅X₅ {O(n)}
t₁₂₀₄₆, X₆: 16⋅X₆ {O(n)}
t₁₂₀₄₇, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₄₇, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₄₇, X₂: 4⋅X₂ {O(n)}
t₁₂₀₄₇, X₃: 16⋅X₃ {O(n)}
t₁₂₀₄₇, X₄: 16⋅X₄ {O(n)}
t₁₂₀₄₇, X₅: 16⋅X₅ {O(n)}
t₁₂₀₄₇, X₆: 16⋅X₆ {O(n)}
t₁₂₀₄₈, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₄₈, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₄₈, X₂: 4⋅X₂ {O(n)}
t₁₂₀₄₈, X₃: 16⋅X₃ {O(n)}
t₁₂₀₄₈, X₄: 16⋅X₄ {O(n)}
t₁₂₀₄₈, X₅: 16⋅X₅ {O(n)}
t₁₂₀₄₈, X₆: 16⋅X₆ {O(n)}
t₁₂₀₄₉, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₄₉, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₄₉, X₂: 4⋅X₂ {O(n)}
t₁₂₀₄₉, X₃: 16⋅X₃ {O(n)}
t₁₂₀₄₉, X₄: 16⋅X₄ {O(n)}
t₁₂₀₄₉, X₅: 16⋅X₅ {O(n)}
t₁₂₀₄₉, X₆: 16⋅X₆ {O(n)}
t₁₂₀₅₀, X₀: X₅ {O(n)}
t₁₂₀₅₀, X₁: X₆ {O(n)}
t₁₂₀₅₀, X₂: X₂ {O(n)}
t₁₂₀₅₀, X₃: X₃ {O(n)}
t₁₂₀₅₀, X₄: X₄ {O(n)}
t₁₂₀₅₀, X₅: X₅ {O(n)}
t₁₂₀₅₀, X₆: X₆ {O(n)}
t₁₂₀₅₁, X₀: X₅ {O(n)}
t₁₂₀₅₁, X₁: X₆ {O(n)}
t₁₂₀₅₁, X₂: X₂ {O(n)}
t₁₂₀₅₁, X₃: X₃ {O(n)}
t₁₂₀₅₁, X₄: X₄ {O(n)}
t₁₂₀₅₁, X₅: X₅ {O(n)}
t₁₂₀₅₁, X₆: X₆ {O(n)}
t₁₂₀₅₂, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₁₂₀₅₂, X₁: 11⋅X₆+5⋅X₄+5 {O(n)}
t₁₂₀₅₂, X₃: 6⋅X₃ {O(n)}
t₁₂₀₅₂, X₄: 6⋅X₄ {O(n)}
t₁₂₀₅₂, X₅: 6⋅X₅ {O(n)}
t₁₂₀₅₂, X₆: 6⋅X₆ {O(n)}
t₁₂₀₅₃, X₀: 25⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₀₅₃, X₁: 58⋅X₄+78⋅X₆+60 {O(n)}
t₁₂₀₅₃, X₂: 5⋅X₂ {O(n)}
t₁₂₀₅₃, X₃: 20⋅X₃ {O(n)}
t₁₂₀₅₃, X₄: 20⋅X₄ {O(n)}
t₁₂₀₅₃, X₅: 20⋅X₅ {O(n)}
t₁₂₀₅₃, X₆: 20⋅X₆ {O(n)}
t₁₂₀₅₄, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₅₄, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₅₄, X₂: 4⋅X₂ {O(n)}
t₁₂₀₅₄, X₃: 16⋅X₃ {O(n)}
t₁₂₀₅₄, X₄: 16⋅X₄ {O(n)}
t₁₂₀₅₄, X₅: 16⋅X₅ {O(n)}
t₁₂₀₅₄, X₆: 16⋅X₆ {O(n)}
t₁₂₀₆₅, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₁₂₀₆₅, X₁: 11⋅X₆+5⋅X₄+6 {O(n)}
t₁₂₀₆₅, X₃: 6⋅X₃ {O(n)}
t₁₂₀₆₅, X₄: 6⋅X₄ {O(n)}
t₁₂₀₆₅, X₅: 6⋅X₅ {O(n)}
t₁₂₀₆₅, X₆: 6⋅X₆ {O(n)}
t₁₂₀₆₆, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₁₂₀₆₆, X₁: 11⋅X₆+5⋅X₄+6 {O(n)}
t₁₂₀₆₆, X₃: 6⋅X₃ {O(n)}
t₁₂₀₆₆, X₄: 6⋅X₄ {O(n)}
t₁₂₀₆₆, X₅: 6⋅X₅ {O(n)}
t₁₂₀₆₆, X₆: 6⋅X₆ {O(n)}
t₁₂₀₆₇, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₀₆₇, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₁₂₀₆₇, X₃: 14⋅X₃ {O(n)}
t₁₂₀₆₇, X₄: 14⋅X₄ {O(n)}
t₁₂₀₆₇, X₅: 14⋅X₅ {O(n)}
t₁₂₀₆₇, X₆: 14⋅X₆ {O(n)}
t₁₂₀₆₈, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₀₆₈, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₁₂₀₆₈, X₃: 14⋅X₃ {O(n)}
t₁₂₀₆₈, X₄: 14⋅X₄ {O(n)}
t₁₂₀₆₈, X₅: 14⋅X₅ {O(n)}
t₁₂₀₆₈, X₆: 14⋅X₆ {O(n)}
t₁₂₀₆₉, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₁₂₀₆₉, X₁: 11⋅X₆+5⋅X₄+5 {O(n)}
t₁₂₀₆₉, X₃: 6⋅X₃ {O(n)}
t₁₂₀₆₉, X₄: 6⋅X₄ {O(n)}
t₁₂₀₆₉, X₅: 6⋅X₅ {O(n)}
t₁₂₀₆₉, X₆: 6⋅X₆ {O(n)}
t₁₂₀₇₀, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₇₀, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₇₀, X₂: 0 {O(1)}
t₁₂₀₇₀, X₃: 3⋅X₃ {O(n)}
t₁₂₀₇₀, X₄: 3⋅X₄ {O(n)}
t₁₂₀₇₀, X₅: 3⋅X₅ {O(n)}
t₁₂₀₇₀, X₆: 3⋅X₆ {O(n)}
t₁₂₀₇₁, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₇₁, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₇₁, X₂: 0 {O(1)}
t₁₂₀₇₁, X₃: 3⋅X₃ {O(n)}
t₁₂₀₇₁, X₄: 3⋅X₄ {O(n)}
t₁₂₀₇₁, X₅: 3⋅X₅ {O(n)}
t₁₂₀₇₁, X₆: 3⋅X₆ {O(n)}
t₁₂₀₇₂, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₀₇₂, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₁₂₀₇₂, X₃: 14⋅X₃ {O(n)}
t₁₂₀₇₂, X₄: 14⋅X₄ {O(n)}
t₁₂₀₇₂, X₅: 14⋅X₅ {O(n)}
t₁₂₀₇₂, X₆: 14⋅X₆ {O(n)}
t₁₂₀₇₃, X₀: 25⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₀₇₃, X₁: 58⋅X₄+78⋅X₆+60 {O(n)}
t₁₂₀₇₃, X₂: 5⋅X₂ {O(n)}
t₁₂₀₇₃, X₃: 20⋅X₃ {O(n)}
t₁₂₀₇₃, X₄: 20⋅X₄ {O(n)}
t₁₂₀₇₃, X₅: 20⋅X₅ {O(n)}
t₁₂₀₇₃, X₆: 20⋅X₆ {O(n)}
t₁₂₀₇₄, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₇₄, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₇₄, X₂: 4⋅X₂ {O(n)}
t₁₂₀₇₄, X₃: 16⋅X₃ {O(n)}
t₁₂₀₇₄, X₄: 16⋅X₄ {O(n)}
t₁₂₀₇₄, X₅: 16⋅X₅ {O(n)}
t₁₂₀₇₄, X₆: 16⋅X₆ {O(n)}
t₁₂₀₇₅, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₇₅, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₇₅, X₂: 4⋅X₂ {O(n)}
t₁₂₀₇₅, X₃: 16⋅X₃ {O(n)}
t₁₂₀₇₅, X₄: 16⋅X₄ {O(n)}
t₁₂₀₇₅, X₅: 16⋅X₅ {O(n)}
t₁₂₀₇₅, X₆: 16⋅X₆ {O(n)}
t₁₂₀₇₆, X₀: 18⋅X₅+6⋅X₃+6 {O(n)}
t₁₂₀₇₆, X₁: 10⋅X₄+22⋅X₆+12 {O(n)}
t₁₂₀₇₆, X₃: 12⋅X₃ {O(n)}
t₁₂₀₇₆, X₄: 12⋅X₄ {O(n)}
t₁₂₀₇₆, X₅: 12⋅X₅ {O(n)}
t₁₂₀₇₆, X₆: 12⋅X₆ {O(n)}
t₁₂₀₇₇, X₀: X₅ {O(n)}
t₁₂₀₇₇, X₁: X₆ {O(n)}
t₁₂₀₇₇, X₂: X₂ {O(n)}
t₁₂₀₇₇, X₃: X₃ {O(n)}
t₁₂₀₇₇, X₄: X₄ {O(n)}
t₁₂₀₇₇, X₅: X₅ {O(n)}
t₁₂₀₇₇, X₆: X₆ {O(n)}
t₁₂₀₇₈, X₀: X₅ {O(n)}
t₁₂₀₇₈, X₁: X₆ {O(n)}
t₁₂₀₇₈, X₂: X₂ {O(n)}
t₁₂₀₇₈, X₃: X₃ {O(n)}
t₁₂₀₇₈, X₄: X₄ {O(n)}
t₁₂₀₇₈, X₅: X₅ {O(n)}
t₁₂₀₇₈, X₆: X₆ {O(n)}
t₁₂₀₇₉, X₀: X₅ {O(n)}
t₁₂₀₇₉, X₁: X₆ {O(n)}
t₁₂₀₇₉, X₂: X₂ {O(n)}
t₁₂₀₇₉, X₃: X₃ {O(n)}
t₁₂₀₇₉, X₄: X₄ {O(n)}
t₁₂₀₇₉, X₅: X₅ {O(n)}
t₁₂₀₇₉, X₆: X₆ {O(n)}
t₁₂₀₈₀, X₀: X₅ {O(n)}
t₁₂₀₈₀, X₁: X₆ {O(n)}
t₁₂₀₈₀, X₂: X₂ {O(n)}
t₁₂₀₈₀, X₃: X₃ {O(n)}
t₁₂₀₈₀, X₄: X₄ {O(n)}
t₁₂₀₈₀, X₅: X₅ {O(n)}
t₁₂₀₈₀, X₆: X₆ {O(n)}
t₁₂₀₈₁, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₁₂₀₈₁, X₁: 11⋅X₆+5⋅X₄+5 {O(n)}
t₁₂₀₈₁, X₃: 6⋅X₃ {O(n)}
t₁₂₀₈₁, X₄: 6⋅X₄ {O(n)}
t₁₂₀₈₁, X₅: 6⋅X₅ {O(n)}
t₁₂₀₈₁, X₆: 6⋅X₆ {O(n)}
t₁₂₁₇₅, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₁₂₁₇₅, X₁: 11⋅X₆+5⋅X₄+5 {O(n)}
t₁₂₁₇₅, X₃: 6⋅X₃ {O(n)}
t₁₂₁₇₅, X₄: 6⋅X₄ {O(n)}
t₁₂₁₇₅, X₅: 6⋅X₅ {O(n)}
t₁₂₁₇₅, X₆: 6⋅X₆ {O(n)}
t₁₂₀₈₂, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₈₂, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₈₂, X₂: 0 {O(1)}
t₁₂₀₈₂, X₃: 3⋅X₃ {O(n)}
t₁₂₀₈₂, X₄: 3⋅X₄ {O(n)}
t₁₂₀₈₂, X₅: 3⋅X₅ {O(n)}
t₁₂₀₈₂, X₆: 3⋅X₆ {O(n)}
t₁₂₀₈₃, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₈₃, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₈₃, X₂: 0 {O(1)}
t₁₂₀₈₃, X₃: 3⋅X₃ {O(n)}
t₁₂₀₈₃, X₄: 3⋅X₄ {O(n)}
t₁₂₀₈₃, X₅: 3⋅X₅ {O(n)}
t₁₂₀₈₃, X₆: 3⋅X₆ {O(n)}
t₁₂₁₇₈, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₁₇₈, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₁₂₁₇₈, X₃: 14⋅X₃ {O(n)}
t₁₂₁₇₈, X₄: 14⋅X₄ {O(n)}
t₁₂₁₇₈, X₅: 14⋅X₅ {O(n)}
t₁₂₁₇₈, X₆: 14⋅X₆ {O(n)}
t₁₂₁₇₉, X₀: X₅ {O(n)}
t₁₂₁₇₉, X₁: X₆ {O(n)}
t₁₂₁₇₉, X₂: X₂ {O(n)}
t₁₂₁₇₉, X₃: X₃ {O(n)}
t₁₂₁₇₉, X₄: X₄ {O(n)}
t₁₂₁₇₉, X₅: X₅ {O(n)}
t₁₂₁₇₉, X₆: X₆ {O(n)}
t₁₂₁₈₀, X₀: 25⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₁₈₀, X₁: 58⋅X₄+78⋅X₆+60 {O(n)}
t₁₂₁₈₀, X₂: 5⋅X₂ {O(n)}
t₁₂₁₈₀, X₃: 20⋅X₃ {O(n)}
t₁₂₁₈₀, X₄: 20⋅X₄ {O(n)}
t₁₂₁₈₀, X₅: 20⋅X₅ {O(n)}
t₁₂₁₈₀, X₆: 20⋅X₆ {O(n)}
t₁₂₁₈₁, X₀: 18⋅X₅+6⋅X₃+6 {O(n)}
t₁₂₁₈₁, X₁: 10⋅X₄+22⋅X₆+12 {O(n)}
t₁₂₁₈₁, X₃: 12⋅X₃ {O(n)}
t₁₂₁₈₁, X₄: 12⋅X₄ {O(n)}
t₁₂₁₈₁, X₅: 12⋅X₅ {O(n)}
t₁₂₁₈₁, X₆: 12⋅X₆ {O(n)}
t₁₂₀₈₄, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₈₄, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₈₄, X₂: 4⋅X₂ {O(n)}
t₁₂₀₈₄, X₃: 16⋅X₃ {O(n)}
t₁₂₀₈₄, X₄: 16⋅X₄ {O(n)}
t₁₂₀₈₄, X₅: 16⋅X₅ {O(n)}
t₁₂₀₈₄, X₆: 16⋅X₆ {O(n)}
t₁₂₀₈₅, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₈₅, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₈₅, X₂: 4⋅X₂ {O(n)}
t₁₂₀₈₅, X₃: 16⋅X₃ {O(n)}
t₁₂₀₈₅, X₄: 16⋅X₄ {O(n)}
t₁₂₀₈₅, X₅: 16⋅X₅ {O(n)}
t₁₂₀₈₅, X₆: 16⋅X₆ {O(n)}
t₁₂₁₈₃, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₁₈₃, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₁₈₃, X₂: 4⋅X₂ {O(n)}
t₁₂₁₈₃, X₃: 16⋅X₃ {O(n)}
t₁₂₁₈₃, X₄: 16⋅X₄ {O(n)}
t₁₂₁₈₃, X₅: 16⋅X₅ {O(n)}
t₁₂₁₈₃, X₆: 16⋅X₆ {O(n)}
t₁₂₀₈₆, X₀: X₅ {O(n)}
t₁₂₀₈₆, X₁: X₆ {O(n)}
t₁₂₀₈₆, X₂: X₂ {O(n)}
t₁₂₀₈₆, X₃: X₃ {O(n)}
t₁₂₀₈₆, X₄: X₄ {O(n)}
t₁₂₀₈₆, X₅: X₅ {O(n)}
t₁₂₀₈₆, X₆: X₆ {O(n)}
t₁₂₀₈₇, X₀: X₅ {O(n)}
t₁₂₀₈₇, X₁: X₆ {O(n)}
t₁₂₀₈₇, X₂: X₂ {O(n)}
t₁₂₀₈₇, X₃: X₃ {O(n)}
t₁₂₀₈₇, X₄: X₄ {O(n)}
t₁₂₀₈₇, X₅: X₅ {O(n)}
t₁₂₀₈₇, X₆: X₆ {O(n)}
t₁₂₁₈₅, X₀: X₅ {O(n)}
t₁₂₁₈₅, X₁: X₆ {O(n)}
t₁₂₁₈₅, X₂: X₂ {O(n)}
t₁₂₁₈₅, X₃: X₃ {O(n)}
t₁₂₁₈₅, X₄: X₄ {O(n)}
t₁₂₁₈₅, X₅: X₅ {O(n)}
t₁₂₁₈₅, X₆: X₆ {O(n)}
t₁₂₁₅₀, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₁₅₀, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₁₅₀, X₃: 3⋅X₃ {O(n)}
t₁₂₁₅₀, X₄: 3⋅X₄ {O(n)}
t₁₂₁₅₀, X₅: 3⋅X₅ {O(n)}
t₁₂₁₅₀, X₆: 3⋅X₆ {O(n)}
t₁₂₁₈₆, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₁₈₆, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₁₈₆, X₃: 3⋅X₃ {O(n)}
t₁₂₁₈₆, X₄: 3⋅X₄ {O(n)}
t₁₂₁₈₆, X₅: 3⋅X₅ {O(n)}
t₁₂₁₈₆, X₆: 3⋅X₆ {O(n)}
t₁₂₀₈₈, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₈₈, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₈₈, X₂: 0 {O(1)}
t₁₂₀₈₈, X₃: 3⋅X₃ {O(n)}
t₁₂₀₈₈, X₄: 3⋅X₄ {O(n)}
t₁₂₀₈₈, X₅: 3⋅X₅ {O(n)}
t₁₂₀₈₈, X₆: 3⋅X₆ {O(n)}
t₁₂₀₈₉, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₀₈₉, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₀₈₉, X₂: 0 {O(1)}
t₁₂₀₈₉, X₃: 3⋅X₃ {O(n)}
t₁₂₀₈₉, X₄: 3⋅X₄ {O(n)}
t₁₂₀₈₉, X₅: 3⋅X₅ {O(n)}
t₁₂₀₈₉, X₆: 3⋅X₆ {O(n)}
t₁₂₀₉₀, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₀₉₀, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₁₂₀₉₀, X₃: 14⋅X₃ {O(n)}
t₁₂₀₉₀, X₄: 14⋅X₄ {O(n)}
t₁₂₀₉₀, X₅: 14⋅X₅ {O(n)}
t₁₂₀₉₀, X₆: 14⋅X₆ {O(n)}
t₁₂₁₅₄, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₁₅₄, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₁₅₄, X₂: 0 {O(1)}
t₁₂₁₅₄, X₃: 3⋅X₃ {O(n)}
t₁₂₁₅₄, X₄: 3⋅X₄ {O(n)}
t₁₂₁₅₄, X₅: 3⋅X₅ {O(n)}
t₁₂₁₅₄, X₆: 3⋅X₆ {O(n)}
t₁₂₁₉₀, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₁₉₀, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₁₉₀, X₂: 0 {O(1)}
t₁₂₁₉₀, X₃: 3⋅X₃ {O(n)}
t₁₂₁₉₀, X₄: 3⋅X₄ {O(n)}
t₁₂₁₉₀, X₅: 3⋅X₅ {O(n)}
t₁₂₁₉₀, X₆: 3⋅X₆ {O(n)}
t₁₂₀₉₁, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₁₂₀₉₁, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₁₂₀₉₁, X₃: 14⋅X₃ {O(n)}
t₁₂₀₉₁, X₄: 14⋅X₄ {O(n)}
t₁₂₀₉₁, X₅: 14⋅X₅ {O(n)}
t₁₂₀₉₁, X₆: 14⋅X₆ {O(n)}
t₁₂₁₅₆, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₁₅₆, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₁₅₆, X₃: 3⋅X₃ {O(n)}
t₁₂₁₅₆, X₄: 3⋅X₄ {O(n)}
t₁₂₁₅₆, X₅: 3⋅X₅ {O(n)}
t₁₂₁₅₆, X₆: 3⋅X₆ {O(n)}
t₁₂₁₉₂, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₂₁₉₂, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₂₁₉₂, X₃: 3⋅X₃ {O(n)}
t₁₂₁₉₂, X₄: 3⋅X₄ {O(n)}
t₁₂₁₉₂, X₅: 3⋅X₅ {O(n)}
t₁₂₁₉₂, X₆: 3⋅X₆ {O(n)}
t₁₂₀₉₂, X₀: X₅ {O(n)}
t₁₂₀₉₂, X₁: X₆ {O(n)}
t₁₂₀₉₂, X₂: X₂ {O(n)}
t₁₂₀₉₂, X₃: X₃ {O(n)}
t₁₂₀₉₂, X₄: X₄ {O(n)}
t₁₂₀₉₂, X₅: X₅ {O(n)}
t₁₂₀₉₂, X₆: X₆ {O(n)}
t₁₂₀₉₃, X₀: X₅ {O(n)}
t₁₂₀₉₃, X₁: X₆ {O(n)}
t₁₂₀₉₃, X₂: X₂ {O(n)}
t₁₂₀₉₃, X₃: X₃ {O(n)}
t₁₂₀₉₃, X₄: X₄ {O(n)}
t₁₂₀₉₃, X₅: X₅ {O(n)}
t₁₂₀₉₃, X₆: X₆ {O(n)}
t₁₂₀₉₄, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₉₄, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₉₄, X₂: 4⋅X₂ {O(n)}
t₁₂₀₉₄, X₃: 16⋅X₃ {O(n)}
t₁₂₀₉₄, X₄: 16⋅X₄ {O(n)}
t₁₂₀₉₄, X₅: 16⋅X₅ {O(n)}
t₁₂₀₉₄, X₆: 16⋅X₆ {O(n)}
t₁₂₀₉₅, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₁₂₀₉₅, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₁₂₀₉₅, X₂: 4⋅X₂ {O(n)}
t₁₂₀₉₅, X₃: 16⋅X₃ {O(n)}
t₁₂₀₉₅, X₄: 16⋅X₄ {O(n)}
t₁₂₀₉₅, X₅: 16⋅X₅ {O(n)}
t₁₂₀₉₅, X₆: 16⋅X₆ {O(n)}
t₁₂₀₉₆, X₀: X₅ {O(n)}
t₁₂₀₉₆, X₁: X₆ {O(n)}
t₁₂₀₉₆, X₂: X₂ {O(n)}
t₁₂₀₉₆, X₃: X₃ {O(n)}
t₁₂₀₉₆, X₄: X₄ {O(n)}
t₁₂₀₉₆, X₅: X₅ {O(n)}
t₁₂₀₉₆, X₆: X₆ {O(n)}
t₁₂₁₆₂, X₀: X₅ {O(n)}
t₁₂₁₆₂, X₁: X₆ {O(n)}
t₁₂₁₆₂, X₂: X₂ {O(n)}
t₁₂₁₆₂, X₃: X₃ {O(n)}
t₁₂₁₆₂, X₄: X₄ {O(n)}
t₁₂₁₆₂, X₅: X₅ {O(n)}
t₁₂₁₆₂, X₆: X₆ {O(n)}
t₁₂₁₉₈, X₀: X₅ {O(n)}
t₁₂₁₉₈, X₁: X₆ {O(n)}
t₁₂₁₉₈, X₂: X₂ {O(n)}
t₁₂₁₉₈, X₃: X₃ {O(n)}
t₁₂₁₉₈, X₄: X₄ {O(n)}
t₁₂₁₉₈, X₅: X₅ {O(n)}
t₁₂₁₉₈, X₆: X₆ {O(n)}
t₁₂₀₉₇, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₁₂₀₉₇, X₁: 11⋅X₆+5⋅X₄+5 {O(n)}
t₁₂₀₉₇, X₃: 6⋅X₃ {O(n)}
t₁₂₀₉₇, X₄: 6⋅X₄ {O(n)}
t₁₂₀₉₇, X₅: 6⋅X₅ {O(n)}
t₁₂₀₉₇, X₆: 6⋅X₆ {O(n)}