Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 0 < X₃
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₃ ≤ 0
t₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, 1, X₅, X₆, X₇)
t₃₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 1
t₂₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄
t₃₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ X₄ ≤ X₇
t₃₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 1
t₃₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₆
t₃₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ X₆ ≤ X₇
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 1
t₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₁
t₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₁ ∧ X₁ ≤ X₇
t₁₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 1
t₁₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₂
t₁₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₂ ∧ X₂ ≤ X₇
t₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄ ≤ X₇
t₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: X₇ < 2⋅X₄
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆, X₇)
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₇
t₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₇ < X₂
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 0 < X₀
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₀ ≤ 0
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄
t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆
t₂₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₄
t₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0
t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 1
t₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ 1 ≤ X₄
Preprocessing
Cut unsatisfiable transition t₈: l15→l11
Cut unsatisfiable transition t₁₈: l16→l11
Cut unsatisfiable transition t₄: l9→l11
Found invariant 1 ≤ X₄ for location l11
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l2
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l6
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l15
Found invariant X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l12
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₄ for location l17
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l7
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l5
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l13
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l8
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l1
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l16
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l4
Found invariant 1 ≤ X₄ for location l9
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l3
Found invariant 1 ≤ X₄ for location l14
Cut unsatisfiable transition t₂₈: l12→l11
Cut unsatisfiable transition t₇: l15→l11
Cut unsatisfiable transition t₁₇: l16→l11
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₃ ≤ 0 ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, 1, X₅, X₆, X₇)
t₃₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄
t₂₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 1 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₆ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₂ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₄
t₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: X₇ < 2⋅X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₄
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₇ < X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 0 < X₀ ∧ 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ 1 ≤ X₄
t₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄
Analysing control-flow refined program
Cut unsatisfiable transition t₁₇₅₀₆: n_l12___12→l11
Cut unsatisfiable transition t₁₇₅₀₇: n_l12___14→l11
Cut unsatisfiable transition t₁₇₅₀₈: n_l12___17→l11
Cut unsatisfiable transition t₁₇₅₀₉: n_l12___28→l11
Cut unsatisfiable transition t₁₇₅₁₀: n_l12___3→l11
Cut unsatisfiable transition t₁₇₅₁₁: n_l12___30→l11
Cut unsatisfiable transition t₁₇₅₁₂: n_l12___32→l11
Cut unsatisfiable transition t₁₇₅₁₃: n_l12___50→l11
Cut unsatisfiable transition t₁₇₅₂₈: n_l13___11→l11
Cut unsatisfiable transition t₁₇₅₃₆: n_l13___11→l11
Cut unsatisfiable transition t₁₇₅₂₉: n_l13___13→l11
Cut unsatisfiable transition t₁₇₅₃₇: n_l13___13→l11
Cut unsatisfiable transition t₁₇₅₃₀: n_l13___16→l11
Cut unsatisfiable transition t₁₇₅₃₈: n_l13___16→l11
Cut unsatisfiable transition t₁₇₅₃₁: n_l13___2→l11
Cut unsatisfiable transition t₁₇₅₃₉: n_l13___2→l11
Cut unsatisfiable transition t₁₇₅₃₂: n_l13___27→l11
Cut unsatisfiable transition t₁₇₅₄₀: n_l13___27→l11
Cut unsatisfiable transition t₁₇₅₃₃: n_l13___29→l11
Cut unsatisfiable transition t₁₇₅₄₁: n_l13___29→l11
Cut unsatisfiable transition t₁₇₅₃₄: n_l13___31→l11
Cut unsatisfiable transition t₁₇₅₄₂: n_l13___31→l11
Cut unsatisfiable transition t₁₇₅₃₅: n_l13___49→l11
Cut unsatisfiable transition t₁₇₅₄₃: n_l13___49→l11
Cut unsatisfiable transition t₁₇₅₁₇: n_l8___19→l11
Cut unsatisfiable transition t₁₇₅₁₉: n_l8___33→l11
Cut unsatisfiable transition t₁₇₅₂₀: n_l8___34→l11
Cut unsatisfiable transition t₁₇₅₂₁: n_l8___38→l11
Cut unsatisfiable transition t₁₇₅₂₃: n_l8___5→l11
Cut unsatisfiable transition t₁₇₅₂₄: n_l8___51→l11
Cut unsatisfiable transition t₁₇₅₂₅: n_l8___52→l11
Cut unsatisfiable transition t₁₇₅₂₆: n_l8___56→l11
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l4___58
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 5 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₆ ≤ 2+X₃ ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___52
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l2___62
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l6___37
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 2+X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₃+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___5
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l16___24
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l8___33
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l4___40
Found invariant X₇ ≤ 2 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 4 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 4 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ 1+X₃ ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l13___11
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₀+X₃ ≤ 0 ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l8___18
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l7___54
Found invariant 1 ≤ X₄ for location l14
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l16___39
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___19
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l1___42
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l13___29
Found invariant 2 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l4___59
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 2+X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₃+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l12___3
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l2___44
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ X₀+X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₀+X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l8___51
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l16___57
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l7___21
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l12___17
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l17___25
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ for location n_l17___65
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l7___7
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l5___53
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l4___41
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l5___35
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l5___20
Found invariant 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 3+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 6 ≤ X₁+X₅ ∧ 3+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l4___45
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l12___28
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l16___10
Found invariant X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 2 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 2 ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 4 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 3 ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ X₂ ≤ 2+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ 2+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 4 ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 3 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ 2+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l8___1
Found invariant X₇ ≤ 2 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 4 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 4 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ 1+X₃ ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l8___56
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 2+X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₃+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l13___2
Found invariant X₇ ≤ 1 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 2 ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 4 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 3 ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ X₂ ≤ 2+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l4___63
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l12___32
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l15___46
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l5___6
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l15___64
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l12___30
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ X₀+X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₀+X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l13___13
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l3___61
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l9___26
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l6___8
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l13___27
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l7___36
Found invariant 1 ≤ X₄ for location l11
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ X₀+X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₀+X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l12___14
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l13___16
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l13___31
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l1___60
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l3___43
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l8___38
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l6___55
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l6___22
Found invariant 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l8___23
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 1+X₆ ∧ X₆+X₇ ≤ 3 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₃+X₇ ≤ 2 ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₃+X₆ ≤ 1 ∧ 2+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 4 ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 3 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ 2+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l8___9
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 5 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₆ ≤ 2+X₃ ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l12___50
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___34
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l17___47
Found invariant 1+X₇ ≤ X₂ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 3+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 6 ≤ X₁+X₅ ∧ 3+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l8___15
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₃+X₆ ≤ 1 ∧ 2+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 4 ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 3 ∧ X₀+X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ 2+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₀+X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₀+X₃ ≤ 0 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l8___4
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l9___48
Found invariant X₄ ≤ 1 ∧ 1 ≤ X₄ for location l9
Found invariant X₇ ≤ 2 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 4 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 4 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ 1+X₃ ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l12___12
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 5 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₆ ≤ 2+X₃ ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l13___49
MPRF for transition t₁₇₄₀₀: n_l12___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
12⋅X₇+36 {O(n)}
MPRF:
n_l13___16 [4⋅X₇-12⋅X₄ ]
n_l13___29 [6⋅X₆+4⋅X₇+6-6⋅X₂-6⋅X₅ ]
n_l13___31 [6⋅X₅+4⋅X₇+6-6⋅X₂-12⋅X₄ ]
n_l15___46 [4⋅X₇-6⋅X₆ ]
n_l2___44 [4⋅X₇-3⋅X₁ ]
n_l3___43 [6⋅X₆+4⋅X₇-3⋅X₁-6⋅X₄ ]
n_l1___42 [4⋅X₇-6⋅X₄ ]
n_l4___40 [4⋅X₇-6⋅X₆ ]
n_l16___24 [4⋅X₇-3⋅X₁ ]
n_l4___41 [4⋅X₇-6⋅X₆ ]
n_l16___39 [4⋅X₇-3⋅X₁ ]
n_l6___22 [4⋅X₇-3⋅X₁ ]
n_l6___37 [6⋅X₄+4⋅X₇+6-3⋅X₁-6⋅X₂ ]
n_l7___21 [4⋅X₇-6⋅X₄ ]
n_l5___20 [4⋅X₇-6⋅X₆ ]
n_l7___36 [6⋅X₆+4⋅X₇+6-6⋅X₂-3⋅X₅ ]
n_l5___35 [4⋅X₇+6-6⋅X₂ ]
n_l8___19 [2⋅X₅+4⋅X₇+4-3⋅X₁-2⋅X₂ ]
n_l12___17 [4⋅X₇+1-4⋅X₂ ]
n_l8___33 [12⋅X₄+4⋅X₇+6-6⋅X₂-6⋅X₆ ]
n_l12___30 [6⋅X₁+4⋅X₇+6-6⋅X₂-6⋅X₅ ]
n_l8___34 [6⋅X₁+4⋅X₇+6-12⋅X₄-6⋅X₆ ]
n_l12___32 [6⋅X₁+4⋅X₇+6-12⋅X₄-6⋅X₆ ]
n_l9___48 [4⋅X₇-6⋅X₁ ]
n_l17___47 [4⋅X₇-6⋅X₆ ]
MPRF for transition t₁₇₄₀₃: n_l12___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
18⋅X₇+69 {O(n)}
MPRF:
n_l13___16 [6⋅X₂+6⋅X₇-6⋅X₁-6⋅X₆-11 ]
n_l13___29 [6⋅X₇-6⋅X₂-5 ]
n_l13___31 [6⋅X₇-6⋅X₂-5 ]
n_l15___46 [6⋅X₇-3⋅X₂-8 ]
n_l2___44 [6⋅X₇-3⋅X₂-8 ]
n_l3___43 [6⋅X₇-3⋅X₂-8 ]
n_l1___42 [6⋅X₇-3⋅X₂-8 ]
n_l4___40 [6⋅X₇-6⋅X₆-17 ]
n_l16___24 [6⋅X₇-6⋅X₂-5 ]
n_l4___41 [6⋅X₇+1-6⋅X₂ ]
n_l16___39 [6⋅X₇+1-6⋅X₂ ]
n_l6___22 [6⋅X₇-6⋅X₂-5 ]
n_l6___37 [6⋅X₇+1-6⋅X₂ ]
n_l7___21 [6⋅X₇-6⋅X₂-5 ]
n_l5___20 [6⋅X₇-6⋅X₂-5 ]
n_l7___36 [6⋅X₇+1-6⋅X₂ ]
n_l5___35 [6⋅X₇+1-6⋅X₂ ]
n_l8___19 [6⋅X₇-6⋅X₆-5 ]
n_l12___17 [6⋅X₇-6⋅X₆-5 ]
n_l8___33 [6⋅X₇+1-6⋅X₂ ]
n_l12___30 [6⋅X₇+1-6⋅X₂ ]
n_l8___34 [6⋅X₇-6⋅X₆-5 ]
n_l12___32 [6⋅X₇-6⋅X₆-5 ]
n_l9___48 [6⋅X₇-6⋅X₁-11 ]
n_l17___47 [11⋅X₁+6⋅X₇-11⋅X₂-6⋅X₄ ]
MPRF for transition t₁₇₄₀₄: n_l12___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₇+11 {O(n)}
MPRF:
n_l13___16 [2⋅X₇+1-X₆ ]
n_l13___29 [2⋅X₇+1-X₆ ]
n_l13___31 [2⋅X₇-2⋅X₄ ]
n_l15___46 [2⋅X₇-X₆ ]
n_l2___44 [2⋅X₇-X₄ ]
n_l3___43 [X₄+2⋅X₇-2⋅X₆ ]
n_l1___42 [X₄+2⋅X₇-X₁ ]
n_l4___40 [X₅+2⋅X₇-X₁-1 ]
n_l16___24 [2⋅X₇+1-X₂ ]
n_l4___41 [3⋅X₄+2⋅X₇-X₁-2⋅X₆ ]
n_l16___39 [3⋅X₄+2⋅X₇-X₅-2⋅X₆ ]
n_l6___22 [2⋅X₇+1-X₂ ]
n_l6___37 [X₄+2⋅X₇-2⋅X₆ ]
n_l7___21 [2⋅X₇+1-X₂ ]
n_l5___20 [2⋅X₇+1-X₂ ]
n_l7___36 [X₁+2⋅X₇-3⋅X₄ ]
n_l5___35 [2⋅X₇-X₆ ]
n_l8___19 [2⋅X₇+1-X₂ ]
n_l12___17 [2⋅X₇+1-X₂ ]
n_l8___33 [2⋅X₇+1-X₆ ]
n_l12___30 [2⋅X₇+1-X₆ ]
n_l8___34 [X₄+2⋅X₇-X₅ ]
n_l12___32 [2⋅X₇+1-X₅ ]
n_l9___48 [2⋅X₇+1-X₄ ]
n_l17___47 [2⋅X₇+1-X₄ ]
MPRF for transition t₁₇₄₀₈: n_l13___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₇+25 {O(n)}
MPRF:
n_l13___16 [X₇+1-X₆ ]
n_l13___29 [X₇-X₂ ]
n_l13___31 [X₆+X₇-X₁-X₂-1 ]
n_l15___46 [X₁+X₇-X₄-3⋅X₆ ]
n_l2___44 [X₁+X₇-4⋅X₄ ]
n_l3___43 [X₁+X₇-4⋅X₄ ]
n_l1___42 [X₇-2⋅X₆ ]
n_l4___40 [X₇+1-X₂ ]
n_l16___24 [X₇+1-X₂ ]
n_l4___41 [X₇-2⋅X₄-1 ]
n_l16___39 [X₇-2⋅X₆-1 ]
n_l6___22 [X₇+1-X₂ ]
n_l6___37 [X₇-X₅-1 ]
n_l7___21 [X₇+1-X₂ ]
n_l5___20 [X₇+1-X₂ ]
n_l7___36 [X₇-X₅-1 ]
n_l5___35 [X₇-X₅-1 ]
n_l8___19 [X₇+1-X₂ ]
n_l12___17 [X₇+1-X₂ ]
n_l8___33 [X₇-2⋅X₄-1 ]
n_l12___30 [X₅+X₇-X₂-2⋅X₄ ]
n_l8___34 [X₇-X₅-1 ]
n_l12___32 [X₇-X₅-1 ]
n_l9___48 [X₄+X₇-X₂-X₆ ]
n_l17___47 [X₁+X₇+1-3⋅X₆ ]
MPRF for transition t₁₇₄₁₁: n_l13___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
6⋅X₇+16 {O(n)}
MPRF:
n_l13___16 [2⋅X₇-2⋅X₅-1 ]
n_l13___29 [2⋅X₇+1-2⋅X₅ ]
n_l13___31 [2⋅X₄+2⋅X₅+2⋅X₇+2-X₁-2⋅X₂-2⋅X₆ ]
n_l15___46 [2⋅X₇-X₁ ]
n_l2___44 [2⋅X₄+2⋅X₇+1-X₁-X₂ ]
n_l3___43 [2⋅X₄+2⋅X₇+1-X₂-2⋅X₆ ]
n_l1___42 [2⋅X₇+1-X₂ ]
n_l4___40 [2⋅X₇-X₂ ]
n_l16___24 [2⋅X₇-X₂ ]
n_l4___41 [2⋅X₇+1-X₂ ]
n_l16___39 [2⋅X₇+1-X₂ ]
n_l6___22 [X₁+2⋅X₇-X₂-2⋅X₄ ]
n_l6___37 [2⋅X₇+1-X₂ ]
n_l7___21 [X₁+2⋅X₇-X₂-2⋅X₆ ]
n_l5___20 [X₁+2⋅X₇-X₂-2⋅X₆ ]
n_l7___36 [2⋅X₇+1-X₂ ]
n_l5___35 [2⋅X₇-X₅ ]
n_l8___19 [X₁+2⋅X₇-2⋅X₅-X₆ ]
n_l12___17 [X₂+2⋅X₇-2⋅X₄-X₆-1 ]
n_l8___33 [X₁+2⋅X₄+X₅+2⋅X₇+3-2⋅X₂-3⋅X₆ ]
n_l12___30 [2⋅X₄+2⋅X₇+1-2⋅X₅-X₆ ]
n_l8___34 [2⋅X₄+2⋅X₇-X₁-2⋅X₆ ]
n_l12___32 [2⋅X₄+2⋅X₇-X₁-2⋅X₂ ]
n_l9___48 [2⋅X₇-2⋅X₆ ]
n_l17___47 [2⋅X₇-2⋅X₄ ]
MPRF for transition t₁₇₄₁₂: n_l13___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₇+16 {O(n)}
MPRF:
n_l13___16 [2⋅X₂+2⋅X₇-4⋅X₅-2⋅X₆-2 ]
n_l13___29 [2⋅X₅+2⋅X₇-4⋅X₄-2⋅X₆ ]
n_l13___31 [2⋅X₇+1-2⋅X₂ ]
n_l15___46 [2⋅X₇-X₁ ]
n_l2___44 [2⋅X₄+2⋅X₇+2-X₁-2⋅X₂ ]
n_l3___43 [2⋅X₄+2⋅X₇+2-2⋅X₂-2⋅X₆ ]
n_l1___42 [2⋅X₇+2-2⋅X₂ ]
n_l4___40 [2⋅X₇-2⋅X₂ ]
n_l16___24 [2⋅X₇-2⋅X₂ ]
n_l4___41 [2⋅X₁+2⋅X₇+2-2⋅X₂-4⋅X₆ ]
n_l16___39 [2⋅X₅+2⋅X₇+2-2⋅X₂-4⋅X₄ ]
n_l6___22 [2⋅X₇-2⋅X₂ ]
n_l6___37 [2⋅X₅+2⋅X₇+2-2⋅X₂-4⋅X₄ ]
n_l7___21 [2⋅X₇-2⋅X₂ ]
n_l5___20 [2⋅X₇-2⋅X₂ ]
n_l7___36 [2⋅X₁+2⋅X₇+2-2⋅X₂-4⋅X₄ ]
n_l5___35 [2⋅X₇-4⋅X₆ ]
n_l8___19 [2⋅X₇-2⋅X₆ ]
n_l12___17 [2⋅X₇-4⋅X₅-2 ]
n_l8___33 [2⋅X₇-2⋅X₅ ]
n_l12___30 [2⋅X₇-4⋅X₄ ]
n_l8___34 [X₅+2⋅X₇+1-2⋅X₄-2⋅X₆ ]
n_l12___32 [X₁+2⋅X₇+1-2⋅X₂-2⋅X₄ ]
n_l9___48 [2⋅X₇-2⋅X₆ ]
n_l17___47 [2⋅X₇-2⋅X₆ ]
MPRF for transition t₁₇₄₁₄: n_l15___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
9⋅X₇+27 {O(n)}
MPRF:
n_l13___16 [3⋅X₇-8⋅X₄-1 ]
n_l13___29 [3⋅X₇-8⋅X₄-1 ]
n_l13___31 [3⋅X₇-8⋅X₄-1 ]
n_l15___46 [2⋅X₅+3⋅X₇-6⋅X₄-1 ]
n_l2___44 [2⋅X₅+3⋅X₇-6⋅X₄-9 ]
n_l3___43 [2⋅X₅+3⋅X₇-6⋅X₄-9 ]
n_l1___42 [2⋅X₅+3⋅X₇-6⋅X₄-9 ]
n_l4___40 [3⋅X₇-4⋅X₁-1 ]
n_l16___24 [8⋅X₅+3⋅X₇-8⋅X₄-8⋅X₆-1 ]
n_l4___41 [3⋅X₇-8⋅X₆-1 ]
n_l16___39 [8⋅X₄+3⋅X₇-4⋅X₅-8⋅X₆-1 ]
n_l6___22 [3⋅X₇-8⋅X₆-1 ]
n_l6___37 [8⋅X₄+3⋅X₇-4⋅X₁-8⋅X₆-1 ]
n_l7___21 [3⋅X₇-8⋅X₄-1 ]
n_l5___20 [3⋅X₇-8⋅X₆-1 ]
n_l7___36 [3⋅X₇-4⋅X₅-1 ]
n_l5___35 [3⋅X₇-8⋅X₄-1 ]
n_l8___19 [3⋅X₇-4⋅X₁-1 ]
n_l12___17 [3⋅X₇-8⋅X₅-1 ]
n_l8___33 [3⋅X₇+3-4⋅X₂ ]
n_l12___30 [4⋅X₁+3⋅X₇-8⋅X₄-4⋅X₆-1 ]
n_l8___34 [3⋅X₇-8⋅X₄-1 ]
n_l12___32 [3⋅X₇-8⋅X₄-1 ]
n_l9___48 [3⋅X₇-4⋅X₁-1 ]
n_l17___47 [2⋅X₅+3⋅X₇-6⋅X₆-1 ]
MPRF for transition t₁₇₄₁₇: n_l16___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+22 {O(n)}
MPRF:
n_l13___16 [X₇+1-X₂-2⋅X₅ ]
n_l13___29 [X₇+2-4⋅X₄ ]
n_l13___31 [X₇-2⋅X₄ ]
n_l15___46 [X₇+2-X₁ ]
n_l2___44 [2⋅X₆+X₇+2-X₁-2⋅X₄ ]
n_l3___43 [X₇+2-2⋅X₄ ]
n_l1___42 [X₇+3-X₂ ]
n_l4___40 [X₇+3-X₂ ]
n_l16___24 [X₇+3-X₂ ]
n_l4___41 [2⋅X₄+X₅+X₇+1-X₁-X₂-2⋅X₆ ]
n_l16___39 [X₅+X₇+1-X₂-2⋅X₆ ]
n_l6___22 [X₁+X₇-X₂-2⋅X₆-1 ]
n_l6___37 [X₇-X₁ ]
n_l7___21 [X₇+1-X₂-2⋅X₆ ]
n_l5___20 [X₇+1-X₂-2⋅X₅ ]
n_l7___36 [X₇-X₅ ]
n_l5___35 [X₇-2⋅X₆ ]
n_l8___19 [X₇+1-X₁-X₂ ]
n_l12___17 [X₇+1-X₁-X₂ ]
n_l8___33 [X₇-2⋅X₄ ]
n_l12___30 [X₇-2⋅X₄ ]
n_l8___34 [X₇-2⋅X₄ ]
n_l12___32 [X₇-2⋅X₄ ]
n_l9___48 [X₇+2-2⋅X₄ ]
n_l17___47 [X₇+2-2⋅X₄ ]
MPRF for transition t₁₇₄₁₈: n_l16___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+27 {O(n)}
MPRF:
n_l13___16 [4⋅X₅+X₇+3-4⋅X₄-2⋅X₆ ]
n_l13___29 [X₆+X₇-X₁-2⋅X₄ ]
n_l13___31 [2⋅X₄+X₇+1-X₁-2⋅X₅ ]
n_l15___46 [X₇+1-X₁ ]
n_l2___44 [X₇+1-X₁ ]
n_l3___43 [X₇+1-2⋅X₄ ]
n_l1___42 [X₇+1-2⋅X₄ ]
n_l4___40 [X₇+1-2⋅X₁ ]
n_l16___24 [X₇+1-4⋅X₆ ]
n_l4___41 [X₇+2-X₂ ]
n_l16___39 [X₇+2-X₂ ]
n_l6___22 [X₇+1-4⋅X₄ ]
n_l6___37 [X₇+1-X₂ ]
n_l7___21 [X₇+1-4⋅X₅ ]
n_l5___20 [X₇+1-4⋅X₄ ]
n_l7___36 [X₅+X₇+1-X₂-2⋅X₆ ]
n_l5___35 [X₇-2⋅X₄ ]
n_l8___19 [X₇+1-4⋅X₅ ]
n_l12___17 [2⋅X₂+X₇+1-4⋅X₄-2⋅X₆ ]
n_l8___33 [X₇-X₅ ]
n_l12___30 [X₆+X₇-2⋅X₄-X₅ ]
n_l8___34 [X₇-X₅ ]
n_l12___32 [X₇-X₁ ]
n_l9___48 [X₇+3-2⋅X₂ ]
n_l17___47 [X₇+1-2⋅X₆ ]
MPRF for transition t₁₇₄₂₁: n_l17___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l15___46(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ 3 ≤ X₂ ∧ 2 ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₄ ∧ 2⋅X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
9⋅X₇+35 {O(n)}
MPRF:
n_l13___16 [3⋅X₇-6⋅X₅-7 ]
n_l13___29 [8⋅X₄+3⋅X₇+3-4⋅X₂-4⋅X₆ ]
n_l13___31 [6⋅X₄+3⋅X₇-3⋅X₁-4⋅X₆-1 ]
n_l15___46 [2⋅X₅+3⋅X₇-6⋅X₄-9 ]
n_l2___44 [2⋅X₅+3⋅X₇-6⋅X₆-9 ]
n_l3___43 [2⋅X₅+3⋅X₇-6⋅X₄-9 ]
n_l1___42 [2⋅X₅+3⋅X₇-3⋅X₁-9 ]
n_l4___40 [3⋅X₇-3⋅X₁-7 ]
n_l16___24 [3⋅X₇-6⋅X₅-7 ]
n_l4___41 [3⋅X₇-X₂-3⋅X₅ ]
n_l16___39 [6⋅X₆+3⋅X₇+3-4⋅X₂-3⋅X₅ ]
n_l6___22 [3⋅X₇-6⋅X₄-7 ]
n_l6___37 [6⋅X₄+3⋅X₇+3-3⋅X₁-4⋅X₂ ]
n_l7___21 [3⋅X₁+3⋅X₇-6⋅X₄-6⋅X₅-7 ]
n_l5___20 [3⋅X₇-6⋅X₅-7 ]
n_l7___36 [6⋅X₆+3⋅X₇+3-3⋅X₁-4⋅X₂ ]
n_l5___35 [6⋅X₄+3⋅X₇+3-4⋅X₂-3⋅X₅ ]
n_l8___19 [3⋅X₇-3⋅X₁-7 ]
n_l12___17 [3⋅X₇-6⋅X₅-7 ]
n_l8___33 [3⋅X₇+3-4⋅X₂ ]
n_l12___30 [4⋅X₁+3⋅X₇+3-4⋅X₂-4⋅X₆ ]
n_l8___34 [6⋅X₄+3⋅X₇+3-3⋅X₁-4⋅X₆ ]
n_l12___32 [6⋅X₄+3⋅X₇+2-7⋅X₆ ]
n_l9___48 [3⋅X₇-4⋅X₆-1 ]
n_l17___47 [2⋅X₅+3⋅X₇-6⋅X₆-1 ]
MPRF for transition t₁₇₄₂₅: n_l1___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___40(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
6⋅X₇+45 {O(n)}
MPRF:
n_l13___16 [4⋅X₂+2⋅X₇-6⋅X₅-4⋅X₆-5 ]
n_l13___29 [4⋅X₁+2⋅X₇-2⋅X₅-4⋅X₆-1 ]
n_l13___31 [4⋅X₄+2⋅X₇-4⋅X₆-1 ]
n_l15___46 [2⋅X₁+2⋅X₅+2⋅X₇-8⋅X₆-1 ]
n_l2___44 [2⋅X₁+2⋅X₂+2⋅X₅+2⋅X₇-12⋅X₄-3 ]
n_l3___43 [2⋅X₁+2⋅X₂+2⋅X₅+2⋅X₇-12⋅X₆-3 ]
n_l1___42 [2⋅X₅+2⋅X₇-4⋅X₆-1 ]
n_l4___40 [2⋅X₇-6⋅X₅-5 ]
n_l16___24 [2⋅X₇-6⋅X₅-5 ]
n_l4___41 [2⋅X₇+1-2⋅X₂ ]
n_l16___39 [2⋅X₇+1-2⋅X₂ ]
n_l6___22 [2⋅X₇-3⋅X₁-5 ]
n_l6___37 [2⋅X₇+1-2⋅X₂ ]
n_l7___21 [2⋅X₇-6⋅X₆-5 ]
n_l5___20 [2⋅X₇-6⋅X₄-5 ]
n_l7___36 [2⋅X₇+1-2⋅X₂ ]
n_l5___35 [2⋅X₇+1-2⋅X₂ ]
n_l8___19 [4⋅X₂+2⋅X₇-3⋅X₁-4⋅X₆-5 ]
n_l12___17 [4⋅X₂+2⋅X₇-6⋅X₄-4⋅X₆-5 ]
n_l8___33 [8⋅X₄+2⋅X₇+1-2⋅X₂-4⋅X₅ ]
n_l12___30 [8⋅X₄+2⋅X₇+1-2⋅X₂-4⋅X₆ ]
n_l8___34 [2⋅X₂+4⋅X₄+2⋅X₇-2⋅X₅-4⋅X₆-3 ]
n_l12___32 [2⋅X₂+4⋅X₄+2⋅X₇-2⋅X₅-4⋅X₆-3 ]
n_l9___48 [2⋅X₅+2⋅X₇-4⋅X₆-1 ]
n_l17___47 [4⋅X₄+2⋅X₅+2⋅X₇-8⋅X₆-1 ]
MPRF for transition t₁₇₄₂₆: n_l1___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___41(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 0 < X₃ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
6⋅X₇+28 {O(n)}
MPRF:
n_l13___16 [2⋅X₇+4-2⋅X₆ ]
n_l13___29 [2⋅X₇+4-2⋅X₆ ]
n_l13___31 [2⋅X₇+4-2⋅X₆ ]
n_l15___46 [2⋅X₇+5-X₂ ]
n_l2___44 [2⋅X₂+2⋅X₇+2-6⋅X₄ ]
n_l3___43 [2⋅X₂+2⋅X₇+2-6⋅X₆ ]
n_l1___42 [2⋅X₇+8-2⋅X₂ ]
n_l4___40 [2⋅X₇+8-2⋅X₂ ]
n_l16___24 [2⋅X₇+4-2⋅X₂ ]
n_l4___41 [2⋅X₇+4-2⋅X₅ ]
n_l16___39 [2⋅X₇+6-2⋅X₂ ]
n_l6___22 [2⋅X₇+4-2⋅X₂ ]
n_l6___37 [2⋅X₇+6-2⋅X₂ ]
n_l7___21 [2⋅X₇+4-2⋅X₂ ]
n_l5___20 [2⋅X₇+4-2⋅X₂ ]
n_l7___36 [2⋅X₇+6-2⋅X₂ ]
n_l5___35 [2⋅X₇+6-2⋅X₂ ]
n_l8___19 [2⋅X₇+4-2⋅X₂ ]
n_l12___17 [2⋅X₇+4-2⋅X₆ ]
n_l8___33 [2⋅X₇+4-2⋅X₆ ]
n_l12___30 [2⋅X₇+4-2⋅X₅ ]
n_l8___34 [2⋅X₇+6-2⋅X₂ ]
n_l12___32 [2⋅X₇+4-2⋅X₆ ]
n_l9___48 [2⋅X₇+4-2⋅X₄ ]
n_l17___47 [2⋅X₇+4-2⋅X₄ ]
MPRF for transition t₁₇₄₂₉: n_l2___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+6 {O(n)}
MPRF:
n_l13___16 [X₇-X₁ ]
n_l13___29 [X₇-2⋅X₄ ]
n_l13___31 [2⋅X₄+X₇+2-2⋅X₂ ]
n_l15___46 [X₇-X₆ ]
n_l2___44 [X₇-X₆ ]
n_l3___43 [X₇-X₄-1 ]
n_l1___42 [X₇-X₄-1 ]
n_l4___40 [X₇-X₄-1 ]
n_l16___24 [X₇-X₄-1 ]
n_l4___41 [X₇-X₆-1 ]
n_l16___39 [X₁+X₅+X₇-5⋅X₆-1 ]
n_l6___22 [X₇-X₄-1 ]
n_l6___37 [X₁+X₅+X₇-X₂-3⋅X₆ ]
n_l7___21 [X₇-X₆-1 ]
n_l5___20 [X₁+X₇-3⋅X₄-1 ]
n_l7___36 [2⋅X₁+2⋅X₂+X₇-3⋅X₄-3⋅X₅-3 ]
n_l5___35 [2⋅X₆+X₇+2-2⋅X₂ ]
n_l8___19 [X₇-X₄-1 ]
n_l12___17 [X₇-X₄-1 ]
n_l8___33 [2⋅X₆+X₇+2-2⋅X₂-2⋅X₄ ]
n_l12___30 [X₇+1-X₂ ]
n_l8___34 [2⋅X₄+X₇+2-2⋅X₆ ]
n_l12___32 [2⋅X₄+X₇+2-2⋅X₆ ]
n_l9___48 [X₇-X₁ ]
n_l17___47 [X₇-X₆ ]
MPRF for transition t₁₇₄₃₁: n_l3___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___42(X₀, X₁, X₂, NoDet0, Arg4_P, X₅, X₆, Arg7_P) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ X₁ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+15 {O(n)}
MPRF:
n_l13___16 [2⋅X₂+X₇+1-4⋅X₅-2⋅X₆ ]
n_l13___29 [X₂+X₇-2⋅X₅-X₆ ]
n_l13___31 [X₇+3-2⋅X₂ ]
n_l15___46 [X₁+X₇+1-4⋅X₄ ]
n_l2___44 [X₂+X₇-4⋅X₄ ]
n_l3___43 [X₂+X₇-2⋅X₁ ]
n_l1___42 [X₂+X₇-4⋅X₄-2 ]
n_l4___40 [X₂+X₇-4⋅X₄-2 ]
n_l16___24 [X₂+X₇-6⋅X₅ ]
n_l4___41 [X₂+X₇-3⋅X₅ ]
n_l16___39 [X₂+X₇-3⋅X₅ ]
n_l6___22 [3⋅X₁+X₇+3-2⋅X₂-6⋅X₄ ]
n_l6___37 [X₂+X₇-3⋅X₁ ]
n_l7___21 [6⋅X₅+X₇+3-2⋅X₂-6⋅X₆ ]
n_l5___20 [X₇+3-2⋅X₂ ]
n_l7___36 [X₂+X₇-3⋅X₁ ]
n_l5___35 [X₂+X₇-3⋅X₅ ]
n_l8___19 [2⋅X₁+X₇+3-4⋅X₅-2⋅X₆ ]
n_l12___17 [2⋅X₂+X₇+1-4⋅X₄-2⋅X₆ ]
n_l8___33 [3⋅X₁+X₂+X₇-6⋅X₄-3⋅X₆ ]
n_l12___30 [X₂+X₇-6⋅X₄ ]
n_l8___34 [6⋅X₄+X₆+X₇-3⋅X₁-3⋅X₅ ]
n_l12___32 [6⋅X₄+X₆+X₇+3-3⋅X₂-3⋅X₅ ]
n_l9___48 [X₇+1-2⋅X₁ ]
n_l17___47 [X₇+1-2⋅X₄ ]
MPRF for transition t₁₇₄₃₃: n_l4___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+14 {O(n)}
MPRF:
n_l13___16 [X₂+X₇-2⋅X₅-X₆-3 ]
n_l13___29 [X₇-X₆-2 ]
n_l13___31 [X₇-X₆-2 ]
n_l15___46 [X₇-X₁ ]
n_l2___44 [X₇-X₁ ]
n_l3___43 [X₇-2⋅X₆ ]
n_l1___42 [X₇-X₁ ]
n_l4___40 [X₇-2⋅X₄ ]
n_l16___24 [X₇-X₁-3 ]
n_l4___41 [2⋅X₆+X₇-X₁-X₂-1 ]
n_l16___39 [2⋅X₆+X₇-X₂-X₅-1 ]
n_l6___22 [X₇-2⋅X₅-3 ]
n_l6___37 [2⋅X₆+X₇-X₂-2⋅X₄-1 ]
n_l7___21 [X₇-X₁-3 ]
n_l5___20 [2⋅X₄+X₇-X₁-2⋅X₅-3 ]
n_l7___36 [2⋅X₆+X₇-X₁-X₂-1 ]
n_l5___35 [X₇-X₅-2 ]
n_l8___19 [X₇-2⋅X₅-3 ]
n_l12___17 [X₇-X₁-3 ]
n_l8___33 [X₇-X₁-2 ]
n_l12___30 [X₇-X₆-2 ]
n_l8___34 [X₇-2⋅X₄-2 ]
n_l12___32 [X₁+X₇-2⋅X₄-X₅-2 ]
n_l9___48 [X₇-X₄-2 ]
n_l17___47 [X₇-2⋅X₄ ]
MPRF for transition t₁₇₄₃₅: n_l4___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
9⋅X₇+33 {O(n)}
MPRF:
n_l13___16 [X₂+3⋅X₇+1-6⋅X₄-X₆ ]
n_l13___29 [3⋅X₇+1-6⋅X₅ ]
n_l13___31 [3⋅X₇+1-6⋅X₅ ]
n_l15___46 [3⋅X₇+1-6⋅X₄ ]
n_l2___44 [3⋅X₇+1-6⋅X₆ ]
n_l3___43 [3⋅X₇+1-6⋅X₄ ]
n_l1___42 [3⋅X₇+1-3⋅X₁ ]
n_l4___40 [2⋅X₆+3⋅X₇+4-X₁-3⋅X₂ ]
n_l16___24 [3⋅X₇+4-3⋅X₂ ]
n_l4___41 [3⋅X₇+1-6⋅X₄ ]
n_l16___39 [3⋅X₇-3⋅X₁ ]
n_l6___22 [3⋅X₇+4-3⋅X₂ ]
n_l6___37 [6⋅X₂+3⋅X₇-6⋅X₅-6⋅X₆-6 ]
n_l7___21 [3⋅X₇+4-3⋅X₂ ]
n_l5___20 [3⋅X₇+2-X₂-4⋅X₄ ]
n_l7___36 [3⋅X₁+6⋅X₂+3⋅X₇-6⋅X₄-6⋅X₅-6⋅X₆-6 ]
n_l5___35 [3⋅X₇+1-6⋅X₅ ]
n_l8___19 [3⋅X₇+2-4⋅X₅-X₆ ]
n_l12___17 [X₂+3⋅X₇+1-3⋅X₁-X₆ ]
n_l8___33 [3⋅X₇+1-6⋅X₆ ]
n_l12___30 [3⋅X₇+1-6⋅X₅ ]
n_l8___34 [3⋅X₇+1-12⋅X₄ ]
n_l12___32 [3⋅X₇+1-12⋅X₄ ]
n_l9___48 [3⋅X₇+1-6⋅X₅ ]
n_l17___47 [3⋅X₇+1-6⋅X₆ ]
MPRF for transition t₁₇₄₄₄: n_l5___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___19(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 < X₀ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
12⋅X₇+36 {O(n)}
MPRF:
n_l13___16 [4⋅X₂+4⋅X₇-12⋅X₅-4⋅X₆ ]
n_l13___29 [2⋅X₅+4⋅X₇-4⋅X₂-2⋅X₆ ]
n_l13___31 [4⋅X₇-6⋅X₅ ]
n_l15___46 [4⋅X₇-6⋅X₄ ]
n_l2___44 [4⋅X₇+3-3⋅X₂ ]
n_l3___43 [4⋅X₇+2-2⋅X₂-2⋅X₄ ]
n_l1___42 [4⋅X₇+6-4⋅X₂ ]
n_l4___40 [4⋅X₇+6-4⋅X₂ ]
n_l16___24 [4⋅X₇+6-4⋅X₂ ]
n_l4___41 [4⋅X₇-4⋅X₂ ]
n_l16___39 [4⋅X₇-4⋅X₂ ]
n_l6___22 [X₁+4⋅X₇+6-4⋅X₂-2⋅X₅ ]
n_l6___37 [4⋅X₇-4⋅X₂ ]
n_l7___21 [2⋅X₄+4⋅X₇+6-4⋅X₂-2⋅X₅ ]
n_l5___20 [4⋅X₇+6-4⋅X₂ ]
n_l7___36 [4⋅X₇-4⋅X₂ ]
n_l5___35 [4⋅X₇-4⋅X₂ ]
n_l8___19 [4⋅X₇+5-4⋅X₂ ]
n_l12___17 [4⋅X₄+4⋅X₇-4⋅X₅-4⋅X₆ ]
n_l8___33 [4⋅X₇-4⋅X₂ ]
n_l12___30 [4⋅X₇-4⋅X₂ ]
n_l8___34 [4⋅X₇+4-4⋅X₂-4⋅X₄ ]
n_l12___32 [8⋅X₄+4⋅X₇+4-6⋅X₅-4⋅X₆ ]
n_l9___48 [4⋅X₇-6⋅X₁ ]
n_l17___47 [4⋅X₇-6⋅X₆ ]
MPRF for transition t₁₇₄₄₅: n_l5___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___33(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
12⋅X₇+57 {O(n)}
MPRF:
n_l13___16 [X₂+4⋅X₇-10⋅X₄-8 ]
n_l13___29 [X₁+4⋅X₇-5⋅X₂-6 ]
n_l13___31 [X₅+4⋅X₇-5⋅X₆-6 ]
n_l15___46 [X₂+2⋅X₅+4⋅X₇-8⋅X₆-12 ]
n_l2___44 [X₂+2⋅X₅+4⋅X₇-8⋅X₆-12 ]
n_l3___43 [X₂+2⋅X₅+4⋅X₇-8⋅X₄-12 ]
n_l1___42 [X₂+2⋅X₅+4⋅X₇-4⋅X₁-12 ]
n_l4___40 [X₂+4⋅X₇-4⋅X₁-10 ]
n_l16___24 [X₂+4⋅X₇-4⋅X₁-10 ]
n_l4___41 [X₂+4⋅X₇-10⋅X₄-4 ]
n_l16___39 [X₂+2⋅X₆+4⋅X₇-6⋅X₅-4 ]
n_l6___22 [X₂+4⋅X₇-8⋅X₆-10 ]
n_l6___37 [X₂+2⋅X₄+4⋅X₇-6⋅X₁-4 ]
n_l7___21 [X₂+4⋅X₇-4⋅X₁-10 ]
n_l5___20 [X₂+4⋅X₇-8⋅X₆-10 ]
n_l7___36 [2⋅X₄+X₅+4⋅X₇-6⋅X₁-3 ]
n_l5___35 [2⋅X₄+4⋅X₇+2-5⋅X₂ ]
n_l8___19 [X₂+8⋅X₄+4⋅X₇-4⋅X₁-10⋅X₅-8 ]
n_l12___17 [X₂+4⋅X₇-10⋅X₅-8 ]
n_l8___33 [X₆+4⋅X₇-5⋅X₂-6 ]
n_l12___30 [X₅+4⋅X₇-5⋅X₂-6 ]
n_l8___34 [X₅+4⋅X₇-5⋅X₂-6 ]
n_l12___32 [X₅+4⋅X₇-5⋅X₂-6 ]
n_l9___48 [4⋅X₇-4⋅X₁-11 ]
n_l17___47 [2⋅X₄+2⋅X₅+4⋅X₇-8⋅X₆-11 ]
MPRF for transition t₁₇₄₄₆: n_l5___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___34(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 < X₀ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+16 {O(n)}
MPRF:
n_l13___16 [X₇+2-2⋅X₄ ]
n_l13___29 [2⋅X₁+X₇+1-X₂-2⋅X₅ ]
n_l13___31 [2⋅X₆+X₇-4⋅X₅ ]
n_l15___46 [X₇+2-X₁ ]
n_l2___44 [X₇+2-2⋅X₄ ]
n_l3___43 [2⋅X₆+X₇+2-X₁-2⋅X₄ ]
n_l1___42 [X₇+2-X₁ ]
n_l4___40 [2⋅X₅+X₇+2-X₁-2⋅X₆ ]
n_l16___24 [X₇+2-2⋅X₆ ]
n_l4___41 [X₇+2-2⋅X₄ ]
n_l16___39 [X₇+2-X₅ ]
n_l6___22 [X₇+2-2⋅X₄ ]
n_l6___37 [2⋅X₄+X₇+3-X₂-X₅ ]
n_l7___21 [X₇+2-2⋅X₆ ]
n_l5___20 [X₇+2-2⋅X₅ ]
n_l7___36 [2⋅X₄+X₇+3-X₁-X₂ ]
n_l5___35 [X₇+3-X₂ ]
n_l8___19 [X₇+2-2⋅X₅ ]
n_l12___17 [X₁+X₇+2-2⋅X₄-2⋅X₅ ]
n_l8___33 [X₇+1-X₂ ]
n_l12___30 [X₇+1-X₂ ]
n_l8___34 [X₇+1-X₆ ]
n_l12___32 [2⋅X₂+X₇-8⋅X₄ ]
n_l9___48 [X₇+2-2⋅X₅ ]
n_l17___47 [X₇+2-2⋅X₄ ]
MPRF for transition t₁₇₄₅₁: n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
6⋅X₇+19 {O(n)}
MPRF:
n_l13___16 [2⋅X₇-2⋅X₂-1 ]
n_l13___29 [2⋅X₇-2⋅X₆ ]
n_l13___31 [2⋅X₇-2⋅X₂ ]
n_l15___46 [2⋅X₇-X₂ ]
n_l2___44 [X₁+2⋅X₇+1-2⋅X₂ ]
n_l3___43 [2⋅X₄+2⋅X₇+1-2⋅X₂ ]
n_l1___42 [2⋅X₄+2⋅X₇+1-2⋅X₂ ]
n_l4___40 [X₁+2⋅X₄+2⋅X₇+1-2⋅X₂-2⋅X₆ ]
n_l16___24 [4⋅X₄+2⋅X₇+1-2⋅X₂-2⋅X₅ ]
n_l4___41 [2⋅X₄+2⋅X₇+1-2⋅X₂ ]
n_l16___39 [2⋅X₂+2⋅X₇-4⋅X₁-1 ]
n_l6___22 [2⋅X₇+1-2⋅X₂ ]
n_l6___37 [2⋅X₂+2⋅X₇-8⋅X₆-1 ]
n_l7___21 [2⋅X₇-2⋅X₂-1 ]
n_l5___20 [2⋅X₇-2⋅X₂-1 ]
n_l7___36 [2⋅X₂+4⋅X₄+2⋅X₇-2⋅X₁-8⋅X₆-1 ]
n_l5___35 [2⋅X₇-4⋅X₆ ]
n_l8___19 [2⋅X₇-2⋅X₆-1 ]
n_l12___17 [2⋅X₇-2⋅X₂-1 ]
n_l8___33 [2⋅X₇-4⋅X₄ ]
n_l12___30 [2⋅X₇-2⋅X₆ ]
n_l8___34 [2⋅X₇-2⋅X₂ ]
n_l12___32 [2⋅X₇-2⋅X₆ ]
n_l9___48 [2⋅X₇-2⋅X₆-1 ]
n_l17___47 [2⋅X₇-2⋅X₄-1 ]
MPRF for transition t₁₇₄₅₂: n_l6___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+21 {O(n)}
MPRF:
n_l13___16 [4⋅X₄+X₇-2⋅X₁-3⋅X₅-2 ]
n_l13___29 [X₇-X₁ ]
n_l13___31 [X₅+X₇-X₁-X₂ ]
n_l15___46 [X₅+X₇-2⋅X₄ ]
n_l2___44 [X₅+2⋅X₆+X₇-X₁-2⋅X₄ ]
n_l3___43 [X₅+X₇-X₁ ]
n_l1___42 [X₅+X₇+1-X₂ ]
n_l4___40 [X₇-X₂-2 ]
n_l16___24 [X₇-X₂-2 ]
n_l4___41 [2⋅X₆+X₇+2-X₁-X₂ ]
n_l16___39 [X₇+1-X₁ ]
n_l6___22 [X₇-X₂-2 ]
n_l6___37 [X₅+X₇+2-X₂-2⋅X₄ ]
n_l7___21 [X₇-X₂-2 ]
n_l5___20 [X₇-X₂-2 ]
n_l7___36 [X₅+2⋅X₆+X₇+1-X₁-X₂-2⋅X₄ ]
n_l5___35 [X₇-2⋅X₄ ]
n_l8___19 [X₁+X₇-X₂-3⋅X₅-1 ]
n_l12___17 [X₆+X₇-X₂-3⋅X₅-2 ]
n_l8___33 [X₇-2⋅X₄ ]
n_l12___30 [X₇-X₅ ]
n_l8___34 [X₇-2⋅X₄ ]
n_l12___32 [X₇-X₅ ]
n_l9___48 [X₅+X₇-X₄-X₆ ]
n_l17___47 [X₅+X₇-X₄-X₆ ]
MPRF for transition t₁₇₄₅₅: n_l7___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___20(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, X₆, Arg7_P) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ Arg5_P ≤ X₁ ∧ X₂ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
12⋅X₇+24 {O(n)}
MPRF:
n_l13___16 [4⋅X₇-8⋅X₅ ]
n_l13___29 [4⋅X₂+4⋅X₇-4⋅X₄-4⋅X₅-4 ]
n_l13___31 [4⋅X₇-4⋅X₁ ]
n_l15___46 [4⋅X₇-4⋅X₄ ]
n_l2___44 [4⋅X₂+4⋅X₇-4⋅X₁-4⋅X₄-4 ]
n_l3___43 [4⋅X₂+4⋅X₇-4⋅X₁-4⋅X₄-4 ]
n_l1___42 [4⋅X₂+4⋅X₇-6⋅X₁-4 ]
n_l4___40 [4⋅X₂+4⋅X₇-4⋅X₁-4⋅X₅-4 ]
n_l16___24 [2⋅X₆+4⋅X₇+6-5⋅X₂ ]
n_l4___41 [4⋅X₇+2-2⋅X₂ ]
n_l16___39 [4⋅X₇+2-2⋅X₂ ]
n_l6___22 [2⋅X₅+4⋅X₇+6-5⋅X₂ ]
n_l6___37 [4⋅X₇+2-2⋅X₂ ]
n_l7___21 [4⋅X₇+5-4⋅X₂ ]
n_l5___20 [4⋅X₇-8⋅X₆ ]
n_l7___36 [4⋅X₇+2-2⋅X₂ ]
n_l5___35 [4⋅X₇-4⋅X₆ ]
n_l8___19 [4⋅X₇-4⋅X₁ ]
n_l12___17 [4⋅X₇-4⋅X₁ ]
n_l8___33 [4⋅X₅+4⋅X₇-4⋅X₄-4⋅X₆ ]
n_l12___30 [4⋅X₂+4⋅X₇-4⋅X₄-4⋅X₆-4 ]
n_l8___34 [4⋅X₇+4-4⋅X₂ ]
n_l12___32 [4⋅X₇-4⋅X₅ ]
n_l9___48 [4⋅X₇-4⋅X₁ ]
n_l17___47 [4⋅X₇-4⋅X₄ ]
MPRF for transition t₁₇₄₅₆: n_l7___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___35(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, X₆, Arg7_P) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ Arg5_P ≤ X₁ ∧ X₂ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+10 {O(n)}
MPRF:
n_l13___16 [2⋅X₅+X₇+2-2⋅X₆ ]
n_l13___29 [X₇-2⋅X₆ ]
n_l13___31 [X₆+X₇-X₁-X₂-2 ]
n_l15___46 [X₁+X₇-4⋅X₆ ]
n_l2___44 [X₁+X₇+2-2⋅X₂ ]
n_l3___43 [2⋅X₆+X₇+2-2⋅X₂ ]
n_l1___42 [2⋅X₆+X₇+2-2⋅X₂ ]
n_l4___40 [2⋅X₆+X₇+2-2⋅X₂ ]
n_l16___24 [2⋅X₅+X₇+2-2⋅X₂ ]
n_l4___41 [2⋅X₄+X₇+2-2⋅X₂ ]
n_l16___39 [2⋅X₄+X₇+2-2⋅X₂ ]
n_l6___22 [2⋅X₅+X₇+2-2⋅X₂ ]
n_l6___37 [2⋅X₆+X₇+2-2⋅X₂ ]
n_l7___21 [2⋅X₅+X₇+2-2⋅X₂ ]
n_l5___20 [2⋅X₄+X₇+2-2⋅X₂ ]
n_l7___36 [2⋅X₆+X₇+1-X₂-X₅ ]
n_l5___35 [X₇-X₂-1 ]
n_l8___19 [2⋅X₄+X₇+2-2⋅X₆ ]
n_l12___17 [2⋅X₄+X₇+2-2⋅X₂ ]
n_l8___33 [2⋅X₄+X₇-2⋅X₅-2 ]
n_l12___30 [X₇-2⋅X₅ ]
n_l8___34 [X₁+X₇-X₂-2⋅X₄-1 ]
n_l12___32 [X₆+X₇-X₂-2⋅X₄-2 ]
n_l9___48 [X₇-2⋅X₅ ]
n_l17___47 [2⋅X₄+X₇-4⋅X₆ ]
MPRF for transition t₁₇₄₅₉: n_l8___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₇+22 {O(n)}
MPRF:
n_l13___16 [2⋅X₂+2⋅X₇-6⋅X₄-2⋅X₆ ]
n_l13___29 [2⋅X₁+2⋅X₇-8⋅X₄-2⋅X₅ ]
n_l13___31 [2⋅X₇+4-4⋅X₆ ]
n_l15___46 [4⋅X₆+2⋅X₇+4-4⋅X₂ ]
n_l2___44 [4⋅X₄+2⋅X₇+4-4⋅X₂ ]
n_l3___43 [4⋅X₆+2⋅X₇+4-4⋅X₂ ]
n_l1___42 [4⋅X₄+2⋅X₇+4-4⋅X₂ ]
n_l4___40 [4⋅X₆+2⋅X₇+4-4⋅X₂ ]
n_l16___24 [4⋅X₄+2⋅X₇+4-4⋅X₂ ]
n_l4___41 [4⋅X₆+2⋅X₇-4⋅X₂ ]
n_l16___39 [8⋅X₄+2⋅X₇+4-4⋅X₂-4⋅X₅ ]
n_l6___22 [2⋅X₁+2⋅X₇+4-4⋅X₂ ]
n_l6___37 [8⋅X₆+2⋅X₇+4-4⋅X₂-4⋅X₅ ]
n_l7___21 [2⋅X₁+2⋅X₅+2⋅X₇+4-4⋅X₂-2⋅X₄ ]
n_l5___20 [2⋅X₅+2⋅X₇+2-2⋅X₂-2⋅X₆ ]
n_l7___36 [4⋅X₁+2⋅X₇+4-4⋅X₂-4⋅X₅ ]
n_l5___35 [2⋅X₇-4⋅X₅ ]
n_l8___19 [2⋅X₇+2-2⋅X₆ ]
n_l12___17 [2⋅X₁+2⋅X₇-4⋅X₅-2⋅X₆ ]
n_l8___33 [2⋅X₇-4⋅X₅ ]
n_l12___30 [2⋅X₇-8⋅X₄ ]
n_l8___34 [2⋅X₇-8⋅X₄ ]
n_l12___32 [4⋅X₅+2⋅X₇+4-4⋅X₁-4⋅X₂ ]
n_l9___48 [2⋅X₇-2⋅X₁-2⋅X₅ ]
n_l17___47 [2⋅X₇-4⋅X₄ ]
MPRF for transition t₁₇₄₆₀: n_l8___33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
3⋅X₇+25 {O(n)}
MPRF:
n_l13___16 [2⋅X₅+X₇+3-X₁-2⋅X₂ ]
n_l13___29 [X₁+X₇+2-X₂-2⋅X₄ ]
n_l13___31 [X₅+X₇+3-X₁-2⋅X₆ ]
n_l15___46 [X₇+2-2⋅X₆ ]
n_l2___44 [X₇+2-2⋅X₄ ]
n_l3___43 [X₇+2-2⋅X₄ ]
n_l1___42 [X₇+2-X₁ ]
n_l4___40 [X₇-2⋅X₆ ]
n_l16___24 [X₇-X₁ ]
n_l4___41 [2⋅X₆+X₇+3-X₁-X₂ ]
n_l16___39 [2⋅X₆+X₇+3-X₂-2⋅X₄ ]
n_l6___22 [X₇-2⋅X₆ ]
n_l6___37 [X₇+3-X₂ ]
n_l7___21 [X₇-X₁ ]
n_l5___20 [X₇-2⋅X₄ ]
n_l7___36 [X₅+X₇+3-X₂-2⋅X₄ ]
n_l5___35 [X₅+X₇+2-4⋅X₆ ]
n_l8___19 [X₇-2⋅X₅ ]
n_l12___17 [X₇-2⋅X₄ ]
n_l8___33 [X₆+X₇+3-X₂-2⋅X₄ ]
n_l12___30 [X₅+X₇+2-X₂-2⋅X₄ ]
n_l8___34 [X₇-2⋅X₄ ]
n_l12___32 [X₇-X₁ ]
n_l9___48 [X₇+3-2⋅X₆ ]
n_l17___47 [X₁+X₇+3-X₂-2⋅X₄ ]
MPRF for transition t₁₇₄₆₁: n_l8___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₇+31 {O(n)}
MPRF:
n_l13___16 [2⋅X₇+2-X₂-2⋅X₄ ]
n_l13___29 [2⋅X₇+2-X₂-X₆ ]
n_l13___31 [2⋅X₆+2⋅X₇+1-2⋅X₂-2⋅X₅ ]
n_l15___46 [X₅+2⋅X₇+1-X₁-X₆ ]
n_l2___44 [X₁+X₅+2⋅X₇+2-X₂-3⋅X₄ ]
n_l3___43 [X₁+3⋅X₂+X₅+2⋅X₇-11⋅X₆-2 ]
n_l1___42 [X₅+X₆+2⋅X₇-X₁-X₂-1 ]
n_l4___40 [2⋅X₁+2⋅X₇+5-4⋅X₂ ]
n_l16___24 [4⋅X₅+2⋅X₇+5-4⋅X₂ ]
n_l4___41 [4⋅X₆+2⋅X₇+4-X₁-2⋅X₂-2⋅X₄ ]
n_l16___39 [2⋅X₇+3-X₂-2⋅X₄ ]
n_l6___22 [4⋅X₅+2⋅X₇+5-4⋅X₂ ]
n_l6___37 [2⋅X₇+3-X₂-X₅ ]
n_l7___21 [2⋅X₁+4⋅X₄+2⋅X₇+5-4⋅X₂-4⋅X₆ ]
n_l5___20 [2⋅X₁+2⋅X₇+5-4⋅X₂ ]
n_l7___36 [2⋅X₇+3-X₂-2⋅X₄ ]
n_l5___35 [X₁+X₅+2⋅X₇+3-X₂-6⋅X₄ ]
n_l8___19 [4⋅X₅+2⋅X₇+5-4⋅X₂ ]
n_l12___17 [2⋅X₇+2-X₁-X₂ ]
n_l8___33 [2⋅X₇+3-X₂-2⋅X₄ ]
n_l12___30 [2⋅X₇+2-X₂-2⋅X₄ ]
n_l8___34 [2⋅X₇+4-2⋅X₂ ]
n_l12___32 [2⋅X₁+2⋅X₇+3-2⋅X₂-2⋅X₅ ]
n_l9___48 [X₆+2⋅X₇+1-2⋅X₁-X₄ ]
n_l17___47 [X₅+2⋅X₇+1-3⋅X₄ ]
MPRF for transition t₁₇₄₆₈: n_l9___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ 0 < X₇ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ 0 < X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
36⋅X₇+102 {O(n)}
MPRF:
n_l13___16 [X₁+12⋅X₇-12⋅X₂ ]
n_l13___29 [12⋅X₇+2-12⋅X₅ ]
n_l13___31 [12⋅X₇-2⋅X₅-10⋅X₆ ]
n_l15___46 [12⋅X₆+12⋅X₇+2-12⋅X₂ ]
n_l2___44 [6⋅X₁+12⋅X₇+2-12⋅X₂ ]
n_l3___43 [12⋅X₆+12⋅X₇+2-12⋅X₂ ]
n_l1___42 [12⋅X₄+12⋅X₇+2-12⋅X₂ ]
n_l4___40 [6⋅X₁+12⋅X₇-12⋅X₂ ]
n_l16___24 [6⋅X₁+12⋅X₅+12⋅X₇-12⋅X₂-12⋅X₆ ]
n_l4___41 [12⋅X₄+12⋅X₇+2-12⋅X₂ ]
n_l16___39 [6⋅X₅+12⋅X₇+2-12⋅X₂ ]
n_l6___22 [12⋅X₄+12⋅X₇-12⋅X₂ ]
n_l6___37 [12⋅X₁+6⋅X₅+12⋅X₇+2-12⋅X₂-24⋅X₆ ]
n_l7___21 [6⋅X₅+12⋅X₇-12⋅X₂ ]
n_l5___20 [6⋅X₆+12⋅X₇-12⋅X₂ ]
n_l7___36 [12⋅X₁+12⋅X₇+14-12⋅X₂-24⋅X₄ ]
n_l5___35 [12⋅X₇+2-24⋅X₄ ]
n_l8___19 [3⋅X₁+2⋅X₄+12⋅X₇-12⋅X₂-2⋅X₅ ]
n_l12___17 [X₁+2⋅X₄+12⋅X₇-12⋅X₆ ]
n_l8___33 [12⋅X₇+2-12⋅X₆ ]
n_l12___30 [24⋅X₄+12⋅X₇+2-12⋅X₅-12⋅X₆ ]
n_l8___34 [10⋅X₅+12⋅X₇-24⋅X₄-10⋅X₆ ]
n_l12___32 [12⋅X₁+12⋅X₇-24⋅X₄-2⋅X₅-10⋅X₆ ]
n_l9___48 [12⋅X₇+2-12⋅X₄ ]
n_l17___47 [12⋅X₇+1-12⋅X₄ ]
CFR: Improvement to new bound with the following program:
new bound:
207⋅X₇+788 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: Arg4_P, Arg5_P, Arg7_P, NoDet0
Locations: l0, l10, l11, l14, l9, n_l12___12, n_l12___14, n_l12___17, n_l12___28, n_l12___3, n_l12___30, n_l12___32, n_l12___50, n_l13___11, n_l13___13, n_l13___16, n_l13___2, n_l13___27, n_l13___29, n_l13___31, n_l13___49, n_l15___46, n_l15___64, n_l16___10, n_l16___24, n_l16___39, n_l16___57, n_l17___25, n_l17___47, n_l17___65, n_l1___42, n_l1___60, n_l2___44, n_l2___62, n_l3___43, n_l3___61, n_l4___40, n_l4___41, n_l4___45, n_l4___58, n_l4___59, n_l4___63, n_l5___20, n_l5___35, n_l5___53, n_l5___6, n_l6___22, n_l6___37, n_l6___55, n_l6___8, n_l7___21, n_l7___36, n_l7___54, n_l7___7, n_l8___1, n_l8___15, n_l8___18, n_l8___19, n_l8___23, n_l8___33, n_l8___34, n_l8___38, n_l8___4, n_l8___5, n_l8___51, n_l8___52, n_l8___56, n_l8___9, n_l9___26, n_l9___48
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, 1, X₅, X₆, X₇)
t₃₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ 1 ≤ X₄
t₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ 1 ≤ X₄ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₁₇₄₆₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 0 < X₇ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₁₇₃₉₈: n_l12___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ X₇ < 3 ∧ 2 ≤ X₇ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₇ ≤ 2 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 4 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 4 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ 1+X₃ ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₃₉₉: n_l12___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 0 < X₃ ∧ X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ X₀+X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₀+X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₁₇₄₀₀: n_l12___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₄₀₁: n_l12___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₁ ∧ X₇ < 1+X₁ ∧ X₁ ≤ X₇ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₀₂: n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ 0 < X₀ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₆ ≤ 3 ∧ 3 ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 2+X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₃+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₄₀₃: n_l12___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₁₇₄₀₄: n_l12___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₄₀₅: n_l12___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ 0 < X₀ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₆ ≤ 3 ∧ 3 ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 5 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₆ ≤ 2+X₃ ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₄₀₆: n_l13___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___26(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 0 < X₃ ∧ X₇ < 3 ∧ 2 ≤ X₇ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₇ ≤ 2 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 4 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 4 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ 1+X₃ ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₀₇: n_l13___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 0 < X₃ ∧ X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ X₀+X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₀+X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₁₇₄₀₈: n_l13___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₄₀₉: n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ 0 < X₀ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₆ ≤ 3 ∧ 3 ≤ X₆ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 2+X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₃+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₄₁₀: n_l13___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___26(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₁ ∧ X₇ < 1+X₁ ∧ X₁ ≤ X₇ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₁₁: n_l13___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₁₇₄₁₂: n_l13___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₄₁₃: n_l13___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ 0 < X₀ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₆ ≤ 3 ∧ 3 ≤ X₆ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 5 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₆ ≤ 2+X₃ ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₄₁₄: n_l15___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₇₄₁₅: n_l15___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₁₆: n_l16___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₁₇: n_l16___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₁₈: n_l16___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₁₉: n_l16___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₂₀: n_l17___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___45(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: 1 ≤ X₆ ∧ X₇ < 2⋅X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₁ ∧ 3 ≤ X₂ ∧ 2 ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₇ < 2⋅X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₂₁: n_l17___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l15___46(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ 3 ≤ X₂ ∧ 2 ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₄ ∧ 2⋅X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₂₂: n_l17___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___45(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ 3 ≤ X₂ ∧ 2 ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₇ < 2⋅X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₂₃: n_l17___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l15___64(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2⋅X₄ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₁₇₄₂₄: n_l17___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___63(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: 0 < X₇ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₇ < 2⋅X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₁₇₄₂₅: n_l1___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___40(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₇₄₂₆: n_l1___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___41(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 0 < X₃ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₇₄₂₇: n_l1___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___58(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: 2 ≤ X₇ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₂₈: n_l1___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___59(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 2 ≤ X₇ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 0 < X₃ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₂₉: n_l2___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₇₄₃₀: n_l2___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₃₁: n_l3___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___42(X₀, X₁, X₂, NoDet0, Arg4_P, X₅, X₆, Arg7_P) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ X₁ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₇₄₃₂: n_l3___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___60(X₀, X₁, X₂, NoDet0, Arg4_P, X₅, X₆, Arg7_P) :|: 2 ≤ X₇ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₃₃: n_l4___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₇₄₃₄: n_l4___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___23(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₃ ≤ 0 ∧ X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ X₇ < X₂ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₇₄₃₅: n_l4___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₇₄₃₆: n_l4___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___38(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ X₇ < X₂ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₇₄₃₇: n_l4___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___15(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₇ < 2⋅X₆ ∧ 1 ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₇ < X₂ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 3+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 6 ≤ X₁+X₅ ∧ 3+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₁₇₄₃₈: n_l4___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 2 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₃₉: n_l4___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₃ ≤ 0 ∧ 2 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₇ < X₂ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₄₀: n_l4___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₄₁: n_l4___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___56(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 2 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₇ < X₂ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₄₂: n_l4___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___1(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₇ < 2 ∧ 1 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₇ < X₂ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₅ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 2 ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 4 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 3 ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ X₂ ≤ 2+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₄₃: n_l5___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___18(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₄₄: n_l5___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___19(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 < X₀ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₄₅: n_l5___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___33(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₄₆: n_l5___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___34(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 < X₀ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₄₇: n_l5___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___51(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₄₈: n_l5___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___52(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 < X₀ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₄₉: n_l5___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₅₀: n_l5___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 < X₀ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₅₁: n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₅₂: n_l6___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₅₃: n_l6___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₅₄: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₅₅: n_l7___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___20(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, X₆, Arg7_P) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ Arg5_P ≤ X₁ ∧ X₂ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₅₆: n_l7___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___35(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, X₆, Arg7_P) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ Arg5_P ≤ X₁ ∧ X₂ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₅₇: n_l7___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___53(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, X₆, Arg7_P) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ Arg5_P ≤ X₁ ∧ X₂ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₅₈: n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___6(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, X₆, Arg7_P) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ Arg5_P ≤ X₁ ∧ X₂ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₅₁₄: n_l8___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 2 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 2 ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 4 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 3 ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ X₂ ≤ 2+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ 2+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 4 ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 3 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ 2+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₅₁₅: n_l8___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ 1+X₇ ≤ X₂ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 3+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 6 ≤ X₁+X₅ ∧ 3+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₁₇₅₁₆: n_l8___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₀+X₃ ≤ 0 ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₁₇₄₅₉: n_l8___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₅₁₈: n_l8___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₆₀: n_l8___33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₁₇₄₆₁: n_l8___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₄₆₂: n_l8___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₁ ∧ X₇ < 1+X₁ ∧ X₁ ≤ X₇ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₅₂₂: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₃+X₆ ≤ 1 ∧ 2+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 4 ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 3 ∧ X₀+X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ 2+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₀+X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₀+X₃ ≤ 0 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₁₇₄₆₃: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ 0 < X₀ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₆ ≤ 3 ∧ 3 ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 2+X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₃+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₄₆₄: n_l8___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 0 < X₃ ∧ X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ X₀+X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₀+X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₁₇₄₆₅: n_l8___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ 0 < X₀ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₆ ≤ 3 ∧ 3 ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 5 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₆ ≤ 2+X₃ ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₄₆₆: n_l8___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ X₇ < 3 ∧ 2 ≤ X₇ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ X₇ ≤ 2 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 4 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 4 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ 1+X₃ ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₅₂₇: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ X₇ ≤ 2 ∧ X₇ ≤ 1+X₆ ∧ X₆+X₇ ≤ 3 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₃+X₇ ≤ 2 ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₃+X₆ ≤ 1 ∧ 2+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 4 ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 3 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ 2+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₁₇₄₆₇: n_l9___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ 0 < X₇ ∧ X₇ < 1+2⋅X₄ ∧ X₇ < 2⋅X₄ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ 0 < X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₁₇₄₆₈: n_l9___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ 0 < X₇ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ 0 < X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
All Bounds
Timebounds
Overall timebound:207⋅X₇+843 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃: 1 {O(1)}
t₁₇₄₆₉: 1 {O(1)}
t₁₇₃₉₈: 1 {O(1)}
t₁₇₃₉₉: 1 {O(1)}
t₁₇₄₀₀: 12⋅X₇+36 {O(n)}
t₁₇₄₀₁: 1 {O(1)}
t₁₇₄₀₂: 1 {O(1)}
t₁₇₄₀₃: 18⋅X₇+69 {O(n)}
t₁₇₄₀₄: 6⋅X₇+11 {O(n)}
t₁₇₄₀₅: 1 {O(1)}
t₁₇₄₀₆: 1 {O(1)}
t₁₇₄₀₇: 1 {O(1)}
t₁₇₄₀₈: 3⋅X₇+25 {O(n)}
t₁₇₄₀₉: 1 {O(1)}
t₁₇₄₁₀: 1 {O(1)}
t₁₇₄₁₁: 6⋅X₇+16 {O(n)}
t₁₇₄₁₂: 6⋅X₇+16 {O(n)}
t₁₇₄₁₃: 1 {O(1)}
t₁₇₄₁₄: 9⋅X₇+27 {O(n)}
t₁₇₄₁₅: 1 {O(1)}
t₁₇₄₁₆: 1 {O(1)}
t₁₇₄₁₇: 3⋅X₇+22 {O(n)}
t₁₇₄₁₈: 3⋅X₇+27 {O(n)}
t₁₇₄₁₉: 1 {O(1)}
t₁₇₄₂₀: 1 {O(1)}
t₁₇₄₂₁: 9⋅X₇+35 {O(n)}
t₁₇₄₂₂: 1 {O(1)}
t₁₇₄₂₃: 1 {O(1)}
t₁₇₄₂₄: 1 {O(1)}
t₁₇₄₂₅: 6⋅X₇+45 {O(n)}
t₁₇₄₂₆: 6⋅X₇+28 {O(n)}
t₁₇₄₂₇: 1 {O(1)}
t₁₇₄₂₈: 1 {O(1)}
t₁₇₄₂₉: 3⋅X₇+6 {O(n)}
t₁₇₄₃₀: 1 {O(1)}
t₁₇₄₃₁: 3⋅X₇+15 {O(n)}
t₁₇₄₃₂: 1 {O(1)}
t₁₇₄₃₃: 3⋅X₇+14 {O(n)}
t₁₇₄₃₄: 1 {O(1)}
t₁₇₄₃₅: 9⋅X₇+33 {O(n)}
t₁₇₄₃₆: 1 {O(1)}
t₁₇₄₃₇: 1 {O(1)}
t₁₇₄₃₈: 1 {O(1)}
t₁₇₄₃₉: 1 {O(1)}
t₁₇₄₄₀: 1 {O(1)}
t₁₇₄₄₁: 1 {O(1)}
t₁₇₄₄₂: 1 {O(1)}
t₁₇₄₄₃: 1 {O(1)}
t₁₇₄₄₄: 12⋅X₇+36 {O(n)}
t₁₇₄₄₅: 12⋅X₇+57 {O(n)}
t₁₇₄₄₆: 3⋅X₇+16 {O(n)}
t₁₇₄₄₇: 1 {O(1)}
t₁₇₄₄₈: 1 {O(1)}
t₁₇₄₄₉: 1 {O(1)}
t₁₇₄₅₀: 1 {O(1)}
t₁₇₄₅₁: 6⋅X₇+19 {O(n)}
t₁₇₄₅₂: 3⋅X₇+21 {O(n)}
t₁₇₄₅₃: 1 {O(1)}
t₁₇₄₅₄: 1 {O(1)}
t₁₇₄₅₅: 12⋅X₇+24 {O(n)}
t₁₇₄₅₆: 3⋅X₇+10 {O(n)}
t₁₇₄₅₇: 1 {O(1)}
t₁₇₄₅₈: 1 {O(1)}
t₁₇₅₁₄: 1 {O(1)}
t₁₇₅₁₅: 1 {O(1)}
t₁₇₅₁₆: 1 {O(1)}
t₁₇₄₅₉: 6⋅X₇+22 {O(n)}
t₁₇₅₁₈: 1 {O(1)}
t₁₇₄₆₀: 3⋅X₇+25 {O(n)}
t₁₇₄₆₁: 6⋅X₇+31 {O(n)}
t₁₇₄₆₂: 1 {O(1)}
t₁₇₅₂₂: 1 {O(1)}
t₁₇₄₆₃: 1 {O(1)}
t₁₇₄₆₄: 1 {O(1)}
t₁₇₄₆₅: 1 {O(1)}
t₁₇₄₆₆: 1 {O(1)}
t₁₇₅₂₇: 1 {O(1)}
t₁₇₄₆₇: 1 {O(1)}
t₁₇₄₆₈: 36⋅X₇+102 {O(n)}
Costbounds
Overall costbound: 207⋅X₇+843 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃: 1 {O(1)}
t₁₇₄₆₉: 1 {O(1)}
t₁₇₃₉₈: 1 {O(1)}
t₁₇₃₉₉: 1 {O(1)}
t₁₇₄₀₀: 12⋅X₇+36 {O(n)}
t₁₇₄₀₁: 1 {O(1)}
t₁₇₄₀₂: 1 {O(1)}
t₁₇₄₀₃: 18⋅X₇+69 {O(n)}
t₁₇₄₀₄: 6⋅X₇+11 {O(n)}
t₁₇₄₀₅: 1 {O(1)}
t₁₇₄₀₆: 1 {O(1)}
t₁₇₄₀₇: 1 {O(1)}
t₁₇₄₀₈: 3⋅X₇+25 {O(n)}
t₁₇₄₀₉: 1 {O(1)}
t₁₇₄₁₀: 1 {O(1)}
t₁₇₄₁₁: 6⋅X₇+16 {O(n)}
t₁₇₄₁₂: 6⋅X₇+16 {O(n)}
t₁₇₄₁₃: 1 {O(1)}
t₁₇₄₁₄: 9⋅X₇+27 {O(n)}
t₁₇₄₁₅: 1 {O(1)}
t₁₇₄₁₆: 1 {O(1)}
t₁₇₄₁₇: 3⋅X₇+22 {O(n)}
t₁₇₄₁₈: 3⋅X₇+27 {O(n)}
t₁₇₄₁₉: 1 {O(1)}
t₁₇₄₂₀: 1 {O(1)}
t₁₇₄₂₁: 9⋅X₇+35 {O(n)}
t₁₇₄₂₂: 1 {O(1)}
t₁₇₄₂₃: 1 {O(1)}
t₁₇₄₂₄: 1 {O(1)}
t₁₇₄₂₅: 6⋅X₇+45 {O(n)}
t₁₇₄₂₆: 6⋅X₇+28 {O(n)}
t₁₇₄₂₇: 1 {O(1)}
t₁₇₄₂₈: 1 {O(1)}
t₁₇₄₂₉: 3⋅X₇+6 {O(n)}
t₁₇₄₃₀: 1 {O(1)}
t₁₇₄₃₁: 3⋅X₇+15 {O(n)}
t₁₇₄₃₂: 1 {O(1)}
t₁₇₄₃₃: 3⋅X₇+14 {O(n)}
t₁₇₄₃₄: 1 {O(1)}
t₁₇₄₃₅: 9⋅X₇+33 {O(n)}
t₁₇₄₃₆: 1 {O(1)}
t₁₇₄₃₇: 1 {O(1)}
t₁₇₄₃₈: 1 {O(1)}
t₁₇₄₃₉: 1 {O(1)}
t₁₇₄₄₀: 1 {O(1)}
t₁₇₄₄₁: 1 {O(1)}
t₁₇₄₄₂: 1 {O(1)}
t₁₇₄₄₃: 1 {O(1)}
t₁₇₄₄₄: 12⋅X₇+36 {O(n)}
t₁₇₄₄₅: 12⋅X₇+57 {O(n)}
t₁₇₄₄₆: 3⋅X₇+16 {O(n)}
t₁₇₄₄₇: 1 {O(1)}
t₁₇₄₄₈: 1 {O(1)}
t₁₇₄₄₉: 1 {O(1)}
t₁₇₄₅₀: 1 {O(1)}
t₁₇₄₅₁: 6⋅X₇+19 {O(n)}
t₁₇₄₅₂: 3⋅X₇+21 {O(n)}
t₁₇₄₅₃: 1 {O(1)}
t₁₇₄₅₄: 1 {O(1)}
t₁₇₄₅₅: 12⋅X₇+24 {O(n)}
t₁₇₄₅₆: 3⋅X₇+10 {O(n)}
t₁₇₄₅₇: 1 {O(1)}
t₁₇₄₅₈: 1 {O(1)}
t₁₇₅₁₄: 1 {O(1)}
t₁₇₅₁₅: 1 {O(1)}
t₁₇₅₁₆: 1 {O(1)}
t₁₇₄₅₉: 6⋅X₇+22 {O(n)}
t₁₇₅₁₈: 1 {O(1)}
t₁₇₄₆₀: 3⋅X₇+25 {O(n)}
t₁₇₄₆₁: 6⋅X₇+31 {O(n)}
t₁₇₄₆₂: 1 {O(1)}
t₁₇₅₂₂: 1 {O(1)}
t₁₇₄₆₃: 1 {O(1)}
t₁₇₄₆₄: 1 {O(1)}
t₁₇₄₆₅: 1 {O(1)}
t₁₇₄₆₆: 1 {O(1)}
t₁₇₅₂₇: 1 {O(1)}
t₁₇₄₆₇: 1 {O(1)}
t₁₇₄₆₈: 36⋅X₇+102 {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: 1 {O(1)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₃₄, X₁: 18⋅2^(9⋅X₇+35)⋅X₇+246⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+X₁+12 {O(EXP)}
t₃₄, X₂: 18⋅2^(9⋅X₇+35)⋅X₇+264⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+X₂+17 {O(EXP)}
t₃₄, X₄: 18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅428+2^(9⋅X₇+35)⋅72⋅X₇+30 {O(EXP)}
t₃₄, X₅: 18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅428+2^(9⋅X₇+35)⋅72⋅X₇+X₅+29 {O(EXP)}
t₃₄, X₆: 18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅428+2^(9⋅X₇+35)⋅72⋅X₇+X₆+29 {O(EXP)}
t₃₄, X₇: 7⋅X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: 1 {O(1)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₁₇₄₆₉, X₀: X₀ {O(n)}
t₁₇₄₆₉, X₁: X₁ {O(n)}
t₁₇₄₆₉, X₂: X₂ {O(n)}
t₁₇₄₆₉, X₃: X₃ {O(n)}
t₁₇₄₆₉, X₄: 1 {O(1)}
t₁₇₄₆₉, X₅: X₅ {O(n)}
t₁₇₄₆₉, X₆: X₆ {O(n)}
t₁₇₄₆₉, X₇: X₇ {O(n)}
t₁₇₃₉₈, X₀: X₀ {O(n)}
t₁₇₃₉₈, X₁: 2 {O(1)}
t₁₇₃₉₈, X₂: 3 {O(1)}
t₁₇₃₉₈, X₄: 1 {O(1)}
t₁₇₃₉₈, X₅: 2 {O(1)}
t₁₇₃₉₈, X₆: 2 {O(1)}
t₁₇₃₉₈, X₇: 2 {O(1)}
t₁₇₃₉₉, X₁: 2 {O(1)}
t₁₇₃₉₉, X₂: 3 {O(1)}
t₁₇₃₉₉, X₄: 1 {O(1)}
t₁₇₃₉₉, X₅: 2 {O(1)}
t₁₇₃₉₉, X₆: 2 {O(1)}
t₁₇₃₉₉, X₇: X₇ {O(n)}
t₁₇₄₀₀, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₀, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₀, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₀₀, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₀₀, X₆: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₀, X₇: 3⋅X₇ {O(n)}
t₁₇₄₀₁, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₁, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₁, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₀₁, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₁, X₆: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₁, X₇: 3⋅X₇ {O(n)}
t₁₇₄₀₂, X₁: 2 {O(1)}
t₁₇₄₀₂, X₂: 3 {O(1)}
t₁₇₄₀₂, X₄: 1 {O(1)}
t₁₇₄₀₂, X₅: 1 {O(1)}
t₁₇₄₀₂, X₆: 3 {O(1)}
t₁₇₄₀₂, X₇: X₇ {O(n)}
t₁₇₄₀₃, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₃, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₃, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₀₃, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₃, X₆: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₃, X₇: 3⋅X₇ {O(n)}
t₁₇₄₀₄, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₄, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₄, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₀₄, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₄, X₆: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₄, X₇: 3⋅X₇ {O(n)}
t₁₇₄₀₅, X₁: 2 {O(1)}
t₁₇₄₀₅, X₂: 3 {O(1)}
t₁₇₄₀₅, X₄: 1 {O(1)}
t₁₇₄₀₅, X₅: 2 {O(1)}
t₁₇₄₀₅, X₆: 3 {O(1)}
t₁₇₄₀₅, X₇: X₇ {O(n)}
t₁₇₄₀₆, X₀: X₀ {O(n)}
t₁₇₄₀₆, X₁: 2 {O(1)}
t₁₇₄₀₆, X₂: 3 {O(1)}
t₁₇₄₀₆, X₄: 2 {O(1)}
t₁₇₄₀₆, X₅: 2 {O(1)}
t₁₇₄₀₆, X₆: 2 {O(1)}
t₁₇₄₀₆, X₇: 2 {O(1)}
t₁₇₄₀₇, X₁: 2 {O(1)}
t₁₇₄₀₇, X₂: 3 {O(1)}
t₁₇₄₀₇, X₄: 2 {O(1)}
t₁₇₄₀₇, X₅: 2 {O(1)}
t₁₇₄₀₇, X₆: 2 {O(1)}
t₁₇₄₀₇, X₇: X₇ {O(n)}
t₁₇₄₀₈, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₈, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₈, X₄: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₈, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₀₈, X₆: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₀₈, X₇: 3⋅X₇ {O(n)}
t₁₇₄₀₉, X₁: 2 {O(1)}
t₁₇₄₀₉, X₂: 3 {O(1)}
t₁₇₄₀₉, X₄: 3 {O(1)}
t₁₇₄₀₉, X₅: 1 {O(1)}
t₁₇₄₀₉, X₆: 3 {O(1)}
t₁₇₄₀₉, X₇: X₇ {O(n)}
t₁₇₄₁₀, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₀, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₀, X₄: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₀, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₀, X₆: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₀, X₇: 3⋅X₇ {O(n)}
t₁₇₄₁₁, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₁, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₁, X₄: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₁, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₁, X₆: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₁, X₇: 3⋅X₇ {O(n)}
t₁₇₄₁₂, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₂, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₂, X₄: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₂, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₂, X₆: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₂, X₇: 3⋅X₇ {O(n)}
t₁₇₄₁₃, X₁: 2 {O(1)}
t₁₇₄₁₃, X₂: 3 {O(1)}
t₁₇₄₁₃, X₄: 3 {O(1)}
t₁₇₄₁₃, X₅: 2 {O(1)}
t₁₇₄₁₃, X₆: 3 {O(1)}
t₁₇₄₁₃, X₇: X₇ {O(n)}
t₁₇₄₁₄, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₄, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₄, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₁₄, X₅: 211⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+13 {O(EXP)}
t₁₇₄₁₄, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₁₄, X₇: 3⋅X₇ {O(n)}
t₁₇₄₁₅, X₀: X₀ {O(n)}
t₁₇₄₁₅, X₁: 2 {O(1)}
t₁₇₄₁₅, X₂: 3 {O(1)}
t₁₇₄₁₅, X₃: X₃ {O(n)}
t₁₇₄₁₅, X₄: 1 {O(1)}
t₁₇₄₁₅, X₅: X₅ {O(n)}
t₁₇₄₁₅, X₆: X₆ {O(n)}
t₁₇₄₁₅, X₇: X₇ {O(n)}
t₁₇₄₁₆, X₀: X₀ {O(n)}
t₁₇₄₁₆, X₁: 2 {O(1)}
t₁₇₄₁₆, X₂: 3 {O(1)}
t₁₇₄₁₆, X₄: 1 {O(1)}
t₁₇₄₁₆, X₅: 1 {O(1)}
t₁₇₄₁₆, X₆: X₆ {O(n)}
t₁₇₄₁₆, X₇: X₇ {O(n)}
t₁₇₄₁₇, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₇, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₇, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₁₇, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₁₇, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₁₇, X₇: 3⋅X₇ {O(n)}
t₁₇₄₁₈, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₈, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₈, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₁₈, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₁₈, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₁₈, X₇: 3⋅X₇ {O(n)}
t₁₇₄₁₉, X₀: X₀ {O(n)}
t₁₇₄₁₉, X₁: 2 {O(1)}
t₁₇₄₁₉, X₂: 3 {O(1)}
t₁₇₄₁₉, X₄: 1 {O(1)}
t₁₇₄₁₉, X₅: 2 {O(1)}
t₁₇₄₁₉, X₆: X₆ {O(n)}
t₁₇₄₁₉, X₇: X₇ {O(n)}
t₁₇₄₂₀, X₁: 18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅82+4 {O(EXP)}
t₁₇₄₂₀, X₂: 18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅88+6 {O(EXP)}
t₁₇₄₂₀, X₄: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇+2 {O(EXP)}
t₁₇₄₂₀, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇+2 {O(EXP)}
t₁₇₄₂₀, X₆: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇+2 {O(EXP)}
t₁₇₄₂₀, X₇: 3⋅X₇+2 {O(n)}
t₁₇₄₂₁, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₂₁, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₂₁, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₂₁, X₅: 211⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+13 {O(EXP)}
t₁₇₄₂₁, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₂₁, X₇: 3⋅X₇ {O(n)}
t₁₇₄₂₂, X₁: 18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅82+2 {O(EXP)}
t₁₇₄₂₂, X₂: 18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅88+2 {O(EXP)}
t₁₇₄₂₂, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₂₂, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₂₂, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₂₂, X₇: 3⋅X₇ {O(n)}
t₁₇₄₂₃, X₀: X₀ {O(n)}
t₁₇₄₂₃, X₁: 2 {O(1)}
t₁₇₄₂₃, X₂: 3 {O(1)}
t₁₇₄₂₃, X₃: X₃ {O(n)}
t₁₇₄₂₃, X₄: 1 {O(1)}
t₁₇₄₂₃, X₅: X₅ {O(n)}
t₁₇₄₂₃, X₆: X₆ {O(n)}
t₁₇₄₂₃, X₇: X₇ {O(n)}
t₁₇₄₂₄, X₀: X₀ {O(n)}
t₁₇₄₂₄, X₁: 2 {O(1)}
t₁₇₄₂₄, X₂: 3 {O(1)}
t₁₇₄₂₄, X₃: X₃ {O(n)}
t₁₇₄₂₄, X₄: 1 {O(1)}
t₁₇₄₂₄, X₅: 1 {O(1)}
t₁₇₄₂₄, X₆: X₆ {O(n)}
t₁₇₄₂₄, X₇: 1 {O(1)}
t₁₇₄₂₅, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₂₅, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₂₅, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₂₅, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₂₅, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₂₅, X₇: 3⋅X₇ {O(n)}
t₁₇₄₂₆, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₂₆, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₂₆, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₂₆, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₂₆, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₂₆, X₇: 3⋅X₇ {O(n)}
t₁₇₄₂₇, X₀: X₀ {O(n)}
t₁₇₄₂₇, X₁: 2 {O(1)}
t₁₇₄₂₇, X₂: 3 {O(1)}
t₁₇₄₂₇, X₄: 1 {O(1)}
t₁₇₄₂₇, X₅: 1 {O(1)}
t₁₇₄₂₇, X₆: X₆ {O(n)}
t₁₇₄₂₇, X₇: X₇ {O(n)}
t₁₇₄₂₈, X₀: X₀ {O(n)}
t₁₇₄₂₈, X₁: 2 {O(1)}
t₁₇₄₂₈, X₂: 3 {O(1)}
t₁₇₄₂₈, X₄: 1 {O(1)}
t₁₇₄₂₈, X₅: 2 {O(1)}
t₁₇₄₂₈, X₆: X₆ {O(n)}
t₁₇₄₂₈, X₇: X₇ {O(n)}
t₁₇₄₂₉, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₂₉, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₂₉, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₂₉, X₅: 211⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+13 {O(EXP)}
t₁₇₄₂₉, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₂₉, X₇: 3⋅X₇ {O(n)}
t₁₇₄₃₀, X₀: X₀ {O(n)}
t₁₇₄₃₀, X₁: 2 {O(1)}
t₁₇₄₃₀, X₂: 3 {O(1)}
t₁₇₄₃₀, X₃: X₃ {O(n)}
t₁₇₄₃₀, X₄: 1 {O(1)}
t₁₇₄₃₀, X₅: X₅ {O(n)}
t₁₇₄₃₀, X₆: X₆ {O(n)}
t₁₇₄₃₀, X₇: X₇ {O(n)}
t₁₇₄₃₁, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₁, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₁, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₃₁, X₅: 211⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+13 {O(EXP)}
t₁₇₄₃₁, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₃₁, X₇: 3⋅X₇ {O(n)}
t₁₇₄₃₂, X₀: X₀ {O(n)}
t₁₇₄₃₂, X₁: 2 {O(1)}
t₁₇₄₃₂, X₂: 3 {O(1)}
t₁₇₄₃₂, X₄: 1 {O(1)}
t₁₇₄₃₂, X₅: X₅ {O(n)}
t₁₇₄₃₂, X₆: X₆ {O(n)}
t₁₇₄₃₂, X₇: X₇ {O(n)}
t₁₇₄₃₃, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₃, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₃, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₃₃, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₃₃, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₃₃, X₇: 3⋅X₇ {O(n)}
t₁₇₄₃₄, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₄, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₄, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₃₄, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₃₄, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₃₄, X₇: 3⋅X₇ {O(n)}
t₁₇₄₃₅, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₅, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₅, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₃₅, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₅, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₃₅, X₇: 3⋅X₇ {O(n)}
t₁₇₄₃₆, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₆, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₆, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₃₆, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₆, X₆: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₃₆, X₇: 3⋅X₇ {O(n)}
t₁₇₄₃₇, X₁: 164⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+6 {O(EXP)}
t₁₇₄₃₇, X₂: 176⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+8 {O(EXP)}
t₁₇₄₃₇, X₄: 170⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+10 {O(EXP)}
t₁₇₄₃₇, X₅: 170⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+10 {O(EXP)}
t₁₇₄₃₇, X₆: 170⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+10 {O(EXP)}
t₁₇₄₃₇, X₇: 6⋅X₇+2 {O(n)}
t₁₇₄₃₈, X₀: X₀ {O(n)}
t₁₇₄₃₈, X₁: 2 {O(1)}
t₁₇₄₃₈, X₂: 3 {O(1)}
t₁₇₄₃₈, X₄: 1 {O(1)}
t₁₇₄₃₈, X₅: 1 {O(1)}
t₁₇₄₃₈, X₆: X₆ {O(n)}
t₁₇₄₃₈, X₇: X₇ {O(n)}
t₁₇₄₃₉, X₀: X₀ {O(n)}
t₁₇₄₃₉, X₁: 2 {O(1)}
t₁₇₄₃₉, X₂: 3 {O(1)}
t₁₇₄₃₉, X₄: 1 {O(1)}
t₁₇₄₃₉, X₅: 1 {O(1)}
t₁₇₄₃₉, X₆: 1 {O(1)}
t₁₇₄₃₉, X₇: 2 {O(1)}
t₁₇₄₄₀, X₀: X₀ {O(n)}
t₁₇₄₄₀, X₁: 2 {O(1)}
t₁₇₄₄₀, X₂: 3 {O(1)}
t₁₇₄₄₀, X₄: 1 {O(1)}
t₁₇₄₄₀, X₅: 2 {O(1)}
t₁₇₄₄₀, X₆: X₆ {O(n)}
t₁₇₄₄₀, X₇: X₇ {O(n)}
t₁₇₄₄₁, X₀: X₀ {O(n)}
t₁₇₄₄₁, X₁: 2 {O(1)}
t₁₇₄₄₁, X₂: 3 {O(1)}
t₁₇₄₄₁, X₄: 1 {O(1)}
t₁₇₄₄₁, X₅: 2 {O(1)}
t₁₇₄₄₁, X₆: 2 {O(1)}
t₁₇₄₄₁, X₇: 2 {O(1)}
t₁₇₄₄₂, X₀: X₀ {O(n)}
t₁₇₄₄₂, X₁: 2 {O(1)}
t₁₇₄₄₂, X₂: 3 {O(1)}
t₁₇₄₄₂, X₃: X₃ {O(n)}
t₁₇₄₄₂, X₄: 1 {O(1)}
t₁₇₄₄₂, X₅: 1 {O(1)}
t₁₇₄₄₂, X₆: 1 {O(1)}
t₁₇₄₄₂, X₇: 1 {O(1)}
t₁₇₄₄₃, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₃, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₃, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₄₃, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₄₃, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₄₃, X₇: 3⋅X₇ {O(n)}
t₁₇₄₄₄, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₄, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₄, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₄₄, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₄₄, X₆: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₄, X₇: 3⋅X₇ {O(n)}
t₁₇₄₄₅, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₅, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₅, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₄₅, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₅, X₆: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₅, X₇: 3⋅X₇ {O(n)}
t₁₇₄₄₆, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₆, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₆, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₄₆, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₆, X₆: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₄₆, X₇: 3⋅X₇ {O(n)}
t₁₇₄₄₇, X₁: 2 {O(1)}
t₁₇₄₄₇, X₂: 3 {O(1)}
t₁₇₄₄₇, X₄: 1 {O(1)}
t₁₇₄₄₇, X₅: 2 {O(1)}
t₁₇₄₄₇, X₆: 2 {O(1)}
t₁₇₄₄₇, X₇: X₇ {O(n)}
t₁₇₄₄₈, X₁: 2 {O(1)}
t₁₇₄₄₈, X₂: 3 {O(1)}
t₁₇₄₄₈, X₄: 1 {O(1)}
t₁₇₄₄₈, X₅: 2 {O(1)}
t₁₇₄₄₈, X₆: 3 {O(1)}
t₁₇₄₄₈, X₇: X₇ {O(n)}
t₁₇₄₄₉, X₁: 2 {O(1)}
t₁₇₄₄₉, X₂: 3 {O(1)}
t₁₇₄₄₉, X₄: 1 {O(1)}
t₁₇₄₄₉, X₅: 1 {O(1)}
t₁₇₄₄₉, X₆: 1 {O(1)}
t₁₇₄₄₉, X₇: X₇ {O(n)}
t₁₇₄₅₀, X₁: 2 {O(1)}
t₁₇₄₅₀, X₂: 3 {O(1)}
t₁₇₄₅₀, X₄: 1 {O(1)}
t₁₇₄₅₀, X₅: 1 {O(1)}
t₁₇₄₅₀, X₆: 3 {O(1)}
t₁₇₄₅₀, X₇: X₇ {O(n)}
t₁₇₄₅₁, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₁, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₁, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₅₁, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₅₁, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₅₁, X₇: 3⋅X₇ {O(n)}
t₁₇₄₅₂, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₂, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₂, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₅₂, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₂, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₅₂, X₇: 3⋅X₇ {O(n)}
t₁₇₄₅₃, X₀: X₀ {O(n)}
t₁₇₄₅₃, X₁: 2 {O(1)}
t₁₇₄₅₃, X₂: 3 {O(1)}
t₁₇₄₅₃, X₄: 1 {O(1)}
t₁₇₄₅₃, X₅: 2 {O(1)}
t₁₇₄₅₃, X₆: X₆ {O(n)}
t₁₇₄₅₃, X₇: X₇ {O(n)}
t₁₇₄₅₄, X₀: X₀ {O(n)}
t₁₇₄₅₄, X₁: 2 {O(1)}
t₁₇₄₅₄, X₂: 3 {O(1)}
t₁₇₄₅₄, X₄: 1 {O(1)}
t₁₇₄₅₄, X₅: 1 {O(1)}
t₁₇₄₅₄, X₆: X₆ {O(n)}
t₁₇₄₅₄, X₇: X₇ {O(n)}
t₁₇₄₅₅, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₅, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₅, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₅₅, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₅₅, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₅₅, X₇: 3⋅X₇ {O(n)}
t₁₇₄₅₆, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₆, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₆, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₅₆, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₆, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₅₆, X₇: 3⋅X₇ {O(n)}
t₁₇₄₅₇, X₁: 2 {O(1)}
t₁₇₄₅₇, X₂: 3 {O(1)}
t₁₇₄₅₇, X₄: 1 {O(1)}
t₁₇₄₅₇, X₅: 2 {O(1)}
t₁₇₄₅₇, X₆: X₆ {O(n)}
t₁₇₄₅₇, X₇: X₇ {O(n)}
t₁₇₄₅₈, X₁: 2 {O(1)}
t₁₇₄₅₈, X₂: 3 {O(1)}
t₁₇₄₅₈, X₄: 1 {O(1)}
t₁₇₄₅₈, X₅: 1 {O(1)}
t₁₇₄₅₈, X₆: X₆ {O(n)}
t₁₇₄₅₈, X₇: X₇ {O(n)}
t₁₇₅₁₄, X₀: X₀ {O(n)}
t₁₇₅₁₄, X₁: 2 {O(1)}
t₁₇₅₁₄, X₂: 3 {O(1)}
t₁₇₅₁₄, X₃: X₃ {O(n)}
t₁₇₅₁₄, X₄: 1 {O(1)}
t₁₇₅₁₄, X₅: 1 {O(1)}
t₁₇₅₁₄, X₆: 1 {O(1)}
t₁₇₅₁₄, X₇: 1 {O(1)}
t₁₇₅₁₅, X₁: 164⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+6 {O(EXP)}
t₁₇₅₁₅, X₂: 176⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+8 {O(EXP)}
t₁₇₅₁₅, X₄: 170⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+10 {O(EXP)}
t₁₇₅₁₅, X₅: 170⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+10 {O(EXP)}
t₁₇₅₁₅, X₆: 170⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+10 {O(EXP)}
t₁₇₅₁₅, X₇: 6⋅X₇+2 {O(n)}
t₁₇₅₁₆, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₅₁₆, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₅₁₆, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₅₁₆, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₅₁₆, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₅₁₆, X₇: 3⋅X₇ {O(n)}
t₁₇₄₅₉, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₉, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₉, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₅₉, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₅₉, X₆: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₅₉, X₇: 3⋅X₇ {O(n)}
t₁₇₅₁₈, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₅₁₈, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₅₁₈, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₅₁₈, X₅: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₅₁₈, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₅₁₈, X₇: 3⋅X₇ {O(n)}
t₁₇₄₆₀, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₀, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₀, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₆₀, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₀, X₆: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₀, X₇: 3⋅X₇ {O(n)}
t₁₇₄₆₁, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₁, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₁, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₆₁, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₁, X₆: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₁, X₇: 3⋅X₇ {O(n)}
t₁₇₄₆₂, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₂, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₂, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₆₂, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₂, X₆: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₂, X₇: 3⋅X₇ {O(n)}
t₁₇₅₂₂, X₁: 2 {O(1)}
t₁₇₅₂₂, X₂: 3 {O(1)}
t₁₇₅₂₂, X₄: 1 {O(1)}
t₁₇₅₂₂, X₅: 1 {O(1)}
t₁₇₅₂₂, X₆: 1 {O(1)}
t₁₇₅₂₂, X₇: X₇ {O(n)}
t₁₇₄₆₃, X₁: 2 {O(1)}
t₁₇₄₆₃, X₂: 3 {O(1)}
t₁₇₄₆₃, X₄: 1 {O(1)}
t₁₇₄₆₃, X₅: 1 {O(1)}
t₁₇₄₆₃, X₆: 3 {O(1)}
t₁₇₄₆₃, X₇: X₇ {O(n)}
t₁₇₄₆₄, X₁: 2 {O(1)}
t₁₇₄₆₄, X₂: 3 {O(1)}
t₁₇₄₆₄, X₄: 1 {O(1)}
t₁₇₄₆₄, X₅: 2 {O(1)}
t₁₇₄₆₄, X₆: 2 {O(1)}
t₁₇₄₆₄, X₇: X₇ {O(n)}
t₁₇₄₆₅, X₁: 2 {O(1)}
t₁₇₄₆₅, X₂: 3 {O(1)}
t₁₇₄₆₅, X₄: 1 {O(1)}
t₁₇₄₆₅, X₅: 2 {O(1)}
t₁₇₄₆₅, X₆: 3 {O(1)}
t₁₇₄₆₅, X₇: X₇ {O(n)}
t₁₇₄₆₆, X₀: X₀ {O(n)}
t₁₇₄₆₆, X₁: 2 {O(1)}
t₁₇₄₆₆, X₂: 3 {O(1)}
t₁₇₄₆₆, X₄: 1 {O(1)}
t₁₇₄₆₆, X₅: 2 {O(1)}
t₁₇₄₆₆, X₆: 2 {O(1)}
t₁₇₄₆₆, X₇: 2 {O(1)}
t₁₇₅₂₇, X₀: X₀ {O(n)}
t₁₇₅₂₇, X₁: 2 {O(1)}
t₁₇₅₂₇, X₂: 3 {O(1)}
t₁₇₅₂₇, X₄: 1 {O(1)}
t₁₇₅₂₇, X₅: 1 {O(1)}
t₁₇₅₂₇, X₆: 1 {O(1)}
t₁₇₅₂₇, X₇: 2 {O(1)}
t₁₇₄₆₇, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇+2 {O(EXP)}
t₁₇₄₆₇, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇+3 {O(EXP)}
t₁₇₄₆₇, X₄: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇+2 {O(EXP)}
t₁₇₄₆₇, X₅: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇+2 {O(EXP)}
t₁₇₄₆₇, X₆: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇+2 {O(EXP)}
t₁₇₄₆₇, X₇: 3⋅X₇+2 {O(n)}
t₁₇₄₆₈, X₁: 2^(9⋅X₇+35)⋅41+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₈, X₂: 2^(9⋅X₇+35)⋅44+2^(9⋅X₇+35)⋅9⋅X₇ {O(EXP)}
t₁₇₄₆₈, X₄: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₆₈, X₅: 211⋅2^(9⋅X₇+35)+2^(9⋅X₇+35)⋅36⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+13 {O(EXP)}
t₁₇₄₆₈, X₆: 129⋅2^(9⋅X₇+35)+18⋅2^(9⋅X₇+35)⋅X₇+2^(9⋅X₇+35)⋅9⋅X₇+8 {O(EXP)}
t₁₇₄₆₈, X₇: 3⋅X₇ {O(n)}