Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₃ ≤ 0
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₅+1 < X₁
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅+1
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁-1, X₂, X₃, X₄, X₂-1, X₆)
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₀, X₂, X₃, X₄, X₄, X₆) :|: X₄ < X₀
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₄
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, 0, X₅, X₆)
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₁, X₁, X₂, X₃, X₄+1, X₅, X₆)

Preprocessing

Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l2

Found invariant X₀ ≤ X₆ ∧ 0 ≤ X₄ for location l6

Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5

Found invariant X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₄ for location l8

Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1

Found invariant X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₄ for location l10

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9

Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₃ ≤ 0 ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆) :|: 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₅+1 < X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅+1 ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁-1, X₂, X₃, X₄, X₂-1, X₆) :|: 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₀, X₂, X₃, X₄, X₄, X₆) :|: X₄ < X₀ ∧ X₀ ≤ X₆ ∧ 0 ≤ X₄
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₄ ∧ X₀ ≤ X₆ ∧ 0 ≤ X₄
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, 0, X₅, X₆)
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₄
t₁₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₁, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₆+2 {O(n)}

MPRF:

l3 [X₁+2⋅X₂-2⋅X₅ ]
l1 [X₁+2 ]
l2 [X₁+2⋅X₂-2⋅X₅ ]
l5 [X₁+1 ]
l4 [X₁+2 ]
l9 [X₁+2 ]
l6 [X₀+2 ]

MPRF for transition t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅+1 ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₆+1 {O(n)}

MPRF:

l3 [X₀+X₆-X₄-1 ]
l1 [X₀+X₆-X₄-1 ]
l2 [X₀+X₆-X₄-1 ]
l5 [X₀+X₅+X₆-X₂-X₄ ]
l4 [X₀+X₆-X₄-1 ]
l9 [X₁+X₆-X₄-2 ]
l6 [X₀+X₆-X₄-1 ]

MPRF for transition t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁-1, X₂, X₃, X₄, X₂-1, X₆) :|: 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF:

l3 [X₁+X₅-X₂ ]
l1 [X₁-1 ]
l2 [X₁+X₅-X₂ ]
l5 [X₁-1 ]
l4 [X₁-1 ]
l9 [X₁-1 ]
l6 [X₀-1 ]

MPRF for transition t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₀, X₂, X₃, X₄, X₄, X₆) :|: X₄ < X₀ ∧ X₀ ≤ X₆ ∧ 0 ≤ X₄ of depth 1:

new bound:

X₆ {O(n)}

MPRF:

l3 [X₆-X₄-1 ]
l1 [X₆-X₄-1 ]
l2 [X₆-X₄-1 ]
l5 [X₆-X₄-1 ]
l4 [X₆-X₄-1 ]
l9 [X₅+X₆-X₁-X₄ ]
l6 [X₆-X₄ ]

MPRF for transition t₁₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₁, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₆ {O(n)}

MPRF:

l3 [X₆-X₄ ]
l1 [X₆-X₄ ]
l2 [X₆-X₄ ]
l5 [X₆-X₄ ]
l4 [X₆-X₄ ]
l9 [X₆-X₄ ]
l6 [X₆-X₄ ]

MPRF for transition t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₃ ≤ 0 ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₆⋅X₆+X₆ {O(n^2)}

MPRF:

l3 [X₁+1-X₂ ]
l1 [X₁-X₅ ]
l2 [X₁-X₅ ]
l9 [X₁-X₅ ]
l5 [X₁-X₂ ]
l6 [X₀ ]
l4 [X₁-X₅ ]

MPRF for transition t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₆⋅X₆+X₆ {O(n^2)}

MPRF:

l3 [X₁-X₂-1 ]
l1 [X₁-X₂-1 ]
l2 [X₁-X₅-1 ]
l9 [X₁-X₅-1 ]
l5 [X₁-X₂-1 ]
l6 [X₀ ]
l4 [X₁-X₅-1 ]

MPRF for transition t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆) :|: 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₆⋅X₆+X₆ {O(n^2)}

MPRF:

l3 [X₁-X₅-1 ]
l1 [X₁-X₂-1 ]
l2 [X₁-X₅-1 ]
l9 [X₁-X₅-1 ]
l5 [X₁+X₅-2⋅X₂ ]
l6 [X₀-X₄ ]
l4 [X₁-X₅-1 ]

MPRF for transition t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₅+1 < X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₆⋅X₆+2⋅X₆+1 {O(n^2)}

MPRF:

l3 [X₁-X₅ ]
l1 [X₁+1-X₂ ]
l2 [X₁-X₅ ]
l9 [X₁-X₅ ]
l5 [X₁+1-X₂ ]
l6 [X₀+1-X₄ ]
l4 [X₁+1-X₅ ]

Analysing control-flow refined program

Found invariant 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l2___6

Found invariant X₀ ≤ X₆ ∧ 0 ≤ X₄ for location l6

Found invariant 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___4

Found invariant 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___5

Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___8

Found invariant 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l2___3

Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5

Found invariant X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₄ for location l8

Found invariant 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___2

Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l3___9

Found invariant X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₄ for location l10

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9

Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l2___10

Found invariant 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___1

Found invariant 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l4___7

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₃₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___3(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₂ ≤ 1+X₅ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₅ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₅ ∧ 1+X₅ < X₁ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₆+1 {O(n)} for transition t₂₃₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___10(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₅ ∧ 1+X₅ < X₁ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₆+1 {O(n)} for transition t₂₃₀: n_l2___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___9(X₀, X₁, X₂, X₃, X₄, X₂-1, X₆) :|: X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ 1+X₅ < X₁ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₀ ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₃₁: n_l2___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___2(X₀, X₁, X₂, X₃, X₄, X₂-1, X₆) :|: X₀ ≤ X₆ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 1+X₅ < X₁ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₀ ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₃₃: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___1(X₀, X₁, X₂, NoDet0, Arg4_P, X₂-1, Arg6_P) :|: X₀ ≤ X₆ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 2+X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ X₀ ≤ Arg6_P ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+Arg4_P ≤ X₂ ∧ 0 ≤ Arg4_P ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₆+1 {O(n)} for transition t₂₃₅: n_l3___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___8(X₀, X₁, X₂, NoDet0, Arg4_P, X₂-1, Arg6_P) :|: X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ 2+X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ X₀ ≤ Arg6_P ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+Arg4_P ≤ X₂ ∧ 0 ≤ Arg4_P ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₂₇: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___7(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₀ ≤ X₆ ∧ 1+X₁ ≤ X₀ ∧ 2+X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ 0 ∧ X₀ ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₄₅: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₆+1 {O(n)} for transition t₂₂₉: n_l1___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___7(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ 2+X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ 0 ∧ X₀ ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₆+1 {O(n)} for transition t₂₄₇: n_l1___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀

MPRF for transition t₂₂₈: n_l1___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___7(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ 2+X₅ ≤ X₁ ∧ 1+X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ 0 ∧ X₀ ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

3⋅X₆⋅X₆+4⋅X₆ {O(n^2)}

MPRF:

l4 [X₆-X₁ ]
l6 [X₆-X₀ ]
n_l1___1 [X₆ ]
n_l1___8 [X₆ ]
l5 [X₆+1-X₁ ]
n_l2___10 [X₆-X₁ ]
n_l3___9 [X₆-X₁ ]
n_l2___3 [X₆-X₁ ]
n_l3___2 [X₆-X₁ ]
n_l3___5 [X₆-X₂ ]
n_l1___4 [2⋅X₂+X₆-3⋅X₅-3 ]
n_l2___6 [X₆-X₅-1 ]
n_l4___7 [X₆-X₅-1 ]
l9 [X₆-X₁ ]

MPRF for transition t₂₄₆: n_l1___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₆ {O(n)}

MPRF:

l4 [X₁ ]
l6 [X₀ ]
l5 [X₁-1 ]
n_l2___10 [X₁ ]
n_l2___3 [X₁ ]
n_l3___2 [X₁ ]
n_l1___1 [X₁ ]
n_l3___5 [X₁ ]
n_l1___4 [X₁ ]
n_l3___9 [X₁ ]
n_l1___8 [X₁ ]
n_l2___6 [X₁ ]
n_l4___7 [X₁ ]
l9 [X₁ ]

MPRF for transition t₂₃₂: n_l2___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₂-1, X₆) :|: X₃ ≤ 0 ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₀ ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

6⋅X₆⋅X₆+4⋅X₆ {O(n^2)}

MPRF:

l4 [0 ]
l6 [0 ]
n_l1___1 [X₁ ]
n_l1___8 [X₁ ]
l5 [X₁-X₅ ]
n_l2___10 [0 ]
n_l3___9 [0 ]
n_l2___3 [0 ]
n_l3___2 [0 ]
n_l3___5 [X₁+1-X₂ ]
n_l1___4 [X₁+1-X₂ ]
n_l2___6 [X₁+2-X₂ ]
n_l4___7 [X₁+1-X₂ ]
l9 [0 ]

MPRF for transition t₂₃₄: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___4(X₀, X₁, X₂, NoDet0, Arg4_P, X₂-1, Arg6_P) :|: X₃ ≤ 0 ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ 2+X₅ ≤ X₁ ∧ 1+X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ X₀ ≤ Arg6_P ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+Arg4_P ≤ X₂ ∧ 0 ≤ Arg4_P ∧ X₂ ≤ X₅+1 ∧ 1+X₅ ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

3⋅X₆⋅X₆+4⋅X₆+2 {O(n^2)}

MPRF:

l4 [X₆-X₁-2 ]
l6 [X₆-X₀-2 ]
n_l1___1 [X₆ ]
n_l1___8 [X₆ ]
l5 [X₆-X₂-1 ]
n_l2___10 [X₆-X₁-2 ]
n_l3___9 [X₆-X₁-2 ]
n_l2___3 [X₆-3⋅X₁ ]
n_l3___2 [X₆-3⋅X₁ ]
n_l3___5 [X₆-X₂ ]
n_l1___4 [X₆-X₂-1 ]
n_l2___6 [X₆-X₅-1 ]
n_l4___7 [X₆-X₂-1 ]
l9 [X₆-X₁-2 ]

MPRF for transition t₂₃₈: n_l4___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___6(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₅ ∧ 1+X₅ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₃ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ X₅ ∧ 1+X₅ < X₁ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

3⋅X₆⋅X₆+4⋅X₆ {O(n^2)}

MPRF:

l4 [X₆-X₁ ]
l6 [X₆-X₀ ]
n_l1___1 [X₆ ]
n_l1___8 [X₆ ]
l5 [X₆-X₅ ]
n_l2___10 [X₆-X₁ ]
n_l3___9 [X₆-X₁ ]
n_l2___3 [X₆-X₁ ]
n_l3___2 [X₆-X₁ ]
n_l3___5 [X₆+1-X₂ ]
n_l1___4 [X₆-X₅ ]
n_l2___6 [X₆-X₅ ]
n_l4___7 [X₆+1-X₂ ]
l9 [X₆-X₅-1 ]

MPRF for transition t₂₄₈: n_l4___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅+1 ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF:

l4 [X₁+1-X₄ ]
l6 [X₀+1-X₄ ]
l5 [X₁-X₄ ]
n_l2___10 [X₁+1-X₄ ]
n_l2___3 [X₁+1-X₄ ]
n_l3___2 [X₁+1-X₄ ]
n_l1___1 [X₁+1-X₄ ]
n_l3___5 [X₁+1-X₄ ]
n_l1___4 [X₁+1-X₄ ]
n_l3___9 [X₁+1-X₄ ]
n_l1___8 [X₁+1-X₄ ]
n_l2___6 [X₁+1-X₄ ]
n_l4___7 [X₁+1-X₄ ]
l9 [X₁-X₄ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:6⋅X₆⋅X₆+11⋅X₆+9 {O(n^2)}
t₀: 1 {O(1)}
t₉: X₆+2 {O(n)}
t₁₀: X₆⋅X₆+X₆ {O(n^2)}
t₆: X₆⋅X₆+X₆ {O(n^2)}
t₈: 2⋅X₆⋅X₆+X₆ {O(n^2)}
t₄: 2⋅X₆⋅X₆+2⋅X₆+1 {O(n^2)}
t₅: 2⋅X₆+1 {O(n)}
t₁₁: X₆+1 {O(n)}
t₂: X₆ {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₁₃: 1 {O(1)}
t₁₂: X₆ {O(n)}

Costbounds

Overall costbound: 6⋅X₆⋅X₆+11⋅X₆+9 {O(n^2)}
t₀: 1 {O(1)}
t₉: X₆+2 {O(n)}
t₁₀: X₆⋅X₆+X₆ {O(n^2)}
t₆: X₆⋅X₆+X₆ {O(n^2)}
t₈: 2⋅X₆⋅X₆+X₆ {O(n^2)}
t₄: 2⋅X₆⋅X₆+2⋅X₆+1 {O(n^2)}
t₅: 2⋅X₆+1 {O(n)}
t₁₁: X₆+1 {O(n)}
t₂: X₆ {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₁₃: 1 {O(1)}
t₁₂: X₆ {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₉, X₀: X₆ {O(n)}
t₉, X₁: 2⋅X₆ {O(n)}
t₉, X₂: 2⋅X₆⋅X₆+3⋅X₆+1 {O(n^2)}
t₉, X₄: X₆ {O(n)}
t₉, X₅: 4⋅X₆⋅X₆+7⋅X₆+2 {O(n^2)}
t₉, X₆: X₆ {O(n)}
t₁₀, X₀: X₆ {O(n)}
t₁₀, X₁: 2⋅X₆ {O(n)}
t₁₀, X₂: 2⋅X₆⋅X₆+3⋅X₆+1 {O(n^2)}
t₁₀, X₄: X₆ {O(n)}
t₁₀, X₅: 2⋅X₆⋅X₆+3⋅X₆+1 {O(n^2)}
t₁₀, X₆: X₆ {O(n)}
t₆, X₀: X₆ {O(n)}
t₆, X₁: 2⋅X₆ {O(n)}
t₆, X₂: 2⋅X₆⋅X₆+3⋅X₆+1 {O(n^2)}
t₆, X₄: X₆ {O(n)}
t₆, X₅: 4⋅X₆⋅X₆+7⋅X₆+2 {O(n^2)}
t₆, X₆: X₆ {O(n)}
t₈, X₀: X₆ {O(n)}
t₈, X₁: 2⋅X₆ {O(n)}
t₈, X₂: 2⋅X₆⋅X₆+3⋅X₆+1 {O(n^2)}
t₈, X₄: X₆ {O(n)}
t₈, X₅: 4⋅X₆⋅X₆+7⋅X₆+2 {O(n^2)}
t₈, X₆: X₆ {O(n)}
t₄, X₀: X₆ {O(n)}
t₄, X₁: 2⋅X₆ {O(n)}
t₄, X₂: 2⋅X₆⋅X₆+3⋅X₆+1 {O(n^2)}
t₄, X₄: X₆ {O(n)}
t₄, X₅: 4⋅X₆⋅X₆+7⋅X₆+2 {O(n^2)}
t₄, X₆: X₆ {O(n)}
t₅, X₀: X₆ {O(n)}
t₅, X₁: 6⋅X₆ {O(n)}
t₅, X₂: 4⋅X₆⋅X₆+7⋅X₆+5 {O(n^2)}
t₅, X₄: X₆ {O(n)}
t₅, X₅: 4⋅X₆⋅X₆+7⋅X₆+2 {O(n^2)}
t₅, X₆: X₆ {O(n)}
t₁₁, X₀: X₆ {O(n)}
t₁₁, X₁: 2⋅X₆ {O(n)}
t₁₁, X₂: 2⋅X₆⋅X₆+3⋅X₆+1 {O(n^2)}
t₁₁, X₄: X₆ {O(n)}
t₁₁, X₅: 2⋅X₆⋅X₆+3⋅X₆+1 {O(n^2)}
t₁₁, X₆: X₆ {O(n)}
t₂, X₀: X₆ {O(n)}
t₂, X₁: 2⋅X₆ {O(n)}
t₂, X₂: 4⋅X₆⋅X₆+7⋅X₆+X₂+5 {O(n^2)}
t₂, X₄: X₆ {O(n)}
t₂, X₅: X₆ {O(n)}
t₂, X₆: X₆ {O(n)}
t₃, X₀: 2⋅X₆ {O(n)}
t₃, X₁: 6⋅X₆+X₁ {O(n)}
t₃, X₂: 4⋅X₆⋅X₆+7⋅X₆+X₂+5 {O(n^2)}
t₃, X₄: X₆ {O(n)}
t₃, X₅: 4⋅X₆⋅X₆+7⋅X₆+X₅+2 {O(n^2)}
t₃, X₆: 2⋅X₆ {O(n)}
t₁, X₀: X₆ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: 0 {O(1)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁₃, X₀: 2⋅X₆ {O(n)}
t₁₃, X₁: 6⋅X₆+X₁ {O(n)}
t₁₃, X₂: 4⋅X₆⋅X₆+7⋅X₆+X₂+5 {O(n^2)}
t₁₃, X₄: X₆ {O(n)}
t₁₃, X₅: 4⋅X₆⋅X₆+7⋅X₆+X₅+2 {O(n^2)}
t₁₃, X₆: 2⋅X₆ {O(n)}
t₁₂, X₀: X₆ {O(n)}
t₁₂, X₁: 6⋅X₆ {O(n)}
t₁₂, X₂: 4⋅X₆⋅X₆+7⋅X₆+5 {O(n^2)}
t₁₂, X₄: X₆ {O(n)}
t₁₂, X₅: 4⋅X₆⋅X₆+7⋅X₆+2 {O(n^2)}
t₁₂, X₆: X₆ {O(n)}