Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l3(X₀, 0, X₂) :|: X₀ ≤ X₂
t₃: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₂ < X₀
t₁: l2(X₀, X₁, X₂) → l1(0, X₁, X₂)
t₅: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ < X₁
t₄: l3(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₁ ≤ X₂
t₈: l4(X₀, X₁, X₂) → l7(X₀, X₁, X₂)
t₇: l5(X₀, X₁, X₂) → l1(X₀+2, X₁, X₂)
t₆: l6(X₀, X₁, X₂) → l3(X₀, X₁+2, X₂)

Preprocessing

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6

Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location l7

Found invariant 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 0 ≤ X₀ for location l1

Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location l4

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l3(X₀, 0, X₂) :|: X₀ ≤ X₂ ∧ 0 ≤ X₀
t₃: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₂ < X₀ ∧ 0 ≤ X₀
t₁: l2(X₀, X₁, X₂) → l1(0, X₁, X₂)
t₅: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄: l3(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₈: l4(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: 1+X₂ ≤ X₀ ∧ 0 ≤ X₀
t₇: l5(X₀, X₁, X₂) → l1(X₀+2, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆: l6(X₀, X₁, X₂) → l3(X₀, X₁+2, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

MPRF for transition t₂: l1(X₀, X₁, X₂) → l3(X₀, 0, X₂) :|: X₀ ≤ X₂ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF:

l5 [X₂-X₀-1 ]
l1 [X₂+1-X₀ ]
l6 [X₂-X₀-1 ]
l3 [X₂-X₀-1 ]

MPRF for transition t₅: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF:

l5 [X₂-X₀-1 ]
l1 [X₂+1-X₀ ]
l6 [X₂+1-X₀ ]
l3 [X₂+1-X₀ ]

MPRF for transition t₇: l5(X₀, X₁, X₂) → l1(X₀+2, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF:

l5 [X₂+1-X₀ ]
l1 [X₂+1-X₀ ]
l6 [X₂+1-X₀ ]
l3 [X₂+1-X₀ ]

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6

Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location l7

Found invariant 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 0 ≤ X₀ for location l1

Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location l4

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₄ 2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}

TWN-Loops:

entry: t₂: l1(X₀, X₁, X₂) → l3(X₀, 0, X₂) :|: X₀ ≤ X₂ ∧ 0 ≤ X₀
results in twn-loop: twn:Inv: [0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀] , (X₀,X₁,X₂) -> (X₀,X₁+2,X₂) :|: X₁ ≤ X₂
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * 2 * n^1
X₂: X₂

Termination: true
Formula:

2 < 0
∨ 2 < 0 ∧ X₁ < 2+X₂ ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 2 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₁ ≤ 2+X₂ ∧ 2+X₂ ≤ X₁
∨ X₁ < X₂ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 2 < 0
∨ X₁ < X₂ ∧ X₁ < 2+X₂ ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₁ < X₂ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₁ ≤ 2+X₂ ∧ 2+X₂ ≤ X₁
∨ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 < 0
∨ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₁ < 2+X₂ ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₁ ≤ 2+X₂ ∧ 2+X₂ ≤ X₁

Stabilization-Threshold for: X₁ ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}

relevant size-bounds w.r.t. t₂:
X₂: X₂ {O(n)}
Runtime-bound of t₂: X₂+1 {O(n)}
Results in: 2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}

2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}

Time-Bound by TWN-Loops:

TWN-Loops: t₆ 2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}

relevant size-bounds w.r.t. t₂:
X₂: X₂ {O(n)}
Runtime-bound of t₂: X₂+1 {O(n)}
Results in: 2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}

2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}

Analysing control-flow refined program

Cut unsatisfiable transition t₅: l3→l5

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___3

Found invariant 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___1

Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location l7

Found invariant 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l3___2

Found invariant 0 ≤ X₀ for location l1

Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location l4

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l3

knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₇₃: l3(X₀, X₁, X₂) → n_l6___3(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₇₅: n_l6___3(X₀, X₁, X₂) → n_l3___2(X₀, X₁+2, X₂) :|: X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

MPRF for transition t₇₂: n_l3___2(X₀, X₁, X₂) → n_l6___1(X₀, X₁, X₂) :|: X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₂⋅X₂+6⋅X₂+6 {O(n^2)}

MPRF:

l3 [1 ]
n_l6___3 [1 ]
l1 [1 ]
l5 [X₂+3-X₁ ]
n_l6___1 [X₂+1-X₁ ]
n_l3___2 [X₂+3-X₁ ]

MPRF for transition t₇₉: n_l3___2(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF:

l3 [X₂+1-X₀ ]
l1 [X₂+1-X₀ ]
l5 [X₂-X₀-1 ]
n_l6___1 [X₂+1-X₀ ]
n_l6___3 [X₂+1-X₀ ]
n_l3___2 [X₂+1-X₀ ]

MPRF for transition t₇₄: n_l6___1(X₀, X₁, X₂) → n_l3___2(X₀, X₁+2, X₂) :|: X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₂⋅X₂+8⋅X₂+6 {O(n^2)}

MPRF:

l3 [X₂+1 ]
n_l6___3 [X₂+1 ]
l1 [X₂+1 ]
l5 [2⋅X₂+3-X₁ ]
n_l6___1 [2⋅X₂+3-X₁ ]
n_l3___2 [2⋅X₂+3-X₁ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:4⋅X₂⋅X₂+15⋅X₂+15 {O(n^2)}
t₀: 1 {O(1)}
t₂: X₂+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}
t₅: X₂+1 {O(n)}
t₈: 1 {O(1)}
t₇: X₂+1 {O(n)}
t₆: 2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}

Costbounds

Overall costbound: 4⋅X₂⋅X₂+15⋅X₂+15 {O(n^2)}
t₀: 1 {O(1)}
t₂: X₂+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}
t₅: X₂+1 {O(n)}
t₈: 1 {O(1)}
t₇: X₂+1 {O(n)}
t₆: 2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₂, X₀: 2⋅X₂+2 {O(n)}
t₂, X₁: 0 {O(1)}
t₂, X₂: X₂ {O(n)}
t₃, X₀: 2⋅X₂+2 {O(n)}
t₃, X₁: 4⋅X₂⋅X₂+12⋅X₂+X₁+8 {O(n^2)}
t₃, X₂: 2⋅X₂ {O(n)}
t₁, X₀: 0 {O(1)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₄, X₀: 2⋅X₂+2 {O(n)}
t₄, X₁: 4⋅X₂⋅X₂+12⋅X₂+8 {O(n^2)}
t₄, X₂: X₂ {O(n)}
t₅, X₀: 2⋅X₂+2 {O(n)}
t₅, X₁: 4⋅X₂⋅X₂+12⋅X₂+8 {O(n^2)}
t₅, X₂: X₂ {O(n)}
t₈, X₀: 2⋅X₂+2 {O(n)}
t₈, X₁: 4⋅X₂⋅X₂+12⋅X₂+X₁+8 {O(n^2)}
t₈, X₂: 2⋅X₂ {O(n)}
t₇, X₀: 2⋅X₂+2 {O(n)}
t₇, X₁: 4⋅X₂⋅X₂+12⋅X₂+8 {O(n^2)}
t₇, X₂: X₂ {O(n)}
t₆, X₀: 2⋅X₂+2 {O(n)}
t₆, X₁: 4⋅X₂⋅X₂+12⋅X₂+8 {O(n^2)}
t₆, X₂: X₂ {O(n)}