Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₀ < X₁
t₃: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁ < X₀
t₄: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀
t₁: l2(X₀, X₁, X₂) → l1(X₂, X₁, X₂)
t₅: l3(X₀, X₁, X₂) → l1(X₀+1, X₁, X₂)
t₆: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂)

Preprocessing

Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5

Found invariant X₂ ≤ X₀ for location l1

Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4

Found invariant X₂ ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₀ < X₁ ∧ X₂ ≤ X₀
t₃: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁ < X₀ ∧ X₂ ≤ X₀
t₄: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₀
t₁: l2(X₀, X₁, X₂) → l1(X₂, X₁, X₂)
t₅: l3(X₀, X₁, X₂) → l1(X₀+1, X₁, X₂) :|: X₂ ≤ X₀
t₆: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁

MPRF for transition t₂: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₀ < X₁ ∧ X₂ ≤ X₀ of depth 1:

new bound:

X₁+X₂ {O(n)}

MPRF:

l3 [X₁-X₀-1 ]
l1 [X₁-X₀ ]

Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5

Found invariant X₂ ≤ X₀ for location l1

Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4

Found invariant X₂ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3

Analysing control-flow refined program

Cut unsatisfiable transition t₈₂: n_l1___2→l4

Cut unsatisfiable transition t₆₈: n_l1___5→n_l3___3

Cut unreachable locations [n_l3___3] from the program graph

Found invariant 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___4

Found invariant X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___6

Found invariant 1+X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ 2+X₁ ≤ X₀ for location n_l1___2

Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5

Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ for location n_l1___5

Found invariant X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1

Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4

Found invariant 1+X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ 2+X₁ ≤ X₀ for location n_l3___1

Found invariant 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l3___7

Found invariant 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___4

Found invariant X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___6

Found invariant 1+X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ 2+X₁ ≤ X₀ for location n_l1___2

Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5

Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ for location n_l1___5

Found invariant X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1

Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4

Found invariant 1+X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ 2+X₁ ≤ X₀ for location n_l3___1

Found invariant 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l3___7

MPRF for transition t₆₉: n_l1___5(X₀, X₁, X₂) → n_l3___4(X₀, X₁, X₂) :|: X₂ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₀ < X₁ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₁+X₂+1 {O(n)}

MPRF:

n_l3___4 [X₁-X₀-1 ]
n_l1___5 [X₁-X₀ ]

MPRF for transition t₇₄: n_l3___4(X₀, X₁, X₂) → n_l1___5(X₀+1, X₁, X₂) :|: X₀ < X₁ ∧ 1+X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₁+X₂+1 {O(n)}

MPRF:

n_l3___4 [X₁-X₀ ]
n_l1___5 [X₁-X₀ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₂: X₁+X₂ {O(n)}
t₃: inf {Infinity}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₅: inf {Infinity}
t₆: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₂: X₁+X₂ {O(n)}
t₃: inf {Infinity}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₅: inf {Infinity}
t₆: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₂, X₁: 2⋅X₁ {O(n)}
t₂, X₂: 2⋅X₂ {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₄, X₁: 3⋅X₁ {O(n)}
t₄, X₂: 3⋅X₂ {O(n)}
t₁, X₀: X₂ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₅, X₁: 2⋅X₁ {O(n)}
t₅, X₂: 2⋅X₂ {O(n)}
t₆, X₁: 3⋅X₁ {O(n)}
t₆, X₂: 3⋅X₂ {O(n)}