Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: X₀ < X₁
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: X₁ ≤ X₀
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆)
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, nondef.1, X₅, X₆)
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ < 0
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ 0 < X₂
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ X₂ < 0
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ 0 < X₂
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₃, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₃, X₃, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₄, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ < 0
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₄, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 < X₂
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₃, X₄, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 0 < X₁
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0
t₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
Preprocessing
Cut unsatisfiable transition t₁₃: l5→l6
Cut unsatisfiable transition t₁₄: l5→l6
Cut unsatisfiable transition t₁₆: l5→l6
Cut unsatisfiable transition t₁₇: l5→l6
Cut unsatisfiable transition t₁₈: l5→l6
Cut unsatisfiable transition t₁₉: l5→l6
Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2
Found invariant 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1
Found invariant 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, nondef.1, X₅, X₆) :|: 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ < 0 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ 0 < X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₃, X₄, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 0 < X₁
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0
t₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
Analysing control-flow refined program
Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___19
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___6
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___1
Found invariant X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___16
Found invariant X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___18
Found invariant X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ for location l6
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___17
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___11
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___4
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___3
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___9
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___2
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l6___14
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___8
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___12
Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___20
Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___21
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___7
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___13
Found invariant 3 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 3 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3+X₃ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___10
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁ for location n_l6___15
MPRF for transition t₁₇₆₃: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___10(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ < X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
10⋅X₆+4⋅X₅ {O(n)}
MPRF:
n_l3___12 [X₁ ]
n_l1___11 [X₁-1 ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₁-2 ]
n_l4___2 [X₀+2⋅X₃+1-2⋅X₄ ]
n_l4___3 [X₃+1 ]
n_l4___9 [X₃ ]
n_l5___7 [2⋅X₃+1-X₁ ]
n_l5___8 [X₃ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [2⋅X₁-X₃ ]
n_l2___13 [X₁ ]
MPRF for transition t₁₇₆₄: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___9(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅+4⋅X₆ {O(n)}
MPRF:
n_l3___12 [X₁ ]
n_l1___11 [X₁ ]
n_l3___5 [X₃ ]
n_l1___4 [X₀ ]
n_l4___10 [X₀+X₁-X₄ ]
n_l4___2 [X₁ ]
n_l4___3 [X₀ ]
n_l4___9 [X₁-1 ]
n_l5___7 [X₁-1 ]
n_l5___8 [X₀ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₁ ]
n_l2___13 [X₁ ]
MPRF for transition t₁₇₆₇: n_l1___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___2(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₆+4⋅X₅ {O(n)}
MPRF:
n_l3___12 [X₃ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₀ ]
n_l4___10 [X₁ ]
n_l4___2 [X₀-1 ]
n_l4___3 [X₃+1 ]
n_l4___9 [X₁ ]
n_l5___7 [X₁-1 ]
n_l5___8 [X₀ ]
n_l6___14 [X₀ ]
n_l2___6 [X₀ ]
n_l6___15 [X₃ ]
n_l2___13 [X₃ ]
MPRF for transition t₁₇₆₈: n_l1___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___3(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ < X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅+4⋅X₆+2 {O(n)}
MPRF:
n_l3___12 [X₁ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀+1 ]
n_l1___4 [X₀+1 ]
n_l4___10 [X₀ ]
n_l4___2 [X₀ ]
n_l4___3 [X₀ ]
n_l4___9 [X₁ ]
n_l5___7 [X₁ ]
n_l5___8 [X₃+1 ]
n_l6___14 [X₀+1 ]
n_l2___6 [X₀+1 ]
n_l6___15 [X₁ ]
n_l2___13 [X₃ ]
MPRF for transition t₁₇₆₉: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₆+4⋅X₅ {O(n)}
MPRF:
n_l3___12 [X₁-1 ]
n_l1___11 [X₃-1 ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₁-1 ]
n_l4___2 [X₄ ]
n_l4___3 [X₀ ]
n_l4___9 [X₃ ]
n_l5___7 [X₃ ]
n_l5___8 [X₃+1 ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₃ ]
n_l2___13 [X₃ ]
MPRF for transition t₁₇₇₁: n_l2___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₅+3⋅X₆ {O(n)}
MPRF:
n_l3___12 [X₃ ]
n_l1___11 [X₃ ]
n_l3___5 [X₃-1 ]
n_l1___4 [X₃-1 ]
n_l4___10 [X₃ ]
n_l4___2 [X₀-1 ]
n_l4___3 [X₃ ]
n_l4___9 [X₁ ]
n_l5___7 [X₁-1 ]
n_l5___8 [X₃ ]
n_l6___14 [X₃ ]
n_l2___6 [X₃ ]
n_l6___15 [X₃ ]
n_l2___13 [X₁ ]
MPRF for transition t₁₇₇₂: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___11(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅+4⋅X₆ {O(n)}
MPRF:
n_l3___12 [X₁ ]
n_l1___11 [X₃-1 ]
n_l3___5 [X₃ ]
n_l1___4 [X₃ ]
n_l4___10 [X₁-1 ]
n_l4___2 [X₀ ]
n_l4___3 [X₀ ]
n_l4___9 [X₃ ]
n_l5___7 [X₁-1 ]
n_l5___8 [X₃ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₁ ]
n_l2___13 [X₁ ]
MPRF for transition t₁₇₇₄: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___4(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅+4⋅X₆ {O(n)}
MPRF:
n_l3___12 [X₁ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃-1 ]
n_l4___10 [X₀ ]
n_l4___2 [X₀-1 ]
n_l4___3 [X₃ ]
n_l4___9 [X₁ ]
n_l5___7 [X₁-1 ]
n_l5___8 [X₃ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₁ ]
n_l2___13 [X₃ ]
MPRF for transition t₁₇₇₅: n_l4___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___8(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 3 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 3 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3+X₃ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅+4⋅X₆ {O(n)}
MPRF:
n_l3___12 [X₁ ]
n_l1___11 [X₁ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₃+2 ]
n_l4___2 [X₀+X₁-X₄ ]
n_l4___3 [X₀ ]
n_l4___9 [X₁ ]
n_l5___7 [X₁ ]
n_l5___8 [X₃ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₁ ]
n_l2___13 [X₁ ]
MPRF for transition t₁₇₇₈: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___7(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₆+4⋅X₅ {O(n)}
MPRF:
n_l3___12 [X₁ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₁ ]
n_l4___2 [X₃+1 ]
n_l4___3 [X₀ ]
n_l4___9 [X₁ ]
n_l5___7 [X₁-1 ]
n_l5___8 [X₃ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₃ ]
n_l2___13 [X₁ ]
MPRF for transition t₁₇₇₉: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___8(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: 1+X₃ < X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅+4⋅X₆ {O(n)}
MPRF:
n_l3___12 [X₁ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₁+X₄-X₃-1 ]
n_l4___2 [X₀ ]
n_l4___3 [X₃+1 ]
n_l4___9 [X₁ ]
n_l5___7 [X₁ ]
n_l5___8 [X₀-1 ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₁ ]
n_l2___13 [X₃ ]
MPRF for transition t₁₇₈₀: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___7(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅+4⋅X₆ {O(n)}
MPRF:
n_l3___12 [X₁ ]
n_l1___11 [X₃ ]
n_l3___5 [X₃ ]
n_l1___4 [X₀ ]
n_l4___10 [X₁ ]
n_l4___2 [X₀ ]
n_l4___3 [X₀ ]
n_l4___9 [X₁ ]
n_l5___7 [X₃ ]
n_l5___8 [X₃+1 ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₁ ]
n_l2___13 [X₃ ]
MPRF for transition t₁₇₈₇: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₃, X₄, 0, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₆+4⋅X₅ {O(n)}
MPRF:
n_l3___12 [X₁ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₁ ]
n_l4___2 [X₀+X₁-X₄ ]
n_l4___3 [X₀ ]
n_l4___9 [X₀+X₁-X₄ ]
n_l5___7 [X₁ ]
n_l5___8 [X₀ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₃ ]
n_l2___13 [X₁ ]
MPRF for transition t₁₇₈₈: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < 0 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₅+3⋅X₆ {O(n)}
MPRF:
n_l3___12 [X₃ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₀+X₁-X₄-1 ]
n_l4___2 [X₀ ]
n_l4___3 [X₀ ]
n_l4___9 [X₁ ]
n_l5___7 [X₃+1 ]
n_l5___8 [X₀ ]
n_l6___14 [X₃ ]
n_l2___6 [X₀ ]
n_l6___15 [X₃ ]
n_l2___13 [X₃ ]
MPRF for transition t₁₇₈₉: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₅+3⋅X₆ {O(n)}
MPRF:
n_l3___12 [X₃ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₀+X₁-X₄ ]
n_l4___2 [X₀+X₄-X₁ ]
n_l4___3 [X₀ ]
n_l4___9 [X₁ ]
n_l5___7 [X₃+1 ]
n_l5___8 [X₀ ]
n_l6___14 [X₃ ]
n_l2___6 [X₀ ]
n_l6___15 [X₃ ]
n_l2___13 [X₃ ]
MPRF for transition t₁₇₉₀: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₃, X₄, 0, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅+4⋅X₆+2 {O(n)}
MPRF:
n_l3___12 [X₁ ]
n_l1___11 [X₁ ]
n_l3___5 [X₀+1 ]
n_l1___4 [X₃+1 ]
n_l4___10 [X₁+2⋅X₄-2⋅X₃-2 ]
n_l4___2 [X₀+1 ]
n_l4___3 [X₀+X₄+1-X₁ ]
n_l4___9 [X₁ ]
n_l5___7 [X₁ ]
n_l5___8 [X₃+2 ]
n_l6___14 [X₀+1 ]
n_l2___6 [X₃+1 ]
n_l6___15 [X₁ ]
n_l2___13 [X₃ ]
MPRF for transition t₁₇₉₁: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < 0 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₅+3⋅X₆ {O(n)}
MPRF:
n_l3___12 [X₁ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₀+X₁-X₄ ]
n_l4___10 [2⋅X₄-X₃ ]
n_l4___2 [X₀ ]
n_l4___3 [X₀ ]
n_l4___9 [X₀+X₁-X₄ ]
n_l5___7 [X₃ ]
n_l5___8 [X₀ ]
n_l6___14 [X₃ ]
n_l2___6 [X₀ ]
n_l6___15 [X₃ ]
n_l2___13 [X₁ ]
MPRF for transition t₁₇₉₂: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₆+4⋅X₅ {O(n)}
MPRF:
n_l3___12 [X₃ ]
n_l1___11 [X₃+X₄-X₀ ]
n_l3___5 [X₃ ]
n_l1___4 [X₀ ]
n_l4___10 [X₀+X₁-X₄ ]
n_l4___2 [X₀+X₃-X₁ ]
n_l4___3 [X₀ ]
n_l4___9 [X₁ ]
n_l5___7 [X₃ ]
n_l5___8 [X₀ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₃ ]
n_l2___13 [X₁ ]
MPRF for transition t₁₇₉₃: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₅+4⋅X₆+2 {O(n)}
MPRF:
n_l3___12 [X₃ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₀ ]
n_l4___2 [X₀ ]
n_l4___3 [X₃+1 ]
n_l4___9 [X₃+1 ]
n_l5___7 [X₃+1 ]
n_l5___8 [X₃+1 ]
n_l6___14 [X₀+1 ]
n_l2___6 [X₃ ]
n_l6___15 [X₁ ]
n_l2___13 [X₃ ]
MPRF for transition t₁₇₉₄: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 0 < X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁ of depth 1:
new bound:
2⋅X₅+4⋅X₆+6 {O(n)}
MPRF:
n_l3___12 [X₃ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀+1 ]
n_l1___4 [X₃+1 ]
n_l4___10 [X₁ ]
n_l4___2 [X₁ ]
n_l4___3 [X₀+1 ]
n_l4___9 [X₁ ]
n_l5___7 [X₃+1 ]
n_l5___8 [X₀+1 ]
n_l6___14 [X₀+1 ]
n_l2___6 [X₃+1 ]
n_l6___15 [X₁+1 ]
n_l2___13 [X₃ ]
CFR: Improvement to new bound with the following program:
new bound:
56⋅X₅+72⋅X₆+12 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: Arg3_P, NoDet0
Locations: l0, l6, l7, l8, l9, n_l1___11, n_l1___19, n_l1___4, n_l2___13, n_l2___21, n_l2___6, n_l3___12, n_l3___20, n_l3___5, n_l4___10, n_l4___17, n_l4___18, n_l4___2, n_l4___3, n_l4___9, n_l5___1, n_l5___16, n_l5___7, n_l5___8, n_l6___14, n_l6___15
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₁₇₉₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ 0 < X₀ ∧ 0 < X₁ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₇₆₃: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___10(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ < X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₆₄: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___9(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₆₅: n_l1___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___17(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₆₆: n_l1___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___18(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₆₇: n_l1___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___2(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₆₈: n_l1___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___3(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ < X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₆₉: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₇₀: n_l2___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₇₁: n_l2___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₇₂: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___11(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₇₃: n_l3___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___19(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₇₄: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___4(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₇₅: n_l4___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___8(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 3 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 3 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3+X₃ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₇₇₆: n_l4___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___1(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₃+1 ≤ X₆ ∧ X₆ ≤ 1+X₃ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₇₇: n_l4___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___16(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₇₇₈: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___7(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₇₉: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___8(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: 1+X₃ < X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₇₈₀: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___7(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₈₁: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₃, X₄, 0, X₃, X₄, X₅, X₆) :|: 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₃+1 ≤ X₆ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₈₂: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₃+1 ≤ X₆ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₈₃: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₃+1 ≤ X₆ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₈₄: n_l5___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₃, X₄, 0, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₇₈₅: n_l5___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < 0 ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₇₈₆: n_l5___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₇₈₇: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₃, X₄, 0, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₈₈: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < 0 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₈₉: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇₉₀: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₃, X₄, 0, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₇₉₁: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < 0 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₇₉₂: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₈₁₄: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₈₁₆: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₈₁₈: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₈₂₀: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₈₂₂: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₈₂₄: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₇₉₃: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₈₁₅: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
t₁₈₁₇: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
t₁₈₁₉: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
t₁₈₂₁: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
t₁₈₂₃: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
t₁₈₂₅: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
t₁₇₉₄: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 0 < X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
All Bounds
Timebounds
Overall timebound:56⋅X₅+72⋅X₆+42 {O(n)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₇₉₅: 1 {O(1)}
t₁: 1 {O(1)}
t₂₁: 1 {O(1)}
t₁₇₆₃: 10⋅X₆+4⋅X₅ {O(n)}
t₁₇₆₄: 2⋅X₅+4⋅X₆ {O(n)}
t₁₇₆₅: 1 {O(1)}
t₁₇₆₆: 1 {O(1)}
t₁₇₆₇: 2⋅X₆+4⋅X₅ {O(n)}
t₁₇₆₈: 2⋅X₅+4⋅X₆+2 {O(n)}
t₁₇₆₉: 2⋅X₆+4⋅X₅ {O(n)}
t₁₇₇₀: 1 {O(1)}
t₁₇₇₁: 3⋅X₅+3⋅X₆ {O(n)}
t₁₇₇₂: 2⋅X₅+4⋅X₆ {O(n)}
t₁₇₇₃: 1 {O(1)}
t₁₇₇₄: 2⋅X₅+4⋅X₆ {O(n)}
t₁₇₇₅: 2⋅X₅+4⋅X₆ {O(n)}
t₁₇₇₆: 1 {O(1)}
t₁₇₇₇: 1 {O(1)}
t₁₇₇₈: 2⋅X₆+4⋅X₅ {O(n)}
t₁₇₇₉: 2⋅X₅+4⋅X₆ {O(n)}
t₁₇₈₀: 2⋅X₅+4⋅X₆ {O(n)}
t₁₇₈₁: 1 {O(1)}
t₁₇₈₂: 1 {O(1)}
t₁₇₈₃: 1 {O(1)}
t₁₇₈₄: 1 {O(1)}
t₁₇₈₅: 1 {O(1)}
t₁₇₈₆: 1 {O(1)}
t₁₇₈₇: 2⋅X₆+4⋅X₅ {O(n)}
t₁₇₈₈: 3⋅X₅+3⋅X₆ {O(n)}
t₁₇₈₉: 3⋅X₅+3⋅X₆ {O(n)}
t₁₇₉₀: 2⋅X₅+4⋅X₆+2 {O(n)}
t₁₇₉₁: 3⋅X₅+3⋅X₆ {O(n)}
t₁₇₉₂: 2⋅X₆+4⋅X₅ {O(n)}
t₁₇₉₃: 2⋅X₅+4⋅X₆+2 {O(n)}
t₁₈₁₄: 1 {O(1)}
t₁₈₁₆: 1 {O(1)}
t₁₈₁₈: 1 {O(1)}
t₁₈₂₀: 1 {O(1)}
t₁₈₂₂: 1 {O(1)}
t₁₈₂₄: 1 {O(1)}
t₁₇₉₄: 2⋅X₅+4⋅X₆+6 {O(n)}
t₁₈₁₅: 1 {O(1)}
t₁₈₁₇: 1 {O(1)}
t₁₈₁₉: 1 {O(1)}
t₁₈₂₁: 1 {O(1)}
t₁₈₂₃: 1 {O(1)}
t₁₈₂₅: 1 {O(1)}
Costbounds
Overall costbound: 56⋅X₅+72⋅X₆+42 {O(n)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₇₉₅: 1 {O(1)}
t₁: 1 {O(1)}
t₂₁: 1 {O(1)}
t₁₇₆₃: 10⋅X₆+4⋅X₅ {O(n)}
t₁₇₆₄: 2⋅X₅+4⋅X₆ {O(n)}
t₁₇₆₅: 1 {O(1)}
t₁₇₆₆: 1 {O(1)}
t₁₇₆₇: 2⋅X₆+4⋅X₅ {O(n)}
t₁₇₆₈: 2⋅X₅+4⋅X₆+2 {O(n)}
t₁₇₆₉: 2⋅X₆+4⋅X₅ {O(n)}
t₁₇₇₀: 1 {O(1)}
t₁₇₇₁: 3⋅X₅+3⋅X₆ {O(n)}
t₁₇₇₂: 2⋅X₅+4⋅X₆ {O(n)}
t₁₇₇₃: 1 {O(1)}
t₁₇₇₄: 2⋅X₅+4⋅X₆ {O(n)}
t₁₇₇₅: 2⋅X₅+4⋅X₆ {O(n)}
t₁₇₇₆: 1 {O(1)}
t₁₇₇₇: 1 {O(1)}
t₁₇₇₈: 2⋅X₆+4⋅X₅ {O(n)}
t₁₇₇₉: 2⋅X₅+4⋅X₆ {O(n)}
t₁₇₈₀: 2⋅X₅+4⋅X₆ {O(n)}
t₁₇₈₁: 1 {O(1)}
t₁₇₈₂: 1 {O(1)}
t₁₇₈₃: 1 {O(1)}
t₁₇₈₄: 1 {O(1)}
t₁₇₈₅: 1 {O(1)}
t₁₇₈₆: 1 {O(1)}
t₁₇₈₇: 2⋅X₆+4⋅X₅ {O(n)}
t₁₇₈₈: 3⋅X₅+3⋅X₆ {O(n)}
t₁₇₈₉: 3⋅X₅+3⋅X₆ {O(n)}
t₁₇₉₀: 2⋅X₅+4⋅X₆+2 {O(n)}
t₁₇₉₁: 3⋅X₅+3⋅X₆ {O(n)}
t₁₇₉₂: 2⋅X₆+4⋅X₅ {O(n)}
t₁₇₉₃: 2⋅X₅+4⋅X₆+2 {O(n)}
t₁₈₁₄: 1 {O(1)}
t₁₈₁₆: 1 {O(1)}
t₁₈₁₈: 1 {O(1)}
t₁₈₂₀: 1 {O(1)}
t₁₈₂₂: 1 {O(1)}
t₁₈₂₄: 1 {O(1)}
t₁₇₉₄: 2⋅X₅+4⋅X₆+6 {O(n)}
t₁₈₁₅: 1 {O(1)}
t₁₈₁₇: 1 {O(1)}
t₁₈₁₉: 1 {O(1)}
t₁₈₂₁: 1 {O(1)}
t₁₈₂₃: 1 {O(1)}
t₁₈₂₅: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₃, X₀: X₅ {O(n)}
t₃, X₁: X₆ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₄, X₀: X₅ {O(n)}
t₄, X₁: X₆ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₁₇₉₅, X₀: X₅ {O(n)}
t₁₇₉₅, X₁: X₆ {O(n)}
t₁₇₉₅, X₂: X₂ {O(n)}
t₁₇₉₅, X₃: X₃ {O(n)}
t₁₇₉₅, X₄: X₄ {O(n)}
t₁₇₉₅, X₅: X₅ {O(n)}
t₁₇₉₅, X₆: X₆ {O(n)}
t₁, X₀: X₅ {O(n)}
t₁, X₁: X₆ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂₁, X₅: 8⋅X₅ {O(n)}
t₂₁, X₆: 8⋅X₆ {O(n)}
t₁₇₆₃, X₅: 6⋅X₅ {O(n)}
t₁₇₆₃, X₆: 6⋅X₆ {O(n)}
t₁₇₆₄, X₅: 6⋅X₅ {O(n)}
t₁₇₆₄, X₆: 6⋅X₆ {O(n)}
t₁₇₆₅, X₀: X₅ {O(n)}
t₁₇₆₅, X₁: X₆ {O(n)}
t₁₇₆₅, X₃: X₆ {O(n)}
t₁₇₆₅, X₄: X₄ {O(n)}
t₁₇₆₅, X₅: X₅ {O(n)}
t₁₇₆₅, X₆: X₆ {O(n)}
t₁₇₆₆, X₀: X₅ {O(n)}
t₁₇₆₆, X₁: X₆ {O(n)}
t₁₇₆₆, X₃: X₅ {O(n)}
t₁₇₆₆, X₄: X₄ {O(n)}
t₁₇₆₆, X₅: X₅ {O(n)}
t₁₇₆₆, X₆: X₆ {O(n)}
t₁₇₆₇, X₅: 6⋅X₅ {O(n)}
t₁₇₆₇, X₆: 6⋅X₆ {O(n)}
t₁₇₆₈, X₅: 6⋅X₅ {O(n)}
t₁₇₆₈, X₆: 6⋅X₆ {O(n)}
t₁₇₆₉, X₅: 6⋅X₅ {O(n)}
t₁₇₆₉, X₆: 6⋅X₆ {O(n)}
t₁₇₇₀, X₀: X₅ {O(n)}
t₁₇₇₀, X₁: X₆ {O(n)}
t₁₇₇₀, X₂: X₂ {O(n)}
t₁₇₇₀, X₃: X₃ {O(n)}
t₁₇₇₀, X₄: X₄ {O(n)}
t₁₇₇₀, X₅: X₅ {O(n)}
t₁₇₇₀, X₆: X₆ {O(n)}
t₁₇₇₁, X₂: 0 {O(1)}
t₁₇₇₁, X₅: 6⋅X₅ {O(n)}
t₁₇₇₁, X₆: 6⋅X₆ {O(n)}
t₁₇₇₂, X₅: 6⋅X₅ {O(n)}
t₁₇₇₂, X₆: 6⋅X₆ {O(n)}
t₁₇₇₃, X₀: X₅ {O(n)}
t₁₇₇₃, X₁: X₆ {O(n)}
t₁₇₇₃, X₃: X₃ {O(n)}
t₁₇₇₃, X₄: X₄ {O(n)}
t₁₇₇₃, X₅: X₅ {O(n)}
t₁₇₇₃, X₆: X₆ {O(n)}
t₁₇₇₄, X₅: 6⋅X₅ {O(n)}
t₁₇₇₄, X₆: 6⋅X₆ {O(n)}
t₁₇₇₅, X₅: 6⋅X₅ {O(n)}
t₁₇₇₅, X₆: 6⋅X₆ {O(n)}
t₁₇₇₆, X₀: X₅ {O(n)}
t₁₇₇₆, X₁: X₆ {O(n)}
t₁₇₇₆, X₃: X₆ {O(n)}
t₁₇₇₆, X₅: X₅ {O(n)}
t₁₇₇₆, X₆: X₆ {O(n)}
t₁₇₇₇, X₀: X₅ {O(n)}
t₁₇₇₇, X₁: X₆ {O(n)}
t₁₇₇₇, X₃: X₅ {O(n)}
t₁₇₇₇, X₅: X₅ {O(n)}
t₁₇₇₇, X₆: X₆ {O(n)}
t₁₇₇₈, X₅: 6⋅X₅ {O(n)}
t₁₇₇₈, X₆: 6⋅X₆ {O(n)}
t₁₇₇₉, X₅: 6⋅X₅ {O(n)}
t₁₇₇₉, X₆: 6⋅X₆ {O(n)}
t₁₇₈₀, X₅: 6⋅X₅ {O(n)}
t₁₇₈₀, X₆: 6⋅X₆ {O(n)}
t₁₇₈₁, X₀: X₅ {O(n)}
t₁₇₈₁, X₂: 0 {O(1)}
t₁₇₈₁, X₃: X₆ {O(n)}
t₁₇₈₁, X₅: X₅ {O(n)}
t₁₇₈₁, X₆: X₆ {O(n)}
t₁₇₈₂, X₁: X₆ {O(n)}
t₁₇₈₂, X₃: X₆ {O(n)}
t₁₇₈₂, X₅: X₅ {O(n)}
t₁₇₈₂, X₆: X₆ {O(n)}
t₁₇₈₃, X₁: X₆ {O(n)}
t₁₇₈₃, X₃: X₆ {O(n)}
t₁₇₈₃, X₅: X₅ {O(n)}
t₁₇₈₃, X₆: X₆ {O(n)}
t₁₇₈₄, X₀: X₅ {O(n)}
t₁₇₈₄, X₂: 0 {O(1)}
t₁₇₈₄, X₃: X₅ {O(n)}
t₁₇₈₄, X₅: X₅ {O(n)}
t₁₇₈₄, X₆: X₆ {O(n)}
t₁₇₈₅, X₁: X₆ {O(n)}
t₁₇₈₅, X₃: X₅ {O(n)}
t₁₇₈₅, X₅: X₅ {O(n)}
t₁₇₈₅, X₆: X₆ {O(n)}
t₁₇₈₆, X₁: X₆ {O(n)}
t₁₇₈₆, X₃: X₅ {O(n)}
t₁₇₈₆, X₅: X₅ {O(n)}
t₁₇₈₆, X₆: X₆ {O(n)}
t₁₇₈₇, X₂: 0 {O(1)}
t₁₇₈₇, X₅: 6⋅X₅ {O(n)}
t₁₇₈₇, X₆: 6⋅X₆ {O(n)}
t₁₇₈₈, X₅: 6⋅X₅ {O(n)}
t₁₇₈₈, X₆: 6⋅X₆ {O(n)}
t₁₇₈₉, X₅: 6⋅X₅ {O(n)}
t₁₇₈₉, X₆: 6⋅X₆ {O(n)}
t₁₇₉₀, X₂: 0 {O(1)}
t₁₇₉₀, X₅: 6⋅X₅ {O(n)}
t₁₇₉₀, X₆: 6⋅X₆ {O(n)}
t₁₇₉₁, X₅: 6⋅X₅ {O(n)}
t₁₇₉₁, X₆: 6⋅X₆ {O(n)}
t₁₇₉₂, X₅: 6⋅X₅ {O(n)}
t₁₇₉₂, X₆: 6⋅X₆ {O(n)}
t₁₇₉₃, X₂: 0 {O(1)}
t₁₇₉₃, X₅: 6⋅X₅ {O(n)}
t₁₇₉₃, X₆: 6⋅X₆ {O(n)}
t₁₈₁₄, X₀: 0 {O(1)}
t₁₈₁₄, X₂: 0 {O(1)}
t₁₈₁₄, X₃: 0 {O(1)}
t₁₈₁₄, X₅: 14⋅X₅ {O(n)}
t₁₈₁₄, X₆: 14⋅X₆ {O(n)}
t₁₈₁₆, X₂: 0 {O(1)}
t₁₈₁₆, X₅: 14⋅X₅ {O(n)}
t₁₈₁₆, X₆: 14⋅X₆ {O(n)}
t₁₈₁₈, X₀: 0 {O(1)}
t₁₈₁₈, X₂: 0 {O(1)}
t₁₈₁₈, X₃: 0 {O(1)}
t₁₈₁₈, X₅: 14⋅X₅ {O(n)}
t₁₈₁₈, X₆: 14⋅X₆ {O(n)}
t₁₈₂₀, X₂: 0 {O(1)}
t₁₈₂₀, X₅: 14⋅X₅ {O(n)}
t₁₈₂₀, X₆: 14⋅X₆ {O(n)}
t₁₈₂₂, X₀: 0 {O(1)}
t₁₈₂₂, X₂: 0 {O(1)}
t₁₈₂₂, X₃: 0 {O(1)}
t₁₈₂₂, X₅: 14⋅X₅ {O(n)}
t₁₈₂₂, X₆: 14⋅X₆ {O(n)}
t₁₈₂₄, X₂: 0 {O(1)}
t₁₈₂₄, X₅: 14⋅X₅ {O(n)}
t₁₈₂₄, X₆: 14⋅X₆ {O(n)}
t₁₇₉₄, X₅: 6⋅X₅ {O(n)}
t₁₇₉₄, X₆: 6⋅X₆ {O(n)}
t₁₈₁₅, X₅: 28⋅X₅ {O(n)}
t₁₈₁₅, X₆: 28⋅X₆ {O(n)}
t₁₈₁₇, X₁: 0 {O(1)}
t₁₈₁₇, X₃: 0 {O(1)}
t₁₈₁₇, X₅: 28⋅X₅ {O(n)}
t₁₈₁₇, X₆: 28⋅X₆ {O(n)}
t₁₈₁₉, X₅: 28⋅X₅ {O(n)}
t₁₈₁₉, X₆: 28⋅X₆ {O(n)}
t₁₈₂₁, X₁: 0 {O(1)}
t₁₈₂₁, X₃: 0 {O(1)}
t₁₈₂₁, X₅: 28⋅X₅ {O(n)}
t₁₈₂₁, X₆: 28⋅X₆ {O(n)}
t₁₈₂₃, X₅: 28⋅X₅ {O(n)}
t₁₈₂₃, X₆: 28⋅X₆ {O(n)}
t₁₈₂₅, X₁: 0 {O(1)}
t₁₈₂₅, X₃: 0 {O(1)}
t₁₈₂₅, X₅: 28⋅X₅ {O(n)}
t₁₈₂₅, X₆: 28⋅X₆ {O(n)}