Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₀+X₁ ∧ X₀ ≤ X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+X₁ < 0
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(2⋅X₀+X₁, X₂, X₂+1, X₃, X₄, X₅, X₆)
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆)

Preprocessing

Found invariant X₆ ≤ X₂ for location l5

Found invariant X₆ ≤ X₂ for location l1

Found invariant X₆ ≤ X₂ for location l4

Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀+X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₀+X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+X₁ < 0 ∧ X₆ ≤ X₂
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₆ ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(2⋅X₀+X₁, X₂, X₂+1, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₂ ∧ 0 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀+X₁
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₂

Found invariant X₆ ≤ X₂ for location l5

Found invariant X₆ ≤ X₂ for location l1

Found invariant X₆ ≤ X₂ for location l4

Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀+X₁ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₂ 4⋅X₃+4⋅X₆+18 {O(n)}

TWN-Loops:

entry: t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆)
results in twn-loop: twn:Inv: [X₆ ≤ X₂ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀+X₁] , (X₀,X₁,X₂,X₃,X₄,X₅,X₆) -> (2⋅X₀+X₁,X₂,X₂+1,X₃,X₄,X₅,X₆) :|: 0 ≤ X₀+X₁ ∧ X₀ ≤ X₃
order: [X₂; X₁; X₀; X₃; X₆]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₁: [[n == 0]] * X₁ + [[n != 0]] * X₂ + [[n != 0, n != 1]] * n^1 + [[n != 0, n != 1]] * -1
X₀: X₀ * 2^n + [[n != 0]] * 1/2⋅X₁ * 2^n + [[n != 0, n != 1]] * 1/2⋅X₂ * 2^n + [[n != 0, n != 1]] * -X₂ + [[n != 0, n != 1, n != 2]] * 1/2 * 2^n + [[n != 0, n != 1, n != 2]] * -1 * n^1
X₃: X₃
X₆: X₆

Termination: true
Formula:

2⋅X₀+X₁+X₂+1 < 0 ∧ 0 < 2⋅X₀+X₁+X₂+1 ∧ 0 < 1
∨ 2⋅X₀+X₁+X₂+1 < 0 ∧ 0 < 2⋅X₀+X₁+X₂+1 ∧ 1 < X₂+X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 2⋅X₀+X₁+X₂+1 < 0 ∧ 0 < 2⋅X₀+X₁+X₂+1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₂+X₃ ≤ 1
∨ 2⋅X₀+X₁+X₂+1 < 0 ∧ 2 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 < 1
∨ 2⋅X₀+X₁+X₂+1 < 0 ∧ 2 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 1 < X₂+X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 2⋅X₀+X₁+X₂+1 < 0 ∧ 2 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₂+X₃ ≤ 1
∨ 2⋅X₀+X₁+X₂+1 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 0 < 1
∨ 2⋅X₀+X₁+X₂+1 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 1 < X₂+X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 2⋅X₀+X₁+X₂+1 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₂+X₃ ≤ 1
∨ 0 < 2 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 0 < 2⋅X₀+X₁+X₂+1 ∧ 0 < 1
∨ 0 < 2 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 0 < 2⋅X₀+X₁+X₂+1 ∧ 1 < X₂+X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < 2 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 0 < 2⋅X₀+X₁+X₂+1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₂+X₃ ≤ 1
∨ 0 < 2 ∧ 2 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 < 1
∨ 0 < 2 ∧ 2 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 1 < X₂+X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < 2 ∧ 2 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₂+X₃ ≤ 1
∨ 0 < 2 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 0 < 1
∨ 0 < 2 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 1 < X₂+X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < 2 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₂+X₃ ≤ 1
∨ 0 < 2⋅X₂+2⋅X₃ ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 0 ≤ 2 ∧ 2 ≤ 0 ∧ 0 < 2⋅X₀+X₁+X₂+1 ∧ 0 < 1
∨ 0 < 2⋅X₂+2⋅X₃ ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 0 ≤ 2 ∧ 2 ≤ 0 ∧ 0 < 2⋅X₀+X₁+X₂+1 ∧ 1 < X₂+X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < 2⋅X₂+2⋅X₃ ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 0 ≤ 2 ∧ 2 ≤ 0 ∧ 0 < 2⋅X₀+X₁+X₂+1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₂+X₃ ≤ 1
∨ 0 < 2⋅X₂+2⋅X₃ ∧ 0 ≤ 2 ∧ 2 ≤ 0 ∧ 2 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 < 1
∨ 0 < 2⋅X₂+2⋅X₃ ∧ 0 ≤ 2 ∧ 2 ≤ 0 ∧ 2 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 1 < X₂+X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < 2⋅X₂+2⋅X₃ ∧ 0 ≤ 2 ∧ 2 ≤ 0 ∧ 2 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₂+X₃ ≤ 1
∨ 0 < 2⋅X₂+2⋅X₃ ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 0 < 1
∨ 0 < 2⋅X₂+2⋅X₃ ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 1 < X₂+X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < 2⋅X₂+2⋅X₃ ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₂+X₃ ≤ 1
∨ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 0 ≤ 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2⋅X₂+2⋅X₃ ∧ 2⋅X₂+2⋅X₃ ≤ 0 ∧ 0 < 2⋅X₀+X₁+X₂+1 ∧ 0 < 1
∨ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 0 ≤ 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2⋅X₂+2⋅X₃ ∧ 2⋅X₂+2⋅X₃ ≤ 0 ∧ 0 < 2⋅X₀+X₁+X₂+1 ∧ 1 < X₂+X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 0 ≤ 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2⋅X₂+2⋅X₃ ∧ 2⋅X₂+2⋅X₃ ≤ 0 ∧ 0 < 2⋅X₀+X₁+X₂+1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₂+X₃ ≤ 1
∨ 0 ≤ 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2⋅X₂+2⋅X₃ ∧ 2⋅X₂+2⋅X₃ ≤ 0 ∧ 2 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 < 1
∨ 0 ≤ 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2⋅X₂+2⋅X₃ ∧ 2⋅X₂+2⋅X₃ ≤ 0 ∧ 2 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 1 < X₂+X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ 2 ∧ 2 ≤ 0 ∧ 0 ≤ 2⋅X₂+2⋅X₃ ∧ 2⋅X₂+2⋅X₃ ≤ 0 ∧ 2 < 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₂+X₃ ≤ 1
∨ 0 ≤ 2⋅X₂+2⋅X₃ ∧ 2⋅X₂+2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 0 < 1
∨ 0 ≤ 2⋅X₂+2⋅X₃ ∧ 2⋅X₂+2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 1 < X₂+X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ 2⋅X₂+2⋅X₃ ∧ 2⋅X₂+2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₀+X₁+X₂+1 ∧ 2⋅X₀+X₁+X₂+1 ≤ 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 ≤ X₂+X₃ ∧ X₂+X₃ ≤ 1

Stabilization-Threshold for: X₀ ≤ X₃
alphas_abs: 2+2⋅X₂+2⋅X₃
M: 5
N: 2
Bound: 4⋅X₂+4⋅X₃+10 {O(n)}
Stabilization-Threshold for: 0 ≤ X₀+X₁
alphas_abs: 2
M: 0
N: 1
Bound: 6 {O(1)}

relevant size-bounds w.r.t. t₁:
X₂: X₆ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 4⋅X₃+4⋅X₆+18 {O(n)}

4⋅X₃+4⋅X₆+18 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₅ 4⋅X₃+4⋅X₆+18 {O(n)}

relevant size-bounds w.r.t. t₁:
X₂: X₆ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 4⋅X₃+4⋅X₆+18 {O(n)}

4⋅X₃+4⋅X₆+18 {O(n)}

All Bounds

Timebounds

Overall timebound:8⋅X₃+8⋅X₆+41 {O(n)}
t₀: 1 {O(1)}
t₂: 4⋅X₃+4⋅X₆+18 {O(n)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₅: 4⋅X₃+4⋅X₆+18 {O(n)}
t₆: 1 {O(1)}

Costbounds

Overall costbound: 8⋅X₃+8⋅X₆+41 {O(n)}
t₀: 1 {O(1)}
t₂: 4⋅X₃+4⋅X₆+18 {O(n)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₅: 4⋅X₃+4⋅X₆+18 {O(n)}
t₆: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₂, X₀: 148⋅2^(4⋅X₃+4⋅X₆+18)⋅X₃+16⋅2^(4⋅X₃+4⋅X₆+18)⋅X₃⋅X₃+167⋅2^(4⋅X₃+4⋅X₆+18)⋅X₆+19⋅2^(4⋅X₃+4⋅X₆+18)⋅X₅+20⋅2^(4⋅X₃+4⋅X₆+18)⋅X₆⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅342+2^(4⋅X₃+4⋅X₆+18)⋅36⋅X₃⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅4⋅X₃⋅X₅+2^(4⋅X₃+4⋅X₆+18)⋅4⋅X₅⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅X₄ {O(EXP)}
t₂, X₁: 4⋅X₃+5⋅X₆+X₅+18 {O(n)}
t₂, X₂: 4⋅X₃+5⋅X₆+18 {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₃, X₀: 148⋅2^(4⋅X₃+4⋅X₆+18)⋅X₃+16⋅2^(4⋅X₃+4⋅X₆+18)⋅X₃⋅X₃+167⋅2^(4⋅X₃+4⋅X₆+18)⋅X₆+19⋅2^(4⋅X₃+4⋅X₆+18)⋅X₅+20⋅2^(4⋅X₃+4⋅X₆+18)⋅X₆⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅342+2^(4⋅X₃+4⋅X₆+18)⋅36⋅X₃⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅4⋅X₃⋅X₅+2^(4⋅X₃+4⋅X₆+18)⋅4⋅X₅⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅X₄+X₄ {O(EXP)}
t₃, X₁: 4⋅X₃+5⋅X₆+X₅+18 {O(n)}
t₃, X₂: 4⋅X₃+6⋅X₆+18 {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₃, X₄: 2⋅X₄ {O(n)}
t₃, X₅: 2⋅X₅ {O(n)}
t₃, X₆: 2⋅X₆ {O(n)}
t₄, X₀: 148⋅2^(4⋅X₃+4⋅X₆+18)⋅X₃+16⋅2^(4⋅X₃+4⋅X₆+18)⋅X₃⋅X₃+167⋅2^(4⋅X₃+4⋅X₆+18)⋅X₆+19⋅2^(4⋅X₃+4⋅X₆+18)⋅X₅+20⋅2^(4⋅X₃+4⋅X₆+18)⋅X₆⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅342+2^(4⋅X₃+4⋅X₆+18)⋅36⋅X₃⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅4⋅X₃⋅X₅+2^(4⋅X₃+4⋅X₆+18)⋅4⋅X₅⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅X₄+X₄ {O(EXP)}
t₄, X₁: 4⋅X₃+5⋅X₆+X₅+18 {O(n)}
t₄, X₂: 4⋅X₃+6⋅X₆+18 {O(n)}
t₄, X₃: 2⋅X₃ {O(n)}
t₄, X₄: 2⋅X₄ {O(n)}
t₄, X₅: 2⋅X₅ {O(n)}
t₄, X₆: 2⋅X₆ {O(n)}
t₁, X₀: X₄ {O(n)}
t₁, X₁: X₅ {O(n)}
t₁, X₂: X₆ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₅, X₀: 148⋅2^(4⋅X₃+4⋅X₆+18)⋅X₃+16⋅2^(4⋅X₃+4⋅X₆+18)⋅X₃⋅X₃+167⋅2^(4⋅X₃+4⋅X₆+18)⋅X₆+19⋅2^(4⋅X₃+4⋅X₆+18)⋅X₅+20⋅2^(4⋅X₃+4⋅X₆+18)⋅X₆⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅342+2^(4⋅X₃+4⋅X₆+18)⋅36⋅X₃⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅4⋅X₃⋅X₅+2^(4⋅X₃+4⋅X₆+18)⋅4⋅X₅⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅X₄ {O(EXP)}
t₅, X₁: 4⋅X₃+5⋅X₆+18 {O(n)}
t₅, X₂: 4⋅X₃+5⋅X₆+18 {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₆, X₀: 2⋅2^(4⋅X₃+4⋅X₆+18)⋅X₄+296⋅2^(4⋅X₃+4⋅X₆+18)⋅X₃+2^(4⋅X₃+4⋅X₆+18)⋅32⋅X₃⋅X₃+2^(4⋅X₃+4⋅X₆+18)⋅334⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅38⋅X₅+2^(4⋅X₃+4⋅X₆+18)⋅40⋅X₆⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅684+2^(4⋅X₃+4⋅X₆+18)⋅72⋅X₃⋅X₆+2^(4⋅X₃+4⋅X₆+18)⋅8⋅X₃⋅X₅+2^(4⋅X₃+4⋅X₆+18)⋅8⋅X₅⋅X₆+2⋅X₄ {O(EXP)}
t₆, X₁: 10⋅X₆+2⋅X₅+8⋅X₃+36 {O(n)}
t₆, X₂: 12⋅X₆+8⋅X₃+36 {O(n)}
t₆, X₃: 4⋅X₃ {O(n)}
t₆, X₄: 4⋅X₄ {O(n)}
t₆, X₅: 4⋅X₅ {O(n)}
t₆, X₆: 4⋅X₆ {O(n)}