Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆
t₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇)
t₁₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇)
t₂₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1)
t₂₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂
t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₃, X₃, X₆, X₇) :|: 0 < X₃
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄
t₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 0
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₆)
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
Preprocessing
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l11
Found invariant X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l6
Found invariant X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l12
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l7
Found invariant X₇ ≤ 1+X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l5
Found invariant X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l13
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l8
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l1
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l10
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l9
Found invariant X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l3
Found invariant X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₃, X₃, X₆, X₇) :|: 0 < X₃
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ X₇ ≤ 1+X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₇ ≤ 1+X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 0 ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
MPRF for transition t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l13 [X₁+1 ]
l14 [X₁+1 ]
l3 [X₁+1 ]
l12 [X₁+1 ]
l6 [X₄+1 ]
l1 [X₄+1 ]
l11 [X₄+1 ]
l7 [X₄+1 ]
l8 [X₄ ]
l5 [X₄ ]
l9 [X₄+1 ]
l10 [X₄+1 ]
MPRF for transition t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
2⋅X₃ {O(n)}
MPRF:
l13 [X₃+X₄ ]
l14 [X₃+X₄ ]
l3 [X₁+X₃+1 ]
l12 [X₃+X₄ ]
l6 [X₃+X₄ ]
l1 [X₃+X₄ ]
l11 [X₃+X₄ ]
l7 [X₃+X₄ ]
l8 [X₃+X₄ ]
l5 [X₃+X₄ ]
l9 [X₃+X₄ ]
l10 [X₃+X₄ ]
MPRF for transition t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₇ ≤ 1+X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l13 [X₁+2 ]
l14 [X₄+1 ]
l3 [X₁+2 ]
l12 [X₁+2 ]
l6 [X₄+1 ]
l1 [X₄+1 ]
l11 [X₄+1 ]
l7 [X₄+1 ]
l8 [X₄+1 ]
l5 [X₄+1 ]
l9 [X₄+1 ]
l10 [X₄+1 ]
MPRF for transition t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
2⋅X₃+1 {O(n)}
MPRF:
l13 [X₃+X₄ ]
l14 [X₃+X₄ ]
l3 [X₃+X₄ ]
l12 [X₃+X₄ ]
l6 [X₃+X₄+1 ]
l1 [X₃+X₄ ]
l11 [X₃+X₄ ]
l7 [X₃+X₄ ]
l8 [X₃+X₄ ]
l5 [X₃+X₄ ]
l9 [X₃+X₄ ]
l10 [X₃+X₄ ]
MPRF for transition t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
2⋅X₃ {O(n)}
MPRF:
l13 [X₃+X₄-1 ]
l14 [X₃+X₄-1 ]
l3 [X₁+X₃ ]
l12 [X₃+X₄-1 ]
l6 [X₃+X₄ ]
l1 [X₃+X₄ ]
l11 [X₃+X₄ ]
l7 [X₃+X₄ ]
l8 [X₃+X₄-1 ]
l5 [X₃+X₄-1 ]
l9 [X₃+X₄ ]
l10 [X₃+X₄ ]
MPRF for transition t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l13 [X₄ ]
l14 [X₄ ]
l3 [X₄ ]
l12 [X₄ ]
l6 [X₄+1 ]
l1 [X₄+1 ]
l11 [X₄+1 ]
l7 [X₄+1 ]
l8 [X₄+1 ]
l5 [X₁+1 ]
l9 [X₄+1 ]
l10 [X₄+1 ]
MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₃⋅X₃+4⋅X₃+4 {O(n^2)}
MPRF:
l13 [X₃+2 ]
l14 [X₃+2 ]
l3 [X₃+2 ]
l12 [X₃+2 ]
l5 [X₃+2 ]
l6 [X₃+2 ]
l1 [X₃+X₆+2-X₅ ]
l11 [X₃+X₆+1-X₅ ]
l7 [X₃+X₆+1-X₅ ]
l8 [X₃+X₆-X₅ ]
l9 [X₃+X₆+1-X₅ ]
l10 [X₃+X₆+1-X₅ ]
MPRF for transition t₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₃⋅X₃+4⋅X₃+4 {O(n^2)}
MPRF:
l13 [X₃+2 ]
l14 [X₃+2 ]
l3 [X₃+2 ]
l12 [X₃+2 ]
l5 [X₃+2 ]
l6 [X₃+2 ]
l1 [X₃+X₆+2-X₅ ]
l11 [X₃+X₆+1-X₅ ]
l7 [X₃+X₆+1-X₅ ]
l8 [X₃+X₆-X₅ ]
l9 [X₃+X₆+2-X₅ ]
l10 [X₃+X₆+2-X₅ ]
MPRF for transition t₁₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+4⋅X₃+4 {O(n^2)}
MPRF:
l13 [X₃+2⋅X₄-2⋅X₁ ]
l14 [X₃+2⋅X₄-2⋅X₁ ]
l3 [X₃+2⋅X₄-2⋅X₁ ]
l12 [X₃+2⋅X₄-2⋅X₁ ]
l5 [X₃+2 ]
l6 [X₃+2 ]
l1 [X₃+X₆+2-X₅ ]
l11 [X₃+X₆+2-X₅ ]
l7 [X₃+X₆+2-X₅ ]
l8 [X₃+X₆-X₅ ]
l9 [X₃+X₆+2-X₅ ]
l10 [X₃+X₆+2-X₅ ]
MPRF for transition t₁₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
10⋅X₃⋅X₃+7⋅X₃+1 {O(n^2)}
MPRF:
l1 [4⋅X₃+X₄ ]
l13 [X₁+3⋅X₃-X₇ ]
l14 [X₁+3⋅X₃-X₇ ]
l3 [X₁+3⋅X₃-X₇ ]
l12 [X₁+3⋅X₃+1-X₇ ]
l6 [3⋅X₃+X₄-X₅ ]
l11 [4⋅X₃+X₄ ]
l7 [4⋅X₃+X₄ ]
l8 [4⋅X₃+X₄ ]
l5 [X₁+3⋅X₃+1-X₇ ]
l9 [4⋅X₃+X₄ ]
l10 [4⋅X₃+X₄ ]
MPRF for transition t₁₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
8⋅X₃⋅X₃+12⋅X₃+4 {O(n^2)}
MPRF:
l1 [2⋅X₃+2⋅X₄+2 ]
l13 [X₃+2⋅X₄+1-X₇ ]
l14 [X₃+2⋅X₄-X₇ ]
l3 [X₃+2⋅X₄-X₇ ]
l12 [X₃+2⋅X₄+1-X₇ ]
l6 [X₃+2⋅X₄+2-X₅ ]
l11 [2⋅X₃+2⋅X₄+2 ]
l7 [2⋅X₃+2⋅X₄+2 ]
l8 [X₃+2⋅X₄+2-X₆ ]
l5 [X₃+2⋅X₄+1-X₇ ]
l9 [2⋅X₃+2⋅X₄+2 ]
l10 [2⋅X₃+2⋅X₄+2 ]
MPRF for transition t₂₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
4⋅X₃⋅X₃+12⋅X₃+5 {O(n^2)}
MPRF:
l1 [2⋅X₃+5 ]
l13 [2⋅X₃+2-X₇ ]
l14 [2⋅X₃+2-X₇ ]
l3 [2⋅X₃+2-X₇ ]
l12 [2⋅X₃+2-X₇ ]
l6 [2⋅X₃+2-X₅ ]
l11 [2⋅X₃+5 ]
l7 [2⋅X₃+5 ]
l8 [2⋅X₃+5 ]
l5 [2⋅X₃+2-X₇ ]
l9 [2⋅X₃+5 ]
l10 [2⋅X₃+5 ]
MPRF for transition t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
6⋅X₃⋅X₃+9⋅X₃+3 {O(n^2)}
MPRF:
l1 [2⋅X₃+X₄+2 ]
l13 [X₁+X₃+2-X₇ ]
l14 [X₁+X₃+1-X₇ ]
l3 [X₁+X₃+2-X₇ ]
l12 [X₁+X₃+2-X₇ ]
l6 [X₃+X₄+2-X₅ ]
l11 [2⋅X₃+X₄+2 ]
l7 [2⋅X₃+X₄+2 ]
l8 [X₃+X₄+2-X₆ ]
l5 [X₁+X₃+2-X₇ ]
l9 [2⋅X₃+X₄+2 ]
l10 [2⋅X₃+X₄+2 ]
MPRF for transition t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ X₇ ≤ 1+X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
8⋅X₃⋅X₃+6⋅X₃+1 {O(n^2)}
MPRF:
l1 [3⋅X₃+X₄ ]
l13 [X₁+2⋅X₃-X₇ ]
l14 [X₁+2⋅X₃-X₇ ]
l3 [X₁+2⋅X₃-X₇ ]
l12 [X₁+2⋅X₃-X₇ ]
l6 [2⋅X₃+X₄-X₅ ]
l11 [3⋅X₃+X₄ ]
l7 [3⋅X₃+X₄ ]
l8 [2⋅X₃+X₄-X₆ ]
l5 [X₁+2⋅X₃+1-X₇ ]
l9 [3⋅X₃+X₄ ]
l10 [3⋅X₃+X₄ ]
MPRF for transition t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
4⋅X₃⋅X₃+9⋅X₃+3 {O(n^2)}
MPRF:
l13 [2⋅X₃+X₄ ]
l14 [2⋅X₃+X₄ ]
l3 [2⋅X₃+X₄ ]
l12 [2⋅X₃+X₄ ]
l5 [2⋅X₃+X₄ ]
l6 [2⋅X₃+X₄+1 ]
l1 [2⋅X₃+X₄+X₆+1-X₅ ]
l11 [2⋅X₃+X₄+X₆-X₅ ]
l7 [2⋅X₃+X₄+X₆+1-X₅ ]
l8 [2⋅X₃+X₄+X₆-X₅ ]
l9 [2⋅X₃+X₄+X₆+1-X₅ ]
l10 [2⋅X₃+X₄+X₆+1-X₅ ]
MPRF for transition t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
3⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
MPRF:
l13 [3⋅X₃ ]
l14 [3⋅X₃ ]
l3 [3⋅X₃ ]
l12 [3⋅X₃ ]
l5 [3⋅X₃ ]
l6 [3⋅X₃ ]
l1 [3⋅X₃+X₆-X₅ ]
l11 [3⋅X₃+X₆-X₅-1 ]
l7 [3⋅X₃+X₆-X₅-1 ]
l8 [3⋅X₃-X₅-1 ]
l9 [3⋅X₃+X₆-X₅ ]
l10 [3⋅X₃+X₆-X₅-1 ]
Analysing control-flow refined program
Cut unsatisfiable transition t₁₁₁₉: n_l1___3→l8
Cut unsatisfiable transition t₁₁₂₇: n_l1___3→l8
Cut unsatisfiable transition t₁₁₂₀: n_l1___32→l8
Cut unsatisfiable transition t₁₁₂₈: n_l1___32→l8
Cut unsatisfiable transition t₁₁₂₁: n_l1___9→l8
Cut unsatisfiable transition t₁₁₂₉: n_l1___9→l8
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l5___20
Found invariant X₅ ≤ X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l6
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2+X₁ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location n_l1___9
Found invariant X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ 2+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ 2+X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l6___13
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l3___17
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l12___19
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l1___32
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l11___5
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l9___31
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l13___18
Found invariant X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l14___10
Found invariant X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___3
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2+X₁ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location n_l7___6
Found invariant X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l3___11
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l14___16
Found invariant 1+X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l10___24
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₂ ≤ 1+X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₂ ≤ 1+X₆ ∧ 0 ≤ 1+X₁+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₂ ≤ 1+X₅ ∧ 0 ≤ 1+X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 0 ≤ X₁ for location n_l1___1
Found invariant 1+X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l8___21
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l11___28
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l10___30
Found invariant X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l12___14
Found invariant 1+X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l9___25
Found invariant 1+X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l11___22
Found invariant X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l13___12
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l8___27
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l7___29
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l1___26
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 3+X₁ ≤ X₇ ∧ 2+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 3+X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 3+X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 0 for location n_l5___2
Found invariant X₇ ≤ 1+X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l5___15
Found invariant 1+X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l7___23
Found invariant 1+X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l8
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 2+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2+X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l8___4
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2+X₁ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location n_l9___8
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2+X₁ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location n_l10___7
All Bounds
Timebounds
Overall timebound:46⋅X₃⋅X₃+82⋅X₃+38 {O(n^2)}
t₀: 1 {O(1)}
t₅: X₃⋅X₃+4⋅X₃+4 {O(n^2)}
t₆: X₃+1 {O(n)}
t₉: X₃⋅X₃+4⋅X₃+4 {O(n^2)}
t₁₂: X₃⋅X₃+4⋅X₃+4 {O(n^2)}
t₁₆: 10⋅X₃⋅X₃+7⋅X₃+1 {O(n^2)}
t₁₈: 8⋅X₃⋅X₃+12⋅X₃+4 {O(n^2)}
t₂₁: 4⋅X₃⋅X₃+12⋅X₃+5 {O(n^2)}
t₂₂: 1 {O(1)}
t₁₉: 6⋅X₃⋅X₃+9⋅X₃+3 {O(n^2)}
t₂₀: 2⋅X₃ {O(n)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₁₄: 8⋅X₃⋅X₃+6⋅X₃+1 {O(n^2)}
t₁₅: X₃+1 {O(n)}
t₃: 2⋅X₃+1 {O(n)}
t₄: 1 {O(1)}
t₁₀: 4⋅X₃⋅X₃+9⋅X₃+3 {O(n^2)}
t₁₁: 2⋅X₃ {O(n)}
t₁₃: X₃+1 {O(n)}
t₇: 3⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
Costbounds
Overall costbound: 46⋅X₃⋅X₃+82⋅X₃+38 {O(n^2)}
t₀: 1 {O(1)}
t₅: X₃⋅X₃+4⋅X₃+4 {O(n^2)}
t₆: X₃+1 {O(n)}
t₉: X₃⋅X₃+4⋅X₃+4 {O(n^2)}
t₁₂: X₃⋅X₃+4⋅X₃+4 {O(n^2)}
t₁₆: 10⋅X₃⋅X₃+7⋅X₃+1 {O(n^2)}
t₁₈: 8⋅X₃⋅X₃+12⋅X₃+4 {O(n^2)}
t₂₁: 4⋅X₃⋅X₃+12⋅X₃+5 {O(n^2)}
t₂₂: 1 {O(1)}
t₁₉: 6⋅X₃⋅X₃+9⋅X₃+3 {O(n^2)}
t₂₀: 2⋅X₃ {O(n)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₁₄: 8⋅X₃⋅X₃+6⋅X₃+1 {O(n^2)}
t₁₅: X₃+1 {O(n)}
t₃: 2⋅X₃+1 {O(n)}
t₄: 1 {O(1)}
t₁₀: 4⋅X₃⋅X₃+9⋅X₃+3 {O(n^2)}
t₁₁: 2⋅X₃ {O(n)}
t₁₃: X₃+1 {O(n)}
t₇: 3⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₅, X₁: 3⋅X₃+X₁+3 {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₃+1 {O(n)}
t₅, X₅: 8⋅X₃⋅X₃+27⋅X₃+14 {O(n^2)}
t₅, X₆: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₅, X₇: 12⋅X₃⋅X₃+39⋅X₃+X₇+21 {O(n^2)}
t₆, X₁: 2⋅X₁+6⋅X₃+6 {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₃+1 {O(n)}
t₆, X₅: 16⋅X₃⋅X₃+54⋅X₃+28 {O(n^2)}
t₆, X₆: 1 {O(1)}
t₆, X₇: 24⋅X₃⋅X₃+2⋅X₇+78⋅X₃+42 {O(n^2)}
t₉, X₁: 3⋅X₃+X₁+3 {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₃+1 {O(n)}
t₉, X₅: 8⋅X₃⋅X₃+27⋅X₃+14 {O(n^2)}
t₉, X₆: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₉, X₇: 12⋅X₃⋅X₃+39⋅X₃+X₇+21 {O(n^2)}
t₁₂, X₁: 3⋅X₃+X₁+3 {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: X₃+1 {O(n)}
t₁₂, X₅: 8⋅X₃⋅X₃+27⋅X₃+14 {O(n^2)}
t₁₂, X₆: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₁₂, X₇: 12⋅X₃⋅X₃+39⋅X₃+X₇+21 {O(n^2)}
t₁₆, X₁: X₃+1 {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: 2⋅X₃+2 {O(n)}
t₁₆, X₅: 24⋅X₃⋅X₃+81⋅X₃+42 {O(n^2)}
t₁₆, X₆: 4⋅X₃⋅X₃+13⋅X₃+8 {O(n^2)}
t₁₆, X₇: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₁₈, X₁: X₃+1 {O(n)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₄: 2⋅X₃+2 {O(n)}
t₁₈, X₅: 24⋅X₃⋅X₃+81⋅X₃+42 {O(n^2)}
t₁₈, X₆: 4⋅X₃⋅X₃+13⋅X₃+8 {O(n^2)}
t₁₈, X₇: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₂₁, X₁: X₃+1 {O(n)}
t₂₁, X₃: X₃ {O(n)}
t₂₁, X₄: 2⋅X₃+2 {O(n)}
t₂₁, X₅: 24⋅X₃⋅X₃+81⋅X₃+42 {O(n^2)}
t₂₁, X₆: 4⋅X₃⋅X₃+13⋅X₃+8 {O(n^2)}
t₂₁, X₇: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₂₂, X₁: 3⋅X₃+X₁+3 {O(n)}
t₂₂, X₃: 3⋅X₃ {O(n)}
t₂₂, X₄: X₄+1 {O(n)}
t₂₂, X₅: 8⋅X₃⋅X₃+26⋅X₃+X₅+14 {O(n^2)}
t₂₂, X₆: 12⋅X₃⋅X₃+39⋅X₃+X₆+24 {O(n^2)}
t₂₂, X₇: 12⋅X₃⋅X₃+39⋅X₃+X₇+21 {O(n^2)}
t₁₉, X₁: X₃+1 {O(n)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: 2⋅X₃+2 {O(n)}
t₁₉, X₅: 24⋅X₃⋅X₃+81⋅X₃+42 {O(n^2)}
t₁₉, X₆: 4⋅X₃⋅X₃+13⋅X₃+8 {O(n^2)}
t₁₉, X₇: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₂₀, X₁: X₃+1 {O(n)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₄: X₃+1 {O(n)}
t₂₀, X₅: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₂₀, X₆: 4⋅X₃⋅X₃+13⋅X₃+8 {O(n^2)}
t₂₀, X₇: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₃ {O(n)}
t₂, X₅: X₃ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₁₄, X₁: X₃+1 {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: 2⋅X₃+2 {O(n)}
t₁₄, X₅: 24⋅X₃⋅X₃+81⋅X₃+42 {O(n^2)}
t₁₄, X₆: 4⋅X₃⋅X₃+13⋅X₃+8 {O(n^2)}
t₁₄, X₇: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₁₅, X₁: 2⋅X₃+2 {O(n)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₄: X₃+1 {O(n)}
t₁₅, X₅: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₁₅, X₆: 8⋅X₃⋅X₃+26⋅X₃+16 {O(n^2)}
t₁₅, X₇: 8⋅X₃⋅X₃+26⋅X₃+14 {O(n^2)}
t₃, X₁: 3⋅X₃+X₁+3 {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₃+1 {O(n)}
t₃, X₅: 8⋅X₃⋅X₃+27⋅X₃+14 {O(n^2)}
t₃, X₆: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₃, X₇: 12⋅X₃⋅X₃+39⋅X₃+X₇+21 {O(n^2)}
t₄, X₁: 3⋅X₃+3 {O(n)}
t₄, X₃: 2⋅X₃ {O(n)}
t₄, X₄: 1 {O(1)}
t₄, X₅: 8⋅X₃⋅X₃+26⋅X₃+14 {O(n^2)}
t₄, X₆: 12⋅X₃⋅X₃+39⋅X₃+24 {O(n^2)}
t₄, X₇: 12⋅X₃⋅X₃+39⋅X₃+21 {O(n^2)}
t₁₀, X₁: 3⋅X₃+X₁+3 {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₃+1 {O(n)}
t₁₀, X₅: 8⋅X₃⋅X₃+27⋅X₃+14 {O(n^2)}
t₁₀, X₆: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₁₀, X₇: 12⋅X₃⋅X₃+39⋅X₃+X₇+21 {O(n^2)}
t₁₁, X₁: 3⋅X₃+X₁+3 {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₃+1 {O(n)}
t₁₁, X₅: 8⋅X₃⋅X₃+27⋅X₃+14 {O(n^2)}
t₁₁, X₆: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₁₁, X₇: 12⋅X₃⋅X₃+39⋅X₃+X₇+21 {O(n^2)}
t₁₃, X₁: X₃+1 {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: 2⋅X₃+2 {O(n)}
t₁₃, X₅: 24⋅X₃⋅X₃+81⋅X₃+42 {O(n^2)}
t₁₃, X₆: 4⋅X₃⋅X₃+13⋅X₃+8 {O(n^2)}
t₁₃, X₇: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₇, X₁: 3⋅X₃+X₁+3 {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₃+1 {O(n)}
t₇, X₅: 8⋅X₃⋅X₃+27⋅X₃+14 {O(n^2)}
t₇, X₆: 4⋅X₃⋅X₃+13⋅X₃+7 {O(n^2)}
t₇, X₇: 12⋅X₃⋅X₃+39⋅X₃+X₇+21 {O(n^2)}