Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ < X₁
t₃: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ < X₀
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ < X₀
t₆: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₀ ≤ X₁
t₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ < X₀
t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₁
t₉: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)

Preprocessing

Cut unsatisfiable transition t₆: l3→l1

Cut unsatisfiable transition t₇: l3→l1

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5

Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ for location l1

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4

Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₃: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₉: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁

MPRF for transition t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ of depth 1:

new bound:

X₂+X₃ {O(n)}

MPRF:

l3 [X₁-X₀-1 ]
l1 [X₁-X₀ ]

MPRF for transition t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

l3 [X₁+1-X₀ ]
l1 [X₁+1-X₀ ]

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5

Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1

Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4

Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l3

MPRF for transition t₃: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ of depth 1:

new bound:

2⋅X₂⋅X₂+2⋅X₃⋅X₃+4⋅X₂⋅X₃+6⋅X₂+6⋅X₃+5 {O(n^2)}

MPRF:

l3 [X₀+1-X₁ ]
l1 [X₀+2-X₁ ]

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ of depth 1:

new bound:

2⋅X₂⋅X₂+2⋅X₃⋅X₃+4⋅X₂⋅X₃+5⋅X₂+5⋅X₃+3 {O(n^2)}

MPRF:

l3 [X₀+1-X₁ ]
l1 [X₀+1-X₁ ]

Analysing control-flow refined program

Cut unsatisfiable transition t₉₉: n_l1___3→n_l3___2

Cut unsatisfiable transition t₁₀₀: n_l1___6→n_l3___4

Cut unreachable locations [n_l3___2; n_l3___4] from the program graph

Found invariant X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ for location n_l1___6

Found invariant X₃ ≤ X₁ ∧ 2+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___5

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l1___3

Found invariant X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l3___8

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4

Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___1

Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___7

MPRF for transition t₉₈: n_l1___3(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ of depth 1:

new bound:

X₂+X₃+2 {O(n)}

MPRF:

n_l3___1 [X₀-X₁ ]
n_l1___3 [X₀+1-X₁ ]

MPRF for transition t₁₀₄: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF:

n_l3___1 [X₂-X₁ ]
n_l1___3 [X₂-X₁ ]

MPRF for transition t₁₀₁: n_l1___6(X₀, X₁, X₂, X₃) → n_l3___5(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₂+X₃+2 {O(n)}

MPRF:

n_l3___5 [X₃-X₀ ]
n_l1___6 [X₁+1-X₀ ]

MPRF for transition t₁₀₇: n_l3___5(X₀, X₁, X₂, X₃) → n_l1___6(X₀+1, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₀ < X₁ ∧ 1+X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₂+X₃+2 {O(n)}

MPRF:

n_l3___5 [X₁+1-X₀ ]
n_l1___6 [X₁+1-X₀ ]

CFR: Improvement to new bound with the following program:

new bound:

4⋅X₂+4⋅X₃+7 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l4, l5, n_l1___3, n_l1___6, n_l3___1, n_l3___5, n_l3___7, n_l3___8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
t₁₀₂: l1(X₀, X₁, X₂, X₃) → n_l3___7(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
t₁₀₃: l1(X₀, X₁, X₂, X₃) → n_l3___8(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₉: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
t₁₂₀: n_l1___3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀
t₉₈: n_l1___3(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀
t₁₂₁: n_l1___6(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁
t₁₀₁: n_l1___6(X₀, X₁, X₂, X₃) → n_l3___5(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁
t₁₀₄: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀
t₁₀₇: n_l3___5(X₀, X₁, X₂, X₃) → n_l1___6(X₀+1, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₀ < X₁ ∧ 1+X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁
t₁₀₈: n_l3___7(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀
t₁₀₉: n_l3___8(X₀, X₁, X₂, X₃) → n_l1___6(X₀+1, X₁, X₂, X₃) :|: X₀ < X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₀ ≤ X₁

All Bounds

Timebounds

Overall timebound:4⋅X₂+4⋅X₃+17 {O(n)}
t₀: 1 {O(1)}
t₄: 1 {O(1)}
t₁₀₂: 1 {O(1)}
t₁₀₃: 1 {O(1)}
t₁: 1 {O(1)}
t₉: 1 {O(1)}
t₉₈: X₂+X₃+2 {O(n)}
t₁₂₀: 1 {O(1)}
t₁₀₁: X₂+X₃+2 {O(n)}
t₁₂₁: 1 {O(1)}
t₁₀₄: X₂+X₃+1 {O(n)}
t₁₀₇: X₂+X₃+2 {O(n)}
t₁₀₈: 1 {O(1)}
t₁₀₉: 1 {O(1)}

Costbounds

Overall costbound: 4⋅X₂+4⋅X₃+17 {O(n)}
t₀: 1 {O(1)}
t₄: 1 {O(1)}
t₁₀₂: 1 {O(1)}
t₁₀₃: 1 {O(1)}
t₁: 1 {O(1)}
t₉: 1 {O(1)}
t₉₈: X₂+X₃+2 {O(n)}
t₁₂₀: 1 {O(1)}
t₁₀₁: X₂+X₃+2 {O(n)}
t₁₂₁: 1 {O(1)}
t₁₀₄: X₂+X₃+1 {O(n)}
t₁₀₇: X₂+X₃+2 {O(n)}
t₁₀₈: 1 {O(1)}
t₁₀₉: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₄, X₀: X₂ {O(n)}
t₄, X₁: X₃ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₁₀₂, X₀: X₂ {O(n)}
t₁₀₂, X₁: X₃ {O(n)}
t₁₀₂, X₂: X₂ {O(n)}
t₁₀₂, X₃: X₃ {O(n)}
t₁₀₃, X₀: X₂ {O(n)}
t₁₀₃, X₁: X₃ {O(n)}
t₁₀₃, X₂: X₂ {O(n)}
t₁₀₃, X₃: X₃ {O(n)}
t₁, X₀: X₂ {O(n)}
t₁, X₁: X₃ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₉, X₀: 6⋅X₂+X₃+4 {O(n)}
t₉, X₁: 6⋅X₃+X₂+3 {O(n)}
t₉, X₂: 5⋅X₂ {O(n)}
t₉, X₃: 5⋅X₃ {O(n)}
t₉₈, X₀: X₂ {O(n)}
t₉₈, X₁: 2⋅X₃+X₂+2 {O(n)}
t₉₈, X₂: X₂ {O(n)}
t₉₈, X₃: X₃ {O(n)}
t₁₂₀, X₀: 2⋅X₂ {O(n)}
t₁₂₀, X₁: 3⋅X₃+X₂+3 {O(n)}
t₁₂₀, X₂: 2⋅X₂ {O(n)}
t₁₂₀, X₃: 2⋅X₃ {O(n)}
t₁₀₁, X₀: 2⋅X₂+X₃+3 {O(n)}
t₁₀₁, X₁: X₃ {O(n)}
t₁₀₁, X₂: X₂ {O(n)}
t₁₀₁, X₃: X₃ {O(n)}
t₁₂₁, X₀: 3⋅X₂+X₃+4 {O(n)}
t₁₂₁, X₁: 2⋅X₃ {O(n)}
t₁₂₁, X₂: 2⋅X₂ {O(n)}
t₁₂₁, X₃: 2⋅X₃ {O(n)}
t₁₀₄, X₀: X₂ {O(n)}
t₁₀₄, X₁: 2⋅X₃+X₂+2 {O(n)}
t₁₀₄, X₂: X₂ {O(n)}
t₁₀₄, X₃: X₃ {O(n)}
t₁₀₇, X₀: 2⋅X₂+X₃+3 {O(n)}
t₁₀₇, X₁: X₃ {O(n)}
t₁₀₇, X₂: X₂ {O(n)}
t₁₀₇, X₃: X₃ {O(n)}
t₁₀₈, X₀: X₂ {O(n)}
t₁₀₈, X₁: X₃+1 {O(n)}
t₁₀₈, X₂: X₂ {O(n)}
t₁₀₈, X₃: X₃ {O(n)}
t₁₀₉, X₀: X₂+1 {O(n)}
t₁₀₉, X₁: X₃ {O(n)}
t₁₀₉, X₂: X₂ {O(n)}
t₁₀₉, X₃: X₃ {O(n)}