Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁₀ < 0
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₈ < 0
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₉ < 0
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ < 0
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ < 0
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₁₀, X₆, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₆ ∧ 0 ≤ X₇
t₁₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 2⋅X₉ < X₇ ∧ X₁₀+X₉ < X₇
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ ≤ 2⋅X₉
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ ≤ X₁₀+X₉
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ < 1
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₁-1, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₁
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₀, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₃+X₉, X₅, X₃+X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₄ ≤ 0
t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₄
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₉, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀)
Preprocessing
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁₀ < 0
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₈ < 0
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₉ < 0
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ < 0
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ < 0
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₁₀, X₆, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₆ ∧ 0 ≤ X₇
t₁₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 2⋅X₉ < X₇ ∧ X₁₀+X₉ < X₇
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ ≤ 2⋅X₉
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ ≤ X₁₀+X₉
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ < 1 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₁-1, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₀, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₃+X₉, X₅, X₃+X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₄ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₄ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₉, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₁-1, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₆+1 {O(n)}
MPRF:
l5 [X₁ ]
l4 [X₁+1 ]
l6 [X₅+1 ]
l8 [X₁ ]
l7 [X₁ ]
MPRF for transition t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₀, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l5 [X₁ ]
l4 [X₁ ]
l6 [X₅ ]
l8 [X₁-1 ]
l7 [X₁-1 ]
MPRF for transition t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₃+X₉, X₅, X₃+X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₆+1 {O(n)}
MPRF:
l5 [X₁+X₆-1 ]
l4 [X₁+X₆-1 ]
l6 [2⋅X₅+X₆+1-X₁ ]
l8 [X₅+X₆ ]
l7 [X₅+X₆ ]
MPRF for transition t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₄ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l5 [X₁ ]
l4 [X₁ ]
l6 [X₅ ]
l8 [X₁ ]
l7 [X₅+1 ]
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
MPRF for transition t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₄ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₆⋅X₆⋅X₉+4⋅X₆⋅X₉+X₁₀⋅X₆+X₆+X₇+1 {O(n^3)}
MPRF:
l5 [X₂+1 ]
l6 [X₃+X₉+1 ]
l4 [X₂+1 ]
l8 [X₄ ]
l7 [X₄+1 ]
MPRF for transition t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₉, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₆⋅X₆⋅X₉+4⋅X₆⋅X₉+X₁₀⋅X₆+X₇ {O(n^3)}
MPRF:
l5 [X₂ ]
l6 [X₃+X₉ ]
l4 [X₂ ]
l8 [X₄ ]
l7 [X₄ ]
Analysing control-flow refined program
Found invariant X₉ ≤ X₃ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l8___1
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l8___3
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7
Found invariant X₉ ≤ X₃ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___2
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁₀+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
knowledge_propagation leads to new time bound X₆ {O(n)} for transition t₁₄₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l8___3(X₀, X₁, X₂, X₃, X₄, X₁-1, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₅+1 ∧ 1+X₅ ≤ X₁ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ X₁ ≤ 1+X₅ ∧ 1+X₅ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₃ ∧ 0 < X₄ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₅+1 ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₆ {O(n)} for transition t₁₄₆: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l7___2(X₀, X₁, X₂, X₉, X₄-1, X₁-1, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇ ∧ 1+X₅ ≤ X₆ ∧ 0 < X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₅+1 ∧ 1+X₅ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₅+1 ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₁₄₃: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l8___1(X₀, X₁, X₂, X₃, X₄, X₁-1, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₅+1 ∧ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₅ ≤ X₁ ∧ X₃ ≤ X₉ ∧ X₉ ≤ X₃ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₃ ∧ 0 < X₄ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₅+1 ∧ 1+X₅ ≤ X₁ ∧ X₉ ≤ X₃ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₆⋅X₆⋅X₉+4⋅X₆⋅X₉+X₁₀⋅X₆+X₆⋅X₇+X₆ {O(n^3)}
MPRF:
l5 [0 ]
l4 [0 ]
l7 [0 ]
n_l8___3 [0 ]
l6 [0 ]
n_l8___1 [X₄ ]
n_l7___2 [X₄+1 ]
MPRF for transition t₁₅₀: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₄ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₉ ≤ X₃ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l5 [X₁ ]
l4 [X₁ ]
l7 [X₁ ]
l6 [X₁-1 ]
n_l8___1 [X₁ ]
n_l8___3 [X₁ ]
n_l7___2 [X₁ ]
MPRF for transition t₁₄₅: n_l8___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l7___2(X₀, X₁, X₂, X₉, X₄-1, X₁-1, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 < X₄ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₅+1 ∧ 1+X₅ ≤ X₁ ∧ X₃ ≤ X₉ ∧ X₉ ≤ X₃ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₅+1 ∧ 1+X₅ ≤ X₁ ∧ X₉ ≤ X₃ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 0 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₆⋅X₆⋅X₉+4⋅X₆⋅X₉+X₁₀⋅X₆+X₆⋅X₇ {O(n^3)}
MPRF:
l5 [0 ]
l4 [0 ]
l7 [0 ]
n_l8___3 [0 ]
l6 [0 ]
n_l8___1 [X₄ ]
n_l7___2 [X₄ ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:4⋅X₆⋅X₆⋅X₉+2⋅X₁₀⋅X₆+8⋅X₆⋅X₉+2⋅X₇+6⋅X₆+15 {O(n^3)}
t₀: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₇: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₁₀: X₆+1 {O(n)}
t₁₁: 1 {O(1)}
t₁₂: X₆ {O(n)}
t₁₆: 2⋅X₆+1 {O(n)}
t₁₃: 2⋅X₆⋅X₆⋅X₉+4⋅X₆⋅X₉+X₁₀⋅X₆+X₆+X₇+1 {O(n^3)}
t₁₄: X₆ {O(n)}
t₁₅: 2⋅X₆⋅X₆⋅X₉+4⋅X₆⋅X₉+X₁₀⋅X₆+X₇ {O(n^3)}
Costbounds
Overall costbound: 4⋅X₆⋅X₆⋅X₉+2⋅X₁₀⋅X₆+8⋅X₆⋅X₉+2⋅X₇+6⋅X₆+15 {O(n^3)}
t₀: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₇: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₁₀: X₆+1 {O(n)}
t₁₁: 1 {O(1)}
t₁₂: X₆ {O(n)}
t₁₆: 2⋅X₆+1 {O(n)}
t₁₃: 2⋅X₆⋅X₆⋅X₉+4⋅X₆⋅X₉+X₁₀⋅X₆+X₆+X₇+1 {O(n^3)}
t₁₄: X₆ {O(n)}
t₁₅: 2⋅X₆⋅X₆⋅X₉+4⋅X₆⋅X₉+X₁₀⋅X₆+X₇ {O(n^3)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₄, X₀: X₁₀ {O(n)}
t₄, X₁: X₆ {O(n)}
t₄, X₂: X₇ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: X₁₀ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₈, X₈: X₈ {O(n)}
t₈, X₉: X₉ {O(n)}
t₈, X₁₀: X₁₀ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₁₇, X₀: 2⋅X₆⋅X₉+2⋅X₁₀+3⋅X₉+7⋅X₀ {O(n^2)}
t₁₇, X₁: 7⋅X₁ {O(n)}
t₁₇, X₂: 2⋅X₆⋅X₉+4⋅X₉+7⋅X₂+X₁₀+X₇ {O(n^2)}
t₁₇, X₃: 2⋅X₆⋅X₉+3⋅X₉+8⋅X₃+X₁₀ {O(n^2)}
t₁₇, X₄: 8⋅X₄ {O(n)}
t₁₇, X₅: 4⋅X₆+8⋅X₅ {O(n)}
t₁₇, X₆: 9⋅X₆ {O(n)}
t₁₇, X₇: 9⋅X₇ {O(n)}
t₁₇, X₈: 9⋅X₈ {O(n)}
t₁₇, X₉: 9⋅X₉ {O(n)}
t₁₇, X₁₀: 9⋅X₁₀ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₉ {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₁₀, X₀: 2⋅X₆⋅X₉+3⋅X₉+X₁₀ {O(n^2)}
t₁₀, X₁: X₆ {O(n)}
t₁₀, X₂: 2⋅X₆⋅X₉+4⋅X₉+X₁₀+X₇ {O(n^2)}
t₁₀, X₃: 2⋅X₆⋅X₉+3⋅X₉+X₁₀+X₃ {O(n^2)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: 2⋅X₆ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₀, X₈: X₈ {O(n)}
t₁₀, X₉: X₉ {O(n)}
t₁₀, X₁₀: X₁₀ {O(n)}
t₁₁, X₀: 2⋅X₆⋅X₉+2⋅X₁₀+3⋅X₉ {O(n^2)}
t₁₁, X₁: 0 {O(1)}
t₁₁, X₂: 2⋅X₆⋅X₉+4⋅X₉+X₁₀+X₇ {O(n^2)}
t₁₁, X₃: 2⋅X₆⋅X₉+3⋅X₉+X₁₀+X₃ {O(n^2)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: 4⋅X₆+X₅ {O(n)}
t₁₁, X₆: 2⋅X₆ {O(n)}
t₁₁, X₇: 2⋅X₇ {O(n)}
t₁₁, X₈: 2⋅X₈ {O(n)}
t₁₁, X₉: 2⋅X₉ {O(n)}
t₁₁, X₁₀: 2⋅X₁₀ {O(n)}
t₁₂, X₀: 2⋅X₆⋅X₉+3⋅X₉+X₁₀ {O(n^2)}
t₁₂, X₁: X₆ {O(n)}
t₁₂, X₂: 2⋅X₆⋅X₉+4⋅X₉+X₁₀+X₇ {O(n^2)}
t₁₂, X₃: 2⋅X₆⋅X₉+3⋅X₉+X₁₀ {O(n^2)}
t₁₂, X₄: 2⋅X₆⋅X₉+4⋅X₉+X₁₀+X₇ {O(n^2)}
t₁₂, X₅: 2⋅X₆ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₇ {O(n)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₉ {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₆, X₀: 2⋅X₆⋅X₉+3⋅X₉+X₁₀ {O(n^2)}
t₁₆, X₁: X₆ {O(n)}
t₁₆, X₂: 2⋅X₆⋅X₉+4⋅X₉+X₁₀ {O(n^2)}
t₁₆, X₃: 2⋅X₆⋅X₉+3⋅X₉+X₁₀ {O(n^2)}
t₁₆, X₄: 0 {O(1)}
t₁₆, X₅: 4⋅X₆ {O(n)}
t₁₆, X₆: X₆ {O(n)}
t₁₆, X₇: X₇ {O(n)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₉ {O(n)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₁₃, X₀: 2⋅X₆⋅X₉+3⋅X₉+X₁₀ {O(n^2)}
t₁₃, X₁: X₆ {O(n)}
t₁₃, X₂: 2⋅X₆⋅X₉+4⋅X₉+X₁₀+X₇ {O(n^2)}
t₁₃, X₃: 2⋅X₆⋅X₉+4⋅X₉+X₁₀ {O(n^2)}
t₁₃, X₄: 2⋅X₆⋅X₉+4⋅X₉+X₁₀+X₇ {O(n^2)}
t₁₃, X₅: 2⋅X₆ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁₃, X₇: X₇ {O(n)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₉ {O(n)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₁₄, X₀: 4⋅X₆⋅X₉+2⋅X₁₀+6⋅X₉ {O(n^2)}
t₁₄, X₁: X₆ {O(n)}
t₁₄, X₂: 4⋅X₆⋅X₉+2⋅X₁₀+2⋅X₇+8⋅X₉ {O(n^2)}
t₁₄, X₃: 2⋅X₆⋅X₉+3⋅X₉+X₁₀ {O(n^2)}
t₁₄, X₄: 0 {O(1)}
t₁₄, X₅: 4⋅X₆ {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: X₇ {O(n)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₅, X₀: 2⋅X₆⋅X₉+3⋅X₉+X₁₀ {O(n^2)}
t₁₅, X₁: X₆ {O(n)}
t₁₅, X₂: 2⋅X₆⋅X₉+4⋅X₉+X₁₀+X₇ {O(n^2)}
t₁₅, X₃: X₉ {O(n)}
t₁₅, X₄: 2⋅X₆⋅X₉+4⋅X₉+X₁₀+X₇ {O(n^2)}
t₁₅, X₅: 2⋅X₆ {O(n)}
t₁₅, X₆: X₆ {O(n)}
t₁₅, X₇: X₇ {O(n)}
t₁₅, X₈: X₈ {O(n)}
t₁₅, X₉: X₉ {O(n)}
t₁₅, X₁₀: X₁₀ {O(n)}