Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₂, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉)
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ < 0
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ < 0
t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₀ ∧ 0 ≤ X₁
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₇, 0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ < 0
t₁₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ < X₃
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₇
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₀-1, X₃, X₃, X₅, X₆, X₇, X₈, X₉)
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₀, X₃, X₁, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < 0
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₅
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇, X₈, X₉)
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉)

Preprocessing

Eliminate variables {X₈,X₉} that do not contribute to the problem

Found invariant X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ for location l11

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l2

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ for location l13

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l1

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l10

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l9

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l3

Found invariant X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₄₅: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₂, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < 0 ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁
t₅₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 0 ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁
t₄₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁
t₅₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₇, 0, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ 1+X₁
t₅₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₀-1, X₃, X₃, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₀, X₃, X₁, X₅, X₆, X₇) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 0 < X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

MPRF for transition t₅₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₀+1 ]
l10 [X₀+1 ]
l4 [X₀ ]
l3 [X₀+1 ]
l1 [X₂+1 ]
l6 [X₀+1 ]
l7 [X₀+1 ]
l5 [X₀+1 ]
l8 [X₀+1 ]
l9 [X₀+1 ]
l2 [X₀+1 ]

MPRF for transition t₅₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₀+1 ]
l10 [X₀+1 ]
l4 [X₀ ]
l3 [X₀+1 ]
l1 [X₂+1 ]
l6 [X₀+1 ]
l7 [X₀+1 ]
l5 [X₀+1 ]
l8 [X₀+1 ]
l9 [X₀+1 ]
l2 [X₀+1 ]

MPRF for transition t₅₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₀-1, X₃, X₃, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₀+1 ]
l10 [X₀+1 ]
l4 [X₀+1 ]
l3 [X₀+1 ]
l1 [X₂+1 ]
l6 [X₀+1 ]
l7 [X₀+1 ]
l5 [X₀+1 ]
l8 [X₀+1 ]
l9 [X₀+1 ]
l2 [X₀+1 ]

MPRF for transition t₅₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₀+1 ]
l10 [X₀ ]
l4 [X₀ ]
l3 [X₀ ]
l1 [X₂+1 ]
l6 [X₀+1 ]
l7 [X₀+1 ]
l5 [X₀+1 ]
l8 [X₀ ]
l9 [X₀ ]
l2 [X₀ ]

MPRF for transition t₆₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 0 < X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF:

l11 [X₀+1 ]
l10 [X₀ ]
l4 [X₀ ]
l3 [X₀ ]
l1 [X₂+1 ]
l6 [X₀+1 ]
l7 [X₀+1 ]
l5 [X₀+1 ]
l8 [X₀ ]
l9 [X₀ ]
l2 [X₀ ]

MPRF for transition t₄₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+11⋅X₇+8 {O(n^2)}

MPRF:

l11 [X₀+X₇+2 ]
l10 [X₀+X₇+2-X₃ ]
l4 [X₀+X₇+2-X₃ ]
l3 [X₀+X₇+2-X₃ ]
l1 [X₂+X₇+2 ]
l6 [X₀+X₇+2 ]
l7 [X₀+X₇+2 ]
l5 [X₀+X₇+2 ]
l8 [X₀+X₇+2-X₃ ]
l9 [X₀+X₇+2-X₃ ]
l2 [X₀+X₇+2-X₃ ]

MPRF for transition t₅₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+10⋅X₇+6 {O(n^2)}

MPRF:

l11 [X₀+X₇+1 ]
l10 [X₀+X₇-X₃ ]
l4 [X₀+X₇+1-X₃ ]
l3 [X₀+X₇+1-X₃ ]
l1 [X₂+X₇+1 ]
l6 [X₀+X₇+1 ]
l7 [X₀+X₇+1 ]
l5 [X₀+X₇+1 ]
l8 [X₀+X₇+1-X₃ ]
l9 [X₀+X₇+1-X₃ ]
l2 [X₀+X₇+1-X₃ ]

MPRF for transition t₅₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+7⋅X₇+2 {O(n^2)}

MPRF:

l11 [3⋅X₇+1 ]
l10 [3⋅X₇-X₃ ]
l4 [3⋅X₇+1-X₃ ]
l3 [3⋅X₇+1-X₃ ]
l1 [3⋅X₇+1 ]
l6 [3⋅X₇+1 ]
l7 [3⋅X₇+1 ]
l5 [3⋅X₇+1 ]
l8 [3⋅X₇+1-X₃ ]
l9 [3⋅X₇+1-X₃ ]
l2 [3⋅X₇+1-X₃ ]

MPRF for transition t₅₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+10⋅X₇+6 {O(n^2)}

MPRF:

l11 [X₀+X₇+1 ]
l10 [X₀+X₇-X₃ ]
l4 [X₀+X₇-X₃ ]
l3 [X₀+X₇+1-X₃ ]
l1 [X₂+X₇+1 ]
l6 [X₀+X₇+1 ]
l7 [X₀+X₇+1 ]
l5 [X₀+X₇+1 ]
l8 [X₀+X₇-X₃ ]
l9 [X₀+X₇-X₃ ]
l2 [X₀+X₇-X₃ ]

MPRF for transition t₆₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

5⋅X₇⋅X₇+18⋅X₇+12 {O(n^2)}

MPRF:

l11 [2⋅X₀+X₇+2 ]
l10 [2⋅X₀+X₇+1-X₃ ]
l4 [2⋅X₀+X₇+1-X₃ ]
l3 [2⋅X₀+X₇+2-X₃ ]
l1 [2⋅X₂+X₇+2 ]
l6 [2⋅X₀+X₇+2 ]
l7 [2⋅X₀+X₇+2 ]
l5 [2⋅X₀+X₇+2 ]
l8 [2⋅X₀+X₇+2-X₃ ]
l9 [2⋅X₀+X₇+1-X₃ ]
l2 [2⋅X₀+X₇+1-X₃ ]

MPRF for transition t₆₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

5⋅X₇⋅X₇+17⋅X₇+10 {O(n^2)}

MPRF:

l11 [2⋅X₀+X₇+1 ]
l10 [2⋅X₀+X₇-X₃ ]
l4 [2⋅X₀+X₇-X₃ ]
l3 [2⋅X₀+X₇+1-X₃ ]
l1 [2⋅X₂+X₇+1 ]
l6 [2⋅X₀+X₇+1 ]
l7 [2⋅X₀+X₇+1 ]
l5 [2⋅X₀+X₇+1 ]
l8 [2⋅X₀+X₇+1-X₃ ]
l9 [2⋅X₀+X₇+1-X₃ ]
l2 [2⋅X₀+X₇-X₃ ]

MPRF for transition t₄₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₂, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

15⋅X₇⋅X₇⋅X₇⋅X₇+106⋅X₇⋅X₇⋅X₇+272⋅X₇⋅X₇+297⋅X₇+111 {O(n^4)}

MPRF:

l11 [X₁+1 ]
l10 [X₃+2 ]
l2 [X₃+2 ]
l4 [X₃+1 ]
l3 [X₃+1 ]
l1 [X₄+1 ]
l6 [X₁+1 ]
l7 [X₁+1 ]
l5 [X₁+1 ]
l8 [X₃+1 ]
l9 [X₃+1 ]

MPRF for transition t₄₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

15⋅X₇⋅X₇⋅X₇⋅X₇+106⋅X₇⋅X₇⋅X₇+272⋅X₇⋅X₇+297⋅X₇+112 {O(n^4)}

MPRF:

l11 [X₁+2 ]
l10 [X₃+2 ]
l2 [X₃+2 ]
l4 [X₃+1 ]
l3 [X₃+1 ]
l1 [X₄+1 ]
l6 [X₁+1 ]
l7 [X₁+1 ]
l5 [X₁+1 ]
l8 [X₃+1 ]
l9 [X₃+1 ]

MPRF for transition t₆₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₀, X₃, X₁, X₅, X₆, X₇) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

15⋅X₇⋅X₇⋅X₇⋅X₇+111⋅X₇⋅X₇⋅X₇+294⋅X₇⋅X₇+325⋅X₇+121 {O(n^4)}

MPRF:

l11 [X₀+X₁+1 ]
l10 [X₀+X₃+2 ]
l2 [X₀+X₃+2 ]
l4 [X₀+X₃+1 ]
l3 [X₀+X₃+1 ]
l1 [X₂+X₄ ]
l6 [X₀+X₁+1 ]
l7 [X₀+X₁+1 ]
l5 [X₀+X₁+1 ]
l8 [X₀+X₃+1 ]
l9 [X₀+X₃+1 ]

MPRF for transition t₆₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

15⋅X₇⋅X₇⋅X₇⋅X₇+106⋅X₇⋅X₇⋅X₇+272⋅X₇⋅X₇+297⋅X₇+112 {O(n^4)}

MPRF:

l11 [X₁+2 ]
l10 [X₃+2 ]
l2 [X₃+2 ]
l4 [X₃+1 ]
l3 [X₃+1 ]
l1 [X₄+1 ]
l6 [X₁+2 ]
l7 [X₁+1 ]
l5 [X₁+1 ]
l8 [X₃+1 ]
l9 [X₃+1 ]

MPRF for transition t₆₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

15⋅X₇⋅X₇⋅X₇⋅X₇+106⋅X₇⋅X₇⋅X₇+272⋅X₇⋅X₇+297⋅X₇+112 {O(n^4)}

MPRF:

l11 [X₁+2 ]
l10 [X₃+2 ]
l2 [X₃+2 ]
l4 [X₃+1 ]
l3 [X₃+1 ]
l1 [X₄+1 ]
l6 [X₁+2 ]
l7 [X₁+2 ]
l5 [X₁+1 ]
l8 [X₃+1 ]
l9 [X₃+1 ]

Analysing control-flow refined program

Cut unsatisfiable transition t₅₀: l11→l13

Cut unsatisfiable transition t₁₅₄₇: n_l11___7→l13

Found invariant X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ for location l11

Found invariant 0 ≤ X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ 0 ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l10___8

Found invariant X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___3

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___6

Found invariant X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___1

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l9___10

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___9

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l8___11

Found invariant 1 ≤ X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ 0 ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l10___2

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l9___4

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l10___1

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ 0 ≤ 1+X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ 0 ≤ 1+X₀ for location n_l11___12

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l8___5

Found invariant 0 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l3___6

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l1___8

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l2___3

Found invariant 0 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___4

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___10

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 1+X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀ for location n_l11___7

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l2___9

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___11

Found invariant X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___2

Found invariant X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ for location l13

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l1

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___5

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l3

Found invariant 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l10___7

Found invariant X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ for location l14

knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₁₅₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___12(X₂, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₀ ≤ 1+X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₇ ∧ X₀ ≤ 1+X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₁₅₁₇: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₇ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ 0 ≤ 1+X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ 0 ≤ 1+X₀

knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₁₅₂₅: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₁₅₂₈: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___9(X₀, X₁, X₂, X₃, X₄, NoDet0, X₆, Arg7_P) :|: 1+X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₀ ≤ Arg7_P ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₁₅₂₄: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₀, X₃, X₁, 0, X₆, X₇) :|: 1+X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₁₅₄₂: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₁₅₄₅: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 0 < X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

MPRF for transition t₁₅₉₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇+3 {O(n)}

MPRF:

l1 [X₂+1 ]
n_l11___12 [X₀+1 ]
n_l11___7 [X₀+1 ]
n_l10___1 [X₀ ]
n_l10___2 [X₀ ]
n_l10___7 [X₀ ]
n_l10___8 [X₀ ]
n_l3___6 [X₀ ]
l4 [X₀ ]
n_l1___8 [X₀+1 ]
l3 [X₀+1 ]
n_l6___11 [X₀+X₄+1-X₃ ]
n_l6___6 [X₂+1 ]
n_l7___10 [X₂+X₄+1-X₃ ]
n_l5___9 [X₂+X₄-X₁ ]
n_l7___5 [X₂+1 ]
n_l5___4 [X₂+1 ]
n_l8___11 [X₀ ]
n_l8___5 [X₀ ]
n_l9___10 [X₀ ]
n_l2___9 [X₀ ]
n_l9___4 [X₀ ]
n_l2___3 [X₀ ]

MPRF for transition t₁₅₈₂: n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ 0 < X₆ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}

MPRF:

l1 [0 ]
n_l11___12 [0 ]
n_l11___7 [X₇ ]
n_l10___1 [X₇+1-X₃ ]
n_l10___2 [X₇-X₃ ]
n_l10___7 [X₇ ]
n_l10___8 [X₇ ]
n_l3___6 [X₇+1-X₃ ]
l4 [0 ]
n_l1___8 [X₇ ]
n_l5___9 [X₇ ]
l3 [X₇ ]
n_l6___11 [0 ]
n_l7___10 [0 ]
n_l6___6 [X₇ ]
n_l7___5 [X₇ ]
n_l5___4 [X₇ ]
n_l8___11 [X₇ ]
n_l8___5 [X₇+1-X₃ ]
n_l9___10 [X₇ ]
n_l2___9 [X₇ ]
n_l9___4 [X₇+1-X₃ ]
n_l2___3 [X₇+1-X₃ ]

MPRF for transition t₁₅₈₃: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ X₇ ∧ X₆ < 0 ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ 0 ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}

MPRF:

l1 [0 ]
n_l11___12 [0 ]
n_l11___7 [X₇ ]
n_l10___1 [X₇-X₃ ]
n_l10___2 [X₇+1-X₃ ]
n_l10___7 [X₇ ]
n_l10___8 [X₇ ]
n_l3___6 [X₇+1-X₃ ]
l4 [0 ]
n_l1___8 [X₇ ]
n_l5___9 [X₇ ]
l3 [X₇ ]
n_l6___11 [0 ]
n_l7___10 [0 ]
n_l6___6 [X₇ ]
n_l7___5 [X₇ ]
n_l5___4 [X₇ ]
n_l8___11 [X₇ ]
n_l8___5 [X₇+1-X₃ ]
n_l9___10 [X₇ ]
n_l2___9 [X₇ ]
n_l9___4 [X₇+1-X₃ ]
n_l2___3 [X₇+1-X₃ ]

MPRF for transition t₁₅₈₄: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 < X₆ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇+3 {O(n)}

MPRF:

l1 [X₀+X₃-X₄ ]
n_l11___12 [X₀+X₃+1-X₄ ]
n_l11___7 [X₀+1 ]
n_l10___1 [X₀ ]
n_l10___2 [X₀ ]
n_l10___7 [X₀+1 ]
n_l10___8 [X₀ ]
n_l3___6 [X₀ ]
l4 [X₀ ]
n_l1___8 [X₀+1 ]
l3 [X₀+1 ]
n_l6___11 [X₀+X₁+X₃+2-2⋅X₄ ]
n_l6___6 [X₂+1 ]
n_l7___10 [X₀+X₁+X₃+2-2⋅X₄ ]
n_l5___9 [X₂+1 ]
n_l7___5 [X₀+1 ]
n_l5___4 [X₂+1 ]
n_l8___11 [X₀+1 ]
n_l8___5 [X₀ ]
n_l9___10 [X₀+1 ]
n_l2___9 [X₀+1 ]
n_l9___4 [X₀ ]
n_l2___3 [X₀ ]

MPRF for transition t₁₅₈₅: n_l10___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ X₆ < 0 ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ 0 ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇+3 {O(n)}

MPRF:

l1 [X₀ ]
n_l11___12 [X₂+X₃+1-X₄ ]
n_l11___7 [X₂+1 ]
n_l10___1 [X₀ ]
n_l10___2 [X₀ ]
n_l10___7 [X₀ ]
n_l10___8 [X₀+1 ]
n_l3___6 [X₀ ]
l4 [X₀ ]
n_l1___8 [X₀+1 ]
l3 [X₀+1 ]
n_l6___11 [X₁+X₂+X₃+2-2⋅X₄ ]
n_l6___6 [X₀+1 ]
n_l7___10 [X₀+X₁+X₃+2-2⋅X₄ ]
n_l5___9 [X₂+1 ]
n_l7___5 [X₀+1 ]
n_l5___4 [X₂+1 ]
n_l8___11 [X₀+1 ]
n_l8___5 [X₀ ]
n_l9___10 [X₀+1 ]
n_l2___9 [X₀+1 ]
n_l9___4 [X₀ ]
n_l2___3 [X₀ ]

MPRF for transition t₁₅₁₉: n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 1+X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

6⋅X₇⋅X₇⋅X₇+31⋅X₇⋅X₇+46⋅X₇+21 {O(n^3)}

MPRF:

l1 [X₃ ]
n_l11___12 [X₃ ]
n_l11___7 [X₄+X₇+1 ]
n_l10___1 [X₇+1 ]
n_l10___2 [X₇+1 ]
n_l10___7 [X₇+1 ]
n_l10___8 [X₇+1 ]
n_l3___6 [X₇+1 ]
l4 [X₃ ]
n_l1___8 [X₄+X₇+1 ]
n_l5___9 [X₃+X₇ ]
l3 [X₁+X₇+1 ]
n_l6___11 [X₃ ]
n_l7___10 [X₁+1 ]
n_l6___6 [X₄+X₇ ]
n_l7___5 [X₁+X₇+1 ]
n_l5___4 [X₁+X₇+1 ]
n_l8___11 [X₁+X₇+1 ]
n_l8___5 [X₇+1 ]
n_l9___10 [X₇+1 ]
n_l2___9 [X₇+1 ]
n_l9___4 [X₇+1 ]
n_l2___3 [X₇+1 ]

MPRF for transition t₁₅₂₁: n_l1___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___7(X₂, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₇ ∧ X₀ ≤ 1+X₂ ∧ X₂ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇⋅X₇+17⋅X₇⋅X₇+26⋅X₇+12 {O(n^3)}

MPRF:

l1 [X₃ ]
n_l11___12 [X₄ ]
n_l11___7 [X₄+X₇ ]
n_l10___1 [X₇+1 ]
n_l10___2 [X₇+1 ]
n_l10___7 [X₇+1 ]
n_l10___8 [X₇+1 ]
n_l3___6 [X₇+1 ]
l4 [X₃ ]
n_l1___8 [X₁+X₇+1 ]
n_l5___9 [X₄+X₇ ]
l3 [X₃+X₇+1 ]
n_l6___11 [X₁+1 ]
n_l7___10 [X₁+X₂+1-X₀ ]
n_l6___6 [X₄+X₇ ]
n_l7___5 [X₁+X₇+1 ]
n_l5___4 [X₁+X₇+1 ]
n_l8___11 [X₃+X₇+1 ]
n_l8___5 [X₇+1 ]
n_l9___10 [X₃+X₇+1 ]
n_l2___9 [X₇+1 ]
n_l9___4 [X₇+1 ]
n_l2___3 [X₇+1 ]

MPRF for transition t₁₅₈₆: n_l2___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ 0 < X₆ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

9⋅X₇⋅X₇+18⋅X₇ {O(n^2)}

MPRF:

l1 [2⋅X₇ ]
n_l11___12 [2⋅X₇ ]
n_l11___7 [3⋅X₇ ]
n_l10___1 [3⋅X₇-X₃ ]
n_l10___2 [3⋅X₇-X₃ ]
n_l10___7 [3⋅X₇ ]
n_l10___8 [3⋅X₇ ]
n_l3___6 [3⋅X₇+1-X₃ ]
l4 [2⋅X₇ ]
n_l1___8 [3⋅X₇ ]
n_l5___9 [3⋅X₇ ]
l3 [3⋅X₇ ]
n_l6___11 [2⋅X₇ ]
n_l7___10 [X₄+2⋅X₇-X₁-1 ]
n_l6___6 [3⋅X₇ ]
n_l7___5 [3⋅X₇ ]
n_l5___4 [3⋅X₇ ]
n_l8___11 [3⋅X₇ ]
n_l8___5 [3⋅X₇+1-X₃ ]
n_l9___10 [3⋅X₇ ]
n_l2___9 [3⋅X₇ ]
n_l9___4 [3⋅X₇+1-X₃ ]
n_l2___3 [3⋅X₇+1-X₃ ]

MPRF for transition t₁₅₈₇: n_l2___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₆ < 0 ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}

MPRF:

l1 [X₇-X₃ ]
n_l11___12 [X₇-X₃ ]
n_l11___7 [X₇ ]
n_l10___1 [X₇-X₃ ]
n_l10___2 [X₇-X₃ ]
n_l10___7 [X₇ ]
n_l10___8 [X₇ ]
n_l3___6 [X₇+1-X₃ ]
l4 [X₇-X₃ ]
n_l1___8 [X₇ ]
n_l5___9 [X₇ ]
l3 [X₇ ]
n_l6___11 [X₇-X₃ ]
n_l7___10 [X₇-X₄ ]
n_l6___6 [X₇ ]
n_l7___5 [X₇ ]
n_l5___4 [X₇ ]
n_l8___11 [X₇ ]
n_l8___5 [X₇+1-X₃ ]
n_l9___10 [X₇ ]
n_l2___9 [X₇ ]
n_l9___4 [X₇+1-X₃ ]
n_l2___3 [X₇+1-X₃ ]

MPRF for transition t₁₆₀₅: n_l2___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇+3 {O(n)}

MPRF:

l1 [X₂+1 ]
n_l11___12 [X₀+1 ]
n_l11___7 [X₂+X₄-X₁ ]
n_l10___1 [X₀+1 ]
n_l10___2 [X₀+1 ]
n_l10___7 [X₀+1 ]
n_l10___8 [X₀+1 ]
n_l3___6 [X₀+1 ]
l4 [X₀ ]
n_l1___8 [X₀+1 ]
l3 [X₀+1 ]
n_l6___11 [X₀+X₄-X₁ ]
n_l6___6 [X₂+X₄-X₁ ]
n_l7___10 [X₂+X₃-X₁ ]
n_l5___9 [X₂+X₄-X₁ ]
n_l7___5 [X₀+X₄-X₁ ]
n_l5___4 [X₂+X₄-X₁ ]
n_l8___11 [X₀+1 ]
n_l8___5 [X₀+1 ]
n_l9___10 [X₀+1 ]
n_l2___9 [X₀+1 ]
n_l9___4 [X₀+1 ]
n_l2___3 [X₀+1 ]

MPRF for transition t₁₅₈₈: n_l2___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 < X₆ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇+3 {O(n)}

MPRF:

l1 [X₀ ]
n_l11___12 [X₀+1 ]
n_l11___7 [X₀+X₄-X₁ ]
n_l10___1 [X₀ ]
n_l10___2 [X₀ ]
n_l10___7 [X₀ ]
n_l10___8 [X₀ ]
n_l3___6 [X₀ ]
l4 [X₀ ]
n_l1___8 [X₀+1 ]
l3 [X₀+1 ]
n_l6___11 [X₂+X₄-X₁ ]
n_l6___6 [X₂+X₄-X₁ ]
n_l7___10 [X₀+X₃-X₁ ]
n_l5___9 [X₂+X₃-X₁ ]
n_l7___5 [X₂+X₄-X₁ ]
n_l5___4 [X₂+X₄-X₁ ]
n_l8___11 [X₀+1 ]
n_l8___5 [X₀ ]
n_l9___10 [X₀+1 ]
n_l2___9 [X₀+1 ]
n_l9___4 [X₀ ]
n_l2___3 [X₀ ]

MPRF for transition t₁₅₈₉: n_l2___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₆ < 0 ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇+3 {O(n)}

MPRF:

l1 [X₀ ]
n_l11___12 [X₂+1 ]
n_l11___7 [X₂+X₄-X₁ ]
n_l10___1 [X₀ ]
n_l10___2 [X₀ ]
n_l10___7 [X₀ ]
n_l10___8 [X₀ ]
n_l3___6 [X₀ ]
l4 [X₀ ]
n_l1___8 [X₀+1 ]
l3 [X₀+1 ]
n_l6___11 [X₂+X₃-X₁ ]
n_l6___6 [X₂+X₄-X₁ ]
n_l7___10 [X₂+X₄-X₁ ]
n_l5___9 [X₂+X₄-X₁ ]
n_l7___5 [X₀+X₄-X₁ ]
n_l5___4 [X₂+X₄-X₁ ]
n_l8___11 [X₀+1 ]
n_l8___5 [X₀ ]
n_l9___10 [X₀+1 ]
n_l2___9 [X₀+1 ]
n_l9___4 [X₀ ]
n_l2___3 [X₀ ]

MPRF for transition t₁₆₀₆: n_l2___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇+3 {O(n)}

MPRF:

l1 [X₀ ]
n_l11___12 [X₂+1 ]
n_l11___7 [X₀+X₄-X₁ ]
n_l10___1 [X₀ ]
n_l10___2 [X₀ ]
n_l10___7 [X₀ ]
n_l10___8 [X₀ ]
n_l3___6 [X₀ ]
l4 [X₀ ]
n_l1___8 [X₀+1 ]
l3 [X₀+1 ]
n_l6___11 [X₂+1 ]
n_l6___6 [X₂+X₄-X₁ ]
n_l7___10 [X₀+1 ]
n_l5___9 [X₂+X₃+1-X₄ ]
n_l7___5 [X₀+X₄-X₁ ]
n_l5___4 [X₂+X₄-X₁ ]
n_l8___11 [X₀+1 ]
n_l8___5 [X₀ ]
n_l9___10 [X₀+1 ]
n_l2___9 [X₀+1 ]
n_l9___4 [X₀ ]
n_l2___3 [X₀ ]

MPRF for transition t₁₅₉₁: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

9⋅X₇⋅X₇⋅X₇+45⋅X₇⋅X₇+68⋅X₇+32 {O(n^3)}

MPRF:

l1 [X₀+2⋅X₃-X₂-2⋅X₄-1 ]
n_l11___12 [2⋅X₃-X₀-2⋅X₄-1 ]
n_l11___7 [X₇+1 ]
n_l10___1 [X₇-X₃ ]
n_l10___2 [X₇-X₃ ]
n_l10___7 [X₇-X₃ ]
n_l10___8 [X₇-X₁ ]
n_l3___6 [X₇+1-X₃ ]
l4 [0 ]
n_l1___8 [X₇+1 ]
n_l5___9 [3⋅X₄+X₇-2 ]
l3 [X₇+1 ]
n_l6___11 [2⋅X₃-2⋅X₁-X₇-3 ]
n_l7___10 [2⋅X₃-2⋅X₁-X₇-3 ]
n_l6___6 [X₇+1 ]
n_l7___5 [X₇+1 ]
n_l5___4 [X₇+1 ]
n_l8___11 [X₇+1-X₃ ]
n_l8___5 [X₇-X₃ ]
n_l9___10 [X₇+1-X₃ ]
n_l2___9 [X₇-X₁ ]
n_l9___4 [X₇-X₃ ]
n_l2___3 [X₇-X₃ ]

MPRF for transition t₁₆₀₇: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇+3 {O(n)}

MPRF:

l1 [X₀ ]
n_l11___12 [X₀+1 ]
n_l11___7 [X₀+1 ]
n_l10___1 [X₀+1 ]
n_l10___2 [X₀+1 ]
n_l10___7 [X₀+1 ]
n_l10___8 [X₀+1 ]
n_l3___6 [X₀+1 ]
l4 [X₀ ]
n_l1___8 [X₀+1 ]
l3 [X₀+1 ]
n_l6___11 [X₀+X₄-X₁ ]
n_l6___6 [X₂+1 ]
n_l7___10 [X₂+X₄-X₁ ]
n_l5___9 [X₂+X₃-X₁ ]
n_l7___5 [X₀+X₄-X₁ ]
n_l5___4 [X₂+1 ]
n_l8___11 [X₀+1 ]
n_l8___5 [X₀+1 ]
n_l9___10 [X₀+1 ]
n_l2___9 [X₀+1 ]
n_l9___4 [X₀+1 ]
n_l2___3 [X₀+1 ]

MPRF for transition t₁₅₂₃: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₀, X₃, X₁, 0, X₆, X₇) :|: X₂ ≤ X₇ ∧ 1 ≤ X₄ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

6⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+40⋅X₇+18 {O(n^3)}

MPRF:

l1 [X₃-X₇-1 ]
n_l11___12 [X₃-X₇-1 ]
n_l11___7 [X₄ ]
n_l10___1 [0 ]
n_l10___2 [0 ]
n_l10___7 [0 ]
n_l10___8 [0 ]
n_l3___6 [0 ]
l4 [X₃-X₇-1 ]
n_l1___8 [X₄ ]
n_l5___9 [X₃ ]
l3 [X₁ ]
n_l6___11 [X₁-X₇ ]
n_l7___10 [X₁-X₇ ]
n_l6___6 [X₄ ]
n_l7___5 [X₁+1 ]
n_l5___4 [X₁+1 ]
n_l8___11 [X₁ ]
n_l8___5 [0 ]
n_l9___10 [0 ]
n_l2___9 [0 ]
n_l9___4 [0 ]
n_l2___3 [0 ]

MPRF for transition t₁₅₄₁: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇+1 {O(n)}

MPRF:

l1 [X₀ ]
n_l11___12 [X₀+1 ]
n_l11___7 [X₂+1 ]
n_l10___1 [X₀ ]
n_l10___2 [X₀ ]
n_l10___7 [X₀ ]
n_l10___8 [X₀ ]
n_l3___6 [X₀ ]
l4 [X₀ ]
n_l1___8 [X₀+1 ]
l3 [X₀ ]
n_l6___11 [X₂+1 ]
n_l6___6 [X₀+1 ]
n_l7___10 [X₀+1 ]
n_l5___9 [X₂+1 ]
n_l7___5 [X₀+1 ]
n_l5___4 [X₂+1 ]
n_l8___11 [X₀ ]
n_l8___5 [X₀ ]
n_l9___10 [X₀ ]
n_l2___9 [X₀ ]
n_l9___4 [X₀ ]
n_l2___3 [X₀ ]

MPRF for transition t₁₅₄₄: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 0 < X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇+1 {O(n)}

MPRF:

l1 [X₂+1 ]
n_l11___12 [X₂+1 ]
n_l11___7 [X₀+1 ]
n_l10___1 [X₀ ]
n_l10___2 [X₀ ]
n_l10___7 [X₀ ]
n_l10___8 [X₀ ]
n_l3___6 [X₀ ]
l4 [X₀ ]
n_l1___8 [X₀+1 ]
l3 [X₀ ]
n_l6___11 [X₂+X₄-X₁ ]
n_l6___6 [X₀+1 ]
n_l7___10 [X₀+1 ]
n_l5___9 [X₂+1 ]
n_l7___5 [X₀+1 ]
n_l5___4 [X₂+1 ]
n_l8___11 [X₀ ]
n_l8___5 [X₀ ]
n_l9___10 [X₀ ]
n_l2___9 [X₀ ]
n_l9___4 [X₀ ]
n_l2___3 [X₀ ]

MPRF for transition t₁₅₂₇: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇⋅X₇+17⋅X₇⋅X₇+26⋅X₇+9 {O(n^3)}

MPRF:

l1 [X₃-1 ]
n_l11___12 [X₁ ]
n_l11___7 [X₄+X₇ ]
n_l10___1 [X₇ ]
n_l10___2 [X₇ ]
n_l10___7 [X₇ ]
n_l10___8 [X₇ ]
n_l3___6 [X₇ ]
l4 [X₃-1 ]
n_l1___8 [X₄+X₇ ]
n_l5___9 [X₄+X₇ ]
l3 [X₁+X₇ ]
n_l6___11 [X₁ ]
n_l7___10 [X₁ ]
n_l6___6 [X₄+X₇ ]
n_l7___5 [X₄+X₇-1 ]
n_l5___4 [X₄+X₇-1 ]
n_l8___11 [X₃+X₇ ]
n_l8___5 [X₇ ]
n_l9___10 [X₇ ]
n_l2___9 [X₇ ]
n_l9___4 [X₇ ]
n_l2___3 [X₇ ]

MPRF for transition t₁₅₃₀: n_l7___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___4(X₀, X₁, X₂, X₃, X₄, NoDet0, X₆, Arg7_P) :|: X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₀ ≤ Arg7_P ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇⋅X₇+17⋅X₇⋅X₇+26⋅X₇+9 {O(n^3)}

MPRF:

l1 [X₄-1 ]
n_l11___12 [X₁ ]
n_l11___7 [X₄+X₇ ]
n_l10___1 [X₇ ]
n_l10___2 [X₇ ]
n_l10___7 [X₇ ]
n_l10___8 [X₇ ]
n_l3___6 [X₇ ]
l4 [X₃-1 ]
n_l1___8 [X₁+X₇ ]
n_l5___9 [X₄+X₇ ]
l3 [X₁+X₇ ]
n_l6___11 [X₁ ]
n_l7___10 [X₁ ]
n_l6___6 [X₄+X₇ ]
n_l7___5 [X₁+X₇+1 ]
n_l5___4 [X₁+X₇ ]
n_l8___11 [X₁+X₇ ]
n_l8___5 [X₇ ]
n_l9___10 [X₇ ]
n_l2___9 [X₁+X₇-X₃ ]
n_l9___4 [X₇ ]
n_l2___3 [X₇ ]

MPRF for transition t₁₅₉₂: n_l8___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇+3 {O(n)}

MPRF:

l1 [X₀ ]
n_l11___12 [X₂+X₃-X₁ ]
n_l11___7 [X₂+1 ]
n_l10___1 [X₀ ]
n_l10___2 [X₀ ]
n_l10___7 [X₀ ]
n_l10___8 [X₀ ]
n_l3___6 [X₀ ]
l4 [X₀ ]
n_l1___8 [X₀+1 ]
l3 [X₀+1 ]
n_l6___11 [X₂+X₄-X₁ ]
n_l6___6 [X₂+1 ]
n_l7___10 [X₀+X₄-X₁ ]
n_l5___9 [X₂+1 ]
n_l7___5 [X₀+1 ]
n_l5___4 [X₂+1 ]
n_l8___11 [X₀+1 ]
n_l8___5 [X₀ ]
n_l9___10 [X₀ ]
n_l2___9 [X₀ ]
n_l9___4 [X₀ ]
n_l2___3 [X₀ ]

MPRF for transition t₁₅₉₃: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}

MPRF:

l1 [X₇-X₃-1 ]
n_l11___12 [X₇-X₄-1 ]
n_l11___7 [X₇ ]
n_l10___1 [X₇-X₃ ]
n_l10___2 [X₇-X₃ ]
n_l10___7 [X₇ ]
n_l10___8 [X₇ ]
n_l3___6 [X₇+1-X₃ ]
l4 [X₇-X₃-1 ]
n_l1___8 [X₇ ]
n_l5___9 [X₇ ]
l3 [X₇ ]
n_l6___11 [X₇-X₄-1 ]
n_l7___10 [X₇-X₃-1 ]
n_l6___6 [X₇ ]
n_l7___5 [X₇ ]
n_l5___4 [X₇ ]
n_l8___11 [X₇ ]
n_l8___5 [X₇+1-X₃ ]
n_l9___10 [X₇ ]
n_l2___9 [X₇ ]
n_l9___4 [X₇-X₃ ]
n_l2___3 [X₇-X₃ ]

MPRF for transition t₁₅₉₄: n_l9___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___9(Arg0_P, X₁, X₂, Arg3_P, X₄, X₅, NoDet0, Arg7_P) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ Arg0_P ≤ Arg7_P ∧ 0 ≤ Arg0_P ∧ 0 ≤ X₁ ∧ Arg3_P ≤ Arg7_P ∧ X₁ ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇+3 {O(n)}

MPRF:

l1 [X₀ ]
n_l11___12 [X₂+1 ]
n_l11___7 [X₂+X₄-X₁ ]
n_l10___1 [X₀ ]
n_l10___2 [X₀ ]
n_l10___7 [X₀ ]
n_l10___8 [X₀ ]
n_l3___6 [X₀ ]
l4 [X₀ ]
n_l1___8 [X₀+1 ]
l3 [X₀+1 ]
n_l6___11 [X₂+1 ]
n_l6___6 [X₀+X₄-X₁ ]
n_l7___10 [X₀+1 ]
n_l5___9 [X₂+1 ]
n_l7___5 [X₂+X₄-X₁ ]
n_l5___4 [X₂+X₄-X₁ ]
n_l8___11 [X₀+1 ]
n_l8___5 [X₀ ]
n_l9___10 [X₀+1 ]
n_l2___9 [X₀ ]
n_l9___4 [X₀ ]
n_l2___3 [X₀ ]

MPRF for transition t₁₅₉₅: n_l9___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___3(Arg0_P, X₁, X₂, Arg3_P, X₄, X₅, NoDet0, Arg7_P) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ Arg0_P ≤ Arg7_P ∧ 0 ≤ Arg0_P ∧ 0 ≤ X₁ ∧ Arg3_P ≤ Arg7_P ∧ X₁ ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}

MPRF:

l1 [0 ]
n_l11___12 [0 ]
n_l11___7 [X₇ ]
n_l10___1 [X₇-X₃ ]
n_l10___2 [X₇-X₃ ]
n_l10___7 [X₇ ]
n_l10___8 [X₇ ]
n_l3___6 [X₇+1-X₃ ]
l4 [0 ]
n_l1___8 [X₇ ]
n_l5___9 [X₇ ]
l3 [X₇ ]
n_l6___11 [0 ]
n_l7___10 [0 ]
n_l6___6 [X₇ ]
n_l7___5 [X₇ ]
n_l5___4 [X₇ ]
n_l8___11 [X₇ ]
n_l8___5 [X₇+1-X₃ ]
n_l9___10 [X₇ ]
n_l2___9 [X₇ ]
n_l9___4 [X₇+1-X₃ ]
n_l2___3 [X₇-X₃ ]

knowledge_propagation leads to new time bound 6⋅X₇⋅X₇+18⋅X₇+6 {O(n^2)} for transition t₁₅₉₁: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

CFR: Improvement to new bound with the following program:

new bound:

21⋅X₇⋅X₇⋅X₇+140⋅X₇⋅X₇+275⋅X₇+116 {O(n^3)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: Arg0_P, Arg3_P, Arg7_P, NoDet0
Locations: l0, l1, l11, l12, l13, l14, l3, l4, n_l10___1, n_l10___2, n_l10___7, n_l10___8, n_l11___12, n_l11___7, n_l1___8, n_l2___3, n_l2___9, n_l3___6, n_l5___1, n_l5___4, n_l5___9, n_l6___11, n_l6___3, n_l6___6, n_l7___10, n_l7___2, n_l7___5, n_l8___11, n_l8___5, n_l9___10, n_l9___4
Transitions:
t₄₅: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₅₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___12(X₂, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₀ ≤ 1+X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₇ ∧ X₀ ≤ 1+X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < 0 ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
t₁₅₁₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
t₅₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₇, 0, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁
t₅₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₉₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₀-1, X₃, X₃, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₈₂: n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ 0 < X₆ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₈₃: n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ X₇ ∧ X₆ < 0 ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ 0 ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₈₄: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 < X₆ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₈₅: n_l10___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___6(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ X₆ < 0 ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ 0 ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₄₆: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < 0 ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ 0 ≤ 1+X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ 0 ≤ 1+X₀
t₁₅₄₈: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 0 ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ 0 ≤ 1+X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ 0 ≤ 1+X₀
t₁₅₁₇: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₇ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ 0 ≤ 1+X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ 0 ≤ 1+X₀
t₁₅₄₉: n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 0 ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 1+X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀
t₁₅₁₉: n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 1+X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀
t₁₅₂₁: n_l1___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___7(X₂, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₇ ∧ X₀ ≤ 1+X₂ ∧ X₂ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₆₀₅: n_l2___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₈₆: n_l2___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ 0 < X₆ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₈₇: n_l2___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₆ < 0 ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₆₀₆: n_l2___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₈₈: n_l2___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 < X₆ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₈₉: n_l2___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₆ < 0 ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₆₀₇: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₉₁: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₄₀: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₄₃: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 0 < X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₂₂: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₀, X₃, X₁, 0, X₆, X₇) :|: 0 ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₄₁: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₄₄: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 0 < X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₂₃: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₀, X₃, X₁, 0, X₆, X₇) :|: X₂ ≤ X₇ ∧ 1 ≤ X₄ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₄₂: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₄₅: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 0 < X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₂₄: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₀, X₃, X₁, 0, X₆, X₇) :|: 1+X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₂₅: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₂₆: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₂₇: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₂₈: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___9(X₀, X₁, X₂, X₃, X₄, NoDet0, X₆, Arg7_P) :|: 1+X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₀ ≤ Arg7_P ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₂₉: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___1(X₀, X₁, X₂, X₃, X₄, NoDet0, X₆, Arg7_P) :|: 0 ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ Arg7_P ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₃₀: n_l7___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___4(X₀, X₁, X₂, X₃, X₄, NoDet0, X₆, Arg7_P) :|: X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₀ ≤ Arg7_P ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₉₂: n_l8___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₉₃: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₉₄: n_l9___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___9(Arg0_P, X₁, X₂, Arg3_P, X₄, X₅, NoDet0, Arg7_P) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₃ ∧ Arg0_P ≤ Arg7_P ∧ 0 ≤ Arg0_P ∧ 0 ≤ X₁ ∧ Arg3_P ≤ Arg7_P ∧ X₁ ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₅₉₅: n_l9___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___3(Arg0_P, X₁, X₂, Arg3_P, X₄, X₅, NoDet0, Arg7_P) :|: X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ Arg0_P ≤ Arg7_P ∧ 0 ≤ Arg0_P ∧ 0 ≤ X₁ ∧ Arg3_P ≤ Arg7_P ∧ X₁ ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

All Bounds

Timebounds

Overall timebound:21⋅X₇⋅X₇⋅X₇+140⋅X₇⋅X₇+275⋅X₇+129 {O(n^3)}
t₄₅: 1 {O(1)}
t₁₅₂₀: X₇+1 {O(n)}
t₄₉: 1 {O(1)}
t₁₅₁₈: 1 {O(1)}
t₅₁: 1 {O(1)}
t₅₂: 1 {O(1)}
t₅₇: X₇+1 {O(n)}
t₁₅₉₀: 3⋅X₇+3 {O(n)}
t₅₈: X₇+1 {O(n)}
t₁₅₈₂: 3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₁₅₈₃: 3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₁₅₈₄: 3⋅X₇+3 {O(n)}
t₁₅₈₅: 3⋅X₇+3 {O(n)}
t₁₅₁₇: X₇+1 {O(n)}
t₁₅₄₆: 1 {O(1)}
t₁₅₄₈: 1 {O(1)}
t₁₅₁₉: 6⋅X₇⋅X₇⋅X₇+31⋅X₇⋅X₇+46⋅X₇+21 {O(n^3)}
t₁₅₄₉: 1 {O(1)}
t₁₅₂₁: 3⋅X₇⋅X₇⋅X₇+17⋅X₇⋅X₇+26⋅X₇+12 {O(n^3)}
t₁₅₈₆: 9⋅X₇⋅X₇+18⋅X₇ {O(n^2)}
t₁₅₈₇: 3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₁₆₀₅: 3⋅X₇+3 {O(n)}
t₁₅₈₈: 3⋅X₇+3 {O(n)}
t₁₅₈₉: 3⋅X₇+3 {O(n)}
t₁₆₀₆: 3⋅X₇+3 {O(n)}
t₁₅₉₁: 6⋅X₇⋅X₇+18⋅X₇+6 {O(n^2)}
t₁₆₀₇: 3⋅X₇+3 {O(n)}
t₁₅₂₂: 1 {O(1)}
t₁₅₄₀: 1 {O(1)}
t₁₅₄₃: 1 {O(1)}
t₁₅₂₃: 6⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+40⋅X₇+18 {O(n^3)}
t₁₅₄₁: 3⋅X₇+1 {O(n)}
t₁₅₄₄: 3⋅X₇+1 {O(n)}
t₁₅₂₄: X₇+1 {O(n)}
t₁₅₄₂: X₇+1 {O(n)}
t₁₅₄₅: X₇+1 {O(n)}
t₁₅₂₅: X₇+1 {O(n)}
t₁₅₂₆: 1 {O(1)}
t₁₅₂₇: 3⋅X₇⋅X₇⋅X₇+17⋅X₇⋅X₇+26⋅X₇+9 {O(n^3)}
t₁₅₂₈: X₇+1 {O(n)}
t₁₅₂₉: 1 {O(1)}
t₁₅₃₀: 3⋅X₇⋅X₇⋅X₇+17⋅X₇⋅X₇+26⋅X₇+9 {O(n^3)}
t₁₅₉₂: 3⋅X₇+3 {O(n)}
t₁₅₉₃: 3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₁₅₉₄: 3⋅X₇+3 {O(n)}
t₁₅₉₅: 3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}

Costbounds

Overall costbound: 21⋅X₇⋅X₇⋅X₇+140⋅X₇⋅X₇+275⋅X₇+129 {O(n^3)}
t₄₅: 1 {O(1)}
t₁₅₂₀: X₇+1 {O(n)}
t₄₉: 1 {O(1)}
t₁₅₁₈: 1 {O(1)}
t₅₁: 1 {O(1)}
t₅₂: 1 {O(1)}
t₅₇: X₇+1 {O(n)}
t₁₅₉₀: 3⋅X₇+3 {O(n)}
t₅₈: X₇+1 {O(n)}
t₁₅₈₂: 3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₁₅₈₃: 3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₁₅₈₄: 3⋅X₇+3 {O(n)}
t₁₅₈₅: 3⋅X₇+3 {O(n)}
t₁₅₁₇: X₇+1 {O(n)}
t₁₅₄₆: 1 {O(1)}
t₁₅₄₈: 1 {O(1)}
t₁₅₁₉: 6⋅X₇⋅X₇⋅X₇+31⋅X₇⋅X₇+46⋅X₇+21 {O(n^3)}
t₁₅₄₉: 1 {O(1)}
t₁₅₂₁: 3⋅X₇⋅X₇⋅X₇+17⋅X₇⋅X₇+26⋅X₇+12 {O(n^3)}
t₁₅₈₆: 9⋅X₇⋅X₇+18⋅X₇ {O(n^2)}
t₁₅₈₇: 3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₁₆₀₅: 3⋅X₇+3 {O(n)}
t₁₅₈₈: 3⋅X₇+3 {O(n)}
t₁₅₈₉: 3⋅X₇+3 {O(n)}
t₁₆₀₆: 3⋅X₇+3 {O(n)}
t₁₅₉₁: 6⋅X₇⋅X₇+18⋅X₇+6 {O(n^2)}
t₁₆₀₇: 3⋅X₇+3 {O(n)}
t₁₅₂₂: 1 {O(1)}
t₁₅₄₀: 1 {O(1)}
t₁₅₄₃: 1 {O(1)}
t₁₅₂₃: 6⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+40⋅X₇+18 {O(n^3)}
t₁₅₄₁: 3⋅X₇+1 {O(n)}
t₁₅₄₄: 3⋅X₇+1 {O(n)}
t₁₅₂₄: X₇+1 {O(n)}
t₁₅₄₂: X₇+1 {O(n)}
t₁₅₄₅: X₇+1 {O(n)}
t₁₅₂₅: X₇+1 {O(n)}
t₁₅₂₆: 1 {O(1)}
t₁₅₂₇: 3⋅X₇⋅X₇⋅X₇+17⋅X₇⋅X₇+26⋅X₇+9 {O(n^3)}
t₁₅₂₈: X₇+1 {O(n)}
t₁₅₂₉: 1 {O(1)}
t₁₅₃₀: 3⋅X₇⋅X₇⋅X₇+17⋅X₇⋅X₇+26⋅X₇+9 {O(n^3)}
t₁₅₉₂: 3⋅X₇+3 {O(n)}
t₁₅₉₃: 3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₁₅₉₄: 3⋅X₇+3 {O(n)}
t₁₅₉₅: 3⋅X₇⋅X₇+6⋅X₇ {O(n^2)}

Sizebounds

t₄₅, X₀: X₀ {O(n)}
t₄₅, X₁: X₁ {O(n)}
t₄₅, X₂: X₂ {O(n)}
t₄₅, X₃: X₃ {O(n)}
t₄₅, X₄: X₄ {O(n)}
t₄₅, X₅: X₅ {O(n)}
t₄₅, X₆: X₆ {O(n)}
t₄₅, X₇: X₇ {O(n)}
t₁₅₂₀, X₀: 3⋅X₇+1 {O(n)}
t₁₅₂₀, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₂₀, X₂: 2⋅X₇+4 {O(n)}
t₁₅₂₀, X₃: 6⋅X₇⋅X₇+22⋅X₇+18 {O(n^2)}
t₁₅₂₀, X₄: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₂₀, X₇: 3⋅X₇ {O(n)}
t₄₉, X₀: X₇ {O(n)}
t₄₉, X₁: 0 {O(1)}
t₄₉, X₂: X₂ {O(n)}
t₄₉, X₃: X₃ {O(n)}
t₄₉, X₄: X₄ {O(n)}
t₄₉, X₅: X₅ {O(n)}
t₄₉, X₆: X₆ {O(n)}
t₄₉, X₇: X₇ {O(n)}
t₁₅₁₈, X₀: X₇ {O(n)}
t₁₅₁₈, X₁: 0 {O(1)}
t₁₅₁₈, X₂: X₂ {O(n)}
t₁₅₁₈, X₃: X₃ {O(n)}
t₁₅₁₈, X₄: X₄ {O(n)}
t₁₅₁₈, X₅: X₅ {O(n)}
t₁₅₁₈, X₆: X₆ {O(n)}
t₁₅₁₈, X₇: X₇ {O(n)}
t₅₁, X₀: X₇ {O(n)}
t₅₁, X₁: 0 {O(1)}
t₅₁, X₂: X₂ {O(n)}
t₅₁, X₃: X₃ {O(n)}
t₅₁, X₄: X₄ {O(n)}
t₅₁, X₅: X₅ {O(n)}
t₅₁, X₆: X₆ {O(n)}
t₅₁, X₇: X₇ {O(n)}
t₅₂, X₀: 7⋅X₇+3 {O(n)}
t₅₂, X₁: 6⋅X₇⋅X₇+18⋅X₇+9 {O(n^2)}
t₅₂, X₂: 9⋅X₇+X₂+7 {O(n)}
t₅₂, X₃: 12⋅X₇⋅X₇+2⋅X₃+44⋅X₇+36 {O(n^2)}
t₅₂, X₄: 6⋅X₇⋅X₇+18⋅X₇+X₄+7 {O(n^2)}
t₅₂, X₇: 3⋅X₇ {O(n)}
t₅₇, X₀: X₇+1 {O(n)}
t₅₇, X₁: 24⋅X₇⋅X₇+72⋅X₇+28 {O(n^2)}
t₅₇, X₂: 18⋅X₇+12 {O(n)}
t₅₇, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₅₇, X₄: 36⋅X₇⋅X₇+108⋅X₇+42 {O(n^2)}
t₅₇, X₇: X₇ {O(n)}
t₁₅₉₀, X₀: 3⋅X₇+1 {O(n)}
t₁₅₉₀, X₁: 24⋅X₇⋅X₇+72⋅X₇+28 {O(n^2)}
t₁₅₉₀, X₂: 18⋅X₇+2⋅X₂+12 {O(n)}
t₁₅₉₀, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₉₀, X₄: 36⋅X₇⋅X₇+108⋅X₇+2⋅X₄+42 {O(n^2)}
t₁₅₉₀, X₇: 3⋅X₇ {O(n)}
t₅₈, X₀: X₇+1 {O(n)}
t₅₈, X₁: 18⋅X₇⋅X₇+66⋅X₇+54 {O(n^2)}
t₅₈, X₂: 2⋅X₇+4 {O(n)}
t₅₈, X₃: 6⋅X₇⋅X₇+22⋅X₇+18 {O(n^2)}
t₅₈, X₄: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₅₈, X₇: X₇ {O(n)}
t₁₅₈₂, X₀: 3⋅X₇+1 {O(n)}
t₁₅₈₂, X₁: 48⋅X₇⋅X₇+144⋅X₇+56 {O(n^2)}
t₁₅₈₂, X₂: 36⋅X₇+4⋅X₂+24 {O(n)}
t₁₅₈₂, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₈₂, X₄: 72⋅X₇⋅X₇+216⋅X₇+4⋅X₄+84 {O(n^2)}
t₁₅₈₂, X₇: 3⋅X₇ {O(n)}
t₁₅₈₃, X₀: 3⋅X₇+1 {O(n)}
t₁₅₈₃, X₁: 48⋅X₇⋅X₇+144⋅X₇+56 {O(n^2)}
t₁₅₈₃, X₂: 36⋅X₇+4⋅X₂+24 {O(n)}
t₁₅₈₃, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₈₃, X₄: 72⋅X₇⋅X₇+216⋅X₇+4⋅X₄+84 {O(n^2)}
t₁₅₈₃, X₇: 3⋅X₇ {O(n)}
t₁₅₈₄, X₀: 3⋅X₇+1 {O(n)}
t₁₅₈₄, X₁: 24⋅X₇⋅X₇+72⋅X₇+28 {O(n^2)}
t₁₅₈₄, X₂: 18⋅X₇+2⋅X₂+12 {O(n)}
t₁₅₈₄, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₈₄, X₄: 36⋅X₇⋅X₇+108⋅X₇+2⋅X₄+42 {O(n^2)}
t₁₅₈₄, X₇: 3⋅X₇ {O(n)}
t₁₅₈₅, X₀: 3⋅X₇+1 {O(n)}
t₁₅₈₅, X₁: 24⋅X₇⋅X₇+72⋅X₇+28 {O(n^2)}
t₁₅₈₅, X₂: 18⋅X₇+2⋅X₂+12 {O(n)}
t₁₅₈₅, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₈₅, X₄: 36⋅X₇⋅X₇+108⋅X₇+2⋅X₄+42 {O(n^2)}
t₁₅₈₅, X₇: 3⋅X₇ {O(n)}
t₁₅₁₇, X₀: 3⋅X₇+1 {O(n)}
t₁₅₁₇, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₁₇, X₂: 2⋅X₇+4 {O(n)}
t₁₅₁₇, X₃: 6⋅X₇⋅X₇+22⋅X₇+18 {O(n^2)}
t₁₅₁₇, X₄: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₁₇, X₇: 3⋅X₇ {O(n)}
t₁₅₄₆, X₀: 1 {O(1)}
t₁₅₄₆, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₄₆, X₂: 1 {O(1)}
t₁₅₄₆, X₃: 6⋅X₇⋅X₇+22⋅X₇+18 {O(n^2)}
t₁₅₄₆, X₄: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₄₆, X₇: 3⋅X₇ {O(n)}
t₁₅₄₈, X₀: 3⋅X₇+1 {O(n)}
t₁₅₄₈, X₁: 1 {O(1)}
t₁₅₄₈, X₂: 2⋅X₇+4 {O(n)}
t₁₅₄₈, X₃: 0 {O(1)}
t₁₅₄₈, X₄: 0 {O(1)}
t₁₅₄₈, X₇: 3⋅X₇ {O(n)}
t₁₅₁₉, X₀: 3⋅X₇+1 {O(n)}
t₁₅₁₉, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₁₉, X₂: 7⋅X₇+2 {O(n)}
t₁₅₁₉, X₃: 6⋅X₇⋅X₇+22⋅X₇+X₃+18 {O(n^2)}
t₁₅₁₉, X₄: 12⋅X₇⋅X₇+36⋅X₇+14 {O(n^2)}
t₁₅₁₉, X₅: 0 {O(1)}
t₁₅₁₉, X₇: 3⋅X₇ {O(n)}
t₁₅₄₉, X₀: 3⋅X₇+1 {O(n)}
t₁₅₄₉, X₁: 1 {O(1)}
t₁₅₄₉, X₂: 7⋅X₇+2 {O(n)}
t₁₅₄₉, X₃: 6⋅X₇⋅X₇+22⋅X₇+X₃+18 {O(n^2)}
t₁₅₄₉, X₄: 0 {O(1)}
t₁₅₄₉, X₅: 0 {O(1)}
t₁₅₄₉, X₇: 3⋅X₇ {O(n)}
t₁₅₂₁, X₀: 3⋅X₇+1 {O(n)}
t₁₅₂₁, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₂₁, X₂: 7⋅X₇+2 {O(n)}
t₁₅₂₁, X₃: 6⋅X₇⋅X₇+22⋅X₇+X₃+18 {O(n^2)}
t₁₅₂₁, X₄: 12⋅X₇⋅X₇+36⋅X₇+14 {O(n^2)}
t₁₅₂₁, X₅: 0 {O(1)}
t₁₅₂₁, X₇: 3⋅X₇ {O(n)}
t₁₅₈₆, X₀: 3⋅X₇+1 {O(n)}
t₁₅₈₆, X₁: 48⋅X₇⋅X₇+144⋅X₇+56 {O(n^2)}
t₁₅₈₆, X₂: 36⋅X₇+4⋅X₂+24 {O(n)}
t₁₅₈₆, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₈₆, X₄: 72⋅X₇⋅X₇+216⋅X₇+4⋅X₄+84 {O(n^2)}
t₁₅₈₆, X₇: 3⋅X₇ {O(n)}
t₁₅₈₇, X₀: 3⋅X₇+1 {O(n)}
t₁₅₈₇, X₁: 48⋅X₇⋅X₇+144⋅X₇+56 {O(n^2)}
t₁₅₈₇, X₂: 36⋅X₇+4⋅X₂+24 {O(n)}
t₁₅₈₇, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₈₇, X₄: 72⋅X₇⋅X₇+216⋅X₇+4⋅X₄+84 {O(n^2)}
t₁₅₈₇, X₇: 3⋅X₇ {O(n)}
t₁₆₀₅, X₀: 3⋅X₇+1 {O(n)}
t₁₆₀₅, X₁: 48⋅X₇⋅X₇+144⋅X₇+56 {O(n^2)}
t₁₆₀₅, X₂: 36⋅X₇+4⋅X₂+24 {O(n)}
t₁₆₀₅, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₆₀₅, X₄: 72⋅X₇⋅X₇+216⋅X₇+4⋅X₄+84 {O(n^2)}
t₁₆₀₅, X₆: 0 {O(1)}
t₁₆₀₅, X₇: 3⋅X₇ {O(n)}
t₁₅₈₈, X₀: 3⋅X₇+1 {O(n)}
t₁₅₈₈, X₁: 24⋅X₇⋅X₇+72⋅X₇+28 {O(n^2)}
t₁₅₈₈, X₂: 18⋅X₇+2⋅X₂+12 {O(n)}
t₁₅₈₈, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₈₈, X₄: 36⋅X₇⋅X₇+108⋅X₇+2⋅X₄+42 {O(n^2)}
t₁₅₈₈, X₇: 3⋅X₇ {O(n)}
t₁₅₈₉, X₀: 3⋅X₇+1 {O(n)}
t₁₅₈₉, X₁: 24⋅X₇⋅X₇+72⋅X₇+28 {O(n^2)}
t₁₅₈₉, X₂: 18⋅X₇+2⋅X₂+12 {O(n)}
t₁₅₈₉, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₈₉, X₄: 36⋅X₇⋅X₇+108⋅X₇+2⋅X₄+42 {O(n^2)}
t₁₅₈₉, X₇: 3⋅X₇ {O(n)}
t₁₆₀₆, X₀: 3⋅X₇+1 {O(n)}
t₁₆₀₆, X₁: 24⋅X₇⋅X₇+72⋅X₇+28 {O(n^2)}
t₁₆₀₆, X₂: 18⋅X₇+2⋅X₂+12 {O(n)}
t₁₆₀₆, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₆₀₆, X₄: 36⋅X₇⋅X₇+108⋅X₇+2⋅X₄+42 {O(n^2)}
t₁₆₀₆, X₆: 0 {O(1)}
t₁₆₀₆, X₇: 3⋅X₇ {O(n)}
t₁₅₉₁, X₀: 3⋅X₇+1 {O(n)}
t₁₅₉₁, X₁: 48⋅X₇⋅X₇+144⋅X₇+56 {O(n^2)}
t₁₅₉₁, X₂: 36⋅X₇+4⋅X₂+24 {O(n)}
t₁₅₉₁, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₉₁, X₄: 72⋅X₇⋅X₇+216⋅X₇+4⋅X₄+84 {O(n^2)}
t₁₅₉₁, X₇: 3⋅X₇ {O(n)}
t₁₆₀₇, X₀: 3⋅X₇+1 {O(n)}
t₁₆₀₇, X₁: 144⋅X₇⋅X₇+432⋅X₇+168 {O(n^2)}
t₁₆₀₇, X₂: 108⋅X₇+12⋅X₂+72 {O(n)}
t₁₆₀₇, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₆₀₇, X₄: 216⋅X₇⋅X₇+12⋅X₄+648⋅X₇+252 {O(n^2)}
t₁₆₀₇, X₇: 3⋅X₇ {O(n)}
t₁₅₂₂, X₀: X₇ {O(n)}
t₁₅₂₂, X₁: 0 {O(1)}
t₁₅₂₂, X₂: X₇ {O(n)}
t₁₅₂₂, X₃: X₃ {O(n)}
t₁₅₂₂, X₄: 0 {O(1)}
t₁₅₂₂, X₅: 0 {O(1)}
t₁₅₂₂, X₆: X₆ {O(n)}
t₁₅₂₂, X₇: X₇ {O(n)}
t₁₅₄₀, X₀: X₇ {O(n)}
t₁₅₄₀, X₁: 0 {O(1)}
t₁₅₄₀, X₂: X₂ {O(n)}
t₁₅₄₀, X₃: 0 {O(1)}
t₁₅₄₀, X₄: X₄ {O(n)}
t₁₅₄₀, X₆: X₆ {O(n)}
t₁₅₄₀, X₇: X₇ {O(n)}
t₁₅₄₃, X₀: X₇ {O(n)}
t₁₅₄₃, X₁: 0 {O(1)}
t₁₅₄₃, X₂: X₂ {O(n)}
t₁₅₄₃, X₃: 0 {O(1)}
t₁₅₄₃, X₄: X₄ {O(n)}
t₁₅₄₃, X₆: X₆ {O(n)}
t₁₅₄₃, X₇: X₇ {O(n)}
t₁₅₂₃, X₀: 3⋅X₇+1 {O(n)}
t₁₅₂₃, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₂₃, X₂: 3⋅X₇+1 {O(n)}
t₁₅₂₃, X₃: 6⋅X₇⋅X₇+22⋅X₇+X₃+18 {O(n^2)}
t₁₅₂₃, X₄: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₂₃, X₅: 0 {O(1)}
t₁₅₂₃, X₇: 3⋅X₇ {O(n)}
t₁₅₄₁, X₀: 3⋅X₇+1 {O(n)}
t₁₅₄₁, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₄₁, X₂: 7⋅X₇+2 {O(n)}
t₁₅₄₁, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₄₁, X₄: 12⋅X₇⋅X₇+36⋅X₇+14 {O(n^2)}
t₁₅₄₁, X₇: 3⋅X₇ {O(n)}
t₁₅₄₄, X₀: 3⋅X₇+1 {O(n)}
t₁₅₄₄, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₄₄, X₂: 7⋅X₇+2 {O(n)}
t₁₅₄₄, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₄₄, X₄: 12⋅X₇⋅X₇+36⋅X₇+14 {O(n^2)}
t₁₅₄₄, X₇: 3⋅X₇ {O(n)}
t₁₅₂₄, X₀: 3⋅X₇+1 {O(n)}
t₁₅₂₄, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₂₄, X₂: 3⋅X₇+1 {O(n)}
t₁₅₂₄, X₃: 6⋅X₇⋅X₇+22⋅X₇+18 {O(n^2)}
t₁₅₂₄, X₄: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₂₄, X₅: 0 {O(1)}
t₁₅₂₄, X₇: 3⋅X₇ {O(n)}
t₁₅₄₂, X₀: 3⋅X₇+1 {O(n)}
t₁₅₄₂, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₄₂, X₂: 2⋅X₇+4 {O(n)}
t₁₅₄₂, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₄₂, X₄: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₄₂, X₇: 3⋅X₇ {O(n)}
t₁₅₄₅, X₀: 3⋅X₇+1 {O(n)}
t₁₅₄₅, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₄₅, X₂: 2⋅X₇+4 {O(n)}
t₁₅₄₅, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₄₅, X₄: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₄₅, X₇: 3⋅X₇ {O(n)}
t₁₅₂₅, X₀: 3⋅X₇+1 {O(n)}
t₁₅₂₅, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₂₅, X₂: 2⋅X₇+4 {O(n)}
t₁₅₂₅, X₃: 6⋅X₇⋅X₇+22⋅X₇+18 {O(n^2)}
t₁₅₂₅, X₄: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₂₅, X₇: 3⋅X₇ {O(n)}
t₁₅₂₆, X₀: X₇ {O(n)}
t₁₅₂₆, X₁: 0 {O(1)}
t₁₅₂₆, X₂: X₂ {O(n)}
t₁₅₂₆, X₃: X₃ {O(n)}
t₁₅₂₆, X₄: X₄ {O(n)}
t₁₅₂₆, X₅: X₅ {O(n)}
t₁₅₂₆, X₆: X₆ {O(n)}
t₁₅₂₆, X₇: X₇ {O(n)}
t₁₅₂₇, X₀: 3⋅X₇+1 {O(n)}
t₁₅₂₇, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₂₇, X₂: 7⋅X₇+2 {O(n)}
t₁₅₂₇, X₃: 6⋅X₇⋅X₇+22⋅X₇+X₃+18 {O(n^2)}
t₁₅₂₇, X₄: 12⋅X₇⋅X₇+36⋅X₇+14 {O(n^2)}
t₁₅₂₇, X₅: 0 {O(1)}
t₁₅₂₇, X₇: 3⋅X₇ {O(n)}
t₁₅₂₈, X₀: 3⋅X₇+1 {O(n)}
t₁₅₂₈, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₂₈, X₂: 2⋅X₇+4 {O(n)}
t₁₅₂₈, X₃: 6⋅X₇⋅X₇+22⋅X₇+18 {O(n^2)}
t₁₅₂₈, X₄: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₂₈, X₇: 3⋅X₇ {O(n)}
t₁₅₂₉, X₀: X₇ {O(n)}
t₁₅₂₉, X₁: 0 {O(1)}
t₁₅₂₉, X₂: X₂ {O(n)}
t₁₅₂₉, X₃: X₃ {O(n)}
t₁₅₂₉, X₄: X₄ {O(n)}
t₁₅₂₉, X₆: X₆ {O(n)}
t₁₅₂₉, X₇: X₇ {O(n)}
t₁₅₃₀, X₀: 3⋅X₇+1 {O(n)}
t₁₅₃₀, X₁: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₃₀, X₂: 7⋅X₇+2 {O(n)}
t₁₅₃₀, X₃: 6⋅X₇⋅X₇+22⋅X₇+X₃+18 {O(n^2)}
t₁₅₃₀, X₄: 12⋅X₇⋅X₇+36⋅X₇+14 {O(n^2)}
t₁₅₃₀, X₇: 3⋅X₇ {O(n)}
t₁₅₉₂, X₀: 3⋅X₇+1 {O(n)}
t₁₅₉₂, X₁: 24⋅X₇⋅X₇+72⋅X₇+28 {O(n^2)}
t₁₅₉₂, X₂: 18⋅X₇+2⋅X₂+12 {O(n)}
t₁₅₉₂, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₉₂, X₄: 36⋅X₇⋅X₇+108⋅X₇+2⋅X₄+42 {O(n^2)}
t₁₅₉₂, X₇: 3⋅X₇ {O(n)}
t₁₅₉₃, X₀: 3⋅X₇+1 {O(n)}
t₁₅₉₃, X₁: 48⋅X₇⋅X₇+144⋅X₇+56 {O(n^2)}
t₁₅₉₃, X₂: 36⋅X₇+4⋅X₂+24 {O(n)}
t₁₅₉₃, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₉₃, X₄: 72⋅X₇⋅X₇+216⋅X₇+4⋅X₄+84 {O(n^2)}
t₁₅₉₃, X₇: 3⋅X₇ {O(n)}
t₁₅₉₄, X₀: 3⋅X₇+1 {O(n)}
t₁₅₉₄, X₁: 24⋅X₇⋅X₇+72⋅X₇+28 {O(n^2)}
t₁₅₉₄, X₂: 18⋅X₇+2⋅X₂+12 {O(n)}
t₁₅₉₄, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₉₄, X₄: 36⋅X₇⋅X₇+108⋅X₇+2⋅X₄+42 {O(n^2)}
t₁₅₉₄, X₇: 3⋅X₇ {O(n)}
t₁₅₉₅, X₀: 3⋅X₇+1 {O(n)}
t₁₅₉₅, X₁: 48⋅X₇⋅X₇+144⋅X₇+56 {O(n^2)}
t₁₅₉₅, X₂: 36⋅X₇+4⋅X₂+24 {O(n)}
t₁₅₉₅, X₃: 6⋅X₇⋅X₇+18⋅X₇+7 {O(n^2)}
t₁₅₉₅, X₄: 72⋅X₇⋅X₇+216⋅X₇+4⋅X₄+84 {O(n^2)}
t₁₅₉₅, X₇: 3⋅X₇ {O(n)}