Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₀
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, 0, X₂, X₃, X₄, X₅) :|: X₀ < X₅
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(0, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₄
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ < 1
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ < X₁
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₀
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀+1, X₁, X₂, X₃, X₄, X₅)
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁+X₄, X₂, X₃, X₄, X₅)
Preprocessing
Eliminate variables {X₂,X₃} that do not contribute to the problem
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₂₀: l0(X₀, X₁, X₄, X₅) → l3(X₀, X₁, X₄, X₅)
t₂₂: l1(X₀, X₁, X₄, X₅) → l2(X₀, X₁, X₄, X₅) :|: X₅ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₀
t₂₁: l1(X₀, X₁, X₄, X₅) → l4(X₀, 0, X₄, X₅) :|: X₀ < X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₀
t₂₃: l2(X₀, X₁, X₄, X₅) → l7(X₀, X₁, X₄, X₅)
t₂₄: l3(X₀, X₁, X₄, X₅) → l1(0, X₁, X₄, X₅) :|: 1 ≤ X₄
t₂₅: l3(X₀, X₁, X₄, X₅) → l2(X₀, X₁, X₄, X₅) :|: X₄ < 1
t₂₇: l4(X₀, X₁, X₄, X₅) → l5(X₀, X₁, X₄, X₅) :|: X₀ < X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₂₆: l4(X₀, X₁, X₄, X₅) → l6(X₀, X₁, X₄, X₅) :|: X₁ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₂₈: l5(X₀, X₁, X₄, X₅) → l1(X₀+1, X₁, X₄, X₅) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₂₉: l6(X₀, X₁, X₄, X₅) → l4(X₀, X₁+X₄, X₄, X₅) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₂₁: l1(X₀, X₁, X₄, X₅) → l4(X₀, 0, X₄, X₅) :|: X₀ < X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF:
l5 [X₅-X₀-1 ]
l1 [X₅-X₀ ]
l6 [X₅-X₀-1 ]
l4 [X₅-X₀-1 ]
MPRF for transition t₂₇: l4(X₀, X₁, X₄, X₅) → l5(X₀, X₁, X₄, X₅) :|: X₀ < X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF:
l5 [X₅-X₀-1 ]
l1 [X₅-X₀ ]
l6 [X₅-X₀ ]
l4 [X₅-X₀ ]
MPRF for transition t₂₈: l5(X₀, X₁, X₄, X₅) → l1(X₀+1, X₁, X₄, X₅) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF:
l5 [X₅-X₀ ]
l1 [X₅-X₀ ]
l6 [X₅-X₀ ]
l4 [X₅-X₀ ]
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
MPRF for transition t₂₆: l4(X₀, X₁, X₄, X₅) → l6(X₀, X₁, X₄, X₅) :|: X₁ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₅⋅X₅+X₅+1 {O(n^2)}
MPRF:
l1 [X₀+1 ]
l5 [X₀-X₁ ]
l6 [X₀-X₁ ]
l4 [X₀+1-X₁ ]
MPRF for transition t₂₉: l6(X₀, X₁, X₄, X₅) → l4(X₀, X₁+X₄, X₄, X₅) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₅⋅X₅+X₅ {O(n^2)}
MPRF:
l1 [X₅ ]
l5 [X₅-X₁ ]
l6 [X₅-X₁ ]
l4 [X₅-X₁ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₂₇: l4→l5
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___3
Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___1
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l4___2
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
knowledge_propagation leads to new time bound X₅ {O(n)} for transition t₈₁: l4(X₀, X₁, X₄, X₅) → n_l6___3(X₀, X₁, X₄, X₅) :|: 1 ≤ X₄ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₅ {O(n)} for transition t₈₃: n_l6___3(X₀, X₁, X₄, X₅) → n_l4___2(X₀, X₁+X₄, X₄, X₅) :|: 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₈₀: n_l4___2(X₀, X₁, X₄, X₅) → n_l6___1(X₀, X₁, X₄, X₅) :|: 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 0 ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₀+X₄ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₅ ∧ 0 ≤ X₁ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₅⋅X₅ {O(n^2)}
MPRF:
l1 [X₀ ]
l4 [X₀ ]
l5 [-X₁ ]
n_l6___1 [X₀-X₁ ]
n_l6___3 [X₀ ]
n_l4___2 [X₀+1-X₁ ]
MPRF for transition t₈₇: n_l4___2(X₀, X₁, X₄, X₅) → l5(X₀, X₁, X₄, X₅) :|: X₀ < X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₅+1 {O(n)}
MPRF:
l4 [X₅+1-X₀ ]
l1 [X₅+1-X₀ ]
l5 [X₅-X₀ ]
n_l6___1 [X₅+1-X₀ ]
n_l6___3 [X₅+1-X₀ ]
n_l4___2 [X₅+1-X₀ ]
MPRF for transition t₈₂: n_l6___1(X₀, X₁, X₄, X₅) → n_l4___2(X₀, X₁+X₄, X₄, X₅) :|: 1+X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅⋅X₅+X₅ {O(n^2)}
MPRF:
l1 [X₅ ]
l4 [X₀ ]
l5 [X₀+X₄-X₁ ]
n_l6___1 [X₀+1-X₁ ]
n_l6___3 [X₀ ]
n_l4___2 [X₀+X₄-X₁ ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:2⋅X₅⋅X₅+5⋅X₅+6 {O(n^2)}
t₂₀: 1 {O(1)}
t₂₁: X₅ {O(n)}
t₂₂: 1 {O(1)}
t₂₃: 1 {O(1)}
t₂₄: 1 {O(1)}
t₂₅: 1 {O(1)}
t₂₆: X₅⋅X₅+X₅+1 {O(n^2)}
t₂₇: X₅ {O(n)}
t₂₈: X₅ {O(n)}
t₂₉: X₅⋅X₅+X₅ {O(n^2)}
Costbounds
Overall costbound: 2⋅X₅⋅X₅+5⋅X₅+6 {O(n^2)}
t₂₀: 1 {O(1)}
t₂₁: X₅ {O(n)}
t₂₂: 1 {O(1)}
t₂₃: 1 {O(1)}
t₂₄: 1 {O(1)}
t₂₅: 1 {O(1)}
t₂₆: X₅⋅X₅+X₅+1 {O(n^2)}
t₂₇: X₅ {O(n)}
t₂₈: X₅ {O(n)}
t₂₉: X₅⋅X₅+X₅ {O(n^2)}
Sizebounds
t₂₀, X₀: X₀ {O(n)}
t₂₀, X₁: X₁ {O(n)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: X₅ {O(n)}
t₂₁, X₀: X₅ {O(n)}
t₂₁, X₁: 0 {O(1)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: X₅ {O(n)}
t₂₂, X₀: X₅ {O(n)}
t₂₂, X₁: X₄⋅X₅⋅X₅+X₄⋅X₅+X₁+X₄ {O(n^3)}
t₂₂, X₄: 2⋅X₄ {O(n)}
t₂₂, X₅: 2⋅X₅ {O(n)}
t₂₃, X₀: X₀+X₅ {O(n)}
t₂₃, X₁: X₄⋅X₅⋅X₅+X₄⋅X₅+2⋅X₁+X₄ {O(n^3)}
t₂₃, X₄: 3⋅X₄ {O(n)}
t₂₃, X₅: 3⋅X₅ {O(n)}
t₂₄, X₀: 0 {O(1)}
t₂₄, X₁: X₁ {O(n)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: X₅ {O(n)}
t₂₅, X₀: X₀ {O(n)}
t₂₅, X₁: X₁ {O(n)}
t₂₅, X₄: X₄ {O(n)}
t₂₅, X₅: X₅ {O(n)}
t₂₆, X₀: X₅ {O(n)}
t₂₆, X₁: X₄⋅X₅⋅X₅+X₄⋅X₅+X₄ {O(n^3)}
t₂₆, X₄: X₄ {O(n)}
t₂₆, X₅: X₅ {O(n)}
t₂₇, X₀: X₅ {O(n)}
t₂₇, X₁: X₄⋅X₅⋅X₅+X₄⋅X₅+X₄ {O(n^3)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₅: X₅ {O(n)}
t₂₈, X₀: X₅ {O(n)}
t₂₈, X₁: X₄⋅X₅⋅X₅+X₄⋅X₅+X₄ {O(n^3)}
t₂₈, X₄: X₄ {O(n)}
t₂₈, X₅: X₅ {O(n)}
t₂₉, X₀: X₅ {O(n)}
t₂₉, X₁: X₄⋅X₅⋅X₅+X₄⋅X₅+X₄ {O(n^3)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₅: X₅ {O(n)}