Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₂: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₂, X₂, X₃, X₄) :|: 0 < X₀
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁, X₂, X₃, X₄)
t₅: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 0
t₄: l3(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₁
t₈: l4(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₇: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀-1, X₁, X₂, X₃, X₄)
t₆: l6(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁-1, X₂, X₃, X₄)

Preprocessing

Eliminate variables {X₃,X₄} that do not contribute to the problem

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l7

Found invariant 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₀ ≤ X₂ for location l1

Found invariant X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l4

Found invariant 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₁₈: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₁₉: l1(X₀, X₁, X₂) → l3(X₀, X₂, X₂) :|: 0 < X₀ ∧ X₀ ≤ X₂
t₂₀: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₀ ≤ 0 ∧ X₀ ≤ X₂
t₂₁: l2(X₀, X₁, X₂) → l1(X₂, X₁, X₂)
t₂₃: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ 0 ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₂: l3(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: 0 < X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₄: l4(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: X₀ ≤ X₂ ∧ X₀ ≤ 0
t₂₅: l5(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₆: l6(X₀, X₁, X₂) → l3(X₀, X₁-1, X₂) :|: 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₁₉: l1(X₀, X₁, X₂) → l3(X₀, X₂, X₂) :|: 0 < X₀ ∧ X₀ ≤ X₂ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l5 [X₀-1 ]
l1 [X₀ ]
l6 [X₀-1 ]
l3 [X₀-1 ]

MPRF for transition t₂₃: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ 0 ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l5 [X₀-1 ]
l1 [X₀ ]
l6 [X₀ ]
l3 [X₀ ]

MPRF for transition t₂₅: l5(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l5 [X₀ ]
l1 [X₀ ]
l6 [X₀ ]
l3 [X₀ ]

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l7

Found invariant 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₀ ≤ X₂ for location l1

Found invariant X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l4

Found invariant 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₂₂ 4⋅X₂⋅X₂+4⋅X₂ {O(n^2)}

TWN-Loops:

entry: t₁₉: l1(X₀, X₁, X₂) → l3(X₀, X₂, X₂) :|: 0 < X₀ ∧ X₀ ≤ X₂
results in twn-loop: twn:Inv: [1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂) -> (X₀,X₁-1,X₂) :|: 0 < X₁
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂

Termination: true
Formula:

1 < 0
∨ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}

relevant size-bounds w.r.t. t₁₉:
X₁: 2⋅X₂ {O(n)}
Runtime-bound of t₁₉: X₂ {O(n)}
Results in: 4⋅X₂⋅X₂+4⋅X₂ {O(n^2)}

4⋅X₂⋅X₂+4⋅X₂ {O(n^2)}

Time-Bound by TWN-Loops:

TWN-Loops: t₂₆ 4⋅X₂⋅X₂+4⋅X₂ {O(n^2)}

relevant size-bounds w.r.t. t₁₉:
X₁: 2⋅X₂ {O(n)}
Runtime-bound of t₁₉: X₂ {O(n)}
Results in: 4⋅X₂⋅X₂+4⋅X₂ {O(n^2)}

4⋅X₂⋅X₂+4⋅X₂ {O(n^2)}

Analysing control-flow refined program

Cut unsatisfiable transition t₂₃: l3→l5

Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___3

Found invariant 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___1

Found invariant X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l7

Found invariant 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___2

Found invariant X₀ ≤ X₂ for location l1

Found invariant X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l4

Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3

knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₇₃: l3(X₀, X₁, X₂) → n_l6___3(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ 0 < X₁ ∧ X₀ ≤ X₂ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₇₅: n_l6___3(X₀, X₁, X₂) → n_l3___2(X₀, X₁-1, X₂) :|: X₁ ≤ X₂ ∧ 0 < X₁ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

MPRF for transition t₇₂: n_l3___2(X₀, X₁, X₂) → n_l6___1(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂⋅X₂+X₂ {O(n^2)}

MPRF:

l3 [0 ]
n_l6___3 [0 ]
l1 [0 ]
l5 [0 ]
n_l6___1 [X₁ ]
n_l3___2 [X₁+1 ]

MPRF for transition t₇₉: n_l3___2(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ 0 ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l3 [X₀ ]
l1 [X₀ ]
l5 [X₀-1 ]
n_l6___1 [X₀ ]
n_l6___3 [X₀ ]
n_l3___2 [X₀ ]

MPRF for transition t₇₄: n_l6___1(X₀, X₁, X₂) → n_l3___2(X₀, X₁-1, X₂) :|: X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ 0 < X₁ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂⋅X₂ {O(n^2)}

MPRF:

l3 [0 ]
n_l6___3 [0 ]
l1 [0 ]
l5 [0 ]
n_l6___1 [X₁ ]
n_l3___2 [X₁ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:8⋅X₂⋅X₂+11⋅X₂+4 {O(n^2)}
t₁₈: 1 {O(1)}
t₁₉: X₂ {O(n)}
t₂₀: 1 {O(1)}
t₂₁: 1 {O(1)}
t₂₂: 4⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
t₂₃: X₂ {O(n)}
t₂₄: 1 {O(1)}
t₂₅: X₂ {O(n)}
t₂₆: 4⋅X₂⋅X₂+4⋅X₂ {O(n^2)}

Costbounds

Overall costbound: 8⋅X₂⋅X₂+11⋅X₂+4 {O(n^2)}
t₁₈: 1 {O(1)}
t₁₉: X₂ {O(n)}
t₂₀: 1 {O(1)}
t₂₁: 1 {O(1)}
t₂₂: 4⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
t₂₃: X₂ {O(n)}
t₂₄: 1 {O(1)}
t₂₅: X₂ {O(n)}
t₂₆: 4⋅X₂⋅X₂+4⋅X₂ {O(n^2)}

Sizebounds

t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₉, X₀: X₂ {O(n)}
t₁₉, X₁: 2⋅X₂ {O(n)}
t₁₉, X₂: X₂ {O(n)}
t₂₀, X₀: 2⋅X₂ {O(n)}
t₂₀, X₁: X₁ {O(n)}
t₂₀, X₂: 2⋅X₂ {O(n)}
t₂₁, X₀: X₂ {O(n)}
t₂₁, X₁: X₁ {O(n)}
t₂₁, X₂: X₂ {O(n)}
t₂₂, X₀: X₂ {O(n)}
t₂₂, X₁: 2⋅X₂ {O(n)}
t₂₂, X₂: X₂ {O(n)}
t₂₃, X₀: X₂ {O(n)}
t₂₃, X₁: 0 {O(1)}
t₂₃, X₂: X₂ {O(n)}
t₂₄, X₀: 2⋅X₂ {O(n)}
t₂₄, X₁: X₁ {O(n)}
t₂₄, X₂: 2⋅X₂ {O(n)}
t₂₅, X₀: X₂ {O(n)}
t₂₅, X₁: 0 {O(1)}
t₂₅, X₂: X₂ {O(n)}
t₂₆, X₀: X₂ {O(n)}
t₂₆, X₁: 2⋅X₂ {O(n)}
t₂₆, X₂: X₂ {O(n)}