Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇)
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇)
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < 0
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 0
t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₃ ∧ 0 ≤ X₅
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₂, X₄, 0, X₆, X₇)
t₂₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁
t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆)
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: X₀ ≤ 0
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇)

Preprocessing

Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l11

Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l2

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l6

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l7

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l5

Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l13

Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l8

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l1

Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10

Found invariant 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l4

Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l9

Found invariant 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l3

Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₂, X₄, 0, X₆, X₇)
t₂₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆) :|: 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀

MPRF for transition t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF:

l11 [X₃+1 ]
l10 [X₃+1 ]
l4 [X₃ ]
l3 [X₃+1 ]
l1 [X₄+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₃+1 ]
l8 [X₃+1 ]
l9 [X₃+1 ]
l2 [X₃+1 ]

MPRF for transition t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF:

l11 [X₃+1 ]
l10 [X₃+1 ]
l4 [X₃ ]
l3 [X₃+1 ]
l1 [X₄+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₃+1 ]
l8 [X₃+1 ]
l9 [X₃+1 ]
l2 [X₃+1 ]

MPRF for transition t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆) :|: 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF:

l11 [X₃+1 ]
l10 [X₃+1 ]
l4 [X₃+1 ]
l3 [X₃+1 ]
l1 [X₄+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₃+1 ]
l8 [X₃+1 ]
l9 [X₃+1 ]
l2 [X₃+1 ]

MPRF for transition t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF:

l11 [X₃+1 ]
l10 [X₃ ]
l4 [X₃ ]
l3 [X₃ ]
l1 [X₄+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₃+1 ]
l8 [X₃ ]
l9 [X₃ ]
l2 [X₃ ]

MPRF for transition t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₂⋅X₂+14⋅X₂+10 {O(n^2)}

MPRF:

l11 [2⋅X₂+X₃+3 ]
l10 [2⋅X₂+X₃+2-X₆ ]
l4 [2⋅X₂+X₃+2-X₆ ]
l3 [2⋅X₂+X₃+2-X₆ ]
l1 [2⋅X₂+X₄+3 ]
l6 [2⋅X₂+X₃+3 ]
l7 [2⋅X₂+X₃+3 ]
l5 [2⋅X₂+X₃+3 ]
l8 [2⋅X₂+X₃+2-X₆ ]
l9 [2⋅X₂+X₃+2-X₆ ]
l2 [2⋅X₂+X₃+2-X₆ ]

MPRF for transition t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₂⋅X₂+11⋅X₂+8 {O(n^2)}

MPRF:

l11 [X₂+X₃+2 ]
l10 [X₂+X₃-X₆ ]
l4 [X₂+X₃+1-X₆ ]
l3 [X₂+X₃+1-X₆ ]
l1 [X₂+X₄+2 ]
l6 [X₂+X₃+2 ]
l7 [X₂+X₃+2 ]
l5 [X₂+X₃+2 ]
l8 [X₂+X₃+1-X₆ ]
l9 [X₂+X₃+1-X₆ ]
l2 [X₂+X₃+1-X₆ ]

MPRF for transition t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

7⋅X₂⋅X₂+22⋅X₂+12 {O(n^2)}

MPRF:

l11 [3⋅X₂+2⋅X₃+2 ]
l10 [3⋅X₂+2⋅X₃+1-X₆ ]
l4 [3⋅X₂+2⋅X₃+1-X₆ ]
l3 [3⋅X₂+2⋅X₃+2-X₆ ]
l1 [3⋅X₂+2⋅X₄+2 ]
l6 [3⋅X₂+2⋅X₃+2 ]
l7 [3⋅X₂+2⋅X₃+2 ]
l5 [3⋅X₂+2⋅X₃+2 ]
l8 [3⋅X₂+2⋅X₃+1-X₆ ]
l9 [3⋅X₂+2⋅X₃+1-X₆ ]
l2 [3⋅X₂+2⋅X₃+1-X₆ ]

MPRF for transition t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₂⋅X₂+9⋅X₂+2 {O(n^2)}

MPRF:

l11 [4⋅X₂+1 ]
l10 [X₂+2⋅X₃-X₆ ]
l4 [X₂+2⋅X₃-X₆ ]
l3 [X₂+2⋅X₃+1-X₆ ]
l1 [4⋅X₂+1 ]
l6 [4⋅X₂+1 ]
l7 [4⋅X₂+1 ]
l5 [4⋅X₂+1 ]
l8 [X₂+2⋅X₃+1-X₆ ]
l9 [X₂+2⋅X₃-X₆ ]
l2 [X₂+2⋅X₃-X₆ ]

MPRF for transition t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₂⋅X₂+8⋅X₂+4 {O(n^2)}

MPRF:

l11 [3⋅X₂+2 ]
l10 [X₂+2⋅X₃-X₆ ]
l4 [X₂+2⋅X₃-X₆ ]
l3 [X₂+2⋅X₃+1-X₆ ]
l1 [3⋅X₂+2 ]
l6 [3⋅X₂+2 ]
l7 [3⋅X₂+2 ]
l5 [3⋅X₂+2 ]
l8 [X₂+2⋅X₃+1-X₆ ]
l9 [X₂+2⋅X₃+1-X₆ ]
l2 [X₂+2⋅X₃-X₆ ]

MPRF for transition t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:

new bound:

12⋅X₂⋅X₂⋅X₂⋅X₂+74⋅X₂⋅X₂⋅X₂+167⋅X₂⋅X₂+160⋅X₂+53 {O(n^4)}

MPRF:

l11 [X₅+1 ]
l10 [X₆+2 ]
l2 [X₆+2 ]
l4 [X₆+1 ]
l3 [X₆+1 ]
l1 [X₇+1 ]
l6 [X₅+1 ]
l7 [X₅+1 ]
l5 [X₅+1 ]
l8 [X₆+1 ]
l9 [X₆+1 ]

MPRF for transition t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ of depth 1:

new bound:

12⋅X₂⋅X₂⋅X₂⋅X₂+74⋅X₂⋅X₂⋅X₂+164⋅X₂⋅X₂+152⋅X₂+49 {O(n^4)}

MPRF:

l11 [X₅+1 ]
l10 [X₆+1 ]
l2 [X₆+1 ]
l4 [X₆ ]
l3 [X₆ ]
l1 [X₇ ]
l6 [X₅ ]
l7 [X₅ ]
l5 [X₅ ]
l8 [X₆ ]
l9 [X₆ ]

MPRF for transition t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:

new bound:

12⋅X₂⋅X₂⋅X₂⋅X₂+74⋅X₂⋅X₂⋅X₂+164⋅X₂⋅X₂+152⋅X₂+49 {O(n^4)}

MPRF:

l11 [X₅+1 ]
l10 [X₆+1 ]
l2 [X₆+1 ]
l4 [X₆ ]
l3 [X₆ ]
l1 [X₇ ]
l6 [X₅+1 ]
l7 [X₅+1 ]
l5 [X₅+1 ]
l8 [X₆ ]
l9 [X₆ ]

MPRF for transition t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:

new bound:

12⋅X₂⋅X₂⋅X₂⋅X₂+74⋅X₂⋅X₂⋅X₂+164⋅X₂⋅X₂+152⋅X₂+49 {O(n^4)}

MPRF:

l11 [X₅+1 ]
l10 [X₆+1 ]
l2 [X₆+1 ]
l4 [X₆ ]
l3 [X₆ ]
l1 [X₇ ]
l6 [X₅+1 ]
l7 [X₅ ]
l5 [X₅ ]
l8 [X₆ ]
l9 [X₆ ]

MPRF for transition t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:

new bound:

12⋅X₂⋅X₂⋅X₂⋅X₂+74⋅X₂⋅X₂⋅X₂+164⋅X₂⋅X₂+152⋅X₂+49 {O(n^4)}

MPRF:

l11 [X₅+1 ]
l10 [X₆+1 ]
l2 [X₆+1 ]
l4 [X₆ ]
l3 [X₆ ]
l1 [X₇ ]
l6 [X₅+1 ]
l7 [X₅+1 ]
l5 [X₅ ]
l8 [X₆ ]
l9 [X₆ ]

Analysing control-flow refined program

Cut unsatisfiable transition t₄: l11→l13

Cut unsatisfiable transition t₁₄₁₇: n_l11___7→l13

Found invariant X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ for location l11

Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location n_l6___3

Found invariant X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 for location n_l6___6

Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location n_l5___1

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l2___7

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l5___9

Found invariant X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___1

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ 2+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 2+X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l11___12

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___6

Found invariant X₆ ≤ 1+X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___5

Found invariant X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l9___3

Found invariant X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 for location n_l1___8

Found invariant X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l2___2

Found invariant X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location n_l5___4

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l7___10

Found invariant X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 for location n_l11___7

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l6___11

Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location n_l7___2

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l8___9

Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l13

Found invariant X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___4

Found invariant X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l1

Found invariant 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l4

Found invariant X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 for location n_l7___5

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l9___8

Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l3

Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l14

knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₃₉₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___12(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₅ ∧ X₃ ≤ 1+X₄ ∧ X₅ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ 1+X₄ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ 1 ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₃₉₁: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ 2+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 2+X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₃₉₉: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₄₀₂: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___9(NoDet0, X₁, Arg2_P, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ Arg5_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₃₉₈: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂

knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₄₁₅: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂

MPRF for transition t₁₄₄₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂+2 {O(n)}

MPRF:

l1 [X₃+X₆-X₇ ]
n_l11___12 [X₄+1 ]
n_l11___7 [X₄+1 ]
n_l10___1 [X₃ ]
n_l10___6 [X₃ ]
n_l3___5 [X₃ ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃+1 ]
n_l6___11 [X₄+X₅+2-X₇ ]
n_l6___6 [X₃+1 ]
n_l7___10 [X₃+X₅+2-X₇ ]
n_l5___9 [X₄+1 ]
n_l7___5 [X₃+1 ]
n_l5___4 [X₄+X₇-X₅ ]
n_l8___4 [X₃ ]
n_l8___9 [X₃ ]
n_l9___3 [X₃ ]
n_l2___2 [X₃ ]
n_l9___8 [X₃ ]
n_l2___7 [X₃ ]

MPRF for transition t₁₄₃₉: n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}

MPRF:

l1 [X₂-1 ]
n_l11___12 [X₂-1 ]
n_l11___7 [2⋅X₂ ]
n_l10___1 [2⋅X₂-X₆ ]
n_l10___6 [2⋅X₂ ]
n_l3___5 [2⋅X₂-X₆ ]
l4 [X₂-1 ]
n_l1___8 [2⋅X₂ ]
n_l5___9 [2⋅X₂ ]
l3 [2⋅X₂ ]
n_l6___11 [X₂-1 ]
n_l7___10 [X₂-1 ]
n_l6___6 [2⋅X₂ ]
n_l7___5 [2⋅X₂ ]
n_l5___4 [2⋅X₂ ]
n_l8___4 [2⋅X₂-X₆ ]
n_l8___9 [2⋅X₂ ]
n_l9___3 [2⋅X₂-X₆ ]
n_l2___2 [2⋅X₂-X₆ ]
n_l9___8 [2⋅X₂ ]
n_l2___7 [2⋅X₂ ]

MPRF for transition t₁₄₄₀: n_l10___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂+2 {O(n)}

MPRF:

l1 [X₄+1 ]
n_l11___12 [X₃+1 ]
n_l11___7 [X₄+1 ]
n_l10___1 [X₃ ]
n_l10___6 [X₃+1 ]
n_l3___5 [X₃ ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃+1 ]
n_l6___11 [X₄+X₅+2-X₆ ]
n_l6___6 [X₄+1 ]
n_l7___10 [X₃+X₅+2-X₆ ]
n_l5___9 [X₄+X₇+1-X₆ ]
n_l7___5 [X₃+1 ]
n_l5___4 [X₄+1 ]
n_l8___4 [X₃ ]
n_l8___9 [X₃+1 ]
n_l9___3 [X₃ ]
n_l2___2 [X₃ ]
n_l9___8 [X₃+1 ]
n_l2___7 [X₃+X₆+1-X₅ ]

MPRF for transition t₁₃₉₃: n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 of depth 1:

new bound:

4⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+25⋅X₂+13 {O(n^3)}

MPRF:

l1 [X₆-2⋅X₂ ]
n_l11___12 [X₇-2⋅X₂ ]
n_l11___7 [X₇+1 ]
n_l10___1 [1-X₂ ]
n_l10___6 [1-X₂ ]
n_l3___5 [1-X₂ ]
l4 [X₆-2⋅X₂ ]
n_l1___8 [X₇+1 ]
n_l5___9 [X₇ ]
l3 [X₆+1 ]
n_l6___11 [X₅+X₇+1-2⋅X₂-X₆ ]
n_l7___10 [X₅+X₇+1-2⋅X₂-X₆ ]
n_l6___6 [X₇ ]
n_l7___5 [X₇ ]
n_l5___4 [X₇ ]
n_l8___4 [1-X₂ ]
n_l8___9 [X₆+1 ]
n_l9___3 [1-X₂ ]
n_l2___2 [1-X₂ ]
n_l9___8 [X₅+1 ]
n_l2___7 [X₆+1-X₂ ]

MPRF for transition t₁₃₉₅: n_l1___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___7(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₅ ∧ X₃ ≤ 1+X₄ ∧ X₅ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 of depth 1:

new bound:

4⋅X₂⋅X₂⋅X₂+25⋅X₂⋅X₂+42⋅X₂+20 {O(n^3)}

MPRF:

l1 [X₃+X₇-3⋅X₂-1 ]
n_l11___12 [X₄+X₇-3⋅X₂ ]
n_l11___7 [X₃+X₇ ]
n_l10___1 [X₃-2⋅X₂ ]
n_l10___6 [X₃-2⋅X₂ ]
n_l3___5 [X₃-2⋅X₂ ]
l4 [X₃+X₆-3⋅X₂-1 ]
n_l1___8 [X₃+X₅+1 ]
n_l5___9 [X₄+X₇ ]
l3 [X₃+X₅ ]
n_l6___11 [X₄+X₅+1-3⋅X₂ ]
n_l7___10 [X₃+X₅+1-3⋅X₂ ]
n_l6___6 [X₄+X₇ ]
n_l7___5 [X₃+X₅+1 ]
n_l5___4 [X₄+X₅+1 ]
n_l8___4 [X₃-2⋅X₂ ]
n_l8___9 [X₃+X₅ ]
n_l9___3 [X₃-2⋅X₂ ]
n_l2___2 [X₃-2⋅X₂ ]
n_l9___8 [X₃+X₅ ]
n_l2___7 [2⋅X₃+X₅-2⋅X₂ ]

MPRF for transition t₁₄₄₁: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 0 < X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}

MPRF:

l1 [2⋅X₂-X₆-1 ]
n_l11___12 [2⋅X₂-X₇-1 ]
n_l11___7 [2⋅X₂ ]
n_l10___1 [2⋅X₂-X₆-1 ]
n_l10___6 [2⋅X₂ ]
n_l3___5 [2⋅X₂-X₆ ]
l4 [2⋅X₂-X₆-1 ]
n_l1___8 [2⋅X₂ ]
n_l5___9 [2⋅X₂ ]
l3 [2⋅X₂ ]
n_l6___11 [2⋅X₂-X₆-1 ]
n_l7___10 [2⋅X₂+X₅-X₆-X₇ ]
n_l6___6 [2⋅X₂ ]
n_l7___5 [2⋅X₂ ]
n_l5___4 [2⋅X₂ ]
n_l8___4 [2⋅X₂-X₆ ]
n_l8___9 [2⋅X₂ ]
n_l9___3 [2⋅X₂-X₆ ]
n_l2___2 [2⋅X₂-X₆ ]
n_l9___8 [2⋅X₂ ]
n_l2___7 [2⋅X₂ ]

MPRF for transition t₁₄₅₆: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₂ {O(n)}

MPRF:

l1 [X₂+X₃-1 ]
n_l11___12 [X₂+X₄ ]
n_l11___7 [X₂+X₄ ]
n_l10___1 [X₂+X₃ ]
n_l10___6 [X₂+X₃ ]
n_l3___5 [X₂+X₃ ]
l4 [X₂+X₃-1 ]
n_l1___8 [X₂+X₄ ]
l3 [X₂+X₃ ]
n_l6___11 [X₂+X₄ ]
n_l6___6 [X₂+X₄ ]
n_l7___10 [X₂+X₃ ]
n_l5___9 [X₂+X₄+X₆-X₇ ]
n_l7___5 [X₂+X₃ ]
n_l5___4 [X₂+X₄ ]
n_l8___4 [X₂+X₃ ]
n_l8___9 [X₂+X₃ ]
n_l9___3 [X₂+X₃ ]
n_l2___2 [X₂+X₃ ]
n_l9___8 [X₂+X₃ ]
n_l2___7 [X₂+X₃ ]

MPRF for transition t₁₄₄₂: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 0 < X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂+2 {O(n)}

MPRF:

l1 [X₄+1 ]
n_l11___12 [X₄+1 ]
n_l11___7 [X₄+1 ]
n_l10___1 [X₃ ]
n_l10___6 [X₃ ]
n_l3___5 [X₃ ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃+1 ]
n_l6___11 [X₄+X₅+2-X₇ ]
n_l6___6 [X₃+1 ]
n_l7___10 [X₃+X₅+2-X₇ ]
n_l5___9 [X₄+X₇+1-X₆ ]
n_l7___5 [X₄+1 ]
n_l5___4 [X₄+1 ]
n_l8___4 [X₃ ]
n_l8___9 [X₃+1 ]
n_l9___3 [X₃ ]
n_l2___2 [X₃ ]
n_l9___8 [X₃+1 ]
n_l2___7 [X₃+1 ]

MPRF for transition t₁₄₅₇: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂+2 {O(n)}

MPRF:

l1 [X₄+1 ]
n_l11___12 [X₃+X₆+1-X₇ ]
n_l11___7 [X₃+X₇-X₅ ]
n_l10___1 [X₃ ]
n_l10___6 [X₃ ]
n_l3___5 [X₃ ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃+1 ]
n_l6___11 [X₄+X₅+2-X₇ ]
n_l6___6 [X₄+X₇-X₅ ]
n_l7___10 [X₃+X₅+2-X₇ ]
n_l5___9 [X₄+X₇+1-X₆ ]
n_l7___5 [X₃+X₇-X₅ ]
n_l5___4 [X₄+X₇-X₅ ]
n_l8___4 [X₃ ]
n_l8___9 [X₃+1 ]
n_l9___3 [X₃ ]
n_l2___2 [X₃ ]
n_l9___8 [X₃+1 ]
n_l2___7 [X₃+X₅+1-X₆ ]

MPRF for transition t₁₄₄₄: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}

MPRF:

l1 [X₂-X₆ ]
n_l11___12 [X₂-X₇ ]
n_l11___7 [X₂ ]
n_l10___1 [X₂-X₆ ]
n_l10___6 [X₂ ]
n_l3___5 [X₂+1-X₆ ]
l4 [X₂-X₆ ]
n_l1___8 [X₂ ]
n_l5___9 [X₂ ]
l3 [X₂ ]
n_l6___11 [X₂-X₆ ]
n_l7___10 [X₂-X₇ ]
n_l6___6 [X₂ ]
n_l7___5 [X₂ ]
n_l5___4 [X₂ ]
n_l8___4 [X₂-X₆ ]
n_l8___9 [X₂ ]
n_l9___3 [X₂-X₆ ]
n_l2___2 [X₂-X₆ ]
n_l9___8 [X₂ ]
n_l2___7 [X₂ ]

MPRF for transition t₁₄₅₈: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₂+2 {O(n)}

MPRF:

l1 [X₂+X₄+1 ]
n_l11___12 [X₂+X₄+1 ]
n_l11___7 [X₂+X₃+1 ]
n_l10___1 [X₂+X₃+1 ]
n_l10___6 [X₂+X₃+1 ]
n_l3___5 [X₂+X₃+1 ]
l4 [X₂+X₃ ]
n_l1___8 [X₂+X₃+1 ]
l3 [X₂+X₃+1 ]
n_l6___11 [X₂+X₄+1 ]
n_l6___6 [X₂+X₃+X₇-X₅ ]
n_l7___10 [X₂+X₃+1 ]
n_l5___9 [X₂+X₄+1 ]
n_l7___5 [X₂+X₃+X₇-X₅ ]
n_l5___4 [X₂+X₄+X₇-X₅ ]
n_l8___4 [X₂+X₃+1 ]
n_l8___9 [X₂+X₃+1 ]
n_l9___3 [X₂+X₃+1 ]
n_l2___2 [X₂+X₃+1 ]
n_l9___8 [X₂+X₃+1 ]
n_l2___7 [X₂+X₃+1 ]

MPRF for transition t₁₃₉₇: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:

new bound:

4⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+25⋅X₂+12 {O(n^3)}

MPRF:

l1 [X₇-X₂ ]
n_l11___12 [X₇-X₂ ]
n_l11___7 [X₇ ]
n_l10___1 [1 ]
n_l10___6 [1 ]
n_l3___5 [1 ]
l4 [X₆-X₂ ]
n_l1___8 [X₇ ]
n_l5___9 [X₇ ]
l3 [X₅+1 ]
n_l6___11 [2⋅X₅+2-X₂-X₇ ]
n_l7___10 [2⋅X₅+2-X₂-X₆ ]
n_l6___6 [X₇ ]
n_l7___5 [X₇ ]
n_l5___4 [X₇ ]
n_l8___4 [1 ]
n_l8___9 [X₆+1 ]
n_l9___3 [1 ]
n_l2___2 [1 ]
n_l9___8 [X₆+1 ]
n_l2___7 [1 ]

MPRF for transition t₁₄₁₄: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:

new bound:

2⋅X₂+1 {O(n)}

MPRF:

l1 [X₄+1 ]
n_l11___12 [X₃+1 ]
n_l11___7 [X₄+1 ]
n_l10___1 [X₃ ]
n_l10___6 [X₃ ]
n_l3___5 [X₃ ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃+X₅-X₆ ]
n_l6___11 [X₄+X₅+2-X₆ ]
n_l6___6 [X₃+1 ]
n_l7___10 [X₃+X₅+2-X₇ ]
n_l5___9 [X₄+1 ]
n_l7___5 [X₄+X₅+2-X₇ ]
n_l5___4 [X₄+1 ]
n_l8___4 [X₃ ]
n_l8___9 [X₃+X₅-X₆ ]
n_l9___3 [X₃ ]
n_l2___2 [X₃ ]
n_l9___8 [X₃ ]
n_l2___7 [X₃ ]

MPRF for transition t₁₄₀₁: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 of depth 1:

new bound:

8⋅X₂⋅X₂⋅X₂+36⋅X₂⋅X₂+50⋅X₂+24 {O(n^3)}

MPRF:

l1 [X₆-2⋅X₂ ]
n_l11___12 [X₇-2⋅X₂ ]
n_l11___7 [X₇+1 ]
n_l10___1 [1-X₂ ]
n_l10___6 [1-X₂ ]
n_l3___5 [1-X₂ ]
l4 [X₆-2⋅X₂ ]
n_l1___8 [X₇+1 ]
n_l5___9 [X₆ ]
l3 [X₅+1 ]
n_l6___11 [X₅+1-2⋅X₂ ]
n_l7___10 [X₅+1-2⋅X₂ ]
n_l6___6 [X₇+1 ]
n_l7___5 [X₇ ]
n_l5___4 [X₇ ]
n_l8___4 [1-X₂ ]
n_l8___9 [X₅+1 ]
n_l9___3 [1-X₂ ]
n_l2___2 [1-X₂ ]
n_l9___8 [1 ]
n_l2___7 [X₆+1-X₂ ]

MPRF for transition t₁₄₀₄: n_l7___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___4(NoDet0, X₁, Arg2_P, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ Arg5_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 of depth 1:

new bound:

4⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+25⋅X₂+11 {O(n^3)}

MPRF:

l1 [2⋅X₇-X₂-X₆-1 ]
n_l11___12 [2⋅X₇-X₂-X₆-1 ]
n_l11___7 [X₇ ]
n_l10___1 [0 ]
n_l10___6 [0 ]
n_l3___5 [0 ]
l4 [X₆-X₂-1 ]
n_l1___8 [X₅ ]
n_l5___9 [X₇ ]
l3 [X₅ ]
n_l6___11 [2⋅X₅+1-X₂-X₆ ]
n_l7___10 [2⋅X₅+1-X₂-X₆ ]
n_l6___6 [X₇ ]
n_l7___5 [X₇ ]
n_l5___4 [X₅ ]
n_l8___4 [0 ]
n_l8___9 [X₅ ]
n_l9___3 [0 ]
n_l2___2 [0 ]
n_l9___8 [X₅ ]
n_l2___7 [0 ]

MPRF for transition t₁₄₄₅: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}

MPRF:

l1 [X₂-1 ]
n_l11___12 [X₂-1 ]
n_l11___7 [2⋅X₂ ]
n_l10___1 [2⋅X₂-X₆-1 ]
n_l10___6 [2⋅X₂ ]
n_l3___5 [2⋅X₂-X₆ ]
l4 [X₂-1 ]
n_l1___8 [2⋅X₂ ]
n_l5___9 [2⋅X₂ ]
l3 [2⋅X₂ ]
n_l6___11 [X₂-1 ]
n_l7___10 [X₂-1 ]
n_l6___6 [2⋅X₂ ]
n_l7___5 [2⋅X₂ ]
n_l5___4 [2⋅X₂ ]
n_l8___4 [2⋅X₂-X₆ ]
n_l8___9 [2⋅X₂ ]
n_l9___3 [2⋅X₂-X₆-1 ]
n_l2___2 [2⋅X₂-X₆-1 ]
n_l9___8 [2⋅X₂ ]
n_l2___7 [2⋅X₂ ]

MPRF for transition t₁₄₄₆: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₂+2 {O(n)}

MPRF:

l1 [X₂+X₄+1 ]
n_l11___12 [X₂+X₃+1 ]
n_l11___7 [X₂+X₄+1 ]
n_l10___1 [X₂+X₃ ]
n_l10___6 [X₂+X₃ ]
n_l3___5 [X₂+X₃ ]
l4 [X₂+X₃ ]
n_l1___8 [X₂+X₄+1 ]
l3 [X₂+X₃+1 ]
n_l6___11 [X₂+X₄+1 ]
n_l6___6 [X₂+X₄+1 ]
n_l7___10 [X₂+X₄+1 ]
n_l5___9 [X₂+X₄+1 ]
n_l7___5 [X₂+X₃+1 ]
n_l5___4 [X₂+X₄+X₇-X₅ ]
n_l8___4 [X₂+X₃ ]
n_l8___9 [X₂+X₃+1 ]
n_l9___3 [X₂+X₃ ]
n_l2___2 [X₂+X₃ ]
n_l9___8 [X₂+X₃ ]
n_l2___7 [X₂+X₃ ]

MPRF for transition t₁₄₄₇: n_l9___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___2(X₀, NoDet0, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg5_P ∧ Arg6_P ≤ X₂ ∧ Arg5_P ≤ Arg6_P ∧ 1 ≤ X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}

MPRF:

l1 [X₂-2 ]
n_l11___12 [X₂-2 ]
n_l11___7 [2⋅X₂ ]
n_l10___1 [2⋅X₂-X₆-1 ]
n_l10___6 [2⋅X₂ ]
n_l3___5 [2⋅X₂-X₆ ]
l4 [X₂-2 ]
n_l1___8 [2⋅X₂ ]
n_l5___9 [2⋅X₂ ]
l3 [2⋅X₂ ]
n_l6___11 [X₂-2 ]
n_l7___10 [X₂-2 ]
n_l6___6 [2⋅X₂ ]
n_l7___5 [2⋅X₂ ]
n_l5___4 [2⋅X₂ ]
n_l8___4 [2⋅X₂-X₆ ]
n_l8___9 [2⋅X₂ ]
n_l9___3 [2⋅X₂-X₆ ]
n_l2___2 [2⋅X₂-X₆-1 ]
n_l9___8 [2⋅X₂ ]
n_l2___7 [2⋅X₂ ]

MPRF for transition t₁₄₄₈: n_l9___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___7(X₀, NoDet0, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg5_P ∧ Arg6_P ≤ X₂ ∧ Arg5_P ≤ Arg6_P ∧ 1 ≤ X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂+2 {O(n)}

MPRF:

l1 [X₄+X₇+1-X₆ ]
n_l11___12 [X₃+X₅+2-X₆ ]
n_l11___7 [X₃+1 ]
n_l10___1 [X₃ ]
n_l10___6 [X₃ ]
n_l3___5 [X₃ ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃+1 ]
n_l6___11 [X₄+X₅+2-X₇ ]
n_l6___6 [X₃+1 ]
n_l7___10 [X₃+X₅+2-X₆ ]
n_l5___9 [X₄+X₆+1-X₇ ]
n_l7___5 [X₃+1 ]
n_l5___4 [X₄+1 ]
n_l8___4 [X₃ ]
n_l8___9 [X₃+1 ]
n_l9___3 [X₃ ]
n_l2___2 [X₃ ]
n_l9___8 [X₃+1 ]
n_l2___7 [X₃ ]

CFR: Improvement to new bound with the following program:

new bound:

24⋅X₂⋅X₂⋅X₂+133⋅X₂⋅X₂+235⋅X₂+103 {O(n^3)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: Arg2_P, Arg3_P, Arg5_P, Arg6_P, NoDet0
Locations: l0, l1, l11, l12, l13, l14, l3, l4, n_l10___1, n_l10___6, n_l11___12, n_l11___7, n_l1___8, n_l2___2, n_l2___7, n_l3___5, n_l5___1, n_l5___4, n_l5___9, n_l6___11, n_l6___3, n_l6___6, n_l7___10, n_l7___2, n_l7___5, n_l8___4, n_l8___9, n_l9___3, n_l9___8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃₉₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___12(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₅ ∧ X₃ ≤ 1+X₄ ∧ X₅ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ 1+X₄ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ 1 ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₁₃₉₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₂, X₄, 0, X₆, X₇)
t₂₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₄₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆) :|: 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₃₉: n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₄₀: n_l10___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₁₆: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ 2+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 2+X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₁₈: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ 2+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 2+X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₃₉₁: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ 2+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 2+X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₁₉: n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0
t₁₃₉₃: n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0
t₁₃₉₅: n_l1___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___7(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₅ ∧ X₃ ≤ 1+X₄ ∧ X₅ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0
t₁₄₅₆: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₄₁: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 0 < X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₅₇: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₄₂: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 0 < X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₅₈: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₄₄: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₁₃: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₃₉₆: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₄₁₄: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₁₃₉₇: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₁₄₁₅: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₃₉₈: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₃₉₉: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₀₀: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₄₀₁: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0
t₁₄₀₂: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___9(NoDet0, X₁, Arg2_P, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ Arg5_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₀₃: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___1(NoDet0, X₁, Arg2_P, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ Arg5_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₄₀₄: n_l7___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___4(NoDet0, X₁, Arg2_P, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ Arg5_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0
t₁₄₄₅: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₄₆: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₄₇: n_l9___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___2(X₀, NoDet0, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg5_P ∧ Arg6_P ≤ X₂ ∧ Arg5_P ≤ Arg6_P ∧ 1 ≤ X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₄₈: n_l9___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___7(X₀, NoDet0, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg5_P ∧ Arg6_P ≤ X₂ ∧ Arg5_P ≤ Arg6_P ∧ 1 ≤ X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:24⋅X₂⋅X₂⋅X₂+133⋅X₂⋅X₂+235⋅X₂+115 {O(n^3)}
t₀: 1 {O(1)}
t₁₃₉₄: X₂+1 {O(n)}
t₃: 1 {O(1)}
t₁₃₉₂: 1 {O(1)}
t₁: 1 {O(1)}
t₂₀: 1 {O(1)}
t₁₁: X₂+1 {O(n)}
t₁₄₄₃: 2⋅X₂+2 {O(n)}
t₁₈: X₂+1 {O(n)}
t₁₄₃₉: 4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
t₁₄₄₀: 2⋅X₂+2 {O(n)}
t₁₃₉₁: X₂+1 {O(n)}
t₁₄₁₆: 1 {O(1)}
t₁₄₁₈: 1 {O(1)}
t₁₃₉₃: 4⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+25⋅X₂+13 {O(n^3)}
t₁₄₁₉: 1 {O(1)}
t₁₃₉₅: 4⋅X₂⋅X₂⋅X₂+25⋅X₂⋅X₂+42⋅X₂+20 {O(n^3)}
t₁₄₄₁: 4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
t₁₄₅₆: 4⋅X₂ {O(n)}
t₁₄₄₂: 2⋅X₂+2 {O(n)}
t₁₄₅₇: 2⋅X₂+2 {O(n)}
t₁₄₄₄: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
t₁₄₅₈: 4⋅X₂+2 {O(n)}
t₁₃₉₆: 1 {O(1)}
t₁₄₁₃: 1 {O(1)}
t₁₃₉₇: 4⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+25⋅X₂+12 {O(n^3)}
t₁₄₁₄: 2⋅X₂+1 {O(n)}
t₁₃₉₈: X₂+1 {O(n)}
t₁₄₁₅: X₂+1 {O(n)}
t₁₃₉₉: X₂+1 {O(n)}
t₁₄₀₀: 1 {O(1)}
t₁₄₀₁: 8⋅X₂⋅X₂⋅X₂+36⋅X₂⋅X₂+50⋅X₂+24 {O(n^3)}
t₁₄₀₂: X₂+1 {O(n)}
t₁₄₀₃: 1 {O(1)}
t₁₄₀₄: 4⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+25⋅X₂+11 {O(n^3)}
t₁₄₄₅: 4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
t₁₄₄₆: 4⋅X₂+2 {O(n)}
t₁₄₄₇: 4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
t₁₄₄₈: 2⋅X₂+2 {O(n)}

Costbounds

Overall costbound: 24⋅X₂⋅X₂⋅X₂+133⋅X₂⋅X₂+235⋅X₂+115 {O(n^3)}
t₀: 1 {O(1)}
t₁₃₉₄: X₂+1 {O(n)}
t₃: 1 {O(1)}
t₁₃₉₂: 1 {O(1)}
t₁: 1 {O(1)}
t₂₀: 1 {O(1)}
t₁₁: X₂+1 {O(n)}
t₁₄₄₃: 2⋅X₂+2 {O(n)}
t₁₈: X₂+1 {O(n)}
t₁₄₃₉: 4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
t₁₄₄₀: 2⋅X₂+2 {O(n)}
t₁₃₉₁: X₂+1 {O(n)}
t₁₄₁₆: 1 {O(1)}
t₁₄₁₈: 1 {O(1)}
t₁₃₉₃: 4⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+25⋅X₂+13 {O(n^3)}
t₁₄₁₉: 1 {O(1)}
t₁₃₉₅: 4⋅X₂⋅X₂⋅X₂+25⋅X₂⋅X₂+42⋅X₂+20 {O(n^3)}
t₁₄₄₁: 4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
t₁₄₅₆: 4⋅X₂ {O(n)}
t₁₄₄₂: 2⋅X₂+2 {O(n)}
t₁₄₅₇: 2⋅X₂+2 {O(n)}
t₁₄₄₄: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
t₁₄₅₈: 4⋅X₂+2 {O(n)}
t₁₃₉₆: 1 {O(1)}
t₁₄₁₃: 1 {O(1)}
t₁₃₉₇: 4⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+25⋅X₂+12 {O(n^3)}
t₁₄₁₄: 2⋅X₂+1 {O(n)}
t₁₃₉₈: X₂+1 {O(n)}
t₁₄₁₅: X₂+1 {O(n)}
t₁₃₉₉: X₂+1 {O(n)}
t₁₄₀₀: 1 {O(1)}
t₁₄₀₁: 8⋅X₂⋅X₂⋅X₂+36⋅X₂⋅X₂+50⋅X₂+24 {O(n^3)}
t₁₄₀₂: X₂+1 {O(n)}
t₁₄₀₃: 1 {O(1)}
t₁₄₀₄: 4⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+25⋅X₂+11 {O(n^3)}
t₁₄₄₅: 4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
t₁₄₄₆: 4⋅X₂+2 {O(n)}
t₁₄₄₇: 4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
t₁₄₄₈: 2⋅X₂+2 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁₃₉₄, X₂: 2⋅X₂ {O(n)}
t₁₃₉₄, X₃: 2⋅X₂+1 {O(n)}
t₁₃₉₄, X₄: 7⋅X₂+8 {O(n)}
t₁₃₉₄, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₃₉₄, X₆: 8⋅X₂⋅X₂+28⋅X₂+22 {O(n^2)}
t₁₃₉₄, X₇: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₂ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: 0 {O(1)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₁₃₉₂, X₀: X₀ {O(n)}
t₁₃₉₂, X₁: X₁ {O(n)}
t₁₃₉₂, X₂: X₂ {O(n)}
t₁₃₉₂, X₃: X₂ {O(n)}
t₁₃₉₂, X₄: X₄ {O(n)}
t₁₃₉₂, X₅: 0 {O(1)}
t₁₃₉₂, X₆: X₆ {O(n)}
t₁₃₉₂, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₂ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: 0 {O(1)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂₀, X₂: 7⋅X₂ {O(n)}
t₂₀, X₃: 5⋅X₂+3 {O(n)}
t₂₀, X₄: 6⋅X₂+X₄+10 {O(n)}
t₂₀, X₅: 4⋅X₂⋅X₂+10⋅X₂+5 {O(n^2)}
t₂₀, X₆: 16⋅X₂⋅X₂+2⋅X₆+56⋅X₂+44 {O(n^2)}
t₂₀, X₇: 4⋅X₂⋅X₂+10⋅X₂+X₇+3 {O(n^2)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₂+1 {O(n)}
t₁₁, X₄: 12⋅X₂+10 {O(n)}
t₁₁, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₁, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₁, X₇: 12⋅X₂⋅X₂+30⋅X₂+9 {O(n^2)}
t₁₄₄₃, X₂: 2⋅X₂ {O(n)}
t₁₄₄₃, X₃: 2⋅X₂+1 {O(n)}
t₁₄₄₃, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₄₄₃, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₄₃, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₄₃, X₇: 12⋅X₂⋅X₂+30⋅X₂+X₇+9 {O(n^2)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: X₂+1 {O(n)}
t₁₈, X₄: 7⋅X₂+8 {O(n)}
t₁₈, X₅: 12⋅X₂⋅X₂+42⋅X₂+33 {O(n^2)}
t₁₈, X₆: 8⋅X₂⋅X₂+28⋅X₂+22 {O(n^2)}
t₁₈, X₇: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₃₉, X₂: 2⋅X₂ {O(n)}
t₁₄₃₉, X₃: 2⋅X₂+1 {O(n)}
t₁₄₃₉, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₄₃₉, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₃₉, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₃₉, X₇: 12⋅X₂⋅X₂+30⋅X₂+X₇+9 {O(n^2)}
t₁₄₄₀, X₂: 2⋅X₂ {O(n)}
t₁₄₄₀, X₃: 2⋅X₂+1 {O(n)}
t₁₄₄₀, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₄₄₀, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₄₀, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₄₀, X₇: 12⋅X₂⋅X₂+30⋅X₂+X₇+9 {O(n^2)}
t₁₃₉₁, X₂: 2⋅X₂ {O(n)}
t₁₃₉₁, X₃: 2⋅X₂+1 {O(n)}
t₁₃₉₁, X₄: 7⋅X₂+8 {O(n)}
t₁₃₉₁, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₃₉₁, X₆: 8⋅X₂⋅X₂+28⋅X₂+22 {O(n^2)}
t₁₃₉₁, X₇: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₁₆, X₂: 2⋅X₂ {O(n)}
t₁₄₁₆, X₃: 1 {O(1)}
t₁₄₁₆, X₄: 1 {O(1)}
t₁₄₁₆, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₁₆, X₆: 8⋅X₂⋅X₂+28⋅X₂+22 {O(n^2)}
t₁₄₁₆, X₇: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₁₈, X₂: 2⋅X₂ {O(n)}
t₁₄₁₈, X₃: 2⋅X₂+1 {O(n)}
t₁₄₁₈, X₄: 7⋅X₂+8 {O(n)}
t₁₄₁₈, X₅: 1 {O(1)}
t₁₄₁₈, X₆: 0 {O(1)}
t₁₄₁₈, X₇: 0 {O(1)}
t₁₃₉₃, X₂: 2⋅X₂ {O(n)}
t₁₃₉₃, X₃: 2⋅X₂+1 {O(n)}
t₁₃₉₃, X₄: 5⋅X₂+2 {O(n)}
t₁₃₉₃, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₃₉₃, X₆: 8⋅X₂⋅X₂+28⋅X₂+X₆+22 {O(n^2)}
t₁₃₉₃, X₇: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₁₉, X₂: 2⋅X₂ {O(n)}
t₁₄₁₉, X₃: 2⋅X₂+1 {O(n)}
t₁₄₁₉, X₄: 5⋅X₂+2 {O(n)}
t₁₄₁₉, X₅: 1 {O(1)}
t₁₄₁₉, X₆: 8⋅X₂⋅X₂+28⋅X₂+X₆+22 {O(n^2)}
t₁₄₁₉, X₇: 0 {O(1)}
t₁₃₉₅, X₂: 2⋅X₂ {O(n)}
t₁₃₉₅, X₃: 2⋅X₂+1 {O(n)}
t₁₃₉₅, X₄: 5⋅X₂+2 {O(n)}
t₁₃₉₅, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₃₉₅, X₆: 8⋅X₂⋅X₂+28⋅X₂+X₆+22 {O(n^2)}
t₁₃₉₅, X₇: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₄₁, X₂: 2⋅X₂ {O(n)}
t₁₄₄₁, X₃: 2⋅X₂+1 {O(n)}
t₁₄₄₁, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₄₄₁, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₄₁, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₄₁, X₇: 12⋅X₂⋅X₂+30⋅X₂+X₇+9 {O(n^2)}
t₁₄₅₆, X₂: 2⋅X₂ {O(n)}
t₁₄₅₆, X₃: 2⋅X₂+1 {O(n)}
t₁₄₅₆, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₄₅₆, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₅₆, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₅₆, X₇: 12⋅X₂⋅X₂+30⋅X₂+X₇+9 {O(n^2)}
t₁₄₄₂, X₂: 2⋅X₂ {O(n)}
t₁₄₄₂, X₃: 2⋅X₂+1 {O(n)}
t₁₄₄₂, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₄₄₂, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₄₂, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₄₂, X₇: 12⋅X₂⋅X₂+30⋅X₂+X₇+9 {O(n^2)}
t₁₄₅₇, X₂: 2⋅X₂ {O(n)}
t₁₄₅₇, X₃: 2⋅X₂+1 {O(n)}
t₁₄₅₇, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₄₅₇, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₅₇, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₅₇, X₇: 12⋅X₂⋅X₂+30⋅X₂+X₇+9 {O(n^2)}
t₁₄₄₄, X₂: 2⋅X₂ {O(n)}
t₁₄₄₄, X₃: 2⋅X₂+1 {O(n)}
t₁₄₄₄, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₄₄₄, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₄₄, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₄₄, X₇: 12⋅X₂⋅X₂+30⋅X₂+X₇+9 {O(n^2)}
t₁₄₅₈, X₂: 2⋅X₂ {O(n)}
t₁₄₅₈, X₃: 2⋅X₂+1 {O(n)}
t₁₄₅₈, X₄: 2⋅X₄+24⋅X₂+20 {O(n)}
t₁₄₅₈, X₅: 16⋅X₂⋅X₂+40⋅X₂+12 {O(n^2)}
t₁₄₅₈, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₅₈, X₇: 24⋅X₂⋅X₂+2⋅X₇+60⋅X₂+18 {O(n^2)}
t₁₃₉₆, X₁: X₁ {O(n)}
t₁₃₉₆, X₂: X₂ {O(n)}
t₁₃₉₆, X₃: X₂ {O(n)}
t₁₃₉₆, X₄: X₂ {O(n)}
t₁₃₉₆, X₅: 0 {O(1)}
t₁₃₉₆, X₆: X₆ {O(n)}
t₁₃₉₆, X₇: 0 {O(1)}
t₁₄₁₃, X₁: X₁ {O(n)}
t₁₄₁₃, X₂: X₂ {O(n)}
t₁₄₁₃, X₃: X₂ {O(n)}
t₁₄₁₃, X₄: X₄ {O(n)}
t₁₄₁₃, X₅: 0 {O(1)}
t₁₄₁₃, X₆: 0 {O(1)}
t₁₄₁₃, X₇: X₇ {O(n)}
t₁₃₉₇, X₂: 2⋅X₂ {O(n)}
t₁₃₉₇, X₃: 2⋅X₂+1 {O(n)}
t₁₃₉₇, X₄: 2⋅X₂+1 {O(n)}
t₁₃₉₇, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₃₉₇, X₆: 8⋅X₂⋅X₂+28⋅X₂+X₆+22 {O(n^2)}
t₁₃₉₇, X₇: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₁₄, X₂: 2⋅X₂ {O(n)}
t₁₄₁₄, X₃: 2⋅X₂+1 {O(n)}
t₁₄₁₄, X₄: 5⋅X₂+2 {O(n)}
t₁₄₁₄, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₁₄, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₁₄, X₇: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₃₉₈, X₂: 2⋅X₂ {O(n)}
t₁₃₉₈, X₃: 2⋅X₂+1 {O(n)}
t₁₃₉₈, X₄: 2⋅X₂+1 {O(n)}
t₁₃₉₈, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₃₉₈, X₆: 8⋅X₂⋅X₂+28⋅X₂+22 {O(n^2)}
t₁₃₉₈, X₇: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₁₅, X₂: 2⋅X₂ {O(n)}
t₁₄₁₅, X₃: 2⋅X₂+1 {O(n)}
t₁₄₁₅, X₄: 7⋅X₂+8 {O(n)}
t₁₄₁₅, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₁₅, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₁₅, X₇: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₃₉₉, X₂: 2⋅X₂ {O(n)}
t₁₃₉₉, X₃: 2⋅X₂+1 {O(n)}
t₁₃₉₉, X₄: 7⋅X₂+8 {O(n)}
t₁₃₉₉, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₃₉₉, X₆: 8⋅X₂⋅X₂+28⋅X₂+22 {O(n^2)}
t₁₃₉₉, X₇: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₀₀, X₀: X₀ {O(n)}
t₁₄₀₀, X₁: X₁ {O(n)}
t₁₄₀₀, X₂: X₂ {O(n)}
t₁₄₀₀, X₃: X₂ {O(n)}
t₁₄₀₀, X₄: X₄ {O(n)}
t₁₄₀₀, X₅: 0 {O(1)}
t₁₄₀₀, X₆: X₆ {O(n)}
t₁₄₀₀, X₇: X₇ {O(n)}
t₁₄₀₁, X₂: 2⋅X₂ {O(n)}
t₁₄₀₁, X₃: 2⋅X₂+1 {O(n)}
t₁₄₀₁, X₄: 5⋅X₂+2 {O(n)}
t₁₄₀₁, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₀₁, X₆: 8⋅X₂⋅X₂+28⋅X₂+X₆+22 {O(n^2)}
t₁₄₀₁, X₇: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₀₂, X₂: 2⋅X₂ {O(n)}
t₁₄₀₂, X₃: 2⋅X₂+1 {O(n)}
t₁₄₀₂, X₄: 7⋅X₂+8 {O(n)}
t₁₄₀₂, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₀₂, X₆: 8⋅X₂⋅X₂+28⋅X₂+22 {O(n^2)}
t₁₄₀₂, X₇: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₀₃, X₁: X₁ {O(n)}
t₁₄₀₃, X₂: X₂ {O(n)}
t₁₄₀₃, X₃: X₂ {O(n)}
t₁₄₀₃, X₄: X₄ {O(n)}
t₁₄₀₃, X₅: 0 {O(1)}
t₁₄₀₃, X₆: X₆ {O(n)}
t₁₄₀₃, X₇: X₇ {O(n)}
t₁₄₀₄, X₂: 2⋅X₂ {O(n)}
t₁₄₀₄, X₃: 2⋅X₂+1 {O(n)}
t₁₄₀₄, X₄: 5⋅X₂+2 {O(n)}
t₁₄₀₄, X₅: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₀₄, X₆: 8⋅X₂⋅X₂+28⋅X₂+X₆+22 {O(n^2)}
t₁₄₀₄, X₇: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₄₅, X₂: 2⋅X₂ {O(n)}
t₁₄₄₅, X₃: 2⋅X₂+1 {O(n)}
t₁₄₄₅, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₄₄₅, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₄₅, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₄₅, X₇: 12⋅X₂⋅X₂+30⋅X₂+X₇+9 {O(n^2)}
t₁₄₄₆, X₂: 2⋅X₂ {O(n)}
t₁₄₄₆, X₃: 2⋅X₂+1 {O(n)}
t₁₄₄₆, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₄₄₆, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₄₆, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₄₆, X₇: 12⋅X₂⋅X₂+30⋅X₂+X₇+9 {O(n^2)}
t₁₄₄₇, X₂: 2⋅X₂ {O(n)}
t₁₄₄₇, X₃: 2⋅X₂+1 {O(n)}
t₁₄₄₇, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₄₄₇, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₄₇, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₄₇, X₇: 12⋅X₂⋅X₂+30⋅X₂+X₇+9 {O(n^2)}
t₁₄₄₈, X₂: 2⋅X₂ {O(n)}
t₁₄₄₈, X₃: 2⋅X₂+1 {O(n)}
t₁₄₄₈, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₄₄₈, X₅: 8⋅X₂⋅X₂+20⋅X₂+6 {O(n^2)}
t₁₄₄₈, X₆: 4⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
t₁₄₄₈, X₇: 12⋅X₂⋅X₂+30⋅X₂+X₇+9 {O(n^2)}