Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₃
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ < X₂+1
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, X₅-2, X₆, X₇, X₈, X₉)
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉)
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₂, X₃-1, X₆, X₇, X₈, X₉)
t₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₈, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₀-1, X₁+X₀-1, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ < 0
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆
t₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < X₄+3
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄+3 ≤ X₅
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₄, X₅-1, X₄, X₅, X₆, X₇, X₈, X₉)
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ < 2
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ < 0
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₇
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ ≤ 0 ∧ 0 ≤ X₇
t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉)

Preprocessing

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l11

Found invariant 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l2

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l6

Found invariant 2 ≤ X₀ for location l15

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l12

Found invariant X₀ ≤ 1 for location l17

Found invariant 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l7

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l13

Found invariant 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l8

Found invariant 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l1

Found invariant 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l10

Found invariant X₀ ≤ 1 for location l16

Found invariant 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l4

Found invariant 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l9

Found invariant 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ < X₂+1 ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, X₅-2, X₆, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₂, X₃-1, X₆, X₇, X₈, X₉) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₈, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₀-1, X₁+X₀-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀
t₂₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 1
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ < 0 ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < X₄+3 ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄+3 ≤ X₅ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₄, X₅-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ < 2
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ < 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀

MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₈+X₉+1 {O(n)}

MPRF:

l11 [X₃+1 ]
l12 [X₃+1 ]
l10 [X₃ ]
l3 [X₃ ]
l4 [X₅+1 ]
l1 [X₃+2 ]
l15 [X₀+X₁+1 ]
l13 [X₃ ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₀+X₁+1 ]
l8 [X₃ ]
l9 [X₃ ]
l2 [X₃ ]

MPRF for transition t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, X₅-2, X₆, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₈+X₉ {O(n)}

MPRF:

l11 [X₃ ]
l12 [X₃ ]
l10 [X₅-1 ]
l3 [X₅-1 ]
l4 [X₅-1 ]
l1 [X₃ ]
l15 [X₀+X₁ ]
l13 [X₃ ]
l6 [X₃ ]
l7 [X₃ ]
l5 [X₀+X₁ ]
l8 [X₅-1 ]
l9 [X₅-1 ]
l2 [X₅-1 ]

MPRF for transition t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₈+X₉ {O(n)}

MPRF:

l11 [X₃+1 ]
l12 [X₃ ]
l10 [X₃ ]
l3 [X₃ ]
l4 [X₃ ]
l1 [X₃+1 ]
l15 [X₀+X₁ ]
l13 [X₃ ]
l6 [X₃ ]
l7 [X₃ ]
l5 [X₀+X₁ ]
l8 [X₃ ]
l9 [X₃ ]
l2 [X₃ ]

MPRF for transition t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₈+2⋅X₉+2 {O(n)}

MPRF:

l11 [2⋅X₃+4 ]
l12 [2⋅X₃+4 ]
l10 [2⋅X₃ ]
l3 [2⋅X₃ ]
l4 [2⋅X₃ ]
l1 [2⋅X₃+4 ]
l15 [2⋅X₀+2⋅X₁+2 ]
l13 [2⋅X₃ ]
l6 [2⋅X₃+2 ]
l7 [2⋅X₃+2 ]
l5 [2⋅X₀+2⋅X₁+2 ]
l8 [2⋅X₃ ]
l9 [2⋅X₃ ]
l2 [2⋅X₃ ]

MPRF for transition t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₂, X₃-1, X₆, X₇, X₈, X₉) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₈+X₉ {O(n)}

MPRF:

l11 [X₃ ]
l12 [X₃ ]
l10 [X₃-2 ]
l3 [X₃-2 ]
l4 [X₃-2 ]
l1 [X₃ ]
l15 [X₀+X₁ ]
l13 [X₃-1 ]
l6 [X₃ ]
l7 [X₃ ]
l5 [X₀+X₁ ]
l8 [X₃-2 ]
l9 [X₃-2 ]
l2 [X₃-2 ]

MPRF for transition t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ < 0 ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₉+X₈+9 {O(n)}

MPRF:

l11 [2⋅X₃-X₂-8 ]
l12 [2⋅X₃-X₂-8 ]
l10 [2⋅X₃-X₄-9 ]
l3 [2⋅X₃-X₄-8 ]
l4 [2⋅X₃-X₄-12 ]
l1 [2⋅X₃-X₂-8 ]
l15 [X₀+2⋅X₁-9 ]
l13 [2⋅X₃-X₂-8 ]
l6 [2⋅X₃-X₂-8 ]
l7 [2⋅X₃-X₂-8 ]
l5 [X₀+2⋅X₁-9 ]
l8 [2⋅X₃-X₄-8 ]
l9 [2⋅X₃-X₄-8 ]
l2 [2⋅X₃-X₄-8 ]

MPRF for transition t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₉+X₈+9 {O(n)}

MPRF:

l11 [2⋅X₃-X₂-8 ]
l12 [2⋅X₃-X₂-8 ]
l10 [2⋅X₃-X₄-9 ]
l3 [2⋅X₃-X₄-8 ]
l4 [2⋅X₃-X₄-8 ]
l1 [2⋅X₃-X₂-8 ]
l15 [X₀+2⋅X₁-9 ]
l13 [2⋅X₃-X₂-8 ]
l6 [2⋅X₃-X₂-8 ]
l7 [2⋅X₃-X₂-8 ]
l5 [X₀+2⋅X₁-9 ]
l8 [2⋅X₃-X₄-8 ]
l9 [2⋅X₃-X₄-8 ]
l2 [2⋅X₃-X₄-8 ]

MPRF for transition t₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₈+X₉+4 {O(n)}

MPRF:

l11 [X₃-4 ]
l12 [X₃-4 ]
l10 [X₃-4 ]
l3 [X₃-4 ]
l4 [X₃-6 ]
l1 [X₃-4 ]
l15 [X₀+X₁-5 ]
l13 [X₃-4 ]
l6 [X₃-4 ]
l7 [X₃-4 ]
l5 [X₀+X₁-4 ]
l8 [X₃-4 ]
l9 [X₃-4 ]
l2 [X₃-4 ]

MPRF for transition t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄+3 ≤ X₅ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₈+X₉ {O(n)}

MPRF:

l11 [X₃+1 ]
l12 [X₃+1 ]
l10 [X₅ ]
l3 [X₅+2 ]
l4 [X₅ ]
l1 [X₃+1 ]
l15 [X₀+X₁ ]
l13 [X₃+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₀+X₁ ]
l8 [X₅ ]
l9 [X₅ ]
l2 [X₅ ]

MPRF for transition t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < X₄+3 ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₈+X₉ {O(n)}

MPRF:

l11 [X₃ ]
l12 [X₃ ]
l10 [X₃-1 ]
l3 [X₃-1 ]
l4 [X₃-2 ]
l1 [X₃ ]
l15 [X₀+X₁ ]
l13 [X₃-1 ]
l6 [X₃ ]
l7 [X₃ ]
l5 [X₀+X₁ ]
l8 [X₃-1 ]
l9 [X₃-1 ]
l2 [X₃-1 ]

MPRF for transition t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₄, X₅-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₈+X₉ {O(n)}

MPRF:

l11 [X₃+1 ]
l12 [X₃+1 ]
l10 [X₃ ]
l3 [X₃ ]
l4 [X₅+1 ]
l1 [X₃+1 ]
l15 [X₀+X₁ ]
l13 [X₃+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₀+X₁ ]
l8 [X₃ ]
l9 [X₃ ]
l2 [X₃ ]

MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ < 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₈+2⋅X₉+4 {O(n)}

MPRF:

l11 [2⋅X₃-2 ]
l12 [2⋅X₃-2 ]
l10 [2⋅X₃-3 ]
l3 [2⋅X₃-3 ]
l4 [2⋅X₃-3 ]
l1 [2⋅X₃-2 ]
l15 [2⋅X₀+2⋅X₁-4 ]
l13 [2⋅X₃-3 ]
l6 [2⋅X₃-2 ]
l7 [2⋅X₃-2 ]
l5 [2⋅X₀+2⋅X₁-4 ]
l8 [2⋅X₃-3 ]
l9 [2⋅X₃-3 ]
l2 [2⋅X₃-3 ]

MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₈+X₉ {O(n)}

MPRF:

l11 [X₃+1 ]
l12 [X₃+1 ]
l10 [X₃ ]
l3 [X₃ ]
l4 [X₃ ]
l1 [X₃+1 ]
l15 [X₀+X₁ ]
l13 [X₃ ]
l6 [X₃+1 ]
l7 [X₃ ]
l5 [X₀+X₁ ]
l8 [X₃ ]
l9 [X₃ ]
l2 [X₃ ]

MPRF for transition t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₈+X₉+2 {O(n)}

MPRF:

l11 [2⋅X₂+X₃+1-2⋅X₀ ]
l12 [2⋅X₂+X₃+1-2⋅X₀ ]
l10 [2⋅X₄+X₅-2⋅X₀ ]
l3 [2⋅X₄+X₅-2⋅X₀ ]
l4 [2⋅X₄+X₅-2⋅X₀ ]
l1 [2⋅X₂+X₃+1-2⋅X₀ ]
l15 [X₀+X₁-2 ]
l13 [2⋅X₂+X₃-2⋅X₀ ]
l6 [2⋅X₂+X₃+1-2⋅X₀ ]
l7 [2⋅X₂+X₃-2⋅X₀ ]
l5 [X₀+X₁-2 ]
l8 [2⋅X₄+X₅-2⋅X₀ ]
l9 [2⋅X₄+X₅-2⋅X₀ ]
l2 [2⋅X₄+X₅-2⋅X₀ ]

MPRF for transition t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₈+X₉+1 {O(n)}

MPRF:

l11 [X₃+1 ]
l12 [X₃+1 ]
l10 [X₅ ]
l3 [X₅+2 ]
l4 [X₅ ]
l1 [X₃+1 ]
l15 [X₀+X₁+1 ]
l13 [X₃+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₀+X₁+1 ]
l8 [X₅+2 ]
l9 [X₅ ]
l2 [X₅ ]

MPRF for transition t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₉+X₈+6 {O(n)}

MPRF:

l11 [2⋅X₃-X₂-5 ]
l12 [2⋅X₃-X₂-5 ]
l10 [2⋅X₃-X₄-9 ]
l3 [2⋅X₃-X₄-8 ]
l4 [2⋅X₃-X₄-9 ]
l1 [2⋅X₃-X₂-5 ]
l15 [X₀+2⋅X₁-6 ]
l13 [2⋅X₃-X₂-5 ]
l6 [2⋅X₃-X₂-5 ]
l7 [2⋅X₃-X₂-5 ]
l5 [X₀+2⋅X₁-6 ]
l8 [2⋅X₃-X₄-8 ]
l9 [2⋅X₃-X₄-8 ]
l2 [2⋅X₃-X₄-9 ]

Found invariant 1 ≤ 0 for location l11

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l15

Found invariant 1 ≤ 0 for location l12

Found invariant 1 ≤ 0 for location l17

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l13

Found invariant 1 ≤ 0 for location l8

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l10

Found invariant 1 ≤ 0 for location l16

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l9

Found invariant 1 ≤ 0 for location l3

Found invariant 1 ≤ 0 for location l11

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l15

Found invariant 1 ≤ 0 for location l12

Found invariant 1 ≤ 0 for location l17

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l13

Found invariant 1 ≤ 0 for location l8

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l10

Found invariant 1 ≤ 0 for location l16

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l9

Found invariant 1 ≤ 0 for location l3

Found invariant 2 ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l11

Found invariant 2 ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 7 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l2

Found invariant 2 ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l6

Found invariant 2 ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2 ≤ X₀ for location l15

Found invariant 2 ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l12

Found invariant X₀ ≤ X₈ ∧ X₀ ≤ 1 for location l17

Found invariant 2 ≤ X₈ ∧ 1+X₃ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₀ for location l7

Found invariant X₀ ≤ X₈ for location l5

Found invariant 2 ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l13

Found invariant 2 ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 7 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l8

Found invariant 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l1

Found invariant 2 ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 7 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l10

Found invariant X₀ ≤ X₈ ∧ X₀ ≤ 1 for location l16

Found invariant 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l4

Found invariant 2 ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 7 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l9

Found invariant 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l3

MPRF for transition t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ < X₂+1 ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

15⋅X₈⋅X₉+6⋅X₈⋅X₈+6⋅X₉⋅X₉+24⋅X₉+42⋅X₈+20 {O(n^2)}

MPRF:

l11 [3⋅X₂ ]
l12 [3⋅X₂ ]
l10 [3⋅X₄+3 ]
l2 [3⋅X₄+3 ]
l3 [3⋅X₄ ]
l4 [3⋅X₄ ]
l1 [3⋅X₂ ]
l15 [3⋅X₀+2 ]
l13 [3⋅X₂ ]
l6 [3⋅X₂ ]
l7 [3⋅X₂-1 ]
l5 [3⋅X₀+2 ]
l8 [X₀+3-2⋅X₂ ]
l9 [X₀+3-2⋅X₂ ]

MPRF for transition t₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₀-1, X₁+X₀-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀ of depth 1:

new bound:

2⋅X₈⋅X₈+2⋅X₉⋅X₉+5⋅X₈⋅X₉+14⋅X₈+8⋅X₉+7 {O(n^2)}

MPRF:

l11 [X₂-2 ]
l12 [X₂-2 ]
l10 [X₄-1 ]
l2 [X₄-1 ]
l3 [X₄-2 ]
l4 [X₄-2 ]
l1 [X₂-2 ]
l15 [X₀-1 ]
l13 [X₂-2 ]
l6 [X₂-2 ]
l7 [X₂-2 ]
l5 [X₀-1 ]
l8 [X₄-2 ]
l9 [X₄-2 ]

MPRF for transition t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀ of depth 1:

new bound:

2⋅X₈⋅X₈+2⋅X₉⋅X₉+5⋅X₈⋅X₉+14⋅X₈+8⋅X₉+7 {O(n^2)}

MPRF:

l11 [X₂-2 ]
l12 [X₂-2 ]
l10 [X₄-1 ]
l2 [X₄-1 ]
l3 [X₄-2 ]
l4 [X₄-2 ]
l1 [X₂-2 ]
l15 [X₀-3 ]
l13 [X₂-2 ]
l6 [X₂-2 ]
l7 [X₂-2 ]
l5 [X₀-1 ]
l8 [X₄-2 ]
l9 [X₄-2 ]

MPRF for transition t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₈⋅X₈+2⋅X₉⋅X₉+5⋅X₈⋅X₉+14⋅X₉+17⋅X₈+26 {O(n^2)}

MPRF:

l11 [X₂+3 ]
l12 [X₂+3 ]
l10 [X₄+4 ]
l2 [X₄+4 ]
l3 [X₄+3 ]
l4 [X₄+3 ]
l1 [X₂+3 ]
l15 [X₀+2 ]
l13 [X₂+3 ]
l6 [X₂+3 ]
l7 [X₂+3 ]
l5 [X₀+2 ]
l8 [X₄+3 ]
l9 [X₄+3 ]

Analysing control-flow refined program

Found invariant 2 ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l11

Found invariant 2 ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 7 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l2

Found invariant 2 ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l6

Found invariant 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ 2+X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___9

Found invariant 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ for location n_l5___5

Found invariant X₉ ≤ X₁ ∧ X₁ ≤ X₉ ∧ X₈ ≤ X₀ ∧ 2 ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2 ≤ X₀ for location n_l15___3

Found invariant 2 ≤ X₈ ∧ 5 ≤ X₂+X₈ ∧ 1+X₁ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 3 ≤ X₂ ∧ 2+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₀ for location n_l15___4

Found invariant 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location n_l1___7

Found invariant 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ 2+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₀+X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___2

Found invariant 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₀ for location n_l7___6

Found invariant 2 ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l12

Found invariant 2 ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 5 ≤ X₄+X₈ ∧ 4 ≤ X₃+X₈ ∧ 5 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ 2+X₀ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 5 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 3 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l15___8

Found invariant 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ 1+X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ 2+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location n_l7___10

Found invariant X₀ ≤ X₈ ∧ X₀ ≤ 1 for location l17

Found invariant 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ 2+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₂ ∧ 2+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l7

Found invariant X₉ ≤ X₁ ∧ X₁ ≤ X₉ ∧ X₈ ≤ X₀ ∧ X₀ ≤ X₈ for location l5

Found invariant 2 ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l13

Found invariant 2 ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 7 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l8

Found invariant 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 5 ≤ X₂+X₈ ∧ 4 ≤ X₁+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ 4+X₇ ≤ X₃ ∧ 3+X₇ ≤ X₂ ∧ 2+X₇ ≤ X₁ ∧ 2+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 4 ≤ X₃ ∧ 7 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l15___1

Found invariant 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ 2+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l1

Found invariant 2 ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 7 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l10

Found invariant X₀ ≤ X₈ ∧ X₀ ≤ 1 for location l16

Found invariant 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l4

Found invariant 2 ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 7 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l9

Found invariant 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l3

knowledge_propagation leads to new time bound X₈+X₉ {O(n)} for transition t₂₂₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₄ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₀ ∧ X₃ < 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ 2+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound X₈+X₉+2 {O(n)} for transition t₂₃₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l5___2(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ 2+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₂ ∧ 2+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound X₈+X₉+2 {O(n)} for transition t₂₂₆: n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l15___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀+X₁ ≤ X₃ ∧ X₃ ≤ X₀+X₁ ∧ X₁+X₂ ≤ X₃+1 ∧ 1+X₃ ≤ X₁+X₂ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ 2+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₀+X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound X₈+X₉ {O(n)} for transition t₂₂₉: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l5___9(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ < 1+X₂ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ X₃+1 ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ 1+X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ 2+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound X₈+X₉+2 {O(n)} for transition t₂₁₉: n_l15___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l1___7(X₀, X₁, X₀-1, X₀+X₁-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₁ ∧ 2 ≤ X₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₁ ≤ X₃ ∧ X₃ ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 5 ≤ X₂+X₈ ∧ 4 ≤ X₁+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ 4+X₇ ≤ X₃ ∧ 3+X₇ ≤ X₂ ∧ 2+X₇ ≤ X₁ ∧ 2+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 4 ≤ X₃ ∧ 7 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound X₈+X₉ {O(n)} for transition t₂₂₈: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l15___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < 2+X₄ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ X₁+X₄ ≤ X₅ ∧ X₅ ≤ X₁+X₄ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃+1 ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ 2+X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound X₈+X₉ {O(n)} for transition t₂₂₂: n_l15___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l1___7(X₀, X₁, X₀-1, X₀+X₁-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < 3+X₀ ∧ 1+X₀ ≤ X₅ ∧ 2 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₁+1 ≤ X₅ ∧ X₅ ≤ 1+X₀+X₁ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃+1 ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 5 ≤ X₄+X₈ ∧ 4 ≤ X₃+X₈ ∧ 5 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ 2+X₀ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 5 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 3 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀+X₁ ∧ 2 ≤ X₀

MPRF for transition t₂₂₁: n_l15___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l1___7(X₀, X₁, X₀-1, X₀+X₁-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ < 2 ∧ 2 ≤ X₀ ∧ X₀+X₁ ≤ X₃ ∧ X₃ ≤ X₀+X₁ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 5 ≤ X₂+X₈ ∧ 1+X₁ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 3 ≤ X₂ ∧ 2+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₉⋅X₉+6⋅X₈⋅X₈+8⋅X₈⋅X₉+2⋅X₉+7⋅X₈+2 {O(n^2)}

MPRF:

n_l7___10 [0 ]
l12 [0 ]
l10 [0 ]
l3 [0 ]
l4 [0 ]
l1 [0 ]
l13 [0 ]
l6 [0 ]
l7 [0 ]
n_l5___2 [0 ]
l8 [0 ]
l9 [0 ]
l2 [0 ]
n_l15___1 [X₀ ]
n_l1___7 [X₀-2 ]
l11 [0 ]
n_l15___4 [X₂-1 ]
n_l5___9 [X₀ ]
n_l15___8 [X₀ ]
n_l7___6 [X₀-2 ]
n_l5___5 [X₂-1 ]

MPRF for transition t₂₂₄: n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ ∧ X₀+X₁ ≤ 1+X₃ ∧ 1+X₃ ≤ X₀+X₁ ∧ X₀ ≤ 1+X₂ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₀ ∧ X₃ < 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₉⋅X₉+6⋅X₈⋅X₈+8⋅X₈⋅X₉+2⋅X₉+7⋅X₈+1 {O(n^2)}

MPRF:

n_l7___10 [0 ]
l12 [0 ]
l10 [0 ]
l3 [0 ]
l4 [0 ]
l1 [0 ]
l13 [0 ]
l6 [0 ]
l7 [0 ]
n_l5___2 [0 ]
l8 [0 ]
l9 [0 ]
l2 [0 ]
n_l15___1 [X₀ ]
n_l1___7 [X₀-1 ]
l11 [0 ]
n_l15___4 [X₂-2 ]
n_l5___9 [X₀ ]
n_l15___8 [X₀-1 ]
n_l7___6 [X₀-3 ]
n_l5___5 [X₂-2 ]

MPRF for transition t₂₄₁: n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

3⋅X₈+X₉+5 {O(n)}

MPRF:

l12 [2⋅X₂+X₃-5 ]
l10 [2⋅X₄+X₅-4 ]
l3 [2⋅X₄+X₅-4 ]
l4 [2⋅X₄+X₅-6 ]
l1 [2⋅X₄+X₅-6 ]
l13 [2⋅X₂+X₃-5 ]
l6 [2⋅X₂+X₃-5 ]
l7 [2⋅X₂+X₃-5 ]
l8 [2⋅X₄+X₅-4 ]
l9 [2⋅X₄+X₅-4 ]
l2 [2⋅X₄+X₅-4 ]
n_l1___7 [2⋅X₀+X₃-5 ]
l11 [2⋅X₂+X₃-5 ]
n_l5___2 [2⋅X₂+X₃-5 ]
n_l15___1 [2⋅X₂+X₃-8 ]
n_l15___4 [2⋅X₀+X₃-6 ]
n_l15___8 [3⋅X₀+X₁+X₅-X₃-6 ]
n_l7___10 [2⋅X₄+X₅-6 ]
n_l5___9 [3⋅X₀+X₁+3⋅X₅-2⋅X₂-X₃-6 ]
n_l7___6 [2⋅X₀+X₃-5 ]
n_l5___5 [2⋅X₀+X₃-6 ]

MPRF for transition t₂₂₇: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l15___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ < 2 ∧ X₁ ≤ X₃ ∧ X₀+X₁ ≤ X₃ ∧ X₃ ≤ X₀+X₁ ∧ X₁+X₂ ≤ X₃+1 ∧ 1+X₃ ≤ X₁+X₂ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₉⋅X₉+6⋅X₈⋅X₈+8⋅X₈⋅X₉+2⋅X₉+7⋅X₈ {O(n^2)}

MPRF:

n_l7___10 [0 ]
l12 [0 ]
l10 [0 ]
l3 [0 ]
l4 [0 ]
l1 [0 ]
l13 [0 ]
l6 [0 ]
l7 [0 ]
n_l5___2 [0 ]
l8 [0 ]
l9 [0 ]
l2 [0 ]
n_l15___1 [X₀ ]
n_l1___7 [X₀ ]
l11 [0 ]
n_l15___4 [X₀ ]
n_l5___9 [X₀ ]
n_l15___8 [X₀ ]
n_l7___6 [X₀ ]
n_l5___5 [X₀+1 ]

MPRF for transition t₂₃₁: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l5___5(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ < 1 ∧ 2 ≤ X₀ ∧ X₀+X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₀+X₁ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₉⋅X₉+6⋅X₈⋅X₈+8⋅X₈⋅X₉+4⋅X₉+7⋅X₈+1 {O(n^2)}

MPRF:

n_l7___10 [0 ]
l12 [0 ]
l10 [0 ]
l3 [0 ]
l4 [0 ]
l1 [0 ]
l13 [0 ]
l6 [0 ]
l7 [0 ]
n_l5___2 [0 ]
l8 [0 ]
l9 [0 ]
l2 [0 ]
n_l15___1 [X₀ ]
n_l1___7 [X₃+1-X₁ ]
l11 [0 ]
n_l15___4 [X₀ ]
n_l5___9 [X₀ ]
n_l15___8 [X₀ ]
n_l7___6 [X₂+1 ]
n_l5___5 [X₃-X₁ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:12⋅X₈⋅X₈+12⋅X₉⋅X₉+30⋅X₈⋅X₉+105⋅X₈+75⋅X₉+102 {O(n^2)}
t₀: 1 {O(1)}
t₅: X₈+X₉+1 {O(n)}
t₆: 15⋅X₈⋅X₉+6⋅X₈⋅X₈+6⋅X₉⋅X₉+24⋅X₉+42⋅X₈+20 {O(n^2)}
t₂₂: X₈+X₉ {O(n)}
t₇: X₈+X₉ {O(n)}
t₉: 2⋅X₈+2⋅X₉+2 {O(n)}
t₁₃: X₈+X₉ {O(n)}
t₁: 1 {O(1)}
t₄: 2⋅X₈⋅X₈+2⋅X₉⋅X₉+5⋅X₈⋅X₉+14⋅X₈+8⋅X₉+7 {O(n^2)}
t₂₅: 1 {O(1)}
t₁₉: 2⋅X₉+X₈+9 {O(n)}
t₂₀: 2⋅X₉+X₈+9 {O(n)}
t₂₁: X₈+X₉+4 {O(n)}
t₁₄: X₈+X₉ {O(n)}
t₁₅: X₈+X₉ {O(n)}
t₂₃: X₈+X₉ {O(n)}
t₂: 2⋅X₈⋅X₈+2⋅X₉⋅X₉+5⋅X₈⋅X₉+14⋅X₈+8⋅X₉+7 {O(n^2)}
t₃: 1 {O(1)}
t₁₀: 2⋅X₈+2⋅X₉+4 {O(n)}
t₁₁: X₈+X₉ {O(n)}
t₁₂: X₈+X₉+2 {O(n)}
t₂₄: 2⋅X₈⋅X₈+2⋅X₉⋅X₉+5⋅X₈⋅X₉+14⋅X₉+17⋅X₈+26 {O(n^2)}
t₁₆: X₈+X₉+1 {O(n)}
t₁₈: 2⋅X₉+X₈+6 {O(n)}

Costbounds

Overall costbound: 12⋅X₈⋅X₈+12⋅X₉⋅X₉+30⋅X₈⋅X₉+105⋅X₈+75⋅X₉+102 {O(n^2)}
t₀: 1 {O(1)}
t₅: X₈+X₉+1 {O(n)}
t₆: 15⋅X₈⋅X₉+6⋅X₈⋅X₈+6⋅X₉⋅X₉+24⋅X₉+42⋅X₈+20 {O(n^2)}
t₂₂: X₈+X₉ {O(n)}
t₇: X₈+X₉ {O(n)}
t₉: 2⋅X₈+2⋅X₉+2 {O(n)}
t₁₃: X₈+X₉ {O(n)}
t₁: 1 {O(1)}
t₄: 2⋅X₈⋅X₈+2⋅X₉⋅X₉+5⋅X₈⋅X₉+14⋅X₈+8⋅X₉+7 {O(n^2)}
t₂₅: 1 {O(1)}
t₁₉: 2⋅X₉+X₈+9 {O(n)}
t₂₀: 2⋅X₉+X₈+9 {O(n)}
t₂₁: X₈+X₉+4 {O(n)}
t₁₄: X₈+X₉ {O(n)}
t₁₅: X₈+X₉ {O(n)}
t₂₃: X₈+X₉ {O(n)}
t₂: 2⋅X₈⋅X₈+2⋅X₉⋅X₉+5⋅X₈⋅X₉+14⋅X₈+8⋅X₉+7 {O(n^2)}
t₃: 1 {O(1)}
t₁₀: 2⋅X₈+2⋅X₉+4 {O(n)}
t₁₁: X₈+X₉ {O(n)}
t₁₂: X₈+X₉+2 {O(n)}
t₂₄: 2⋅X₈⋅X₈+2⋅X₉⋅X₉+5⋅X₈⋅X₉+14⋅X₉+17⋅X₈+26 {O(n^2)}
t₁₆: X₈+X₉+1 {O(n)}
t₁₈: 2⋅X₉+X₈+6 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₅, X₀: 2⋅X₈+X₉ {O(n)}
t₅, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₅, X₂: 2⋅X₈+X₉ {O(n)}
t₅, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₅, X₄: 4⋅X₉+8⋅X₈+X₄ {O(n)}
t₅, X₅: 144⋅X₈⋅X₈⋅X₈+324⋅X₈⋅X₉⋅X₉+432⋅X₈⋅X₈⋅X₉+72⋅X₉⋅X₉⋅X₉+1152⋅X₈⋅X₈+1440⋅X₈⋅X₉+432⋅X₉⋅X₉+1488⋅X₈+756⋅X₉+X₅ {O(n^3)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₆, X₀: 2⋅X₉+4⋅X₈ {O(n)}
t₆, X₁: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈ {O(n^3)}
t₆, X₂: 2⋅X₈+X₉ {O(n)}
t₆, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₆, X₄: 4⋅X₉+8⋅X₈+X₄ {O(n)}
t₆, X₅: 144⋅X₈⋅X₈⋅X₈+324⋅X₈⋅X₉⋅X₉+432⋅X₈⋅X₈⋅X₉+72⋅X₉⋅X₉⋅X₉+1152⋅X₈⋅X₈+1440⋅X₈⋅X₉+432⋅X₉⋅X₉+1488⋅X₈+756⋅X₉+X₅ {O(n^3)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₂₂, X₀: 2⋅X₈+X₉ {O(n)}
t₂₂, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₂₂, X₂: 2⋅X₉+4⋅X₈ {O(n)}
t₂₂, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₂₂, X₄: 2⋅X₈+X₉ {O(n)}
t₂₂, X₅: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈ {O(n^3)}
t₂₂, X₈: X₈ {O(n)}
t₂₂, X₉: X₉ {O(n)}
t₇, X₀: 2⋅X₈+X₉ {O(n)}
t₇, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₇, X₂: 2⋅X₈+X₉ {O(n)}
t₇, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₇, X₄: 4⋅X₉+8⋅X₈+X₄ {O(n)}
t₇, X₅: 144⋅X₈⋅X₈⋅X₈+324⋅X₈⋅X₉⋅X₉+432⋅X₈⋅X₈⋅X₉+72⋅X₉⋅X₉⋅X₉+1152⋅X₈⋅X₈+1440⋅X₈⋅X₉+432⋅X₉⋅X₉+1488⋅X₈+756⋅X₉+X₅ {O(n^3)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₉, X₀: 2⋅X₈+X₉ {O(n)}
t₉, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₉, X₂: 2⋅X₈+X₉ {O(n)}
t₉, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₉, X₄: 4⋅X₉+8⋅X₈+X₄ {O(n)}
t₉, X₅: 144⋅X₈⋅X₈⋅X₈+324⋅X₈⋅X₉⋅X₉+432⋅X₈⋅X₈⋅X₉+72⋅X₉⋅X₉⋅X₉+1152⋅X₈⋅X₈+1440⋅X₈⋅X₉+432⋅X₉⋅X₉+1488⋅X₈+756⋅X₉+X₅ {O(n^3)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₁₃, X₀: 2⋅X₈+X₉ {O(n)}
t₁₃, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₃, X₂: 2⋅X₉+4⋅X₈ {O(n)}
t₁₃, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₃, X₄: 2⋅X₈+X₉ {O(n)}
t₁₃, X₅: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈ {O(n^3)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₉ {O(n)}
t₁, X₀: X₈ {O(n)}
t₁, X₁: X₉ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₄, X₀: 2⋅X₈+X₉ {O(n)}
t₄, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₄, X₂: 2⋅X₈+X₉ {O(n)}
t₄, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₄, X₄: 4⋅X₉+8⋅X₈+X₄ {O(n)}
t₄, X₅: 144⋅X₈⋅X₈⋅X₈+324⋅X₈⋅X₉⋅X₉+432⋅X₈⋅X₈⋅X₉+72⋅X₉⋅X₉⋅X₉+1152⋅X₈⋅X₈+1440⋅X₈⋅X₉+432⋅X₉⋅X₉+1488⋅X₈+756⋅X₉+X₅ {O(n^3)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₂₅, X₀: 3⋅X₈+X₉ {O(n)}
t₂₅, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+64⋅X₉ {O(n^3)}
t₂₅, X₂: 2⋅X₉+4⋅X₈+X₂ {O(n)}
t₂₅, X₃: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈+X₃ {O(n^3)}
t₂₅, X₄: 2⋅X₄+4⋅X₉+8⋅X₈ {O(n)}
t₂₅, X₅: 144⋅X₈⋅X₈⋅X₈+324⋅X₈⋅X₉⋅X₉+432⋅X₈⋅X₈⋅X₉+72⋅X₉⋅X₉⋅X₉+1152⋅X₈⋅X₈+1440⋅X₈⋅X₉+432⋅X₉⋅X₉+1488⋅X₈+2⋅X₅+756⋅X₉ {O(n^3)}
t₂₅, X₈: 2⋅X₈ {O(n)}
t₂₅, X₉: 2⋅X₉ {O(n)}
t₁₉, X₀: 2⋅X₈+X₉ {O(n)}
t₁₉, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₉, X₂: 2⋅X₉+4⋅X₈ {O(n)}
t₁₉, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₉, X₄: 2⋅X₈+X₉ {O(n)}
t₁₉, X₅: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈ {O(n^3)}
t₁₉, X₈: X₈ {O(n)}
t₁₉, X₉: X₉ {O(n)}
t₂₀, X₀: 2⋅X₈+X₉ {O(n)}
t₂₀, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₂₀, X₂: 2⋅X₉+4⋅X₈ {O(n)}
t₂₀, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₂₀, X₄: 2⋅X₈+X₉ {O(n)}
t₂₀, X₅: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈ {O(n^3)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₉ {O(n)}
t₂₁, X₀: 2⋅X₈+X₉ {O(n)}
t₂₁, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₂₁, X₂: 2⋅X₉+4⋅X₈ {O(n)}
t₂₁, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₂₁, X₄: 2⋅X₈+X₉ {O(n)}
t₂₁, X₅: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈ {O(n^3)}
t₂₁, X₆: 0 {O(1)}
t₂₁, X₈: X₈ {O(n)}
t₂₁, X₉: X₉ {O(n)}
t₁₄, X₀: 2⋅X₈+X₉ {O(n)}
t₁₄, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₄, X₂: 2⋅X₉+4⋅X₈ {O(n)}
t₁₄, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₄, X₄: 2⋅X₈+X₉ {O(n)}
t₁₄, X₅: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈ {O(n^3)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₅, X₀: 2⋅X₈+X₉ {O(n)}
t₁₅, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₅, X₂: 4⋅X₉+8⋅X₈ {O(n)}
t₁₅, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₅, X₄: 2⋅X₈+X₉ {O(n)}
t₁₅, X₅: 108⋅X₈⋅X₉⋅X₉+144⋅X₈⋅X₈⋅X₉+24⋅X₉⋅X₉⋅X₉+48⋅X₈⋅X₈⋅X₈+144⋅X₉⋅X₉+384⋅X₈⋅X₈+480⋅X₈⋅X₉+252⋅X₉+496⋅X₈ {O(n^3)}
t₁₅, X₈: X₈ {O(n)}
t₁₅, X₉: X₉ {O(n)}
t₂₃, X₀: 2⋅X₈+X₉ {O(n)}
t₂₃, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₂₃, X₂: 2⋅X₈+X₉ {O(n)}
t₂₃, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₂₃, X₄: 2⋅X₉+4⋅X₈ {O(n)}
t₂₃, X₅: 162⋅X₈⋅X₉⋅X₉+216⋅X₈⋅X₈⋅X₉+36⋅X₉⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₈+216⋅X₉⋅X₉+576⋅X₈⋅X₈+720⋅X₈⋅X₉+378⋅X₉+744⋅X₈ {O(n^3)}
t₂₃, X₈: X₈ {O(n)}
t₂₃, X₉: X₉ {O(n)}
t₂, X₀: 2⋅X₈+X₉ {O(n)}
t₂, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₂, X₂: 2⋅X₉+4⋅X₈+X₂ {O(n)}
t₂, X₃: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈+X₃ {O(n^3)}
t₂, X₄: 4⋅X₉+8⋅X₈+X₄ {O(n)}
t₂, X₅: 144⋅X₈⋅X₈⋅X₈+324⋅X₈⋅X₉⋅X₉+432⋅X₈⋅X₈⋅X₉+72⋅X₉⋅X₉⋅X₉+1152⋅X₈⋅X₈+1440⋅X₈⋅X₉+432⋅X₉⋅X₉+1488⋅X₈+756⋅X₉+X₅ {O(n^3)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₃, X₀: 3⋅X₈+X₉ {O(n)}
t₃, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+64⋅X₉ {O(n^3)}
t₃, X₂: 2⋅X₉+4⋅X₈+X₂ {O(n)}
t₃, X₃: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈+X₃ {O(n^3)}
t₃, X₄: 2⋅X₄+4⋅X₉+8⋅X₈ {O(n)}
t₃, X₅: 144⋅X₈⋅X₈⋅X₈+324⋅X₈⋅X₉⋅X₉+432⋅X₈⋅X₈⋅X₉+72⋅X₉⋅X₉⋅X₉+1152⋅X₈⋅X₈+1440⋅X₈⋅X₉+432⋅X₉⋅X₉+1488⋅X₈+2⋅X₅+756⋅X₉ {O(n^3)}
t₃, X₈: 2⋅X₈ {O(n)}
t₃, X₉: 2⋅X₉ {O(n)}
t₁₀, X₀: 2⋅X₈+X₉ {O(n)}
t₁₀, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₀, X₂: 2⋅X₈+X₉ {O(n)}
t₁₀, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₀, X₄: 4⋅X₉+8⋅X₈+X₄ {O(n)}
t₁₀, X₅: 144⋅X₈⋅X₈⋅X₈+324⋅X₈⋅X₉⋅X₉+432⋅X₈⋅X₈⋅X₉+72⋅X₉⋅X₉⋅X₉+1152⋅X₈⋅X₈+1440⋅X₈⋅X₉+432⋅X₉⋅X₉+1488⋅X₈+756⋅X₉+X₅ {O(n^3)}
t₁₀, X₈: X₈ {O(n)}
t₁₀, X₉: X₉ {O(n)}
t₁₁, X₀: 2⋅X₈+X₉ {O(n)}
t₁₁, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₁, X₂: 2⋅X₈+X₉ {O(n)}
t₁₁, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₁, X₄: 4⋅X₉+8⋅X₈+X₄ {O(n)}
t₁₁, X₅: 144⋅X₈⋅X₈⋅X₈+324⋅X₈⋅X₉⋅X₉+432⋅X₈⋅X₈⋅X₉+72⋅X₉⋅X₉⋅X₉+1152⋅X₈⋅X₈+1440⋅X₈⋅X₉+432⋅X₉⋅X₉+1488⋅X₈+756⋅X₉+X₅ {O(n^3)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₂, X₀: 2⋅X₈+X₉ {O(n)}
t₁₂, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₂, X₂: 2⋅X₈+X₉ {O(n)}
t₁₂, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₂, X₄: 4⋅X₉+8⋅X₈+X₄ {O(n)}
t₁₂, X₅: 144⋅X₈⋅X₈⋅X₈+324⋅X₈⋅X₉⋅X₉+432⋅X₈⋅X₈⋅X₉+72⋅X₉⋅X₉⋅X₉+1152⋅X₈⋅X₈+1440⋅X₈⋅X₉+432⋅X₉⋅X₉+1488⋅X₈+756⋅X₉+X₅ {O(n^3)}
t₁₂, X₇: 0 {O(1)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₉ {O(n)}
t₂₄, X₀: 2⋅X₈+X₉ {O(n)}
t₂₄, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₂₄, X₂: 2⋅X₉+4⋅X₈ {O(n)}
t₂₄, X₃: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈ {O(n^3)}
t₂₄, X₄: 4⋅X₉+8⋅X₈+X₄ {O(n)}
t₂₄, X₅: 144⋅X₈⋅X₈⋅X₈+324⋅X₈⋅X₉⋅X₉+432⋅X₈⋅X₈⋅X₉+72⋅X₉⋅X₉⋅X₉+1152⋅X₈⋅X₈+1440⋅X₈⋅X₉+432⋅X₉⋅X₉+1488⋅X₈+756⋅X₉+X₅ {O(n^3)}
t₂₄, X₈: X₈ {O(n)}
t₂₄, X₉: X₉ {O(n)}
t₁₆, X₀: 2⋅X₈+X₉ {O(n)}
t₁₆, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₆, X₂: 2⋅X₉+4⋅X₈ {O(n)}
t₁₆, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₆, X₄: 2⋅X₈+X₉ {O(n)}
t₁₆, X₅: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈ {O(n^3)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₉ {O(n)}
t₁₈, X₀: 2⋅X₈+X₉ {O(n)}
t₁₈, X₁: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₈, X₂: 2⋅X₉+4⋅X₈ {O(n)}
t₁₈, X₃: 12⋅X₈⋅X₈⋅X₈+27⋅X₈⋅X₉⋅X₉+36⋅X₈⋅X₈⋅X₉+6⋅X₉⋅X₉⋅X₉+120⋅X₈⋅X₉+36⋅X₉⋅X₉+96⋅X₈⋅X₈+124⋅X₈+63⋅X₉ {O(n^3)}
t₁₈, X₄: 2⋅X₈+X₉ {O(n)}
t₁₈, X₅: 12⋅X₉⋅X₉⋅X₉+24⋅X₈⋅X₈⋅X₈+54⋅X₈⋅X₉⋅X₉+72⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₈+240⋅X₈⋅X₉+72⋅X₉⋅X₉+126⋅X₉+248⋅X₈ {O(n^3)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₉ {O(n)}