Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₄ ≤ X₁
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₀, X₅, X₆)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₅
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₃
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆)
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅)
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆)
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+X₅ < X₆
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄+X₅
t₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1)

Preprocessing

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l6

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l7

Found invariant 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l5

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l8

Found invariant X₀ ≤ X₄ for location l1

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l10

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l4

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l9

Found invariant X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₄ ≤ X₁ ∧ X₀ ≤ X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄ ∧ X₀ ≤ X₄
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₀, X₅, X₆)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+X₅ < X₆ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄+X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁

MPRF for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₄ ≤ X₁ ∧ X₀ ≤ X₄ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF:

l5 [X₁-X₄ ]
l1 [X₁+1-X₄ ]
l6 [X₁-X₄ ]
l3 [X₁-X₄ ]
l7 [X₁-X₄ ]
l9 [X₁-X₄ ]
l8 [X₁-X₄ ]

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF:

l5 [X₁-X₄ ]
l1 [X₁+1-X₄ ]
l6 [X₁+1-X₄ ]
l3 [X₁+1-X₄ ]
l7 [X₁+1-X₄ ]
l9 [X₁+1-X₄ ]
l8 [X₁+1-X₄ ]

MPRF for transition t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF:

l5 [X₁+1-X₄ ]
l1 [X₁+1-X₄ ]
l6 [X₁+1-X₄ ]
l3 [X₁+1-X₄ ]
l7 [X₁+1-X₄ ]
l9 [X₁+1-X₄ ]
l8 [X₁+1-X₄ ]

MPRF for transition t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}

MPRF:

l1 [X₃+1-X₂ ]
l5 [X₃-X₅ ]
l6 [X₃-X₅ ]
l3 [X₃+1-X₅ ]
l7 [X₃-X₅ ]
l9 [X₃-X₅ ]
l8 [X₃-X₅ ]

MPRF for transition t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}

MPRF:

l1 [X₃+1-X₂ ]
l5 [X₃-X₅ ]
l6 [X₃+1-X₅ ]
l3 [X₃+1-X₅ ]
l7 [X₃-X₅ ]
l9 [X₃-X₅ ]
l8 [X₃-X₅ ]

MPRF for transition t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}

MPRF:

l1 [X₃+1-X₂ ]
l5 [X₃-X₅ ]
l6 [X₃+1-X₅ ]
l3 [X₃+1-X₅ ]
l7 [X₃+1-X₅ ]
l9 [X₃+1-X₅ ]
l8 [X₃+1-X₅ ]

MPRF for transition t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+X₅ < X₆ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

4⋅X₀⋅X₂+4⋅X₀⋅X₃+4⋅X₁⋅X₂+4⋅X₁⋅X₃+8⋅X₂+8⋅X₃+X₀+X₁+2 {O(n^2)}

MPRF:

l1 [4⋅X₃+1-4⋅X₂ ]
l5 [4⋅X₃-3⋅X₂-X₅ ]
l6 [4⋅X₃+1-3⋅X₂-X₅ ]
l3 [4⋅X₃+1-3⋅X₂-X₅ ]
l7 [4⋅X₃-3⋅X₂-X₅ ]
l9 [4⋅X₃+1-3⋅X₂-X₅ ]
l8 [4⋅X₃+1-3⋅X₂-X₅ ]

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l6

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l7

Found invariant 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l5

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l8

Found invariant X₀ ≤ X₄ for location l1

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l10

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l4

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l9

Found invariant X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l3

MPRF for transition t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄+X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

16⋅X₀⋅X₁⋅X₂⋅X₃+4⋅X₀⋅X₀⋅X₂⋅X₂+4⋅X₀⋅X₀⋅X₃⋅X₃+4⋅X₁⋅X₁⋅X₂⋅X₂+4⋅X₁⋅X₁⋅X₃⋅X₃+8⋅X₀⋅X₀⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₂⋅X₂+8⋅X₀⋅X₁⋅X₃⋅X₃+8⋅X₁⋅X₁⋅X₂⋅X₃+13⋅X₀⋅X₀⋅X₂+13⋅X₀⋅X₀⋅X₃+13⋅X₁⋅X₁⋅X₂+13⋅X₁⋅X₁⋅X₃+20⋅X₀⋅X₃⋅X₃+20⋅X₁⋅X₃⋅X₃+24⋅X₀⋅X₂⋅X₂+24⋅X₁⋅X₂⋅X₂+26⋅X₀⋅X₁⋅X₂+26⋅X₀⋅X₁⋅X₃+44⋅X₀⋅X₂⋅X₃+44⋅X₁⋅X₂⋅X₃+24⋅X₃⋅X₃+3⋅X₀⋅X₀+3⋅X₁⋅X₁+32⋅X₂⋅X₂+49⋅X₀⋅X₃+49⋅X₁⋅X₃+50⋅X₀⋅X₂+50⋅X₁⋅X₂+56⋅X₂⋅X₃+6⋅X₀⋅X₁+12⋅X₀+12⋅X₁+47⋅X₃+49⋅X₂+11 {O(n^4)}

MPRF:

l5 [X₁+X₃+X₅-X₄ ]
l1 [X₁+X₂+X₃+1-X₄ ]
l6 [X₁+X₃+X₅+1-X₄ ]
l7 [X₁+X₃+X₅+2-X₄ ]
l3 [X₁+X₃+X₅+1-X₄ ]
l9 [X₁+X₃-X₆ ]
l8 [X₁+X₃+1-X₆ ]

Time-Bound by TWN-Loops:

TWN-Loops: t₉ 16⋅X₀⋅X₁⋅X₂⋅X₃+4⋅X₀⋅X₀⋅X₂⋅X₂+4⋅X₀⋅X₀⋅X₃⋅X₃+4⋅X₁⋅X₁⋅X₂⋅X₂+4⋅X₁⋅X₁⋅X₃⋅X₃+8⋅X₀⋅X₀⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₂⋅X₂+8⋅X₀⋅X₁⋅X₃⋅X₃+8⋅X₁⋅X₁⋅X₂⋅X₃+12⋅X₁⋅X₁⋅X₂+12⋅X₁⋅X₁⋅X₃+16⋅X₀⋅X₀⋅X₂+16⋅X₀⋅X₀⋅X₃+16⋅X₀⋅X₃⋅X₃+16⋅X₁⋅X₃⋅X₃+24⋅X₀⋅X₂⋅X₂+24⋅X₁⋅X₂⋅X₂+28⋅X₀⋅X₁⋅X₂+28⋅X₀⋅X₁⋅X₃+40⋅X₀⋅X₂⋅X₃+40⋅X₁⋅X₂⋅X₃+12⋅X₀⋅X₀+16⋅X₃⋅X₃+20⋅X₀⋅X₁+32⋅X₂⋅X₂+48⋅X₁⋅X₃+48⋅X₂⋅X₃+56⋅X₀⋅X₃+56⋅X₁⋅X₂+64⋅X₀⋅X₂+8⋅X₁⋅X₁+32⋅X₁+40⋅X₀+48⋅X₃+64⋅X₂+32 {O(n^4)}

relevant size-bounds w.r.t. t₆:
X₄: 2⋅X₀+X₁+1 {O(n)}
X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+4⋅X₂+X₀+X₁+2 {O(n^2)}
X₆: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₁+2⋅X₃+3⋅X₀+4⋅X₂+3 {O(n^2)}
Runtime-bound of t₆: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}
Results in: 16⋅X₀⋅X₁⋅X₂⋅X₃+4⋅X₀⋅X₀⋅X₂⋅X₂+4⋅X₀⋅X₀⋅X₃⋅X₃+4⋅X₁⋅X₁⋅X₂⋅X₂+4⋅X₁⋅X₁⋅X₃⋅X₃+8⋅X₀⋅X₀⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₂⋅X₂+8⋅X₀⋅X₁⋅X₃⋅X₃+8⋅X₁⋅X₁⋅X₂⋅X₃+12⋅X₁⋅X₁⋅X₂+12⋅X₁⋅X₁⋅X₃+16⋅X₀⋅X₀⋅X₂+16⋅X₀⋅X₀⋅X₃+16⋅X₀⋅X₃⋅X₃+16⋅X₁⋅X₃⋅X₃+24⋅X₀⋅X₂⋅X₂+24⋅X₁⋅X₂⋅X₂+28⋅X₀⋅X₁⋅X₂+28⋅X₀⋅X₁⋅X₃+40⋅X₀⋅X₂⋅X₃+40⋅X₁⋅X₂⋅X₃+12⋅X₀⋅X₀+16⋅X₃⋅X₃+20⋅X₀⋅X₁+32⋅X₂⋅X₂+48⋅X₁⋅X₃+48⋅X₂⋅X₃+56⋅X₀⋅X₃+56⋅X₁⋅X₂+64⋅X₀⋅X₂+8⋅X₁⋅X₁+32⋅X₁+40⋅X₀+48⋅X₃+64⋅X₂+32 {O(n^4)}

16⋅X₀⋅X₁⋅X₂⋅X₃+4⋅X₀⋅X₀⋅X₂⋅X₂+4⋅X₀⋅X₀⋅X₃⋅X₃+4⋅X₁⋅X₁⋅X₂⋅X₂+4⋅X₁⋅X₁⋅X₃⋅X₃+8⋅X₀⋅X₀⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₂⋅X₂+8⋅X₀⋅X₁⋅X₃⋅X₃+8⋅X₁⋅X₁⋅X₂⋅X₃+12⋅X₁⋅X₁⋅X₂+12⋅X₁⋅X₁⋅X₃+16⋅X₀⋅X₀⋅X₂+16⋅X₀⋅X₀⋅X₃+16⋅X₀⋅X₃⋅X₃+16⋅X₁⋅X₃⋅X₃+24⋅X₀⋅X₂⋅X₂+24⋅X₁⋅X₂⋅X₂+28⋅X₀⋅X₁⋅X₂+28⋅X₀⋅X₁⋅X₃+40⋅X₀⋅X₂⋅X₃+40⋅X₁⋅X₂⋅X₃+12⋅X₀⋅X₀+16⋅X₃⋅X₃+20⋅X₀⋅X₁+32⋅X₂⋅X₂+48⋅X₁⋅X₃+48⋅X₂⋅X₃+56⋅X₀⋅X₃+56⋅X₁⋅X₂+64⋅X₀⋅X₂+8⋅X₁⋅X₁+32⋅X₁+40⋅X₀+48⋅X₃+64⋅X₂+32 {O(n^4)}

Analysing control-flow refined program

Found invariant X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l6___9

Found invariant X₅ ≤ X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l6___4

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l8___3

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l8___8

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l9___1

Found invariant X₅ ≤ 1+X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l3___5

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l7___2

Found invariant 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l5

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l9___6

Found invariant X₀ ≤ X₄ for location l1

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l10

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l4

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l7___7

Found invariant X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l3

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₂₃₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₂₃₄: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅) :|: X₂ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁

MPRF for transition t₂₃₂: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₂ ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₀+2⋅X₀⋅X₃+2⋅X₁⋅X₁+2⋅X₁⋅X₃+3⋅X₀⋅X₂+3⋅X₁⋅X₂+4⋅X₀⋅X₁+2⋅X₃+3⋅X₂+4⋅X₀+4⋅X₁+2 {O(n^2)}

MPRF:

l3 [X₁+1-X₄ ]
n_l6___9 [X₁+1-X₄ ]
l1 [X₁+1-X₄ ]
l5 [X₁-X₄ ]
n_l6___4 [X₁+2⋅X₃-X₂-X₄-X₅ ]
n_l3___5 [X₁+2⋅X₃+1-X₂-X₄-X₅ ]
n_l7___2 [X₁+2⋅X₃-X₂-X₄-X₅ ]
n_l7___7 [X₁+2⋅X₃-X₂-X₄-X₅ ]
n_l8___8 [X₁+2⋅X₃-X₂-X₄-X₅ ]
n_l9___1 [X₁+2⋅X₃-X₂-X₄-X₅ ]
n_l9___6 [X₁+2⋅X₃-X₂-X₄-X₅ ]
n_l8___3 [X₁+2⋅X₃-X₂-X₄-X₅ ]

MPRF for transition t₂₅₂: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₅ ≤ 1+X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF:

l3 [X₁+1-X₄ ]
l1 [X₁+1-X₄ ]
l5 [X₁-X₄ ]
n_l6___4 [X₁+1-X₄ ]
n_l6___9 [X₁+1-X₄ ]
n_l3___5 [X₁+1-X₄ ]
n_l7___2 [X₁+1-X₄ ]
n_l7___7 [X₁+1-X₄ ]
n_l8___8 [X₁+1-X₄ ]
n_l9___1 [X₁+1-X₄ ]
n_l9___6 [X₁+1-X₄ ]
n_l8___3 [X₁+1-X₄ ]

MPRF for transition t₂₃₃: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅) :|: X₅ ≤ X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+4⋅X₀+4⋅X₁+X₃+2 {O(n^2)}

MPRF:

l3 [X₁+1-X₄ ]
n_l6___9 [X₁+1-X₄ ]
l1 [X₁+1-X₄ ]
l5 [X₁-X₄ ]
n_l6___4 [X₁+X₃+1-X₄-X₅ ]
n_l3___5 [X₁+X₃+1-X₄-X₅ ]
n_l7___2 [X₁+X₃-X₄-X₅ ]
n_l7___7 [X₁+X₃-X₄-X₅ ]
n_l8___8 [X₁+X₃-X₄-X₅ ]
n_l9___1 [X₁+X₃-X₄-X₅ ]
n_l9___6 [X₁+X₃-X₄-X₅ ]
n_l8___3 [X₁+X₃-X₄-X₅ ]

MPRF for transition t₂₃₅: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄+X₅ < X₆ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}

MPRF:

l3 [X₁+1-X₄ ]
n_l6___9 [X₁+1-X₄ ]
l1 [X₁+1-X₄ ]
l5 [X₁-X₄ ]
n_l6___4 [X₁+X₃+1-X₄-X₅ ]
n_l3___5 [X₁+X₃+1-X₄-X₅ ]
n_l7___2 [X₁+X₃+1-X₄-X₅ ]
n_l7___7 [X₁+X₃-X₄-X₅ ]
n_l8___8 [X₁+X₃+1-X₄-X₅ ]
n_l9___1 [X₁+X₃+1-X₄-X₅ ]
n_l9___6 [X₁+X₃+1-X₄-X₅ ]
n_l8___3 [X₁+X₃+1-X₄-X₅ ]

MPRF for transition t₂₃₆: n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 2⋅X₅ < 0 ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₅+X₆ ∧ X₅+X₆ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}

MPRF:

l3 [X₁+1-X₄ ]
n_l6___9 [X₁+1-X₄ ]
l1 [X₁+1-X₄ ]
l5 [X₁-X₄ ]
n_l6___4 [X₁+X₃+1-X₄-X₅ ]
n_l3___5 [X₁+X₃+1-X₄-X₅ ]
n_l7___2 [X₁+X₃-X₄-X₅ ]
n_l7___7 [X₁+X₃+X₆+1-2⋅X₄ ]
n_l8___8 [X₁+X₃+1-X₄-X₅ ]
n_l9___1 [X₁+X₃-X₄-X₅ ]
n_l9___6 [X₁+X₃-X₄-X₅ ]
n_l8___3 [X₁+X₃-X₄-X₅ ]

MPRF for transition t₂₃₇: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄+X₅ < X₆ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}

MPRF:

l3 [X₁+1-X₄ ]
n_l6___9 [X₁+1-X₄ ]
l1 [X₁+1-X₄ ]
l5 [X₁-X₄ ]
n_l6___4 [X₁+X₃+1-X₄-X₅ ]
n_l3___5 [X₁+X₃+1-X₄-X₅ ]
n_l7___2 [X₁+X₃-X₄-X₅ ]
n_l7___7 [X₁+X₃-X₄-X₅ ]
n_l8___8 [X₁+X₃+1-X₄-X₅ ]
n_l9___1 [X₁+X₃+1-X₄-X₅ ]
n_l9___6 [X₁+X₃+1-X₄-X₅ ]
n_l8___3 [X₁+X₃+1-X₄-X₅ ]

MPRF for transition t₂₃₉: n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₅+X₆ ∧ X₅+X₆ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄+X₅ < X₆ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}

MPRF:

l3 [X₁+1-X₄ ]
n_l6___9 [X₁+1-X₄ ]
l1 [X₁+1-X₄ ]
l5 [X₁-X₄ ]
n_l6___4 [X₁+X₃+1-X₄-X₅ ]
n_l3___5 [X₁+X₃+1-X₄-X₅ ]
n_l7___2 [X₁+X₃-X₄-X₅ ]
n_l7___7 [X₁+X₃-X₄-X₅ ]
n_l8___8 [X₁+X₃+1-X₄-X₅ ]
n_l9___1 [X₁+X₃-X₄-X₅ ]
n_l9___6 [X₁+X₃-X₄-X₅ ]
n_l8___3 [X₁+X₃-X₄-X₅ ]

MPRF for transition t₂₄₀: n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₅+X₆ ∧ X₅+X₆ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₆ ≤ X₄+X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₂+2⋅X₁⋅X₂+X₀⋅X₃+X₁⋅X₃+2⋅X₀+2⋅X₁+2⋅X₂+X₃+3 {O(n^2)}

MPRF:

l3 [1 ]
n_l6___9 [1 ]
l1 [1 ]
l5 [1 ]
n_l6___4 [X₃+2-X₅ ]
n_l3___5 [X₃+2-X₅ ]
n_l7___2 [X₃+1-X₅ ]
n_l7___7 [X₃+1-X₅ ]
n_l8___8 [X₃+2-X₅ ]
n_l9___1 [X₃+1-X₅ ]
n_l9___6 [X₃+1-X₅ ]
n_l8___3 [X₃+1-X₅ ]

MPRF for transition t₂₄₂: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₀ ≤ X₄ ∧ X₂+X₆ ≤ X₄ ∧ X₄ ≤ X₃+X₆ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₄ ≤ X₅+X₆ ∧ X₅+X₆ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}

MPRF:

l3 [X₁+1-X₄ ]
n_l6___9 [X₁+1-X₄ ]
l1 [X₁+1-X₄ ]
l5 [X₁-X₄ ]
n_l6___4 [X₁+X₃+1-X₄-X₅ ]
n_l3___5 [X₁+X₃+1-X₄-X₅ ]
n_l7___2 [X₁+X₃-X₄-X₅ ]
n_l7___7 [X₁+X₃-X₄-X₅ ]
n_l8___8 [X₁+X₃+1-X₄-X₅ ]
n_l9___1 [X₁+X₃-X₄-X₅ ]
n_l9___6 [X₁+X₃+1-X₄-X₅ ]
n_l8___3 [X₁+X₃-X₄-X₅ ]

Found invariant X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l6___9

Found invariant X₅ ≤ X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l6___4

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l8___3

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l8___8

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l9___1

Found invariant X₅ ≤ 1+X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l3___5

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l7___2

Found invariant 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l5

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l9___6

Found invariant X₀ ≤ X₄ for location l1

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l10

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l4

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l7___7

Found invariant X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l3

MPRF for transition t₂₃₈: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₆ ≤ X₄+X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+10⋅X₀⋅X₃+10⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+8⋅X₃ {O(n^3)}

MPRF:

l3 [2⋅X₃ ]
l1 [2⋅X₃ ]
l5 [2⋅X₃ ]
n_l6___4 [2⋅X₃ ]
n_l6___9 [2⋅X₃ ]
n_l7___2 [2⋅X₃ ]
n_l3___5 [2⋅X₃ ]
n_l7___7 [2⋅X₃ ]
n_l8___8 [2⋅X₃ ]
n_l9___1 [X₄+X₅-X₆ ]
n_l9___6 [X₄+X₅-X₆ ]
n_l8___3 [X₄+X₅+1-X₆ ]

MPRF for transition t₂₄₁: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₆ ≤ X₄+X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+10⋅X₀⋅X₃+10⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+8⋅X₃ {O(n^3)}

MPRF:

l3 [2⋅X₃ ]
l1 [2⋅X₃ ]
l5 [2⋅X₃ ]
n_l6___4 [2⋅X₃ ]
n_l6___9 [2⋅X₃ ]
n_l7___2 [2⋅X₃ ]
n_l3___5 [2⋅X₃ ]
n_l7___7 [2⋅X₃ ]
n_l8___8 [2⋅X₃ ]
n_l9___1 [2⋅X₃+X₄+1-X₅-X₆ ]
n_l9___6 [2⋅X₃+X₄-X₅-X₆ ]
n_l8___3 [2⋅X₃+X₄+1-X₅-X₆ ]

CFR: Improvement to new bound with the following program:

new bound:

16⋅X₀⋅X₁⋅X₃+4⋅X₀⋅X₃⋅X₃+4⋅X₁⋅X₃⋅X₃+8⋅X₀⋅X₀⋅X₃+8⋅X₀⋅X₂⋅X₃+8⋅X₁⋅X₁⋅X₃+8⋅X₁⋅X₂⋅X₃+14⋅X₀⋅X₀+14⋅X₁⋅X₁+17⋅X₀⋅X₂+17⋅X₁⋅X₂+28⋅X₀⋅X₁+29⋅X₀⋅X₃+29⋅X₁⋅X₃+4⋅X₃⋅X₃+8⋅X₂⋅X₃+17⋅X₂+25⋅X₃+41⋅X₀+41⋅X₁+28 {O(n^3)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, n_l3___5, n_l6___4, n_l6___9, n_l7___2, n_l7___7, n_l8___3, n_l8___8, n_l9___1, n_l9___6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₄
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₀, X₅, X₆)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁
t₂₃₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ ∧ 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁
t₂₅₂: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₅ ≤ 1+X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₂₃₂: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₂ ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₂₃₃: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅) :|: X₅ ≤ X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₂₃₄: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅) :|: X₂ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₂₃₅: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄+X₅ < X₆ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₂₃₆: n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 2⋅X₅ < 0 ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₅+X₆ ∧ X₅+X₆ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₂₃₇: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄+X₅ < X₆ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₂₃₈: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₆ ≤ X₄+X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₂₃₉: n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₅+X₆ ∧ X₅+X₆ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄+X₅ < X₆ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₂₄₀: n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₅+X₆ ∧ X₅+X₆ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₆ ≤ X₄+X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₂₄₁: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₆ ≤ X₄+X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₂₄₂: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₀ ≤ X₄ ∧ X₂+X₆ ≤ X₄ ∧ X₄ ≤ X₃+X₆ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₄ ≤ X₅+X₆ ∧ X₅+X₆ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁

All Bounds

Timebounds

Overall timebound:16⋅X₀⋅X₁⋅X₃+4⋅X₀⋅X₃⋅X₃+4⋅X₁⋅X₃⋅X₃+8⋅X₀⋅X₀⋅X₃+8⋅X₀⋅X₂⋅X₃+8⋅X₁⋅X₁⋅X₃+8⋅X₁⋅X₂⋅X₃+14⋅X₀⋅X₀+14⋅X₁⋅X₁+17⋅X₀⋅X₂+17⋅X₁⋅X₂+28⋅X₀⋅X₁+29⋅X₀⋅X₃+29⋅X₁⋅X₃+4⋅X₃⋅X₃+8⋅X₂⋅X₃+17⋅X₂+25⋅X₃+41⋅X₀+41⋅X₁+32 {O(n^3)}
t₀: 1 {O(1)}
t₂: X₀+X₁+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₅: X₀+X₁+1 {O(n)}
t₂₃₁: X₀+X₁+1 {O(n)}
t₁₂: 1 {O(1)}
t₁₁: X₀+X₁+1 {O(n)}
t₂₃₂: 2⋅X₀⋅X₀+2⋅X₀⋅X₃+2⋅X₁⋅X₁+2⋅X₁⋅X₃+3⋅X₀⋅X₂+3⋅X₁⋅X₂+4⋅X₀⋅X₁+2⋅X₃+3⋅X₂+4⋅X₀+4⋅X₁+2 {O(n^2)}
t₂₅₂: X₀+X₁+1 {O(n)}
t₂₃₃: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+4⋅X₀+4⋅X₁+X₃+2 {O(n^2)}
t₂₃₄: X₀+X₁+1 {O(n)}
t₂₃₅: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}
t₂₃₆: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}
t₂₃₇: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}
t₂₃₈: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+10⋅X₀⋅X₃+10⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+8⋅X₃ {O(n^3)}
t₂₃₉: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}
t₂₄₀: 2⋅X₀⋅X₂+2⋅X₁⋅X₂+X₀⋅X₃+X₁⋅X₃+2⋅X₀+2⋅X₁+2⋅X₂+X₃+3 {O(n^2)}
t₂₄₁: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+10⋅X₀⋅X₃+10⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+8⋅X₃ {O(n^3)}
t₂₄₂: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}

Costbounds

Overall costbound: 16⋅X₀⋅X₁⋅X₃+4⋅X₀⋅X₃⋅X₃+4⋅X₁⋅X₃⋅X₃+8⋅X₀⋅X₀⋅X₃+8⋅X₀⋅X₂⋅X₃+8⋅X₁⋅X₁⋅X₃+8⋅X₁⋅X₂⋅X₃+14⋅X₀⋅X₀+14⋅X₁⋅X₁+17⋅X₀⋅X₂+17⋅X₁⋅X₂+28⋅X₀⋅X₁+29⋅X₀⋅X₃+29⋅X₁⋅X₃+4⋅X₃⋅X₃+8⋅X₂⋅X₃+17⋅X₂+25⋅X₃+41⋅X₀+41⋅X₁+32 {O(n^3)}
t₀: 1 {O(1)}
t₂: X₀+X₁+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₅: X₀+X₁+1 {O(n)}
t₂₃₁: X₀+X₁+1 {O(n)}
t₁₂: 1 {O(1)}
t₁₁: X₀+X₁+1 {O(n)}
t₂₃₂: 2⋅X₀⋅X₀+2⋅X₀⋅X₃+2⋅X₁⋅X₁+2⋅X₁⋅X₃+3⋅X₀⋅X₂+3⋅X₁⋅X₂+4⋅X₀⋅X₁+2⋅X₃+3⋅X₂+4⋅X₀+4⋅X₁+2 {O(n^2)}
t₂₅₂: X₀+X₁+1 {O(n)}
t₂₃₃: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+4⋅X₀+4⋅X₁+X₃+2 {O(n^2)}
t₂₃₄: X₀+X₁+1 {O(n)}
t₂₃₅: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}
t₂₃₆: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}
t₂₃₇: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}
t₂₃₈: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+10⋅X₀⋅X₃+10⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+8⋅X₃ {O(n^3)}
t₂₃₉: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}
t₂₄₀: 2⋅X₀⋅X₂+2⋅X₁⋅X₂+X₀⋅X₃+X₁⋅X₃+2⋅X₀+2⋅X₁+2⋅X₂+X₃+3 {O(n^2)}
t₂₄₁: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+10⋅X₀⋅X₃+10⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+8⋅X₃ {O(n^3)}
t₂₄₂: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+5⋅X₀+5⋅X₁+X₃+3 {O(n^2)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂, X₅: 2⋅X₂ {O(n)}
t₂, X₆: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+12⋅X₀⋅X₁+13⋅X₀⋅X₃+13⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+6⋅X₀⋅X₀+6⋅X₀⋅X₂+6⋅X₁⋅X₁+6⋅X₁⋅X₂+11⋅X₃+21⋅X₁+24⋅X₂+27⋅X₀+X₆+17 {O(n^3)}
t₃, X₀: 2⋅X₀ {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₃, X₄: 3⋅X₀+X₁+1 {O(n)}
t₃, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+6⋅X₂+X₀+X₁+X₅+2 {O(n^2)}
t₃, X₆: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+12⋅X₀⋅X₁+13⋅X₀⋅X₃+13⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+6⋅X₀⋅X₀+6⋅X₀⋅X₂+6⋅X₁⋅X₁+6⋅X₁⋅X₂+11⋅X₃+2⋅X₆+21⋅X₁+24⋅X₂+27⋅X₀+17 {O(n^3)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₀ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 2⋅X₀+X₁+1 {O(n)}
t₅, X₅: 2⋅X₂ {O(n)}
t₅, X₆: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+12⋅X₀⋅X₁+13⋅X₀⋅X₃+13⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+6⋅X₀⋅X₀+6⋅X₀⋅X₂+6⋅X₁⋅X₁+6⋅X₁⋅X₂+11⋅X₃+21⋅X₁+24⋅X₂+27⋅X₀+X₆+17 {O(n^3)}
t₂₃₁, X₀: X₀ {O(n)}
t₂₃₁, X₁: X₁ {O(n)}
t₂₃₁, X₂: X₂ {O(n)}
t₂₃₁, X₃: X₃ {O(n)}
t₂₃₁, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₃₁, X₅: 2⋅X₂ {O(n)}
t₂₃₁, X₆: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+12⋅X₀⋅X₁+13⋅X₀⋅X₃+13⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+6⋅X₀⋅X₀+6⋅X₀⋅X₂+6⋅X₁⋅X₁+6⋅X₁⋅X₂+11⋅X₃+21⋅X₁+24⋅X₂+27⋅X₀+X₆+17 {O(n^3)}
t₁₂, X₀: 2⋅X₀ {O(n)}
t₁₂, X₁: 2⋅X₁ {O(n)}
t₁₂, X₂: 2⋅X₂ {O(n)}
t₁₂, X₃: 2⋅X₃ {O(n)}
t₁₂, X₄: 3⋅X₀+X₁+1 {O(n)}
t₁₂, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+6⋅X₂+X₀+X₁+X₅+2 {O(n^2)}
t₁₂, X₆: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+12⋅X₀⋅X₁+13⋅X₀⋅X₃+13⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+6⋅X₀⋅X₀+6⋅X₀⋅X₂+6⋅X₁⋅X₁+6⋅X₁⋅X₂+11⋅X₃+2⋅X₆+21⋅X₁+24⋅X₂+27⋅X₀+17 {O(n^3)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: 2⋅X₀+X₁+1 {O(n)}
t₁₁, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+6⋅X₂+X₀+X₁+2 {O(n^2)}
t₁₁, X₆: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+12⋅X₀⋅X₁+13⋅X₀⋅X₃+13⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+6⋅X₀⋅X₀+6⋅X₀⋅X₂+6⋅X₁⋅X₁+6⋅X₁⋅X₂+11⋅X₃+21⋅X₁+24⋅X₂+27⋅X₀+X₆+17 {O(n^3)}
t₂₃₂, X₀: X₀ {O(n)}
t₂₃₂, X₁: X₁ {O(n)}
t₂₃₂, X₂: X₂ {O(n)}
t₂₃₂, X₃: X₃ {O(n)}
t₂₃₂, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₃₂, X₅: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+5⋅X₀+5⋅X₁+6⋅X₂+X₃+3 {O(n^2)}
t₂₃₂, X₆: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+12⋅X₀⋅X₁+13⋅X₀⋅X₃+13⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+6⋅X₀⋅X₀+6⋅X₀⋅X₂+6⋅X₁⋅X₁+6⋅X₁⋅X₂+11⋅X₃+21⋅X₁+24⋅X₂+27⋅X₀+17 {O(n^3)}
t₂₅₂, X₀: X₀ {O(n)}
t₂₅₂, X₁: X₁ {O(n)}
t₂₅₂, X₂: X₂ {O(n)}
t₂₅₂, X₃: X₃ {O(n)}
t₂₅₂, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₅₂, X₅: 2⋅X₀⋅X₃+2⋅X₁⋅X₃+4⋅X₀⋅X₀+4⋅X₀⋅X₂+4⋅X₁⋅X₁+4⋅X₁⋅X₂+8⋅X₀⋅X₁+10⋅X₀+10⋅X₁+12⋅X₂+2⋅X₃+6 {O(n^2)}
t₂₅₂, X₆: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+12⋅X₀⋅X₁+13⋅X₀⋅X₃+13⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+6⋅X₀⋅X₀+6⋅X₀⋅X₂+6⋅X₁⋅X₁+6⋅X₁⋅X₂+11⋅X₃+21⋅X₁+24⋅X₂+27⋅X₀+17 {O(n^3)}
t₂₃₃, X₀: X₀ {O(n)}
t₂₃₃, X₁: X₁ {O(n)}
t₂₃₃, X₂: X₂ {O(n)}
t₂₃₃, X₃: X₃ {O(n)}
t₂₃₃, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₃₃, X₅: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+5⋅X₀+5⋅X₁+6⋅X₂+X₃+3 {O(n^2)}
t₂₃₃, X₆: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+6⋅X₁+6⋅X₂+7⋅X₀+X₃+4 {O(n^2)}
t₂₃₄, X₀: X₀ {O(n)}
t₂₃₄, X₁: X₁ {O(n)}
t₂₃₄, X₂: X₂ {O(n)}
t₂₃₄, X₃: X₃ {O(n)}
t₂₃₄, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₃₄, X₅: 2⋅X₂ {O(n)}
t₂₃₄, X₆: 2⋅X₀+2⋅X₂+X₁+1 {O(n)}
t₂₃₅, X₀: X₀ {O(n)}
t₂₃₅, X₁: X₁ {O(n)}
t₂₃₅, X₂: X₂ {O(n)}
t₂₃₅, X₃: X₃ {O(n)}
t₂₃₅, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₃₅, X₅: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+5⋅X₀+5⋅X₁+6⋅X₂+X₃+3 {O(n^2)}
t₂₃₅, X₆: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+12⋅X₀⋅X₃+12⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₀⋅X₀+4⋅X₀⋅X₂+4⋅X₁⋅X₁+4⋅X₁⋅X₂+4⋅X₂⋅X₃+8⋅X₀⋅X₁+10⋅X₃+14⋅X₁+16⋅X₂+18⋅X₀+12 {O(n^3)}
t₂₃₆, X₀: X₀ {O(n)}
t₂₃₆, X₁: X₁ {O(n)}
t₂₃₆, X₂: X₂ {O(n)}
t₂₃₆, X₃: X₃ {O(n)}
t₂₃₆, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₃₆, X₅: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+5⋅X₀+5⋅X₁+6⋅X₂+X₃+3 {O(n^2)}
t₂₃₆, X₆: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+7⋅X₁+8⋅X₂+9⋅X₀+X₃+5 {O(n^2)}
t₂₃₇, X₀: X₀ {O(n)}
t₂₃₇, X₁: X₁ {O(n)}
t₂₃₇, X₂: X₂ {O(n)}
t₂₃₇, X₃: X₃ {O(n)}
t₂₃₇, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₃₇, X₅: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+5⋅X₀+5⋅X₁+6⋅X₂+X₃+3 {O(n^2)}
t₂₃₇, X₆: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+12⋅X₀⋅X₃+12⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₀⋅X₀+4⋅X₀⋅X₂+4⋅X₁⋅X₁+4⋅X₁⋅X₂+4⋅X₂⋅X₃+8⋅X₀⋅X₁+10⋅X₃+14⋅X₁+16⋅X₂+18⋅X₀+12 {O(n^3)}
t₂₃₈, X₀: X₀ {O(n)}
t₂₃₈, X₁: X₁ {O(n)}
t₂₃₈, X₂: X₂ {O(n)}
t₂₃₈, X₃: X₃ {O(n)}
t₂₃₈, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₃₈, X₅: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+5⋅X₀+5⋅X₁+6⋅X₂+X₃+3 {O(n^2)}
t₂₃₈, X₆: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+11⋅X₀⋅X₃+11⋅X₁⋅X₃+2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+2⋅X₃⋅X₃+4⋅X₀⋅X₁+4⋅X₂⋅X₃+7⋅X₁+8⋅X₂+9⋅X₀+9⋅X₃+6 {O(n^3)}
t₂₃₉, X₀: X₀ {O(n)}
t₂₃₉, X₁: X₁ {O(n)}
t₂₃₉, X₂: X₂ {O(n)}
t₂₃₉, X₃: X₃ {O(n)}
t₂₃₉, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₃₉, X₅: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+5⋅X₀+5⋅X₁+6⋅X₂+X₃+3 {O(n^2)}
t₂₃₉, X₆: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+7⋅X₁+8⋅X₂+9⋅X₀+X₃+5 {O(n^2)}
t₂₄₀, X₀: X₀ {O(n)}
t₂₄₀, X₁: X₁ {O(n)}
t₂₄₀, X₂: X₂ {O(n)}
t₂₄₀, X₃: X₃ {O(n)}
t₂₄₀, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₄₀, X₅: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+5⋅X₀+5⋅X₁+6⋅X₂+X₃+3 {O(n^2)}
t₂₄₀, X₆: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+7⋅X₁+8⋅X₂+9⋅X₀+X₃+5 {O(n^2)}
t₂₄₁, X₀: X₀ {O(n)}
t₂₄₁, X₁: X₁ {O(n)}
t₂₄₁, X₂: X₂ {O(n)}
t₂₄₁, X₃: X₃ {O(n)}
t₂₄₁, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₄₁, X₅: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+5⋅X₀+5⋅X₁+6⋅X₂+X₃+3 {O(n^2)}
t₂₄₁, X₆: 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₃+4⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₃+11⋅X₀⋅X₃+11⋅X₁⋅X₃+2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+2⋅X₃⋅X₃+4⋅X₀⋅X₁+4⋅X₂⋅X₃+7⋅X₁+8⋅X₂+9⋅X₀+9⋅X₃+6 {O(n^3)}
t₂₄₂, X₀: X₀ {O(n)}
t₂₄₂, X₁: X₁ {O(n)}
t₂₄₂, X₂: X₂ {O(n)}
t₂₄₂, X₃: X₃ {O(n)}
t₂₄₂, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂₄₂, X₅: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+5⋅X₀+5⋅X₁+6⋅X₂+X₃+3 {O(n^2)}
t₂₄₂, X₆: 2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+7⋅X₁+8⋅X₂+9⋅X₀+X₃+6 {O(n^2)}