Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₂ < X₁
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0)
t₄: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃+1) :|: X₃ < X₀ ∧ X₃ < X₀
t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃+1) :|: X₃ < X₀ ∧ X₀ ≤ X₃
t₆: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, 0) :|: X₀ ≤ X₃ ∧ X₃ < X₀
t₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, 0) :|: X₀ ≤ X₃ ∧ X₀ ≤ X₃
t₈: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)

Preprocessing

Cut unsatisfiable transition t₅: l3→l1

Cut unsatisfiable transition t₆: l3→l1

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ for location l5

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l1

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ for location l4

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₂ < X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0)
t₄: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃+1) :|: X₃ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, 0) :|: X₀ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₈: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂

MPRF for transition t₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, 0) :|: X₀ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₁ {O(n)}

MPRF:

l3 [X₁-X₂ ]
l1 [X₁-X₂ ]

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 0 for location l5

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location l1

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₁+X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 0 for location l4

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₂ 2⋅X₀⋅X₁+2⋅X₀+5⋅X₁+5 {O(n^2)}

TWN-Loops:

entry: t₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, 0) :|: X₀ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁
results in twn-loop: twn:Inv: [0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁] , (X₀,X₁,X₂,X₃) -> (X₀,X₁,X₂,X₃+1) :|: X₂ < X₁ ∧ X₃ < X₀ ∧ X₃ < X₀
entry: t₁: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0)
results in twn-loop: twn:Inv: [0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁] , (X₀,X₁,X₂,X₃) -> (X₀,X₁,X₂,X₃+1) :|: X₂ < X₁ ∧ X₃ < X₀ ∧ X₃ < X₀
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1

Termination: true
Formula:

1 < 0 ∧ X₂ < X₁
∨ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁

Stabilization-Threshold for: X₃ < X₀
alphas_abs: X₃+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₃+2 {O(n)}

relevant size-bounds w.r.t. t₇:
X₀: X₀ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₇: X₁ {O(n)}
Results in: 2⋅X₀⋅X₁+5⋅X₁ {O(n^2)}

order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1

Termination: true
Formula:

1 < 0 ∧ X₂ < X₁
∨ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁

Stabilization-Threshold for: X₃ < X₀
alphas_abs: X₃+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₃+2 {O(n)}

relevant size-bounds w.r.t. t₁:
X₀: X₀ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₀+5 {O(n)}

2⋅X₀⋅X₁+2⋅X₀+5⋅X₁+5 {O(n^2)}

Time-Bound by TWN-Loops:

TWN-Loops: t₄ 2⋅X₀⋅X₁+2⋅X₀+5⋅X₁+5 {O(n^2)}

relevant size-bounds w.r.t. t₇:
X₀: X₀ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₇: X₁ {O(n)}
Results in: 2⋅X₀⋅X₁+5⋅X₁ {O(n^2)}

relevant size-bounds w.r.t. t₁:
X₀: X₀ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₀+5 {O(n)}

2⋅X₀⋅X₁+2⋅X₀+5⋅X₁+5 {O(n^2)}

Analysing control-flow refined program

Cut unsatisfiable transition t₈₉: n_l1___6→l4

Found invariant X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___6

Found invariant X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___4

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ for location l5

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___5

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___2

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location l1

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ for location l4

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l3___1

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location n_l3___7

Cut unsatisfiable transition t₇₅: n_l3___2→n_l1___5

MPRF for transition t₇₁: n_l1___5(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₁+2 {O(n)}

MPRF:

n_l3___1 [X₁-X₂ ]
n_l1___5 [X₁+1-X₂ ]

MPRF for transition t₇₄: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___5(X₀, X₁, X₂+1, 0) :|: X₀ ≤ 0 ∧ X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

n_l3___1 [X₁-X₂ ]
n_l1___5 [X₁-X₂ ]

MPRF for transition t₇₀: n_l1___3(X₀, X₁, X₂, X₃) → n_l3___2(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁ {O(n)}

MPRF:

n_l3___2 [X₁-X₂ ]
n_l1___3 [X₁+1-X₂ ]
n_l3___4 [X₁-X₂ ]
n_l1___6 [X₁-X₂ ]

MPRF for transition t₇₆: n_l3___2(X₀, X₁, X₂, X₃) → n_l1___6(X₀, X₁, X₂, X₃+1) :|: X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ < X₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF:

n_l3___2 [X₁-X₂ ]
n_l1___3 [X₁-X₂ ]
n_l3___4 [X₁-X₂-1 ]
n_l1___6 [X₁-X₂-1 ]

MPRF for transition t₇₇: n_l3___4(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁, X₂+1, 0) :|: 0 ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁ {O(n)}

MPRF:

n_l3___2 [X₁-X₂ ]
n_l1___3 [X₁-X₂ ]
n_l3___4 [X₁-X₂ ]
n_l1___6 [X₁-X₂ ]

Found invariant X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___6

Found invariant X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___4

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ for location l5

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___5

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 1 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___2

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location l1

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ for location l4

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l3___1

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location n_l3___7

Found invariant 1 ≤ 0 for location n_l1___6

Found invariant 1 ≤ 0 for location n_l3___4

Found invariant 1 ≤ 0 for location n_l1___3

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ for location l5

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___5

Found invariant 1 ≤ 0 for location n_l3___2

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location l1

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ for location l4

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l3___1

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location n_l3___7

Time-Bound by TWN-Loops:

TWN-Loops: t₇₂ 2⋅X₀⋅X₁+13⋅X₁+4⋅X₀+26 {O(n^2)}

TWN-Loops:

entry: t₈₀: n_l3___7(X₀, X₁, X₂, X₃) → n_l1___6(X₀, X₁, X₂, X₃+1) :|: 0 < X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ < X₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁
results in twn-loop: twn:Inv: [X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂,X₃) -> (X₀,X₁,X₂,X₃+1) :|: 0 ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ < X₁ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₃ < X₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃
entry: t₇₆: n_l3___2(X₀, X₁, X₂, X₃) → n_l1___6(X₀, X₁, X₂, X₃+1) :|: X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ < X₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂,X₃) -> (X₀,X₁,X₂,X₃+1) :|: 0 ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ < X₁ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₃ < X₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1

Termination: true
Formula:

0 < 1 ∧ 0 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 < X₂ ∧ 1+X₂ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 < X₂ ∧ 1+X₂ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₂ ∧ 1+X₂ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁

Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: X₃ < X₀
alphas_abs: X₀+X₃
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₃+2 {O(n)}

relevant size-bounds w.r.t. t₈₀:
X₀: X₀ {O(n)}
X₃: 1 {O(1)}
Runtime-bound of t₈₀: 1 {O(1)}
Results in: 2⋅X₀+13 {O(n)}

order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1

Termination: true
Formula:

0 < 1 ∧ 0 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 < X₂ ∧ 1+X₂ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 < X₂ ∧ 1+X₂ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 < X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₂ ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₂ ∧ 1+X₂ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₁ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ < X₁ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ 1 < 0 ∧ X₂ < X₁
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₁

Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: X₃ < X₀
alphas_abs: X₀+X₃
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₃+2 {O(n)}

relevant size-bounds w.r.t. t₇₆:
X₀: X₀ {O(n)}
X₃: 1 {O(1)}
Runtime-bound of t₇₆: X₁+1 {O(n)}
Results in: 2⋅X₀⋅X₁+13⋅X₁+2⋅X₀+13 {O(n^2)}

2⋅X₀⋅X₁+13⋅X₁+4⋅X₀+26 {O(n^2)}

Time-Bound by TWN-Loops:

TWN-Loops: t₇₈ 2⋅X₀⋅X₁+13⋅X₁+4⋅X₀+26 {O(n^2)}

relevant size-bounds w.r.t. t₈₀:
X₀: X₀ {O(n)}
X₃: 1 {O(1)}
Runtime-bound of t₈₀: 1 {O(1)}
Results in: 2⋅X₀+13 {O(n)}

relevant size-bounds w.r.t. t₇₆:
X₀: X₀ {O(n)}
X₃: 1 {O(1)}
Runtime-bound of t₇₆: X₁+1 {O(n)}
Results in: 2⋅X₀⋅X₁+13⋅X₁+2⋅X₀+13 {O(n^2)}

2⋅X₀⋅X₁+13⋅X₁+4⋅X₀+26 {O(n^2)}

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:4⋅X₀⋅X₁+11⋅X₁+4⋅X₀+14 {O(n^2)}
t₀: 1 {O(1)}
t₂: 2⋅X₀⋅X₁+2⋅X₀+5⋅X₁+5 {O(n^2)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 2⋅X₀⋅X₁+2⋅X₀+5⋅X₁+5 {O(n^2)}
t₇: X₁ {O(n)}
t₈: 1 {O(1)}

Costbounds

Overall costbound: 4⋅X₀⋅X₁+11⋅X₁+4⋅X₀+14 {O(n^2)}
t₀: 1 {O(1)}
t₂: 2⋅X₀⋅X₁+2⋅X₀+5⋅X₁+5 {O(n^2)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 2⋅X₀⋅X₁+2⋅X₀+5⋅X₁+5 {O(n^2)}
t₇: X₁ {O(n)}
t₈: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₁ {O(n)}
t₂, X₃: 2⋅X₀⋅X₁+2⋅X₀+5⋅X₁+5 {O(n^2)}
t₃, X₀: 2⋅X₀ {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: X₁ {O(n)}
t₃, X₃: 0 {O(1)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: 0 {O(1)}
t₁, X₃: 0 {O(1)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₁ {O(n)}
t₄, X₃: 2⋅X₀⋅X₁+2⋅X₀+5⋅X₁+5 {O(n^2)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₁ {O(n)}
t₇, X₃: 0 {O(1)}
t₈, X₀: 2⋅X₀ {O(n)}
t₈, X₁: 2⋅X₁ {O(n)}
t₈, X₂: X₁ {O(n)}
t₈, X₃: 0 {O(1)}