Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄+1 ≤ X₇
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ < X₄+1
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈-2)
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₇-1)
t₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₂, X₄, X₅, X₂, X₇, X₈)
t₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆+X₃-1, X₈)
t₂₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₀
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₀ ≤ 0
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ < X₅+3
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅+3 ≤ X₈
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₅, X₅, X₆, X₈-1, X₈)
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < 2
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₁
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ ≤ 0
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₄-1, X₄, X₅, X₇+1-X₄, X₇, X₈)
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)

Preprocessing

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l11

Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l2

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l6

Found invariant 2 ≤ X₃ for location l15

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l12

Found invariant X₃ ≤ 1 for location l17

Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l7

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l13

Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l8

Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l1

Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₀+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 6 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10

Found invariant X₃ ≤ 1 for location l16

Found invariant 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l4

Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l9

Found invariant 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄+1 ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ < X₄+1 ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈-2) :|: 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₀+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 6 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₇-1) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₂, X₄, X₅, X₂, X₇, X₈)
t₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆+X₃-1, X₈) :|: 2 ≤ X₃
t₂₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ ≤ 1
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₀ ∧ 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₀ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ < X₅+3 ∧ 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅+3 ≤ X₈ ∧ 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₅, X₅, X₆, X₈-1, X₈) :|: 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < 2
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₁ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ ≤ 0 ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₄-1, X₄, X₅, X₇+1-X₄, X₇, X₈) :|: 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁

MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄+1 ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:

new bound:

2⋅X₂+2 {O(n)}

MPRF:

l11 [X₇-2 ]
l12 [X₇-2 ]
l10 [X₈-1 ]
l3 [X₈-1 ]
l4 [X₈-2 ]
l1 [X₇-1 ]
l15 [X₃+X₆-2 ]
l13 [X₇-2 ]
l6 [X₇-2 ]
l7 [X₇-2 ]
l5 [X₃+X₆-2 ]
l8 [X₈-1 ]
l9 [X₈-1 ]
l2 [X₈-1 ]

MPRF for transition t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈-2) :|: 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₀+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 6 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₂+5 {O(n)}

MPRF:

l11 [2⋅X₇-X₄-4 ]
l12 [2⋅X₇-X₄-4 ]
l10 [2⋅X₇-X₅-8 ]
l3 [2⋅X₇-X₅-8 ]
l4 [2⋅X₇-X₅-8 ]
l1 [2⋅X₇-X₄-4 ]
l15 [X₃+2⋅X₆-5 ]
l13 [2⋅X₇-X₄-4 ]
l6 [2⋅X₇-X₄-4 ]
l7 [2⋅X₇-X₄-4 ]
l5 [X₃+2⋅X₆-5 ]
l8 [2⋅X₇-X₅-8 ]
l9 [2⋅X₇-X₅-8 ]
l2 [2⋅X₇-X₅-8 ]

MPRF for transition t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:

new bound:

2⋅X₂+2 {O(n)}

MPRF:

l11 [X₄+X₇-X₃ ]
l12 [X₄+X₇-X₃-1 ]
l10 [X₅+X₈-X₃ ]
l3 [X₅+X₈-X₃ ]
l4 [X₅+X₈-X₃-1 ]
l1 [X₄+X₇-X₃ ]
l15 [X₃+X₆-2 ]
l13 [X₄+X₇-X₃-1 ]
l6 [X₄+X₇-X₃-1 ]
l7 [X₄+X₇-X₃-1 ]
l5 [X₃+X₆-2 ]
l8 [X₅+X₈-X₃ ]
l9 [X₅+X₈-X₃ ]
l2 [X₅+X₈-X₃ ]

MPRF for transition t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:

new bound:

2⋅X₂+2 {O(n)}

MPRF:

l11 [X₇-1 ]
l12 [X₇-1 ]
l10 [X₇-3 ]
l3 [X₇-3 ]
l4 [X₇-3 ]
l1 [X₇-1 ]
l15 [X₃+X₆-2 ]
l13 [X₇-3 ]
l6 [X₇-2 ]
l7 [X₇-2 ]
l5 [X₃+X₆-2 ]
l8 [X₇-3 ]
l9 [X₇-3 ]
l2 [X₇-3 ]

MPRF for transition t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₇-1) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

4⋅X₂+2 {O(n)}

MPRF:

l11 [2⋅X₇ ]
l12 [2⋅X₇ ]
l10 [2⋅X₇-4 ]
l3 [2⋅X₇-4 ]
l4 [2⋅X₇-4 ]
l1 [2⋅X₇ ]
l15 [2⋅X₃+2⋅X₆-2 ]
l13 [2⋅X₇-3 ]
l6 [2⋅X₇ ]
l7 [2⋅X₇ ]
l5 [2⋅X₃+2⋅X₆-2 ]
l8 [2⋅X₇-4 ]
l9 [2⋅X₇-4 ]
l2 [2⋅X₇-4 ]

MPRF for transition t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₀ ∧ 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

3⋅X₂+9 {O(n)}

MPRF:

l11 [2⋅X₇-X₄-8 ]
l12 [2⋅X₇-X₄-8 ]
l10 [2⋅X₇-X₅-9 ]
l3 [2⋅X₇-X₅-8 ]
l4 [2⋅X₇-X₅-8 ]
l1 [2⋅X₇-X₄-8 ]
l15 [X₃+2⋅X₆-9 ]
l13 [2⋅X₇-X₄-8 ]
l6 [2⋅X₇-X₄-8 ]
l7 [2⋅X₇-X₄-8 ]
l5 [X₃+2⋅X₆-9 ]
l8 [2⋅X₇-X₅-8 ]
l9 [2⋅X₇-X₅-8 ]
l2 [2⋅X₇-X₅-8 ]

MPRF for transition t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₀ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₂ {O(n)}

MPRF:

l11 [X₇ ]
l12 [X₇ ]
l10 [X₇ ]
l3 [X₇ ]
l4 [X₈-1 ]
l1 [X₇ ]
l15 [X₃+X₆-1 ]
l13 [X₇ ]
l6 [X₇ ]
l7 [X₇ ]
l5 [X₃+X₆ ]
l8 [X₇ ]
l9 [X₇ ]
l2 [X₇ ]

MPRF for transition t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅+3 ≤ X₈ ∧ 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

3⋅X₂ {O(n)}

MPRF:

l11 [2⋅X₇+1-X₄ ]
l12 [2⋅X₇+1-X₄ ]
l10 [2⋅X₇-X₅-3 ]
l3 [2⋅X₇-X₅-2 ]
l4 [2⋅X₈-X₅-1 ]
l1 [2⋅X₇+1-X₄ ]
l15 [X₃+2⋅X₆ ]
l13 [2⋅X₇-X₄-2 ]
l6 [2⋅X₇+1-X₄ ]
l7 [2⋅X₇+1-X₄ ]
l5 [X₃+2⋅X₆ ]
l8 [2⋅X₇-X₅-3 ]
l9 [2⋅X₇-X₅-3 ]
l2 [2⋅X₇-X₅-3 ]

MPRF for transition t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ < X₅+3 ∧ 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₂+1 {O(n)}

MPRF:

l11 [X₇ ]
l12 [X₇ ]
l10 [X₇-1 ]
l3 [X₇-1 ]
l4 [X₇-2 ]
l1 [X₇ ]
l15 [X₃+X₆-1 ]
l13 [X₇ ]
l6 [X₇ ]
l7 [X₇ ]
l5 [X₃+X₆-1 ]
l8 [X₇-1 ]
l9 [X₇-1 ]
l2 [X₇-1 ]

MPRF for transition t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₅, X₅, X₆, X₈-1, X₈) :|: 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

3⋅X₂+1 {O(n)}

MPRF:

l11 [2⋅X₇-X₄ ]
l12 [2⋅X₇-X₄ ]
l10 [2⋅X₈-X₅ ]
l3 [2⋅X₈+1-X₅ ]
l4 [2⋅X₈+1-X₅ ]
l1 [2⋅X₇-X₄ ]
l15 [X₃+2⋅X₆-1 ]
l13 [2⋅X₇-X₄-1 ]
l6 [2⋅X₇-X₄ ]
l7 [2⋅X₇-X₄ ]
l5 [X₃+2⋅X₆-1 ]
l8 [2⋅X₈+1-X₅ ]
l9 [2⋅X₈+1-X₅ ]
l2 [2⋅X₈+1-X₅ ]

MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₁ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:

new bound:

2⋅X₂ {O(n)}

MPRF:

l11 [X₇ ]
l12 [X₇ ]
l10 [X₇-2 ]
l3 [X₇-2 ]
l4 [X₈-1 ]
l1 [X₇ ]
l15 [X₃+X₆ ]
l13 [X₇-2 ]
l6 [X₇ ]
l7 [X₇ ]
l5 [X₃+X₆ ]
l8 [X₇-2 ]
l9 [X₇-2 ]
l2 [X₇-2 ]

MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ ≤ 0 ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:

new bound:

2⋅X₂ {O(n)}

MPRF:

l11 [X₇+1 ]
l12 [X₇+1 ]
l10 [X₇-1 ]
l3 [X₇-1 ]
l4 [X₈ ]
l1 [X₇+1 ]
l15 [X₃+X₆ ]
l13 [X₇-1 ]
l6 [X₇+1 ]
l7 [X₇ ]
l5 [X₃+X₆ ]
l8 [X₇-1 ]
l9 [X₇-1 ]
l2 [X₇-1 ]

MPRF for transition t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

3⋅X₂+1 {O(n)}

MPRF:

l11 [2⋅X₇+2-X₄ ]
l12 [2⋅X₇+2-X₄ ]
l10 [2⋅X₇+1-X₅ ]
l3 [2⋅X₇+2-X₅ ]
l4 [2⋅X₈-X₅ ]
l1 [2⋅X₇+2-X₄ ]
l15 [X₃+2⋅X₆+1 ]
l13 [2⋅X₇+2-X₄ ]
l6 [2⋅X₇+2-X₄ ]
l7 [2⋅X₇+2-X₄ ]
l5 [X₃+2⋅X₆+1 ]
l8 [2⋅X₇+2-X₅ ]
l9 [2⋅X₇+1-X₅ ]
l2 [2⋅X₇+1-X₅ ]

MPRF for transition t₁₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

3⋅X₂+9 {O(n)}

MPRF:

l11 [2⋅X₇-X₄-8 ]
l12 [2⋅X₇-X₄-8 ]
l10 [2⋅X₇-X₅-9 ]
l3 [2⋅X₇-X₅-8 ]
l4 [2⋅X₇-X₅-9 ]
l1 [2⋅X₇-X₄-8 ]
l15 [X₃+2⋅X₆-9 ]
l13 [2⋅X₇-X₄-8 ]
l6 [2⋅X₇-X₄-8 ]
l7 [2⋅X₇-X₄-8 ]
l5 [X₃+2⋅X₆-9 ]
l8 [2⋅X₇-X₅-8 ]
l9 [2⋅X₇-X₅-8 ]
l2 [2⋅X₇-X₅-9 ]

Found invariant 1 ≤ 0 for location l11

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l15

Found invariant 1 ≤ 0 for location l12

Found invariant 1 ≤ 0 for location l17

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l13

Found invariant 1 ≤ 0 for location l8

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l10

Found invariant 1 ≤ 0 for location l16

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l9

Found invariant 1 ≤ 0 for location l3

Found invariant 1 ≤ 0 for location l11

Found invariant 1 ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l15

Found invariant 1 ≤ 0 for location l12

Found invariant 1 ≤ 0 for location l17

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l13

Found invariant 1 ≤ 0 for location l8

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l10

Found invariant 1 ≤ 0 for location l16

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l9

Found invariant 1 ≤ 0 for location l3

Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 5 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₂ for location l11

Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 6 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 6 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 7 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 3+X₂ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l2

Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 5 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₂ for location l6

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₂ for location l15

Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 5 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₂ for location l12

Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 2 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 2 ∧ X₃ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ X₂ ≤ X₃ ∧ X₂ ≤ 1 for location l17

Found invariant 1 ≤ 0 for location l7

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ for location l5

Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 5 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l13

Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 6 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 6 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 7 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 3+X₂ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l8

Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 5 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₂ for location l1

Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 6 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 6 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₀+X₈ ∧ 5 ≤ X₇ ∧ 7 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 3+X₂ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 6 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10

Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 2 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 2 ∧ X₃ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ X₂ ≤ X₃ ∧ X₂ ≤ 1 for location l16

Found invariant 1+X₈ ≤ X₇ ∧ 2 ≤ X₈ ∧ 5 ≤ X₇+X₈ ∧ 4 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 3 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 4 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 5 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l4

Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 6 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 6 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 7 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 3+X₂ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l9

Found invariant 1+X₈ ≤ X₇ ∧ 2 ≤ X₈ ∧ 5 ≤ X₇+X₈ ∧ 4 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 3 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 4 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 5 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l3

MPRF for transition t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ < X₄+1 ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:

new bound:

12⋅X₂⋅X₂+55⋅X₂+55 {O(n^2)}

MPRF:

l11 [X₄ ]
l12 [X₄ ]
l10 [X₅+1 ]
l2 [X₅+1 ]
l3 [X₅ ]
l4 [X₅ ]
l1 [X₄ ]
l15 [X₃-1 ]
l13 [X₄ ]
l6 [X₄ ]
l7 [X₄-2 ]
l5 [X₃-1 ]
l8 [X₅ ]
l9 [X₅ ]

MPRF for transition t₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆+X₃-1, X₈) :|: 2 ≤ X₃ of depth 1:

new bound:

12⋅X₂⋅X₂+55⋅X₂+55 {O(n^2)}

MPRF:

l11 [X₄ ]
l12 [X₄ ]
l10 [X₅+1 ]
l2 [X₅+1 ]
l3 [X₅ ]
l4 [X₅ ]
l1 [X₄ ]
l15 [X₃+1 ]
l13 [X₄ ]
l6 [X₄ ]
l7 [X₄ ]
l5 [X₃+1 ]
l8 [X₅ ]
l9 [X₅ ]

MPRF for transition t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₃ of depth 1:

new bound:

12⋅X₂⋅X₂+52⋅X₂+46 {O(n^2)}

MPRF:

l11 [X₄-1 ]
l12 [X₄-1 ]
l10 [X₅ ]
l2 [X₅ ]
l3 [X₅-1 ]
l4 [X₅-1 ]
l1 [X₄-1 ]
l15 [X₃-2 ]
l13 [X₄-1 ]
l6 [X₄-1 ]
l7 [X₄-1 ]
l5 [X₃-1 ]
l8 [X₅-1 ]
l9 [X₅-1 ]

MPRF for transition t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₄-1, X₄, X₅, X₇+1-X₄, X₇, X₈) :|: 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:

new bound:

12⋅X₂⋅X₂+55⋅X₂+55 {O(n^2)}

MPRF:

l11 [X₄ ]
l12 [X₄ ]
l10 [X₅+1 ]
l2 [X₅+1 ]
l3 [X₅ ]
l4 [X₅ ]
l1 [X₄ ]
l15 [X₃-1 ]
l13 [X₄ ]
l6 [X₄ ]
l7 [X₄ ]
l5 [X₃-1 ]
l8 [X₅ ]
l9 [X₅ ]

Analysing control-flow refined program

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l11

Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l2

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l6

Found invariant X₈ ≤ 1+X₇ ∧ X₈ ≤ 1+X₅ ∧ X₈ ≤ 1+X₄ ∧ X₈ ≤ 2+X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1+X₃ ≤ X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l5___9

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ for location n_l5___5

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₂ for location n_l15___3

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ 1 ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₃ for location n_l15___4

Found invariant 1+X₆ ≤ X₇ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location n_l1___7

Found invariant 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 2+X₁ ≤ X₇ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0 for location n_l5___2

Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location n_l7___6

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l12

Found invariant X₈ ≤ 1+X₇ ∧ X₈ ≤ 1+X₅ ∧ X₈ ≤ 1+X₄ ∧ X₈ ≤ 2+X₃ ∧ 3 ≤ X₈ ∧ 5 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 6 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 1+X₃ ≤ X₈ ∧ 4 ≤ X₁+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 5 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l15___8

Found invariant X₈ ≤ 1+X₇ ∧ X₈ ≤ 1+X₅ ∧ X₈ ≤ 1+X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ 2+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l7___10

Found invariant X₃ ≤ 1 for location l17

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2+X₁ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ X₁ ≤ 0 for location l7

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ for location l5

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l13

Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l8

Found invariant 4 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 4+X₁ ≤ X₇ ∧ 2 ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₁ ≤ X₆ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ X₁ ≤ 0 for location n_l15___1

Found invariant X₈ ≤ 1+X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ 2+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l1

Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₀+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 6 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10

Found invariant X₃ ≤ 1 for location l16

Found invariant 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l4

Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l9

Found invariant 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l3

knowledge_propagation leads to new time bound 3⋅X₂+1 {O(n)} for transition t₂₀₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 1+X₇ ≤ X₈ ∧ X₈ ≤ 1+X₇ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₅ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₃ ∧ X₇ < 1+X₄ ∧ X₃ ≤ 1+X₄ ∧ X₈ ≤ 1+X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ 2+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound 2⋅X₂ {O(n)} for transition t₂₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___2(X₀, X₁, X₂, X₄-1, X₄, X₅, X₇+1-X₄, X₇, X₈) :|: X₁ ≤ 0 ∧ 1+X₄ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2+X₁ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ X₁ ≤ 0

knowledge_propagation leads to new time bound 2⋅X₂ {O(n)} for transition t₂₁₂: n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l15___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ ≤ 0 ∧ 2 ≤ X₆ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₃+X₆ ≤ X₇ ∧ X₇ ≤ X₃+X₆ ∧ 2 ≤ X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 2+X₁ ≤ X₇ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0

knowledge_propagation leads to new time bound 3⋅X₂+1 {O(n)} for transition t₂₁₅: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___9(X₀, X₁, X₂, X₄-1, X₄, X₅, X₇+1-X₄, X₇, X₈) :|: X₇ < 1+X₅ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₃ ≤ 1+X₅ ∧ X₇+1 ≤ X₈ ∧ X₈ ≤ 1+X₇ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ X₈ ≤ 1+X₇ ∧ X₈ ≤ 1+X₅ ∧ X₈ ≤ 1+X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ 2+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound 2⋅X₂ {O(n)} for transition t₂₀₅: n_l15___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l1___7(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₃+X₆-1, X₈) :|: X₁ ≤ 0 ∧ 2 ≤ X₆ ∧ 3 ≤ X₄ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄+X₆ ≤ X₇+1 ∧ 1+X₇ ≤ X₄+X₆ ∧ 2 ≤ X₃ ∧ 4 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 4+X₁ ≤ X₇ ∧ 2 ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₁ ≤ X₆ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ X₁ ≤ 0

knowledge_propagation leads to new time bound 3⋅X₂+1 {O(n)} for transition t₂₁₄: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l15___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ < 2+X₅ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₁ ∧ 1 ≤ X₅ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₅+X₆ ≤ X₈ ∧ X₈ ≤ X₅+X₆ ∧ X₇+1 ≤ X₈ ∧ X₈ ≤ 1+X₇ ∧ X₃+1 ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₃ ∧ X₈ ≤ 1+X₇ ∧ X₈ ≤ 1+X₅ ∧ X₈ ≤ 1+X₄ ∧ X₈ ≤ 2+X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1+X₃ ≤ X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound 3⋅X₂+1 {O(n)} for transition t₂₀₈: n_l15___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l1___7(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₃+X₆-1, X₈) :|: X₈ < 2+X₅ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₁ ∧ 3 ≤ X₅ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₅+X₆ ≤ X₈ ∧ X₈ ≤ X₅+X₆ ∧ X₇+1 ≤ X₈ ∧ X₈ ≤ 1+X₇ ∧ X₃+1 ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₃ ∧ X₈ ≤ 1+X₇ ∧ X₈ ≤ 1+X₅ ∧ X₈ ≤ 1+X₄ ∧ X₈ ≤ 2+X₃ ∧ 3 ≤ X₈ ∧ 5 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 6 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 1+X₃ ≤ X₈ ∧ 4 ≤ X₁+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 5 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁

MPRF for transition t₂₀₇: n_l15___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l1___7(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₃+X₆-1, X₈) :|: X₆ < 2 ∧ 3 ≤ X₄ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄+X₆ ≤ X₇+1 ∧ 1+X₇ ≤ X₄+X₆ ∧ 2 ≤ X₃ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ 1 ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₃ of depth 1:

new bound:

2592⋅X₂⋅X₂⋅X₂⋅X₂+15984⋅X₂⋅X₂⋅X₂+32072⋅X₂⋅X₂+24216⋅X₂+5068 {O(n^4)}

MPRF:

n_l7___10 [0 ]
l12 [0 ]
l10 [0 ]
l3 [0 ]
l4 [0 ]
l1 [0 ]
l13 [0 ]
l6 [0 ]
l7 [0 ]
n_l5___2 [0 ]
l8 [0 ]
l9 [0 ]
l2 [0 ]
n_l15___1 [X₃ ]
n_l1___7 [2⋅X₃-X₄-3 ]
l11 [0 ]
n_l15___4 [X₄-2 ]
n_l5___9 [X₃+2⋅X₅-2⋅X₈ ]
n_l15___8 [X₃-2 ]
n_l7___6 [2⋅X₃-X₄-3 ]
n_l5___5 [X₄-1 ]

MPRF for transition t₂₁₀: n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ 1+X₄ ≤ X₃ ∧ X₃+X₆ ≤ 1+X₇ ∧ 1+X₇ ≤ X₃+X₆ ∧ 2 ≤ X₃ ∧ 2 ≤ X₃ ∧ X₇ < 1+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1+X₆ ≤ X₇ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:

new bound:

32⋅X₂⋅X₂+52⋅X₂+12 {O(n^2)}

MPRF:

n_l7___10 [0 ]
l12 [0 ]
l10 [0 ]
l3 [0 ]
l4 [0 ]
l1 [0 ]
l13 [0 ]
l6 [0 ]
l7 [0 ]
n_l5___2 [0 ]
l8 [0 ]
l9 [0 ]
l2 [0 ]
n_l15___1 [X₃ ]
n_l1___7 [X₃-1 ]
l11 [0 ]
n_l15___4 [2⋅X₄-X₃-3 ]
n_l5___9 [X₅+1 ]
n_l15___8 [X₅+1 ]
n_l7___6 [X₃-3 ]
n_l5___5 [2⋅X₄-X₃-3 ]

MPRF for transition t₂₂₇: n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄+1 ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:

new bound:

4⋅X₂+4 {O(n)}

MPRF:

l12 [2⋅X₄+X₇-1 ]
l10 [2⋅X₅+X₈ ]
l3 [2⋅X₅+X₈ ]
l4 [2⋅X₅+X₈-2 ]
l1 [2⋅X₅+X₈-2 ]
l13 [2⋅X₄+X₇-1 ]
l6 [2⋅X₄+X₇-1 ]
l7 [2⋅X₄+X₇-1 ]
l8 [2⋅X₅+X₈ ]
l9 [2⋅X₅+X₈ ]
l2 [2⋅X₅+X₈ ]
n_l1___7 [2⋅X₄+X₇+4 ]
l11 [2⋅X₄+X₇-1 ]
n_l5___2 [2⋅X₄+X₇-1 ]
n_l15___1 [2⋅X₄+X₇-1 ]
n_l15___4 [3⋅X₃+X₆+1 ]
n_l15___8 [3⋅X₃+X₆+1 ]
n_l7___10 [2⋅X₅+X₈-2 ]
n_l5___9 [3⋅X₃+X₆+X₈-X₇ ]
n_l7___6 [2⋅X₄+X₇+4 ]
n_l5___5 [2⋅X₃+X₇+1 ]

MPRF for transition t₂₁₃: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l15___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆ < 2 ∧ 0 ≤ X₃ ∧ X₃+X₆ ≤ X₇ ∧ X₇ ≤ X₃+X₆ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ 2 ≤ X₃ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

20⋅X₂⋅X₂+32⋅X₂+6 {O(n^2)}

MPRF:

n_l7___10 [0 ]
l12 [0 ]
l10 [0 ]
l3 [0 ]
l4 [0 ]
l1 [0 ]
l13 [0 ]
l6 [0 ]
l7 [0 ]
n_l5___2 [0 ]
l8 [0 ]
l9 [0 ]
l2 [0 ]
n_l15___1 [X₃ ]
n_l1___7 [X₇+1-X₆ ]
l11 [0 ]
n_l15___4 [X₃+X₄+X₆-X₇-1 ]
n_l5___9 [X₃ ]
n_l15___8 [X₃ ]
n_l7___6 [X₇+1-X₆ ]
n_l5___5 [X₄+1 ]

MPRF for transition t₂₁₇: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___5(X₀, X₁, X₂, X₄-1, X₄, X₅, X₇+1-X₄, X₇, X₈) :|: X₆ < 1 ∧ 1 ≤ X₄ ∧ X₃ ≤ X₄+1 ∧ 1+X₄ ≤ X₃ ∧ X₄+X₆ ≤ X₇ ∧ X₇ ≤ X₄+X₆ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:

new bound:

20⋅X₂⋅X₂+35⋅X₂+6 {O(n^2)}

MPRF:

n_l7___10 [0 ]
l12 [0 ]
l10 [0 ]
l3 [0 ]
l4 [0 ]
l1 [0 ]
l13 [0 ]
l6 [0 ]
l7 [0 ]
n_l5___2 [0 ]
l8 [0 ]
l9 [0 ]
l2 [0 ]
n_l15___1 [X₃-1 ]
n_l1___7 [X₄ ]
l11 [0 ]
n_l15___4 [X₃-1 ]
n_l5___9 [X₃-1 ]
n_l15___8 [X₃-1 ]
n_l7___6 [X₄ ]
n_l5___5 [X₃+X₇-X₄-X₆ ]

knowledge_propagation leads to new time bound 20⋅X₂⋅X₂+32⋅X₂+6 {O(n^2)} for transition t₂₀₇: n_l15___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l1___7(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₃+X₆-1, X₈) :|: X₆ < 2 ∧ 3 ≤ X₄ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄+X₆ ≤ X₇+1 ∧ 1+X₇ ≤ X₄+X₆ ∧ 2 ≤ X₃ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ 1 ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₃

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:48⋅X₂⋅X₂+253⋅X₂+249 {O(n^2)}
t₀: 1 {O(1)}
t₅: 2⋅X₂+2 {O(n)}
t₆: 12⋅X₂⋅X₂+55⋅X₂+55 {O(n^2)}
t₂₀: 3⋅X₂+5 {O(n)}
t₇: 2⋅X₂+2 {O(n)}
t₉: 2⋅X₂+2 {O(n)}
t₁₂: 4⋅X₂+2 {O(n)}
t₁: 1 {O(1)}
t₄: 12⋅X₂⋅X₂+55⋅X₂+55 {O(n^2)}
t₂₃: 1 {O(1)}
t₁₈: 3⋅X₂+9 {O(n)}
t₁₉: 2⋅X₂ {O(n)}
t₁₃: 3⋅X₂ {O(n)}
t₁₄: 2⋅X₂+1 {O(n)}
t₂₁: 3⋅X₂+1 {O(n)}
t₂: 12⋅X₂⋅X₂+52⋅X₂+46 {O(n^2)}
t₃: 1 {O(1)}
t₁₀: 2⋅X₂ {O(n)}
t₁₁: 2⋅X₂ {O(n)}
t₂₂: 12⋅X₂⋅X₂+55⋅X₂+55 {O(n^2)}
t₁₅: 3⋅X₂+1 {O(n)}
t₁₇: 3⋅X₂+9 {O(n)}

Costbounds

Overall costbound: 48⋅X₂⋅X₂+253⋅X₂+249 {O(n^2)}
t₀: 1 {O(1)}
t₅: 2⋅X₂+2 {O(n)}
t₆: 12⋅X₂⋅X₂+55⋅X₂+55 {O(n^2)}
t₂₀: 3⋅X₂+5 {O(n)}
t₇: 2⋅X₂+2 {O(n)}
t₉: 2⋅X₂+2 {O(n)}
t₁₂: 4⋅X₂+2 {O(n)}
t₁: 1 {O(1)}
t₄: 12⋅X₂⋅X₂+55⋅X₂+55 {O(n^2)}
t₂₃: 1 {O(1)}
t₁₈: 3⋅X₂+9 {O(n)}
t₁₉: 2⋅X₂ {O(n)}
t₁₃: 3⋅X₂ {O(n)}
t₁₄: 2⋅X₂+1 {O(n)}
t₂₁: 3⋅X₂+1 {O(n)}
t₂: 12⋅X₂⋅X₂+52⋅X₂+46 {O(n^2)}
t₃: 1 {O(1)}
t₁₀: 2⋅X₂ {O(n)}
t₁₁: 2⋅X₂ {O(n)}
t₂₂: 12⋅X₂⋅X₂+55⋅X₂+55 {O(n^2)}
t₁₅: 3⋅X₂+1 {O(n)}
t₁₇: 3⋅X₂+9 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: 4⋅X₂+5 {O(n)}
t₅, X₄: 4⋅X₂+5 {O(n)}
t₅, X₅: 16⋅X₂+X₅+20 {O(n)}
t₅, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₅, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₅, X₈: 864⋅X₂⋅X₂⋅X₂+5040⋅X₂⋅X₂+8988⋅X₂+X₈+5040 {O(n^3)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: 8⋅X₂+10 {O(n)}
t₆, X₄: 4⋅X₂+5 {O(n)}
t₆, X₅: 16⋅X₂+X₅+20 {O(n)}
t₆, X₆: 288⋅X₂⋅X₂⋅X₂+1680⋅X₂⋅X₂+2996⋅X₂+1680 {O(n^3)}
t₆, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₆, X₈: 864⋅X₂⋅X₂⋅X₂+5040⋅X₂⋅X₂+8988⋅X₂+X₈+5040 {O(n^3)}
t₂₀, X₂: X₂ {O(n)}
t₂₀, X₃: 4⋅X₂+5 {O(n)}
t₂₀, X₄: 4⋅X₂+5 {O(n)}
t₂₀, X₅: 4⋅X₂+5 {O(n)}
t₂₀, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₂₀, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₂₀, X₈: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: 4⋅X₂+5 {O(n)}
t₇, X₄: 4⋅X₂+5 {O(n)}
t₇, X₅: 16⋅X₂+X₅+20 {O(n)}
t₇, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₇, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₇, X₈: 864⋅X₂⋅X₂⋅X₂+5040⋅X₂⋅X₂+8988⋅X₂+X₈+5040 {O(n^3)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: 4⋅X₂+5 {O(n)}
t₉, X₄: 4⋅X₂+5 {O(n)}
t₉, X₅: 16⋅X₂+X₅+20 {O(n)}
t₉, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₉, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₉, X₈: 864⋅X₂⋅X₂⋅X₂+5040⋅X₂⋅X₂+8988⋅X₂+X₈+5040 {O(n^3)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: 4⋅X₂+5 {O(n)}
t₁₂, X₄: 4⋅X₂+5 {O(n)}
t₁₂, X₅: 4⋅X₂+5 {O(n)}
t₁₂, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₂, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₂, X₈: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₂ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₂ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: 4⋅X₂+5 {O(n)}
t₄, X₄: 4⋅X₂+5 {O(n)}
t₄, X₅: 16⋅X₂+X₅+20 {O(n)}
t₄, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₄, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₄, X₈: 864⋅X₂⋅X₂⋅X₂+5040⋅X₂⋅X₂+8988⋅X₂+X₈+5040 {O(n^3)}
t₂₃, X₂: 2⋅X₂ {O(n)}
t₂₃, X₃: 5⋅X₂+5 {O(n)}
t₂₃, X₄: 8⋅X₂+X₄+10 {O(n)}
t₂₃, X₅: 16⋅X₂+2⋅X₅+20 {O(n)}
t₂₃, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1499⋅X₂+840 {O(n^3)}
t₂₃, X₇: 288⋅X₂⋅X₂⋅X₂+1680⋅X₂⋅X₂+2996⋅X₂+X₇+1680 {O(n^3)}
t₂₃, X₈: 864⋅X₂⋅X₂⋅X₂+5040⋅X₂⋅X₂+2⋅X₈+8988⋅X₂+5040 {O(n^3)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: 4⋅X₂+5 {O(n)}
t₁₈, X₄: 4⋅X₂+5 {O(n)}
t₁₈, X₅: 4⋅X₂+5 {O(n)}
t₁₈, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₈, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₈, X₈: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₉, X₂: X₂ {O(n)}
t₁₉, X₃: 4⋅X₂+5 {O(n)}
t₁₉, X₄: 4⋅X₂+5 {O(n)}
t₁₉, X₅: 4⋅X₂+5 {O(n)}
t₁₉, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₉, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₉, X₈: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: 4⋅X₂+5 {O(n)}
t₁₃, X₄: 4⋅X₂+5 {O(n)}
t₁₃, X₅: 4⋅X₂+5 {O(n)}
t₁₃, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₃, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₃, X₈: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: 4⋅X₂+5 {O(n)}
t₁₄, X₄: 8⋅X₂+10 {O(n)}
t₁₄, X₅: 4⋅X₂+5 {O(n)}
t₁₄, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₄, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₄, X₈: 288⋅X₂⋅X₂⋅X₂+1680⋅X₂⋅X₂+2996⋅X₂+1680 {O(n^3)}
t₂₁, X₂: X₂ {O(n)}
t₂₁, X₃: 4⋅X₂+5 {O(n)}
t₂₁, X₄: 4⋅X₂+5 {O(n)}
t₂₁, X₅: 8⋅X₂+10 {O(n)}
t₂₁, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₂₁, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₂₁, X₈: 432⋅X₂⋅X₂⋅X₂+2520⋅X₂⋅X₂+4494⋅X₂+2520 {O(n^3)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: 4⋅X₂+5 {O(n)}
t₂, X₄: 8⋅X₂+X₄+10 {O(n)}
t₂, X₅: 16⋅X₂+X₅+20 {O(n)}
t₂, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₂, X₇: 288⋅X₂⋅X₂⋅X₂+1680⋅X₂⋅X₂+2996⋅X₂+X₇+1680 {O(n^3)}
t₂, X₈: 864⋅X₂⋅X₂⋅X₂+5040⋅X₂⋅X₂+8988⋅X₂+X₈+5040 {O(n^3)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 5⋅X₂+5 {O(n)}
t₃, X₄: 8⋅X₂+X₄+10 {O(n)}
t₃, X₅: 16⋅X₂+2⋅X₅+20 {O(n)}
t₃, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1499⋅X₂+840 {O(n^3)}
t₃, X₇: 288⋅X₂⋅X₂⋅X₂+1680⋅X₂⋅X₂+2996⋅X₂+X₇+1680 {O(n^3)}
t₃, X₈: 864⋅X₂⋅X₂⋅X₂+5040⋅X₂⋅X₂+2⋅X₈+8988⋅X₂+5040 {O(n^3)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: 4⋅X₂+5 {O(n)}
t₁₀, X₄: 4⋅X₂+5 {O(n)}
t₁₀, X₅: 16⋅X₂+X₅+20 {O(n)}
t₁₀, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₀, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₀, X₈: 864⋅X₂⋅X₂⋅X₂+5040⋅X₂⋅X₂+8988⋅X₂+X₈+5040 {O(n^3)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: 4⋅X₂+5 {O(n)}
t₁₁, X₄: 4⋅X₂+5 {O(n)}
t₁₁, X₅: 16⋅X₂+X₅+20 {O(n)}
t₁₁, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₁, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₁, X₈: 864⋅X₂⋅X₂⋅X₂+5040⋅X₂⋅X₂+8988⋅X₂+X₈+5040 {O(n^3)}
t₂₂, X₂: X₂ {O(n)}
t₂₂, X₃: 4⋅X₂+5 {O(n)}
t₂₂, X₄: 8⋅X₂+10 {O(n)}
t₂₂, X₅: 16⋅X₂+X₅+20 {O(n)}
t₂₂, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₂₂, X₇: 288⋅X₂⋅X₂⋅X₂+1680⋅X₂⋅X₂+2996⋅X₂+1680 {O(n^3)}
t₂₂, X₈: 864⋅X₂⋅X₂⋅X₂+5040⋅X₂⋅X₂+8988⋅X₂+X₈+5040 {O(n^3)}
t₁₅, X₂: X₂ {O(n)}
t₁₅, X₃: 4⋅X₂+5 {O(n)}
t₁₅, X₄: 4⋅X₂+5 {O(n)}
t₁₅, X₅: 4⋅X₂+5 {O(n)}
t₁₅, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₅, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₅, X₈: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₇, X₂: X₂ {O(n)}
t₁₇, X₃: 4⋅X₂+5 {O(n)}
t₁₇, X₄: 4⋅X₂+5 {O(n)}
t₁₇, X₅: 4⋅X₂+5 {O(n)}
t₁₇, X₆: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₇, X₇: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}
t₁₇, X₈: 144⋅X₂⋅X₂⋅X₂+840⋅X₂⋅X₂+1498⋅X₂+840 {O(n^3)}