Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: (X₀)³ < (X₁)³+(X₂)³ ∧ X₂ ≤ 1000
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: (X₁)³+(X₂)³ < (X₀)³ ∧ X₂ ≤ 1000
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: (X₀)³ ≤ (X₁)³+(X₂)³ ∧ (X₁)³+(X₂)³ ≤ (X₀)³
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1000 < X₂
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(1, 1, 1, X₃, X₄, X₅, X₆)
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(1, 1, X₂+1, X₃, X₄, X₅, X₆) :|: 999 < X₀ ∧ 999 < X₀ ∧ 999 < X₁ ∧ 999 < X₁
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(1, X₁+1, X₂+1, X₃, X₄, X₅, X₆) :|: 999 < X₀ ∧ 999 < X₀ ∧ 999 < X₁ ∧ X₁ ≤ 999
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(1, 1, X₂, X₃, X₄, X₅, X₆) :|: 999 < X₀ ∧ 999 < X₀ ∧ X₁ ≤ 999 ∧ 999 < X₁
t₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(1, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 999 < X₀ ∧ 999 < X₀ ∧ X₁ ≤ 999 ∧ X₁ ≤ 999
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+1, 1, X₂+1, X₃, X₄, X₅, X₆) :|: 999 < X₀ ∧ X₀ ≤ 999 ∧ 999 < X₁ ∧ 999 < X₁
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+1, X₁+1, X₂+1, X₃, X₄, X₅, X₆) :|: 999 < X₀ ∧ X₀ ≤ 999 ∧ 999 < X₁ ∧ X₁ ≤ 999
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+1, 1, X₂, X₃, X₄, X₅, X₆) :|: 999 < X₀ ∧ X₀ ≤ 999 ∧ X₁ ≤ 999 ∧ 999 < X₁
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+1, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 999 < X₀ ∧ X₀ ≤ 999 ∧ X₁ ≤ 999 ∧ X₁ ≤ 999
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(1, 1, X₂+1, X₃, X₄, X₅, X₆) :|: X₀ ≤ 999 ∧ 999 < X₀ ∧ 1000 < X₁ ∧ 1000 < X₁
t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(1, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: X₀ ≤ 999 ∧ 999 < X₀ ∧ 1000 < X₁ ∧ X₁ ≤ 1000
t₁₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(1, 1, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 999 ∧ 999 < X₀ ∧ X₁ ≤ 1000 ∧ 1000 < X₁
t₁₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 999 ∧ 999 < X₀ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000
t₁₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+1, 1, X₂+1, X₃, X₄, X₅, X₆) :|: X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ 1000 < X₁ ∧ 1000 < X₁
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+1, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ 1000 < X₁ ∧ X₁ ≤ 1000
t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+1, 1, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ 1000 < X₁
t₂₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000
t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆)

Preprocessing

Cut unsatisfiable transition t₇: l3→l1

Cut unsatisfiable transition t₈: l3→l1

Cut unsatisfiable transition t₁₀: l3→l1

Cut unsatisfiable transition t₁₁: l3→l1

Cut unsatisfiable transition t₁₂: l3→l1

Cut unsatisfiable transition t₁₃: l3→l1

Cut unsatisfiable transition t₁₄: l3→l1

Cut unsatisfiable transition t₁₅: l3→l1

Cut unsatisfiable transition t₁₆: l3→l1

Cut unsatisfiable transition t₁₇: l3→l1

Cut unsatisfiable transition t₁₉: l3→l1

Cut unsatisfiable transition t₂₀: l3→l1

Eliminate variables {X₃,X₄,X₅,X₆} that do not contribute to the problem

Found invariant X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ for location l5

Found invariant X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ for location l1

Found invariant X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ for location l4

Found invariant X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

Cut unsatisfiable transition t₆₆: l3→l1

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₅₈: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₅₉: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: (X₀)³ < (X₁)³+(X₂)³ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀
t₆₀: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: (X₁)³+(X₂)³ < (X₀)³ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀
t₆₁: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: (X₀)³ ≤ (X₁)³+(X₂)³ ∧ (X₁)³+(X₂)³ ≤ (X₀)³ ∧ X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀
t₆₂: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 1000 < X₂ ∧ X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀
t₆₃: l2(X₀, X₁, X₂) → l1(1, 1, 1)
t₆₄: l3(X₀, X₁, X₂) → l1(1, 1, X₂+1) :|: 999 < X₀ ∧ 999 < X₀ ∧ 999 < X₁ ∧ 999 < X₁ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₅: l3(X₀, X₁, X₂) → l1(1, X₁+1, X₂) :|: 999 < X₀ ∧ 999 < X₀ ∧ X₁ ≤ 999 ∧ X₁ ≤ 999 ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₇: l3(X₀, X₁, X₂) → l1(X₀+1, X₁, X₂) :|: X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000 ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₈: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀

MPRF for transition t₆₄: l3(X₀, X₁, X₂) → l1(1, 1, X₂+1) :|: 999 < X₀ ∧ 999 < X₀ ∧ 999 < X₁ ∧ 999 < X₁ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

1002 {O(1)}

MPRF:

l3 [1001-X₂ ]
l1 [1001-X₂ ]

MPRF for transition t₆₅: l3(X₀, X₁, X₂) → l1(1, X₁+1, X₂) :|: 999 < X₀ ∧ 999 < X₀ ∧ X₁ ≤ 999 ∧ X₁ ≤ 999 ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

1004003 {O(1)}

MPRF:

l3 [1000-X₁ ]
l1 [1000-X₁ ]

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

Found invariant X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 1 ≤ X₀ for location l5

Found invariant X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 1001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1001 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ for location l1

Found invariant X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 1 ≤ X₀ for location l4

Found invariant X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 1001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1001 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ for location l3

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l1

Found invariant 1 ≤ 0 for location l4

Found invariant 1 ≤ 0 for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₆₇ 16072092176506502 {O(1)}

TWN-Loops:

entry: t₆₅: l3(X₀, X₁, X₂) → l1(1, X₁+1, X₂) :|: 999 < X₀ ∧ 999 < X₀ ∧ X₁ ≤ 999 ∧ X₁ ≤ 999 ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ ∧ X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂) -> (X₀+1,X₁,X₂) :|: (X₀)³ < (X₁)³+(X₂)³ ∧ X₂ ≤ 1000 ∧ X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000 ∨ (X₁)³+(X₂)³ < (X₀)³ ∧ X₂ ≤ 1000 ∧ X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000
entry: t₆₄: l3(X₀, X₁, X₂) → l1(1, 1, X₂+1) :|: 999 < X₀ ∧ 999 < X₀ ∧ 999 < X₁ ∧ 999 < X₁ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ ∧ X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂) -> (X₀+1,X₁,X₂) :|: (X₀)³ < (X₁)³+(X₂)³ ∧ X₂ ≤ 1000 ∧ X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000 ∨ (X₁)³+(X₂)³ < (X₀)³ ∧ X₂ ≤ 1000 ∧ X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000
entry: t₆₃: l2(X₀, X₁, X₂) → l1(1, 1, 1)
results in twn-loop: twn:Inv: [X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ ∧ X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂) -> (X₀+1,X₁,X₂) :|: (X₀)³ < (X₁)³+(X₂)³ ∧ X₂ ≤ 1000 ∧ X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000 ∨ (X₁)³+(X₂)³ < (X₀)³ ∧ X₂ ≤ 1000 ∧ X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000
entry: t₆₅: l3(X₀, X₁, X₂) → l1(1, X₁+1, X₂) :|: 999 < X₀ ∧ 999 < X₀ ∧ X₁ ≤ 999 ∧ X₁ ≤ 999 ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ ∧ X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂) -> (X₀+1,X₁,X₂) :|: (X₀)³ < (X₁)³+(X₂)³ ∧ X₂ ≤ 1000 ∧ X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000 ∨ (X₁)³+(X₂)³ < (X₀)³ ∧ X₂ ≤ 1000 ∧ X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000
entry: t₆₄: l3(X₀, X₁, X₂) → l1(1, 1, X₂+1) :|: 999 < X₀ ∧ 999 < X₀ ∧ 999 < X₁ ∧ 999 < X₁ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ ∧ X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 999+X₁ ∧ X₂ ≤ 999+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂) -> (X₀+1,X₁,X₂) :|: (X₀)³ < (X₁)³+(X₂)³ ∧ X₂ ≤ 1000 ∧ X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000 ∨ (X₁)³+(X₂)³ < (X₀)³ ∧ X₂ ≤ 1000 ∧ X₀ ≤ 999 ∧ X₀ ≤ 999 ∧ X₁ ≤ 1000 ∧ X₁ ≤ 1000
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁
X₂: X₂

Termination: true
Formula:

X₁ < 1000 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0

Stabilization-Threshold for: X₀ ≤ 999
alphas_abs: X₀+999
M: 0
N: 1
Bound: 2⋅X₀+2000 {O(n)}
Stabilization-Threshold for: (X₁)³+(X₂)³ < (X₀)³
alphas_abs: 3⋅X₀+3⋅(X₀)²+(X₀)³+(X₁)³+(X₂)³
M: 0
N: 3
Bound: 2⋅X₀⋅X₀⋅X₀+2⋅X₁⋅X₁⋅X₁+2⋅X₂⋅X₂⋅X₂+6⋅X₀⋅X₀+6⋅X₀+4 {O(n^3)}
Stabilization-Threshold for: (X₀)³ < (X₁)³+(X₂)³
alphas_abs: 3⋅X₀+3⋅(X₀)²+(X₀)³+(X₁)³+(X₂)³
M: 0
N: 3
Bound: 2⋅X₀⋅X₀⋅X₀+2⋅X₁⋅X₁⋅X₁+2⋅X₂⋅X₂⋅X₂+6⋅X₀⋅X₀+6⋅X₀+4 {O(n^3)}

relevant size-bounds w.r.t. t₆₅:
X₀: 1 {O(1)}
X₁: 1000 {O(1)}
X₂: 1000 {O(1)}
Runtime-bound of t₆₅: 1004003 {O(1)}
Results in: 8032026050174126 {O(1)}

order: [X₀; X₁; X₂]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁
X₂: X₂

Termination: true
Formula:

X₁ < 1000 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0

Stabilization-Threshold for: X₀ ≤ 999
alphas_abs: X₀+999
M: 0
N: 1
Bound: 2⋅X₀+2000 {O(n)}
Stabilization-Threshold for: (X₁)³+(X₂)³ < (X₀)³
alphas_abs: 3⋅X₀+3⋅(X₀)²+(X₀)³+(X₁)³+(X₂)³
M: 0
N: 3
Bound: 2⋅X₀⋅X₀⋅X₀+2⋅X₁⋅X₁⋅X₁+2⋅X₂⋅X₂⋅X₂+6⋅X₀⋅X₀+6⋅X₀+4 {O(n^3)}
Stabilization-Threshold for: (X₀)³ < (X₁)³+(X₂)³
alphas_abs: 3⋅X₀+3⋅(X₀)²+(X₀)³+(X₁)³+(X₂)³
M: 0
N: 3
Bound: 2⋅X₀⋅X₀⋅X₀+2⋅X₁⋅X₁⋅X₁+2⋅X₂⋅X₂⋅X₂+6⋅X₀⋅X₀+6⋅X₀+4 {O(n^3)}

relevant size-bounds w.r.t. t₆₄:
X₀: 1 {O(1)}
X₁: 1 {O(1)}
X₂: 1001 {O(1)}
Runtime-bound of t₆₄: 1002 {O(1)}
Results in: 4020038078100 {O(1)}

order: [X₀; X₁; X₂]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁
X₂: X₂

Termination: true
Formula:

X₁ < 1000 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0

Stabilization-Threshold for: X₀ ≤ 999
alphas_abs: X₀+999
M: 0
N: 1
Bound: 2⋅X₀+2000 {O(n)}
Stabilization-Threshold for: (X₁)³+(X₂)³ < (X₀)³
alphas_abs: 3⋅X₀+3⋅(X₀)²+(X₀)³+(X₁)³+(X₂)³
M: 0
N: 3
Bound: 2⋅X₀⋅X₀⋅X₀+2⋅X₁⋅X₁⋅X₁+2⋅X₂⋅X₂⋅X₂+6⋅X₀⋅X₀+6⋅X₀+4 {O(n^3)}
Stabilization-Threshold for: (X₀)³ < (X₁)³+(X₂)³
alphas_abs: 3⋅X₀+3⋅(X₀)²+(X₀)³+(X₁)³+(X₂)³
M: 0
N: 3
Bound: 2⋅X₀⋅X₀⋅X₀+2⋅X₁⋅X₁⋅X₁+2⋅X₂⋅X₂⋅X₂+6⋅X₀⋅X₀+6⋅X₀+4 {O(n^3)}

relevant size-bounds w.r.t. t₆₃:
X₀: 1 {O(1)}
X₁: 1 {O(1)}
X₂: 1 {O(1)}
Runtime-bound of t₆₃: 1 {O(1)}
Results in: 2050 {O(1)}

order: [X₀; X₁; X₂]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁
X₂: X₂

Termination: true
Formula:

X₁ < 1000 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0

Stabilization-Threshold for: X₀ ≤ 999
alphas_abs: X₀+999
M: 0
N: 1
Bound: 2⋅X₀+2000 {O(n)}
Stabilization-Threshold for: (X₁)³+(X₂)³ < (X₀)³
alphas_abs: 3⋅X₀+3⋅(X₀)²+(X₀)³+(X₁)³+(X₂)³
M: 0
N: 3
Bound: 2⋅X₀⋅X₀⋅X₀+2⋅X₁⋅X₁⋅X₁+2⋅X₂⋅X₂⋅X₂+6⋅X₀⋅X₀+6⋅X₀+4 {O(n^3)}
Stabilization-Threshold for: (X₀)³ < (X₁)³+(X₂)³
alphas_abs: 3⋅X₀+3⋅(X₀)²+(X₀)³+(X₁)³+(X₂)³
M: 0
N: 3
Bound: 2⋅X₀⋅X₀⋅X₀+2⋅X₁⋅X₁⋅X₁+2⋅X₂⋅X₂⋅X₂+6⋅X₀⋅X₀+6⋅X₀+4 {O(n^3)}

relevant size-bounds w.r.t. t₆₅:
X₀: 1 {O(1)}
X₁: 1000 {O(1)}
X₂: 1000 {O(1)}
Runtime-bound of t₆₅: 1004003 {O(1)}
Results in: 8032026050174126 {O(1)}

order: [X₀; X₁; X₂]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁
X₂: X₂

Termination: true
Formula:

X₁ < 1000 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 1 < 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 3⋅(X₀)² < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₀)³ < (X₁)³+(X₂)³ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅(X₀)² ≤ 0 ∧ 0 ≤ 3⋅(X₀)²
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ < 1000 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ < 1000 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 < 0 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ < 999 ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ < 1000 ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 1
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ 0 < 3⋅(X₀)² ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0
∨ X₁ ≤ 1000 ∧ 1000 ≤ X₁ ∧ X₀ ≤ 999 ∧ 999 ≤ X₀ ∧ X₂ ≤ 1000 ∧ 1000 ≤ X₂ ∧ (X₁)³+(X₂)³ < (X₀)³ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 0 ∧ 0 ≤ 3⋅(X₀)² ∧ 3⋅(X₀)² ≤ 0

Stabilization-Threshold for: X₀ ≤ 999
alphas_abs: X₀+999
M: 0
N: 1
Bound: 2⋅X₀+2000 {O(n)}
Stabilization-Threshold for: (X₁)³+(X₂)³ < (X₀)³
alphas_abs: 3⋅X₀+3⋅(X₀)²+(X₀)³+(X₁)³+(X₂)³
M: 0
N: 3
Bound: 2⋅X₀⋅X₀⋅X₀+2⋅X₁⋅X₁⋅X₁+2⋅X₂⋅X₂⋅X₂+6⋅X₀⋅X₀+6⋅X₀+4 {O(n^3)}
Stabilization-Threshold for: (X₀)³ < (X₁)³+(X₂)³
alphas_abs: 3⋅X₀+3⋅(X₀)²+(X₀)³+(X₁)³+(X₂)³
M: 0
N: 3
Bound: 2⋅X₀⋅X₀⋅X₀+2⋅X₁⋅X₁⋅X₁+2⋅X₂⋅X₂⋅X₂+6⋅X₀⋅X₀+6⋅X₀+4 {O(n^3)}

relevant size-bounds w.r.t. t₆₄:
X₀: 1 {O(1)}
X₁: 1 {O(1)}
X₂: 1001 {O(1)}
Runtime-bound of t₆₄: 1002 {O(1)}
Results in: 4020038078100 {O(1)}

16072092176506502 {O(1)}

knowledge_propagation leads to new time bound 16072092177511508 {O(1)} for transition t₅₉: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: (X₀)³ < (X₁)³+(X₂)³ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 16072092177511507 {O(1)} for transition t₆₀: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: (X₁)³+(X₂)³ < (X₀)³ ∧ X₂ ≤ 1000 ∧ X₂ ≤ 1001 ∧ X₂ ≤ 1000+X₁ ∧ X₁+X₂ ≤ 2001 ∧ X₂ ≤ 1000+X₀ ∧ X₀+X₂ ≤ 2001 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 999+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 999+X₂ ∧ X₁ ≤ 1000 ∧ X₁ ≤ 999+X₀ ∧ X₀+X₁ ≤ 2000 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 999+X₁ ∧ X₀ ≤ 1000 ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:48216276532534527 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 16072092177511508 {O(1)}
t₆₀: 16072092177511507 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: 1 {O(1)}
t₆₄: 1002 {O(1)}
t₆₅: 1004003 {O(1)}
t₆₇: 16072092176506502 {O(1)}
t₆₈: 1 {O(1)}

Costbounds

Overall costbound: 48216276532534527 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 16072092177511508 {O(1)}
t₆₀: 16072092177511507 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: 1 {O(1)}
t₆₄: 1002 {O(1)}
t₆₅: 1004003 {O(1)}
t₆₇: 16072092176506502 {O(1)}
t₆₈: 1 {O(1)}

Sizebounds

t₅₈, X₀: X₀ {O(n)}
t₅₈, X₁: X₁ {O(n)}
t₅₈, X₂: X₂ {O(n)}
t₅₉, X₀: 1000 {O(1)}
t₅₉, X₁: 1000 {O(1)}
t₅₉, X₂: 1000 {O(1)}
t₆₀, X₀: 1000 {O(1)}
t₆₀, X₁: 1000 {O(1)}
t₆₀, X₂: 1000 {O(1)}
t₆₁, X₀: 1000 {O(1)}
t₆₁, X₁: 1000 {O(1)}
t₆₁, X₂: 1001 {O(1)}
t₆₂, X₀: 1000 {O(1)}
t₆₂, X₁: 1000 {O(1)}
t₆₂, X₂: 1001 {O(1)}
t₆₃, X₀: 1 {O(1)}
t₆₃, X₁: 1 {O(1)}
t₆₃, X₂: 1 {O(1)}
t₆₄, X₀: 1 {O(1)}
t₆₄, X₁: 1 {O(1)}
t₆₄, X₂: 1001 {O(1)}
t₆₅, X₀: 1 {O(1)}
t₆₅, X₁: 1000 {O(1)}
t₆₅, X₂: 1000 {O(1)}
t₆₇, X₀: 1000 {O(1)}
t₆₇, X₁: 1000 {O(1)}
t₆₇, X₂: 1000 {O(1)}
t₆₈, X₀: 1000 {O(1)}
t₆₈, X₁: 1000 {O(1)}
t₆₈, X₂: 1001 {O(1)}