Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₁₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀
t₁₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0
t₁₃: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂+1 ≤ X₃
t₁₁: l10(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 0
t₁₂: l10(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₂+1
t₁₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₁₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄)
t₇: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂
t₆: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ X₁
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, 1, X₃, 0) :|: 1 ≤ X₁ ∧ 0 < X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1
t₄: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₂₂: l6(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₁: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₃, X₂, X₃, X₄) :|: 0 < X₃
t₂: l7(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₂₁: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₄, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ < X₁
t₁₉: l8(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ < 1
t₂₀: l8(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₄
t₁₀: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ X₂ ≤ X₃
t₈: l9(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 1
t₉: l9(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₂
Preprocessing
Cut unsatisfiable transition t₁₁: l10→l6
Cut unsatisfiable transition t₃: l5→l6
Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l2
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l5
Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l8
Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l1
Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l10
Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l4
Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l9
Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l3
Cut unsatisfiable transition t₁₂: l10→l6
Cut unsatisfiable transition t₄: l5→l6
Cut unsatisfiable transition t₂₀: l8→l6
Cut unsatisfiable transition t₈: l9→l6
Cut unsatisfiable transition t₉: l9→l6
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₁₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₃: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂+1 ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₇: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₆: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, 1, X₃, 0) :|: 1 ≤ X₁ ∧ 0 < X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁
t₂₂: l6(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₁: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₃, X₂, X₃, X₄) :|: 0 < X₃
t₂: l7(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₂₁: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₄, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ < X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₉: l8(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ < 1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₀: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
MPRF for transition t₇: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₃ {O(n)}
MPRF:
l2 [X₁ ]
l3 [X₁ ]
l1 [X₁ ]
l4 [X₁ ]
l8 [X₁-1 ]
l5 [X₁ ]
l9 [X₁ ]
l10 [X₁ ]
MPRF for transition t₅: l5(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, 1, X₃, 0) :|: 1 ≤ X₁ ∧ 0 < X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l2 [X₁ ]
l3 [X₁ ]
l1 [X₁ ]
l4 [X₁ ]
l8 [X₂ ]
l5 [X₁+1 ]
l9 [X₁ ]
l10 [X₁ ]
MPRF for transition t₂₁: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₄, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ < X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₃ {O(n)}
MPRF:
l2 [X₁ ]
l3 [X₁ ]
l1 [X₁ ]
l4 [X₁ ]
l8 [X₄+1 ]
l5 [X₁ ]
l9 [X₁ ]
l10 [X₁ ]
MPRF for transition t₁₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF:
l2 [X₁-X₄-1 ]
l3 [X₁-X₄-1 ]
l1 [X₁-X₄-1 ]
l8 [X₁-X₄-1 ]
l5 [X₁ ]
l4 [X₁-X₄-1 ]
l9 [X₁-X₄-1 ]
l10 [X₁-X₄-1 ]
MPRF for transition t₁₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF:
l2 [X₁+1-X₂ ]
l3 [X₁+1-X₂ ]
l1 [X₁+1-X₂ ]
l8 [X₁-X₂ ]
l5 [X₁ ]
l4 [X₁+1-X₂ ]
l9 [X₁+1-X₂ ]
l10 [X₁+1-X₂ ]
MPRF for transition t₁₃: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂+1 ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
MPRF:
l2 [X₁+X₃-X₂-1 ]
l3 [X₁+X₃-X₂-1 ]
l1 [X₁+X₃-X₂-1 ]
l8 [X₁+X₃-X₂ ]
l5 [X₁+X₃ ]
l4 [X₁+X₃-X₂ ]
l9 [X₁+X₃-X₂ ]
l10 [X₁+X₃-X₂ ]
MPRF for transition t₁₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
MPRF:
l2 [2⋅X₁+X₃+1-X₂ ]
l3 [2⋅X₁+X₃-X₂ ]
l1 [2⋅X₁+X₃-X₂ ]
l8 [2⋅X₁+X₃+X₄-2⋅X₂ ]
l5 [2⋅X₁+X₃ ]
l4 [2⋅X₁+X₃+1-X₂ ]
l9 [2⋅X₁+X₃+1-X₂ ]
l10 [2⋅X₁+X₃+1-X₂ ]
MPRF for transition t₁₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF:
l2 [X₁-X₂ ]
l3 [X₁-X₂ ]
l1 [X₁-X₂-1 ]
l8 [X₁-X₂ ]
l5 [X₁ ]
l4 [X₁-X₂ ]
l9 [X₁-X₂ ]
l10 [X₁-X₂ ]
MPRF for transition t₆: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF:
l2 [X₁-X₂ ]
l3 [X₁-X₂ ]
l1 [X₁-X₂ ]
l8 [0 ]
l5 [X₁ ]
l4 [X₁+1-X₂ ]
l9 [X₁-X₂ ]
l10 [X₁-X₂ ]
MPRF for transition t₁₀: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF:
l2 [X₁-X₂-1 ]
l3 [X₁-X₂-1 ]
l1 [X₁-X₂-1 ]
l8 [X₁-X₂ ]
l5 [X₁ ]
l4 [X₁-X₂ ]
l9 [X₁-X₂ ]
l10 [X₁-X₂-1 ]
Analysing control-flow refined program
Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l2___15
Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l1___6
Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l9___10
Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l10___4
Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___12
Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l1___13
Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l2___3
Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l3___14
Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l9___17
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l5
Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l10___16
Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___9
Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l8
Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l3___2
Found invariant X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l4
Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___8
Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l1___1
Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___7
Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l9___5
Found invariant 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___11
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₄₆₄: l4(X₀, X₁, X₂, X₃, X₄) → n_l9___17(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₄₆₆: n_l9___17(X₀, X₁, X₂, X₃, X₄) → n_l10___16(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₄₄₇: n_l10___16(X₀, X₁, X₂, X₃, X₄) → n_l2___15(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₄₅₆: n_l2___15(X₀, X₁, X₂, X₃, X₄) → n_l3___14(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₄₅₉: n_l3___14(X₀, X₁, X₂, X₃, X₄) → n_l1___13(NoDet0, X₁, Arg2_P, X₃, Arg4_P) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1+Arg2_P ≤ X₁ ∧ 1+Arg4_P ≤ Arg2_P ∧ 0 ≤ Arg4_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₄₅₂: n_l1___13(X₀, X₁, X₂, X₃, X₄) → n_l4___11(X₀, X₁, X₂+1, X₃, X₄) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ 0 ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₄₅₃: n_l1___13(X₀, X₁, X₂, X₃, X₄) → n_l4___12(X₀, X₁, X₂+1, X₃, X₂) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 < X₀ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
MPRF for transition t₄₄₈: n_l10___4(X₀, X₁, X₂, X₃, X₄) → n_l2___3(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF:
n_l9___17 [0 ]
l4 [0 ]
l5 [0 ]
n_l10___16 [X₁ ]
n_l2___15 [X₁ ]
n_l2___3 [X₁-X₂-1 ]
n_l2___8 [X₁-X₄-1 ]
n_l3___14 [X₁-X₂ ]
n_l1___13 [X₁-X₂ ]
n_l3___2 [X₁-X₂-1 ]
n_l1___1 [X₁-X₂-1 ]
n_l3___7 [X₁-X₄-1 ]
n_l1___6 [X₁-X₄-1 ]
n_l4___11 [X₁-X₂ ]
n_l4___12 [X₁-X₂ ]
l8 [0 ]
n_l9___10 [X₁-X₂ ]
n_l10___9 [X₁-X₂ ]
n_l9___5 [X₁-X₂ ]
n_l10___4 [X₁-X₂ ]
MPRF for transition t₄₄₉: n_l10___9(X₀, X₁, X₂, X₃, X₄) → n_l2___8(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
MPRF:
n_l9___17 [X₁ ]
l4 [X₁ ]
l5 [X₁ ]
n_l10___16 [2⋅X₁ ]
n_l2___15 [2⋅X₁ ]
n_l2___3 [2⋅X₁-X₂-1 ]
n_l2___8 [2⋅X₁-X₄-2 ]
n_l3___14 [2⋅X₁ ]
n_l1___13 [2⋅X₁-X₂ ]
n_l3___2 [2⋅X₁-X₂-1 ]
n_l1___1 [2⋅X₁-X₂-1 ]
n_l3___7 [2⋅X₁-X₄-2 ]
n_l1___6 [2⋅X₁-X₂-1 ]
n_l4___11 [2⋅X₁-X₂ ]
n_l4___12 [2⋅X₁-X₄-1 ]
l8 [X₂ ]
n_l9___10 [2⋅X₁-X₄-1 ]
n_l10___9 [2⋅X₁-X₄-1 ]
n_l9___5 [2⋅X₁-X₂ ]
n_l10___4 [2⋅X₁-X₂-1 ]
MPRF for transition t₄₅₀: n_l1___1(X₀, X₁, X₂, X₃, X₄) → n_l4___11(X₀, X₁, X₂+1, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ 0 ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₃⋅X₃+2⋅X₃+1 {O(n^2)}
MPRF:
n_l9___17 [-X₂ ]
l4 [0 ]
l5 [0 ]
n_l10___16 [X₁-X₂ ]
n_l2___15 [X₁-X₂ ]
n_l2___3 [X₁-X₂ ]
n_l2___8 [X₁-X₄ ]
n_l3___14 [X₁-X₂ ]
n_l1___13 [X₁-X₂ ]
n_l3___2 [X₁-X₂ ]
n_l1___1 [X₁-X₂ ]
n_l3___7 [X₁-X₄ ]
n_l1___6 [X₁-X₄-1 ]
n_l4___11 [X₁-X₂ ]
n_l4___12 [X₁-X₄ ]
l8 [X₁-X₂ ]
n_l9___10 [X₁-X₄ ]
n_l10___9 [X₁-X₄ ]
n_l9___5 [X₁-X₂ ]
n_l10___4 [X₁-X₂ ]
MPRF for transition t₄₅₁: n_l1___1(X₀, X₁, X₂, X₃, X₄) → n_l4___12(X₀, X₁, X₂+1, X₃, X₂) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 < X₀ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
2⋅X₃⋅X₃+4⋅X₃+3 {O(n^2)}
MPRF:
n_l9___17 [-1 ]
l4 [-1 ]
l5 [-1 ]
n_l10___16 [X₁+X₃-2⋅X₂ ]
n_l2___15 [X₁+X₃-2⋅X₂ ]
n_l2___3 [X₁-X₂ ]
n_l2___8 [X₁-X₄-1 ]
n_l3___14 [X₁+X₃-2⋅X₂ ]
n_l1___13 [X₁+X₃-2⋅X₂ ]
n_l3___2 [X₁-X₂ ]
n_l1___1 [X₁-X₂ ]
n_l3___7 [X₁-X₄-1 ]
n_l1___6 [X₁-X₂ ]
n_l4___11 [X₁+1-X₂ ]
n_l4___12 [X₁-X₄-1 ]
l8 [X₁-X₂-1 ]
n_l9___10 [X₁-X₄-1 ]
n_l10___9 [X₁-X₄-1 ]
n_l9___5 [X₁+1-X₂ ]
n_l10___4 [X₁+1-X₂ ]
MPRF for transition t₄₅₄: n_l1___6(X₀, X₁, X₂, X₃, X₄) → n_l4___11(X₀, X₁, X₂+1, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₃⋅X₃+4⋅X₃+3 {O(n^2)}
MPRF:
n_l9___17 [0 ]
l4 [0 ]
l5 [0 ]
n_l10___16 [X₁+3⋅X₂ ]
n_l2___15 [X₁+5-2⋅X₂ ]
n_l2___3 [X₁+2-X₄ ]
n_l2___8 [X₁+4-X₄ ]
n_l3___14 [X₁+5-2⋅X₂ ]
n_l1___13 [X₁+4-X₂ ]
n_l3___2 [X₁+2-X₄ ]
n_l1___1 [X₁+2-X₄ ]
n_l3___7 [X₁+4-X₄ ]
n_l1___6 [X₁+5-X₂ ]
n_l4___11 [X₁+2-X₄ ]
n_l4___12 [X₁+4-X₄ ]
l8 [0 ]
n_l9___10 [X₁+4-X₄ ]
n_l10___9 [X₁+4-X₄ ]
n_l9___5 [X₁+2-X₄ ]
n_l10___4 [X₁+2-X₄ ]
MPRF for transition t₄₅₅: n_l1___6(X₀, X₁, X₂, X₃, X₄) → n_l4___12(X₀, X₁, X₂+1, X₃, X₂) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 < X₀ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
2⋅X₃⋅X₃+3⋅X₃+2 {O(n^2)}
MPRF:
n_l9___17 [X₃-2 ]
l4 [X₃-2 ]
l5 [X₃-2 ]
n_l10___16 [X₁+X₃ ]
n_l2___15 [X₁+X₃ ]
n_l2___3 [X₁+X₃-X₄-3 ]
n_l2___8 [X₁+X₃-X₄-3 ]
n_l3___14 [X₁+X₃ ]
n_l1___13 [X₁+X₃-X₄ ]
n_l3___2 [X₁+X₃-X₄-3 ]
n_l1___1 [X₁+X₃-X₄-3 ]
n_l3___7 [X₁+X₃-X₄-3 ]
n_l1___6 [X₁+X₃+X₄-2⋅X₂-1 ]
n_l4___11 [X₁+X₃-X₄-3 ]
n_l4___12 [X₁+X₃-X₄-3 ]
l8 [X₃-2 ]
n_l9___10 [X₁+X₃-X₄-3 ]
n_l10___9 [X₁+X₃-X₄-3 ]
n_l9___5 [X₁+X₃-X₄-3 ]
n_l10___4 [X₁+X₃-X₄-3 ]
MPRF for transition t₄₅₇: n_l2___3(X₀, X₁, X₂, X₃, X₄) → n_l3___2(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF:
n_l9___17 [0 ]
l4 [0 ]
l5 [0 ]
n_l10___16 [X₁ ]
n_l2___15 [X₁ ]
n_l2___3 [X₁-X₂ ]
n_l2___8 [X₁-X₂-1 ]
n_l3___14 [X₁ ]
n_l1___13 [X₁-X₂ ]
n_l3___2 [X₁-X₂-1 ]
n_l1___1 [X₁-X₂-1 ]
n_l3___7 [X₁-X₂-1 ]
n_l1___6 [X₁-X₂-1 ]
n_l4___11 [X₁-X₂ ]
n_l4___12 [X₁-X₂ ]
l8 [0 ]
n_l9___10 [X₁-X₂ ]
n_l10___9 [X₁-X₂-1 ]
n_l9___5 [X₁-X₂ ]
n_l10___4 [X₁-X₂ ]
MPRF for transition t₄₅₈: n_l2___8(X₀, X₁, X₂, X₃, X₄) → n_l3___7(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₃⋅X₃+8⋅X₃+6 {O(n^2)}
MPRF:
n_l9___17 [X₃-3⋅X₂ ]
l4 [X₃-3 ]
l5 [X₃-3 ]
n_l10___16 [X₁+3⋅X₃-3⋅X₂ ]
n_l2___15 [X₁+3⋅X₃-3⋅X₂ ]
n_l2___3 [X₁+X₃-X₄-5 ]
n_l2___8 [X₁+X₃-X₂-3 ]
n_l3___14 [X₁+3⋅X₃-4 ]
n_l1___13 [X₁+X₃-X₄ ]
n_l3___2 [X₁+X₃-X₄-5 ]
n_l1___1 [X₁+X₃-X₄-5 ]
n_l3___7 [X₁+X₃-X₂-4 ]
n_l1___6 [X₁+X₃-X₂-4 ]
n_l4___11 [X₁+X₃-X₄-5 ]
n_l4___12 [X₁+X₃-X₂-3 ]
l8 [X₃-3 ]
n_l9___10 [X₁+X₃-X₂-3 ]
n_l10___9 [X₁+X₃-X₂-3 ]
n_l9___5 [X₁+X₃-X₄-5 ]
n_l10___4 [X₁+X₃-X₄-5 ]
MPRF for transition t₄₆₀: n_l3___2(X₀, X₁, X₂, X₃, X₄) → n_l1___1(NoDet0, X₁, Arg2_P, X₃, Arg4_P) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1+Arg2_P ≤ X₁ ∧ 1+Arg4_P ≤ Arg2_P ∧ 0 ≤ Arg4_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
3⋅X₃⋅X₃+6⋅X₃+1 {O(n^2)}
MPRF:
n_l9___17 [X₁+X₃-X₂ ]
l4 [X₁+X₃ ]
l5 [X₁+X₃ ]
n_l10___16 [2⋅X₁+X₃-X₂ ]
n_l2___15 [2⋅X₁+X₃-X₂ ]
n_l2___3 [2⋅X₁+X₃-X₂-1 ]
n_l2___8 [2⋅X₁+X₃-X₂-1 ]
n_l3___14 [2⋅X₁+X₃-X₂ ]
n_l1___13 [2⋅X₁+X₃-X₂-2 ]
n_l3___2 [2⋅X₁+X₃-X₂-1 ]
n_l1___1 [2⋅X₁+X₃-X₂-2 ]
n_l3___7 [2⋅X₁+X₃-X₂-1 ]
n_l1___6 [2⋅X₁+X₃-X₄-2 ]
n_l4___11 [2⋅X₁+X₃-X₂-1 ]
n_l4___12 [2⋅X₁+X₃-X₂-1 ]
l8 [X₃+X₄ ]
n_l9___10 [2⋅X₁+X₃-X₂-1 ]
n_l10___9 [2⋅X₁+X₃-X₂-1 ]
n_l9___5 [2⋅X₁+X₃-X₂-1 ]
n_l10___4 [2⋅X₁+X₃-X₂-1 ]
MPRF for transition t₄₆₁: n_l3___7(X₀, X₁, X₂, X₃, X₄) → n_l1___6(NoDet0, X₁, Arg2_P, X₃, Arg4_P) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1+Arg2_P ≤ X₁ ∧ 1+Arg4_P ≤ Arg2_P ∧ 0 ≤ Arg4_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+4⋅X₃+1 {O(n^2)}
MPRF:
n_l9___17 [X₁ ]
l4 [X₁ ]
l5 [X₁ ]
n_l10___16 [2⋅X₁-X₂ ]
n_l2___15 [2⋅X₁-X₂ ]
n_l2___3 [2⋅X₁-X₂ ]
n_l2___8 [2⋅X₁-X₂ ]
n_l3___14 [2⋅X₁-X₂ ]
n_l1___13 [2⋅X₁-X₂ ]
n_l3___2 [2⋅X₁-X₂ ]
n_l1___1 [2⋅X₁-X₂-1 ]
n_l3___7 [2⋅X₁-X₄-1 ]
n_l1___6 [2⋅X₁-X₄-2 ]
n_l4___11 [2⋅X₁-X₂ ]
n_l4___12 [2⋅X₁-X₂ ]
l8 [X₄ ]
n_l9___10 [2⋅X₁-X₂ ]
n_l10___9 [2⋅X₁-X₂ ]
n_l9___5 [2⋅X₁-X₂ ]
n_l10___4 [2⋅X₁-X₂ ]
MPRF for transition t₄₆₂: n_l4___11(X₀, X₁, X₂, X₃, X₄) → n_l9___5(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
MPRF:
n_l9___17 [X₁ ]
l4 [X₁ ]
l5 [X₁ ]
n_l10___16 [2⋅X₁ ]
n_l2___15 [2⋅X₁ ]
n_l2___3 [2⋅X₁-X₂-1 ]
n_l2___8 [2⋅X₁-X₂-1 ]
n_l3___14 [2⋅X₁ ]
n_l1___13 [2⋅X₁-X₂-1 ]
n_l3___2 [2⋅X₁-X₂-1 ]
n_l1___1 [2⋅X₁-X₂-1 ]
n_l3___7 [2⋅X₁-X₂-1 ]
n_l1___6 [2⋅X₁-X₂-1 ]
n_l4___11 [2⋅X₁-X₂ ]
n_l4___12 [2⋅X₁-X₄-1 ]
l8 [X₂ ]
n_l9___10 [2⋅X₁-X₄-2 ]
n_l10___9 [2⋅X₁-X₂-1 ]
n_l9___5 [2⋅X₁-X₂-1 ]
n_l10___4 [2⋅X₁-X₂-1 ]
MPRF for transition t₄₇₈: n_l4___11(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
2⋅X₃+2 {O(n)}
MPRF:
l4 [X₁+X₃-2 ]
l5 [X₁+X₃-2 ]
n_l2___15 [X₁+X₃-2 ]
n_l2___3 [X₁+X₃-2 ]
n_l2___8 [X₁+X₃-2 ]
n_l3___14 [X₁+X₃-2 ]
n_l1___13 [X₁+X₃-2 ]
n_l3___2 [X₁+X₃-2 ]
n_l1___1 [X₁+X₃-2 ]
n_l3___7 [X₁+X₃-2 ]
n_l1___6 [X₁+X₃-2 ]
n_l4___11 [X₁+X₃-2 ]
n_l4___12 [X₁+X₃-2 ]
l8 [X₃+X₄-2 ]
n_l9___10 [X₁+X₃-2 ]
n_l10___9 [X₁+X₃-2 ]
n_l9___17 [X₁+X₃-2 ]
n_l10___16 [X₁+X₃-2⋅X₂ ]
n_l9___5 [X₁+X₃-2 ]
n_l10___4 [X₁+X₃-2 ]
MPRF for transition t₄₆₃: n_l4___12(X₀, X₁, X₂, X₃, X₄) → n_l9___10(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+7⋅X₃+5 {O(n^2)}
MPRF:
n_l9___17 [X₃-X₂ ]
l4 [X₃-1 ]
l5 [X₃-1 ]
n_l10___16 [X₁+X₃+3-X₂ ]
n_l2___15 [X₁+X₃+3-X₂ ]
n_l2___3 [X₁+X₃-X₄-3 ]
n_l2___8 [X₁+X₃-X₂-2 ]
n_l3___14 [X₁+X₃ ]
n_l1___13 [X₁+X₃-X₄ ]
n_l3___2 [X₁+X₃-X₄-3 ]
n_l1___1 [X₁+X₃-X₄-3 ]
n_l3___7 [X₁+X₃-X₂-2 ]
n_l1___6 [X₁+X₃-X₄-3 ]
n_l4___11 [X₁+X₃-X₄-3 ]
n_l4___12 [X₁+X₃-X₂-1 ]
l8 [X₃-1 ]
n_l9___10 [X₁+X₃-X₂-2 ]
n_l10___9 [X₁+X₃-X₂-2 ]
n_l9___5 [X₁+X₃-X₄-3 ]
n_l10___4 [X₁+X₃-X₄-3 ]
MPRF for transition t₄₇₉: n_l4___12(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l4 [X₁+1 ]
l5 [X₁+1 ]
n_l2___15 [X₁+1 ]
n_l2___3 [X₁+1 ]
n_l2___8 [X₁+3⋅X₂-3⋅X₄-2 ]
n_l3___14 [X₁+3⋅X₂-2 ]
n_l1___13 [X₁+1 ]
n_l3___2 [X₁+1 ]
n_l1___1 [X₁+1 ]
n_l3___7 [X₁+3⋅X₂-3⋅X₄-2 ]
n_l1___6 [X₁+1 ]
n_l4___11 [X₁+1 ]
n_l4___12 [X₁+1 ]
l8 [X₁ ]
n_l9___10 [X₁+3⋅X₂-3⋅X₄-2 ]
n_l10___9 [X₁+3⋅X₂-3⋅X₄-2 ]
n_l9___17 [X₁+1 ]
n_l10___16 [X₁+1 ]
n_l9___5 [X₁+1 ]
n_l10___4 [X₁+1 ]
MPRF for transition t₄₆₅: n_l9___10(X₀, X₁, X₂, X₃, X₄) → n_l10___9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
MPRF:
n_l9___17 [X₁ ]
l4 [X₁ ]
l5 [X₁ ]
n_l10___16 [2⋅X₁ ]
n_l2___15 [2⋅X₁ ]
n_l2___3 [2⋅X₁-X₄-1 ]
n_l2___8 [2⋅X₁+X₄+1-2⋅X₂ ]
n_l3___14 [2⋅X₁ ]
n_l1___13 [2⋅X₁ ]
n_l3___2 [2⋅X₁-X₄-1 ]
n_l1___1 [2⋅X₁-X₄-1 ]
n_l3___7 [2⋅X₁-X₂ ]
n_l1___6 [2⋅X₁-X₂ ]
n_l4___11 [2⋅X₁-X₄-1 ]
n_l4___12 [2⋅X₁+1-X₂ ]
l8 [X₄ ]
n_l9___10 [2⋅X₁+X₄+2-2⋅X₂ ]
n_l10___9 [2⋅X₁+X₄+1-2⋅X₂ ]
n_l9___5 [2⋅X₁-X₄-1 ]
n_l10___4 [2⋅X₁-X₄-1 ]
MPRF for transition t₄₆₇: n_l9___5(X₀, X₁, X₂, X₃, X₄) → n_l10___4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
3⋅X₃⋅X₃+6⋅X₃+6 {O(n^2)}
MPRF:
n_l9___17 [X₁+X₃-5⋅X₂ ]
l4 [X₁+X₃-5 ]
l5 [X₁+X₃-5 ]
n_l10___16 [2⋅X₁+X₃-X₂ ]
n_l2___15 [2⋅X₁+X₃-X₂ ]
n_l2___3 [2⋅X₁+X₃-X₂-7 ]
n_l2___8 [2⋅X₁+X₃-X₄-7 ]
n_l3___14 [2⋅X₁+X₃-X₂ ]
n_l1___13 [2⋅X₁+X₃-X₂ ]
n_l3___2 [2⋅X₁+X₃-X₂-7 ]
n_l1___1 [2⋅X₁+X₃-X₂-7 ]
n_l3___7 [2⋅X₁+X₃-X₄-7 ]
n_l1___6 [2⋅X₁+X₃-X₄-7 ]
n_l4___11 [2⋅X₁+X₃-X₂-6 ]
n_l4___12 [2⋅X₁+X₃-X₄-7 ]
l8 [X₃+X₄-5 ]
n_l9___10 [2⋅X₁+X₃-X₄-7 ]
n_l10___9 [2⋅X₁+X₃-X₄-7 ]
n_l9___5 [2⋅X₁+X₃-X₂-6 ]
n_l10___4 [2⋅X₁+X₃-X₂-7 ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:10⋅X₃⋅X₃+13⋅X₃+6 {O(n^2)}
t₀: 1 {O(1)}
t₁₇: X₃⋅X₃+X₃ {O(n^2)}
t₁₈: X₃⋅X₃+X₃ {O(n^2)}
t₁₃: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₄: 3⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₆: X₃⋅X₃+X₃ {O(n^2)}
t₆: X₃⋅X₃+X₃ {O(n^2)}
t₇: X₃ {O(n)}
t₅: X₃+1 {O(n)}
t₂₂: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₁₉: 1 {O(1)}
t₂₁: X₃ {O(n)}
t₁₀: X₃⋅X₃+X₃ {O(n^2)}
Costbounds
Overall costbound: 10⋅X₃⋅X₃+13⋅X₃+6 {O(n^2)}
t₀: 1 {O(1)}
t₁₇: X₃⋅X₃+X₃ {O(n^2)}
t₁₈: X₃⋅X₃+X₃ {O(n^2)}
t₁₃: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₄: 3⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₆: X₃⋅X₃+X₃ {O(n^2)}
t₆: X₃⋅X₃+X₃ {O(n^2)}
t₇: X₃ {O(n)}
t₅: X₃+1 {O(n)}
t₂₂: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₁₉: 1 {O(1)}
t₂₁: X₃ {O(n)}
t₁₀: X₃⋅X₃+X₃ {O(n^2)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₁₇, X₁: X₃ {O(n)}
t₁₇, X₂: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₈, X₁: X₃ {O(n)}
t₁₈, X₂: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₄: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₃, X₁: X₃ {O(n)}
t₁₃, X₂: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₄, X₁: X₃ {O(n)}
t₁₄, X₂: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₆, X₁: X₃ {O(n)}
t₁₆, X₂: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₆, X₁: X₃ {O(n)}
t₆, X₂: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₇, X₁: X₃ {O(n)}
t₇, X₂: 4⋅X₃⋅X₃+4⋅X₃+3 {O(n^2)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: 4⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₅, X₁: X₃ {O(n)}
t₅, X₂: 1 {O(1)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 0 {O(1)}
t₂₂, X₁: X₁+X₃ {O(n)}
t₂₂, X₂: 4⋅X₃⋅X₃+4⋅X₃+X₂+3 {O(n^2)}
t₂₂, X₃: 2⋅X₃ {O(n)}
t₂₂, X₄: X₄ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₃ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₁₉, X₁: X₃ {O(n)}
t₁₉, X₂: 4⋅X₃⋅X₃+4⋅X₃+3 {O(n^2)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: 0 {O(1)}
t₂₁, X₁: X₃ {O(n)}
t₂₁, X₂: 4⋅X₃⋅X₃+4⋅X₃+3 {O(n^2)}
t₂₁, X₃: X₃ {O(n)}
t₂₁, X₄: 4⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₀, X₁: X₃ {O(n)}
t₁₀, X₂: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: 2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}