Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁₀ ≤ X₅
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < X₁₀
t₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄
t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁₀ < 0
t₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₉ < 0
t₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₄ < 0
t₂₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₇+1, X₄, X₅, X₆, X₇, X₆, X₉, X₁₀)
t₂₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(nondef.2, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₂₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀)
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₉ ≤ X₇
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ < X₉
t₁₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₂
t₁₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₂ ≤ 0
t₂₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₆+1, X₆, X₇, X₈, X₉, X₁₀)
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ 0
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅, 0, X₈, X₉, X₁₀) :|: 0 < X₁
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀
t₂₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₈, X₃, X₈, X₉, X₁₀) :|: X₀ ≤ 0
t₂₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₈ < X₄
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₈, X₃, X₈, X₉, X₁₀) :|: X₄ ≤ X₈

Preprocessing

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location l2

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l6

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location l15

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l12

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location l17

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location l7

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location l5

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l13

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location l8

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 0 ≤ X₁₀ for location l1

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location l16

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l18

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location l4

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location l3

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁₀ ≤ X₅ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 0 ≤ X₁₀
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 0 ≤ X₁₀
t₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄
t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁₀ < 0
t₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₉ < 0
t₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₄ < 0
t₂₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀
t₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀
t₁₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₁₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₇+1, X₄, X₅, X₆, X₇, X₆, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₂₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(nondef.2, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₂₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₉ ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ < X₉ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₁₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₂ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₁₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₂ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₂₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₆+1, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅, 0, X₈, X₉, X₁₀) :|: 0 < X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₂₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₈, X₃, X₈, X₉, X₁₀) :|: X₀ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₂₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₈ < X₄ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₈, X₃, X₈, X₉, X₁₀) :|: X₄ ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁

MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₁₀ {O(n)}

MPRF:

l12 [X₁₀-X₅-1 ]
l13 [X₁₀-X₅-1 ]
l17 [X₇+X₁₀-X₃-X₅ ]
l15 [X₁₀-X₅-1 ]
l3 [X₁₀-X₅-1 ]
l4 [X₁₀-X₆-1 ]
l1 [X₁₀-X₅ ]
l5 [X₁₀-X₅-1 ]
l14 [X₁₀-X₅-1 ]
l6 [X₁₀-X₅-1 ]
l18 [X₇+X₁₀-X₃-X₅ ]
l7 [X₁₀-X₅-1 ]
l16 [X₇+X₁₀-X₃-X₅ ]
l8 [X₇+X₁₀-X₃-X₅ ]
l2 [X₁₀-X₅-1 ]

MPRF for transition t₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ of depth 1:

new bound:

X₁₀+1 {O(n)}

MPRF:

l12 [X₁₀+1-X₅ ]
l13 [X₁₀-X₅ ]
l17 [X₁₀-X₈ ]
l15 [X₁₀-X₆ ]
l3 [X₁₀-X₆ ]
l4 [X₁₀-X₆ ]
l1 [X₁₀+1-X₅ ]
l5 [X₁₀-X₆ ]
l14 [X₁₀-X₆ ]
l6 [X₁₀-X₅ ]
l18 [X₁₀-X₈ ]
l7 [X₁₀-X₈ ]
l16 [X₁₀-X₈ ]
l8 [X₁₀-X₈ ]
l2 [X₁₀-X₆ ]

MPRF for transition t₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ of depth 1:

new bound:

X₁₀+1 {O(n)}

MPRF:

l12 [X₁₀+1-X₅ ]
l13 [X₁₀+1-X₅ ]
l17 [X₁₀-X₅ ]
l15 [X₁₀-X₅ ]
l3 [X₁₀-X₅ ]
l4 [X₁₀-X₆ ]
l1 [X₁₀+1-X₅ ]
l5 [X₁₀-X₅ ]
l14 [X₁₀-X₅ ]
l6 [X₁₀-X₅ ]
l18 [X₁₀-X₅ ]
l7 [X₁₀-X₅ ]
l16 [X₁₀-X₅ ]
l8 [X₁₀-X₅ ]
l2 [X₁₀-X₅ ]

MPRF for transition t₂₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄ {O(n)}

MPRF:

l12 [X₄-X₅ ]
l13 [X₄-X₅ ]
l17 [X₄-X₈ ]
l15 [X₄-X₆ ]
l3 [X₄-X₆ ]
l4 [X₄-X₆-1 ]
l1 [X₄-X₅ ]
l5 [X₄-X₆ ]
l14 [X₄-X₆ ]
l6 [X₄-X₅ ]
l18 [X₄-X₈ ]
l7 [X₄-X₈ ]
l16 [X₄-X₈ ]
l8 [X₄-X₈ ]
l2 [X₄-X₆ ]

MPRF for transition t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₉ ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₁₀ {O(n)}

MPRF:

l12 [X₁₀-X₅ ]
l13 [X₁₀-X₅ ]
l17 [X₁₀-X₅ ]
l15 [X₁₀-X₅ ]
l3 [X₁₀-X₅ ]
l4 [X₁₀-X₆-1 ]
l1 [X₁₀-X₅ ]
l5 [X₁₀-X₅ ]
l14 [X₁₀-X₅ ]
l6 [X₁₀-X₅ ]
l18 [X₁₀-X₅ ]
l7 [X₁₀-X₅ ]
l16 [X₁₀-X₅ ]
l8 [X₁₀-X₅ ]
l2 [X₁₀-X₅ ]

MPRF for transition t₁₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₂ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₁₀ {O(n)}

MPRF:

l12 [X₁₀-X₅ ]
l13 [X₁₀-X₅ ]
l17 [X₁₀-X₅ ]
l15 [X₁₀-X₅ ]
l3 [X₁₀-X₅ ]
l4 [X₁₀-X₆-1 ]
l1 [X₁₀-X₅ ]
l5 [X₁₀-X₅ ]
l14 [X₁₀-X₅ ]
l6 [X₁₀-X₅ ]
l18 [X₁₀-X₅ ]
l7 [X₁₀-X₅ ]
l16 [X₁₀-X₅ ]
l8 [X₁₀-X₅ ]
l2 [X₁₀-X₅ ]

MPRF for transition t₂₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₆+1, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₁₀ {O(n)}

MPRF:

l12 [X₁₀-X₅ ]
l13 [X₁₀-X₅ ]
l17 [X₁₀-X₅ ]
l15 [X₁₀-X₅ ]
l3 [X₁₀-X₅ ]
l4 [X₁₀-X₅ ]
l1 [X₁₀-X₅ ]
l5 [X₁₀-X₅ ]
l14 [X₁₀-X₅ ]
l6 [X₁₀-X₅ ]
l18 [X₁₀-X₅ ]
l7 [X₁₀-X₅ ]
l16 [X₁₀-X₅ ]
l8 [X₁₀-X₅ ]
l2 [X₁₀-X₅ ]

MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅, 0, X₈, X₉, X₁₀) :|: 0 < X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ of depth 1:

new bound:

X₁₀+1 {O(n)}

MPRF:

l12 [X₁₀+1-X₅ ]
l13 [X₁₀+1-X₅ ]
l17 [X₁₀-X₈ ]
l15 [X₁₀-X₆ ]
l3 [X₁₀-X₆ ]
l4 [X₁₀-X₆ ]
l1 [X₁₀+1-X₅ ]
l5 [X₁₀-X₆ ]
l14 [X₁₀-X₆ ]
l6 [X₁₀+1-X₅ ]
l18 [X₁₀-X₈ ]
l7 [X₁₀-X₈ ]
l16 [X₁₀-X₈ ]
l8 [X₁₀-X₈ ]
l2 [X₁₀-X₆ ]

MPRF for transition t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₄ {O(n)}

MPRF:

l12 [X₄-X₅ ]
l13 [X₄-X₅ ]
l17 [X₄-X₈ ]
l15 [X₄-X₆ ]
l3 [X₄-X₆ ]
l4 [X₄-X₆-1 ]
l1 [X₄-X₅ ]
l5 [X₄-X₆ ]
l14 [X₄-X₆ ]
l6 [X₄-X₅ ]
l18 [X₄-X₈-1 ]
l7 [X₄-X₈ ]
l16 [X₄-X₈ ]
l8 [X₄-X₈ ]
l2 [X₄-X₆ ]

MPRF for transition t₁₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₁₀⋅X₉+X₉ {O(n^2)}

MPRF:

l12 [0 ]
l13 [0 ]
l6 [0 ]
l17 [X₉-X₃ ]
l15 [X₉-X₇-1 ]
l3 [X₉-X₇-1 ]
l4 [0 ]
l1 [0 ]
l5 [X₉-X₇ ]
l14 [X₉-X₇ ]
l18 [X₉-X₃ ]
l7 [X₉-X₃ ]
l16 [X₉-X₃ ]
l8 [X₉-X₃ ]
l2 [X₉-X₇ ]

MPRF for transition t₁₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₇+1, X₄, X₅, X₆, X₇, X₆, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₁₀⋅X₉+X₉ {O(n^2)}

MPRF:

l12 [0 ]
l13 [0 ]
l6 [0 ]
l17 [X₉-X₇-1 ]
l15 [X₉-X₇ ]
l3 [X₉-X₇ ]
l4 [X₉-X₇ ]
l1 [0 ]
l5 [X₉-X₇ ]
l14 [X₉-X₇ ]
l18 [X₉-X₃ ]
l7 [X₉-X₃ ]
l16 [X₉-X₇-1 ]
l8 [X₉-X₇-1 ]
l2 [X₉-X₇ ]

MPRF for transition t₂₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₁₀⋅X₄+X₁₀⋅X₁₀+X₁₀⋅X₉+2⋅X₄+X₁₀+X₆+X₉ {O(n^2)}

MPRF:

l12 [-X₆ ]
l13 [-X₆ ]
l6 [-X₆ ]
l17 [X₄+X₉-X₃-X₈ ]
l15 [X₄+X₉-X₆-X₇ ]
l3 [X₄+X₉-X₆-X₇ ]
l4 [X₉-X₆-X₇ ]
l1 [-X₆ ]
l5 [X₄+X₉-X₆-X₇ ]
l14 [X₄+X₉-X₆-X₇ ]
l18 [X₄+X₉-X₃-X₈ ]
l7 [X₄+X₉-X₃-X₈ ]
l16 [X₄+X₉+1-X₃-X₈ ]
l8 [X₄+X₉-X₇-X₈ ]
l2 [X₄+X₉-X₆-X₇ ]

MPRF for transition t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(nondef.2, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₁₀⋅X₄+X₁₀⋅X₁₀+X₁₀⋅X₉+2⋅X₄+X₁₀+X₆+X₉ {O(n^2)}

MPRF:

l12 [-X₆ ]
l13 [-X₆ ]
l6 [-X₆ ]
l17 [X₄+X₉-X₇-X₈ ]
l15 [X₄+X₉-X₆-X₇ ]
l3 [X₄+X₉-X₆-X₇ ]
l4 [X₉-X₆-X₇ ]
l1 [-X₆ ]
l5 [X₄+X₉-X₆-X₇ ]
l14 [X₄+X₉-X₆-X₇ ]
l18 [X₄+X₉-X₇-X₈-1 ]
l7 [X₄+X₉-X₇-X₈-1 ]
l16 [X₄+X₉-X₇-X₈ ]
l8 [X₄+X₉-X₇-X₈ ]
l2 [X₄+X₉-X₆-X₇ ]

MPRF for transition t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ < X₉ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₁₀⋅X₉+X₁₀+X₉+1 {O(n^2)}

MPRF:

l12 [0 ]
l13 [0 ]
l6 [0 ]
l17 [X₉+1-X₃ ]
l15 [X₉-X₇ ]
l3 [X₉-X₇ ]
l4 [X₉-X₇ ]
l1 [0 ]
l5 [X₉-X₇ ]
l14 [X₉-X₇ ]
l18 [X₉+1-X₃ ]
l7 [X₉+1-X₃ ]
l16 [X₉+1-X₃ ]
l8 [X₉-X₇ ]
l2 [X₉+1-X₇ ]

MPRF for transition t₁₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₂ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₁₀⋅X₉+X₉ {O(n^2)}

MPRF:

l12 [0 ]
l13 [0 ]
l6 [0 ]
l17 [X₉-X₃ ]
l15 [X₉-X₇-1 ]
l3 [X₉-X₇ ]
l4 [0 ]
l1 [0 ]
l5 [X₉-X₇ ]
l14 [X₉-X₇ ]
l18 [X₉-X₃ ]
l7 [X₉-X₃ ]
l16 [X₉-X₃ ]
l8 [X₉-X₃ ]
l2 [X₉-X₇ ]

MPRF for transition t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

3⋅X₁₀⋅X₉+5⋅X₉+X₁₀ {O(n^2)}

MPRF:

l12 [2⋅X₉-X₁₀ ]
l13 [2⋅X₉-X₁₀ ]
l6 [2⋅X₉-X₁₀ ]
l17 [3⋅X₉-X₇-1 ]
l15 [3⋅X₉-X₇-1 ]
l3 [3⋅X₉-X₇-1 ]
l4 [3⋅X₉-X₇-X₁₀ ]
l1 [2⋅X₉-X₁₀ ]
l5 [3⋅X₉-X₇ ]
l14 [3⋅X₉-X₇-1 ]
l18 [3⋅X₉-X₃ ]
l7 [3⋅X₉-X₃ ]
l16 [3⋅X₉-X₇-1 ]
l8 [3⋅X₉-X₇-1 ]
l2 [3⋅X₉-X₇ ]

MPRF for transition t₂₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₈, X₃, X₈, X₉, X₁₀) :|: X₀ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₁₀⋅X₉+3⋅X₉+X₁₀+2 {O(n^2)}

MPRF:

l12 [X₉-1 ]
l13 [X₉-1 ]
l6 [X₉-X₁₀ ]
l17 [2⋅X₉-X₇-1 ]
l15 [2⋅X₉-X₇-1 ]
l3 [2⋅X₉-X₇-1 ]
l4 [2⋅X₉-X₇-1 ]
l1 [X₉-1 ]
l5 [2⋅X₉-X₇-1 ]
l14 [2⋅X₉-X₇-1 ]
l18 [2⋅X₉-X₃ ]
l7 [2⋅X₉-X₃ ]
l16 [2⋅X₉-X₇-1 ]
l8 [2⋅X₉-X₇-1 ]
l2 [2⋅X₉-X₇-1 ]

MPRF for transition t₂₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₈ < X₄ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₁₀⋅X₄+2⋅X₁₀⋅X₉+X₁₀⋅X₁₀+2⋅X₄+3⋅X₉+X₁₀+X₆ {O(n^2)}

MPRF:

l12 [X₉-X₆ ]
l13 [X₉-X₆ ]
l6 [X₉-X₆ ]
l17 [X₄+2⋅X₉-X₃-X₈ ]
l15 [X₄+2⋅X₉-X₆-X₇ ]
l3 [X₄+2⋅X₉-X₆-X₇ ]
l4 [2⋅X₉-X₆-X₇ ]
l1 [X₉-X₆ ]
l5 [X₄+2⋅X₉-X₆-X₇ ]
l14 [X₄+2⋅X₉-X₆-X₇ ]
l18 [X₄+2⋅X₉-X₃-X₈ ]
l7 [X₄+2⋅X₉-X₃-X₈ ]
l16 [X₄+2⋅X₉-X₃-X₈ ]
l8 [X₄+2⋅X₉+1-X₃-X₈ ]
l2 [X₄+2⋅X₉-X₆-X₇ ]

MPRF for transition t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₈, X₃, X₈, X₉, X₁₀) :|: X₄ ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₁₀⋅X₉+X₉ {O(n^2)}

MPRF:

l12 [0 ]
l13 [0 ]
l6 [0 ]
l17 [X₉+1-X₃ ]
l15 [X₉-X₇ ]
l3 [X₉-X₇ ]
l4 [X₉-X₇ ]
l1 [0 ]
l5 [X₉-X₇ ]
l14 [X₉-X₇ ]
l18 [X₉+1-X₃ ]
l7 [X₉-X₇ ]
l16 [X₉+1-X₃ ]
l8 [X₉+1-X₃ ]
l2 [X₉-X₇ ]

Analysing control-flow refined program

Found invariant 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 3 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 4 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 3 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l8___1

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l6

Found invariant 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 3 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 3 ≤ X₄+X₉ ∧ 4 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 3 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 2+X₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l16___6

Found invariant 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 3 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 3 ≤ X₄+X₉ ∧ 3 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 3 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 2+X₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l5___11

Found invariant 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 3 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 3 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 3 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l5___5

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ X₆ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l7___19

Found invariant 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 3 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 3 ≤ X₄+X₉ ∧ 3 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 3 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 2+X₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l14___10

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l12

Found invariant 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 3 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 3 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 3 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l15___2

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₁₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l5___27

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₁₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l14___26

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₁₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l15___24

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₆ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l18___18

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁₀+X₄ ∧ 0 ≤ X₁₀ for location l1

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location l4

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ 1+X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₄ ∧ 1+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 1 ∧ 1+X₇ ≤ X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₃ ≤ 1+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l16___22

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₁₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location l2

Found invariant 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 3 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 3 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 3 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l14___4

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___16

Found invariant 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 3 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 3 ≤ X₄+X₉ ∧ 4 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 3 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 2+X₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l8___7

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₁₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l3___25

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ X₆ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l17___20

Found invariant 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 3 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 3 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l3___3

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 3 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l17___14

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ X₆ ∧ X₈ ≤ X₅ ∧ 1+X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₃ ∧ X₃+X₇ ≤ 1 ∧ 1+X₇ ≤ X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₁₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₃ ≤ 1+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l8___23

Found invariant 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 3 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 3 ≤ X₄+X₉ ∧ 3 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 3 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 2+X₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l15___8

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 3 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l16___15

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l2___17

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 3 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1+X₈ ≤ X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l7___13

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₁ for location n_l2___21

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁₀ for location l13

Found invariant 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 3 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 3 ≤ X₄+X₉ ∧ 3 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 2+X₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 1+X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l3___9

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 3 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₈ ≤ X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l18___12

All Bounds

Timebounds

Overall timebound:14⋅X₁₀⋅X₉+3⋅X₁₀⋅X₁₀+6⋅X₁₀⋅X₄+13⋅X₁₀+18⋅X₉+3⋅X₆+8⋅X₄+14 {O(n^2)}
t₀: 1 {O(1)}
t₅: X₁₀ {O(n)}
t₆: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₂₉: 1 {O(1)}
t₇: X₁₀+1 {O(n)}
t₉: X₁₀+1 {O(n)}
t₁₆: X₁₀⋅X₉+X₉ {O(n^2)}
t₁₉: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₂: 2⋅X₁₀⋅X₄+X₁₀⋅X₁₀+X₁₀⋅X₉+2⋅X₄+X₁₀+X₆+X₉ {O(n^2)}
t₂₄: 2⋅X₁₀⋅X₄+X₁₀⋅X₁₀+X₁₀⋅X₉+2⋅X₄+X₁₀+X₆+X₉ {O(n^2)}
t₂₇: X₄ {O(n)}
t₁₂: X₁₀⋅X₉+X₁₀+X₉+1 {O(n^2)}
t₁₃: X₁₀ {O(n)}
t₁₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₁₈: X₁₀ {O(n)}
t₂₈: X₁₀ {O(n)}
t₁₄: 3⋅X₁₀⋅X₉+5⋅X₉+X₁₀ {O(n^2)}
t₁₀: X₁₀+1 {O(n)}
t₁₁: 1 {O(1)}
t₂₅: X₄ {O(n)}
t₂₆: 2⋅X₁₀⋅X₉+3⋅X₉+X₁₀+2 {O(n^2)}
t₂₀: 2⋅X₁₀⋅X₄+2⋅X₁₀⋅X₉+X₁₀⋅X₁₀+2⋅X₄+3⋅X₉+X₁₀+X₆ {O(n^2)}
t₂₁: X₁₀⋅X₉+X₉ {O(n^2)}

Costbounds

Overall costbound: 14⋅X₁₀⋅X₉+3⋅X₁₀⋅X₁₀+6⋅X₁₀⋅X₄+13⋅X₁₀+18⋅X₉+3⋅X₆+8⋅X₄+14 {O(n^2)}
t₀: 1 {O(1)}
t₅: X₁₀ {O(n)}
t₆: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₂₉: 1 {O(1)}
t₇: X₁₀+1 {O(n)}
t₉: X₁₀+1 {O(n)}
t₁₆: X₁₀⋅X₉+X₉ {O(n^2)}
t₁₉: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₂: 2⋅X₁₀⋅X₄+X₁₀⋅X₁₀+X₁₀⋅X₉+2⋅X₄+X₁₀+X₆+X₉ {O(n^2)}
t₂₄: 2⋅X₁₀⋅X₄+X₁₀⋅X₁₀+X₁₀⋅X₉+2⋅X₄+X₁₀+X₆+X₉ {O(n^2)}
t₂₇: X₄ {O(n)}
t₁₂: X₁₀⋅X₉+X₁₀+X₉+1 {O(n^2)}
t₁₃: X₁₀ {O(n)}
t₁₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₁₈: X₁₀ {O(n)}
t₂₈: X₁₀ {O(n)}
t₁₄: 3⋅X₁₀⋅X₉+5⋅X₉+X₁₀ {O(n^2)}
t₁₀: X₁₀+1 {O(n)}
t₁₁: 1 {O(1)}
t₂₅: X₄ {O(n)}
t₂₆: 2⋅X₁₀⋅X₉+3⋅X₉+X₁₀+2 {O(n^2)}
t₂₀: 2⋅X₁₀⋅X₄+2⋅X₁₀⋅X₉+X₁₀⋅X₁₀+2⋅X₄+3⋅X₉+X₁₀+X₆ {O(n^2)}
t₂₁: X₁₀⋅X₉+X₉ {O(n^2)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₅, X₃: 6⋅X₁₀⋅X₉+6⋅X₉+X₃ {O(n^2)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₁₀+X₄ {O(n)}
t₅, X₆: 2⋅X₁₀+2⋅X₄+X₆ {O(n)}
t₅, X₇: 3⋅X₁₀⋅X₉+3⋅X₉+X₇ {O(n^2)}
t₅, X₈: 6⋅X₁₀+6⋅X₄+X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₆, X₃: 6⋅X₁₀⋅X₉+2⋅X₃+6⋅X₉ {O(n^2)}
t₆, X₄: 2⋅X₄ {O(n)}
t₆, X₅: X₁₀+X₄ {O(n)}
t₆, X₆: 2⋅X₁₀+2⋅X₄+X₆ {O(n)}
t₆, X₇: 3⋅X₁₀⋅X₉+3⋅X₉+X₇ {O(n^2)}
t₆, X₈: 2⋅X₈+6⋅X₁₀+6⋅X₄ {O(n)}
t₆, X₉: 2⋅X₉ {O(n)}
t₆, X₁₀: 2⋅X₁₀ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: 0 {O(1)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₉ {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: X₁₀ {O(n)}
t₂₉, X₃: 12⋅X₁₀⋅X₉+12⋅X₉+6⋅X₃ {O(n^2)}
t₂₉, X₄: 6⋅X₄ {O(n)}
t₂₉, X₅: 2⋅X₁₀+2⋅X₄+3⋅X₅ {O(n)}
t₂₉, X₆: 4⋅X₁₀+4⋅X₄+5⋅X₆ {O(n)}
t₂₉, X₇: 6⋅X₁₀⋅X₉+5⋅X₇+6⋅X₉ {O(n^2)}
t₂₉, X₈: 12⋅X₁₀+12⋅X₄+6⋅X₈ {O(n)}
t₂₉, X₉: 6⋅X₉ {O(n)}
t₂₉, X₁₀: 6⋅X₁₀ {O(n)}
t₇, X₃: 6⋅X₁₀⋅X₉+6⋅X₉+X₃ {O(n^2)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₁₀+X₄ {O(n)}
t₇, X₆: 2⋅X₁₀+2⋅X₄+X₆ {O(n)}
t₇, X₇: 3⋅X₁₀⋅X₉+3⋅X₉+X₇ {O(n^2)}
t₇, X₈: 6⋅X₁₀+6⋅X₄+X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₉, X₃: 6⋅X₁₀⋅X₉+6⋅X₉+X₃ {O(n^2)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₁₀+X₄ {O(n)}
t₉, X₆: 2⋅X₁₀+2⋅X₄+X₆ {O(n)}
t₉, X₇: 3⋅X₁₀⋅X₉+3⋅X₉+X₇ {O(n^2)}
t₉, X₈: 6⋅X₁₀+6⋅X₄+X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₁₆, X₃: 6⋅X₁₀⋅X₉+6⋅X₉+X₃ {O(n^2)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: X₁₀+X₄ {O(n)}
t₁₆, X₆: X₁₀+X₄ {O(n)}
t₁₆, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₁₆, X₈: 6⋅X₁₀+6⋅X₄+X₈ {O(n)}
t₁₆, X₉: X₉ {O(n)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₁₉, X₃: X₁₀⋅X₉+X₉ {O(n^2)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: X₁₀+X₄ {O(n)}
t₁₉, X₆: X₁₀+X₄ {O(n)}
t₁₉, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₁₉, X₈: X₁₀+X₄ {O(n)}
t₁₉, X₉: X₉ {O(n)}
t₁₉, X₁₀: X₁₀ {O(n)}
t₂₂, X₃: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: X₁₀+X₄ {O(n)}
t₂₂, X₆: X₁₀+X₄ {O(n)}
t₂₂, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₂, X₈: X₁₀+X₄ {O(n)}
t₂₂, X₉: X₉ {O(n)}
t₂₂, X₁₀: X₁₀ {O(n)}
t₂₄, X₃: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: X₁₀+X₄ {O(n)}
t₂₄, X₆: X₁₀+X₄ {O(n)}
t₂₄, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₄, X₈: X₁₀+X₄ {O(n)}
t₂₄, X₉: X₉ {O(n)}
t₂₄, X₁₀: X₁₀ {O(n)}
t₂₇, X₃: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₅: X₁₀+X₄ {O(n)}
t₂₇, X₆: X₁₀+X₄ {O(n)}
t₂₇, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₇, X₈: X₁₀+X₄ {O(n)}
t₂₇, X₉: X₉ {O(n)}
t₂₇, X₁₀: X₁₀ {O(n)}
t₁₂, X₃: 6⋅X₁₀⋅X₉+6⋅X₉+X₃ {O(n^2)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₁₀+X₄ {O(n)}
t₁₂, X₆: X₁₀+X₄ {O(n)}
t₁₂, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₁₂, X₈: 6⋅X₁₀+6⋅X₄+X₈ {O(n)}
t₁₂, X₉: X₉ {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₃, X₃: 6⋅X₁₀⋅X₉+6⋅X₉+X₃ {O(n^2)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: 3⋅X₁₀+3⋅X₄ {O(n)}
t₁₃, X₆: X₁₀+X₄ {O(n)}
t₁₃, X₇: 2⋅X₁₀⋅X₉+2⋅X₉ {O(n^2)}
t₁₃, X₈: 6⋅X₁₀+6⋅X₄+X₈ {O(n)}
t₁₃, X₉: X₉ {O(n)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₁₇, X₃: 6⋅X₁₀⋅X₉+6⋅X₉+X₃ {O(n^2)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₁₀+X₄ {O(n)}
t₁₇, X₆: X₁₀+X₄ {O(n)}
t₁₇, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₁₇, X₈: 6⋅X₁₀+6⋅X₄+X₈ {O(n)}
t₁₇, X₉: X₉ {O(n)}
t₁₇, X₁₀: X₁₀ {O(n)}
t₁₈, X₃: 6⋅X₁₀⋅X₉+6⋅X₉+X₃ {O(n^2)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: X₁₀+X₄ {O(n)}
t₁₈, X₆: X₁₀+X₄ {O(n)}
t₁₈, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₁₈, X₈: 6⋅X₁₀+6⋅X₄+X₈ {O(n)}
t₁₈, X₉: X₉ {O(n)}
t₁₈, X₁₀: X₁₀ {O(n)}
t₂₈, X₃: 6⋅X₁₀⋅X₉+6⋅X₉+X₃ {O(n^2)}
t₂₈, X₄: X₄ {O(n)}
t₂₈, X₅: X₁₀+X₄ {O(n)}
t₂₈, X₆: 2⋅X₁₀+2⋅X₄ {O(n)}
t₂₈, X₇: 3⋅X₁₀⋅X₉+3⋅X₉ {O(n^2)}
t₂₈, X₈: 6⋅X₁₀+6⋅X₄+X₈ {O(n)}
t₂₈, X₉: X₉ {O(n)}
t₂₈, X₁₀: X₁₀ {O(n)}
t₁₄, X₃: 6⋅X₁₀⋅X₉+6⋅X₉+X₃ {O(n^2)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: X₁₀+X₄ {O(n)}
t₁₄, X₆: X₁₀+X₄ {O(n)}
t₁₄, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₁₄, X₈: 6⋅X₁₀+6⋅X₄+X₈ {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₀, X₃: 6⋅X₁₀⋅X₉+6⋅X₉+X₃ {O(n^2)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₁₀+X₄ {O(n)}
t₁₀, X₆: X₁₀+X₄ {O(n)}
t₁₀, X₇: 0 {O(1)}
t₁₀, X₈: 6⋅X₁₀+6⋅X₄+X₈ {O(n)}
t₁₀, X₉: X₉ {O(n)}
t₁₀, X₁₀: X₁₀ {O(n)}
t₁₁, X₃: 6⋅X₁₀⋅X₉+6⋅X₉+X₃ {O(n^2)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₁₀+X₄ {O(n)}
t₁₁, X₆: 2⋅X₁₀+2⋅X₄+X₆ {O(n)}
t₁₁, X₇: 3⋅X₁₀⋅X₉+3⋅X₉+X₇ {O(n^2)}
t₁₁, X₈: 6⋅X₁₀+6⋅X₄+X₈ {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₁, X₁₀: X₁₀ {O(n)}
t₂₅, X₃: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₅, X₄: X₄ {O(n)}
t₂₅, X₅: X₁₀+X₄ {O(n)}
t₂₅, X₆: X₁₀+X₄ {O(n)}
t₂₅, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₅, X₈: X₁₀+X₄ {O(n)}
t₂₅, X₉: X₉ {O(n)}
t₂₅, X₁₀: X₁₀ {O(n)}
t₂₆, X₃: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₆, X₄: X₄ {O(n)}
t₂₆, X₅: X₁₀+X₄ {O(n)}
t₂₆, X₆: X₁₀+X₄ {O(n)}
t₂₆, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₆, X₈: X₁₀+X₄ {O(n)}
t₂₆, X₉: X₉ {O(n)}
t₂₆, X₁₀: X₁₀ {O(n)}
t₂₀, X₃: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: X₁₀+X₄ {O(n)}
t₂₀, X₆: X₁₀+X₄ {O(n)}
t₂₀, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₀, X₈: X₁₀+X₄ {O(n)}
t₂₀, X₉: X₉ {O(n)}
t₂₀, X₁₀: X₁₀ {O(n)}
t₂₁, X₃: 2⋅X₁₀⋅X₉+2⋅X₉ {O(n^2)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: X₁₀+X₄ {O(n)}
t₂₁, X₆: X₁₀+X₄ {O(n)}
t₂₁, X₇: X₁₀⋅X₉+X₉ {O(n^2)}
t₂₁, X₈: 2⋅X₁₀+2⋅X₄ {O(n)}
t₂₁, X₉: X₉ {O(n)}
t₂₁, X₁₀: X₁₀ {O(n)}