Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef.0, nondef.1, nondef.3, nondef.5, nondef.6, nondef.7, nondef.8
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, nondef.6, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(nondef.5, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ < X₁
t₃₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₀
t₃₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+1)
t₄₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+2)
t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, nondef.8, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅
t₄₃: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, nondef.7, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < X₂
t₄₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₉, X₁₀, X₁₁) :|: X₂ ≤ X₃
t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₉, X₁₀, X₁₁)
t₅₀: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₇: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ 0 ∧ 0 ≤ 1+X₇ ∧ nondef.3 ≤ 0 ∧ 0 ≤ nondef.3
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1
t₁₉: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 < 0 ∧ nondef.3 ≤ 0 ∧ 1+X₇ ≤ 2⋅nondef.3 ∧ 2⋅nondef.3 < X₇+3
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0
t₃₀: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ < X₆
t₃₁: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈
t₂₉: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+3+2⋅X₈
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁)
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁)
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁)
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁)

Preprocessing

Cut unsatisfiable transition t₃₁: l30→l13

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l11

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l25

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l27

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l2

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l24

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l32

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l6

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l15

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l31

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l30

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l19

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l26

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l23

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l12

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location l17

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l7

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l21

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l5

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l20

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l13

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l8

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l22

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l16

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l9

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ for location l1

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l10

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l18

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l4

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l3

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l14

Cut unsatisfiable transition t₁₇: l26→l3

Cut unsatisfiable transition t₁₉: l26→l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef.0, nondef.1, nondef.3, nondef.5, nondef.6, nondef.7, nondef.8
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₃₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, nondef.6, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(nondef.5, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ < X₁ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+1) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+2) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, nondef.8, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₄₃: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, nondef.7, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < X₂ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₉, X₁₀, X₁₁) :|: X₂ ≤ X₃ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀
t₅₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀
t₅₀: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₃₀: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ < X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₉: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆

MPRF for transition t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ of depth 1:

new bound:

X₆+2 {O(n)}

MPRF:

l11 [X₆-X₉ ]
l25 [X₆-X₉ ]
l27 [X₆-X₉ ]
l26 [X₆-X₉ ]
l10 [X₆-X₉ ]
l3 [X₆-X₉ ]
l4 [X₆-X₉ ]
l1 [X₆+1-X₉ ]
l9 [X₆-X₉ ]
l2 [X₆-X₉ ]

MPRF for transition t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF:

l11 [X₆-X₉ ]
l25 [X₆-X₉ ]
l27 [X₆-X₉ ]
l26 [X₆-X₉ ]
l10 [X₆-X₉ ]
l3 [X₆-X₉ ]
l4 [X₆-X₉-1 ]
l1 [X₆-X₉ ]
l9 [X₆-X₉ ]
l2 [X₆-X₉ ]

MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF:

l11 [X₆-X₉ ]
l25 [X₆-X₉ ]
l27 [X₆-X₉ ]
l26 [X₆-X₉ ]
l10 [X₆-X₉ ]
l3 [X₆-X₉ ]
l4 [X₆-X₉-1 ]
l1 [X₆-X₉ ]
l9 [X₆-X₉ ]
l2 [X₆-X₉ ]

MPRF for transition t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

X₆+2 {O(n)}

MPRF:

l11 [X₆+1-X₉ ]
l25 [X₆+1-X₉ ]
l27 [X₆+1-X₉ ]
l26 [X₆+1-X₉ ]
l10 [X₆+1-X₉ ]
l3 [X₆+1-X₉ ]
l4 [X₆+1-X₉ ]
l1 [X₆+1-X₉ ]
l9 [X₆+1-X₉ ]
l2 [X₆+1-X₉ ]

MPRF for transition t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

3⋅X₆⋅X₆+14⋅X₆+17 {O(n^2)}

MPRF:

l1 [X₆+2⋅X₉+1 ]
l11 [X₆+X₇ ]
l25 [X₆+X₇ ]
l27 [X₆+X₇ ]
l26 [X₆+X₇ ]
l10 [X₆+X₇+2 ]
l3 [X₆+2⋅X₇+1 ]
l4 [X₆+X₇ ]
l9 [X₆+X₇ ]
l2 [X₆+X₇ ]

MPRF for transition t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}

MPRF:

l1 [2⋅X₉+1 ]
l11 [X₇+2 ]
l25 [X₇ ]
l27 [X₇ ]
l26 [X₇ ]
l10 [X₇+2 ]
l3 [2⋅X₇+1 ]
l4 [0 ]
l9 [X₇ ]
l2 [X₇ ]

MPRF for transition t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}

MPRF:

l1 [2⋅X₉ ]
l11 [2⋅X₇-1 ]
l25 [X₇-2 ]
l27 [X₇-2 ]
l26 [X₇-2 ]
l10 [2⋅X₇-1 ]
l3 [2⋅X₇-1 ]
l4 [X₇-1 ]
l9 [2⋅X₇-1 ]
l2 [X₇ ]

MPRF for transition t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ of depth 1:

new bound:

2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}

MPRF:

l1 [2⋅X₉ ]
l11 [X₇+1 ]
l25 [X₇ ]
l27 [X₇-1 ]
l26 [X₇-1 ]
l10 [X₇+1 ]
l3 [2⋅X₇ ]
l4 [X₇ ]
l9 [X₇ ]
l2 [X₇ ]

MPRF for transition t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ of depth 1:

new bound:

2⋅X₆⋅X₆+9⋅X₆+9 {O(n^2)}

MPRF:

l1 [2⋅X₆+3 ]
l11 [2⋅X₇+3 ]
l25 [2⋅X₇+3 ]
l27 [2⋅X₇+3 ]
l26 [2⋅X₇+3 ]
l10 [2⋅X₇+3 ]
l3 [2⋅X₇+3 ]
l4 [2⋅X₇ ]
l9 [2⋅X₇+3 ]
l2 [2⋅X₇+3 ]

MPRF for transition t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ of depth 1:

new bound:

2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}

MPRF:

l1 [2⋅X₉ ]
l11 [X₇ ]
l25 [X₇ ]
l27 [X₇ ]
l26 [X₇-1 ]
l10 [X₇ ]
l3 [2⋅X₇ ]
l4 [X₇ ]
l9 [X₇ ]
l2 [X₇ ]

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

2⋅X₆⋅X₆+13⋅X₆+23 {O(n^2)}

MPRF:

l1 [2⋅X₉+3 ]
l11 [2⋅X₇+1 ]
l25 [X₇+2 ]
l27 [X₇+2 ]
l26 [X₇+2 ]
l10 [2⋅X₇+1 ]
l3 [2⋅X₇+3 ]
l4 [2⋅X₇ ]
l9 [2⋅X₇+1 ]
l2 [2⋅X₇+1 ]

MPRF for transition t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}

MPRF:

l1 [2⋅X₉ ]
l11 [X₇ ]
l25 [X₇-2 ]
l27 [X₇-2 ]
l26 [X₇-2 ]
l10 [X₇ ]
l3 [2⋅X₇-1 ]
l4 [X₇-2 ]
l9 [X₇ ]
l2 [X₇-2 ]

Analysing control-flow refined program

Cut unsatisfiable transition t₆: l3→l4

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l32

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l6

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l19

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l10___15

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l2___12

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l12

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l11___6

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l20

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l25___3

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l22

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ for location l1

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l18

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l4

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l3

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l26___9

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l14

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l25___11

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l24

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l15

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l31

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l27___10

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l26___1

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l30

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l11___14

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l23

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location l17

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l7

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l27___2

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 4 ≤ X₆+X₉ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l3___8

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l21

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l5

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l9___13

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l13

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l8

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l16

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l10___7

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l2___4

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l9___5

MPRF for transition t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+4 {O(n)}

MPRF:

l14 [X₉-X₁₀ ]
l12 [X₆-X₁₀ ]
l15 [X₉-X₁₀ ]
l17 [X₉-X₁₀ ]
l19 [X₉-X₁₀ ]
l20 [X₆-X₁₀ ]
l18 [X₆-X₁₀ ]
l21 [X₆-X₁₀ ]
l22 [X₉-X₁₀ ]
l24 [X₆-X₁₀ ]
l23 [X₆-X₁₀ ]
l16 [X₆-X₁₀ ]
l13 [X₉-X₁₀ ]
l31 [X₉+1-X₁₀ ]
l6 [X₆-X₁₀ ]
l7 [X₉-X₁₀ ]
l5 [X₆-X₁₀ ]
l30 [X₉-X₁₀ ]
l8 [X₉-X₁₀ ]
l32 [X₆-X₁₀ ]

MPRF for transition t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

3⋅X₆+7 {O(n)}

MPRF:

l14 [X₉-X₁₀-2 ]
l12 [X₉-X₁₀-2 ]
l15 [X₉-X₁₀-2 ]
l17 [X₉-X₁₀-2 ]
l19 [X₉-X₁₀-2 ]
l20 [X₆-X₁₀-2 ]
l18 [X₆-X₁₀-2 ]
l21 [X₉-X₁₀-2 ]
l22 [X₉-X₁₀-2 ]
l24 [X₉-X₁₀-2 ]
l23 [X₉-X₁₀-2 ]
l16 [X₆-X₁₀-2 ]
l13 [X₆-X₁₀-2 ]
l31 [2⋅X₉-X₆-X₁₀-1 ]
l6 [X₆-X₁₀-1 ]
l7 [3⋅X₉-2⋅X₆-X₁₀-1 ]
l5 [X₉-X₁₀-1 ]
l30 [X₉-X₁₀-2 ]
l8 [X₉-X₁₀-2 ]
l32 [2⋅X₉-X₆-X₁₀-2 ]

MPRF for transition t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+4 {O(n)}

MPRF:

l14 [X₆-X₁₀-2 ]
l12 [X₆-X₁₀-2 ]
l15 [X₉-X₁₀-2 ]
l17 [X₉-X₁₀-2 ]
l19 [X₉-X₁₀-2 ]
l20 [X₆-X₁₀-2 ]
l18 [X₆-X₁₀-2 ]
l21 [X₆-X₁₀-2 ]
l22 [X₉-X₁₀-2 ]
l24 [X₆-X₁₀-2 ]
l23 [X₉-X₁₀-2 ]
l16 [X₆-X₁₀-2 ]
l13 [X₉-X₁₀-2 ]
l31 [X₉-X₁₀-1 ]
l6 [X₆-X₁₀-1 ]
l7 [X₆-X₁₀-2 ]
l5 [X₉-X₁₀-2 ]
l30 [X₉-X₁₀-2 ]
l8 [X₉-X₁₀-2 ]
l32 [X₆-X₁₀-2 ]

MPRF for transition t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+4 {O(n)}

MPRF:

l14 [X₉-X₁₀ ]
l12 [X₆-X₁₀ ]
l15 [X₆-X₁₀ ]
l17 [X₉-X₁₀ ]
l19 [X₆-X₁₀ ]
l20 [X₉-X₁₀ ]
l18 [X₆-X₁₀ ]
l21 [X₉-X₁₀ ]
l22 [X₉-X₁₀ ]
l24 [X₆-X₁₀ ]
l23 [X₆-X₁₀ ]
l16 [X₉-X₁₀ ]
l13 [X₆-X₁₀ ]
l31 [X₉+1-X₁₀ ]
l6 [X₉+1-X₁₀ ]
l7 [X₉+1-X₁₀ ]
l5 [X₆-X₁₀ ]
l30 [X₆-X₁₀ ]
l8 [X₆-X₁₀ ]
l32 [X₉-X₁₀ ]

MPRF for transition t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

2⋅X₆⋅X₆+12⋅X₆+16 {O(n^2)}

MPRF:

l14 [1 ]
l12 [1 ]
l15 [1 ]
l17 [1 ]
l19 [1 ]
l20 [1 ]
l18 [1 ]
l21 [1 ]
l22 [1 ]
l24 [1 ]
l23 [1 ]
l16 [1 ]
l13 [1 ]
l31 [0 ]
l5 [X₆+1-X₉ ]
l6 [0 ]
l7 [2-X₉ ]
l30 [1 ]
l8 [X₆+1-X₉ ]
l32 [1 ]

MPRF for transition t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

3⋅X₆+4⋅X₈+6 {O(n)}

MPRF:

l14 [1 ]
l12 [1 ]
l15 [1 ]
l17 [1 ]
l19 [1 ]
l20 [1 ]
l18 [1 ]
l21 [1 ]
l22 [1 ]
l24 [1 ]
l23 [1 ]
l16 [1 ]
l13 [1 ]
l31 [2⋅X₆-4⋅X₈-2⋅X₁₀-2 ]
l5 [1 ]
l6 [2⋅X₉-4⋅X₈-2⋅X₁₀-2 ]
l7 [2⋅X₉-4⋅X₈-2⋅X₁₀-2 ]
l30 [1 ]
l8 [1 ]
l32 [2⋅X₆-4⋅X₈-2⋅X₁₀-4 ]

knowledge_propagation leads to new time bound 3⋅X₆+4⋅X₈+6 {O(n)} for transition t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀

Analysing control-flow refined program

Cut unsatisfiable transition t₁₃₃₅₈: n_l8___18→l32

Cut unsatisfiable transition t₁₃₃₅₉: n_l8___33→l32

Cut unsatisfiable transition t₁₃₃₆₀: n_l8___36→l32

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l17___71

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l22___59

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₁₀ for location l32

Found invariant 1 ≤ 0 for location n_l19___30

Found invariant 1 ≤ 0 for location n_l20___22

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l21___84

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l23___80

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l6

Found invariant 1 ≤ 0 for location n_l14___46

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l19___70

Found invariant 1 ≤ 0 for location n_l20___29

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l23___64

Found invariant 1 ≤ 0 for location n_l22___26

Found invariant 1 ≤ 0 for location n_l24___25

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l22___10

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l15___90

Found invariant 1 ≤ 0 for location n_l30___49

Found invariant 1 ≤ 0 for location n_l8___33

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l18___54

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l21___67

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l23___50

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l12___91

Found invariant 1 ≤ 0 for location n_l30___32

Found invariant 1 ≤ 0 for location n_l8___18

Found invariant X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l8___79

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l24___65

Found invariant 1 ≤ 0 for location n_l13___48

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l13___77

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l22___83

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l10

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l4

Found invariant 1 ≤ 0 for location n_l16___47

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l3

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l19___56

Found invariant 1 ≤ 0 for location n_l20___40

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l21___53

Found invariant 1 ≤ 0 for location n_l16___43

Found invariant 1 ≤ 0 for location n_l23___24

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l25

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l22___3

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l2

Found invariant 1 ≤ 0 for location n_l23___16

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l16___89

Found invariant 1 ≤ 0 for location n_l15___44

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l31

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l24___81

Found invariant 1 ≤ 0 for location n_l17___42

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l19___87

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l17___88

Found invariant 1 ≤ 0 for location n_l30___15

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l26

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l16___93

Found invariant 1 ≤ 0 for location n_l19___41

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l19___63

Found invariant 1 ≤ 0 for location n_l24___35

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l7

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l5

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l8

Found invariant 1 ≤ 0 for location n_l12___45

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l14___92

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l15___73

Found invariant 1 ≤ 0 for location n_l21___27

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l20___69

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l21___11

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l22___66

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l23___1

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l18___12

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l27

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l18___68

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l18___85

Found invariant 1 ≤ 0 for location n_l19___23

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l21___60

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l20___62

Found invariant 1 ≤ 0 for location n_l21___38

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l20___86

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l20___6

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l24___51

Found invariant 1 ≤ 0 for location n_l24___17

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l16___72

Found invariant 1 ≤ 0 for location n_l22___19

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l23___8

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l18___61

Found invariant 1 ≤ 0 for location n_l18___28

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ for location l1

Found invariant 1 ≤ 0 for location n_l21___20

Found invariant X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l30___95

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l21___4

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l24___9

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l18___5

Found invariant 1 ≤ 0 for location n_l30___31

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l11

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l30___78

Found invariant 1 ≤ 0 for location n_l18___39

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l19___14

Found invariant X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l8___82

Found invariant 1 ≤ 0 for location n_l8___36

Found invariant 1 ≤ 0 for location n_l18___21

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l19___7

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l12___74

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l14___75

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l20___13

Found invariant 1 ≤ 0 for location n_l22___37

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l23___57

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l13___94

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l24___58

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l22___52

Found invariant 1 ≤ 0 for location n_l23___34

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l24___2

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l20___55

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ for location n_l16___76

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l9

Cut unsatisfiable transition t₁₃₂₂₄: n_l12___45→n_l15___44

Cut unsatisfiable transition t₁₃₂₂₇: n_l13___48→n_l14___46

Cut unsatisfiable transition t₁₃₂₃₀: n_l14___46→n_l12___45

Cut unsatisfiable transition t₁₃₂₃₃: n_l15___44→n_l16___43

Cut unsatisfiable transition t₁₃₂₃₄: n_l15___44→n_l17___42

Cut unsatisfiable transition t₁₃₂₃₉: n_l16___43→n_l19___41

Cut unsatisfiable transition t₁₃₂₄₀: n_l16___47→n_l19___23

Cut unsatisfiable transition t₁₃₂₄₅: n_l17___42→n_l19___30

Cut unsatisfiable transition t₁₃₂₄₉: n_l18___21→n_l21___20

Cut unsatisfiable transition t₁₃₂₅₀: n_l18___28→n_l21___27

Cut unsatisfiable transition t₁₃₂₅₁: n_l18___39→n_l21___38

Cut unsatisfiable transition t₁₃₂₅₈: n_l19___23→n_l20___22

Cut unsatisfiable transition t₁₃₂₅₉: n_l19___30→n_l20___29

Cut unsatisfiable transition t₁₃₂₆₀: n_l19___41→n_l20___40

Cut unsatisfiable transition t₁₃₂₆₇: n_l20___22→n_l18___21

Cut unsatisfiable transition t₁₃₂₆₈: n_l20___29→n_l18___28

Cut unsatisfiable transition t₁₃₂₆₉: n_l20___40→n_l18___39

Cut unsatisfiable transition t₁₃₂₇₇: n_l21___20→n_l22___19

Cut unsatisfiable transition t₁₃₂₇₈: n_l21___20→n_l8___18

Cut unsatisfiable transition t₁₃₂₇₉: n_l21___27→n_l22___26

Cut unsatisfiable transition t₁₃₂₈₀: n_l21___27→n_l8___36

Cut unsatisfiable transition t₁₃₂₈₁: n_l21___38→n_l22___37

Cut unsatisfiable transition t₁₃₂₈₂: n_l21___38→n_l8___36

Cut unsatisfiable transition t₁₃₂₉₄: n_l22___19→n_l24___17

Cut unsatisfiable transition t₁₃₂₉₅: n_l22___26→n_l24___25

Cut unsatisfiable transition t₁₃₂₉₇: n_l22___37→n_l24___35

Cut unsatisfiable transition t₁₃₃₀₃: n_l23___16→n_l8___33

Cut unsatisfiable transition t₁₃₃₀₄: n_l23___24→n_l8___33

Cut unsatisfiable transition t₁₃₃₀₅: n_l23___34→n_l8___33

Cut unsatisfiable transition t₁₃₃₁₁: n_l24___17→n_l23___16

Cut unsatisfiable transition t₁₃₃₁₃: n_l24___25→n_l23___24

Cut unsatisfiable transition t₁₃₃₁₄: n_l24___35→n_l23___34

Cut unsatisfiable transition t₁₃₃₂₀: n_l30___15→n_l16___47

Cut unsatisfiable transition t₁₃₃₂₁: n_l30___31→n_l13___48

Cut unsatisfiable transition t₁₃₃₂₂: n_l30___32→n_l13___77

Cut unsatisfiable transition t₁₃₃₂₃: n_l30___49→n_l13___48

Cut unsatisfiable transition t₁₃₃₂₄: n_l30___49→n_l16___47

Cut unsatisfiable transition t₁₃₃₂₉: n_l8___18→n_l30___15

Cut unsatisfiable transition t₁₃₃₃₀: n_l8___33→n_l30___32

Cut unsatisfiable transition t₁₃₃₃₁: n_l8___36→n_l30___31

Cut unsatisfiable transition t₁₃₃₃₃: n_l8___82→n_l30___49

Cut unreachable locations [n_l12___45; n_l13___48; n_l14___46; n_l15___44; n_l16___43; n_l16___47; n_l17___42; n_l18___21; n_l18___28; n_l18___39; n_l19___23; n_l19___30; n_l19___41; n_l20___22; n_l20___29; n_l20___40; n_l21___20; n_l21___27; n_l21___38; n_l22___19; n_l22___26; n_l22___37; n_l23___16; n_l23___24; n_l23___34; n_l24___17; n_l24___25; n_l24___35; n_l30___15; n_l30___31; n_l30___32; n_l30___49; n_l8___18; n_l8___33; n_l8___36] from the program graph

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₃₃₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2+X₁₀ ≤ X₉ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₃₂₇: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₃₂₈: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₂₉: n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₃₂: n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___91(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₄₄: n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₆₃: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₇₁: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___5(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₂₆: n_l12___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___90(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₃₇: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₃₈: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₄₃: n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₄₇: n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₅₂: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___4(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₅₇: n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₆₅: n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₆₆: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___12(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₇₄: n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___85(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₈₃: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₈₄: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₉₆: n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₃₁₂: n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₄₈: n_l18___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___11(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₅₆: n_l18___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___84(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₇₅: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₇₆: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₉₁: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₉₂: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₂₉₃: n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₃₀₁: n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₃₀₂: n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₃₁₈: n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₃₁₉: n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₃₀₉: n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 3⋅X₆+7 {O(n)} for transition t₁₃₃₁₀: n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

MPRF for transition t₁₃₂₂₅: n_l12___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___73(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

15⋅X₆⋅X₆+54⋅X₆+X₁₁+45 {O(n^2)}

MPRF:

l31 [X₉-X₁₀-X₁₁ ]
l6 [X₉-X₁₀-X₁₁-1 ]
l7 [X₉-X₁₀-X₁₁-1 ]
l5 [X₉-X₁₀-X₁₁-1 ]
l8 [X₉-X₁₀-X₁₁-1 ]
n_l30___95 [X₉-X₁₀-X₁₁-1 ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l12___74 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l14___92 [2⋅X₆ ]
n_l12___91 [2⋅X₉ ]
n_l15___73 [2⋅X₉-X₈-X₁₀-2 ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₆-X₁₀-X₁₁-2 ]
n_l16___89 [2⋅X₆-1 ]
n_l16___93 [X₆+X₁₀+6-X₉ ]
n_l17___71 [2⋅X₆-X₁₀-2⋅X₁₁-1 ]
n_l17___88 [2⋅X₆ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [X₉+X₁₁+2-2⋅X₈ ]
n_l19___63 [2⋅X₆+1-X₁₀-X₁₁ ]
n_l19___7 [X₉+3 ]
n_l19___70 [2⋅X₆+X₈-X₁₀-X₁₁-1 ]
n_l19___87 [2⋅X₆-X₁₁ ]
n_l20___13 [2⋅X₆ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [X₆+X₁₁+2-2⋅X₈ ]
n_l18___54 [X₉+X₁₁+2-2⋅X₈ ]
n_l20___6 [X₁₀+6 ]
n_l18___5 [X₁₀+6 ]
n_l20___62 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l18___61 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l20___69 [X₈+2⋅X₉-X₁₀-X₁₁-1 ]
n_l18___68 [X₈+2⋅X₉-X₁₀-X₁₁-1 ]
n_l20___86 [2⋅X₉-1 ]
n_l18___85 [2⋅X₉-1 ]
n_l21___11 [2⋅X₉ ]
n_l21___4 [X₁₀+6⋅X₁₁ ]
n_l21___53 [X₉+X₁₁+2-2⋅X₈ ]
n_l21___60 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l21___67 [2⋅X₆+X₈-X₁₀-X₁₁-1 ]
n_l21___84 [2⋅X₉-1 ]
n_l22___10 [2⋅X₆-X₁₁-1 ]
n_l22___3 [X₆+1 ]
n_l22___52 [X₆+X₁₁+2-2⋅X₈ ]
n_l22___59 [2⋅X₆-X₁₀-X₁₁-1 ]
n_l22___66 [2⋅X₆-X₁₀-X₁₁-1 ]
n_l22___83 [2⋅X₆-X₁₁ ]
n_l24___2 [X₉+1 ]
n_l23___1 [2⋅X₆-X₁₀-X₁₁-1 ]
n_l24___51 [X₉+X₁₁+2-2⋅X₈ ]
n_l23___50 [2⋅X₆-2⋅X₈-X₁₀ ]
n_l24___58 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l23___57 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l24___65 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l23___64 [2⋅X₆-X₁₀-X₁₁-1 ]
n_l24___81 [X₆+X₉-2 ]
n_l23___80 [2⋅X₆-X₁₁-1 ]
n_l24___9 [2⋅X₆-X₁₁-1 ]
n_l23___8 [2⋅X₆-X₁₁-1 ]
n_l13___77 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l16___76 [X₆+2⋅X₈+2-X₁₁ ]
n_l30___78 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l8___79 [X₆+X₉-X₈-X₁₀-1 ]
n_l8___82 [X₈+X₉+3-X₆ ]
l32 [X₆-X₁₀-X₁₁-1 ]

MPRF for transition t₁₃₂₂₈: n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

6⋅X₆⋅X₆+32⋅X₆+6⋅X₁₁+48 {O(n^2)}

MPRF:

l31 [6-2⋅X₁₀-6⋅X₁₁ ]
l6 [6-2⋅X₁₀-6⋅X₁₁ ]
l7 [6-2⋅X₁₀-6⋅X₁₁ ]
l5 [6-2⋅X₁₀-6⋅X₁₁ ]
l8 [9⋅X₉+6-9⋅X₆-2⋅X₁₀-6⋅X₁₁ ]
n_l30___95 [6-2⋅X₁₀-6⋅X₁₁ ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₉-4⋅X₈-2⋅X₁₀-2 ]
n_l12___74 [2⋅X₉-2⋅X₁₀-4⋅X₁₁-2 ]
n_l14___92 [2⋅X₉ ]
n_l12___91 [2⋅X₉ ]
n_l15___73 [2⋅X₉-4⋅X₈-2⋅X₁₀-2 ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₆-4⋅X₈-2⋅X₁₀-2 ]
n_l16___89 [2⋅X₆ ]
n_l16___93 [6 ]
n_l17___71 [2⋅X₆-2⋅X₁₀-4⋅X₁₁-2 ]
n_l17___88 [2⋅X₉-2 ]
n_l19___14 [2⋅X₉-X₁₁ ]
n_l19___56 [6⋅X₉-12⋅X₈-6⋅X₁₀-8 ]
n_l19___63 [2⋅X₆+2⋅X₈+4-2⋅X₁₀-3⋅X₁₁ ]
n_l19___7 [6 ]
n_l19___70 [2⋅X₆+6⋅X₈+3-2⋅X₁₀-5⋅X₁₁ ]
n_l19___87 [2⋅X₉ ]
n_l20___13 [2⋅X₆-2 ]
n_l18___12 [2⋅X₆-2 ]
n_l20___55 [6⋅X₆-12⋅X₈-6⋅X₁₀-8 ]
n_l18___54 [6⋅X₆-12⋅X₈-6⋅X₁₀-8 ]
n_l20___6 [6 ]
n_l18___5 [6 ]
n_l20___62 [2⋅X₈+2⋅X₉+4-2⋅X₁₀-3⋅X₁₁ ]
n_l18___61 [2⋅X₈+2⋅X₉+4-2⋅X₁₀-3⋅X₁₁ ]
n_l20___69 [2⋅X₆+6⋅X₈+3-2⋅X₁₀-5⋅X₁₁ ]
n_l18___68 [2⋅X₆+6⋅X₈+3-2⋅X₁₀-5⋅X₁₁ ]
n_l20___86 [2⋅X₉ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₆-2 ]
n_l21___4 [6⋅X₁₁ ]
n_l21___53 [6⋅X₉-12⋅X₈-6⋅X₁₀-8 ]
n_l21___60 [2⋅X₈+2⋅X₉+4-2⋅X₁₀-3⋅X₁₁ ]
n_l21___67 [2⋅X₆+6⋅X₈+3-2⋅X₁₀-5⋅X₁₁ ]
n_l21___84 [2⋅X₉ ]
n_l22___10 [2⋅X₆-2 ]
n_l22___3 [6⋅X₁₁ ]
n_l22___52 [6⋅X₉-12⋅X₈-6⋅X₁₀-8 ]
n_l22___59 [2⋅X₈+2⋅X₉+4-2⋅X₁₀-3⋅X₁₁ ]
n_l22___66 [2⋅X₉-6⋅X₈-2⋅X₁₀ ]
n_l22___83 [2⋅X₉ ]
n_l24___2 [6⋅X₆+6⋅X₁₁-6⋅X₉ ]
n_l23___1 [2⋅X₆+3-2⋅X₁₀-3⋅X₁₁ ]
n_l24___51 [6⋅X₉-14⋅X₈-6⋅X₁₀-6 ]
n_l23___50 [2⋅X₆+9-2⋅X₁₀-3⋅X₁₁ ]
n_l24___58 [2⋅X₆+6-2⋅X₁₀-3⋅X₁₁ ]
n_l23___57 [2⋅X₉+6-2⋅X₁₀-3⋅X₁₁ ]
n_l24___65 [2⋅X₉-6⋅X₈-2⋅X₁₀ ]
n_l23___64 [2⋅X₉-6⋅X₈-2⋅X₁₀ ]
n_l24___81 [2⋅X₉ ]
n_l23___80 [2⋅X₆+3-3⋅X₁₁ ]
n_l24___9 [2⋅X₉+3-3⋅X₁₁ ]
n_l23___8 [2⋅X₆+3-3⋅X₁₁ ]
n_l13___77 [2⋅X₆+4-4⋅X₈-2⋅X₁₀ ]
n_l16___76 [6⋅X₆-6⋅X₁₀-12⋅X₁₁-8 ]
n_l30___78 [2⋅X₉+4-4⋅X₈-2⋅X₁₀ ]
n_l8___79 [2⋅X₆+3⋅X₈+3-2⋅X₁₀-6⋅X₁₁ ]
n_l8___82 [9⋅X₈+6-9⋅X₆ ]
l32 [6-2⋅X₁₀-6⋅X₁₁ ]

MPRF for transition t₁₃₂₃₁: n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___74(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

12⋅X₆⋅X₈+24⋅X₆⋅X₆+28⋅X₈+74⋅X₆+X₁₁+43 {O(n^2)}

MPRF:

l31 [-X₁₀-X₁₁-1 ]
l6 [-X₁₀-X₁₁-1 ]
l7 [-X₁₀-X₁₁-1 ]
l5 [-X₁₀-X₁₁-1 ]
l8 [-X₁₀-X₁₁-1 ]
n_l30___95 [-X₁₀-X₁₁-1 ]
n_l13___94 [X₆-X₁₀ ]
n_l14___75 [X₆-X₈-X₁₀-4 ]
n_l12___74 [X₉-X₈-X₁₀-5 ]
n_l14___92 [X₆-X₁₀ ]
n_l12___91 [X₆-X₁₀ ]
n_l15___73 [X₉-X₈-X₁₀-5 ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₆-X₁₀-X₁₁-5 ]
n_l16___89 [X₉-X₁₀ ]
n_l16___93 [0 ]
n_l17___71 [X₉-X₈-X₁₀-5 ]
n_l17___88 [X₉-X₁₀ ]
n_l19___14 [X₆-X₁₀ ]
n_l19___56 [0 ]
n_l19___63 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l19___7 [0 ]
n_l19___70 [X₆+9⋅X₈-X₁₀-5⋅X₁₁ ]
n_l19___87 [X₉-X₁₀ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₆-X₁₀ ]
n_l20___55 [3⋅X₆-3⋅X₁₀-3⋅X₁₁-6 ]
n_l18___54 [3⋅X₉-3⋅X₁₀-3⋅X₁₁-6 ]
n_l20___6 [0 ]
n_l18___5 [0 ]
n_l20___62 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l18___61 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l20___69 [X₆+9⋅X₈-X₁₀-5⋅X₁₁ ]
n_l18___68 [X₆+9⋅X₈-X₁₀-5⋅X₁₁ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₆-X₁₀ ]
n_l21___4 [0 ]
n_l21___53 [3⋅X₉-3⋅X₁₀-3⋅X₁₁-6 ]
n_l21___60 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l21___67 [9⋅X₈+X₉-X₁₀-5⋅X₁₁ ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₆+6-X₁₀-6⋅X₁₁ ]
n_l22___3 [3⋅X₉-3⋅X₁₀-11⋅X₁₁ ]
n_l22___52 [3⋅X₉-3⋅X₁₀-3⋅X₁₁-8 ]
n_l22___59 [X₉-X₁₀-X₁₁-2 ]
n_l22___66 [10⋅X₈+X₉+1-X₁₀-6⋅X₁₁ ]
n_l22___83 [X₉-X₁₀ ]
n_l24___2 [3⋅X₉-3⋅X₁₀-11 ]
n_l23___1 [X₆-X₁₀-X₁₁-4 ]
n_l24___51 [3⋅X₉-3⋅X₁₀-3⋅X₁₁-8 ]
n_l23___50 [X₆-X₁₀-X₁₁-4 ]
n_l24___58 [X₉-X₁₀-X₁₁-2 ]
n_l23___57 [X₉-X₁₀-X₁₁-4 ]
n_l24___65 [X₆+10⋅X₈+1-X₁₀-6⋅X₁₁ ]
n_l23___64 [X₉-X₁₀-X₁₁-4 ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆-X₁₀-X₁₁ ]
n_l24___9 [X₆+6-X₁₀-6⋅X₁₁ ]
n_l23___8 [X₆-X₁₀-X₁₁-4 ]
n_l13___77 [X₆-X₈-X₁₀-4 ]
n_l16___76 [0 ]
n_l30___78 [X₆-X₈-X₁₀-4 ]
n_l8___79 [2⋅X₉+X₁₁-X₆-2⋅X₈-X₁₀-4 ]
n_l8___82 [0 ]
l32 [-X₁₀-X₁₁-1 ]

MPRF for transition t₁₃₂₃₅: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

9⋅X₆⋅X₆+33⋅X₆+X₁₁+32 {O(n^2)}

MPRF:

l31 [4-X₁₀-X₁₁ ]
l6 [3-X₁₀-X₁₁ ]
l7 [3-X₁₀-X₁₁ ]
l5 [3-X₁₀-X₁₁ ]
l8 [3-X₁₀-X₁₁ ]
n_l30___95 [3-X₁₀-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₆+X₈+1-X₁₀-3⋅X₁₁ ]
n_l12___74 [X₉+1-X₈-X₁₀-X₁₁ ]
n_l14___92 [X₆ ]
n_l12___91 [X₆ ]
n_l15___73 [X₆+1-2⋅X₈-X₁₀ ]
n_l15___90 [X₆ ]
n_l16___72 [X₆-2⋅X₈-X₁₀ ]
n_l16___89 [X₆ ]
n_l16___93 [X₆+4-X₉ ]
n_l17___71 [X₆-X₁₀-2⋅X₁₁ ]
n_l17___88 [X₉ ]
n_l19___14 [X₉ ]
n_l19___56 [X₆+1-2⋅X₈-X₁₀ ]
n_l19___63 [X₉-2⋅X₈-X₁₀ ]
n_l19___7 [X₉+1-X₁₀ ]
n_l19___70 [X₆+1-X₁₀-X₁₁ ]
n_l19___87 [X₉ ]
n_l20___13 [X₉ ]
n_l18___12 [X₉ ]
n_l20___55 [X₉+1-2⋅X₈-X₁₀ ]
n_l18___54 [X₉+1-2⋅X₈-X₁₀ ]
n_l20___6 [X₉+1-X₁₀ ]
n_l18___5 [X₉+X₁₁-X₁₀ ]
n_l20___62 [X₉-2⋅X₈-X₁₀ ]
n_l18___61 [X₆-2⋅X₈-X₁₀ ]
n_l20___69 [X₉+1-X₁₀-X₁₁ ]
n_l18___68 [X₉+1-X₁₀-X₁₁ ]
n_l20___86 [X₉ ]
n_l18___85 [X₆ ]
n_l21___11 [X₉ ]
n_l21___4 [X₉+1-X₁₀ ]
n_l21___53 [X₉+1-2⋅X₈-X₁₀ ]
n_l21___60 [X₉-2⋅X₈-X₁₀ ]
n_l21___67 [X₆+1-X₁₀-X₁₁ ]
n_l21___84 [X₉ ]
n_l22___10 [X₆ ]
n_l22___3 [X₉+1-X₁₀ ]
n_l22___52 [X₉+1-2⋅X₈-X₁₀ ]
n_l22___59 [X₆-2⋅X₈-X₁₀-2 ]
n_l22___66 [X₉+1-X₁₀-X₁₁ ]
n_l22___83 [X₆ ]
n_l24___2 [X₉+3-X₁₀-2⋅X₁₁ ]
n_l23___1 [X₆-X₁₀-X₁₁ ]
n_l24___51 [X₉+1-2⋅X₈-X₁₀ ]
n_l23___50 [X₆+2-X₁₀-X₁₁ ]
n_l24___58 [X₉-2⋅X₈-X₁₀-2 ]
n_l23___57 [X₉-X₁₀-X₁₁ ]
n_l24___65 [X₆-X₁₀-X₁₁ ]
n_l23___64 [X₉-X₁₀-X₁₁ ]
n_l24___81 [X₆ ]
n_l23___80 [X₆+1-X₁₁ ]
n_l24___9 [X₆-2 ]
n_l23___8 [X₆-X₁₁ ]
n_l13___77 [X₆+X₈+1-X₁₀-3⋅X₁₁ ]
n_l16___76 [3⋅X₈+4-3⋅X₁₁ ]
n_l30___78 [X₈+X₉+1-X₁₀-3⋅X₁₁ ]
n_l8___79 [X₉-X₁₀-X₁₁ ]
n_l8___82 [4 ]
l32 [3-X₁₀-X₁₁ ]

MPRF for transition t₁₃₂₃₆: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

12⋅X₆⋅X₈+30⋅X₆⋅X₆+28⋅X₈+88⋅X₆+X₁₁+45 {O(n^2)}

MPRF:

l31 [-X₁₀-X₁₁-3 ]
l6 [-X₁₀-X₁₁-4 ]
l7 [-X₁₀-X₁₁-4 ]
l5 [-X₁₀-X₁₁-4 ]
l8 [-X₁₀-X₁₁-4 ]
n_l30___95 [-X₁₀-X₁₁-4 ]
n_l13___94 [X₆-X₁₀ ]
n_l14___75 [X₉-X₈-X₁₀-4 ]
n_l12___74 [X₉-X₁₀-X₁₁-4 ]
n_l14___92 [X₉-X₁₀ ]
n_l12___91 [X₉-X₁₀ ]
n_l15___73 [X₉-X₁₀-X₁₁-4 ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₆-X₁₀-X₁₁-4 ]
n_l16___89 [X₉-X₁₀ ]
n_l16___93 [X₆-X₉ ]
n_l17___71 [X₉-X₁₀-X₁₁-5 ]
n_l17___88 [X₆-X₁₀ ]
n_l19___14 [X₆-X₁₀ ]
n_l19___56 [3⋅X₈+X₁₀+2-X₆ ]
n_l19___63 [X₆-X₈-X₁₀-5 ]
n_l19___7 [X₉-X₁₀-3 ]
n_l19___70 [X₆+7⋅X₈-X₁₀-4⋅X₁₁ ]
n_l19___87 [X₉-X₁₀ ]
n_l20___13 [X₆-X₁₀ ]
n_l18___12 [X₉-X₁₀ ]
n_l20___55 [X₆+3⋅X₈-X₁₀-2⋅X₁₁-2 ]
n_l18___54 [X₆+X₈-X₁₀-X₁₁-3 ]
n_l20___6 [X₉-X₁₀-3 ]
n_l18___5 [X₉-X₁₀-3⋅X₁₁ ]
n_l20___62 [X₉-X₈-X₁₀-5 ]
n_l18___61 [X₉-X₈-X₁₀-5 ]
n_l20___69 [X₆+7⋅X₈-X₁₀-4⋅X₁₁ ]
n_l18___68 [X₆+7⋅X₈-X₁₀-4⋅X₁₁ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₆-X₁₀ ]
n_l21___11 [X₆-X₁₀ ]
n_l21___4 [X₉-X₁₀-3 ]
n_l21___53 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l21___60 [X₉-X₈-X₁₀-5 ]
n_l21___67 [X₆+5⋅X₈-X₁₀-3⋅X₁₁-2 ]
n_l21___84 [X₆-X₁₀ ]
n_l22___10 [X₆-X₁₀ ]
n_l22___3 [X₉-X₁₀-X₁₁-2 ]
n_l22___52 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l22___59 [X₆+X₈-X₁₀-X₁₁-5 ]
n_l22___66 [4⋅X₈+X₉-X₁₀-3⋅X₁₁-2 ]
n_l22___83 [X₆-X₁₀-X₁₁-4 ]
n_l24___2 [X₉-X₁₀-X₁₁-2 ]
n_l23___1 [X₆-X₁₀-X₁₁-4 ]
n_l24___51 [X₆+X₈-X₁₀-X₁₁-3 ]
n_l23___50 [X₆-X₁₀-X₁₁-2 ]
n_l24___58 [X₆-X₁₀-X₁₁-4 ]
n_l23___57 [X₉-X₁₀-X₁₁-4 ]
n_l24___65 [4⋅X₈+X₉-X₁₀-3⋅X₁₁-2 ]
n_l23___64 [X₆-X₁₀-X₁₁-4 ]
n_l24___81 [X₉-X₁₀-X₁₁-4 ]
n_l23___80 [X₆-X₁₀-X₁₁-4 ]
n_l24___9 [X₆-X₁₀-X₁₁-4 ]
n_l23___8 [X₆-X₁₀-X₁₁-4 ]
n_l13___77 [X₆-X₈-X₁₀-4 ]
n_l16___76 [5⋅X₈+X₁₀+2-X₆-2⋅X₁₁ ]
n_l30___78 [X₉-X₈-X₁₀-4 ]
n_l8___79 [X₉-X₈-X₁₀-4 ]
n_l8___82 [X₆-X₈ ]
l32 [-X₁₀-X₁₁-4 ]

MPRF for transition t₁₃₂₄₁: n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

15⋅X₆⋅X₆+54⋅X₆+X₁₁+38 {O(n^2)}

MPRF:

l31 [4⋅X₆-3⋅X₉-3⋅X₁₀-X₁₁-1 ]
l6 [4⋅X₆-3⋅X₉-3⋅X₁₀-X₁₁-4 ]
l7 [4⋅X₆-3⋅X₉-3⋅X₁₀-X₁₁-4 ]
l5 [X₉-3⋅X₁₀-X₁₁-4 ]
l8 [X₉-3⋅X₁₀-X₁₁-4 ]
n_l30___95 [4⋅X₆-3⋅X₉-3⋅X₁₀-X₁₁-4 ]
n_l13___94 [4⋅X₆ ]
n_l14___75 [4⋅X₉-3⋅X₁₀-X₁₁-12 ]
n_l12___74 [X₈+4⋅X₉-3⋅X₁₀-2⋅X₁₁-12 ]
n_l14___92 [4⋅X₉ ]
n_l12___91 [4⋅X₉ ]
n_l15___73 [X₈+4⋅X₉-3⋅X₁₀-2⋅X₁₁-12 ]
n_l15___90 [4⋅X₉ ]
n_l16___72 [4⋅X₉-3⋅X₁₀-X₁₁-12 ]
n_l16___89 [4⋅X₆ ]
n_l16___93 [X₆-4 ]
n_l17___71 [X₈+4⋅X₉-3⋅X₁₀-2⋅X₁₁-12 ]
n_l17___88 [4⋅X₆ ]
n_l19___14 [4⋅X₉ ]
n_l19___56 [7⋅X₈+X₁₀ ]
n_l19___63 [4⋅X₆+X₁₁-3⋅X₈-3⋅X₁₀-14 ]
n_l19___7 [4⋅X₆-3⋅X₉-4⋅X₁₁ ]
n_l19___70 [4⋅X₆+5⋅X₈-3⋅X₁₀-3⋅X₁₁-10 ]
n_l19___87 [4⋅X₉ ]
n_l20___13 [4⋅X₉ ]
n_l18___12 [4⋅X₉ ]
n_l20___55 [7⋅X₈+X₁₀ ]
n_l18___54 [4⋅X₆-3⋅X₁₀-X₁₁-10 ]
n_l20___6 [4⋅X₉-3⋅X₁₀-4⋅X₁₁-9 ]
n_l18___5 [4⋅X₆-3⋅X₁₀-13⋅X₁₁ ]
n_l20___62 [4⋅X₉-X₈-3⋅X₁₀-12 ]
n_l18___61 [4⋅X₉-X₈-3⋅X₁₀-12 ]
n_l20___69 [5⋅X₈+4⋅X₉-3⋅X₁₀-3⋅X₁₁-10 ]
n_l18___68 [4⋅X₆+5⋅X₈-3⋅X₁₀-3⋅X₁₁-10 ]
n_l20___86 [4⋅X₉ ]
n_l18___85 [4⋅X₉ ]
n_l21___11 [4⋅X₆ ]
n_l21___4 [4⋅X₉-3⋅X₁₀-13 ]
n_l21___53 [4⋅X₉-3⋅X₁₀-X₁₁-10 ]
n_l21___60 [4⋅X₉-X₈-3⋅X₁₀-12 ]
n_l21___67 [4⋅X₆+5⋅X₈-3⋅X₁₀-3⋅X₁₁-10 ]
n_l21___84 [4⋅X₉ ]
n_l22___10 [4⋅X₆ ]
n_l22___3 [4⋅X₉-3⋅X₁₀-X₁₁-12 ]
n_l22___52 [4⋅X₉-3⋅X₁₀-X₁₁-10 ]
n_l22___59 [4⋅X₆-X₈-3⋅X₁₀-12 ]
n_l22___66 [4⋅X₆-3⋅X₁₀-X₁₁-12 ]
n_l22___83 [4⋅X₉-4⋅X₁₁-9 ]
n_l24___2 [4⋅X₉-3⋅X₁₀-X₁₁-12 ]
n_l23___1 [4⋅X₆-3⋅X₁₀-X₁₁-12 ]
n_l24___51 [4⋅X₉-3⋅X₁₀-X₁₁-10 ]
n_l23___50 [4⋅X₆-3⋅X₁₀-X₁₁-10 ]
n_l24___58 [4⋅X₉-X₈-3⋅X₁₀-12 ]
n_l23___57 [X₈+4⋅X₉-3⋅X₁₀-X₁₁-10 ]
n_l24___65 [4⋅X₉-3⋅X₁₀-X₁₁-12 ]
n_l23___64 [4⋅X₉-3⋅X₁₀-X₁₁-12 ]
n_l24___81 [4⋅X₉-4⋅X₁₁-9 ]
n_l23___80 [4⋅X₆-X₁₁-12 ]
n_l24___9 [4⋅X₆ ]
n_l23___8 [4⋅X₆-X₁₁-12 ]
n_l13___77 [4⋅X₆-3⋅X₁₀-X₁₁-12 ]
n_l16___76 [7⋅X₈+X₁₀ ]
n_l30___78 [4⋅X₉-3⋅X₁₀-X₁₁-12 ]
n_l8___79 [4⋅X₉-X₈-3⋅X₁₀-12 ]
n_l8___82 [2⋅X₈-X₉-4 ]
l32 [4⋅X₆-3⋅X₉-3⋅X₁₀-X₁₁-4 ]

MPRF for transition t₁₃₂₄₂: n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 3+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₁₀+2⋅X₁₁+3 ∧ 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ of depth 1:

new bound:

12⋅X₆⋅X₈+39⋅X₆⋅X₆+175⋅X₆+28⋅X₈+X₁₁+207 {O(n^2)}

MPRF:

l31 [11-2⋅X₁₀-X₁₁ ]
l6 [11-2⋅X₁₀-X₁₁ ]
l7 [X₉+11-X₆-2⋅X₁₀-X₁₁ ]
l5 [X₉+11-X₆-2⋅X₁₀-X₁₁ ]
l8 [X₉+11-X₆-2⋅X₁₀-X₁₁ ]
n_l30___95 [11-2⋅X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆+5-X₁₀ ]
n_l14___75 [2⋅X₉+4-2⋅X₁₀-X₁₁ ]
n_l12___74 [2⋅X₆+4-2⋅X₁₀-X₁₁ ]
n_l14___92 [2⋅X₉+5-X₁₀ ]
n_l12___91 [2⋅X₆+5-X₁₀ ]
n_l15___73 [2⋅X₉+4-X₈-2⋅X₁₀ ]
n_l15___90 [2⋅X₉+5-X₁₀ ]
n_l16___72 [2⋅X₆+4-X₈-2⋅X₁₀ ]
n_l16___89 [2⋅X₉+5-X₁₀ ]
n_l16___93 [2⋅X₁₀+17-2⋅X₆ ]
n_l17___71 [2⋅X₆+3-X₈-2⋅X₁₀ ]
n_l17___88 [2⋅X₆+5-X₁₀ ]
n_l19___14 [2⋅X₆+5-X₁₀ ]
n_l19___56 [X₆+X₁₁+7-X₈-X₁₀ ]
n_l19___63 [2⋅X₆+2⋅X₁₁-5⋅X₈-2⋅X₁₀-1 ]
n_l19___7 [2⋅X₁₀+17-X₆-X₉ ]
n_l19___70 [2⋅X₉+4-X₈-2⋅X₁₀ ]
n_l19___87 [2⋅X₉+5-X₁₀ ]
n_l20___13 [2⋅X₉+5-X₁₀ ]
n_l18___12 [2⋅X₉+5-X₁₀ ]
n_l20___55 [X₉+6⋅X₁₁+2-11⋅X₈-X₁₀ ]
n_l18___54 [X₉+X₁₁+7-X₈-X₁₀ ]
n_l20___6 [2⋅X₁₀+17-X₆-X₉ ]
n_l18___5 [11⋅X₁₁ ]
n_l20___62 [2⋅X₉+2⋅X₁₁-5⋅X₈-2⋅X₁₀-1 ]
n_l18___61 [2⋅X₉+2⋅X₁₁-5⋅X₈-2⋅X₁₀-1 ]
n_l20___69 [2⋅X₆+4-X₈-2⋅X₁₀ ]
n_l18___68 [2⋅X₆+4⋅X₁₁-9⋅X₈-2⋅X₁₀ ]
n_l20___86 [2⋅X₉+5-X₁₀ ]
n_l18___85 [2⋅X₉+5-X₁₀ ]
n_l21___11 [2⋅X₉+5-X₁₀ ]
n_l21___4 [X₉+11⋅X₁₁-X₆ ]
n_l21___53 [X₉+X₁₁+7-X₈-X₁₀ ]
n_l21___60 [2⋅X₆+2⋅X₁₁-5⋅X₈-2⋅X₁₀-1 ]
n_l21___67 [2⋅X₆+4⋅X₁₁-9⋅X₈-2⋅X₁₀ ]
n_l21___84 [2⋅X₉+5-X₁₀ ]
n_l22___10 [2⋅X₉+5-X₁₀ ]
n_l22___3 [11⋅X₁₁ ]
n_l22___52 [X₉+X₁₁+7-X₈-X₁₀ ]
n_l22___59 [2⋅X₆+2⋅X₁₁-6⋅X₈-2⋅X₁₀ ]
n_l22___66 [2⋅X₆+4⋅X₁₁-9⋅X₈-2⋅X₁₀ ]
n_l22___83 [2⋅X₉+5-X₁₀ ]
n_l24___2 [5⋅X₁₁+6 ]
n_l23___1 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l24___51 [X₆+X₁₁+6-X₈-X₁₀ ]
n_l23___50 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l24___58 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l23___57 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l24___65 [2⋅X₉+4⋅X₁₁-9⋅X₈-2⋅X₁₀ ]
n_l23___64 [2⋅X₆+4⋅X₁₁-9⋅X₈-2⋅X₁₀ ]
n_l24___81 [2⋅X₉+7-X₁₀-2⋅X₁₁ ]
n_l23___80 [2⋅X₆+6-2⋅X₁₀-X₁₁ ]
n_l24___9 [2⋅X₆+5-X₁₀ ]
n_l23___8 [2⋅X₆+6-X₁₀-X₁₁ ]
n_l13___77 [2⋅X₉+4-X₈-2⋅X₁₀ ]
n_l16___76 [X₈+X₉+9-X₁₀ ]
n_l30___78 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l8___79 [X₆+X₉+6-2⋅X₁₀-X₁₁ ]
n_l8___82 [X₈+X₁₁+10-X₉ ]
l32 [11-2⋅X₁₀-X₁₁ ]

MPRF for transition t₁₃₂₄₆: n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

12⋅X₆⋅X₆+28⋅X₆+X₁₁+3 {O(n^2)}

MPRF:

l31 [-2⋅X₁₀-X₁₁-3 ]
l6 [-2⋅X₁₀-X₁₁-3 ]
l7 [-2⋅X₁₀-X₁₁-3 ]
l5 [-2⋅X₁₀-X₁₁-3 ]
l8 [2⋅X₉-2⋅X₆-2⋅X₁₀-X₁₁-3 ]
n_l30___95 [-2⋅X₁₀-X₁₁-3 ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₉-2⋅X₈-2⋅X₁₀-7 ]
n_l12___74 [2⋅X₆-2⋅X₈-2⋅X₁₀-7 ]
n_l14___92 [2⋅X₆ ]
n_l12___91 [2⋅X₉ ]
n_l15___73 [2⋅X₆-2⋅X₈-2⋅X₁₀-7 ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₉-2⋅X₈-2⋅X₁₀-9 ]
n_l16___89 [2⋅X₉ ]
n_l16___93 [X₁₀-X₆ ]
n_l17___71 [X₈+2⋅X₉-2⋅X₁₀-3⋅X₁₁-7 ]
n_l17___88 [2⋅X₆ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [2⋅X₆-2⋅X₁₀-X₁₁-6 ]
n_l19___63 [2⋅X₆-2⋅X₁₀-X₁₁-6 ]
n_l19___7 [X₁₀-X₆ ]
n_l19___70 [2⋅X₆+2⋅X₈-2⋅X₁₀-2⋅X₁₁-7 ]
n_l19___87 [2⋅X₆ ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [2⋅X₆-2⋅X₁₀-X₁₁-6 ]
n_l18___54 [2⋅X₈+2⋅X₉-2⋅X₁₀-2⋅X₁₁-5 ]
n_l20___6 [X₁₀-X₉ ]
n_l18___5 [X₁₀-X₆ ]
n_l20___62 [2⋅X₉-2⋅X₁₀-X₁₁-6 ]
n_l18___61 [2⋅X₉-2⋅X₁₀-X₁₁-8 ]
n_l20___69 [2⋅X₆+2⋅X₈-2⋅X₁₀-2⋅X₁₁-7 ]
n_l18___68 [2⋅X₈+2⋅X₉-2⋅X₁₀-2⋅X₁₁-7 ]
n_l20___86 [2⋅X₉ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₉ ]
n_l21___4 [-3⋅X₁₁ ]
n_l21___53 [2⋅X₈+2⋅X₉-2⋅X₁₀-2⋅X₁₁-5 ]
n_l21___60 [2⋅X₉-2⋅X₁₀-X₁₁-8 ]
n_l21___67 [2⋅X₆+2⋅X₈-2⋅X₁₀-2⋅X₁₁-7 ]
n_l21___84 [2⋅X₉ ]
n_l22___10 [2⋅X₉ ]
n_l22___3 [2⋅X₉-2⋅X₁₀-3⋅X₁₁-6 ]
n_l22___52 [2⋅X₈+2⋅X₉-2⋅X₁₀-2⋅X₁₁-5 ]
n_l22___59 [2⋅X₆-2⋅X₁₀-X₁₁-8 ]
n_l22___66 [2⋅X₈+2⋅X₉-2⋅X₁₀-2⋅X₁₁-7 ]
n_l22___83 [2⋅X₉ ]
n_l24___2 [2⋅X₉-2⋅X₁₀-9⋅X₁₁ ]
n_l23___1 [2⋅X₆-2⋅X₁₀-X₁₁-8 ]
n_l24___51 [2⋅X₈+2⋅X₉-2⋅X₁₀-2⋅X₁₁-5 ]
n_l23___50 [2⋅X₆-2⋅X₁₀-X₁₁-6 ]
n_l24___58 [2⋅X₉-2⋅X₁₀-X₁₁-8 ]
n_l23___57 [2⋅X₆-2⋅X₁₀-X₁₁-8 ]
n_l24___65 [2⋅X₆+2⋅X₈-2⋅X₁₀-2⋅X₁₁-7 ]
n_l23___64 [2⋅X₈+2⋅X₉-2⋅X₁₀-2⋅X₁₁-7 ]
n_l24___81 [2⋅X₆ ]
n_l23___80 [2⋅X₆-X₁₁ ]
n_l24___9 [2⋅X₆ ]
n_l23___8 [2⋅X₆-X₁₁ ]
n_l13___77 [2⋅X₉-2⋅X₈-2⋅X₁₀-7 ]
n_l16___76 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-7 ]
n_l30___78 [2⋅X₆-2⋅X₈-2⋅X₁₀-7 ]
n_l8___79 [2⋅X₉+X₁₁-2⋅X₈-2⋅X₁₀-8 ]
n_l8___82 [2⋅X₆-X₉-X₁₀-6 ]
l32 [-2⋅X₁₀-X₁₁-3 ]

MPRF for transition t₁₃₂₅₃: n_l18___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___53(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

15⋅X₆⋅X₆+50⋅X₆+X₁₁+36 {O(n^2)}

MPRF:

l31 [-X₁₁-1 ]
l6 [-X₁₁-1 ]
l7 [-X₁₁-1 ]
l5 [-X₁₁-1 ]
l8 [X₉-X₆-X₁₁-1 ]
n_l30___95 [-X₁₁-1 ]
n_l13___94 [X₆ ]
n_l14___75 [X₉-X₁₀-2⋅X₁₁-4 ]
n_l12___74 [X₉-2⋅X₈-X₁₀-4 ]
n_l14___92 [X₉ ]
n_l12___91 [X₆ ]
n_l15___73 [X₆-X₁₀-2⋅X₁₁-4 ]
n_l15___90 [X₉ ]
n_l16___72 [X₉-2⋅X₈-X₁₀-4 ]
n_l16___89 [X₉ ]
n_l16___93 [2⋅X₁₀+5-2⋅X₆ ]
n_l17___71 [X₆-2⋅X₈-X₁₀-4 ]
n_l17___88 [X₉ ]
n_l19___14 [X₆ ]
n_l19___56 [3⋅X₉-X₈-3⋅X₁₀-2⋅X₁₁-7 ]
n_l19___63 [X₉+X₁₁-4⋅X₈-X₁₀-6 ]
n_l19___7 [2⋅X₁₀+5-X₆-X₉ ]
n_l19___70 [X₆+X₁₁-4⋅X₈-X₁₀-5 ]
n_l19___87 [X₉ ]
n_l20___13 [X₉ ]
n_l18___12 [X₉ ]
n_l20___55 [5⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l18___54 [3⋅X₈+1-X₁₁ ]
n_l20___6 [-X₁₁ ]
n_l18___5 [-X₁₁ ]
n_l20___62 [X₉-X₁₀-X₁₁-2 ]
n_l18___61 [X₉-X₁₀-X₁₁-2 ]
n_l20___69 [X₆+X₁₁-4⋅X₈-X₁₀-5 ]
n_l18___68 [X₉+X₁₁-4⋅X₈-X₁₀-5 ]
n_l20___86 [X₆ ]
n_l18___85 [X₉ ]
n_l21___11 [X₉ ]
n_l21___4 [-X₁₁ ]
n_l21___53 [5⋅X₈-2⋅X₁₁ ]
n_l21___60 [X₆-X₁₀-X₁₁-3 ]
n_l21___67 [X₉+X₁₁-4⋅X₈-X₁₀-5 ]
n_l21___84 [X₉ ]
n_l22___10 [X₉ ]
n_l22___3 [X₉-X₁₀-4⋅X₁₁ ]
n_l22___52 [4⋅X₈+X₁₀+3-X₆-X₁₁ ]
n_l22___59 [X₆-X₁₀-X₁₁-3 ]
n_l22___66 [X₆+X₁₁-4⋅X₈-X₁₀-5 ]
n_l22___83 [X₉ ]
n_l24___2 [X₉-X₁₀-4 ]
n_l23___1 [X₆-X₁₀-4 ]
n_l24___51 [4⋅X₈+X₁₀+3-X₆-X₁₁ ]
n_l23___50 [X₁₀+X₁₁+1-X₆ ]
n_l24___58 [X₆-X₁₀-X₁₁-3 ]
n_l23___57 [X₉-2⋅X₈-X₁₀-5 ]
n_l24___65 [X₉+X₁₁-4⋅X₈-X₁₀-5 ]
n_l23___64 [X₆+X₁₁-4⋅X₈-X₁₀-5 ]
n_l24___81 [X₉-X₁₁ ]
n_l23___80 [X₆-X₁₁ ]
n_l24___9 [X₉ ]
n_l23___8 [X₆-X₁₁ ]
n_l13___77 [X₉-X₈-X₁₀-3 ]
n_l16___76 [X₁₀+3⋅X₁₁+3-X₆ ]
n_l30___78 [X₉-X₈-X₁₀-3 ]
n_l8___79 [X₉-X₈-X₁₀-3 ]
n_l8___82 [X₉-X₆-1 ]
l32 [-X₁₁-1 ]

MPRF for transition t₁₃₂₅₄: n_l18___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___60(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

12⋅X₆⋅X₆+37⋅X₆+X₁₁+24 {O(n^2)}

MPRF:

l31 [-X₁₁-3 ]
l6 [-X₁₁-3 ]
l7 [-X₁₁-3 ]
l5 [-X₁₁-3 ]
l8 [X₉-X₆-X₁₁-3 ]
n_l30___95 [-X₁₁-3 ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₉-X₈-2⋅X₁₀-10 ]
n_l12___74 [2⋅X₉-2⋅X₁₀-X₁₁-10 ]
n_l14___92 [2⋅X₆ ]
n_l12___91 [2⋅X₆ ]
n_l15___73 [2⋅X₉-X₈-2⋅X₁₀-10 ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₉-2⋅X₁₀-X₁₁-10 ]
n_l16___89 [2⋅X₆ ]
n_l16___93 [X₁₀+3-X₉ ]
n_l17___71 [2⋅X₆-X₈-2⋅X₁₀-10 ]
n_l17___88 [2⋅X₆ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [X₆+X₈-X₁₀-6 ]
n_l19___63 [2⋅X₆+3⋅X₁₁-7⋅X₈-2⋅X₁₀-16 ]
n_l19___7 [0 ]
n_l19___70 [2⋅X₆+X₈-2⋅X₁₀-X₁₁-9 ]
n_l19___87 [2⋅X₆ ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [X₆+X₈-X₁₀-6 ]
n_l18___54 [X₉+X₁₁-X₈-X₁₀-7 ]
n_l20___6 [0 ]
n_l18___5 [X₉-X₁₀-3 ]
n_l20___62 [2⋅X₉+3⋅X₁₁-7⋅X₈-2⋅X₁₀-16 ]
n_l18___61 [2⋅X₆-X₈-2⋅X₁₀-10 ]
n_l20___69 [2⋅X₆+21⋅X₈+1-2⋅X₁₀-11⋅X₁₁ ]
n_l18___68 [21⋅X₈+2⋅X₉-2⋅X₁₀-11⋅X₁₁ ]
n_l20___86 [2⋅X₉ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₉ ]
n_l21___4 [2⋅X₆-X₉-X₁₀-3⋅X₁₁ ]
n_l21___53 [X₉+X₁₁-X₈-X₁₀-7 ]
n_l21___60 [2⋅X₆-X₈-2⋅X₁₀-11 ]
n_l21___67 [2⋅X₆+21⋅X₈-2⋅X₁₀-11⋅X₁₁ ]
n_l21___84 [2⋅X₉ ]
n_l22___10 [2⋅X₆ ]
n_l22___3 [X₉-X₁₀-3⋅X₁₁ ]
n_l22___52 [X₉+X₁₁-X₈-X₁₀-7 ]
n_l22___59 [2⋅X₉-X₈-2⋅X₁₀-11 ]
n_l22___66 [2⋅X₆+21⋅X₈-2⋅X₁₀-11⋅X₁₁ ]
n_l22___83 [2⋅X₆ ]
n_l24___2 [X₉-X₁₀-3 ]
n_l23___1 [2⋅X₆-2⋅X₁₀-X₁₁-9 ]
n_l24___51 [X₆+X₁₁-X₈-X₁₀-7 ]
n_l23___50 [2⋅X₆-2⋅X₁₀-X₁₁-9 ]
n_l24___58 [2⋅X₆-X₈-2⋅X₁₀-11 ]
n_l23___57 [2⋅X₉-X₈-2⋅X₁₀-11 ]
n_l24___65 [2⋅X₆+21⋅X₈-2⋅X₁₀-11⋅X₁₁ ]
n_l23___64 [21⋅X₈+2⋅X₉-2⋅X₁₀-11⋅X₁₁ ]
n_l24___81 [2⋅X₆ ]
n_l23___80 [2⋅X₆-X₁₁-9 ]
n_l24___9 [2⋅X₉-X₁₁-9 ]
n_l23___8 [2⋅X₆-X₁₁-9 ]
n_l13___77 [2⋅X₆-2⋅X₁₀-X₁₁-10 ]
n_l16___76 [X₆+X₈-X₁₀-6 ]
n_l30___78 [X₆+X₉-2⋅X₁₀-X₁₁-9 ]
n_l8___79 [3⋅X₆-X₈-X₉-2⋅X₁₀-9 ]
n_l8___82 [0 ]
l32 [-X₁₁-3 ]

MPRF for transition t₁₃₂₅₅: n_l18___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___67(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

12⋅X₆⋅X₈+24⋅X₆⋅X₆+2⋅X₁₁+28⋅X₈+89⋅X₆+79 {O(n^2)}

MPRF:

l31 [2-X₁₀-2⋅X₁₁ ]
l6 [2-X₁₀-2⋅X₁₁ ]
l7 [2-X₁₀-2⋅X₁₁ ]
l5 [2-X₁₀-2⋅X₁₁ ]
l8 [2-X₁₀-2⋅X₁₁ ]
n_l30___95 [2⋅X₆+2-2⋅X₉-X₁₀-2⋅X₁₁ ]
n_l13___94 [X₆-X₁₀-2 ]
n_l14___75 [X₆-2⋅X₈-X₁₀-3 ]
n_l12___74 [X₉-X₁₀-2⋅X₁₁-3 ]
n_l14___92 [X₉-X₁₀-2 ]
n_l12___91 [X₉-X₁₀-2 ]
n_l15___73 [X₉-2⋅X₈-X₁₀-3 ]
n_l15___90 [X₉-X₁₀-2 ]
n_l16___72 [X₉-X₁₀-2⋅X₁₁-3 ]
n_l16___89 [X₆-X₁₀-2 ]
n_l16___93 [3 ]
n_l17___71 [X₉-2⋅X₈-X₁₀-3 ]
n_l17___88 [X₉-X₁₀-4 ]
n_l19___14 [X₉-X₁₀-4 ]
n_l19___56 [0 ]
n_l19___63 [X₉-2⋅X₈-X₁₀-3 ]
n_l19___7 [X₆+3-X₉ ]
n_l19___70 [X₉-2⋅X₈-X₁₀-3 ]
n_l19___87 [X₉-X₁₀-2 ]
n_l20___13 [X₉-X₁₀-4 ]
n_l18___12 [X₆-X₁₀-4 ]
n_l20___55 [0 ]
n_l18___54 [X₆-X₁₀-X₁₁-2 ]
n_l20___6 [X₉-X₁₀ ]
n_l18___5 [X₉-X₁₀ ]
n_l20___62 [X₉-2⋅X₈-X₁₀-3 ]
n_l18___61 [X₉-2⋅X₈-X₁₀-3 ]
n_l20___69 [X₆+6⋅X₁₁-14⋅X₈-X₁₀-9 ]
n_l18___68 [X₉-2⋅X₈-X₁₀-3 ]
n_l20___86 [X₉-X₁₀-2 ]
n_l18___85 [X₉-X₁₀-2 ]
n_l21___11 [X₉-X₁₀-4 ]
n_l21___4 [X₉-X₁₀ ]
n_l21___53 [X₉-X₁₀-X₁₁-2 ]
n_l21___60 [X₉-2⋅X₈-X₁₀-3 ]
n_l21___67 [X₉-2⋅X₈-X₁₀-4 ]
n_l21___84 [X₉-X₁₀-2 ]
n_l22___10 [X₉-X₁₀-4 ]
n_l22___3 [X₉-X₁₀-2 ]
n_l22___52 [X₉-X₁₀-X₁₁-2 ]
n_l22___59 [X₆-2⋅X₈-X₁₀-3 ]
n_l22___66 [X₆+6⋅X₈-X₁₀-4⋅X₁₁ ]
n_l22___83 [X₆-X₁₀-2 ]
n_l24___2 [X₉-X₁₀-2⋅X₁₁ ]
n_l23___1 [X₆-X₁₀-2⋅X₁₁ ]
n_l24___51 [X₉-X₁₀-X₁₁-2 ]
n_l23___50 [X₆+X₉-2⋅X₁₀-2⋅X₁₁-4 ]
n_l24___58 [X₉-2⋅X₈-X₁₀-6 ]
n_l23___57 [X₉-2⋅X₈-X₁₀-6 ]
n_l24___65 [6⋅X₈+X₉-X₁₀-4⋅X₁₁ ]
n_l23___64 [6⋅X₈+X₉-X₁₀-4⋅X₁₁ ]
n_l24___81 [X₆-X₁₀-2⋅X₁₁ ]
n_l23___80 [X₆-X₁₀-2⋅X₁₁ ]
n_l24___9 [X₉-X₁₀-2⋅X₁₁ ]
n_l23___8 [X₆-X₁₀-2⋅X₁₁ ]
n_l13___77 [X₆-X₁₀-2⋅X₁₁-3 ]
n_l16___76 [0 ]
n_l30___78 [X₆-X₁₀-2⋅X₁₁-3 ]
n_l8___79 [2⋅X₆-X₈-X₉-X₁₀-X₁₁ ]
n_l8___82 [0 ]
l32 [2-X₁₀-2⋅X₁₁ ]

MPRF for transition t₁₃₂₆₁: n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

9⋅X₆⋅X₆+2⋅X₁₁+40⋅X₆+43 {O(n^2)}

MPRF:

l31 [X₆-X₁₀-2⋅X₁₁-1 ]
l6 [X₉-X₁₀-2⋅X₁₁-1 ]
l7 [X₆-X₁₀-2⋅X₁₁-1 ]
l5 [X₆-X₁₀-2⋅X₁₁-1 ]
l8 [X₆-X₁₀-2⋅X₁₁-1 ]
n_l30___95 [X₆-X₁₀-2⋅X₁₁-1 ]
n_l13___94 [2⋅X₆-5 ]
n_l14___75 [2⋅X₆-2⋅X₈-X₁₀-5 ]
n_l12___74 [2⋅X₉-X₁₀-2⋅X₁₁-5 ]
n_l14___92 [2⋅X₉-5 ]
n_l12___91 [2⋅X₉-5 ]
n_l15___73 [2⋅X₉-2⋅X₈-X₁₀-5 ]
n_l15___90 [2⋅X₉-5 ]
n_l16___72 [2⋅X₆-X₁₀-2⋅X₁₁-5 ]
n_l16___89 [2⋅X₉-5 ]
n_l16___93 [X₆-1 ]
n_l17___71 [2⋅X₉-X₁₀-2⋅X₁₁-5 ]
n_l17___88 [2⋅X₆-5 ]
n_l19___14 [2⋅X₆+X₁₁-7 ]
n_l19___56 [2⋅X₈+X₁₀+3 ]
n_l19___63 [2⋅X₉-2⋅X₈-X₁₀-5 ]
n_l19___7 [2⋅X₆-X₉-1 ]
n_l19___70 [2⋅X₆+12⋅X₈+2-X₁₀-7⋅X₁₁ ]
n_l19___87 [2⋅X₆-5⋅X₁₁ ]
n_l20___13 [2⋅X₉-5 ]
n_l18___12 [2⋅X₉-5 ]
n_l20___55 [X₁₀+X₁₁+1 ]
n_l18___54 [5⋅X₆-4⋅X₁₀-4⋅X₁₁-9 ]
n_l20___6 [X₁₀+2 ]
n_l18___5 [X₁₀+2 ]
n_l20___62 [2⋅X₉-2⋅X₈-X₁₀-5 ]
n_l18___61 [2⋅X₉-2⋅X₈-X₁₀-5 ]
n_l20___69 [2⋅X₆+12⋅X₈+2-X₁₀-7⋅X₁₁ ]
n_l18___68 [2⋅X₆+12⋅X₈+2-X₁₀-7⋅X₁₁ ]
n_l20___86 [2⋅X₉-5 ]
n_l18___85 [2⋅X₉-5 ]
n_l21___11 [2⋅X₆-5 ]
n_l21___4 [2⋅X₆+X₁₀+2-2⋅X₉ ]
n_l21___53 [5⋅X₉-4⋅X₁₀-4⋅X₁₁-9 ]
n_l21___60 [2⋅X₉-2⋅X₈-X₁₀-5 ]
n_l21___67 [12⋅X₈+2⋅X₉+2-X₁₀-7⋅X₁₁ ]
n_l21___84 [2⋅X₉-5 ]
n_l22___10 [2⋅X₉-X₁₁-3 ]
n_l22___3 [X₁₀+2⋅X₁₁ ]
n_l22___52 [5⋅X₉-4⋅X₁₀-4⋅X₁₁-12 ]
n_l22___59 [2⋅X₆-2⋅X₈-X₁₀-9 ]
n_l22___66 [12⋅X₈+2⋅X₉-X₁₀-7⋅X₁₁ ]
n_l22___83 [2⋅X₆-5 ]
n_l24___2 [X₁₀+3-2⋅X₁₁ ]
n_l23___1 [2⋅X₉-X₁₀-2⋅X₁₁-3 ]
n_l24___51 [2⋅X₆+6⋅X₈-X₁₀-4⋅X₁₁-3 ]
n_l23___50 [2⋅X₆-X₁₀-2⋅X₁₁-3 ]
n_l24___58 [2⋅X₆-2⋅X₈-X₁₀-9 ]
n_l23___57 [2⋅X₉-2⋅X₈-X₁₀-9 ]
n_l24___65 [2⋅X₆+12⋅X₈-X₁₀-7⋅X₁₁ ]
n_l23___64 [12⋅X₈+2⋅X₉-X₁₀-7⋅X₁₁ ]
n_l24___81 [2⋅X₉-X₁₁-4 ]
n_l23___80 [2⋅X₆-2⋅X₁₁-3 ]
n_l24___9 [2⋅X₉-7 ]
n_l23___8 [2⋅X₆-X₁₀-7 ]
n_l13___77 [2⋅X₆-X₁₀-2⋅X₁₁-5 ]
n_l16___76 [X₁₀+2⋅X₁₁+3 ]
n_l30___78 [X₆+X₉-2⋅X₈-X₁₀-3 ]
n_l8___79 [X₈+3⋅X₉-X₆-X₁₀-3⋅X₁₁-3 ]
n_l8___82 [X₉-1 ]
l32 [X₉-X₁₀-2⋅X₁₁-1 ]

MPRF for transition t₁₃₂₆₂: n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

3⋅X₆⋅X₆+2⋅X₁₁+25⋅X₆+47 {O(n^2)}

MPRF:

l31 [5-X₁₀-2⋅X₁₁ ]
l6 [5-X₁₀-2⋅X₁₁ ]
l7 [5-X₁₀-2⋅X₁₁ ]
l5 [5-X₁₀-2⋅X₁₁ ]
l8 [5-X₁₀-2⋅X₁₁ ]
n_l30___95 [X₆+5-X₉-X₁₀-2⋅X₁₁ ]
n_l13___94 [X₆+1 ]
n_l14___75 [X₆+1-X₁₀-X₁₁ ]
n_l12___74 [X₉+1-X₈-X₁₀ ]
n_l14___92 [X₆+1 ]
n_l12___91 [X₉+1 ]
n_l15___73 [X₉+1-X₁₀-X₁₁ ]
n_l15___90 [X₉+1 ]
n_l16___72 [X₆+1-X₈-X₁₀ ]
n_l16___89 [X₆+1 ]
n_l16___93 [5 ]
n_l17___71 [X₆+1-X₈-X₁₀ ]
n_l17___88 [X₉+1 ]
n_l19___14 [X₆+3-X₁₁ ]
n_l19___56 [X₆+2-2⋅X₈-X₁₀ ]
n_l19___63 [X₆+1-X₈-X₁₀ ]
n_l19___7 [5 ]
n_l19___70 [X₆+1-X₈-X₁₀ ]
n_l19___87 [X₆+1 ]
n_l20___13 [X₉+1 ]
n_l18___12 [X₆+1 ]
n_l20___55 [X₆+2-2⋅X₈-X₁₀ ]
n_l18___54 [X₆+2-2⋅X₈-X₁₀ ]
n_l20___6 [5⋅X₁₁ ]
n_l18___5 [5⋅X₁₁ ]
n_l20___62 [X₆-X₈-X₁₀ ]
n_l18___61 [X₉-X₈-X₁₀ ]
n_l20___69 [X₉+3-X₁₀-X₁₁ ]
n_l18___68 [X₉+3-X₁₀-X₁₁ ]
n_l20___86 [X₉+1 ]
n_l18___85 [X₉+1 ]
n_l21___11 [X₆+1 ]
n_l21___4 [5⋅X₁₁ ]
n_l21___53 [X₉+2-2⋅X₈-X₁₀ ]
n_l21___60 [X₆-X₈-X₁₀ ]
n_l21___67 [X₉+2-X₁₀-X₁₁ ]
n_l21___84 [X₉+1 ]
n_l22___10 [X₆-1 ]
n_l22___3 [X₉+5⋅X₁₁-X₁₀-3 ]
n_l22___52 [X₉+2-2⋅X₈-X₁₀ ]
n_l22___59 [X₆-X₈-X₁₀ ]
n_l22___66 [X₆+2-X₁₀-X₁₁ ]
n_l22___83 [X₆ ]
n_l24___2 [X₉+5⋅X₁₁-X₁₀-3 ]
n_l23___1 [X₆+1-X₁₀-X₁₁ ]
n_l24___51 [X₉+2-2⋅X₈-X₁₀ ]
n_l23___50 [X₆+3-X₁₀-X₁₁ ]
n_l24___58 [X₉-X₈-X₁₀ ]
n_l23___57 [X₉-X₈-X₁₀-2 ]
n_l24___65 [X₉+1-X₁₀-X₁₁ ]
n_l23___64 [X₆+1-X₁₀-X₁₁ ]
n_l24___81 [X₆ ]
n_l23___80 [X₆+1-X₁₁ ]
n_l24___9 [X₉+1-X₁₁ ]
n_l23___8 [X₆+1-X₁₁ ]
n_l13___77 [X₆+1-X₈-X₁₀ ]
n_l16___76 [X₆+2-X₁₀-2⋅X₁₁ ]
n_l30___78 [X₆+1-X₈-X₁₀ ]
n_l8___79 [X₆+1-X₁₀-X₁₁ ]
n_l8___82 [X₆+5-X₉ ]
l32 [5-X₁₀-2⋅X₁₁ ]

MPRF for transition t₁₃₂₆₄: n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

3⋅X₆⋅X₆+24⋅X₆+X₁₁+42 {O(n^2)}

MPRF:

l31 [X₉+4-X₆-X₁₀-X₁₁ ]
l6 [X₉+4-X₆-X₁₀-X₁₁ ]
l7 [4-X₁₀-X₁₁ ]
l5 [4-X₁₀-X₁₁ ]
l8 [4-X₁₀-X₁₁ ]
n_l30___95 [4-X₁₀-X₁₁ ]
n_l13___94 [X₆+1 ]
n_l14___75 [X₉+2-X₁₀-X₁₁ ]
n_l12___74 [X₉+2-X₈-X₁₀ ]
n_l14___92 [X₆+1 ]
n_l12___91 [X₆+1 ]
n_l15___73 [X₆+2-X₁₀-X₁₁ ]
n_l15___90 [X₉+1 ]
n_l16___72 [X₉+2-X₁₀-X₁₁ ]
n_l16___89 [X₆+1 ]
n_l16___93 [4 ]
n_l17___71 [X₉+2-X₁₀-X₁₁ ]
n_l17___88 [X₉ ]
n_l19___14 [X₉ ]
n_l19___56 [4 ]
n_l19___63 [X₆+2-X₈-X₁₀ ]
n_l19___7 [2⋅X₆+X₁₁-X₉-X₁₀ ]
n_l19___70 [X₉+2-X₈-X₁₀ ]
n_l19___87 [X₆+1 ]
n_l20___13 [X₉ ]
n_l18___12 [X₉ ]
n_l20___55 [X₉+2-X₁₀-X₁₁ ]
n_l18___54 [X₉+1-2⋅X₈-X₁₀ ]
n_l20___6 [2⋅X₉-2⋅X₁₀-2⋅X₁₁ ]
n_l18___5 [2⋅X₉-2⋅X₁₀-2 ]
n_l20___62 [X₆+2-X₈-X₁₀ ]
n_l18___61 [X₆+2-X₈-X₁₀ ]
n_l20___69 [X₉+X₁₁-3⋅X₈-X₁₀ ]
n_l18___68 [X₉+X₁₁-3⋅X₈-X₁₀ ]
n_l20___86 [X₉+X₁₁ ]
n_l18___85 [X₆+1 ]
n_l21___11 [X₉ ]
n_l21___4 [2⋅X₉-2⋅X₁₀-2⋅X₁₁ ]
n_l21___53 [X₉+1-2⋅X₈-X₁₀ ]
n_l21___60 [X₉+2-X₈-X₁₀ ]
n_l21___67 [X₆+X₁₁-3⋅X₈-X₁₀ ]
n_l21___84 [X₉+1 ]
n_l22___10 [X₉ ]
n_l22___3 [2⋅X₉-2⋅X₁₀-2 ]
n_l22___52 [X₉+1-2⋅X₈-X₁₀ ]
n_l22___59 [X₉+3-2⋅X₈-X₁₀ ]
n_l22___66 [X₆+X₁₁-3⋅X₈-X₁₀ ]
n_l22___83 [X₉+X₁₁ ]
n_l24___2 [2⋅X₆-2⋅X₁₀-X₁₁-1 ]
n_l23___1 [2⋅X₆-2⋅X₁₀-X₁₁-1 ]
n_l24___51 [X₉+1-2⋅X₈-X₁₀ ]
n_l23___50 [X₆+2-X₁₀-X₁₁ ]
n_l24___58 [X₆+3-2⋅X₈-X₁₀ ]
n_l23___57 [X₉-2⋅X₈-X₁₀ ]
n_l24___65 [X₉+2-X₁₀-X₁₁ ]
n_l23___64 [X₉+2-X₁₀-X₁₁ ]
n_l24___81 [X₉+1 ]
n_l23___80 [X₆+2-X₁₁ ]
n_l24___9 [X₉+2-X₁₁ ]
n_l23___8 [X₆+2-X₁₁ ]
n_l13___77 [X₆+2-X₁₀-X₁₁ ]
n_l16___76 [2⋅X₁₁+4-2⋅X₈ ]
n_l30___78 [X₆+2-X₁₀-X₁₁ ]
n_l8___79 [X₉+X₁₁+2-2⋅X₈-X₁₀ ]
n_l8___82 [X₉+4-X₆ ]
l32 [4-X₁₀-X₁₁ ]

MPRF for transition t₁₃₂₇₀: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___54(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

3⋅X₆⋅X₆+16⋅X₆+24 {O(n^2)}

MPRF:

l31 [3-X₁₀ ]
l6 [3-X₁₀ ]
l7 [3-X₁₀ ]
l5 [X₉+3-X₆-X₁₀ ]
l8 [X₉+3-X₆-X₁₀ ]
n_l30___95 [3-X₁₀ ]
n_l13___94 [X₆ ]
n_l14___75 [X₆+1-X₈-X₁₀ ]
n_l12___74 [X₉+1-X₈-X₁₀ ]
n_l14___92 [X₉ ]
n_l12___91 [X₉ ]
n_l15___73 [X₉+1-X₈-X₁₀ ]
n_l15___90 [X₉ ]
n_l16___72 [X₉-2⋅X₈-X₁₀ ]
n_l16___89 [X₉ ]
n_l16___93 [3 ]
n_l17___71 [X₉+1-X₈-X₁₀ ]
n_l17___88 [X₆ ]
n_l19___14 [X₉ ]
n_l19___56 [X₁₁+3-X₈ ]
n_l19___63 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l19___7 [3 ]
n_l19___70 [X₉-2⋅X₈-X₁₀ ]
n_l19___87 [X₉ ]
n_l20___13 [X₉ ]
n_l18___12 [X₉ ]
n_l20___55 [X₁₁+3-X₈ ]
n_l18___54 [X₉-X₈-X₁₀ ]
n_l20___6 [3⋅X₁₁ ]
n_l18___5 [3⋅X₁₁ ]
n_l20___62 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l18___61 [X₆+X₁₁-3⋅X₈-X₁₀-1 ]
n_l20___69 [X₉-2⋅X₈-X₁₀ ]
n_l18___68 [X₉-2⋅X₈-X₁₀ ]
n_l20___86 [X₆ ]
n_l18___85 [X₆ ]
n_l21___11 [X₉ ]
n_l21___4 [3 ]
n_l21___53 [X₉-X₈-X₁₀ ]
n_l21___60 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l21___67 [X₆-2⋅X₈-X₁₀ ]
n_l21___84 [X₉ ]
n_l22___10 [X₉ ]
n_l22___3 [X₆+3⋅X₁₁-X₉ ]
n_l22___52 [X₉-X₈-X₁₀ ]
n_l22___59 [X₆+X₁₁-3⋅X₈-X₁₀-1 ]
n_l22___66 [X₆-2⋅X₈-X₁₀ ]
n_l22___83 [X₉ ]
n_l24___2 [X₉+3⋅X₁₁-X₁₀-3 ]
n_l23___1 [X₆+3⋅X₁₁-X₁₀-3 ]
n_l24___51 [X₆-X₈-X₁₀ ]
n_l23___50 [X₆+2-X₁₀-X₁₁ ]
n_l24___58 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l23___57 [X₈+X₉+3-X₁₀-X₁₁ ]
n_l24___65 [X₉-2⋅X₈-X₁₀ ]
n_l23___64 [X₉+1-X₁₀-X₁₁ ]
n_l24___81 [X₉ ]
n_l23___80 [X₆+1-X₁₁ ]
n_l24___9 [X₆+1-X₁₁ ]
n_l23___8 [X₆+1-X₁₁ ]
n_l13___77 [X₉+1-X₁₀-X₁₁ ]
n_l16___76 [X₈+4 ]
n_l30___78 [X₉+1-X₁₀-X₁₁ ]
n_l8___79 [X₉+1-X₁₀-X₁₁ ]
n_l8___82 [3 ]
l32 [3-X₁₀ ]

MPRF for transition t₁₃₂₇₂: n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___61(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

12⋅X₆⋅X₈+30⋅X₆⋅X₆+2⋅X₁₁+28⋅X₈+98⋅X₆+72 {O(n^2)}

MPRF:

l31 [X₉-X₁₀-2⋅X₁₁-6 ]
l6 [X₆-X₁₀-2⋅X₁₁-6 ]
l7 [X₆-X₁₀-2⋅X₁₁-6 ]
l5 [X₆-X₁₀-2⋅X₁₁-6 ]
l8 [X₆-X₁₀-2⋅X₁₁-6 ]
n_l30___95 [X₆-X₁₀-2⋅X₁₁-6 ]
n_l13___94 [2⋅X₆-X₁₀ ]
n_l14___75 [2⋅X₆-X₈-X₁₀-10 ]
n_l12___74 [2⋅X₉-X₁₀-X₁₁-10 ]
n_l14___92 [2⋅X₆-X₁₀ ]
n_l12___91 [2⋅X₉-X₁₀ ]
n_l15___73 [X₆+X₉-X₈-X₁₀-10 ]
n_l15___90 [2⋅X₉-X₁₀ ]
n_l16___72 [2⋅X₉-X₁₀-X₁₁-10 ]
n_l16___89 [2⋅X₆-X₁₀-10 ]
n_l16___93 [X₁₀-3 ]
n_l17___71 [2⋅X₆-X₁₀-X₁₁-10 ]
n_l17___88 [2⋅X₆-X₁₀ ]
n_l19___14 [2⋅X₉-X₁₀ ]
n_l19___56 [3⋅X₈+X₁₀-4 ]
n_l19___63 [2⋅X₆-X₈-X₁₀-10 ]
n_l19___7 [X₁₀-3⋅X₁₁ ]
n_l19___70 [2⋅X₆-X₈-X₁₀-10 ]
n_l19___87 [2⋅X₉-X₁₀-10 ]
n_l20___13 [2⋅X₉-X₁₀ ]
n_l18___12 [2⋅X₉-X₁₀ ]
n_l20___55 [3⋅X₈+X₉-X₁₁-6 ]
n_l18___54 [X₆+X₈-7 ]
n_l20___6 [X₁₀-3 ]
n_l18___5 [X₁₀-3 ]
n_l20___62 [X₆+X₈+X₉-X₁₀-X₁₁-8 ]
n_l18___61 [X₈+2⋅X₉-X₁₀-X₁₁-9 ]
n_l20___69 [2⋅X₉-X₁₀-X₁₁-8 ]
n_l18___68 [X₆+X₉-X₁₀-X₁₁-8 ]
n_l20___86 [2⋅X₉-X₁₀-10 ]
n_l18___85 [2⋅X₆-X₁₀-10 ]
n_l21___11 [2⋅X₉-X₁₀ ]
n_l21___4 [X₁₀-3⋅X₁₁ ]
n_l21___53 [X₈+X₉-7 ]
n_l21___60 [X₈+2⋅X₉-X₁₀-X₁₁-9 ]
n_l21___67 [2⋅X₉-X₁₀-X₁₁-9 ]
n_l21___84 [2⋅X₆-X₁₀-10 ]
n_l22___10 [2⋅X₉-X₁₀-X₁₁-10 ]
n_l22___3 [X₉-6⋅X₁₁ ]
n_l22___52 [X₈+X₉-9 ]
n_l22___59 [2⋅X₆-X₁₀-X₁₁-8 ]
n_l22___66 [2⋅X₆-X₁₀-X₁₁-10 ]
n_l22___83 [2⋅X₆-X₁₀-11⋅X₁₁ ]
n_l24___2 [X₉-8 ]
n_l23___1 [2⋅X₆-X₁₀-X₁₁-10 ]
n_l24___51 [X₈+X₉-9 ]
n_l23___50 [2⋅X₆-X₁₀-X₁₁-10 ]
n_l24___58 [2⋅X₉-X₁₀-X₁₁-10 ]
n_l23___57 [2⋅X₉-X₁₀-X₁₁-10 ]
n_l24___65 [2⋅X₆-X₁₀-X₁₁-10 ]
n_l23___64 [2⋅X₉-X₁₀-X₁₁-10 ]
n_l24___81 [2⋅X₉-X₁₀-11 ]
n_l23___80 [2⋅X₆-X₁₀-X₁₁-10 ]
n_l24___9 [2⋅X₆-X₁₀-X₁₁-10 ]
n_l23___8 [2⋅X₆-X₁₀-X₁₁-10 ]
n_l13___77 [2⋅X₆-X₁₀-X₁₁-10 ]
n_l16___76 [3⋅X₈+X₁₀-4 ]
n_l30___78 [X₆+X₉-X₁₀-X₁₁-10 ]
n_l8___79 [2⋅X₆-X₈-X₁₀-10 ]
n_l8___82 [X₆-6 ]
l32 [X₆-X₁₀-2⋅X₁₁-6 ]

MPRF for transition t₁₃₂₇₃: n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___68(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

24⋅X₆⋅X₈+48⋅X₆⋅X₆+184⋅X₆+4⋅X₁₁+56⋅X₈+178 {O(n^2)}

MPRF:

l31 [10-2⋅X₁₀-4⋅X₁₁ ]
l6 [10-2⋅X₁₀-4⋅X₁₁ ]
l7 [10-2⋅X₁₀-4⋅X₁₁ ]
l5 [10-2⋅X₁₀-4⋅X₁₁ ]
l8 [10-2⋅X₁₀-4⋅X₁₁ ]
n_l30___95 [10-2⋅X₁₀-4⋅X₁₁ ]
n_l13___94 [2⋅X₆+2-2⋅X₁₀ ]
n_l14___75 [2⋅X₆+4-2⋅X₁₀-4⋅X₁₁ ]
n_l12___74 [2⋅X₉+4-4⋅X₈-2⋅X₁₀ ]
n_l14___92 [2⋅X₆+2-2⋅X₁₀ ]
n_l12___91 [2⋅X₉+2-2⋅X₁₀ ]
n_l15___73 [2⋅X₉+4-2⋅X₁₀-4⋅X₁₁ ]
n_l15___90 [2⋅X₆+2-2⋅X₁₀ ]
n_l16___72 [2⋅X₉+4-4⋅X₈-2⋅X₁₀ ]
n_l16___89 [2⋅X₆+2-2⋅X₁₀ ]
n_l16___93 [10 ]
n_l17___71 [2⋅X₆+4-4⋅X₈-2⋅X₁₀ ]
n_l17___88 [2⋅X₆+2-2⋅X₁₀ ]
n_l19___14 [2⋅X₉+2-2⋅X₁₀ ]
n_l19___56 [10 ]
n_l19___63 [2⋅X₉+X₁₁+2-6⋅X₈-2⋅X₁₀ ]
n_l19___7 [X₉+10⋅X₁₁-X₆ ]
n_l19___70 [2⋅X₆+6-2⋅X₁₀-2⋅X₁₁ ]
n_l19___87 [2⋅X₉+2⋅X₁₁-2⋅X₁₀ ]
n_l20___13 [2⋅X₆+X₁₁-2⋅X₁₀ ]
n_l18___12 [2⋅X₉+2-2⋅X₁₀ ]
n_l20___55 [X₉+8-X₁₀-X₁₁ ]
n_l18___54 [X₉+8-X₁₀-X₁₁ ]
n_l20___6 [X₉+10-X₆ ]
n_l18___5 [2⋅X₆+10-2⋅X₉ ]
n_l20___62 [2⋅X₉+X₁₁+2-6⋅X₈-2⋅X₁₀ ]
n_l18___61 [2⋅X₉+X₁₁+2-6⋅X₈-2⋅X₁₀ ]
n_l20___69 [2⋅X₆+6-2⋅X₁₀-2⋅X₁₁ ]
n_l18___68 [2⋅X₉+5-2⋅X₁₀-2⋅X₁₁ ]
n_l20___86 [2⋅X₉+2-2⋅X₁₀ ]
n_l18___85 [2⋅X₉+2-2⋅X₁₀ ]
n_l21___11 [2⋅X₉+2-2⋅X₁₀ ]
n_l21___4 [10 ]
n_l21___53 [X₆+8-X₁₀-X₁₁ ]
n_l21___60 [2⋅X₆+X₁₁+2-6⋅X₈-2⋅X₁₀ ]
n_l21___67 [2⋅X₆+5-2⋅X₁₀-2⋅X₁₁ ]
n_l21___84 [2⋅X₉+2-2⋅X₁₀ ]
n_l22___10 [2⋅X₆-2⋅X₁₀ ]
n_l22___3 [X₉+3⋅X₁₁-X₁₀ ]
n_l22___52 [X₆+8-X₁₀-X₁₁ ]
n_l22___59 [2⋅X₉+4-4⋅X₈-2⋅X₁₀ ]
n_l22___66 [2⋅X₉+2-2⋅X₁₀-2⋅X₁₁ ]
n_l22___83 [2⋅X₉-2⋅X₁₀ ]
n_l24___2 [X₉+3-X₁₀ ]
n_l23___1 [2⋅X₆+2-2⋅X₁₀-2⋅X₁₁ ]
n_l24___51 [X₆+6-X₉ ]
n_l23___50 [2⋅X₆+2-2⋅X₁₀-2⋅X₁₁ ]
n_l24___58 [2⋅X₆+4-4⋅X₈-2⋅X₁₀ ]
n_l23___57 [2⋅X₉-4⋅X₈-2⋅X₁₀-2 ]
n_l24___65 [2⋅X₆+2-2⋅X₁₀-2⋅X₁₁ ]
n_l23___64 [2⋅X₉+2-2⋅X₁₀-2⋅X₁₁ ]
n_l24___81 [2⋅X₉-2⋅X₁₀ ]
n_l23___80 [2⋅X₆+2-2⋅X₁₀-2⋅X₁₁ ]
n_l24___9 [X₆+X₉-2⋅X₁₀ ]
n_l23___8 [2⋅X₆+2-2⋅X₁₀-2⋅X₁₁ ]
n_l13___77 [2⋅X₆+4-2⋅X₁₀-4⋅X₁₁ ]
n_l16___76 [10 ]
n_l30___78 [2⋅X₆+4-4⋅X₈-2⋅X₁₀ ]
n_l8___79 [X₆+X₉+2-X₈-2⋅X₁₀-X₁₁ ]
n_l8___82 [10 ]
l32 [10-2⋅X₁₀-4⋅X₁₁ ]

MPRF for transition t₁₃₂₈₅: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

3⋅X₆⋅X₆+13⋅X₆+X₁₁+16 {O(n^2)}

MPRF:

l31 [2-X₁₁ ]
l6 [2-X₁₁ ]
l7 [2-X₁₁ ]
l5 [2-X₁₁ ]
l8 [2-X₁₁ ]
n_l30___95 [2-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₆+1-2⋅X₈-X₁₀ ]
n_l12___74 [X₉+1-2⋅X₈-X₁₀ ]
n_l14___92 [X₆ ]
n_l12___91 [X₉ ]
n_l15___73 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l15___90 [X₉ ]
n_l16___72 [X₉-2⋅X₈-X₁₀ ]
n_l16___89 [X₉ ]
n_l16___93 [2 ]
n_l17___71 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l17___88 [X₉ ]
n_l19___14 [X₆ ]
n_l19___56 [X₉-X₈-X₁₀ ]
n_l19___63 [X₉+X₁₁-4⋅X₈-X₁₀-1 ]
n_l19___7 [X₆+2-X₉ ]
n_l19___70 [X₉-2⋅X₈-X₁₀ ]
n_l19___87 [X₆ ]
n_l20___13 [X₉ ]
n_l18___12 [X₉ ]
n_l20___55 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l18___54 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l20___6 [X₉-X₁₀-1 ]
n_l18___5 [X₆-X₁₀-X₁₁ ]
n_l20___62 [X₉+X₁₁-4⋅X₈-X₁₀-1 ]
n_l18___61 [X₉+X₁₁-4⋅X₈-X₁₀-1 ]
n_l20___69 [X₆-2⋅X₈-X₁₀ ]
n_l18___68 [X₉-2⋅X₈-X₁₀ ]
n_l20___86 [X₆ ]
n_l18___85 [X₆ ]
n_l21___11 [X₉ ]
n_l21___4 [X₉-X₁₀-1 ]
n_l21___53 [X₉+X₁₁-3⋅X₈-X₁₀-2 ]
n_l21___60 [X₉+X₁₁-4⋅X₈-X₁₀-1 ]
n_l21___67 [X₉-X₁₀-X₁₁ ]
n_l21___84 [X₉ ]
n_l22___10 [X₉ ]
n_l22___3 [X₆-X₁₀-1 ]
n_l22___52 [X₉+X₁₁-4⋅X₈-X₁₀-2 ]
n_l22___59 [X₉+X₁₁-4⋅X₈-X₁₀-1 ]
n_l22___66 [X₆-X₁₀-X₁₁ ]
n_l22___83 [X₉ ]
n_l24___2 [X₉-X₁₀-1 ]
n_l23___1 [X₆-X₁₀-X₁₁ ]
n_l24___51 [X₆+X₁₁-4⋅X₈-X₁₀-2 ]
n_l23___50 [X₆-2⋅X₈-X₁₀-1 ]
n_l24___58 [X₉+X₁₁-4⋅X₈-X₁₀-1 ]
n_l23___57 [X₉-X₁₀-X₁₁ ]
n_l24___65 [X₉-X₁₀-X₁₁ ]
n_l23___64 [X₉-X₁₀-X₁₁ ]
n_l24___81 [X₉-X₁₁ ]
n_l23___80 [X₆-X₁₀-X₁₁ ]
n_l24___9 [X₉-X₁₁ ]
n_l23___8 [X₆-X₁₀-X₁₁ ]
n_l13___77 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l16___76 [2⋅X₁₁+3-X₈ ]
n_l30___78 [X₉-X₁₀-X₁₁ ]
n_l8___79 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l8___82 [X₈+X₉+2-2⋅X₆ ]
l32 [2-X₁₁ ]

MPRF for transition t₁₃₂₈₆: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+7 {O(n)}

MPRF:

l31 [X₉-X₁₀-4 ]
l6 [X₆-X₁₀-4 ]
l7 [X₉-X₁₀-4 ]
l5 [X₆-X₁₀-4 ]
l8 [X₉-X₁₀-4 ]
n_l14___75 [X₉-X₁₀-4 ]
n_l12___74 [X₉-X₁₀-4 ]
n_l14___92 [X₉-X₁₀-4 ]
n_l12___91 [X₉-X₁₀-4 ]
n_l15___73 [X₉-X₁₀-4 ]
n_l15___90 [X₉-X₁₀-4 ]
n_l16___72 [X₉-X₁₀-4 ]
n_l16___89 [X₉-X₁₀-4 ]
n_l17___71 [X₉-X₁₀-4 ]
n_l17___88 [X₉-X₁₀-4 ]
n_l19___14 [X₉-X₁₀-4 ]
n_l19___56 [4⋅X₈+X₁₀+2-X₆ ]
n_l19___63 [X₉-X₁₀-4 ]
n_l19___7 [X₆-X₉-1 ]
n_l19___70 [X₆-X₁₀-4 ]
n_l19___87 [X₆-X₁₀-4 ]
n_l20___13 [X₉-X₁₀-2⋅X₁₁ ]
n_l18___12 [X₉-X₁₀-4 ]
n_l20___55 [X₉-X₁₀-4 ]
n_l18___54 [X₉-X₁₀-4 ]
n_l20___6 [X₆-X₁₀-4⋅X₁₁ ]
n_l18___5 [X₉-X₁₀-4⋅X₁₁ ]
n_l20___62 [X₉-X₁₀-4 ]
n_l18___61 [X₉-X₁₀-4 ]
n_l20___69 [X₉-X₁₀-4 ]
n_l18___68 [X₆-X₁₀-4 ]
n_l20___86 [X₆-X₁₀-4 ]
n_l18___85 [X₉-X₁₀-4⋅X₁₁ ]
n_l21___11 [X₉-X₁₀-2⋅X₁₁ ]
n_l21___4 [X₉-X₁₀-4 ]
n_l21___53 [X₉-X₁₀-4 ]
n_l21___60 [X₆-X₁₀-4 ]
n_l21___67 [X₉-X₁₀-4 ]
n_l21___84 [X₉-X₁₀-4 ]
n_l22___10 [X₉-X₁₀-4 ]
n_l22___3 [X₉-X₁₀-4⋅X₁₁ ]
n_l22___52 [X₉-X₁₀-4 ]
n_l22___59 [X₉-X₁₀-4 ]
n_l22___66 [X₉-X₁₀-4 ]
n_l22___83 [X₉-X₁₀-4⋅X₁₁ ]
n_l24___2 [X₉-X₁₀-4⋅X₁₁ ]
n_l23___1 [X₆-X₁₀-4⋅X₁₁ ]
n_l24___51 [X₆-X₁₀-4 ]
n_l23___50 [X₆-X₁₀-4 ]
n_l24___58 [X₆-X₁₀-4 ]
n_l23___57 [X₉-X₁₀-4 ]
n_l24___65 [X₉-X₁₀-4 ]
n_l23___64 [X₉-X₁₀-4 ]
n_l24___81 [X₉-X₁₀-4 ]
n_l23___80 [X₆-X₁₀-4 ]
n_l24___9 [X₉-X₁₀-2⋅X₁₁ ]
n_l23___8 [X₆-X₁₀-4 ]
n_l13___77 [X₉-X₁₀-4 ]
n_l16___76 [X₁₀+4⋅X₁₁+2-X₆ ]
n_l13___94 [X₆-X₁₀-4 ]
n_l30___95 [X₉-X₁₀-4 ]
n_l16___93 [-1 ]
n_l30___78 [X₆-X₁₀-4 ]
n_l8___79 [X₉-X₁₀-4 ]
n_l8___82 [X₈-X₁₀-5 ]
l32 [X₆-X₁₀-5 ]

MPRF for transition t₁₃₂₈₇: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

12⋅X₆⋅X₈+27⋅X₆⋅X₆+106⋅X₆+28⋅X₈+X₁₁+108 {O(n^2)}

MPRF:

l31 [10-X₆-X₁₁ ]
l6 [10-X₆-X₁₁ ]
l7 [10-X₆-X₁₁ ]
l5 [10-X₆-X₁₁ ]
l8 [10-X₉-X₁₁ ]
n_l30___95 [-X₆-X₁₁ ]
n_l13___94 [2⋅X₆-X₁₀ ]
n_l14___75 [X₉+4-X₈-X₁₀ ]
n_l12___74 [X₉+4-X₈-X₁₀ ]
n_l14___92 [2⋅X₆-X₁₀ ]
n_l12___91 [X₆+X₉-X₁₀ ]
n_l15___73 [X₉+X₁₁+4-2⋅X₈-X₁₀ ]
n_l15___90 [X₉+4-X₁₀ ]
n_l16___72 [X₉+2-X₈-X₁₀ ]
n_l16___89 [X₉+3-X₁₀ ]
n_l16___93 [8 ]
n_l17___71 [X₉+4-X₈-X₁₀ ]
n_l17___88 [X₆+4-X₁₀ ]
n_l19___14 [X₆+4-X₁₀ ]
n_l19___56 [X₉+5-2⋅X₈-X₁₀ ]
n_l19___63 [3⋅X₈+X₉+8-X₁₀-2⋅X₁₁ ]
n_l19___7 [8 ]
n_l19___70 [X₉+2-X₈-X₁₀ ]
n_l19___87 [X₉+3-X₁₀ ]
n_l20___13 [X₉+2⋅X₁₁-X₁₀ ]
n_l18___12 [X₉+4-X₁₀ ]
n_l20___55 [X₆+5-2⋅X₈-X₁₀ ]
n_l18___54 [X₉+5-2⋅X₈-X₁₀ ]
n_l20___6 [X₉+8-X₆ ]
n_l18___5 [X₉+8-X₆ ]
n_l20___62 [X₆+4⋅X₁₁-9⋅X₈-X₁₀-4 ]
n_l18___61 [X₉+X₁₁+2-3⋅X₈-X₁₀ ]
n_l20___69 [X₉+2-X₈-X₁₀ ]
n_l18___68 [X₉+2-X₈-X₁₀ ]
n_l20___86 [X₉+3-X₁₀ ]
n_l18___85 [X₉+3-X₁₀ ]
n_l21___11 [X₉+4-X₁₀ ]
n_l21___4 [8⋅X₁₁ ]
n_l21___53 [X₉+5-2⋅X₈-X₁₀ ]
n_l21___60 [X₉+X₁₁+2-3⋅X₈-X₁₀ ]
n_l21___67 [X₉+2-X₈-X₁₀ ]
n_l21___84 [X₉+3-X₁₀ ]
n_l22___10 [X₉+2-X₁₀ ]
n_l22___3 [X₉+3⋅X₁₁-X₁₀ ]
n_l22___52 [X₉+5-2⋅X₈-X₁₀ ]
n_l22___59 [X₆+X₁₁-3⋅X₈-X₁₀-1 ]
n_l22___66 [X₉+2-X₈-X₁₀ ]
n_l22___83 [X₆+3⋅X₁₁-X₁₀ ]
n_l24___2 [X₉+3-X₁₀ ]
n_l23___1 [X₆+4-X₁₀-X₁₁ ]
n_l24___51 [X₉+5-2⋅X₈-X₁₀ ]
n_l23___50 [6 ]
n_l24___58 [X₉+2-2⋅X₈-X₁₀ ]
n_l23___57 [X₉+X₁₁-4⋅X₈-X₁₀ ]
n_l24___65 [X₉+2-X₈-X₁₀ ]
n_l23___64 [X₈+X₉+3-X₁₀-X₁₁ ]
n_l24___81 [X₆+3-X₁₀ ]
n_l23___80 [X₆+4-X₁₀-X₁₁ ]
n_l24___9 [X₉+4-X₁₀-X₁₁ ]
n_l23___8 [X₆+4-X₁₀-X₁₁ ]
n_l13___77 [X₆+4-X₁₀-X₁₁ ]
n_l16___76 [X₆+5-X₁₀-2⋅X₁₁ ]
n_l30___78 [X₆+4-X₁₀-X₁₁ ]
n_l8___79 [X₈+X₉+4-X₁₀-2⋅X₁₁ ]
n_l8___82 [X₁₀+X₁₁+10-X₆ ]
l32 [10-X₆-X₁₁ ]

MPRF for transition t₁₃₂₈₈: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

X₆ {O(n)}

MPRF:

l31 [X₆-X₁₀ ]
l6 [X₆-X₁₀ ]
l7 [X₆-X₁₀ ]
l5 [X₉-X₁₀ ]
l8 [X₉-X₁₀ ]
n_l14___75 [X₆-X₁₀ ]
n_l12___74 [X₉-X₁₀ ]
n_l14___92 [X₉-X₁₀ ]
n_l12___91 [X₆-X₁₀ ]
n_l15___73 [X₉-X₁₀ ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₆-X₁₀ ]
n_l16___89 [X₉-X₁₀ ]
n_l17___71 [X₉-X₁₀ ]
n_l17___88 [X₉-X₁₀ ]
n_l19___14 [X₉-X₁₀ ]
n_l19___56 [2⋅X₈+3 ]
n_l19___63 [X₉-X₁₀ ]
n_l19___7 [X₉-X₁₀ ]
n_l19___70 [X₉-X₁₀ ]
n_l19___87 [X₆-X₁₀ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₆-X₁₀ ]
n_l20___55 [2⋅X₈+3 ]
n_l18___54 [2⋅X₈+3 ]
n_l20___6 [X₉-X₁₀ ]
n_l18___5 [X₆-X₁₀ ]
n_l20___62 [X₆-X₁₀ ]
n_l18___61 [X₉-X₁₀ ]
n_l20___69 [X₉-X₁₀ ]
n_l18___68 [X₉-X₁₀ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₆-X₁₀ ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [3⋅X₁₁ ]
n_l21___53 [X₉-X₁₀ ]
n_l21___60 [X₉-X₁₀ ]
n_l21___67 [X₆-X₁₀ ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₉-X₁₀ ]
n_l22___3 [X₉+3⋅X₁₁-X₁₀-3 ]
n_l22___52 [X₉-X₁₀ ]
n_l22___59 [X₉-X₁₀ ]
n_l22___66 [X₆-X₁₀ ]
n_l22___83 [X₉-X₁₀ ]
n_l24___2 [X₉+3⋅X₁₁-X₁₀-3 ]
n_l23___1 [X₆-X₁₀ ]
n_l24___51 [X₉-X₁₀ ]
n_l23___50 [X₆-X₁₀ ]
n_l24___58 [X₆-X₁₀ ]
n_l23___57 [X₉-X₁₀ ]
n_l24___65 [X₉-X₁₀ ]
n_l23___64 [X₆-X₁₀ ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆-X₁₀ ]
n_l24___9 [X₉-X₁₀ ]
n_l23___8 [X₆-X₁₀ ]
n_l13___77 [X₆-X₁₀ ]
n_l16___76 [2⋅X₈+3 ]
n_l13___94 [X₆-X₁₀ ]
n_l30___95 [X₆-X₁₀ ]
n_l16___93 [X₆-X₁₀ ]
n_l30___78 [X₆-X₁₀ ]
n_l8___79 [X₉-X₁₀ ]
n_l8___82 [X₈-X₁₀-1 ]
l32 [X₉-X₁₀-1 ]

MPRF for transition t₁₃₂₈₉: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

12⋅X₆⋅X₈+30⋅X₆⋅X₆+28⋅X₈+91⋅X₆+X₁₁+51 {O(n^2)}

MPRF:

l31 [2-X₁₀-X₁₁ ]
l6 [2-X₁₀-X₁₁ ]
l7 [2-X₁₀-X₁₁ ]
l5 [2-X₁₀-X₁₁ ]
l8 [2-X₁₀-X₁₁ ]
n_l30___95 [2-X₁₀-X₁₁ ]
n_l13___94 [X₆-X₁₀ ]
n_l14___75 [X₆-X₁₀-X₁₁ ]
n_l12___74 [X₉-X₈-X₁₀ ]
n_l14___92 [X₆-X₁₀ ]
n_l12___91 [X₆-X₁₀ ]
n_l15___73 [X₉-X₁₀-X₁₁ ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₉-X₈-X₁₀ ]
n_l16___89 [X₆-X₁₀ ]
n_l16___93 [X₉-X₁₀-1 ]
n_l17___71 [X₉-X₈-X₁₀ ]
n_l17___88 [X₆-X₁₀ ]
n_l19___14 [X₆-X₁₀ ]
n_l19___56 [X₉-2⋅X₈-X₁₀ ]
n_l19___63 [X₆+X₈+2-X₁₀-X₁₁ ]
n_l19___7 [2⋅X₉+2-2⋅X₆ ]
n_l19___70 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l19___87 [X₆-X₁₀ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₉-X₁₀ ]
n_l20___55 [X₆-2⋅X₈-X₁₀ ]
n_l18___54 [X₉-2⋅X₈-X₁₀ ]
n_l20___6 [2 ]
n_l18___5 [2 ]
n_l20___62 [X₆+X₈+2-X₁₀-X₁₁ ]
n_l18___61 [X₆+X₈+2-X₁₀-X₁₁ ]
n_l20___69 [X₉+X₁₁-3⋅X₈-X₁₀-2 ]
n_l18___68 [X₆+X₁₁-3⋅X₈-X₁₀-2 ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [2⋅X₁₁ ]
n_l21___53 [X₉-2⋅X₈-X₁₀ ]
n_l21___60 [X₆+X₈+2-X₁₀-X₁₁ ]
n_l21___67 [X₆+X₁₁-3⋅X₈-X₁₀-2 ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₆-X₁₀ ]
n_l22___3 [X₉-X₁₀-X₁₁ ]
n_l22___52 [X₉-2⋅X₈-X₁₀ ]
n_l22___59 [X₆-X₁₀-X₁₁ ]
n_l22___66 [X₆+X₁₁-3⋅X₈-X₁₀-3 ]
n_l22___83 [X₉-X₁₀ ]
n_l24___2 [X₉-X₁₀-1 ]
n_l23___1 [X₆-X₁₀-X₁₁ ]
n_l24___51 [X₉-2⋅X₈-X₁₀ ]
n_l23___50 [X₆-2⋅X₈-X₁₀ ]
n_l24___58 [X₉-X₁₀-X₁₁ ]
n_l23___57 [X₆-X₁₀-X₁₁ ]
n_l24___65 [X₉-2⋅X₈-X₁₀-1 ]
n_l23___64 [X₉-X₁₀-X₁₁ ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆-X₁₀-X₁₁ ]
n_l24___9 [X₆-X₁₀-X₁₁ ]
n_l23___8 [X₆-X₁₀-X₁₁ ]
n_l13___77 [X₆-X₈-X₁₀ ]
n_l16___76 [X₆-2⋅X₈-X₁₀ ]
n_l30___78 [X₆-X₁₀-X₁₁ ]
n_l8___79 [X₉-X₈-X₁₀ ]
n_l8___82 [X₉+2-X₈ ]
l32 [2-X₁₀-X₁₁ ]

MPRF for transition t₁₃₂₉₀: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₆+5 {O(n)}

MPRF:

l31 [X₉+2-X₁₀ ]
l6 [X₆+2-X₁₀ ]
l7 [2⋅X₉+2-X₆-X₁₀ ]
l5 [2⋅X₉+2-X₆-X₁₀ ]
l8 [2⋅X₉+2-X₆-X₁₀ ]
n_l14___75 [X₉+2-X₁₀ ]
n_l12___74 [X₉+2-X₁₀ ]
n_l14___92 [X₉+2-X₁₀ ]
n_l12___91 [X₉+2-X₁₀ ]
n_l15___73 [X₆+2-X₁₀ ]
n_l15___90 [X₆+2-X₁₀ ]
n_l16___72 [X₆+2-X₁₀ ]
n_l16___89 [X₆+2-X₁₀ ]
n_l17___71 [X₉+2-X₁₀ ]
n_l17___88 [X₆+2-X₁₀ ]
n_l19___14 [X₉+2-X₁₀ ]
n_l19___56 [2⋅X₈+5 ]
n_l19___63 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l19___7 [2⋅X₁₀+11-X₆-X₉ ]
n_l19___70 [X₉+X₁₁+1-2⋅X₈-X₁₀ ]
n_l19___87 [X₉+2⋅X₁₁-X₁₀ ]
n_l20___13 [X₉+2-X₁₀ ]
n_l18___12 [X₆+2-X₁₀ ]
n_l20___55 [2⋅X₈+2⋅X₉+1-2⋅X₁₀-2⋅X₁₁ ]
n_l18___54 [2⋅X₈+2⋅X₉+1-2⋅X₁₀-2⋅X₁₁ ]
n_l20___6 [2⋅X₁₀+11-2⋅X₉ ]
n_l18___5 [2⋅X₁₀+11-2⋅X₉ ]
n_l20___62 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l18___61 [X₆+X₁₁-2⋅X₈-X₁₀ ]
n_l20___69 [X₆+X₁₁+1-2⋅X₈-X₁₀ ]
n_l18___68 [X₉+2-X₁₀ ]
n_l20___86 [X₉+2-X₁₀ ]
n_l18___85 [X₉+2-X₁₀ ]
n_l21___11 [X₆+2-X₁₀ ]
n_l21___4 [2⋅X₁₀+11⋅X₁₁-X₆-X₉ ]
n_l21___53 [X₆+2⋅X₈+X₉+1-2⋅X₁₀-2⋅X₁₁ ]
n_l21___60 [X₆+2-X₁₀ ]
n_l21___67 [X₆+2-X₁₀ ]
n_l21___84 [2⋅X₆+2-X₉-X₁₀ ]
n_l22___10 [2⋅X₆+4-X₉-X₁₀-X₁₁ ]
n_l22___3 [X₆+2-X₁₀ ]
n_l22___52 [2⋅X₆+2⋅X₈+1-2⋅X₁₀-2⋅X₁₁ ]
n_l22___59 [X₆+2-X₁₀ ]
n_l22___66 [X₉+2⋅X₁₁-4⋅X₈-X₁₀ ]
n_l22___83 [X₉+2-X₁₀ ]
n_l24___2 [X₉+2⋅X₁₁-X₁₀ ]
n_l23___1 [X₉+2-X₁₀ ]
n_l24___51 [2⋅X₈+2⋅X₉+1-2⋅X₁₀-2⋅X₁₁ ]
n_l23___50 [X₉+2-X₁₀ ]
n_l24___58 [X₉+2-X₁₀ ]
n_l23___57 [X₉+2-X₁₀ ]
n_l24___65 [X₉+2⋅X₁₁-4⋅X₈-X₁₀ ]
n_l23___64 [X₉+2⋅X₁₁-4⋅X₈-X₁₀ ]
n_l24___81 [X₉+2⋅X₁₁-X₁₀ ]
n_l23___80 [X₉+2-X₁₀ ]
n_l24___9 [X₆+4-X₁₀-X₁₁ ]
n_l23___8 [X₉+2-X₁₀ ]
n_l13___77 [X₆+2-X₁₀ ]
n_l16___76 [2⋅X₈+5 ]
n_l13___94 [X₆+2-X₁₀ ]
n_l30___95 [2⋅X₆+2-X₉-X₁₀ ]
n_l16___93 [2⋅X₁₀+11-2⋅X₆ ]
n_l30___78 [X₆+2-X₁₀ ]
n_l8___79 [X₆+2-X₁₀ ]
n_l8___82 [X₉+1-X₁₀ ]
l32 [X₆+1-X₁₀ ]

MPRF for transition t₁₃₂₉₈: n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

21⋅X₆⋅X₆+86⋅X₆+X₁₁+86 {O(n^2)}

MPRF:

l31 [X₆+2-X₁₀-X₁₁ ]
l6 [X₆+2-X₁₀-X₁₁ ]
l7 [X₆+2-X₁₀-X₁₁ ]
l5 [X₆+2-X₁₀-X₁₁ ]
l8 [X₉+2-X₁₀-X₁₁ ]
n_l30___95 [X₉+2-X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₆-X₈-X₁₀-2 ]
n_l12___74 [2⋅X₉-X₈-X₁₀-2 ]
n_l14___92 [2⋅X₉ ]
n_l12___91 [2⋅X₉ ]
n_l15___73 [2⋅X₉-X₈-X₁₀-2 ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₆-X₁₀-X₁₁-2 ]
n_l16___89 [2⋅X₉-1 ]
n_l16___93 [3⋅X₁₀+12-2⋅X₆ ]
n_l17___71 [2⋅X₉-X₁₀-X₁₁-2 ]
n_l17___88 [2⋅X₉ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [X₈+4⋅X₁₀+4⋅X₁₁+10-3⋅X₆ ]
n_l19___63 [2⋅X₉-X₈-X₁₀-2 ]
n_l19___7 [3⋅X₁₀+12⋅X₁₁-2⋅X₆ ]
n_l19___70 [2⋅X₉-X₈-X₁₀-2 ]
n_l19___87 [2⋅X₆-1 ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [X₈+4⋅X₁₀+4⋅X₁₁+10-3⋅X₆ ]
n_l18___54 [X₈+X₁₀+X₁₁+4 ]
n_l20___6 [3⋅X₁₀+12-2⋅X₉ ]
n_l18___5 [3⋅X₁₀+12-2⋅X₉ ]
n_l20___62 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l18___61 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l20___69 [2⋅X₉-X₈-X₁₀-2 ]
n_l18___68 [2⋅X₉-X₈-X₁₀-2 ]
n_l20___86 [2⋅X₆-X₁₁ ]
n_l18___85 [2⋅X₉-1 ]
n_l21___11 [2⋅X₉ ]
n_l21___4 [3⋅X₁₀+12-X₆-X₉ ]
n_l21___53 [X₈+X₁₀+X₁₁+4 ]
n_l21___60 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l21___67 [2⋅X₉-X₈-X₁₀-2 ]
n_l21___84 [2⋅X₉-1 ]
n_l22___10 [2⋅X₉ ]
n_l22___3 [X₁₀+4⋅X₁₁ ]
n_l22___52 [3⋅X₆+2⋅X₈-2⋅X₁₀-3⋅X₁₁ ]
n_l22___59 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l22___66 [2⋅X₉-X₈-X₁₀-3 ]
n_l22___83 [2⋅X₆-1 ]
n_l24___2 [X₁₀+4⋅X₁₁ ]
n_l23___1 [2⋅X₉-X₁₀-2 ]
n_l24___51 [2⋅X₈+X₉+2-X₁₁ ]
n_l23___50 [2⋅X₆-X₁₀-X₁₁-1 ]
n_l24___58 [2⋅X₆-X₁₀-X₁₁-1 ]
n_l23___57 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l24___65 [2⋅X₉-X₈-X₁₀-3 ]
n_l23___64 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l24___81 [2⋅X₉-X₁₁-1 ]
n_l23___80 [2⋅X₆-X₁₁-1 ]
n_l24___9 [2⋅X₉ ]
n_l23___8 [2⋅X₆-X₁₁-1 ]
n_l13___77 [2⋅X₆-X₁₀-X₁₁-2 ]
n_l16___76 [9⋅X₈+4⋅X₁₀+14-3⋅X₆ ]
n_l30___78 [2⋅X₆-X₁₀-X₁₁-1 ]
n_l8___79 [X₆+X₉-X₈-X₁₀-1 ]
n_l8___82 [X₆+X₉+3-X₈ ]
l32 [X₉+2-X₁₀-X₁₁ ]

MPRF for transition t₁₃₂₉₉: n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

12⋅X₆⋅X₈+27⋅X₆⋅X₆+102⋅X₆+2⋅X₁₁+28⋅X₈+95 {O(n^2)}

MPRF:

l31 [4-X₁₀-2⋅X₁₁ ]
l6 [4-X₁₀-2⋅X₁₁ ]
l7 [4-X₁₀-2⋅X₁₁ ]
l5 [3-X₁₀-2⋅X₁₁ ]
l8 [3-X₁₀-2⋅X₁₁ ]
n_l30___95 [X₉+3-X₆-X₁₀-2⋅X₁₁ ]
n_l13___94 [2⋅X₆-X₁₀-4 ]
n_l14___75 [X₆+2-2⋅X₈-X₁₀ ]
n_l12___74 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l14___92 [2⋅X₆-X₁₀-4 ]
n_l12___91 [2⋅X₉-X₁₀-4 ]
n_l15___73 [X₉+2-2⋅X₈-X₁₀ ]
n_l15___90 [X₉ ]
n_l16___72 [X₉-2⋅X₈-X₁₀-1 ]
n_l16___89 [X₆ ]
n_l16___93 [3 ]
n_l17___71 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l17___88 [X₉-1 ]
n_l19___14 [X₆-1 ]
n_l19___56 [X₉+2-2⋅X₈-X₁₀ ]
n_l19___63 [X₉+2-2⋅X₈-X₁₀ ]
n_l19___7 [X₆-X₁₀ ]
n_l19___70 [X₉-2⋅X₈-X₁₀-1 ]
n_l19___87 [X₉ ]
n_l20___13 [X₉+1-X₁₁ ]
n_l18___12 [X₉-1 ]
n_l20___55 [X₉+2-2⋅X₈-X₁₀ ]
n_l18___54 [X₆+3-X₁₀-X₁₁ ]
n_l20___6 [X₉-X₁₀ ]
n_l18___5 [X₉-X₁₀ ]
n_l20___62 [X₉+2-2⋅X₈-X₁₀ ]
n_l18___61 [X₆+2-2⋅X₈-X₁₀ ]
n_l20___69 [X₆-2⋅X₈-X₁₀-1 ]
n_l18___68 [X₆-2⋅X₈-X₁₀-1 ]
n_l20___86 [X₉ ]
n_l18___85 [X₉ ]
n_l21___11 [X₉+1-X₁₁ ]
n_l21___4 [X₉-X₁₀ ]
n_l21___53 [X₉+1-X₁₀-X₁₁ ]
n_l21___60 [X₆+2-2⋅X₈-X₁₀ ]
n_l21___67 [X₆-2⋅X₈-X₁₀-1 ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₆-1 ]
n_l22___3 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l22___52 [X₆-X₁₀-X₁₁-1 ]
n_l22___59 [X₉+2-2⋅X₈-X₁₀ ]
n_l22___66 [X₆-2⋅X₈-X₁₀-2 ]
n_l22___83 [X₉-X₁₀ ]
n_l24___2 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l23___1 [X₆+2-X₁₀-2⋅X₁₁ ]
n_l24___51 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l23___50 [X₆+2-X₁₀-2⋅X₁₁ ]
n_l24___58 [X₉-2⋅X₈-X₁₀-X₁₁ ]
n_l23___57 [X₆+2-X₁₀-2⋅X₁₁ ]
n_l24___65 [X₉-2⋅X₈-X₁₀-2 ]
n_l23___64 [X₆-2⋅X₈-X₁₀-2 ]
n_l24___81 [X₆-X₁₀ ]
n_l23___80 [X₆+2-X₁₀-2⋅X₁₁ ]
n_l24___9 [X₆+2-2⋅X₁₁ ]
n_l23___8 [X₆+2-2⋅X₁₁ ]
n_l13___77 [X₆+2-X₁₀-2⋅X₁₁ ]
n_l16___76 [X₆+2-X₁₀-2⋅X₁₁ ]
n_l30___78 [X₆+2-2⋅X₈-X₁₀ ]
n_l8___79 [2⋅X₉+2-X₆-2⋅X₈-X₁₀ ]
n_l8___82 [X₈+3-X₉ ]
l32 [3-X₁₀-2⋅X₁₁ ]

MPRF for transition t₁₃₃₀₀: n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

12⋅X₆⋅X₈+36⋅X₆⋅X₆+106⋅X₆+28⋅X₈+X₁₁+53 {O(n^2)}

MPRF:

l31 [X₆+4-X₁₀-X₁₁ ]
l6 [2⋅X₉+3-X₆-X₁₀-X₁₁ ]
l7 [2⋅X₉+3-X₆-X₁₀-X₁₁ ]
l5 [2⋅X₉+3-X₆-X₁₀-X₁₁ ]
l8 [2⋅X₉+3-X₆-X₁₀-X₁₁ ]
n_l30___95 [X₉+3-X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆-X₁₀ ]
n_l14___75 [2⋅X₆+1-X₁₀-2⋅X₁₁ ]
n_l12___74 [2⋅X₉+1-2⋅X₈-X₁₀ ]
n_l14___92 [2⋅X₆-X₁₀ ]
n_l12___91 [2⋅X₉-X₁₀ ]
n_l15___73 [2⋅X₉-2⋅X₈-X₁₀ ]
n_l15___90 [2⋅X₉-X₁₀ ]
n_l16___72 [2⋅X₉-X₁₀-2⋅X₁₁ ]
n_l16___89 [2⋅X₉-X₁₀ ]
n_l16___93 [2⋅X₉+1-X₁₀ ]
n_l17___71 [2⋅X₉-2⋅X₈-X₁₀ ]
n_l17___88 [2⋅X₆-X₁₀ ]
n_l19___14 [2⋅X₆-X₁₀ ]
n_l19___56 [2⋅X₉+1-2⋅X₈-X₁₀ ]
n_l19___63 [2⋅X₉-2⋅X₈-X₁₀ ]
n_l19___7 [2⋅X₉+1-X₁₀ ]
n_l19___70 [2⋅X₉+X₁₁-4⋅X₈-X₁₀-1 ]
n_l19___87 [2⋅X₉-X₁₀ ]
n_l20___13 [2⋅X₉-X₁₀ ]
n_l18___12 [2⋅X₆-X₁₀ ]
n_l20___55 [2⋅X₉+1-2⋅X₈-X₁₀ ]
n_l18___54 [2⋅X₉+1-2⋅X₈-X₁₀ ]
n_l20___6 [3⋅X₁₀+13-2⋅X₆ ]
n_l18___5 [X₁₀+7⋅X₁₁ ]
n_l20___62 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l18___61 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l20___69 [2⋅X₆-2⋅X₈-X₁₀ ]
n_l18___68 [2⋅X₆-2⋅X₈-X₁₀ ]
n_l20___86 [2⋅X₉-X₁₀ ]
n_l18___85 [2⋅X₆-X₁₀ ]
n_l21___11 [2⋅X₉-X₁₀ ]
n_l21___4 [X₁₀+7⋅X₁₁ ]
n_l21___53 [2⋅X₉+1-2⋅X₈-X₁₀ ]
n_l21___60 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l21___67 [X₆+X₉-2⋅X₈-X₁₀ ]
n_l21___84 [2⋅X₉-X₁₀ ]
n_l22___10 [2⋅X₆-X₁₀-X₁₁ ]
n_l22___3 [2⋅X₉+7⋅X₁₁-X₁₀-6 ]
n_l22___52 [2⋅X₉+1-2⋅X₈-X₁₀ ]
n_l22___59 [2⋅X₉-X₁₀-X₁₁ ]
n_l22___66 [2⋅X₉-2⋅X₈-X₁₀ ]
n_l22___83 [2⋅X₉-X₁₀ ]
n_l24___2 [2⋅X₉+7⋅X₁₁-X₁₀-8 ]
n_l23___1 [2⋅X₆-X₁₀-X₁₁ ]
n_l24___51 [2⋅X₉+1-2⋅X₈-X₁₀ ]
n_l23___50 [2⋅X₆+1-2⋅X₈-X₁₀ ]
n_l24___58 [2⋅X₆-X₁₀-X₁₁ ]
n_l23___57 [2⋅X₆-2⋅X₈-X₁₀-2 ]
n_l24___65 [2⋅X₉-2⋅X₈-X₁₀-1 ]
n_l23___64 [2⋅X₉-X₁₀-X₁₁ ]
n_l24___81 [2⋅X₆-X₁₀ ]
n_l23___80 [2⋅X₆-X₁₀-X₁₁ ]
n_l24___9 [2⋅X₆-X₁₀-X₁₁ ]
n_l23___8 [2⋅X₆-X₁₀-X₁₁ ]
n_l13___77 [2⋅X₆+1-X₁₀-2⋅X₁₁ ]
n_l16___76 [2⋅X₆+1-2⋅X₈-X₁₀ ]
n_l30___78 [2⋅X₆+1-2⋅X₈-X₁₀ ]
n_l8___79 [3⋅X₆-X₈-X₉-X₁₀ ]
n_l8___82 [2⋅X₆+4-X₈ ]
l32 [X₉+3-X₁₀-X₁₁ ]

MPRF for transition t₁₃₃₀₆: n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

120⋅X₆⋅X₆+48⋅X₆⋅X₈+112⋅X₈+2⋅X₁₁+358⋅X₆+194 {O(n^2)}

MPRF:

l31 [3⋅X₉-4⋅X₁₀-2⋅X₁₁-10 ]
l6 [3⋅X₉-4⋅X₁₀-2⋅X₁₁-10 ]
l7 [3⋅X₆-4⋅X₁₀-2⋅X₁₁-10 ]
l5 [3⋅X₆-4⋅X₁₀-2⋅X₁₁-10 ]
l8 [3⋅X₉-4⋅X₁₀-2⋅X₁₁-10 ]
n_l30___95 [3⋅X₆-4⋅X₁₀-2⋅X₁₁-10 ]
n_l13___94 [4⋅X₆-4⋅X₁₀ ]
n_l14___75 [4⋅X₆-4⋅X₁₀-2⋅X₁₁-16 ]
n_l12___74 [4⋅X₉-2⋅X₈-4⋅X₁₀-16 ]
n_l14___92 [4⋅X₆-4⋅X₁₀ ]
n_l12___91 [4⋅X₉-4⋅X₁₀ ]
n_l15___73 [4⋅X₉-4⋅X₁₀-2⋅X₁₁-16 ]
n_l15___90 [4⋅X₉-4⋅X₁₀ ]
n_l16___72 [4⋅X₆-2⋅X₈-4⋅X₁₀-16 ]
n_l16___89 [4⋅X₆-4⋅X₁₀ ]
n_l16___93 [4⋅X₆-4⋅X₉-1 ]
n_l17___71 [4⋅X₆-2⋅X₈-4⋅X₁₀-16 ]
n_l17___88 [4⋅X₆-4⋅X₁₀ ]
n_l19___14 [4⋅X₉-4⋅X₁₀ ]
n_l19___56 [2⋅X₈+2⋅X₁₁-6 ]
n_l19___63 [4⋅X₉-2⋅X₈-4⋅X₁₀-16 ]
n_l19___7 [4⋅X₉-4⋅X₁₀-13 ]
n_l19___70 [32⋅X₈+4⋅X₉-4⋅X₁₀-17⋅X₁₁ ]
n_l19___87 [4⋅X₉-4⋅X₁₀ ]
n_l20___13 [4⋅X₉-4⋅X₁₀ ]
n_l18___12 [4⋅X₉-4⋅X₁₀ ]
n_l20___55 [3⋅X₁₁-7 ]
n_l18___54 [X₉+3⋅X₁₁-X₆-7 ]
n_l20___6 [4⋅X₉-4⋅X₁₀-13⋅X₁₁ ]
n_l18___5 [4⋅X₆-4⋅X₁₀-13⋅X₁₁ ]
n_l20___62 [4⋅X₆-2⋅X₈-4⋅X₁₀-16 ]
n_l18___61 [4⋅X₉-2⋅X₈-4⋅X₁₀-16 ]
n_l20___69 [32⋅X₈+4⋅X₉-4⋅X₁₀-17⋅X₁₁ ]
n_l18___68 [32⋅X₈+4⋅X₉-4⋅X₁₀-17⋅X₁₁ ]
n_l20___86 [4⋅X₆-4⋅X₁₀ ]
n_l18___85 [4⋅X₉-4⋅X₁₀ ]
n_l21___11 [4⋅X₉-4⋅X₁₀ ]
n_l21___4 [4⋅X₉-4⋅X₁₀-13 ]
n_l21___53 [3⋅X₁₁-7 ]
n_l21___60 [4⋅X₆-2⋅X₈-4⋅X₁₀-16 ]
n_l21___67 [38⋅X₈+4⋅X₉+3-4⋅X₁₀-20⋅X₁₁ ]
n_l21___84 [4⋅X₉-4⋅X₁₀ ]
n_l22___10 [4⋅X₉-4⋅X₁₀ ]
n_l22___3 [4⋅X₉-4⋅X₁₀-8⋅X₁₁-5 ]
n_l22___52 [3⋅X₁₁-7 ]
n_l22___59 [4⋅X₆-2⋅X₈-4⋅X₁₀-16 ]
n_l22___66 [38⋅X₈+4⋅X₉-4⋅X₁₀-20⋅X₁₁ ]
n_l22___83 [4⋅X₆-4⋅X₁₀ ]
n_l24___2 [4⋅X₉-4⋅X₁₀-8⋅X₁₁-5 ]
n_l23___1 [4⋅X₆-4⋅X₁₀-2⋅X₁₁-16 ]
n_l24___51 [4⋅X₆-4⋅X₁₀-X₁₁-15 ]
n_l23___50 [4⋅X₉-2⋅X₈-4⋅X₁₀-16 ]
n_l24___58 [4⋅X₉-2⋅X₈-4⋅X₁₀-16 ]
n_l23___57 [4⋅X₉-2⋅X₈-4⋅X₁₀-16 ]
n_l24___65 [4⋅X₆-4⋅X₁₀-X₁₁-19 ]
n_l23___64 [4⋅X₆-4⋅X₁₀-X₁₁-19 ]
n_l24___81 [4⋅X₉+4-4⋅X₁₀-8⋅X₁₁ ]
n_l23___80 [4⋅X₆-4⋅X₁₀-2⋅X₁₁-16 ]
n_l24___9 [4⋅X₉-4⋅X₁₀ ]
n_l23___8 [4⋅X₆-4⋅X₁₀-10⋅X₁₁ ]
n_l13___77 [4⋅X₆+7⋅X₈-4⋅X₁₀-9⋅X₁₁-16 ]
n_l16___76 [6⋅X₈-4 ]
n_l30___78 [7⋅X₈+4⋅X₉-4⋅X₁₀-9⋅X₁₁-16 ]
n_l8___79 [4⋅X₉-4⋅X₁₀-2⋅X₁₁-16 ]
n_l8___82 [3⋅X₆-3⋅X₁₀-13 ]
l32 [4⋅X₆-X₉-4⋅X₁₀-2⋅X₁₁-13 ]

MPRF for transition t₁₃₃₀₇: n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

9⋅X₆⋅X₆+30⋅X₆+X₁₁+24 {O(n^2)}

MPRF:

l31 [3-X₁₀-X₁₁ ]
l6 [X₆+3-X₉-X₁₀-X₁₁ ]
l7 [X₆+3-X₉-X₁₀-X₁₁ ]
l5 [X₆+3-X₉-X₁₀-X₁₁ ]
l8 [3-X₁₀-X₁₁ ]
n_l30___95 [3-X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₆+1-X₁₀-X₁₁ ]
n_l12___74 [X₈+2⋅X₉+1-X₁₀-2⋅X₁₁ ]
n_l14___92 [2⋅X₆ ]
n_l12___91 [2⋅X₆ ]
n_l15___73 [2⋅X₆+X₈+1-X₁₀-2⋅X₁₁ ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [X₈+2⋅X₉+1-X₁₀-2⋅X₁₁ ]
n_l16___89 [2⋅X₆ ]
n_l16___93 [X₆+3 ]
n_l17___71 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l17___88 [2⋅X₆-1 ]
n_l19___14 [2⋅X₉+1-X₁₁ ]
n_l19___56 [2⋅X₆+3-X₁₀-X₁₁ ]
n_l19___63 [X₆+X₉+4⋅X₁₁-9⋅X₈-X₁₀-7 ]
n_l19___7 [2⋅X₆-X₁₀ ]
n_l19___70 [X₈+2⋅X₉+2-X₁₀-X₁₁ ]
n_l19___87 [2⋅X₉ ]
n_l20___13 [2⋅X₉-1 ]
n_l18___12 [2⋅X₆-1 ]
n_l20___55 [2⋅X₉+3-X₁₀-X₁₁ ]
n_l18___54 [2⋅X₆+3-X₁₀-X₁₁ ]
n_l20___6 [2⋅X₉-X₁₀ ]
n_l18___5 [2⋅X₉-X₁₀ ]
n_l20___62 [2⋅X₆+1-X₈-X₁₀ ]
n_l18___61 [2⋅X₆+1-X₈-X₁₀ ]
n_l20___69 [2⋅X₉+2⋅X₁₁-6⋅X₈-X₁₀ ]
n_l18___68 [2⋅X₉+2⋅X₁₁-6⋅X₈-X₁₀ ]
n_l20___86 [2⋅X₉ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₆-1 ]
n_l21___4 [2⋅X₉-X₁₀ ]
n_l21___53 [2⋅X₉+3-X₁₀-X₁₁ ]
n_l21___60 [2⋅X₉+1-X₈-X₁₀ ]
n_l21___67 [2⋅X₉+2⋅X₁₁-6⋅X₈-X₁₀ ]
n_l21___84 [2⋅X₉ ]
n_l22___10 [2⋅X₆-1 ]
n_l22___3 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l22___52 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l22___59 [2⋅X₉+1-X₈-X₁₀ ]
n_l22___66 [2⋅X₆+2⋅X₁₁-6⋅X₈-X₁₀ ]
n_l22___83 [2⋅X₆+2-2⋅X₁₁ ]
n_l24___2 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l23___1 [2⋅X₆+4-X₉-X₁₁ ]
n_l24___51 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l23___50 [X₆+3 ]
n_l24___58 [2⋅X₉+1-X₈-X₁₀ ]
n_l23___57 [2⋅X₆+1-X₈-X₁₀ ]
n_l24___65 [10⋅X₈+2⋅X₉+8-X₁₀-6⋅X₁₁ ]
n_l23___64 [10⋅X₈+2⋅X₉+8-X₁₀-6⋅X₁₁ ]
n_l24___81 [2⋅X₆+2-2⋅X₁₁ ]
n_l23___80 [2⋅X₆+1-X₁₁ ]
n_l24___9 [2⋅X₆+1-X₁₁ ]
n_l23___8 [2⋅X₆+1-X₁₁ ]
n_l13___77 [2⋅X₆+1-X₁₀-X₁₁ ]
n_l16___76 [2⋅X₆+2-2⋅X₈-X₁₀ ]
n_l30___78 [2⋅X₆+1-X₁₀-X₁₁ ]
n_l8___79 [2⋅X₆+1-X₁₀-X₁₁ ]
n_l8___82 [2⋅X₈+3-X₆ ]
l32 [3-X₁₀-X₁₁ ]

MPRF for transition t₁₃₃₀₈: n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

3⋅X₆⋅X₆+18⋅X₆+2⋅X₁₁+24 {O(n^2)}

MPRF:

l31 [X₉-X₆-X₁₀-2⋅X₁₁ ]
l6 [X₉-X₆-X₁₀-2⋅X₁₁ ]
l7 [X₉-X₆-X₁₀-2⋅X₁₁ ]
l5 [X₉-X₆-X₁₀-2⋅X₁₁ ]
l8 [X₉-X₆-X₁₀-2⋅X₁₁ ]
n_l30___95 [-X₁₀-2⋅X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₆-2⋅X₈-X₁₀ ]
n_l12___74 [X₉-X₁₀-2⋅X₁₁ ]
n_l14___92 [X₆ ]
n_l12___91 [X₉ ]
n_l15___73 [X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l15___90 [X₉ ]
n_l16___72 [X₆-X₁₀-2⋅X₁₁ ]
n_l16___89 [X₉ ]
n_l16___93 [3 ]
n_l17___71 [X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l17___88 [X₆ ]
n_l19___14 [X₆ ]
n_l19___56 [X₉-2⋅X₈-X₁₀ ]
n_l19___63 [X₉-2⋅X₈-X₁₀ ]
n_l19___7 [3 ]
n_l19___70 [X₆-2⋅X₈-X₁₀ ]
n_l19___87 [X₉ ]
n_l20___13 [X₉ ]
n_l18___12 [X₉ ]
n_l20___55 [X₉-2⋅X₈-X₁₀ ]
n_l18___54 [X₉-2⋅X₈-X₁₀ ]
n_l20___6 [3⋅X₁₁ ]
n_l18___5 [3 ]
n_l20___62 [X₉-2⋅X₈-X₁₀ ]
n_l18___61 [X₉-2⋅X₈-X₁₀ ]
n_l20___69 [X₉-2⋅X₈-X₁₀ ]
n_l18___68 [X₆-2⋅X₈-X₁₀ ]
n_l20___86 [X₉ ]
n_l18___85 [X₉ ]
n_l21___11 [X₉ ]
n_l21___4 [3 ]
n_l21___53 [X₉-2⋅X₈-X₁₀ ]
n_l21___60 [X₉-2⋅X₈-X₁₀ ]
n_l21___67 [X₆-2⋅X₈-X₁₀ ]
n_l21___84 [X₉ ]
n_l22___10 [X₆ ]
n_l22___3 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l22___52 [X₉-2⋅X₈-X₁₀ ]
n_l22___59 [X₆-2⋅X₈-X₁₀ ]
n_l22___66 [X₆-2⋅X₈-X₁₀ ]
n_l22___83 [X₉ ]
n_l24___2 [X₉-X₁₀-2⋅X₁₁ ]
n_l23___1 [X₆-X₁₀-2⋅X₁₁ ]
n_l24___51 [X₉-2⋅X₈-X₁₀ ]
n_l23___50 [X₆-2⋅X₈-X₁₀ ]
n_l24___58 [X₆-2⋅X₈-X₁₀ ]
n_l23___57 [X₆-X₁₀-2⋅X₁₁ ]
n_l24___65 [X₉-2⋅X₈-X₁₀-3 ]
n_l23___64 [X₆-X₁₀-X₁₁-2 ]
n_l24___81 [X₉ ]
n_l23___80 [X₆-2⋅X₁₁ ]
n_l24___9 [X₆-2⋅X₁₁ ]
n_l23___8 [X₆-2⋅X₁₁ ]
n_l13___77 [X₆-2⋅X₈-X₁₀ ]
n_l16___76 [X₆-X₁₀-2⋅X₁₁ ]
n_l30___78 [X₉-2⋅X₈-X₁₀ ]
n_l8___79 [X₉-2⋅X₈-X₁₀ ]
n_l8___82 [3 ]
l32 [-X₁₀-2⋅X₁₁ ]

MPRF for transition t₁₃₃₁₅: n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

24⋅X₆⋅X₈+51⋅X₆⋅X₆+155⋅X₆+56⋅X₈+X₁₁+84 {O(n^2)}

MPRF:

l31 [-3⋅X₁₀-X₁₁ ]
l6 [-3⋅X₁₀-X₁₁ ]
l7 [-3⋅X₁₀-X₁₁ ]
l5 [-3⋅X₁₀-X₁₁ ]
l8 [-3⋅X₁₀-X₁₁ ]
n_l30___95 [X₉-X₆-3⋅X₁₀-X₁₁ ]
n_l13___94 [3⋅X₆-2⋅X₁₀ ]
n_l14___75 [3⋅X₆-X₈-3⋅X₁₀-8 ]
n_l12___74 [3⋅X₉-X₈-3⋅X₁₀-8 ]
n_l14___92 [3⋅X₉-2⋅X₁₀ ]
n_l12___91 [3⋅X₉-2⋅X₁₀-9 ]
n_l15___73 [3⋅X₉-X₈-3⋅X₁₀-8 ]
n_l15___90 [3⋅X₉-2⋅X₁₀-9 ]
n_l16___72 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l16___89 [3⋅X₉-3⋅X₁₀-9 ]
n_l16___93 [0 ]
n_l17___71 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l17___88 [3⋅X₆-2⋅X₁₀-9 ]
n_l19___14 [3⋅X₉+6⋅X₁₁-2⋅X₁₀-21 ]
n_l19___56 [4⋅X₈+X₉-X₁₀-X₁₁-1 ]
n_l19___63 [3⋅X₆-X₈-3⋅X₁₀-8 ]
n_l19___7 [0 ]
n_l19___70 [3⋅X₉-X₈-3⋅X₁₀-10 ]
n_l19___87 [3⋅X₉-3⋅X₁₀-9⋅X₁₁ ]
n_l20___13 [3⋅X₉+1-3⋅X₁₀-5⋅X₁₁ ]
n_l18___12 [3⋅X₉+X₁₁-3⋅X₁₀-11 ]
n_l20___55 [4⋅X₈+X₉-X₁₀-X₁₁-1 ]
n_l18___54 [X₆+4⋅X₈-X₁₀-X₁₁-1 ]
n_l20___6 [0 ]
n_l18___5 [0 ]
n_l20___62 [3⋅X₆+X₈-3⋅X₁₀-X₁₁-6 ]
n_l18___61 [3⋅X₆+X₈-3⋅X₁₀-X₁₁-6 ]
n_l20___69 [X₈+3⋅X₉-3⋅X₁₀-X₁₁-9 ]
n_l18___68 [3⋅X₉-3⋅X₁₀-X₁₁-8 ]
n_l20___86 [3⋅X₉-3⋅X₁₀-9 ]
n_l18___85 [3⋅X₆-3⋅X₁₀-9 ]
n_l21___11 [3⋅X₉-3⋅X₁₀-9 ]
n_l21___4 [0 ]
n_l21___53 [X₆+4⋅X₈-X₁₀-X₁₁-1 ]
n_l21___60 [X₈+3⋅X₉-3⋅X₁₀-X₁₁-6 ]
n_l21___67 [3⋅X₉-3⋅X₁₀-X₁₁-8 ]
n_l21___84 [3⋅X₉-3⋅X₁₀-9 ]
n_l22___10 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l22___3 [X₆-X₉ ]
n_l22___52 [3⋅X₉-3⋅X₁₀-X₁₁-7 ]
n_l22___59 [3⋅X₉-3⋅X₁₀-X₁₁-5 ]
n_l22___66 [3⋅X₉-3⋅X₁₀-X₁₁-8 ]
n_l22___83 [3⋅X₉-3⋅X₁₀-9⋅X₁₁ ]
n_l24___2 [X₉-X₁₀-3⋅X₁₁ ]
n_l23___1 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l24___51 [3⋅X₆-3⋅X₁₀-X₁₁-7 ]
n_l23___50 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l24___58 [3⋅X₆-3⋅X₁₀-X₁₁-5 ]
n_l23___57 [3⋅X₉-3⋅X₁₀-X₁₁-8 ]
n_l24___65 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l23___64 [3⋅X₉-3⋅X₁₀-X₁₁-8 ]
n_l24___81 [3⋅X₆-3⋅X₁₀-9 ]
n_l23___80 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l24___9 [3⋅X₉-3⋅X₁₀-X₁₁-8 ]
n_l23___8 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l13___77 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l16___76 [X₆+2⋅X₁₁-X₁₀-2 ]
n_l30___78 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l8___79 [4⋅X₆-X₈-X₉-3⋅X₁₀-8 ]
n_l8___82 [3⋅X₆-X₉-2⋅X₁₀-6 ]
l32 [-3⋅X₁₀-X₁₁ ]

MPRF for transition t₁₃₃₁₆: n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

21⋅X₆⋅X₆+2⋅X₁₁+79⋅X₆+80 {O(n^2)}

MPRF:

l31 [10-X₁₀-2⋅X₁₁ ]
l6 [2⋅X₉+10-2⋅X₆-X₁₀-2⋅X₁₁ ]
l7 [2⋅X₉+10-2⋅X₆-X₁₀-2⋅X₁₁ ]
l5 [2⋅X₉+10-2⋅X₆-X₁₀-2⋅X₁₁ ]
l8 [2⋅X₉+10-2⋅X₆-X₁₀-2⋅X₁₁ ]
n_l30___95 [10-X₁₀-2⋅X₁₁ ]
n_l13___94 [4⋅X₆ ]
n_l14___75 [4⋅X₆-X₁₀-2⋅X₁₁-2 ]
n_l12___74 [4⋅X₉-2⋅X₈-X₁₀-2 ]
n_l14___92 [5⋅X₉-X₆ ]
n_l12___91 [4⋅X₆ ]
n_l15___73 [4⋅X₉-2⋅X₈-X₁₀-2 ]
n_l15___90 [4⋅X₉-1 ]
n_l16___72 [4⋅X₉-2⋅X₈-X₁₀-2 ]
n_l16___89 [4⋅X₉-1 ]
n_l16___93 [3⋅X₁₀+10 ]
n_l17___71 [4⋅X₉-X₁₀-2⋅X₁₁-2 ]
n_l17___88 [4⋅X₉-3 ]
n_l19___14 [4⋅X₆-3 ]
n_l19___56 [4⋅X₈+X₉+2⋅X₁₀+7 ]
n_l19___63 [4⋅X₉-2⋅X₈-X₁₀-2 ]
n_l19___7 [3⋅X₁₀+10 ]
n_l19___70 [4⋅X₉-2⋅X₈-X₁₀-2 ]
n_l19___87 [4⋅X₉-1 ]
n_l20___13 [4⋅X₉-3 ]
n_l18___12 [4⋅X₉-X₁₁-1 ]
n_l20___55 [4⋅X₈+X₉+2⋅X₁₀+7 ]
n_l18___54 [4⋅X₆+4⋅X₈+1-X₁₀-3⋅X₁₁ ]
n_l20___6 [3⋅X₁₀+10⋅X₁₁ ]
n_l18___5 [3⋅X₁₀+10⋅X₁₁ ]
n_l20___62 [4⋅X₆+3⋅X₁₁-8⋅X₈-X₁₀-8 ]
n_l18___61 [4⋅X₉+3⋅X₁₁-8⋅X₈-X₁₀-8 ]
n_l20___69 [4⋅X₉-2⋅X₈-X₁₀-2 ]
n_l18___68 [4⋅X₆-X₁₀-X₁₁-1 ]
n_l20___86 [4⋅X₉-X₁₁ ]
n_l18___85 [4⋅X₉-1 ]
n_l21___11 [4⋅X₉-3 ]
n_l21___4 [3⋅X₁₀+10⋅X₁₁ ]
n_l21___53 [4⋅X₈+4⋅X₉+1-X₁₀-3⋅X₁₁ ]
n_l21___60 [4⋅X₉+3⋅X₁₁-8⋅X₈-X₁₀-8 ]
n_l21___67 [4⋅X₉-X₁₀-X₁₁-1 ]
n_l21___84 [4⋅X₉-1 ]
n_l22___10 [4⋅X₉-X₁₁-1 ]
n_l22___3 [4⋅X₉+10⋅X₁₁-X₁₀-12 ]
n_l22___52 [2⋅X₈+4⋅X₉+3-X₁₀-3⋅X₁₁ ]
n_l22___59 [4⋅X₉+3⋅X₁₁-10⋅X₈-X₁₀-11 ]
n_l22___66 [4⋅X₉+1-2⋅X₈-X₁₀-X₁₁ ]
n_l22___83 [4⋅X₉-1 ]
n_l24___2 [4⋅X₉-X₁₀-2⋅X₁₁ ]
n_l23___1 [4⋅X₆-X₁₀-2⋅X₁₁ ]
n_l24___51 [2⋅X₈+4⋅X₉+3-X₁₀-3⋅X₁₁ ]
n_l23___50 [4⋅X₆+2-X₁₀-2⋅X₁₁ ]
n_l24___58 [4⋅X₉-X₁₀-2⋅X₁₁-1 ]
n_l23___57 [4⋅X₉-X₁₀-2⋅X₁₁-2 ]
n_l24___65 [4⋅X₆+1-2⋅X₈-X₁₀-X₁₁ ]
n_l23___64 [4⋅X₉-4⋅X₈-X₁₀ ]
n_l24___81 [4⋅X₉-1 ]
n_l23___80 [4⋅X₆+1-2⋅X₁₁ ]
n_l24___9 [4⋅X₉-2⋅X₁₁-2 ]
n_l23___8 [4⋅X₆-2⋅X₁₁-2 ]
n_l13___77 [4⋅X₆-X₁₀-2⋅X₁₁-2 ]
n_l16___76 [X₆+6⋅X₈+2⋅X₁₀+7-2⋅X₁₁ ]
n_l30___78 [4⋅X₆-X₁₀-2⋅X₁₁-2 ]
n_l8___79 [4⋅X₉-2⋅X₈-X₁₀-2 ]
n_l8___82 [8⋅X₈-4⋅X₉-X₁₀-X₁₁-1 ]
l32 [10-X₁₀-2⋅X₁₁ ]

MPRF for transition t₁₃₃₁₇: n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

15⋅X₆⋅X₆+39⋅X₆+X₁₁+13 {O(n^2)}

MPRF:

l31 [X₆-X₁₀-X₁₁-6 ]
l6 [X₉-X₁₀-X₁₁-6 ]
l7 [X₆-X₁₀-X₁₁-7 ]
l5 [X₉-X₁₀-X₁₁-7 ]
l8 [X₉-X₁₀-X₁₁-7 ]
n_l30___95 [X₆-X₁₀-X₁₁-7 ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₆-X₁₀-X₁₁-9 ]
n_l12___74 [2⋅X₉-X₈-X₁₀-9 ]
n_l14___92 [2⋅X₆ ]
n_l12___91 [2⋅X₉ ]
n_l15___73 [2⋅X₆-X₈-X₁₀-9 ]
n_l15___90 [2⋅X₆ ]
n_l16___72 [2⋅X₆-X₁₀-X₁₁-9 ]
n_l16___89 [2⋅X₆ ]
n_l16___93 [2⋅X₁₀-X₆-1 ]
n_l17___71 [2⋅X₉-X₁₀-X₁₁-9 ]
n_l17___88 [2⋅X₆-X₁₀ ]
n_l19___14 [2⋅X₉-X₁₀ ]
n_l19___56 [X₉-5 ]
n_l19___63 [2⋅X₆-X₈-X₁₀-9 ]
n_l19___7 [X₉-7 ]
n_l19___70 [2⋅X₆-X₈-X₁₀-9 ]
n_l19___87 [2⋅X₆ ]
n_l20___13 [2⋅X₉-X₁₀ ]
n_l18___12 [2⋅X₉-X₁₀ ]
n_l20___55 [X₉-5 ]
n_l18___54 [X₉-5 ]
n_l20___6 [X₉-7 ]
n_l18___5 [X₆-7 ]
n_l20___62 [2⋅X₉-X₈-X₁₀-9 ]
n_l18___61 [2⋅X₉-X₈-X₁₀-9 ]
n_l20___69 [2⋅X₆+17⋅X₈-X₁₀-9⋅X₁₁ ]
n_l18___68 [17⋅X₈+2⋅X₉-X₁₀-9⋅X₁₁ ]
n_l20___86 [2⋅X₆ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₉-X₁₀ ]
n_l21___4 [X₆+X₁₀-X₉-4 ]
n_l21___53 [X₉-5 ]
n_l21___60 [2⋅X₉-X₈-X₁₀-9 ]
n_l21___67 [2⋅X₆+17⋅X₈-X₁₀-9⋅X₁₁-1 ]
n_l21___84 [2⋅X₉-X₁₀ ]
n_l22___10 [2⋅X₉-X₁₀-2⋅X₁₁-7 ]
n_l22___3 [X₉-7⋅X₁₁ ]
n_l22___52 [X₉-5 ]
n_l22___59 [2⋅X₉-X₈-X₁₀-9 ]
n_l22___66 [17⋅X₈+2⋅X₉-X₁₀-9⋅X₁₁-1 ]
n_l22___83 [2⋅X₉-X₁₀-2⋅X₁₁-8 ]
n_l24___2 [X₉-7 ]
n_l23___1 [2⋅X₆-X₁₀-X₁₁-9 ]
n_l24___51 [X₉-5 ]
n_l23___50 [2⋅X₆-X₁₀-X₁₁-7 ]
n_l24___58 [2⋅X₉-X₁₀-X₁₁-9 ]
n_l23___57 [2⋅X₆-X₁₀-X₁₁-9 ]
n_l24___65 [2⋅X₉-X₈-X₁₀-10 ]
n_l23___64 [2⋅X₉-2⋅X₈-X₁₀-10 ]
n_l24___81 [2⋅X₆-X₁₀-2⋅X₁₁-8 ]
n_l23___80 [2⋅X₆-X₁₀-X₁₁-9 ]
n_l24___9 [X₆+X₉-X₁₀-2⋅X₁₁-7 ]
n_l23___8 [2⋅X₆+1-X₁₀-6⋅X₁₁ ]
n_l13___77 [2⋅X₆-X₁₀-X₁₁-9 ]
n_l16___76 [X₆-5 ]
n_l30___78 [2⋅X₆-X₁₀-X₁₁-9 ]
n_l8___79 [3⋅X₉-X₆-X₈-X₁₀-9 ]
n_l8___82 [2⋅X₆-X₉-7 ]
l32 [X₉-X₁₀-X₁₁-7 ]

MPRF for transition t₁₃₃₂₅: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

12⋅X₆⋅X₈+24⋅X₆⋅X₆+2⋅X₁₁+28⋅X₈+89⋅X₆+78 {O(n^2)}

MPRF:

l31 [-X₁₀-2⋅X₁₁-1 ]
l6 [-X₁₀-2⋅X₁₁-1 ]
l7 [-X₁₀-2⋅X₁₁-1 ]
l5 [-X₁₀-2⋅X₁₁-1 ]
l8 [-X₁₀-2⋅X₁₁-1 ]
n_l30___95 [-X₁₀-2⋅X₁₁-1 ]
n_l13___94 [X₆-X₁₀-4 ]
n_l14___75 [X₉-X₁₀-2⋅X₁₁-4 ]
n_l12___74 [X₉-X₁₀-2⋅X₁₁-4 ]
n_l14___92 [X₆-X₁₀-4 ]
n_l12___91 [X₉-X₁₀-4 ]
n_l15___73 [X₉-2⋅X₈-X₁₀-4 ]
n_l15___90 [X₉-X₁₀-4 ]
n_l16___72 [X₉-X₁₀-2⋅X₁₁-4 ]
n_l16___89 [X₆-X₁₀-4 ]
n_l16___93 [-1 ]
n_l17___71 [X₆-X₁₀-2⋅X₁₁-4 ]
n_l17___88 [X₉-X₁₀-4 ]
n_l19___14 [X₉-X₁₀-4 ]
n_l19___56 [X₁₀+X₁₁+1-X₉ ]
n_l19___63 [X₆+2⋅X₈-X₁₀-2⋅X₁₁ ]
n_l19___7 [-1 ]
n_l19___70 [X₆-2⋅X₈-X₁₀-4 ]
n_l19___87 [X₉-X₁₀-4 ]
n_l20___13 [X₉-X₁₀-2⋅X₁₁ ]
n_l18___12 [X₆-X₁₀-4 ]
n_l20___55 [X₉-X₁₀-X₁₁-3 ]
n_l18___54 [X₆-X₁₀-X₁₁-3 ]
n_l20___6 [-X₁₁ ]
n_l18___5 [-1 ]
n_l20___62 [X₆+2⋅X₈-X₁₀-2⋅X₁₁ ]
n_l18___61 [X₆-X₁₀-X₁₁-2 ]
n_l20___69 [2⋅X₈+X₉-X₁₀-2⋅X₁₁-2 ]
n_l18___68 [X₆+2⋅X₈-X₁₀-2⋅X₁₁-2 ]
n_l20___86 [X₉-X₁₀-4⋅X₁₁ ]
n_l18___85 [X₉-X₁₀-4 ]
n_l21___11 [X₆-X₁₀-4 ]
n_l21___4 [-X₁₁ ]
n_l21___53 [X₉-X₁₀-X₁₁-3 ]
n_l21___60 [X₉-X₁₀-X₁₁-2 ]
n_l21___67 [2⋅X₈+X₉-X₁₀-2⋅X₁₁-2 ]
n_l21___84 [X₉-X₁₀-4 ]
n_l22___10 [X₆-X₁₀-2⋅X₁₁-2 ]
n_l22___3 [-1 ]
n_l22___52 [X₉-X₁₀-X₁₁-3 ]
n_l22___59 [X₆-X₁₀-X₁₁-2 ]
n_l22___66 [X₆-X₁₀-2⋅X₁₁ ]
n_l22___83 [X₉-X₁₀-4⋅X₁₁ ]
n_l24___2 [X₆+1-X₉-2⋅X₁₁ ]
n_l23___1 [X₆+1-X₉-2⋅X₁₁ ]
n_l24___51 [X₉-X₁₀-X₁₁-3 ]
n_l23___50 [X₆-2⋅X₈-X₁₀-4 ]
n_l24___58 [X₆-X₁₀-X₁₁-2 ]
n_l23___57 [X₉-X₁₀-2⋅X₁₁-2 ]
n_l24___65 [X₆-X₁₀-2⋅X₁₁ ]
n_l23___64 [X₆-X₁₀-2⋅X₁₁ ]
n_l24___81 [X₉-X₁₀-4 ]
n_l23___80 [X₆-X₁₀-2⋅X₁₁-2 ]
n_l24___9 [X₆-X₁₀-2⋅X₁₁-2 ]
n_l23___8 [X₆-X₁₀-2⋅X₁₁-2 ]
n_l13___77 [X₉-2⋅X₈-X₁₀-4 ]
n_l16___76 [X₁₁-X₈-1 ]
n_l30___78 [X₉-X₁₀-2⋅X₁₁-2 ]
n_l8___79 [X₉-X₈-X₁₀-X₁₁-2 ]
n_l8___82 [-1 ]
l32 [-X₁₀-2⋅X₁₁-1 ]

MPRF for transition t₁₃₃₂₆: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

9⋅X₆⋅X₆+30⋅X₆+X₁₁+24 {O(n^2)}

MPRF:

l31 [3-X₁₀-X₁₁ ]
l6 [3-X₁₀-X₁₁ ]
l7 [3-X₁₀-X₁₁ ]
l5 [3-X₁₀-X₁₁ ]
l8 [3-X₁₀-X₁₁ ]
n_l30___95 [3-X₁₀-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₆+2-2⋅X₈-X₁₀ ]
n_l12___74 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l14___92 [X₉ ]
n_l12___91 [X₉ ]
n_l15___73 [X₉+2-2⋅X₈-X₁₀ ]
n_l15___90 [X₉ ]
n_l16___72 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l16___89 [X₉ ]
n_l16___93 [X₆+3-X₉ ]
n_l17___71 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l17___88 [X₉ ]
n_l19___14 [X₉ ]
n_l19___56 [2⋅X₉-4⋅X₈-2⋅X₁₀-3 ]
n_l19___63 [X₆+2-2⋅X₈-X₁₀ ]
n_l19___7 [2⋅X₆-X₉-X₁₀ ]
n_l19___70 [X₉+2-2⋅X₈-X₁₀ ]
n_l19___87 [X₉ ]
n_l20___13 [X₉ ]
n_l18___12 [X₉ ]
n_l20___55 [2⋅X₁₁+1-4⋅X₈ ]
n_l18___54 [2⋅X₁₁+1-4⋅X₈ ]
n_l20___6 [X₉-X₁₀ ]
n_l18___5 [2⋅X₁₀+9⋅X₁₁-2⋅X₉ ]
n_l20___62 [X₆+2-2⋅X₈-X₁₀ ]
n_l18___61 [X₉+2-2⋅X₈-X₁₀ ]
n_l20___69 [X₉+2-2⋅X₈-X₁₀ ]
n_l18___68 [X₉+3-X₁₀-X₁₁ ]
n_l20___86 [X₆ ]
n_l18___85 [X₉ ]
n_l21___11 [X₆ ]
n_l21___4 [2⋅X₁₀+9-X₆-X₉ ]
n_l21___53 [2⋅X₁₁+1-4⋅X₈ ]
n_l21___60 [X₆+2-2⋅X₈-X₁₀ ]
n_l21___67 [X₉+3-X₁₀-X₁₁ ]
n_l21___84 [X₉ ]
n_l22___10 [X₆ ]
n_l22___3 [4-X₁₁ ]
n_l22___52 [X₉+2⋅X₁₁-6⋅X₈-X₁₀-2 ]
n_l22___59 [X₉+2-2⋅X₈-X₁₀ ]
n_l22___66 [X₉+3-X₁₀-X₁₁ ]
n_l22___83 [X₆ ]
n_l24___2 [2⋅X₁₁+1 ]
n_l23___1 [X₆+1-X₁₀-X₁₁ ]
n_l24___51 [X₆+2⋅X₁₁-6⋅X₈-X₁₀-2 ]
n_l23___50 [X₆+1-X₁₀-X₁₁ ]
n_l24___58 [X₉+2-2⋅X₈-X₁₀ ]
n_l23___57 [X₉+2-2⋅X₈-X₁₀ ]
n_l24___65 [X₆+1-X₁₀-X₁₁ ]
n_l23___64 [X₉+1-X₁₀-X₁₁ ]
n_l24___81 [X₉+1-X₁₁ ]
n_l23___80 [X₆+1-X₁₀-X₁₁ ]
n_l24___9 [X₉ ]
n_l23___8 [X₆+1-X₁₀-X₁₁ ]
n_l13___77 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l16___76 [2⋅X₆-4⋅X₈-2⋅X₁₀-3 ]
n_l30___78 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l8___79 [2⋅X₆+1-X₉-X₁₀-X₁₁ ]
n_l8___82 [3 ]
l32 [3-X₁₀-X₁₁ ]

MPRF for transition t₁₃₃₃₂: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

3⋅X₆⋅X₆+10⋅X₆+2⋅X₁₁+8 {O(n^2)}

MPRF:

l31 [1-X₁₀-2⋅X₁₁ ]
l6 [1-X₁₀-2⋅X₁₁ ]
l7 [X₉+1-X₆-X₁₀-2⋅X₁₁ ]
l5 [X₉+1-X₆-X₁₀-2⋅X₁₁ ]
l8 [X₉+1-X₆-X₁₀-2⋅X₁₁ ]
n_l30___95 [1-X₁₀-2⋅X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₆-X₁₀-2⋅X₁₁-2 ]
n_l12___74 [X₉-2⋅X₈-X₁₀-2 ]
n_l14___92 [X₆ ]
n_l12___91 [X₉ ]
n_l15___73 [X₆-2⋅X₈-X₁₀-2 ]
n_l15___90 [X₉ ]
n_l16___72 [X₉-2⋅X₈-X₁₀-2 ]
n_l16___89 [X₆ ]
n_l16___93 [1 ]
n_l17___71 [X₉-X₁₀-2⋅X₁₁-2 ]
n_l17___88 [X₉ ]
n_l19___14 [X₆ ]
n_l19___56 [1 ]
n_l19___63 [X₉-2⋅X₈-X₁₀-2 ]
n_l19___7 [X₁₁ ]
n_l19___70 [X₉+2⋅X₁₁-6⋅X₈-X₁₀-4 ]
n_l19___87 [X₉ ]
n_l20___13 [X₆ ]
n_l18___12 [X₉ ]
n_l20___55 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-3 ]
n_l18___54 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-3 ]
n_l20___6 [1 ]
n_l18___5 [1 ]
n_l20___62 [X₉-2⋅X₈-X₁₀-2 ]
n_l18___61 [X₆-2⋅X₈-X₁₀-2 ]
n_l20___69 [X₆+2⋅X₁₁-6⋅X₈-X₁₀-4 ]
n_l18___68 [X₆+2⋅X₁₁-6⋅X₈-X₁₀-4 ]
n_l20___86 [X₉ ]
n_l18___85 [X₉ ]
n_l21___11 [X₉ ]
n_l21___4 [X₁₁ ]
n_l21___53 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-3 ]
n_l21___60 [X₆+X₁₁-4⋅X₈-X₁₀-4 ]
n_l21___67 [X₆+2⋅X₁₁-6⋅X₈-X₁₀-4 ]
n_l21___84 [X₉ ]
n_l22___10 [X₆ ]
n_l22___3 [2⋅X₉-2⋅X₁₀-5⋅X₁₁ ]
n_l22___52 [2⋅X₉-2⋅X₈-2⋅X₁₀-2⋅X₁₁-3 ]
n_l22___59 [X₆-X₁₀-2⋅X₁₁ ]
n_l22___66 [X₆+15⋅X₈+8-X₁₀-9⋅X₁₁ ]
n_l22___83 [X₉ ]
n_l24___2 [2⋅X₆-2⋅X₁₀-5 ]
n_l23___1 [3⋅X₆-3⋅X₁₀-2⋅X₁₁-6 ]
n_l24___51 [2⋅X₉-2⋅X₈-2⋅X₁₀-2⋅X₁₁-3 ]
n_l23___50 [X₆-X₁₀-2⋅X₁₁ ]
n_l24___58 [X₉-X₁₀-2⋅X₁₁ ]
n_l23___57 [X₆-X₁₀-2⋅X₁₁ ]
n_l24___65 [X₆+16⋅X₈+8-X₁₀-10⋅X₁₁ ]
n_l23___64 [X₆-X₁₀-2⋅X₁₁ ]
n_l24___81 [X₉ ]
n_l23___80 [X₆-2⋅X₁₁ ]
n_l24___9 [X₆ ]
n_l23___8 [X₆-2⋅X₁₁ ]
n_l13___77 [X₆-X₁₀-2⋅X₁₁-2 ]
n_l16___76 [2⋅X₈+1-2⋅X₁₁ ]
n_l30___78 [X₉-2⋅X₈-X₁₀-2 ]
n_l8___79 [2⋅X₉-X₆-2⋅X₈-X₁₀ ]
n_l8___82 [1 ]
l32 [1-X₁₀-2⋅X₁₁ ]

MPRF for transition t₁₃₃₆₁: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+5 {O(n)}

MPRF:

l31 [X₉-X₁₀-2 ]
l6 [X₆-X₁₀-2 ]
l7 [X₆-X₁₀-2 ]
l5 [X₆-X₁₀-2 ]
l8 [X₆-X₁₀-2 ]
n_l14___75 [X₉-X₁₀-2 ]
n_l12___74 [X₉-X₁₀-2 ]
n_l14___92 [X₉-X₁₀-2 ]
n_l12___91 [X₉-X₁₀-2 ]
n_l15___73 [X₉-X₁₀-2 ]
n_l15___90 [X₉-X₁₀-2 ]
n_l16___72 [X₉-X₁₀-2 ]
n_l16___89 [X₉-X₁₀-2 ]
n_l17___71 [X₉-X₁₀-2 ]
n_l17___88 [X₉-X₁₀-2 ]
n_l19___14 [X₉+X₁₁-X₁₀-4 ]
n_l19___56 [X₉-X₁₀-2 ]
n_l19___63 [X₆-X₁₀-2 ]
n_l19___7 [X₉+X₁₁-X₆ ]
n_l19___70 [X₆-X₁₀-2 ]
n_l19___87 [X₉-X₁₀-2⋅X₁₁ ]
n_l20___13 [X₆-X₁₀-2 ]
n_l18___12 [X₆+X₁₁-X₁₀-4 ]
n_l20___55 [X₉-X₁₀-2 ]
n_l18___54 [X₉-X₁₀-2 ]
n_l20___6 [2⋅X₉+X₁₁-2⋅X₆ ]
n_l18___5 [1 ]
n_l20___62 [X₆-X₁₀-2 ]
n_l18___61 [X₉-X₁₀-2 ]
n_l20___69 [X₉-X₁₀-2 ]
n_l18___68 [X₉-X₁₀-2 ]
n_l20___86 [X₉-X₁₀-2 ]
n_l18___85 [X₉-X₁₀-2 ]
n_l21___11 [X₆-X₁₀-2 ]
n_l21___4 [2⋅X₆+1-2⋅X₉ ]
n_l21___53 [X₉-X₁₀-2 ]
n_l21___60 [X₉-X₁₀-2 ]
n_l21___67 [2⋅X₆-X₉-X₁₀-2 ]
n_l21___84 [2⋅X₉-X₆-X₁₀-2 ]
n_l22___10 [X₆-X₁₀-2 ]
n_l22___3 [X₁₁ ]
n_l22___52 [X₆-X₁₀-2 ]
n_l22___59 [X₆-X₁₀-2 ]
n_l22___66 [X₉-X₁₀-2 ]
n_l22___83 [X₆+4⋅X₁₁-X₁₀-6 ]
n_l24___2 [X₁₁ ]
n_l23___1 [X₉-X₁₀-2 ]
n_l24___51 [X₉-X₁₀-2 ]
n_l23___50 [X₁₁ ]
n_l24___58 [X₆-X₁₀-2 ]
n_l23___57 [X₉-X₁₀-2 ]
n_l24___65 [X₉-X₁₀-2 ]
n_l23___64 [X₉-X₁₀-2 ]
n_l24___81 [X₉+4⋅X₁₁-X₁₀-6 ]
n_l23___80 [X₉-X₁₀-2 ]
n_l24___9 [X₆-X₁₀-X₁₁ ]
n_l23___8 [X₉-X₁₀-2 ]
n_l13___77 [X₆-X₁₀-2 ]
n_l16___76 [X₆-X₁₀-2 ]
n_l13___94 [X₆-X₁₀-2 ]
n_l30___95 [X₆-X₁₀-2 ]
n_l16___93 [2⋅X₈+1 ]
n_l30___78 [X₆-X₁₀-2 ]
n_l8___79 [X₆-X₁₀-2 ]
n_l8___82 [X₈-X₁₀-2 ]
l32 [X₆-X₁₀-3 ]

MPRF for transition t₁₃₃₆₂: n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+5 {O(n)}

MPRF:

l31 [X₉-X₁₀-2 ]
l6 [X₉-X₁₀-2 ]
l7 [X₉-X₁₀-2 ]
l5 [X₉-X₁₀-2 ]
l8 [X₉-X₁₀-2 ]
n_l14___75 [X₉-X₁₀-2 ]
n_l12___74 [X₉-X₁₀-2 ]
n_l14___92 [2⋅X₉-X₆-X₁₀-2 ]
n_l12___91 [3⋅X₆-2⋅X₉-X₁₀-2 ]
n_l15___73 [X₉-X₁₀-2 ]
n_l15___90 [X₉-X₁₀-2 ]
n_l16___72 [X₆-X₁₀-2 ]
n_l16___89 [X₉-X₁₀-2 ]
n_l17___71 [X₆-X₁₀-2 ]
n_l17___88 [X₉-X₁₀-2 ]
n_l19___14 [X₉-X₁₀-2 ]
n_l19___56 [2⋅X₈+1 ]
n_l19___63 [X₉-X₁₀-2 ]
n_l19___7 [X₉-X₁₀-2 ]
n_l19___70 [X₉-X₁₀-2 ]
n_l19___87 [X₉-X₁₀-2⋅X₁₁ ]
n_l20___13 [X₉+2⋅X₁₁-X₁₀-6 ]
n_l18___12 [X₉+2⋅X₁₁-X₁₀-6 ]
n_l20___55 [X₆-X₁₀-2 ]
n_l18___54 [X₉-X₁₀-2 ]
n_l20___6 [X₆-X₁₀-2⋅X₁₁ ]
n_l18___5 [X₉-X₁₀-2 ]
n_l20___62 [X₉-X₁₀-2 ]
n_l18___61 [X₉-X₁₀-2 ]
n_l20___69 [X₉-X₁₀-2 ]
n_l18___68 [X₉-X₁₀-2 ]
n_l20___86 [X₉-X₁₀-2 ]
n_l18___85 [X₆-X₁₀-2 ]
n_l21___11 [2⋅X₆+2⋅X₁₁-X₉-X₁₀-6 ]
n_l21___4 [3⋅X₉-2⋅X₆-X₁₀-2⋅X₁₁ ]
n_l21___53 [X₆-X₁₀-2 ]
n_l21___60 [X₉-X₁₀-2 ]
n_l21___67 [X₆-X₁₀-2 ]
n_l21___84 [X₆+2⋅X₁₁-X₁₀-4 ]
n_l22___10 [X₆+2⋅X₁₁-X₁₀-6 ]
n_l22___3 [X₉-X₁₀-2 ]
n_l22___52 [X₉-X₁₀-2 ]
n_l22___59 [X₉-X₁₀-2 ]
n_l22___66 [X₆-X₁₀-2 ]
n_l22___83 [X₉+2⋅X₁₁-X₁₀-4 ]
n_l24___2 [3⋅X₁₁-2 ]
n_l23___1 [X₆-X₁₀-2⋅X₁₁ ]
n_l24___51 [X₉-X₁₀-2 ]
n_l23___50 [X₆+2⋅X₈-X₁₀-X₁₁-1 ]
n_l24___58 [X₆-X₁₀-2 ]
n_l23___57 [X₆-X₁₀-2 ]
n_l24___65 [X₆-X₁₀-2 ]
n_l23___64 [X₉-X₁₀-2 ]
n_l24___81 [X₉+2⋅X₁₁-X₁₀-4 ]
n_l23___80 [X₆+2⋅X₁₁-X₁₀-4 ]
n_l24___9 [X₉+2⋅X₁₁-X₁₀-6 ]
n_l23___8 [X₆+2⋅X₁₁-X₁₀-6 ]
n_l13___77 [X₆-X₁₀-2 ]
n_l16___76 [2⋅X₈+1 ]
n_l13___94 [X₆-X₁₀-2 ]
n_l30___95 [X₉-X₁₀-2 ]
n_l16___93 [X₆+1-X₉ ]
n_l30___78 [X₆+10⋅X₁₁-10⋅X₈-X₁₀-2 ]
n_l8___79 [X₉-X₁₀-2 ]
n_l8___82 [X₉-X₁₀-2 ]
l32 [X₉-X₁₀-3 ]

CFR: Improvement to new bound with the following program:

new bound:

216⋅X₆⋅X₈+696⋅X₆⋅X₆+2535⋅X₆+49⋅X₁₁+512⋅X₈+2242 {O(n^2)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: Arg10_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l2, l25, l26, l27, l28, l29, l3, l31, l32, l33, l4, l5, l6, l7, l8, l9, n_l12___74, n_l12___91, n_l13___77, n_l13___94, n_l14___75, n_l14___92, n_l15___73, n_l15___90, n_l16___72, n_l16___76, n_l16___89, n_l16___93, n_l17___71, n_l17___88, n_l18___12, n_l18___5, n_l18___54, n_l18___61, n_l18___68, n_l18___85, n_l19___14, n_l19___56, n_l19___63, n_l19___7, n_l19___70, n_l19___87, n_l20___13, n_l20___55, n_l20___6, n_l20___62, n_l20___69, n_l20___86, n_l21___11, n_l21___4, n_l21___53, n_l21___60, n_l21___67, n_l21___84, n_l22___10, n_l22___3, n_l22___52, n_l22___59, n_l22___66, n_l22___83, n_l23___1, n_l23___50, n_l23___57, n_l23___64, n_l23___8, n_l23___80, n_l24___2, n_l24___51, n_l24___58, n_l24___65, n_l24___81, n_l24___9, n_l30___78, n_l30___95, n_l8___79, n_l8___82
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₁₀
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₃₃₃₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2+X₁₀ ≤ X₉ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₃₂₂₅: n_l12___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___73(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₂₆: n_l12___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___90(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₃₂₂₈: n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₂₉: n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₃₂₃₁: n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___74(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₃₂: n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___91(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₃₂₃₅: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₃₆: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₃₇: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₃₂₃₈: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₃₂₄₁: n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₂₄₂: n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 3+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₁₀+2⋅X₁₁+3 ∧ 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁
t₁₃₂₄₃: n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₂₄₄: n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₃₂₄₆: n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₄₇: n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₄₈: n_l18___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___11(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₅₂: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___4(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₅₃: n_l18___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___53(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₅₄: n_l18___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___60(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₅₅: n_l18___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___67(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₂₅₆: n_l18___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___84(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₂₅₇: n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₆₁: n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₆₂: n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₆₃: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₆₄: n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₂₆₅: n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₂₆₆: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___12(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₇₀: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___54(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₇₁: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___5(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₇₂: n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___61(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₇₃: n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___68(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₂₇₄: n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___85(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₂₇₅: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₇₆: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₈₃: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₈₄: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₈₅: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₈₆: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₈₇: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₈₈: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₈₉: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₂₉₀: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₂₉₁: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₂₉₂: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₂₉₃: n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₂₉₆: n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₉₈: n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₂₉₉: n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₃₀₀: n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₃₀₁: n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₃₀₂: n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₃₀₆: n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₃₀₇: n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₃₀₈: n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₃₀₉: n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₃₁₀: n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₃₁₂: n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₃₁₅: n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₃₁₆: n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₃₁₇: n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₃₁₈: n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₁₃₃₁₉: n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₁₃₃₂₅: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₃₂₆: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₃₂₇: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₃₃₂₈: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₃₃₆₁: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₃₃₂: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₁₃₃₆₂: n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

All Bounds

Timebounds

Overall timebound:216⋅X₆⋅X₈+713⋅X₆⋅X₆+2626⋅X₆+49⋅X₁₁+512⋅X₈+2376 {O(n^2)}
t₀: 1 {O(1)}
t₃: X₆+2 {O(n)}
t₄: 1 {O(1)}
t₇: 3⋅X₆⋅X₆+14⋅X₆+17 {O(n^2)}
t₉: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₁₂: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₃: X₆+1 {O(n)}
t₁₄: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₈: 2⋅X₆⋅X₆+9⋅X₆+9 {O(n^2)}
t₁₆: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₅₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: 2⋅X₆⋅X₆+13⋅X₆+23 {O(n^2)}
t₆: X₆+1 {O(n)}
t₂₁: X₆+4 {O(n)}
t₂₂: 1 {O(1)}
t₅₂: 3⋅X₆+4⋅X₈+6 {O(n)}
t₂₀: X₆+2 {O(n)}
t₂₆: 3⋅X₆+7 {O(n)}
t₂₃: X₆+4 {O(n)}
t₂₅: X₆+4 {O(n)}
t₂₈: 3⋅X₆+4⋅X₈+6 {O(n)}
t₁₃₃₃₄: 3⋅X₆+7 {O(n)}
t₁₁: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₃₂₂₅: 15⋅X₆⋅X₆+54⋅X₆+X₁₁+45 {O(n^2)}
t₁₃₂₂₆: 3⋅X₆+7 {O(n)}
t₁₃₂₂₈: 6⋅X₆⋅X₆+32⋅X₆+6⋅X₁₁+48 {O(n^2)}
t₁₃₂₂₉: 3⋅X₆+7 {O(n)}
t₁₃₂₃₁: 12⋅X₆⋅X₈+24⋅X₆⋅X₆+28⋅X₈+74⋅X₆+X₁₁+43 {O(n^2)}
t₁₃₂₃₂: 3⋅X₆+7 {O(n)}
t₁₃₂₃₅: 9⋅X₆⋅X₆+33⋅X₆+X₁₁+32 {O(n^2)}
t₁₃₂₃₆: 12⋅X₆⋅X₈+30⋅X₆⋅X₆+28⋅X₈+88⋅X₆+X₁₁+45 {O(n^2)}
t₁₃₂₃₇: 3⋅X₆+7 {O(n)}
t₁₃₂₃₈: 3⋅X₆+7 {O(n)}
t₁₃₂₄₁: 15⋅X₆⋅X₆+54⋅X₆+X₁₁+38 {O(n^2)}
t₁₃₂₄₂: 12⋅X₆⋅X₈+39⋅X₆⋅X₆+175⋅X₆+28⋅X₈+X₁₁+207 {O(n^2)}
t₁₃₂₄₃: 3⋅X₆+7 {O(n)}
t₁₃₂₄₄: 3⋅X₆+7 {O(n)}
t₁₃₂₄₆: 12⋅X₆⋅X₆+28⋅X₆+X₁₁+3 {O(n^2)}
t₁₃₂₄₇: 3⋅X₆+7 {O(n)}
t₁₃₂₄₈: 3⋅X₆+7 {O(n)}
t₁₃₂₅₂: 3⋅X₆+7 {O(n)}
t₁₃₂₅₃: 15⋅X₆⋅X₆+50⋅X₆+X₁₁+36 {O(n^2)}
t₁₃₂₅₄: 12⋅X₆⋅X₆+37⋅X₆+X₁₁+24 {O(n^2)}
t₁₃₂₅₅: 12⋅X₆⋅X₈+24⋅X₆⋅X₆+2⋅X₁₁+28⋅X₈+89⋅X₆+79 {O(n^2)}
t₁₃₂₅₆: 3⋅X₆+7 {O(n)}
t₁₃₂₅₇: 3⋅X₆+7 {O(n)}
t₁₃₂₆₁: 9⋅X₆⋅X₆+2⋅X₁₁+40⋅X₆+43 {O(n^2)}
t₁₃₂₆₂: 3⋅X₆⋅X₆+2⋅X₁₁+25⋅X₆+47 {O(n^2)}
t₁₃₂₆₃: 3⋅X₆+7 {O(n)}
t₁₃₂₆₄: 3⋅X₆⋅X₆+24⋅X₆+X₁₁+42 {O(n^2)}
t₁₃₂₆₅: 3⋅X₆+7 {O(n)}
t₁₃₂₆₆: 3⋅X₆+7 {O(n)}
t₁₃₂₇₀: 3⋅X₆⋅X₆+16⋅X₆+24 {O(n^2)}
t₁₃₂₇₁: 3⋅X₆+7 {O(n)}
t₁₃₂₇₂: 12⋅X₆⋅X₈+30⋅X₆⋅X₆+2⋅X₁₁+28⋅X₈+98⋅X₆+72 {O(n^2)}
t₁₃₂₇₃: 24⋅X₆⋅X₈+48⋅X₆⋅X₆+184⋅X₆+4⋅X₁₁+56⋅X₈+178 {O(n^2)}
t₁₃₂₇₄: 3⋅X₆+7 {O(n)}
t₁₃₂₇₅: 3⋅X₆+7 {O(n)}
t₁₃₂₇₆: 3⋅X₆+7 {O(n)}
t₁₃₂₈₃: 3⋅X₆+7 {O(n)}
t₁₃₂₈₄: 3⋅X₆+7 {O(n)}
t₁₃₂₈₅: 3⋅X₆⋅X₆+13⋅X₆+X₁₁+16 {O(n^2)}
t₁₃₂₈₆: X₆+7 {O(n)}
t₁₃₂₈₇: 12⋅X₆⋅X₈+27⋅X₆⋅X₆+106⋅X₆+28⋅X₈+X₁₁+108 {O(n^2)}
t₁₃₂₈₈: X₆ {O(n)}
t₁₃₂₈₉: 12⋅X₆⋅X₈+30⋅X₆⋅X₆+28⋅X₈+91⋅X₆+X₁₁+51 {O(n^2)}
t₁₃₂₉₀: X₆+5 {O(n)}
t₁₃₂₉₁: 3⋅X₆+7 {O(n)}
t₁₃₂₉₂: 3⋅X₆+7 {O(n)}
t₁₃₂₉₃: 3⋅X₆+7 {O(n)}
t₁₃₂₉₆: 3⋅X₆+7 {O(n)}
t₁₃₂₉₈: 21⋅X₆⋅X₆+86⋅X₆+X₁₁+86 {O(n^2)}
t₁₃₂₉₉: 12⋅X₆⋅X₈+27⋅X₆⋅X₆+102⋅X₆+2⋅X₁₁+28⋅X₈+95 {O(n^2)}
t₁₃₃₀₀: 12⋅X₆⋅X₈+36⋅X₆⋅X₆+106⋅X₆+28⋅X₈+X₁₁+53 {O(n^2)}
t₁₃₃₀₁: 3⋅X₆+7 {O(n)}
t₁₃₃₀₂: 3⋅X₆+7 {O(n)}
t₁₃₃₀₆: 120⋅X₆⋅X₆+48⋅X₆⋅X₈+112⋅X₈+2⋅X₁₁+358⋅X₆+194 {O(n^2)}
t₁₃₃₀₇: 9⋅X₆⋅X₆+30⋅X₆+X₁₁+24 {O(n^2)}
t₁₃₃₀₈: 3⋅X₆⋅X₆+18⋅X₆+2⋅X₁₁+24 {O(n^2)}
t₁₃₃₀₉: 3⋅X₆+7 {O(n)}
t₁₃₃₁₀: 3⋅X₆+7 {O(n)}
t₁₃₃₁₂: 3⋅X₆+7 {O(n)}
t₁₃₃₁₅: 24⋅X₆⋅X₈+51⋅X₆⋅X₆+155⋅X₆+56⋅X₈+X₁₁+84 {O(n^2)}
t₁₃₃₁₆: 21⋅X₆⋅X₆+2⋅X₁₁+79⋅X₆+80 {O(n^2)}
t₁₃₃₁₇: 15⋅X₆⋅X₆+39⋅X₆+X₁₁+13 {O(n^2)}
t₁₃₃₁₈: 3⋅X₆+7 {O(n)}
t₁₃₃₁₉: 3⋅X₆+7 {O(n)}
t₁₃₃₂₅: 12⋅X₆⋅X₈+24⋅X₆⋅X₆+2⋅X₁₁+28⋅X₈+89⋅X₆+78 {O(n^2)}
t₁₃₃₂₆: 9⋅X₆⋅X₆+30⋅X₆+X₁₁+24 {O(n^2)}
t₁₃₃₂₇: 3⋅X₆+7 {O(n)}
t₁₃₃₂₈: 3⋅X₆+7 {O(n)}
t₁₃₃₃₂: 3⋅X₆⋅X₆+10⋅X₆+2⋅X₁₁+8 {O(n^2)}
t₁₃₃₆₁: X₆+5 {O(n)}
t₁₃₃₆₂: X₆+5 {O(n)}

Costbounds

Overall costbound: 216⋅X₆⋅X₈+713⋅X₆⋅X₆+2626⋅X₆+49⋅X₁₁+512⋅X₈+2376 {O(n^2)}
t₀: 1 {O(1)}
t₃: X₆+2 {O(n)}
t₄: 1 {O(1)}
t₇: 3⋅X₆⋅X₆+14⋅X₆+17 {O(n^2)}
t₉: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₁₂: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₃: X₆+1 {O(n)}
t₁₄: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₈: 2⋅X₆⋅X₆+9⋅X₆+9 {O(n^2)}
t₁₆: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₅₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: 2⋅X₆⋅X₆+13⋅X₆+23 {O(n^2)}
t₆: X₆+1 {O(n)}
t₂₁: X₆+4 {O(n)}
t₂₂: 1 {O(1)}
t₅₂: 3⋅X₆+4⋅X₈+6 {O(n)}
t₂₀: X₆+2 {O(n)}
t₂₆: 3⋅X₆+7 {O(n)}
t₂₃: X₆+4 {O(n)}
t₂₅: X₆+4 {O(n)}
t₂₈: 3⋅X₆+4⋅X₈+6 {O(n)}
t₁₃₃₃₄: 3⋅X₆+7 {O(n)}
t₁₁: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₃₂₂₅: 15⋅X₆⋅X₆+54⋅X₆+X₁₁+45 {O(n^2)}
t₁₃₂₂₆: 3⋅X₆+7 {O(n)}
t₁₃₂₂₈: 6⋅X₆⋅X₆+32⋅X₆+6⋅X₁₁+48 {O(n^2)}
t₁₃₂₂₉: 3⋅X₆+7 {O(n)}
t₁₃₂₃₁: 12⋅X₆⋅X₈+24⋅X₆⋅X₆+28⋅X₈+74⋅X₆+X₁₁+43 {O(n^2)}
t₁₃₂₃₂: 3⋅X₆+7 {O(n)}
t₁₃₂₃₅: 9⋅X₆⋅X₆+33⋅X₆+X₁₁+32 {O(n^2)}
t₁₃₂₃₆: 12⋅X₆⋅X₈+30⋅X₆⋅X₆+28⋅X₈+88⋅X₆+X₁₁+45 {O(n^2)}
t₁₃₂₃₇: 3⋅X₆+7 {O(n)}
t₁₃₂₃₈: 3⋅X₆+7 {O(n)}
t₁₃₂₄₁: 15⋅X₆⋅X₆+54⋅X₆+X₁₁+38 {O(n^2)}
t₁₃₂₄₂: 12⋅X₆⋅X₈+39⋅X₆⋅X₆+175⋅X₆+28⋅X₈+X₁₁+207 {O(n^2)}
t₁₃₂₄₃: 3⋅X₆+7 {O(n)}
t₁₃₂₄₄: 3⋅X₆+7 {O(n)}
t₁₃₂₄₆: 12⋅X₆⋅X₆+28⋅X₆+X₁₁+3 {O(n^2)}
t₁₃₂₄₇: 3⋅X₆+7 {O(n)}
t₁₃₂₄₈: 3⋅X₆+7 {O(n)}
t₁₃₂₅₂: 3⋅X₆+7 {O(n)}
t₁₃₂₅₃: 15⋅X₆⋅X₆+50⋅X₆+X₁₁+36 {O(n^2)}
t₁₃₂₅₄: 12⋅X₆⋅X₆+37⋅X₆+X₁₁+24 {O(n^2)}
t₁₃₂₅₅: 12⋅X₆⋅X₈+24⋅X₆⋅X₆+2⋅X₁₁+28⋅X₈+89⋅X₆+79 {O(n^2)}
t₁₃₂₅₆: 3⋅X₆+7 {O(n)}
t₁₃₂₅₇: 3⋅X₆+7 {O(n)}
t₁₃₂₆₁: 9⋅X₆⋅X₆+2⋅X₁₁+40⋅X₆+43 {O(n^2)}
t₁₃₂₆₂: 3⋅X₆⋅X₆+2⋅X₁₁+25⋅X₆+47 {O(n^2)}
t₁₃₂₆₃: 3⋅X₆+7 {O(n)}
t₁₃₂₆₄: 3⋅X₆⋅X₆+24⋅X₆+X₁₁+42 {O(n^2)}
t₁₃₂₆₅: 3⋅X₆+7 {O(n)}
t₁₃₂₆₆: 3⋅X₆+7 {O(n)}
t₁₃₂₇₀: 3⋅X₆⋅X₆+16⋅X₆+24 {O(n^2)}
t₁₃₂₇₁: 3⋅X₆+7 {O(n)}
t₁₃₂₇₂: 12⋅X₆⋅X₈+30⋅X₆⋅X₆+2⋅X₁₁+28⋅X₈+98⋅X₆+72 {O(n^2)}
t₁₃₂₇₃: 24⋅X₆⋅X₈+48⋅X₆⋅X₆+184⋅X₆+4⋅X₁₁+56⋅X₈+178 {O(n^2)}
t₁₃₂₇₄: 3⋅X₆+7 {O(n)}
t₁₃₂₇₅: 3⋅X₆+7 {O(n)}
t₁₃₂₇₆: 3⋅X₆+7 {O(n)}
t₁₃₂₈₃: 3⋅X₆+7 {O(n)}
t₁₃₂₈₄: 3⋅X₆+7 {O(n)}
t₁₃₂₈₅: 3⋅X₆⋅X₆+13⋅X₆+X₁₁+16 {O(n^2)}
t₁₃₂₈₆: X₆+7 {O(n)}
t₁₃₂₈₇: 12⋅X₆⋅X₈+27⋅X₆⋅X₆+106⋅X₆+28⋅X₈+X₁₁+108 {O(n^2)}
t₁₃₂₈₈: X₆ {O(n)}
t₁₃₂₈₉: 12⋅X₆⋅X₈+30⋅X₆⋅X₆+28⋅X₈+91⋅X₆+X₁₁+51 {O(n^2)}
t₁₃₂₉₀: X₆+5 {O(n)}
t₁₃₂₉₁: 3⋅X₆+7 {O(n)}
t₁₃₂₉₂: 3⋅X₆+7 {O(n)}
t₁₃₂₉₃: 3⋅X₆+7 {O(n)}
t₁₃₂₉₆: 3⋅X₆+7 {O(n)}
t₁₃₂₉₈: 21⋅X₆⋅X₆+86⋅X₆+X₁₁+86 {O(n^2)}
t₁₃₂₉₉: 12⋅X₆⋅X₈+27⋅X₆⋅X₆+102⋅X₆+2⋅X₁₁+28⋅X₈+95 {O(n^2)}
t₁₃₃₀₀: 12⋅X₆⋅X₈+36⋅X₆⋅X₆+106⋅X₆+28⋅X₈+X₁₁+53 {O(n^2)}
t₁₃₃₀₁: 3⋅X₆+7 {O(n)}
t₁₃₃₀₂: 3⋅X₆+7 {O(n)}
t₁₃₃₀₆: 120⋅X₆⋅X₆+48⋅X₆⋅X₈+112⋅X₈+2⋅X₁₁+358⋅X₆+194 {O(n^2)}
t₁₃₃₀₇: 9⋅X₆⋅X₆+30⋅X₆+X₁₁+24 {O(n^2)}
t₁₃₃₀₈: 3⋅X₆⋅X₆+18⋅X₆+2⋅X₁₁+24 {O(n^2)}
t₁₃₃₀₉: 3⋅X₆+7 {O(n)}
t₁₃₃₁₀: 3⋅X₆+7 {O(n)}
t₁₃₃₁₂: 3⋅X₆+7 {O(n)}
t₁₃₃₁₅: 24⋅X₆⋅X₈+51⋅X₆⋅X₆+155⋅X₆+56⋅X₈+X₁₁+84 {O(n^2)}
t₁₃₃₁₆: 21⋅X₆⋅X₆+2⋅X₁₁+79⋅X₆+80 {O(n^2)}
t₁₃₃₁₇: 15⋅X₆⋅X₆+39⋅X₆+X₁₁+13 {O(n^2)}
t₁₃₃₁₈: 3⋅X₆+7 {O(n)}
t₁₃₃₁₉: 3⋅X₆+7 {O(n)}
t₁₃₃₂₅: 12⋅X₆⋅X₈+24⋅X₆⋅X₆+2⋅X₁₁+28⋅X₈+89⋅X₆+78 {O(n^2)}
t₁₃₃₂₆: 9⋅X₆⋅X₆+30⋅X₆+X₁₁+24 {O(n^2)}
t₁₃₃₂₇: 3⋅X₆+7 {O(n)}
t₁₃₃₂₈: 3⋅X₆+7 {O(n)}
t₁₃₃₃₂: 3⋅X₆⋅X₆+10⋅X₆+2⋅X₁₁+8 {O(n^2)}
t₁₃₃₆₁: X₆+5 {O(n)}
t₁₃₃₆₂: X₆+5 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₆+4 {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₆+3 {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₆+4 {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₆+3 {O(n)}
t₄, X₁₀: 0 {O(1)}
t₄, X₁₁: X₁₁ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₆+4 {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₆+3 {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₇, X₁₁: X₁₁ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₆+4 {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₆+3 {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₉, X₁₁: X₁₁ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₆+4 {O(n)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₆+3 {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₂, X₁₁: X₁₁ {O(n)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₁ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁₃, X₇: X₆+4 {O(n)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₆+3 {O(n)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₁₃, X₁₁: X₁₁ {O(n)}
t₁₄, X₀: X₀ {O(n)}
t₁₄, X₁: X₁ {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: X₆+4 {O(n)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₆+3 {O(n)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₄, X₁₁: X₁₁ {O(n)}
t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₇: X₆+4 {O(n)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₆+3 {O(n)}
t₁₈, X₁₀: X₁₀ {O(n)}
t₁₈, X₁₁: X₁₁ {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: X₁ {O(n)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₆: X₆ {O(n)}
t₁₆, X₇: X₆+4 {O(n)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₆+3 {O(n)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₁₆, X₁₁: X₁₁ {O(n)}
t₅₃, X₆: 2⋅X₆ {O(n)}
t₅₃, X₇: X₆+X₇+4 {O(n)}
t₅₃, X₈: 108⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+176⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅328⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅8⋅X₁₁+6⋅X₆+X₈+6 {O(EXP)}
t₅₃, X₉: X₆+X₉+3 {O(n)}
t₅₃, X₁₀: 4⋅X₈+7⋅X₆+X₁₀+6 {O(n)}
t₅₃, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+2⋅X₁₁+12 {O(EXP)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: 1 {O(1)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₆+4 {O(n)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₆+3 {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₅, X₁₁: X₁₁ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: 0 {O(1)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₆+3 {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₆, X₁₁: X₁₁ {O(n)}
t₂₁, X₆: X₆ {O(n)}
t₂₁, X₇: X₆+4 {O(n)}
t₂₁, X₈: 108⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+176⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅328⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅8⋅X₁₁+6⋅X₆+X₈+6 {O(EXP)}
t₂₁, X₉: X₆+3 {O(n)}
t₂₁, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₂₁, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₇: X₆+4 {O(n)}
t₂₂, X₈: 108⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+176⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅328⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅8⋅X₁₁+6⋅X₆+6 {O(EXP)}
t₂₂, X₉: X₆+3 {O(n)}
t₂₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₂₂, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₅₂, X₆: X₆ {O(n)}
t₅₂, X₇: X₆+4 {O(n)}
t₅₂, X₈: 108⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+176⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅328⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅8⋅X₁₁+6⋅X₆+6 {O(EXP)}
t₅₂, X₉: X₆+3 {O(n)}
t₅₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₅₂, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₂₀, X₀: X₀ {O(n)}
t₂₀, X₁: X₁ {O(n)}
t₂₀, X₂: X₂ {O(n)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₆: X₆ {O(n)}
t₂₀, X₇: X₆+4 {O(n)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₆+3 {O(n)}
t₂₀, X₁₀: X₁₀ {O(n)}
t₂₀, X₁₁: X₁₁ {O(n)}
t₂₆, X₆: X₆ {O(n)}
t₂₆, X₇: X₆+4 {O(n)}
t₂₆, X₈: 0 {O(1)}
t₂₆, X₉: X₆+3 {O(n)}
t₂₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₂₆, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₇: X₆+4 {O(n)}
t₂₃, X₈: 108⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+176⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅328⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅8⋅X₁₁+6⋅X₆+X₈+6 {O(EXP)}
t₂₃, X₉: X₆+3 {O(n)}
t₂₃, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₂₃, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₂₅, X₆: X₆ {O(n)}
t₂₅, X₇: X₆+4 {O(n)}
t₂₅, X₈: 108⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+176⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅328⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅8⋅X₁₁+6⋅X₆+X₈+6 {O(EXP)}
t₂₅, X₉: X₆+3 {O(n)}
t₂₅, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₂₅, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₂₈, X₆: X₆ {O(n)}
t₂₈, X₇: X₆+4 {O(n)}
t₂₈, X₈: 0 {O(1)}
t₂₈, X₉: X₆+3 {O(n)}
t₂₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₂₈, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₁₃₃₃₄, X₆: X₆ {O(n)}
t₁₃₃₃₄, X₇: X₆+4 {O(n)}
t₁₃₃₃₄, X₈: 0 {O(1)}
t₁₃₃₃₄, X₉: X₆ {O(n)}
t₁₃₃₃₄, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₃₄, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₆+4 {O(n)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₆+3 {O(n)}
t₁₁, X₁₀: X₁₀ {O(n)}
t₁₁, X₁₁: X₁₁ {O(n)}
t₁₃₂₂₅, X₆: X₆ {O(n)}
t₁₃₂₂₅, X₇: X₆+4 {O(n)}
t₁₃₂₂₅, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₂₅, X₉: X₆ {O(n)}
t₁₃₂₂₅, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₂₅, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+3 {O(EXP)}
t₁₃₂₂₆, X₆: X₆ {O(n)}
t₁₃₂₂₆, X₇: X₆+4 {O(n)}
t₁₃₂₂₆, X₈: 0 {O(1)}
t₁₃₂₂₆, X₉: X₆ {O(n)}
t₁₃₂₂₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₂₆, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₁₃₂₂₈, X₆: X₆ {O(n)}
t₁₃₂₂₈, X₇: X₆+4 {O(n)}
t₁₃₂₂₈, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₂₈, X₉: X₆ {O(n)}
t₁₃₂₂₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₂₈, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+3 {O(EXP)}
t₁₃₂₂₉, X₆: X₆ {O(n)}
t₁₃₂₂₉, X₇: X₆+4 {O(n)}
t₁₃₂₂₉, X₈: 0 {O(1)}
t₁₃₂₂₉, X₉: X₆ {O(n)}
t₁₃₂₂₉, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₂₉, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₁₃₂₃₁, X₆: X₆ {O(n)}
t₁₃₂₃₁, X₇: X₆+4 {O(n)}
t₁₃₂₃₁, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₃₁, X₉: X₆ {O(n)}
t₁₃₂₃₁, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₃₁, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+3 {O(EXP)}
t₁₃₂₃₂, X₆: X₆ {O(n)}
t₁₃₂₃₂, X₇: X₆+4 {O(n)}
t₁₃₂₃₂, X₈: 0 {O(1)}
t₁₃₂₃₂, X₉: X₆ {O(n)}
t₁₃₂₃₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₃₂, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₁₃₂₃₅, X₆: X₆ {O(n)}
t₁₃₂₃₅, X₇: X₆+4 {O(n)}
t₁₃₂₃₅, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₃₅, X₉: X₆ {O(n)}
t₁₃₂₃₅, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₃₅, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+3 {O(EXP)}
t₁₃₂₃₆, X₆: X₆ {O(n)}
t₁₃₂₃₆, X₇: X₆+4 {O(n)}
t₁₃₂₃₆, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₃₆, X₉: X₆ {O(n)}
t₁₃₂₃₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₃₆, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+3 {O(EXP)}
t₁₃₂₃₇, X₆: X₆ {O(n)}
t₁₃₂₃₇, X₇: X₆+4 {O(n)}
t₁₃₂₃₇, X₈: 0 {O(1)}
t₁₃₂₃₇, X₉: X₆ {O(n)}
t₁₃₂₃₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₃₇, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₁₃₂₃₈, X₆: X₆ {O(n)}
t₁₃₂₃₈, X₇: X₆+4 {O(n)}
t₁₃₂₃₈, X₈: 0 {O(1)}
t₁₃₂₃₈, X₉: X₆ {O(n)}
t₁₃₂₃₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₃₈, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₁₃₂₄₁, X₆: X₆ {O(n)}
t₁₃₂₄₁, X₇: X₆+4 {O(n)}
t₁₃₂₄₁, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₄₁, X₉: X₆ {O(n)}
t₁₃₂₄₁, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₄₁, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₄₂, X₆: X₆ {O(n)}
t₁₃₂₄₂, X₇: X₆+4 {O(n)}
t₁₃₂₄₂, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₄₂, X₉: X₆ {O(n)}
t₁₃₂₄₂, X₁₀: X₆ {O(n)}
t₁₃₂₄₂, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+2 {O(EXP)}
t₁₃₂₄₃, X₆: X₆ {O(n)}
t₁₃₂₄₃, X₇: X₆+4 {O(n)}
t₁₃₂₄₃, X₈: 0 {O(1)}
t₁₃₂₄₃, X₉: X₆ {O(n)}
t₁₃₂₄₃, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₄₃, X₁₁: 1 {O(1)}
t₁₃₂₄₄, X₆: X₆ {O(n)}
t₁₃₂₄₄, X₇: X₆+4 {O(n)}
t₁₃₂₄₄, X₈: 0 {O(1)}
t₁₃₂₄₄, X₉: X₆ {O(n)}
t₁₃₂₄₄, X₁₀: X₆ {O(n)}
t₁₃₂₄₄, X₁₁: 1 {O(1)}
t₁₃₂₄₆, X₆: X₆ {O(n)}
t₁₃₂₄₆, X₇: X₆+4 {O(n)}
t₁₃₂₄₆, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₄₆, X₉: X₆ {O(n)}
t₁₃₂₄₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₄₆, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₄₇, X₆: X₆ {O(n)}
t₁₃₂₄₇, X₇: X₆+4 {O(n)}
t₁₃₂₄₇, X₈: 0 {O(1)}
t₁₃₂₄₇, X₉: X₆ {O(n)}
t₁₃₂₄₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₄₇, X₁₁: 2 {O(1)}
t₁₃₂₄₈, X₆: X₆ {O(n)}
t₁₃₂₄₈, X₇: X₆+4 {O(n)}
t₁₃₂₄₈, X₈: 0 {O(1)}
t₁₃₂₄₈, X₉: X₆ {O(n)}
t₁₃₂₄₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₄₈, X₁₁: 2 {O(1)}
t₁₃₂₅₂, X₆: X₆ {O(n)}
t₁₃₂₅₂, X₇: X₆+4 {O(n)}
t₁₃₂₅₂, X₈: 0 {O(1)}
t₁₃₂₅₂, X₉: X₆ {O(n)}
t₁₃₂₅₂, X₁₀: X₆ {O(n)}
t₁₃₂₅₂, X₁₁: 1 {O(1)}
t₁₃₂₅₃, X₆: X₆ {O(n)}
t₁₃₂₅₃, X₇: X₆+4 {O(n)}
t₁₃₂₅₃, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₅₃, X₉: X₆ {O(n)}
t₁₃₂₅₃, X₁₀: X₆ {O(n)}
t₁₃₂₅₃, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+2 {O(EXP)}
t₁₃₂₅₄, X₆: X₆ {O(n)}
t₁₃₂₅₄, X₇: X₆+4 {O(n)}
t₁₃₂₅₄, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₅₄, X₉: X₆ {O(n)}
t₁₃₂₅₄, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₅₄, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₅₅, X₆: X₆ {O(n)}
t₁₃₂₅₅, X₇: X₆+4 {O(n)}
t₁₃₂₅₅, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₅₅, X₉: X₆ {O(n)}
t₁₃₂₅₅, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₅₅, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₅₆, X₆: X₆ {O(n)}
t₁₃₂₅₆, X₇: X₆+4 {O(n)}
t₁₃₂₅₆, X₈: 0 {O(1)}
t₁₃₂₅₆, X₉: X₆ {O(n)}
t₁₃₂₅₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₅₆, X₁₁: 1 {O(1)}
t₁₃₂₅₇, X₆: X₆ {O(n)}
t₁₃₂₅₇, X₇: X₆+4 {O(n)}
t₁₃₂₅₇, X₈: 0 {O(1)}
t₁₃₂₅₇, X₉: X₆ {O(n)}
t₁₃₂₅₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₅₇, X₁₁: 2 {O(1)}
t₁₃₂₆₁, X₆: X₆ {O(n)}
t₁₃₂₆₁, X₇: X₆+4 {O(n)}
t₁₃₂₆₁, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₆₁, X₉: X₆ {O(n)}
t₁₃₂₆₁, X₁₀: X₆ {O(n)}
t₁₃₂₆₁, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+2 {O(EXP)}
t₁₃₂₆₂, X₆: X₆ {O(n)}
t₁₃₂₆₂, X₇: X₆+4 {O(n)}
t₁₃₂₆₂, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₆₂, X₉: X₆ {O(n)}
t₁₃₂₆₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₆₂, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₆₃, X₆: X₆ {O(n)}
t₁₃₂₆₃, X₇: X₆+4 {O(n)}
t₁₃₂₆₃, X₈: 0 {O(1)}
t₁₃₂₆₃, X₉: X₆ {O(n)}
t₁₃₂₆₃, X₁₀: X₆ {O(n)}
t₁₃₂₆₃, X₁₁: 1 {O(1)}
t₁₃₂₆₄, X₆: X₆ {O(n)}
t₁₃₂₆₄, X₇: X₆+4 {O(n)}
t₁₃₂₆₄, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₆₄, X₉: X₆ {O(n)}
t₁₃₂₆₄, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₆₄, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₆₅, X₆: X₆ {O(n)}
t₁₃₂₆₅, X₇: X₆+4 {O(n)}
t₁₃₂₆₅, X₈: 0 {O(1)}
t₁₃₂₆₅, X₉: X₆ {O(n)}
t₁₃₂₆₅, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₆₅, X₁₁: 1 {O(1)}
t₁₃₂₆₆, X₆: X₆ {O(n)}
t₁₃₂₆₆, X₇: X₆+4 {O(n)}
t₁₃₂₆₆, X₈: 0 {O(1)}
t₁₃₂₆₆, X₉: X₆ {O(n)}
t₁₃₂₆₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₆₆, X₁₁: 2 {O(1)}
t₁₃₂₇₀, X₆: X₆ {O(n)}
t₁₃₂₇₀, X₇: X₆+4 {O(n)}
t₁₃₂₇₀, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₇₀, X₉: X₆ {O(n)}
t₁₃₂₇₀, X₁₀: X₆ {O(n)}
t₁₃₂₇₀, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+2 {O(EXP)}
t₁₃₂₇₁, X₆: X₆ {O(n)}
t₁₃₂₇₁, X₇: X₆+4 {O(n)}
t₁₃₂₇₁, X₈: 0 {O(1)}
t₁₃₂₇₁, X₉: X₆ {O(n)}
t₁₃₂₇₁, X₁₀: X₆ {O(n)}
t₁₃₂₇₁, X₁₁: 1 {O(1)}
t₁₃₂₇₂, X₆: X₆ {O(n)}
t₁₃₂₇₂, X₇: X₆+4 {O(n)}
t₁₃₂₇₂, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₇₂, X₉: X₆ {O(n)}
t₁₃₂₇₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₇₂, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₇₃, X₆: X₆ {O(n)}
t₁₃₂₇₃, X₇: X₆+4 {O(n)}
t₁₃₂₇₃, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₇₃, X₉: X₆ {O(n)}
t₁₃₂₇₃, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₇₃, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₇₄, X₆: X₆ {O(n)}
t₁₃₂₇₄, X₇: X₆+4 {O(n)}
t₁₃₂₇₄, X₈: 0 {O(1)}
t₁₃₂₇₄, X₉: X₆ {O(n)}
t₁₃₂₇₄, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₇₄, X₁₁: 1 {O(1)}
t₁₃₂₇₅, X₆: X₆ {O(n)}
t₁₃₂₇₅, X₇: X₆+4 {O(n)}
t₁₃₂₇₅, X₈: 0 {O(1)}
t₁₃₂₇₅, X₉: X₆ {O(n)}
t₁₃₂₇₅, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₇₅, X₁₁: 2 {O(1)}
t₁₃₂₇₆, X₆: X₆ {O(n)}
t₁₃₂₇₆, X₇: X₆+4 {O(n)}
t₁₃₂₇₆, X₈: X₆ {O(n)}
t₁₃₂₇₆, X₉: X₆ {O(n)}
t₁₃₂₇₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₇₆, X₁₁: 2 {O(1)}
t₁₃₂₈₃, X₆: X₆ {O(n)}
t₁₃₂₈₃, X₇: X₆+4 {O(n)}
t₁₃₂₈₃, X₈: 0 {O(1)}
t₁₃₂₈₃, X₉: X₆ {O(n)}
t₁₃₂₈₃, X₁₀: X₆ {O(n)}
t₁₃₂₈₃, X₁₁: 1 {O(1)}
t₁₃₂₈₄, X₆: X₆ {O(n)}
t₁₃₂₈₄, X₇: X₆+4 {O(n)}
t₁₃₂₈₄, X₈: X₆ {O(n)}
t₁₃₂₈₄, X₉: X₆ {O(n)}
t₁₃₂₈₄, X₁₀: X₆ {O(n)}
t₁₃₂₈₄, X₁₁: 1 {O(1)}
t₁₃₂₈₅, X₆: X₆ {O(n)}
t₁₃₂₈₅, X₇: X₆+4 {O(n)}
t₁₃₂₈₅, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₈₅, X₉: X₆ {O(n)}
t₁₃₂₈₅, X₁₀: X₆ {O(n)}
t₁₃₂₈₅, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+2 {O(EXP)}
t₁₃₂₈₆, X₆: X₆ {O(n)}
t₁₃₂₈₆, X₇: X₆+4 {O(n)}
t₁₃₂₈₆, X₈: X₆ {O(n)}
t₁₃₂₈₆, X₉: X₆ {O(n)}
t₁₃₂₈₆, X₁₀: X₆ {O(n)}
t₁₃₂₈₆, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+2 {O(EXP)}
t₁₃₂₈₇, X₆: X₆ {O(n)}
t₁₃₂₈₇, X₇: X₆+4 {O(n)}
t₁₃₂₈₇, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₈₇, X₉: X₆ {O(n)}
t₁₃₂₈₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₈₇, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₈₈, X₆: X₆ {O(n)}
t₁₃₂₈₈, X₇: X₆+4 {O(n)}
t₁₃₂₈₈, X₈: X₆ {O(n)}
t₁₃₂₈₈, X₉: X₆ {O(n)}
t₁₃₂₈₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₈₈, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₈₉, X₆: X₆ {O(n)}
t₁₃₂₈₉, X₇: X₆+4 {O(n)}
t₁₃₂₈₉, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₈₉, X₉: X₆ {O(n)}
t₁₃₂₈₉, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₈₉, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₉₀, X₆: X₆ {O(n)}
t₁₃₂₉₀, X₇: X₆+4 {O(n)}
t₁₃₂₉₀, X₈: X₆ {O(n)}
t₁₃₂₉₀, X₉: X₆ {O(n)}
t₁₃₂₉₀, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₉₀, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₉₁, X₆: X₆ {O(n)}
t₁₃₂₉₁, X₇: X₆+4 {O(n)}
t₁₃₂₉₁, X₈: 0 {O(1)}
t₁₃₂₉₁, X₉: X₆ {O(n)}
t₁₃₂₉₁, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₉₁, X₁₁: 1 {O(1)}
t₁₃₂₉₂, X₆: X₆ {O(n)}
t₁₃₂₉₂, X₇: X₆+4 {O(n)}
t₁₃₂₉₂, X₈: X₆ {O(n)}
t₁₃₂₉₂, X₉: X₆ {O(n)}
t₁₃₂₉₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₉₂, X₁₁: 1 {O(1)}
t₁₃₂₉₃, X₆: X₆ {O(n)}
t₁₃₂₉₃, X₇: X₆+4 {O(n)}
t₁₃₂₉₃, X₈: 0 {O(1)}
t₁₃₂₉₃, X₉: X₆ {O(n)}
t₁₃₂₉₃, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₉₃, X₁₁: 2 {O(1)}
t₁₃₂₉₆, X₆: X₆ {O(n)}
t₁₃₂₉₆, X₇: X₆+4 {O(n)}
t₁₃₂₉₆, X₈: 0 {O(1)}
t₁₃₂₉₆, X₉: X₆ {O(n)}
t₁₃₂₉₆, X₁₀: X₆ {O(n)}
t₁₃₂₉₆, X₁₁: 1 {O(1)}
t₁₃₂₉₈, X₆: X₆ {O(n)}
t₁₃₂₉₈, X₇: X₆+4 {O(n)}
t₁₃₂₉₈, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₉₈, X₉: X₆ {O(n)}
t₁₃₂₉₈, X₁₀: X₆ {O(n)}
t₁₃₂₉₈, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+2 {O(EXP)}
t₁₃₂₉₉, X₆: X₆ {O(n)}
t₁₃₂₉₉, X₇: X₆+4 {O(n)}
t₁₃₂₉₉, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₂₉₉, X₉: X₆ {O(n)}
t₁₃₂₉₉, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₂₉₉, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₀₀, X₆: X₆ {O(n)}
t₁₃₃₀₀, X₇: X₆+4 {O(n)}
t₁₃₃₀₀, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₀₀, X₉: X₆ {O(n)}
t₁₃₃₀₀, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₀₀, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₀₁, X₆: X₆ {O(n)}
t₁₃₃₀₁, X₇: X₆+4 {O(n)}
t₁₃₃₀₁, X₈: 0 {O(1)}
t₁₃₃₀₁, X₉: X₆ {O(n)}
t₁₃₃₀₁, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₀₁, X₁₁: 1 {O(1)}
t₁₃₃₀₂, X₆: X₆ {O(n)}
t₁₃₃₀₂, X₇: X₆+4 {O(n)}
t₁₃₃₀₂, X₈: 1 {O(1)}
t₁₃₃₀₂, X₉: X₆ {O(n)}
t₁₃₃₀₂, X₁₀: X₆ {O(n)}
t₁₃₃₀₂, X₁₁: 1 {O(1)}
t₁₃₃₀₆, X₆: X₆ {O(n)}
t₁₃₃₀₆, X₇: X₆+4 {O(n)}
t₁₃₃₀₆, X₈: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+2 {O(EXP)}
t₁₃₃₀₆, X₉: X₆ {O(n)}
t₁₃₃₀₆, X₁₀: X₆ {O(n)}
t₁₃₃₀₆, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+2 {O(EXP)}
t₁₃₃₀₇, X₆: X₆ {O(n)}
t₁₃₃₀₇, X₇: X₆+4 {O(n)}
t₁₃₃₀₇, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₀₇, X₉: X₆ {O(n)}
t₁₃₃₀₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₀₇, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₀₈, X₆: X₆ {O(n)}
t₁₃₃₀₈, X₇: X₆+4 {O(n)}
t₁₃₃₀₈, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₀₈, X₉: X₆ {O(n)}
t₁₃₃₀₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₀₈, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₀₉, X₆: X₆ {O(n)}
t₁₃₃₀₉, X₇: X₆+4 {O(n)}
t₁₃₃₀₉, X₈: 2 {O(1)}
t₁₃₃₀₉, X₉: X₆ {O(n)}
t₁₃₃₀₉, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₀₉, X₁₁: 2 {O(1)}
t₁₃₃₁₀, X₆: X₆ {O(n)}
t₁₃₃₁₀, X₇: X₆+4 {O(n)}
t₁₃₃₁₀, X₈: 1 {O(1)}
t₁₃₃₁₀, X₉: X₆ {O(n)}
t₁₃₃₁₀, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₁₀, X₁₁: 1 {O(1)}
t₁₃₃₁₂, X₆: X₆ {O(n)}
t₁₃₃₁₂, X₇: X₆+4 {O(n)}
t₁₃₃₁₂, X₈: 0 {O(1)}
t₁₃₃₁₂, X₉: X₆ {O(n)}
t₁₃₃₁₂, X₁₀: X₆ {O(n)}
t₁₃₃₁₂, X₁₁: 1 {O(1)}
t₁₃₃₁₅, X₆: X₆ {O(n)}
t₁₃₃₁₅, X₇: X₆+4 {O(n)}
t₁₃₃₁₅, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₁₅, X₉: X₆ {O(n)}
t₁₃₃₁₅, X₁₀: X₆ {O(n)}
t₁₃₃₁₅, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+2 {O(EXP)}
t₁₃₃₁₆, X₆: X₆ {O(n)}
t₁₃₃₁₆, X₇: X₆+4 {O(n)}
t₁₃₃₁₆, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₁₆, X₉: X₆ {O(n)}
t₁₃₃₁₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₁₆, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₁₇, X₆: X₆ {O(n)}
t₁₃₃₁₇, X₇: X₆+4 {O(n)}
t₁₃₃₁₇, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₁₇, X₉: X₆ {O(n)}
t₁₃₃₁₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₁₇, X₁₁: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₁₈, X₆: X₆ {O(n)}
t₁₃₃₁₈, X₇: X₆+4 {O(n)}
t₁₃₃₁₈, X₈: 0 {O(1)}
t₁₃₃₁₈, X₉: X₆ {O(n)}
t₁₃₃₁₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₁₈, X₁₁: 1 {O(1)}
t₁₃₃₁₉, X₆: X₆ {O(n)}
t₁₃₃₁₉, X₇: X₆+4 {O(n)}
t₁₃₃₁₉, X₈: 0 {O(1)}
t₁₃₃₁₉, X₉: X₆ {O(n)}
t₁₃₃₁₉, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₁₉, X₁₁: 2 {O(1)}
t₁₃₃₂₅, X₆: X₆ {O(n)}
t₁₃₃₂₅, X₇: X₆+4 {O(n)}
t₁₃₃₂₅, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₂₅, X₉: X₆ {O(n)}
t₁₃₃₂₅, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₂₅, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+3 {O(EXP)}
t₁₃₃₂₆, X₆: X₆ {O(n)}
t₁₃₃₂₆, X₇: X₆+4 {O(n)}
t₁₃₃₂₆, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₂₆, X₉: X₆ {O(n)}
t₁₃₃₂₆, X₁₀: X₆ {O(n)}
t₁₃₃₂₆, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+3 {O(EXP)}
t₁₃₃₂₇, X₆: X₆ {O(n)}
t₁₃₃₂₇, X₇: X₆+4 {O(n)}
t₁₃₃₂₇, X₈: 0 {O(1)}
t₁₃₃₂₇, X₉: X₆ {O(n)}
t₁₃₃₂₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₂₇, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₁₃₃₂₈, X₆: X₆ {O(n)}
t₁₃₃₂₈, X₇: X₆+4 {O(n)}
t₁₃₃₂₈, X₈: 0 {O(1)}
t₁₃₃₂₈, X₉: X₆ {O(n)}
t₁₃₃₂₈, X₁₀: X₆ {O(n)}
t₁₃₃₂₈, X₁₁: 16⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+216⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅352+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅656⋅X₆+X₁₁+12 {O(EXP)}
t₁₃₃₃₂, X₆: X₆ {O(n)}
t₁₃₃₃₂, X₇: X₆+4 {O(n)}
t₁₃₃₃₂, X₈: 2⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₁₁+27⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅44+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅82⋅X₆ {O(EXP)}
t₁₃₃₃₂, X₉: 4⋅X₆ {O(n)}
t₁₃₃₃₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₃₂, X₁₁: 164⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅4⋅X₁₁+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅54⋅X₆⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅88+3 {O(EXP)}
t₁₃₃₆₁, X₆: X₆ {O(n)}
t₁₃₃₆₁, X₇: X₆+4 {O(n)}
t₁₃₃₆₁, X₈: 108⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+176⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅328⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅8⋅X₁₁+6 {O(EXP)}
t₁₃₃₆₁, X₉: 6⋅X₆ {O(n)}
t₁₃₃₆₁, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₆₁, X₁₁: 108⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+176⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅328⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅8⋅X₁₁+6 {O(EXP)}
t₁₃₃₆₂, X₆: X₆ {O(n)}
t₁₃₃₆₂, X₇: X₆+4 {O(n)}
t₁₃₃₆₂, X₈: 6⋅X₆ {O(n)}
t₁₃₃₆₂, X₉: 6⋅X₆ {O(n)}
t₁₃₃₆₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₁₃₃₆₂, X₁₁: 108⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅X₆⋅X₆+176⋅2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅328⋅X₆+2^(12⋅X₆⋅X₆+28⋅X₆+X₁₁+3)⋅2^(15⋅X₆⋅X₆+54⋅X₆+X₁₁+38)⋅8⋅X₁₁+6 {O(EXP)}