Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₁+X₃, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₅, X₃, X₆, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₁₁, X₁₂, X₁₄, X₁₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₈: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁
t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀
t₃₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀
t₃₁: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < X₉
t₃₄: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂+1 ≤ X₃
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1
t₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁
t₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀
t₇: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀
t₁₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀
t₁₅: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₂+1 ≤ X₃
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < X₉
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1
t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₇, X₃, X₈, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁+X₃, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀
t₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄
t₂₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ ≤ 0 ∧ 0 ≤ X₄
Preprocessing
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l11
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l2
Found invariant X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l6
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l15
Found invariant 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l19
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l12
Found invariant 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l17
Found invariant X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l7
Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l20
Found invariant 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l21
Found invariant X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l5
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l13
Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l8
Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l1
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l10
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ for location l18
Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l4
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l9
Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l3
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₁₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₁+X₃, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₅, X₃, X₆, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₁₁, X₁₂, X₁₄, X₁₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₈: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₁: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁
t₃₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₄: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂+1 ≤ X₃ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₇: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₅: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₂+1 ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₇, X₃, X₈, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁+X₃, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
MPRF for transition t₂₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l11 [X₉+1-X₀ ]
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉+1-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
l9 [X₉+1-X₀ ]
l13 [X₉+1-X₀ ]
MPRF for transition t₂₈: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l11 [X₉+1-X₀ ]
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉+1-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
l9 [X₉+1-X₀ ]
l13 [X₉-X₀ ]
MPRF for transition t₃₁: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l11 [X₉+1-X₀ ]
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l18 [X₉+1-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉+1-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
l9 [X₉+1-X₀ ]
l13 [X₉-X₀ ]
MPRF for transition t₂₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l11 [X₉+1-X₀ ]
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉+1-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
l9 [X₉+1-X₀ ]
l13 [X₉-X₀ ]
MPRF for transition t₃₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ of depth 2:
new bound:
8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+9 {O(n)}
MPRF:
l11 [1-X₂ ; X₁₀-X₁ ]
l15 [-X₂ ; X₁₀+1-X₅ ]
l14 [-X₂ ; X₁₀+1-X₅ ]
l18 [1-X₂ ; X₁₀-X₁ ]
l19 [1-X₂ ; X₁₀-X₁ ]
l10 [1-X₂ ; X₁₀-X₁ ]
l17 [1-X₂ ; X₁₀-X₁ ]
l3 [1-X₂ ; X₁₀-X₁ ]
l21 [1-X₂ ; X₁₀-X₁ ]
l6 [-X₂ ; X₁₀-X₁-X₂ ]
l7 [1-X₃ ; X₃+X₁₀-X₂-X₇ ]
l5 [1-X₃ ; X₃+X₁₀-X₂-X₇ ]
l2 [1-X₂ ; X₁₀-X₁ ]
l8 [1-X₂ ; X₁₀-X₁ ]
l20 [1-X₂ ; X₁₀-X₁ ]
l12 [-X₂ ; X₁₀+1-X₁-X₃ ]
l9 [1-X₂ ; X₁₀-X₁ ]
l13 [1-X₂ ; X₁₀-X₁ ]
MPRF for transition t₃₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁+X₃, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 2:
new bound:
8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
MPRF:
l11 [-X₂ ; X₁₀-X₁ ]
l15 [-X₃ ; X₁₀-X₅ ]
l14 [-X₃ ; X₁₀-X₅ ]
l18 [-X₂ ; X₁₀-X₁ ]
l19 [-X₂ ; X₁₀-X₁ ]
l10 [-X₂ ; X₁₀-X₁ ]
l17 [-X₂ ; X₁₀-X₁ ]
l3 [-X₂ ; X₁₀-X₁ ]
l21 [-X₂ ; X₁₀-X₁ ]
l6 [1-X₃ ; X₁₀-X₁ ]
l7 [-X₃ ; X₁₀-X₇ ]
l5 [-X₃ ; X₁₀-X₇ ]
l2 [-X₂ ; X₁₀-X₁ ]
l8 [-X₂ ; X₁₀-X₁ ]
l20 [-X₂ ; X₁₀-X₁ ]
l12 [-X₃ ; X₁₀-X₁-X₃ ]
l9 [-X₂ ; X₁₀-X₁ ]
l13 [-X₂ ; X₁₀-X₁ ]
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)} for transition t₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)} for transition t₃₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₇, X₃, X₈, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
MPRF for transition t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₁+X₃, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 3:
new bound:
108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
MPRF:
l11 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l15 [-X₂-1 ; X₃+X₁₀-X₂-X₅-X₁₄ ; X₃+X₁₀-X₅-X₁₄ ]
l14 [-X₃ ; X₃+X₁₀-X₂-X₅-X₁₄ ; X₃+X₁₀-X₅-X₁₄ ]
l18 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l19 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l10 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l17 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l3 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l21 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l6 [-X₂ ; X₁₀+1-X₁-X₁₄ ; 0 ]
l7 [-X₂ ; X₃+X₁₀+1-X₇-X₁₄ ; 0 ]
l5 [-X₂-1 ; X₁₀+1-X₇-X₁₄ ; X₃+X₁₀-X₇-X₁₄ ]
l2 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l8 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l20 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l12 [-X₂ ; X₁₀+1-X₁-X₁₄ ; 0 ]
l9 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l13 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
MPRF for transition t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₅, X₃, X₆, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 3:
new bound:
54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
MPRF:
l11 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l15 [1-X₃ ; X₃+X₁₀-X₅-X₁₄ ; 0 ]
l14 [1-X₃ ; X₃+X₁₀-X₅-X₁₄ ; 0 ]
l18 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l19 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l10 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l17 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l3 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l21 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l6 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l7 [-X₂ ; X₃+X₁₀-X₇-X₁₄ ; 0 ]
l5 [-X₃ ; X₁₀-X₇-X₁₄ ; X₃+X₁₀-X₇-X₁₄-1 ]
l2 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l8 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l20 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l12 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l9 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l13 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
MPRF for transition t₂₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 3:
new bound:
108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
MPRF:
l11 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l15 [1-X₂ ; X₂+X₃+X₁₀-X₅-2⋅X₁₄ ; 0 ]
l14 [-X₂ ; X₃+X₁₀-X₅-2⋅X₁₄ ; X₁₀-X₅ ]
l18 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l19 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l10 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l17 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l3 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l21 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l6 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l7 [1-X₂ ; X₂+X₃+X₁₀-X₇-2⋅X₁₄ ; 0 ]
l5 [1-X₃ ; X₃+X₁₀-X₇-2⋅X₁₄ ; X₂+X₃+X₁₀-X₇-2⋅X₁₄-1 ]
l2 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l8 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l20 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l12 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l9 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l13 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
MPRF for transition t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 3:
new bound:
54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+28 {O(n)}
MPRF:
l11 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l15 [-X₂-2 ; X₁₀-X₂-X₅-1 ; X₃+X₁₀-X₂-X₅-1 ]
l14 [-X₂-2 ; X₁₀-X₂-X₅-1 ; X₃+X₁₀-X₂-X₅-1 ]
l18 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l19 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l10 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l17 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l3 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l21 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l6 [-X₂-1 ; X₁₀+1-X₁-X₃ ; 0 ]
l7 [-X₂-1 ; X₁₀+1-X₇ ; 0 ]
l5 [-X₃-1 ; X₁₀-X₃-X₇ ; X₁₀-X₇ ]
l2 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l8 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l20 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l12 [-X₂-2 ; X₁₀-X₁-X₂-X₃-1 ; 2⋅X₁₀-2⋅X₁-X₂-1 ]
l9 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l13 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
MPRF for transition t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 3:
new bound:
54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+28 {O(n)}
MPRF:
l11 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l15 [-X₂-2 ; X₁₀-X₃-X₅ ; X₃+X₁₀-X₂-X₅-1 ]
l14 [-X₂-2 ; X₁₀-X₃-X₅ ; X₃+X₁₀-X₂-X₅-1 ]
l18 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l19 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l10 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l17 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l3 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l21 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l6 [-X₂-1 ; X₁₀+1-X₁-X₃ ; X₁₀-X₁ ]
l7 [-X₂-1 ; X₁₀+1-X₇ ; 0 ]
l5 [-X₃-1 ; X₁₀-X₃-X₇ ; X₁₀-X₇ ]
l2 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l8 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l20 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l12 [-X₂-2 ; X₁₀-X₁-2⋅X₃ ; 2⋅X₁₀-2⋅X₁-X₂-1 ]
l9 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l13 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
MPRF for transition t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
324⋅X₁₀⋅X₁₁+324⋅X₁₀⋅X₉+324⋅X₁₁⋅X₁₂+324⋅X₁₁⋅X₁₄+324⋅X₁₂⋅X₉+324⋅X₁₄⋅X₉+108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+169⋅X₁₁+169⋅X₉+57 {O(n^2)}
MPRF:
l11 [X₉-X₀ ]
l12 [X₉+1-X₁₁ ]
l15 [X₉+1-X₁₁ ]
l14 [X₉+1-X₁₁ ]
l18 [X₉+1-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉+1-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l9 [X₉-X₀ ]
l13 [X₉-X₀ ]
MPRF for transition t₁₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
540⋅X₁₀⋅X₁₁+540⋅X₁₀⋅X₉+540⋅X₁₁⋅X₁₂+540⋅X₁₁⋅X₁₄+540⋅X₁₂⋅X₉+540⋅X₁₄⋅X₉+281⋅X₁₁+281⋅X₉+324⋅X₁₀+324⋅X₁₂+324⋅X₁₄+169 {O(n^2)}
MPRF:
l11 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l18 [X₉+1-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉+1-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l9 [X₉-X₀ ]
l13 [X₉-X₀ ]
MPRF for transition t₁₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ of depth 1:
new bound:
324⋅X₁₀⋅X₁₁+324⋅X₁₀⋅X₉+324⋅X₁₁⋅X₁₂+324⋅X₁₁⋅X₁₄+324⋅X₁₂⋅X₉+324⋅X₁₄⋅X₉+108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+169⋅X₁₁+169⋅X₉+57 {O(n^2)}
MPRF:
l11 [X₉-X₀ ]
l12 [X₉+1-X₁₁ ]
l15 [X₉+1-X₁₁ ]
l14 [X₉+1-X₀ ]
l18 [X₉+1-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l9 [X₉-X₀ ]
l13 [X₉-X₀ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₅₁₀₇₅: n_l17___13→l18
Cut unsatisfiable transition t₅₁₀₇₆: n_l17___17→l18
Cut unsatisfiable transition t₅₁₀₇₈: n_l17___36→l18
Cut unsatisfiable transition t₅₁₀₇₉: n_l17___40→l18
Cut unsatisfiable transition t₅₁₀₈₀: n_l17___5→l18
Cut unsatisfiable transition t₅₁₀₈₃: n_l17___72→l18
Cut unsatisfiable transition t₅₁₀₈₄: n_l17___76→l18
Cut unsatisfiable transition t₅₁₀₈₅: n_l17___80→l18
Cut unsatisfiable transition t₅₁₀₈₆: n_l17___84→l18
Cut unsatisfiable transition t₅₁₀₈₇: n_l17___9→l18
Cut unsatisfiable transition t₅₁₀₆₆: n_l2___34→l4
Cut unsatisfiable transition t₅₁₁₄₂: n_l2___34→l4
Cut unsatisfiable transition t₅₁₀₆₈: n_l2___47→l4
Cut unsatisfiable transition t₅₁₁₄₄: n_l2___47→l4
Cut unsatisfiable transition t₅₁₀₆₉: n_l2___56→l4
Cut unsatisfiable transition t₅₁₁₄₅: n_l2___56→l4
Cut unsatisfiable transition t₅₁₀₇₃: n_l2___94→l4
Cut unsatisfiable transition t₅₁₁₄₉: n_l2___94→l4
Cut unsatisfiable transition t₅₁₀₈₈: n_l3___11→l4
Cut unsatisfiable transition t₅₁₁₁₄: n_l3___11→l4
Cut unsatisfiable transition t₅₁₀₈₉: n_l3___12→l4
Cut unsatisfiable transition t₅₁₀₉₀: n_l3___19→l4
Cut unsatisfiable transition t₅₁₁₀₃: n_l3___19→l4
Cut unsatisfiable transition t₅₁₁₁₆: n_l3___19→l4
Cut unsatisfiable transition t₅₁₁₂₉: n_l3___19→l4
Cut unsatisfiable transition t₅₁₀₉₁: n_l3___20→l4
Cut unsatisfiable transition t₅₁₁₀₄: n_l3___20→l4
Cut unsatisfiable transition t₅₁₁₁₇: n_l3___20→l4
Cut unsatisfiable transition t₅₁₁₃₀: n_l3___20→l4
Cut unsatisfiable transition t₅₁₀₉₂: n_l3___3→l4
Cut unsatisfiable transition t₅₁₀₉₃: n_l3___33→l4
Cut unsatisfiable transition t₅₁₁₀₆: n_l3___33→l4
Cut unsatisfiable transition t₅₁₁₃₂: n_l3___33→l4
Cut unsatisfiable transition t₅₁₀₉₄: n_l3___38→l4
Cut unsatisfiable transition t₅₁₁₀₇: n_l3___38→l4
Cut unsatisfiable transition t₅₁₁₃₃: n_l3___38→l4
Cut unsatisfiable transition t₅₁₀₉₅: n_l3___42→l4
Cut unsatisfiable transition t₅₁₁₀₈: n_l3___42→l4
Cut unsatisfiable transition t₅₁₁₂₁: n_l3___42→l4
Cut unsatisfiable transition t₅₁₁₃₄: n_l3___42→l4
Cut unsatisfiable transition t₅₁₀₉₆: n_l3___69→l4
Cut unsatisfiable transition t₅₁₀₉₇: n_l3___78→l4
Cut unsatisfiable transition t₅₁₁₂₃: n_l3___78→l4
Cut unsatisfiable transition t₅₁₀₉₈: n_l3___79→l4
Cut unsatisfiable transition t₅₁₀₉₉: n_l3___86→l4
Cut unsatisfiable transition t₅₁₁₁₂: n_l3___86→l4
Cut unsatisfiable transition t₅₁₁₂₅: n_l3___86→l4
Cut unsatisfiable transition t₅₁₁₃₈: n_l3___86→l4
Cut unsatisfiable transition t₅₁₁₀₀: n_l3___87→l4
Cut unsatisfiable transition t₅₁₁₁₃: n_l3___87→l4
Cut unsatisfiable transition t₅₁₁₂₆: n_l3___87→l4
Cut unsatisfiable transition t₅₁₁₃₉: n_l3___87→l4
Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀ for location n_l19___74
Found invariant X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁ for location n_l20___101
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l3___86
Found invariant 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l2___47
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l17___80
Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l21___77
Found invariant 1+X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l6
Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location n_l20___29
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l2___34
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l21___37
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l21___64
Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀ for location n_l21___73
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l3___19
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l9___97
Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l13___23
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l19___15
Found invariant 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l19___39
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l12
Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location n_l3___12
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l20___21
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l21___100
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l3___20
Found invariant 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l11___43
Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l4
Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l11___25
Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l21___10
Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l17___5
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l21___53
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l14
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l10___99
Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l2___30
Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l21___6
Found invariant 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l20___46
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l17___31
Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀ for location n_l19___71
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l8___22
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l11___90
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l19___35
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁ for location n_l17___67
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l19___82
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l20___93
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l9___50
Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l17___9
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l20___65
Found invariant 1+X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l7
Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l10___26
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l17___84
Found invariant 1+X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l5
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l13___96
Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l8
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l11___62
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l17___13
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l19___83
Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l21___27
Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁ for location n_l3___69
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l3___87
Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l17___76
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l21___32
Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l2___4
Found invariant X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l20___28
Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀ for location n_l3___78
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l10___52
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l13___88
Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ for location n_l20___102
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ for location n_l3___38
Found invariant 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l21___45
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l10___63
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l17___17
Found invariant 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l3___42
Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l9___24
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l11___51
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l17___57
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁ for location n_l2___70
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l2___94
Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l3___11
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l13___60
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁ for location n_l21___68
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l3___33
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l20___54
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l21___85
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l2___103
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l2___66
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l9___89
Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l1
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location l18
Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀ for location n_l17___72
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l21___14
Found invariant 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l21___41
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l21___58
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l19___16
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l8___95
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l15
Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l19___7
Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l17___1
Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l21___2
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l2___56
Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l3___3
Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ for location n_l3___79
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l9___61
Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l19___75
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l8___48
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ for location n_l20___55
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l21___81
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l10___91
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l21___18
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l2___59
Found invariant 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l10___44
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l21___92
Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l11___98
Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l13___49
Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l17___36
Found invariant 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l17___40
Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l19___8
knowledge_propagation leads to new time bound 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)} for transition t₅₀₉₉₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₉₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₉₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)} for transition t₅₀₉₉₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₉₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₉₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₉₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₉₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₁₀₀₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___101(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₁₀₀₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___102(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₁₀₀₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___103(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₃₅: n_l20___101(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₃₇: n_l20___102(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₃₈: n_l20___102(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
knowledge_propagation leads to new time bound 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)} for transition t₅₀₉₄₁: n_l20___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₄₃: n_l20___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₄₄: n_l20___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)} for transition t₅₀₉₄₆: n_l20___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₄₈: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₄₉: n_l20___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₇₂: n_l2___103(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___100(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₇₃: n_l2___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)} for transition t₅₀₉₇₄: n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)} for transition t₅₀₉₇₅: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₇₇: n_l2___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₇₈: n_l2___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₀ ≤ X₉ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₇₉: n_l2___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₈₀: n_l2___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ < X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₈₂: n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₈₃: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₈₆: n_l3___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₈₈: n_l3___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₈₉: n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₅₂: n_l21___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₅₃: n_l21___100(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___99(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₁₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)} for transition t₅₀₉₅₆: n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₅₇: n_l21___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)} for transition t₅₀₉₅₈: n_l21___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₅₉: n_l21___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₆₂: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₆₃: n_l21___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ X₁₀ < X₁ ∧ 1+X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₆₄: n_l21___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₆₅: n_l21___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₆₆: n_l21___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₁₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₆₇: n_l21___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₁ < X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₆₈: n_l21___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₁₃ ∧ X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₀₀: n_l10___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₀₂: n_l10___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₀₃: n_l10___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₀₅: n_l10___99(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___98(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₀₆: n_l11___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___24(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₀₈: n_l11___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___50(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₀₉: n_l11___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___61(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₁₁: n_l11___98(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___97(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)} for transition t₅₁₀₇₄: n_l17___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)} for transition t₅₁₀₇₇: n_l17___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₂₁: n_l17___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₂₃: n_l17___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₂₄: n_l17___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₁₀₈₁: n_l17___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₁₀₈₂: n_l17___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₂₅: n_l17___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₁ < X₁₀ ∧ 1+X₂ ≤ X₁₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₂₆: n_l17___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₁ < X₁₀ ∧ 1+X₂ ≤ X₁₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₂₇: n_l17___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₂₈: n_l17___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₃₃: n_l17___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₀₉₃₄: n_l17___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₁₁₅₂: n_l19___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 24⋅X₁₀+24⋅X₁₂+24⋅X₁₄+3⋅X₁₁+3⋅X₉+6 {O(n)} for transition t₅₁₁₅₄: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 2 {O(1)} for transition t₅₁₁₅₅: n_l19___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₁₁₅₆: n_l19___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₁₁₅₇: n_l19___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₅₁₁₅₈: n_l19___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₁₀₀₈: n_l9___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___23(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₁₁₆₁: n_l9___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₁₁₆₆: n_l9___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₁₀₁₀: n_l9___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___60(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₁₁₆₃: n_l9___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₁₁₆₈: n_l9___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₁₀₁₂: n_l9___97(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___96(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₁₁₆₅: n_l9___97(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₁₁₇₀: n_l9___97(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₁₂: n_l13___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___22(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₁₄: n_l13___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___95(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₀₉₁₆: n_l13___96(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___95(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₁₀₀₃: n_l8___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₃₉: n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₄₀: n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₈₄: n_l3___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₈₅: n_l3___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₅₄: n_l21___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₅₅: n_l21___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₁₇: n_l17___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₁₈: n_l17___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₁₉: n_l17___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₀₉₂₀: n_l17___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 162⋅X₁₀+162⋅X₁₂+162⋅X₁₄+3 {O(n)} for transition t₅₁₁₅₀: n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)} for transition t₅₁₁₅₁: n_l19___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
MPRF for transition t₅₀₉₀₁: n_l10___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
2⋅X₁₁+2⋅X₉ {O(n)}
MPRF:
l15 [2⋅X₉-X₀-X₁₁ ]
l14 [2⋅X₉-X₀-X₁₁ ]
l7 [2⋅X₉-X₀-X₁₁ ]
l5 [2⋅X₉-X₀-X₁₁ ]
l8 [2⋅X₉-X₀-X₁₁ ]
n_l11___25 [X₉-X₁₁ ]
n_l11___43 [2⋅X₉-X₀-X₁₁ ]
n_l11___51 [2⋅X₉-X₀-X₁₁ ]
n_l11___62 [2⋅X₉-X₀-X₁₁ ]
n_l11___90 [2⋅X₉-X₀-X₁₁ ]
n_l11___98 [2⋅X₉-2⋅X₁₁ ]
l18 [2⋅X₉-X₀-X₁₁ ]
n_l19___15 [X₉-X₁₁ ]
n_l19___16 [2⋅X₉+1-X₀-X₁₁ ]
n_l19___35 [X₀-X₁₁-2 ]
n_l19___39 [X₀-X₁₁-2 ]
n_l19___7 [2⋅X₉-X₀-X₁₁ ]
n_l19___71 [2⋅X₉-2⋅X₁₁ ]
n_l19___74 [2⋅X₉-X₀-X₁₁ ]
n_l19___75 [2⋅X₉-X₀-X₁₁ ]
n_l19___8 [2⋅X₉-X₀-X₁₁ ]
n_l19___82 [X₉-X₁₁ ]
n_l19___83 [X₉-X₁₁ ]
l6 [2⋅X₉-X₀-X₁₁ ]
n_l20___101 [2⋅X₉-2⋅X₀ ]
n_l20___102 [2⋅X₉-2⋅X₀ ]
n_l20___28 [2⋅X₉-X₀-X₁₁ ]
n_l20___29 [2⋅X₉-X₀-X₁₁ ]
n_l20___54 [2⋅X₉-X₀-X₁₁ ]
n_l20___55 [2⋅X₉-X₀-X₁₁ ]
n_l20___65 [2⋅X₉-X₀-X₁₁ ]
n_l17___9 [2⋅X₉-X₀-X₁₁ ]
n_l10___99 [2⋅X₉-2⋅X₀ ]
n_l17___13 [X₀-X₁₁-1 ]
n_l17___17 [X₉-X₁₁ ]
n_l17___1 [X₀-X₁₁ ]
n_l10___26 [X₀-X₁₁ ]
n_l17___31 [2⋅X₉-X₀-X₁₁ ]
n_l17___36 [X₀-X₁₁-2 ]
n_l17___40 [X₀-X₁₁-2 ]
n_l10___44 [2⋅X₉+1-X₀-X₁₁ ]
n_l10___52 [2⋅X₉-X₀-X₁₁ ]
n_l17___57 [2⋅X₉-X₀-X₁₁ ]
n_l17___5 [2⋅X₉-X₀-X₁₁ ]
n_l10___63 [2⋅X₉-X₀-X₁₁ ]
n_l17___67 [2⋅X₉-2⋅X₀ ]
n_l17___72 [2⋅X₉-2⋅X₀ ]
n_l17___76 [2⋅X₉-2⋅X₁₁ ]
n_l17___80 [X₀-X₁₁-1 ]
n_l17___84 [X₀-X₁₁-1 ]
n_l10___91 [2⋅X₉-X₀-X₁₁ ]
n_l2___103 [2⋅X₉-2⋅X₁₁ ]
n_l21___100 [2⋅X₉-2⋅X₁₁ ]
n_l2___30 [X₀-X₁₁ ]
n_l21___27 [X₉-X₁₁ ]
n_l2___34 [2⋅X₉-X₀-X₁₁ ]
n_l21___32 [2⋅X₉-X₀-X₁₁ ]
n_l2___4 [X₀-X₁₁ ]
n_l21___2 [X₀-X₁₁ ]
n_l21___45 [2⋅X₉+1-X₀-X₁₁ ]
n_l2___56 [2⋅X₉-X₀-X₁₁ ]
n_l21___53 [2⋅X₉-X₀-X₁₁ ]
n_l2___59 [2⋅X₉-X₀-X₁₁ ]
n_l21___58 [2⋅X₉-X₀-X₁₁ ]
n_l2___66 [2⋅X₉-X₀-X₁₁ ]
n_l21___64 [2⋅X₉-X₀-X₁₁ ]
n_l2___70 [2⋅X₉-2⋅X₀ ]
n_l21___68 [2⋅X₉-2⋅X₀ ]
n_l21___92 [2⋅X₉-X₀-X₁₁ ]
n_l3___11 [2⋅X₉-X₀-X₁₁ ]
n_l21___6 [2⋅X₉-X₀-X₁₁ ]
n_l3___12 [2⋅X₉-X₀-X₁₁ ]
n_l21___10 [2⋅X₉-X₀-X₁₁ ]
n_l3___19 [2⋅X₉+1-X₀-X₁₁ ]
n_l21___14 [2⋅X₉+1-X₀-X₁₁ ]
n_l3___20 [2⋅X₉+1-X₀-X₁₁ ]
n_l21___18 [X₉-X₁₁ ]
n_l3___38 [2⋅X₉-X₀-X₁₁ ]
n_l21___37 [X₀-X₁₁-2 ]
n_l3___42 [2⋅X₉-X₀-X₁₁ ]
n_l21___41 [X₀-X₁₁-2 ]
n_l3___78 [2⋅X₉-2⋅X₀ ]
n_l21___73 [2⋅X₉-2⋅X₀ ]
n_l3___79 [2⋅X₉-2⋅X₀ ]
n_l21___77 [2⋅X₉-2⋅X₁₁ ]
n_l3___86 [2⋅X₀-X₉-X₁₁-2 ]
n_l21___81 [X₀-X₁₁-1 ]
n_l3___87 [2⋅X₀-X₉-X₁₁-2 ]
n_l21___85 [X₀-X₁₁-1 ]
n_l8___22 [X₀-X₁₁-1 ]
n_l20___21 [2⋅X₉+1-X₀-X₁₁ ]
n_l20___46 [2⋅X₉-X₀-X₁₁ ]
n_l8___48 [2⋅X₉+1-X₀-X₁₁ ]
n_l2___47 [2⋅X₉+1-X₀-X₁₁ ]
n_l20___93 [2⋅X₀-X₉-X₁₁-2 ]
n_l8___95 [2⋅X₉+1-X₀-X₁₁ ]
n_l2___94 [2⋅X₉-X₀-X₁₁ ]
n_l13___23 [X₀-X₁₁ ]
n_l9___24 [X₉-X₁₁ ]
n_l13___49 [2⋅X₉-X₀-X₁₁ ]
n_l9___50 [2⋅X₉-X₀-X₁₁ ]
n_l13___60 [2⋅X₉-X₀-X₁₁ ]
n_l9___61 [2⋅X₉-X₀-X₁₁ ]
n_l13___88 [2⋅X₉-X₀-X₁₁ ]
n_l9___89 [2⋅X₉-X₀-X₁₁ ]
n_l13___96 [2⋅X₉-X₀-X₁₁ ]
n_l9___97 [2⋅X₉-2⋅X₀ ]
l12 [2⋅X₉-X₀-X₁₁ ]
MPRF for transition t₅₀₉₀₄: n_l10___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉ {O(n)}
MPRF:
l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [-1 ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [-1 ]
n_l17___40 [-1 ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₀ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [-1 ]
n_l3___42 [-1 ]
n_l21___41 [-1 ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [-1 ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]
MPRF for transition t₅₀₉₀₇: n_l11___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___50(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉ {O(n)}
MPRF:
l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₀ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉-X₀ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [-1 ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [X₉+1-X₀ ]
n_l21___14 [0 ]
n_l3___20 [X₈+X₉+1-X₀-X₃ ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [-1 ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₀ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₁₁ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [0 ]
n_l3___87 [X₉+1-X₀ ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [X₈+X₉+1-X₀-X₃ ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]
MPRF for transition t₅₀₉₁₀: n_l11___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___89(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉ {O(n)}
MPRF:
l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₀ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [-1 ]
n_l19___83 [-1 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [-1 ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₁₁ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₁₁ ]
n_l17___80 [X₉-X₀ ]
n_l17___84 [-1 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₀ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [X₉-X₀ ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [-1 ]
n_l3___42 [-1 ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₁₁ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [X₉-X₀ ]
n_l21___81 [X₉-X₀ ]
n_l3___87 [X₉-X₀ ]
n_l21___85 [X₉-X₀ ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [-1 ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [X₉-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]
MPRF for transition t₅₀₉₁₃: n_l13___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___48(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [0 ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₀ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [0 ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [X₉+1-X₀ ]
n_l21___14 [0 ]
n_l3___20 [X₉+1-X₀ ]
n_l21___18 [X₈-X₃ ]
n_l3___38 [0 ]
n_l21___37 [0 ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [X₉+1-X₀ ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₁₅: n_l13___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___95(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉ {O(n)}
MPRF:
l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [-1 ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₀ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉-X₀ ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [-1 ]
n_l17___40 [-1 ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₁₁ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [X₉+1-X₀ ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₀ ]
n_l2___30 [X₉-X₀ ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [-1 ]
n_l3___42 [-1 ]
n_l21___41 [-1 ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [X₉+1-X₀ ]
n_l3___87 [X₉+1-X₀ ]
n_l21___85 [X₉+1-X₀ ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [-1 ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]
MPRF for transition t₅₀₉₂₂: n_l17___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [0 ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [1 ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₁₁ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+2-X₀ ]
n_l21___41 [1 ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [X₀-X₉-1 ]
n_l21___81 [0 ]
n_l3___87 [X₀-X₉-1 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+2-X₀ ]
n_l8___48 [X₉+2-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [X₀-X₉-1 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₂₉: n_l17___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+2-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [0 ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [1 ]
n_l17___84 [0 ]
n_l10___91 [X₉+2-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+2-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [1 ]
n_l21___81 [1 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+2-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₃₀: n_l17___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+2-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [0 ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [1 ]
n_l17___84 [0 ]
n_l10___91 [X₉+2-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [X₉-X₀ ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+2-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [1 ]
n_l21___81 [1 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+2-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₃₁: n_l17___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+2-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₀ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [1 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₁₁ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [1 ]
n_l10___91 [X₉+2-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+2-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [1 ]
n_l21___85 [1 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+2-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₃₂: n_l17___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [1 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [X₉+1-X₀ ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [1 ]
n_l21___85 [1 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₁₁ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₁₁₅₃: n_l19___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [1 ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [1 ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₁₁ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [X₀-X₉ ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [X₉+2-X₀ ]
n_l21___41 [1 ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [X₀-X₉-1 ]
n_l21___81 [0 ]
n_l3___87 [X₀-X₉-1 ]
n_l21___85 [0 ]
n_l8___22 [X₀-X₉ ]
n_l20___21 [X₀-X₉ ]
n_l20___46 [X₉+2-X₀ ]
n_l8___48 [X₉+2-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [X₀-X₉-1 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [X₀+1-X₉ ]
n_l9___24 [X₀+1-X₉ ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₁₁₅₉: n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+2-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₀ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [1 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₁₁ ]
n_l17___72 [X₉+1-X₁₁ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [1 ]
n_l17___84 [1 ]
n_l10___91 [X₉+2-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+2-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [1 ]
n_l21___81 [1 ]
n_l3___87 [1 ]
n_l21___85 [1 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+2-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₁₁₆₀: n_l19___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₀ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+2-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₀ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [0 ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₁₁ ]
n_l17___72 [X₉+1-X₁₁ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [X₉+2-X₀ ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [0 ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [1 ]
n_l21___85 [X₉+2-X₀ ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₄₅: n_l20___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [0 ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₀ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉+1-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉+1-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₅+X₉+1-X₀-X₁ ]
n_l17___67 [X₉+1-X₁₁ ]
n_l17___72 [X₉+1-X₁₁ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉+1-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉+1-X₁₁ ]
n_l21___68 [X₉+1-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [X₈-X₃ ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [0 ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [1 ]
n_l8___48 [X₉+2-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₁₁ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₅₀: n_l20___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+2-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+2-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+2-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [0 ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [0 ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+2-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₅₁: n_l20___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₁₁ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₆₀: n_l21___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [0 ]
n_l10___44 [X₉+2-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+2-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [1 ]
n_l21___41 [1 ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [X₀-X₉-1 ]
n_l21___81 [0 ]
n_l3___87 [X₀-X₉-1 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+2-X₀ ]
n_l8___48 [X₉+2-X₀ ]
n_l2___47 [X₉+2-X₀ ]
n_l20___93 [X₀-X₉-1 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₆₁: n_l21___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
2⋅X₁₁+2⋅X₉ {O(n)}
MPRF:
l15 [2⋅X₉-2⋅X₀ ]
l14 [2⋅X₉-2⋅X₀ ]
l7 [2⋅X₉-2⋅X₀ ]
l5 [2⋅X₉-2⋅X₀ ]
l8 [2⋅X₉-2⋅X₀ ]
n_l11___25 [0 ]
n_l11___43 [2⋅X₉-2⋅X₀ ]
n_l11___51 [2⋅X₉-2⋅X₀ ]
n_l11___62 [2⋅X₉-2⋅X₀ ]
n_l11___90 [2⋅X₉-2⋅X₀ ]
n_l11___98 [2⋅X₉-2⋅X₁₁ ]
l18 [2⋅X₉-2⋅X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [2⋅X₉-2⋅X₀ ]
n_l19___39 [-1 ]
n_l19___7 [2⋅X₉-2⋅X₀ ]
n_l19___71 [2⋅X₉-2⋅X₁₁ ]
n_l19___74 [2⋅X₉-2⋅X₁₁ ]
n_l19___75 [2⋅X₉-2⋅X₀ ]
n_l19___8 [2⋅X₉-2⋅X₀ ]
n_l19___82 [-2 ]
n_l19___83 [-2 ]
l6 [2⋅X₉-2⋅X₀ ]
n_l20___101 [2⋅X₉-2⋅X₀ ]
n_l20___102 [2⋅X₉-2⋅X₀ ]
n_l20___28 [2⋅X₉-2⋅X₀ ]
n_l20___29 [2⋅X₉-2⋅X₀ ]
n_l20___54 [2⋅X₉-2⋅X₀ ]
n_l20___55 [2⋅X₉-2⋅X₀ ]
n_l20___65 [2⋅X₉-2⋅X₀ ]
n_l17___9 [2⋅X₉-2⋅X₀ ]
n_l10___99 [2⋅X₉-2⋅X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [2⋅X₉-2⋅X₀ ]
n_l10___26 [0 ]
n_l17___31 [2⋅X₉-2⋅X₀ ]
n_l17___36 [2⋅X₉-2⋅X₀ ]
n_l17___40 [-1 ]
n_l10___44 [2⋅X₉-2⋅X₀ ]
n_l10___52 [2⋅X₉-2⋅X₀ ]
n_l17___57 [2⋅X₉-2⋅X₀ ]
n_l17___5 [2⋅X₉-2⋅X₀ ]
n_l10___63 [2⋅X₉-2⋅X₀ ]
n_l17___67 [2⋅X₉-2⋅X₀ ]
n_l17___72 [2⋅X₉-2⋅X₀ ]
n_l17___76 [2⋅X₉-2⋅X₀ ]
n_l17___80 [-2 ]
n_l17___84 [-2 ]
n_l10___91 [2⋅X₉-2⋅X₀ ]
n_l2___103 [2⋅X₉-2⋅X₁₁ ]
n_l21___100 [2⋅X₉-2⋅X₁₁ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [2⋅X₉-2⋅X₀ ]
n_l21___32 [2⋅X₉-2⋅X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [2⋅X₉+2-2⋅X₀ ]
n_l2___56 [2⋅X₉-2⋅X₀ ]
n_l21___53 [2⋅X₉-2⋅X₀ ]
n_l2___59 [2⋅X₉-2⋅X₀ ]
n_l21___58 [2⋅X₉-2⋅X₀ ]
n_l2___66 [2⋅X₉-2⋅X₀ ]
n_l21___64 [2⋅X₉-2⋅X₀ ]
n_l2___70 [2⋅X₉-2⋅X₁₁ ]
n_l21___68 [2⋅X₉-2⋅X₁₁ ]
n_l21___92 [2⋅X₉-2⋅X₀ ]
n_l3___11 [2⋅X₉-2⋅X₀ ]
n_l21___6 [2⋅X₉-2⋅X₀ ]
n_l3___12 [2⋅X₉-2⋅X₀ ]
n_l21___10 [2⋅X₉-2⋅X₀ ]
n_l3___19 [X₃-X₈ ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [X₈-X₃ ]
n_l3___38 [2⋅X₉-2⋅X₀ ]
n_l21___37 [2⋅X₉-2⋅X₀ ]
n_l3___42 [2⋅X₉+1-2⋅X₀ ]
n_l21___41 [-1 ]
n_l3___78 [2⋅X₉-2⋅X₀ ]
n_l21___73 [2⋅X₉-2⋅X₀ ]
n_l3___79 [2⋅X₉-2⋅X₀ ]
n_l21___77 [2⋅X₉-2⋅X₀ ]
n_l3___86 [-2 ]
n_l21___81 [2⋅X₉-2⋅X₀ ]
n_l3___87 [-2 ]
n_l21___85 [2⋅X₉-2⋅X₀ ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [2⋅X₉+1-2⋅X₀ ]
n_l8___48 [2⋅X₉+2-2⋅X₀ ]
n_l2___47 [2⋅X₉+2-2⋅X₀ ]
n_l20___93 [-2 ]
n_l8___95 [2⋅X₉-2⋅X₀ ]
n_l2___94 [2⋅X₉-2⋅X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [2⋅X₉-2⋅X₀ ]
n_l9___50 [2⋅X₉-2⋅X₀ ]
n_l13___60 [2⋅X₉-2⋅X₀ ]
n_l9___61 [2⋅X₉-2⋅X₀ ]
n_l13___88 [2⋅X₉-2⋅X₀ ]
n_l9___89 [2⋅X₉-2⋅X₀ ]
n_l13___96 [2⋅X₉-2⋅X₀ ]
n_l9___97 [2⋅X₉-2⋅X₁₁ ]
l12 [2⋅X₉-2⋅X₀ ]
MPRF for transition t₅₀₉₆₉: n_l21___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [0 ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [X₉+1-X₀ ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [X₉+1-X₀ ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [1 ]
n_l21___81 [1 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₇₀: n_l21___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [X₉+1-X₀ ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [X₉+1-X₀ ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [1 ]
n_l21___85 [1 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₇₁: n_l21___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉ {O(n)}
MPRF:
l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₁₁ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [-1 ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [X₉-X₀ ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [-1 ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₁₁ ]
n_l21___73 [X₉-X₀ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀-1 ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₁₁ ]
l12 [X₉-X₀ ]
MPRF for transition t₅₀₉₇₆: n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
2⋅X₁₁+2⋅X₉ {O(n)}
MPRF:
l15 [2⋅X₉-2⋅X₀ ]
l14 [2⋅X₉-2⋅X₀ ]
l7 [2⋅X₉-2⋅X₀ ]
l5 [2⋅X₉-2⋅X₀ ]
l8 [2⋅X₉-2⋅X₀ ]
n_l11___25 [0 ]
n_l11___43 [2⋅X₉-2⋅X₀ ]
n_l11___51 [2⋅X₉-2⋅X₀ ]
n_l11___62 [2⋅X₉-2⋅X₀ ]
n_l11___90 [2⋅X₉-2⋅X₀ ]
n_l11___98 [2⋅X₉-2⋅X₁₁ ]
l18 [2⋅X₉-2⋅X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-2 ]
n_l19___39 [2⋅X₉-2⋅X₀ ]
n_l19___7 [2⋅X₉-2⋅X₀ ]
n_l19___71 [2⋅X₉-2⋅X₁₁ ]
n_l19___74 [2⋅X₉-2⋅X₁₁ ]
n_l19___75 [2⋅X₉-2⋅X₁₁ ]
n_l19___8 [2⋅X₉-2⋅X₀ ]
n_l19___82 [-2 ]
n_l19___83 [-2 ]
l6 [2⋅X₉-2⋅X₀ ]
n_l20___101 [2⋅X₉-2⋅X₀ ]
n_l20___102 [2⋅X₉-2⋅X₀ ]
n_l20___28 [2⋅X₉-2⋅X₀ ]
n_l20___29 [2⋅X₉-2⋅X₀ ]
n_l20___54 [2⋅X₉-2⋅X₀ ]
n_l20___55 [2⋅X₉-2⋅X₀ ]
n_l20___65 [2⋅X₉-2⋅X₀ ]
n_l17___9 [2⋅X₉-2⋅X₀ ]
n_l10___99 [2⋅X₉-2⋅X₁₁ ]
n_l17___13 [X₈-X₃ ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [2⋅X₉-2⋅X₀ ]
n_l17___36 [-2 ]
n_l17___40 [2⋅X₉-2⋅X₀ ]
n_l10___44 [2⋅X₉-2⋅X₀ ]
n_l10___52 [2⋅X₉-2⋅X₀ ]
n_l17___57 [2⋅X₉-2⋅X₀ ]
n_l17___5 [2⋅X₉-2⋅X₀ ]
n_l10___63 [2⋅X₉-2⋅X₀ ]
n_l17___67 [2⋅X₉-2⋅X₀ ]
n_l17___72 [2⋅X₉-2⋅X₀ ]
n_l17___76 [2⋅X₉-2⋅X₀ ]
n_l17___80 [-2 ]
n_l17___84 [-2 ]
n_l10___91 [2⋅X₉-2⋅X₀ ]
n_l2___103 [2⋅X₉-2⋅X₁₁ ]
n_l21___100 [2⋅X₉-2⋅X₀ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [2⋅X₉-2⋅X₀ ]
n_l21___32 [2⋅X₉-2⋅X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [2⋅X₉-2⋅X₀ ]
n_l2___56 [2⋅X₉-2⋅X₀ ]
n_l21___53 [2⋅X₉-2⋅X₀ ]
n_l2___59 [2⋅X₉-2⋅X₀ ]
n_l21___58 [2⋅X₉-2⋅X₀ ]
n_l2___66 [2⋅X₉-2⋅X₀ ]
n_l21___64 [2⋅X₉-2⋅X₀ ]
n_l2___70 [2⋅X₉-2⋅X₁₁ ]
n_l21___68 [2⋅X₉-2⋅X₀ ]
n_l21___92 [2⋅X₉-2⋅X₀ ]
n_l3___11 [2⋅X₉-2⋅X₀ ]
n_l21___6 [2⋅X₉-2⋅X₀ ]
n_l3___12 [2⋅X₉-2⋅X₀ ]
n_l21___10 [2⋅X₉-2⋅X₀ ]
n_l3___19 [X₈+2⋅X₉+2-2⋅X₀-X₃ ]
n_l21___14 [0 ]
n_l3___20 [X₈+2⋅X₉+2-2⋅X₀-X₃ ]
n_l21___18 [X₈+2⋅X₉+2-2⋅X₀-X₃ ]
n_l3___38 [2⋅X₉-2⋅X₀ ]
n_l21___37 [-2 ]
n_l3___42 [2⋅X₉-2⋅X₀ ]
n_l21___41 [2⋅X₉-2⋅X₀ ]
n_l3___78 [2⋅X₉-2⋅X₀ ]
n_l21___73 [2⋅X₉-2⋅X₀ ]
n_l3___79 [2⋅X₉-2⋅X₀ ]
n_l21___77 [2⋅X₉-2⋅X₀ ]
n_l3___86 [2⋅X₀-2⋅X₉-4 ]
n_l21___81 [-2 ]
n_l3___87 [-2 ]
n_l21___85 [-2 ]
n_l8___22 [0 ]
n_l20___21 [X₈+2⋅X₉+2-2⋅X₀-X₃ ]
n_l20___46 [2⋅X₉-2⋅X₀ ]
n_l8___48 [2⋅X₉+2-2⋅X₀ ]
n_l2___47 [2⋅X₉+2-2⋅X₀ ]
n_l20___93 [-2 ]
n_l8___95 [2⋅X₉-2⋅X₀ ]
n_l2___94 [2⋅X₉-2⋅X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [2⋅X₉-2⋅X₀ ]
n_l9___50 [2⋅X₉-2⋅X₀ ]
n_l13___60 [2⋅X₉-2⋅X₀ ]
n_l9___61 [2⋅X₉-2⋅X₀ ]
n_l13___88 [2⋅X₉-2⋅X₀ ]
n_l9___89 [2⋅X₉-2⋅X₀ ]
n_l13___96 [2⋅X₉-2⋅X₀ ]
n_l9___97 [2⋅X₉-2⋅X₀ ]
l12 [2⋅X₉-2⋅X₀ ]
MPRF for transition t₅₀₉₈₁: n_l2___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉ {O(n)}
MPRF:
l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₁₁ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [X₉-X₀ ]
n_l19___83 [-1 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [-1 ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₀ ]
n_l17___80 [0 ]
n_l17___84 [-1 ]
n_l10___91 [X₉-X₀ ]
n_l2___103 [X₉-X₀ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [-1 ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₁₁ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [X₉+1-X₀ ]
n_l3___87 [X₉-X₀ ]
n_l21___85 [X₉-X₀ ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]
MPRF for transition t₅₀₉₈₇: n_l3___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [0 ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [1 ]
n_l21___41 [0 ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [1 ]
n_l8___48 [X₉+2-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [X₉+1-X₀ ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₉₀: n_l3___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+2-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [0 ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [0 ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+2-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+2-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [0 ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [1 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+2-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₀₉₉₁: n_l3___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [0 ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₀ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [1 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₁₀₀₄: n_l8___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₀-X₉-1 ]
n_l19___39 [0 ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉+1-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₀-X₉-1 ]
n_l20___65 [X₉+1-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₀-X₉-1 ]
n_l17___40 [0 ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉+1-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉+1-X₀ ]
n_l21___58 [X₉+1-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉+1-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [X₁+X₈-X₃-X₇ ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₀-X₉-1 ]
n_l21___37 [X₀-X₉-1 ]
n_l3___42 [0 ]
n_l21___41 [0 ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [X₇+X₈-X₁-X₃ ]
n_l20___21 [X₈-X₃ ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+2-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [X₇+X₈-X₁-X₃ ]
n_l9___24 [1 ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₁₀₀₅: n_l8___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉ {O(n)}
MPRF:
l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉-X₀ ]
n_l19___39 [-1 ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₀ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉-X₀ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉-X₀ ]
n_l17___40 [-1 ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉-X₀ ]
n_l2___103 [X₉-X₀ ]
n_l21___100 [X₉-X₀ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [X₉-X₀ ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [X₃+X₉+1-X₀-X₈ ]
n_l21___14 [0 ]
n_l3___20 [X₉+1-X₀ ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [X₉-X₀ ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [-1 ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₀ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₁₁ ]
n_l3___86 [X₀-X₉-1 ]
n_l21___81 [0 ]
n_l3___87 [X₀-X₉-1 ]
n_l21___85 [0 ]
n_l8___22 [X₈-X₃ ]
n_l20___21 [X₉+1-X₀ ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [X₀-X₉-1 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉-X₀ ]
n_l13___23 [X₈-X₃ ]
n_l9___24 [X₈-X₃ ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₁₁ ]
n_l9___97 [X₉-X₁₁ ]
l12 [X₉-X₀ ]
MPRF for transition t₅₁₀₀₆: n_l8___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [X₉+1-X₀ ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [X₉+1-X₀ ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
MPRF for transition t₅₁₀₀₇: n_l8___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉ {O(n)}
MPRF:
l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉-X₀ ]
n_l19___39 [-1 ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₀ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉-X₀ ]
n_l17___40 [-1 ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₁₁ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₁₁ ]
n_l17___80 [X₉+1-X₀ ]
n_l17___84 [0 ]
n_l10___91 [X₉-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [X₉-X₀ ]
n_l3___42 [-1 ]
n_l21___41 [-1 ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [X₉+1-X₀ ]
n_l3___87 [X₉+1-X₀ ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [-1 ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]
MPRF for transition t₅₁₀₀₉: n_l9___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___49(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
2⋅X₁₁+2⋅X₉ {O(n)}
MPRF:
l15 [2⋅X₉-X₀-X₁₁ ]
l14 [2⋅X₉-X₀-X₁₁ ]
l7 [2⋅X₉-X₀-X₁₁ ]
l5 [2⋅X₉-X₀-X₁₁ ]
l8 [2⋅X₉-X₀-X₁₁ ]
n_l11___25 [2⋅X₉-X₀-X₁₁ ]
n_l11___43 [2⋅X₉-X₀-X₁₁ ]
n_l11___51 [2⋅X₉-X₀-X₁₁ ]
n_l11___62 [2⋅X₉-X₀-X₁₁ ]
n_l11___90 [2⋅X₉-X₀-X₁₁ ]
n_l11___98 [2⋅X₉-2⋅X₁₁ ]
l18 [2⋅X₉-X₀-X₁₁ ]
n_l19___15 [X₀-X₁₁-1 ]
n_l19___16 [X₉-X₁₁ ]
n_l19___35 [2⋅X₉-X₀-X₁₁ ]
n_l19___39 [2⋅X₉-X₀-X₁₁ ]
n_l19___7 [2⋅X₉-X₀-X₁₁ ]
n_l19___71 [2⋅X₉-2⋅X₁₁ ]
n_l19___74 [2⋅X₉-X₀-X₁₁ ]
n_l19___75 [2⋅X₉-2⋅X₀ ]
n_l19___8 [2⋅X₉-X₀-X₁₁ ]
n_l19___82 [X₀-X₁₁-1 ]
n_l19___83 [X₉-X₁₁ ]
l6 [2⋅X₉-X₀-X₁₁ ]
n_l20___101 [2⋅X₉-2⋅X₀ ]
n_l20___102 [2⋅X₉-2⋅X₀ ]
n_l20___28 [2⋅X₉-X₀-X₁₁ ]
n_l20___29 [2⋅X₉-X₀-X₁₁ ]
n_l20___54 [2⋅X₉-X₀-X₁₁ ]
n_l20___55 [2⋅X₉-X₀-X₁₁ ]
n_l20___65 [2⋅X₉-X₀-X₁₁ ]
n_l17___9 [2⋅X₉-X₀-X₁₁ ]
n_l10___99 [2⋅X₉-2⋅X₀ ]
n_l17___13 [X₉-X₁₁ ]
n_l17___17 [X₉-X₁₁ ]
n_l17___1 [X₀-X₁₁ ]
n_l10___26 [X₀-X₁₁ ]
n_l17___31 [2⋅X₉-X₀-X₁₁ ]
n_l17___36 [2⋅X₉-X₀-X₁₁ ]
n_l17___40 [2⋅X₉-X₀-X₁₁ ]
n_l10___44 [2⋅X₉-X₀-X₁₁ ]
n_l10___52 [2⋅X₉-X₀-X₁₁ ]
n_l17___57 [2⋅X₉-X₀-X₁₁ ]
n_l17___5 [2⋅X₉-X₀-X₁₁ ]
n_l10___63 [2⋅X₉-X₀-X₁₁ ]
n_l17___67 [2⋅X₉-2⋅X₁₁ ]
n_l17___72 [2⋅X₉-2⋅X₀ ]
n_l17___76 [2⋅X₉-2⋅X₁₁ ]
n_l17___80 [X₀-X₁₁-1 ]
n_l17___84 [X₉-X₁₁ ]
n_l10___91 [2⋅X₉-X₀-X₁₁ ]
n_l2___103 [2⋅X₉-2⋅X₁₁ ]
n_l21___100 [2⋅X₉-2⋅X₁₁ ]
n_l2___30 [X₀-X₁₁ ]
n_l21___27 [X₉-X₁₁ ]
n_l2___34 [2⋅X₉-X₀-X₁₁ ]
n_l21___32 [2⋅X₉-X₀-X₁₁ ]
n_l2___4 [X₀-X₁₁ ]
n_l21___2 [X₉-X₁₁ ]
n_l21___45 [2⋅X₉-X₀-X₁₁ ]
n_l2___56 [2⋅X₉-X₀-X₁₁ ]
n_l21___53 [2⋅X₉-X₀-X₁₁ ]
n_l2___59 [2⋅X₉-X₀-X₁₁ ]
n_l21___58 [2⋅X₉-X₀-X₁₁ ]
n_l2___66 [2⋅X₉-X₀-X₁₁ ]
n_l21___64 [2⋅X₉-X₀-X₁₁ ]
n_l2___70 [2⋅X₉-2⋅X₀ ]
n_l21___68 [2⋅X₉-2⋅X₁₁ ]
n_l21___92 [2⋅X₉-X₀-X₁₁ ]
n_l3___11 [2⋅X₉-X₀-X₁₁ ]
n_l21___6 [2⋅X₉-X₀-X₁₁ ]
n_l3___12 [2⋅X₉-X₀-X₁₁ ]
n_l21___10 [2⋅X₉-X₀-X₁₁ ]
n_l3___19 [2⋅X₉+1-X₀-X₁₁ ]
n_l21___14 [X₉-X₁₁ ]
n_l3___20 [2⋅X₉+1-X₀-X₁₁ ]
n_l21___18 [X₈+2⋅X₉+1-X₀-X₃-X₁₁ ]
n_l3___38 [2⋅X₉-X₀-X₁₁ ]
n_l21___37 [2⋅X₉-X₀-X₁₁ ]
n_l3___42 [2⋅X₉-X₀-X₁₁ ]
n_l21___41 [2⋅X₉-X₀-X₁₁ ]
n_l3___78 [2⋅X₉-2⋅X₀ ]
n_l21___73 [2⋅X₉-2⋅X₀ ]
n_l3___79 [2⋅X₉-2⋅X₀ ]
n_l21___77 [2⋅X₉-2⋅X₁₁ ]
n_l3___86 [X₉-X₁₁ ]
n_l21___81 [X₉-X₁₁ ]
n_l3___87 [X₉-X₁₁ ]
n_l21___85 [X₉-X₁₁ ]
n_l8___22 [X₉-X₁₁ ]
n_l20___21 [2⋅X₉+1-X₀-X₁₁ ]
n_l20___46 [2⋅X₉-X₀-X₁₁ ]
n_l8___48 [2⋅X₉-X₀-X₁₁ ]
n_l2___47 [2⋅X₉-X₀-X₁₁ ]
n_l20___93 [X₉-X₁₁ ]
n_l8___95 [2⋅X₉+1-X₀-X₁₁ ]
n_l2___94 [2⋅X₉-X₀-X₁₁ ]
n_l13___23 [2⋅X₉-X₀-X₁₁ ]
n_l9___24 [2⋅X₉-X₀-X₁₁ ]
n_l13___49 [2⋅X₉-X₀-X₁₁-1 ]
n_l9___50 [2⋅X₉-X₀-X₁₁ ]
n_l13___60 [2⋅X₉-X₀-X₁₁ ]
n_l9___61 [2⋅X₉-X₀-X₁₁ ]
n_l13___88 [2⋅X₉-X₀-X₁₁ ]
n_l9___89 [2⋅X₉-X₀-X₁₁ ]
n_l13___96 [2⋅X₉-X₀-X₁₁ ]
n_l9___97 [2⋅X₉-2⋅X₀ ]
l12 [2⋅X₉-X₀-X₁₁ ]
MPRF for transition t₅₁₁₆₂: n_l9___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+1 {O(n)}
MPRF:
l15 [X₁₁-X₉ ]
l14 [X₁₁-X₉ ]
l7 [X₁₁-X₉ ]
l5 [X₁₁-X₉ ]
n_l2___56 [X₁₁-X₉ ]
l8 [X₁₁-X₉ ]
n_l11___25 [X₁₁-X₉ ]
n_l11___43 [1 ]
n_l11___51 [1 ]
n_l11___62 [X₁₁-X₉ ]
n_l11___90 [X₁₁-X₉ ]
n_l11___98 [X₀-X₉ ]
l18 [X₁₁-X₉ ]
n_l19___15 [X₁₁-X₉ ]
n_l19___16 [X₁₁-X₉ ]
n_l19___35 [X₁₁-X₉ ]
n_l19___39 [X₁₁-X₉ ]
n_l19___7 [X₁₁-X₉ ]
n_l19___71 [X₁₁-X₉ ]
n_l19___74 [X₁₁-X₉ ]
n_l19___75 [X₀-X₉ ]
n_l19___8 [X₁₁-X₉ ]
n_l19___82 [X₁₁-X₉ ]
n_l19___83 [X₁₁-X₉ ]
l6 [X₁₁-X₉ ]
n_l20___101 [X₀-X₉ ]
n_l20___102 [X₀-X₉ ]
n_l20___28 [X₁₁-X₉ ]
n_l20___29 [X₁₁-X₉ ]
n_l20___54 [X₁₁-X₉ ]
n_l20___55 [X₁₁-X₉ ]
n_l20___65 [X₁₁-X₉ ]
n_l17___9 [X₁₁-X₉ ]
n_l10___99 [X₁₁-X₉ ]
n_l17___13 [X₁₁-X₉ ]
n_l17___17 [X₁₁-X₉ ]
n_l17___1 [X₁₁-X₀ ]
n_l10___26 [X₁₁-X₀ ]
n_l17___31 [X₁₁-X₉ ]
n_l17___36 [X₁₁-X₉ ]
n_l17___40 [X₁₁-X₉ ]
n_l10___44 [1 ]
n_l21___53 [1 ]
n_l10___52 [1 ]
n_l17___57 [X₁₁-X₉ ]
n_l17___5 [X₁₁-X₉ ]
n_l10___63 [X₁+X₁₁-X₅-X₉ ]
n_l17___67 [X₀-X₉ ]
n_l17___72 [X₀-X₉ ]
n_l17___76 [X₀-X₉ ]
n_l17___80 [X₁₁-X₉ ]
n_l17___84 [X₁₁+1-X₀ ]
n_l10___91 [X₁₁-X₉ ]
n_l2___103 [X₁₁-X₉ ]
n_l21___100 [X₀-X₉ ]
n_l2___30 [X₁₁-X₉ ]
n_l21___27 [X₁₁-X₉ ]
n_l2___34 [X₁₁-X₉ ]
n_l21___32 [X₁₁-X₉ ]
n_l2___4 [X₁₁-X₉ ]
n_l21___2 [X₁₁-X₉ ]
n_l21___45 [1 ]
n_l2___59 [X₁₁-X₉ ]
n_l21___58 [X₁+X₁₁-X₅-X₉ ]
n_l2___66 [X₁₁-X₉ ]
n_l21___64 [X₁+X₁₁-X₅-X₉ ]
n_l2___70 [X₀-X₉ ]
n_l21___68 [X₀-X₉ ]
n_l21___92 [X₁₁-X₉ ]
n_l3___11 [X₁₁-X₉ ]
n_l21___6 [X₁₁-X₉ ]
n_l3___12 [X₁₁-X₉ ]
n_l21___10 [X₁₁-X₉ ]
n_l3___19 [X₇+X₁₁+1-X₀-X₁ ]
n_l21___14 [X₁₁-X₉ ]
n_l3___20 [X₁₁+1-X₀ ]
n_l21___18 [X₁₁+1-X₀ ]
n_l3___38 [X₁₁-X₉ ]
n_l21___37 [X₁₁-X₉ ]
n_l3___42 [0 ]
n_l21___41 [X₁₁+1-X₉ ]
n_l3___78 [X₀-X₉ ]
n_l21___73 [X₀-X₉ ]
n_l3___79 [X₀-X₉ ]
n_l21___77 [X₀-X₉ ]
n_l3___86 [X₁₁-X₉ ]
n_l21___81 [X₁₁-X₉ ]
n_l3___87 [X₁₁-X₉ ]
n_l21___85 [X₁₁+1-X₀ ]
n_l8___22 [X₁₁-X₉ ]
n_l20___21 [X₁₁+1-X₀ ]
n_l20___46 [0 ]
n_l8___48 [1 ]
n_l2___47 [1 ]
n_l20___93 [X₁₁-X₉ ]
n_l8___95 [X₁₁-X₉ ]
n_l2___94 [X₁₁-X₉ ]
n_l13___23 [X₁₁-X₉ ]
n_l9___24 [X₁₁-X₀ ]
n_l13___49 [1 ]
n_l9___50 [1 ]
n_l13___60 [X₃+X₁₁-X₆-X₉ ]
n_l9___61 [X₁₁-X₉ ]
n_l13___88 [X₁₁-X₉ ]
n_l9___89 [X₁₁-X₉ ]
n_l13___96 [X₁₁-X₉ ]
n_l9___97 [X₀-X₉ ]
l12 [X₁₁-X₉ ]
MPRF for transition t₅₁₁₆₇: n_l9___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
54⋅X₁₀+54⋅X₁₂+58⋅X₁₄+3 {O(n)}
MPRF:
l15 [2⋅X₁₄+2-2⋅X₃ ]
l14 [2⋅X₁₄+2-2⋅X₃ ]
l7 [2⋅X₁₄+2-2⋅X₃ ]
l5 [2⋅X₁₄+2-2⋅X₃ ]
n_l2___56 [2⋅X₁₄+2-2⋅X₂ ]
l8 [2⋅X₁₄+2-2⋅X₂ ]
n_l11___25 [2⋅X₁₄-2⋅X₂ ]
n_l11___43 [1 ]
n_l11___51 [1 ]
n_l11___62 [2⋅X₁₄-2⋅X₂ ]
n_l11___90 [2⋅X₁₄-2⋅X₂ ]
n_l11___98 [0 ]
l18 [2⋅X₁₄+2-2⋅X₂ ]
n_l19___15 [2⋅X₁₄-2⋅X₂ ]
n_l19___16 [2⋅X₁₄-2⋅X₂ ]
n_l19___35 [2⋅X₁₄-2⋅X₂ ]
n_l19___39 [0 ]
n_l19___7 [2⋅X₁₄-2⋅X₂ ]
n_l19___71 [0 ]
n_l19___74 [0 ]
n_l19___75 [0 ]
n_l19___8 [2⋅X₁₄-2⋅X₂ ]
n_l19___82 [2⋅X₁₄-2⋅X₂ ]
n_l19___83 [2⋅X₁₄-2⋅X₂ ]
l6 [2⋅X₁₄-2⋅X₂ ]
n_l20___101 [2 ]
n_l20___102 [0 ]
n_l20___28 [2⋅X₁₄+2-2⋅X₂ ]
n_l20___29 [2⋅X₁₄-2⋅X₂ ]
n_l20___54 [2⋅X₁₄+2-2⋅X₂ ]
n_l20___55 [2⋅X₁₄-2⋅X₂ ]
n_l20___65 [2⋅X₁₄+2-2⋅X₂ ]
n_l17___9 [2⋅X₁₄-2⋅X₂ ]
n_l10___99 [0 ]
n_l17___13 [2⋅X₁₄-2⋅X₂ ]
n_l17___17 [2⋅X₁₄-2⋅X₂ ]
n_l17___1 [2⋅X₁₄+2-2⋅X₂ ]
n_l10___26 [2⋅X₁₄-2⋅X₂ ]
n_l17___31 [2⋅X₁₄+2-2⋅X₂ ]
n_l17___36 [2⋅X₁₄-2⋅X₂ ]
n_l17___40 [0 ]
n_l10___44 [1 ]
n_l21___53 [1 ]
n_l10___52 [1 ]
n_l17___57 [2⋅X₁₄+2-2⋅X₂ ]
n_l17___5 [2⋅X₁₄-2⋅X₂ ]
n_l10___63 [2⋅X₁₄-2⋅X₂ ]
n_l17___67 [2 ]
n_l17___72 [0 ]
n_l17___76 [0 ]
n_l17___80 [2⋅X₁₄-2⋅X₂ ]
n_l17___84 [2⋅X₁₄-2⋅X₂ ]
n_l10___91 [2⋅X₁₄-2⋅X₂ ]
n_l2___103 [0 ]
n_l21___100 [0 ]
n_l2___30 [2⋅X₁₄-2⋅X₂ ]
n_l21___27 [2⋅X₁₄-2⋅X₂ ]
n_l2___34 [2⋅X₁₄+2-2⋅X₂ ]
n_l21___32 [2⋅X₁₄+2-2⋅X₂ ]
n_l2___4 [2⋅X₁₄+2-2⋅X₂ ]
n_l21___2 [2⋅X₁₄+2-2⋅X₂ ]
n_l21___45 [1 ]
n_l2___59 [2⋅X₁₄+2-2⋅X₂ ]
n_l21___58 [2⋅X₁₄+2-2⋅X₂ ]
n_l2___66 [2⋅X₁₄-2⋅X₂ ]
n_l21___64 [2⋅X₁₄-2⋅X₂ ]
n_l2___70 [2 ]
n_l21___68 [2 ]
n_l21___92 [2⋅X₁₄-2⋅X₂ ]
n_l3___11 [2⋅X₁₄-2⋅X₂ ]
n_l21___6 [2⋅X₁₄-2⋅X₂ ]
n_l3___12 [2⋅X₁₄-2⋅X₂ ]
n_l21___10 [2⋅X₁₄-2⋅X₂ ]
n_l3___19 [2⋅X₁₄-2⋅X₂ ]
n_l21___14 [2⋅X₁₄-2⋅X₂ ]
n_l3___20 [2⋅X₁₄-2⋅X₂ ]
n_l21___18 [2⋅X₁₄-2⋅X₂ ]
n_l3___38 [2⋅X₁₄-2⋅X₂ ]
n_l21___37 [2⋅X₁₄-2⋅X₂ ]
n_l3___42 [0 ]
n_l21___41 [0 ]
n_l3___78 [0 ]
n_l21___73 [0 ]
n_l3___79 [0 ]
n_l21___77 [0 ]
n_l3___86 [2⋅X₁₄-2⋅X₂ ]
n_l21___81 [2⋅X₁₄-2⋅X₂ ]
n_l3___87 [2⋅X₁₄-2⋅X₂ ]
n_l21___85 [2⋅X₁₄-2⋅X₂ ]
n_l8___22 [2⋅X₁₄-2⋅X₂ ]
n_l20___21 [2⋅X₁₄-2⋅X₂ ]
n_l20___46 [0 ]
n_l8___48 [1 ]
n_l2___47 [1 ]
n_l20___93 [2⋅X₁₄-2⋅X₂ ]
n_l8___95 [2⋅X₁₄-2⋅X₂ ]
n_l2___94 [2⋅X₁₄-2⋅X₂ ]
n_l13___23 [2⋅X₁₄-2⋅X₂ ]
n_l9___24 [2⋅X₁₄-2⋅X₂ ]
n_l13___49 [1 ]
n_l9___50 [1 ]
n_l13___60 [2⋅X₁₄-2⋅X₂ ]
n_l9___61 [2⋅X₁₄-2⋅X₂ ]
n_l13___88 [2⋅X₁₄-2⋅X₂ ]
n_l9___89 [2⋅X₁₄-2⋅X₂ ]
n_l13___96 [2⋅X₁₄-2⋅X₂ ]
n_l9___97 [0 ]
l12 [2⋅X₁₄+2-2⋅X₃ ]
MPRF for transition t₅₁₀₁₁: n_l9___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___88(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉ {O(n)}
MPRF:
l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [-1 ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₀ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [-1 ]
n_l17___40 [-1 ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₁₁ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [X₉-X₀ ]
n_l21___27 [X₉-X₀ ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [-1 ]
n_l3___42 [-1 ]
n_l21___41 [-1 ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [-1 ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]
MPRF for transition t₅₁₁₆₄: n_l9___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉ {O(n)}
MPRF:
l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉-X₀ ]
n_l19___35 [X₉-X₀ ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₁₁ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉-X₀ ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [X₉-X₀ ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₁₁ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]
MPRF for transition t₅₁₁₆₉: n_l9___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₁+X₉ {O(n)}
MPRF:
l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [-1 ]
n_l19___16 [X₉-X₀ ]
n_l19___35 [X₉-X₀ ]
n_l19___39 [-1 ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₁₁ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [X₉-X₀ ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉-X₀ ]
n_l17___40 [-1 ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₁₁ ]
n_l17___76 [X₉-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [X₉-X₀ ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [X₉-X₀ ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₀ ]
n_l3___79 [X₉-X₁₁ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₁₁ ]
l12 [X₉-X₀ ]
CFR: Improvement to new bound with the following program:
new bound:
3404⋅X₁₀+3404⋅X₁₂+3516⋅X₁₄+77⋅X₁₁+77⋅X₉+234 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: Arg10_P, Arg11_P, Arg14_P, Arg9_P, NoDet0, nondef.1, nondef.2
Locations: l0, l1, l12, l14, l15, l16, l18, l4, l5, l6, l7, l8, n_l10___26, n_l10___44, n_l10___52, n_l10___63, n_l10___91, n_l10___99, n_l11___25, n_l11___43, n_l11___51, n_l11___62, n_l11___90, n_l11___98, n_l13___23, n_l13___49, n_l13___60, n_l13___88, n_l13___96, n_l17___1, n_l17___13, n_l17___17, n_l17___31, n_l17___36, n_l17___40, n_l17___5, n_l17___57, n_l17___67, n_l17___72, n_l17___76, n_l17___80, n_l17___84, n_l17___9, n_l19___15, n_l19___16, n_l19___35, n_l19___39, n_l19___7, n_l19___71, n_l19___74, n_l19___75, n_l19___8, n_l19___82, n_l19___83, n_l20___101, n_l20___102, n_l20___21, n_l20___28, n_l20___29, n_l20___46, n_l20___54, n_l20___55, n_l20___65, n_l20___93, n_l21___10, n_l21___100, n_l21___14, n_l21___18, n_l21___2, n_l21___27, n_l21___32, n_l21___37, n_l21___41, n_l21___45, n_l21___53, n_l21___58, n_l21___6, n_l21___64, n_l21___68, n_l21___73, n_l21___77, n_l21___81, n_l21___85, n_l21___92, n_l2___103, n_l2___30, n_l2___34, n_l2___4, n_l2___47, n_l2___56, n_l2___59, n_l2___66, n_l2___70, n_l2___94, n_l3___11, n_l3___12, n_l3___19, n_l3___20, n_l3___3, n_l3___33, n_l3___38, n_l3___42, n_l3___69, n_l3___78, n_l3___79, n_l3___86, n_l3___87, n_l8___22, n_l8___48, n_l8___95, n_l9___24, n_l9___50, n_l9___61, n_l9___89, n_l9___97
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₁+X₃, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₅, X₃, X₆, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₁₁, X₁₂, X₁₄, X₁₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₁: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₇, X₃, X₈, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁+X₃, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₀₀₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___101(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₁₀₀₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___102(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₉₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₉₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₉₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₉₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₉₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₁₀₀₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___103(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₉₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₉₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₉₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₀₀: n_l10___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₀₁: n_l10___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₀₂: n_l10___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₀₃: n_l10___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₀₄: n_l10___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₀₅: n_l10___99(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___98(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₀₉₀₆: n_l11___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___24(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₀₇: n_l11___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___50(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₀₈: n_l11___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___50(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₀₉: n_l11___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___61(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₁₀: n_l11___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___89(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₁₁: n_l11___98(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___97(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₀₉₁₂: n_l13___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___22(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₁₃: n_l13___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___48(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₁₄: n_l13___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___95(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₁₅: n_l13___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___95(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₁₆: n_l13___96(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___95(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₁₀₇₄: n_l17___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₁₇: n_l17___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₁₈: n_l17___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₁₉: n_l17___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₂₀: n_l17___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₀₇₇: n_l17___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₂₁: n_l17___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₂₂: n_l17___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₂₃: n_l17___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₂₄: n_l17___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₁₀₈₁: n_l17___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₁₀₈₂: n_l17___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₂₅: n_l17___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₁ < X₁₀ ∧ 1+X₂ ≤ X₁₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₂₆: n_l17___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₁ < X₁₀ ∧ 1+X₂ ≤ X₁₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₂₇: n_l17___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₀₉₂₈: n_l17___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₀₉₂₉: n_l17___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₃₀: n_l17___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₃₁: n_l17___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₃₂: n_l17___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₃₃: n_l17___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₃₄: n_l17___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₅₀: n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₁₁₅₁: n_l19___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₅₂: n_l19___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₁₁₅₃: n_l19___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₁₁₅₄: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₁₁₅₅: n_l19___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₅₁₁₅₆: n_l19___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₅₁₁₅₇: n_l19___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₁₁₅₈: n_l19___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₅₉: n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₁₁₆₀: n_l19___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₃₅: n_l20___101(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₃₆: n_l20___101(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₃₇: n_l20___102(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
t₅₀₉₃₈: n_l20___102(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
t₅₀₉₃₉: n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₄₀: n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₄₁: n_l20___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₄₂: n_l20___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₄₃: n_l20___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₄₄: n_l20___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₄₅: n_l20___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₄₆: n_l20___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₄₇: n_l20___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₄₈: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁
t₅₀₉₄₉: n_l20___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₅₀: n_l20___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₅₁: n_l20___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₅₂: n_l21___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₅₃: n_l21___100(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___99(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₁₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₀₉₅₄: n_l21___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₅₅: n_l21___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₅₆: n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₅₇: n_l21___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₅₈: n_l21___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₅₉: n_l21___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₆₀: n_l21___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₆₁: n_l21___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₆₂: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₆₃: n_l21___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ X₁₀ < X₁ ∧ 1+X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₆₄: n_l21___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₆₅: n_l21___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₆₆: n_l21___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₁₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₆₇: n_l21___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₁ < X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₆₈: n_l21___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₁₃ ∧ X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₀₉₆₉: n_l21___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₇₀: n_l21___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₇₁: n_l21___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₀₆₄: n_l2___103(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₁₁₄₀: n_l2___103(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₀₉₇₂: n_l2___103(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___100(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₁₀₆₅: n_l2___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₄₁: n_l2___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₇₃: n_l2___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₇₄: n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₁₀₆₇: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₁₁₄₃: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₇₅: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₇₆: n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₀₉₇₇: n_l2___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₁₀₇₀: n_l2___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₁₁₄₆: n_l2___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₇₈: n_l2___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₀ ≤ X₉ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₁₀₇₁: n_l2___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₄₇: n_l2___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₀₉₇₉: n_l2___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₀₇₂: n_l2___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₁₁₄₈: n_l2___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₈₀: n_l2___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ < X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₀₉₈₁: n_l2___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₀₁: n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₁₁₂₇: n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₈₂: n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₁₁₀₂: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₁₁₁₅: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₁₁₂₈: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₈₃: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₀₉₈₄: n_l3___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₈₅: n_l3___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₀₅: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₁₁₁₈: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₁₁₃₁: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₁₁₁₉: n_l3___33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₁₁₂₀: n_l3___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁
t₅₀₉₈₆: n_l3___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁
t₅₀₉₈₇: n_l3___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₁₁₀₉: n_l3___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₁₁₂₂: n_l3___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₁₁₃₅: n_l3___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₁₁₁₀: n_l3___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₅₁₁₃₆: n_l3___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₈₈: n_l3___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₅₁₁₁₁: n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
t₅₁₁₂₄: n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
t₅₁₁₃₇: n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
t₅₀₉₈₉: n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
t₅₀₉₉₀: n_l3___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₀₉₉₁: n_l3___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₀₀₃: n_l8___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₀₀₄: n_l8___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₁₀₀₅: n_l8___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₁₀₀₆: n_l8___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₀₀₇: n_l8___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₆₁: n_l9___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₆₆: n_l9___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₀₀₈: n_l9___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___23(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₆₂: n_l9___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₁₁₆₇: n_l9___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₁₀₀₉: n_l9___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___49(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₁₁₆₃: n_l9___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₆₈: n_l9___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₀₁₀: n_l9___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___60(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₆₄: n_l9___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₆₉: n_l9___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₀₁₁: n_l9___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___88(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₁₆₅: n_l9___97(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₁₁₇₀: n_l9___97(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₁₀₁₂: n_l9___97(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___96(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
All Bounds
Timebounds
Overall timebound:3404⋅X₁₀+3404⋅X₁₂+3516⋅X₁₄+77⋅X₁₁+77⋅X₉+270 {O(n)}
t₀: 1 {O(1)}
t₂₃: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₂₆: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₂₅: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₁: 1 {O(1)}
t₃₁: X₁₁+X₉+1 {O(n)}
t₃₉: 1 {O(1)}
t₃₈: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
t₃₅: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
t₃₇: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
t₅₀₉₉₂: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₉₃: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₉₄: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₉₅: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₉₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₉₇: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₉₈: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₉₉: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₀₀: 1 {O(1)}
t₅₁₀₀₁: 1 {O(1)}
t₅₁₀₀₂: 1 {O(1)}
t₅₀₉₀₀: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₀₁: 2⋅X₁₁+2⋅X₉ {O(n)}
t₅₀₉₀₂: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₀₃: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₀₄: X₁₁+X₉ {O(n)}
t₅₀₉₀₅: 1 {O(1)}
t₅₀₉₀₆: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₀₇: X₁₁+X₉ {O(n)}
t₅₀₉₀₈: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₀₉: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₁₀: X₁₁+X₉ {O(n)}
t₅₀₉₁₁: 1 {O(1)}
t₅₀₉₁₂: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₁₃: X₁₁+X₉+1 {O(n)}
t₅₀₉₁₄: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₁₅: X₁₁+X₉ {O(n)}
t₅₀₉₁₆: 1 {O(1)}
t₅₁₀₇₄: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₁₇: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₁₈: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₁₉: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₂₀: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₇₇: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₂₁: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₂₂: X₁₁+X₉+1 {O(n)}
t₅₀₉₂₃: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₂₄: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₀₈₁: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₀₈₂: 1 {O(1)}
t₅₀₉₂₅: 1 {O(1)}
t₅₀₉₂₆: 1 {O(1)}
t₅₀₉₂₇: 1 {O(1)}
t₅₀₉₂₈: 1 {O(1)}
t₅₀₉₂₉: X₁₁+X₉+1 {O(n)}
t₅₀₉₃₀: X₁₁+X₉+1 {O(n)}
t₅₀₉₃₁: X₁₁+X₉+1 {O(n)}
t₅₀₉₃₂: X₁₁+X₉+1 {O(n)}
t₅₀₉₃₃: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₃₄: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₁₅₀: 162⋅X₁₀+162⋅X₁₂+162⋅X₁₄+3 {O(n)}
t₅₁₁₅₁: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₁₅₂: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₁₅₃: X₁₁+X₉+1 {O(n)}
t₅₁₁₅₄: 24⋅X₁₀+24⋅X₁₂+24⋅X₁₄+3⋅X₁₁+3⋅X₉+6 {O(n)}
t₅₁₁₅₅: 2 {O(1)}
t₅₁₁₅₆: 1 {O(1)}
t₅₁₁₅₇: 1 {O(1)}
t₅₁₁₅₈: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₁₅₉: X₁₁+X₉+1 {O(n)}
t₅₁₁₆₀: X₁₁+X₉+1 {O(n)}
t₅₀₉₃₅: 1 {O(1)}
t₅₀₉₃₆: 1 {O(1)}
t₅₀₉₃₇: 1 {O(1)}
t₅₀₉₃₈: 1 {O(1)}
t₅₀₉₃₉: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₄₀: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₄₁: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₄₂: 1 {O(1)}
t₅₀₉₄₃: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₄₄: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₄₅: X₁₁+X₉+1 {O(n)}
t₅₀₉₄₆: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₄₇: 1 {O(1)}
t₅₀₉₄₈: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₄₉: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₅₀: X₁₁+X₉+1 {O(n)}
t₅₀₉₅₁: X₁₁+X₉+1 {O(n)}
t₅₀₉₅₂: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₅₃: 1 {O(1)}
t₅₀₉₅₄: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₅₅: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₅₆: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₅₇: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₅₈: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₅₉: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₆₀: X₁₁+X₉+1 {O(n)}
t₅₀₉₆₁: 2⋅X₁₁+2⋅X₉ {O(n)}
t₅₀₉₆₂: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₆₃: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₆₄: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₆₅: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₆₆: 1 {O(1)}
t₅₀₉₆₇: 1 {O(1)}
t₅₀₉₆₈: 1 {O(1)}
t₅₀₉₆₉: X₁₁+X₉+1 {O(n)}
t₅₀₉₇₀: X₁₁+X₉+1 {O(n)}
t₅₀₉₇₁: X₁₁+X₉ {O(n)}
t₅₀₉₇₂: 1 {O(1)}
t₅₁₀₆₄: 1 {O(1)}
t₅₁₁₄₀: 1 {O(1)}
t₅₀₉₇₃: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₆₅: 1 {O(1)}
t₅₁₁₄₁: 1 {O(1)}
t₅₀₉₇₄: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₇₅: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₁₀₆₇: 1 {O(1)}
t₅₁₁₄₃: 1 {O(1)}
t₅₀₉₇₆: 2⋅X₁₁+2⋅X₉ {O(n)}
t₅₀₉₇₇: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₇₈: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₀₇₀: 1 {O(1)}
t₅₁₁₄₆: 1 {O(1)}
t₅₀₉₇₉: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₇₁: 1 {O(1)}
t₅₁₁₄₇: 1 {O(1)}
t₅₀₉₈₀: 1 {O(1)}
t₅₁₀₇₂: 1 {O(1)}
t₅₁₁₄₈: 1 {O(1)}
t₅₀₉₈₁: X₁₁+X₉ {O(n)}
t₅₀₉₈₂: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₁₀₁: 1 {O(1)}
t₅₁₁₂₇: 1 {O(1)}
t₅₀₉₈₃: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₁₀₂: 1 {O(1)}
t₅₁₁₁₅: 1 {O(1)}
t₅₁₁₂₈: 1 {O(1)}
t₅₀₉₈₄: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₈₅: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₁₀₅: 1 {O(1)}
t₅₁₁₁₈: 1 {O(1)}
t₅₁₁₃₁: 1 {O(1)}
t₅₁₁₁₉: 1 {O(1)}
t₅₀₉₈₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₁₂₀: 1 {O(1)}
t₅₀₉₈₇: X₁₁+X₉+1 {O(n)}
t₅₁₁₀₉: 1 {O(1)}
t₅₁₁₂₂: 1 {O(1)}
t₅₁₁₃₅: 1 {O(1)}
t₅₀₉₈₈: 1 {O(1)}
t₅₁₁₁₀: 1 {O(1)}
t₅₁₁₃₆: 1 {O(1)}
t₅₀₉₈₉: 1 {O(1)}
t₅₁₁₁₁: 1 {O(1)}
t₅₁₁₂₄: 1 {O(1)}
t₅₁₁₃₇: 1 {O(1)}
t₅₀₉₉₀: X₁₁+X₉+1 {O(n)}
t₅₀₉₉₁: X₁₁+X₉+1 {O(n)}
t₅₁₀₀₃: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₀₄: X₁₁+X₉+1 {O(n)}
t₅₁₀₀₅: X₁₁+X₉ {O(n)}
t₅₁₀₀₆: X₁₁+X₉+1 {O(n)}
t₅₁₀₀₇: X₁₁+X₉ {O(n)}
t₅₁₀₀₈: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₁₆₁: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₁₆₆: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₀₉: 2⋅X₁₁+2⋅X₉ {O(n)}
t₅₁₁₆₂: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+1 {O(n)}
t₅₁₁₆₇: 54⋅X₁₀+54⋅X₁₂+58⋅X₁₄+3 {O(n)}
t₅₁₀₁₀: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₁₆₃: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₁₆₈: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₁₁: X₁₁+X₉ {O(n)}
t₅₁₁₆₄: X₁₁+X₉ {O(n)}
t₅₁₁₆₉: X₁₁+X₉ {O(n)}
t₅₁₀₁₂: 1 {O(1)}
t₅₁₁₆₅: 1 {O(1)}
t₅₁₁₇₀: 1 {O(1)}
Costbounds
Overall costbound: 3404⋅X₁₀+3404⋅X₁₂+3516⋅X₁₄+77⋅X₁₁+77⋅X₉+270 {O(n)}
t₀: 1 {O(1)}
t₂₃: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₂₆: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₂₅: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₁: 1 {O(1)}
t₃₁: X₁₁+X₉+1 {O(n)}
t₃₉: 1 {O(1)}
t₃₈: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
t₃₅: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
t₃₇: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
t₅₀₉₉₂: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₉₃: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₉₄: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₉₅: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₉₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₉₇: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₉₈: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₉₉: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₀₀: 1 {O(1)}
t₅₁₀₀₁: 1 {O(1)}
t₅₁₀₀₂: 1 {O(1)}
t₅₀₉₀₀: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₀₁: 2⋅X₁₁+2⋅X₉ {O(n)}
t₅₀₉₀₂: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₀₃: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₀₄: X₁₁+X₉ {O(n)}
t₅₀₉₀₅: 1 {O(1)}
t₅₀₉₀₆: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₀₇: X₁₁+X₉ {O(n)}
t₅₀₉₀₈: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₀₉: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₁₀: X₁₁+X₉ {O(n)}
t₅₀₉₁₁: 1 {O(1)}
t₅₀₉₁₂: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₁₃: X₁₁+X₉+1 {O(n)}
t₅₀₉₁₄: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₁₅: X₁₁+X₉ {O(n)}
t₅₀₉₁₆: 1 {O(1)}
t₅₁₀₇₄: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₁₇: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₁₈: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₁₉: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₂₀: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₇₇: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₂₁: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₂₂: X₁₁+X₉+1 {O(n)}
t₅₀₉₂₃: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₂₄: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₀₈₁: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₀₈₂: 1 {O(1)}
t₅₀₉₂₅: 1 {O(1)}
t₅₀₉₂₆: 1 {O(1)}
t₅₀₉₂₇: 1 {O(1)}
t₅₀₉₂₈: 1 {O(1)}
t₅₀₉₂₉: X₁₁+X₉+1 {O(n)}
t₅₀₉₃₀: X₁₁+X₉+1 {O(n)}
t₅₀₉₃₁: X₁₁+X₉+1 {O(n)}
t₅₀₉₃₂: X₁₁+X₉+1 {O(n)}
t₅₀₉₃₃: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₃₄: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₁₅₀: 162⋅X₁₀+162⋅X₁₂+162⋅X₁₄+3 {O(n)}
t₅₁₁₅₁: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₁₅₂: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₁₅₃: X₁₁+X₉+1 {O(n)}
t₅₁₁₅₄: 24⋅X₁₀+24⋅X₁₂+24⋅X₁₄+3⋅X₁₁+3⋅X₉+6 {O(n)}
t₅₁₁₅₅: 2 {O(1)}
t₅₁₁₅₆: 1 {O(1)}
t₅₁₁₅₇: 1 {O(1)}
t₅₁₁₅₈: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₁₅₉: X₁₁+X₉+1 {O(n)}
t₅₁₁₆₀: X₁₁+X₉+1 {O(n)}
t₅₀₉₃₅: 1 {O(1)}
t₅₀₉₃₆: 1 {O(1)}
t₅₀₉₃₇: 1 {O(1)}
t₅₀₉₃₈: 1 {O(1)}
t₅₀₉₃₉: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₄₀: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₄₁: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₄₂: 1 {O(1)}
t₅₀₉₄₃: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₄₄: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₄₅: X₁₁+X₉+1 {O(n)}
t₅₀₉₄₆: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₄₇: 1 {O(1)}
t₅₀₉₄₈: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₄₉: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₅₀: X₁₁+X₉+1 {O(n)}
t₅₀₉₅₁: X₁₁+X₉+1 {O(n)}
t₅₀₉₅₂: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₅₃: 1 {O(1)}
t₅₀₉₅₄: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₅₅: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₅₆: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₅₇: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₅₈: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₅₉: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₆₀: X₁₁+X₉+1 {O(n)}
t₅₀₉₆₁: 2⋅X₁₁+2⋅X₉ {O(n)}
t₅₀₉₆₂: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₆₃: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₆₄: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₀₉₆₅: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₆₆: 1 {O(1)}
t₅₀₉₆₇: 1 {O(1)}
t₅₀₉₆₈: 1 {O(1)}
t₅₀₉₆₉: X₁₁+X₉+1 {O(n)}
t₅₀₉₇₀: X₁₁+X₉+1 {O(n)}
t₅₀₉₇₁: X₁₁+X₉ {O(n)}
t₅₀₉₇₂: 1 {O(1)}
t₅₁₀₆₄: 1 {O(1)}
t₅₁₁₄₀: 1 {O(1)}
t₅₀₉₇₃: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₆₅: 1 {O(1)}
t₅₁₁₄₁: 1 {O(1)}
t₅₀₉₇₄: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₀₉₇₅: 62⋅X₁₀+62⋅X₁₂+62⋅X₁₄+X₁₁+X₉+3 {O(n)}
t₅₁₀₆₇: 1 {O(1)}
t₅₁₁₄₃: 1 {O(1)}
t₅₀₉₇₆: 2⋅X₁₁+2⋅X₉ {O(n)}
t₅₀₉₇₇: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₇₈: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₀₇₀: 1 {O(1)}
t₅₁₁₄₆: 1 {O(1)}
t₅₀₉₇₉: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₇₁: 1 {O(1)}
t₅₁₁₄₇: 1 {O(1)}
t₅₀₉₈₀: 1 {O(1)}
t₅₁₀₇₂: 1 {O(1)}
t₅₁₁₄₈: 1 {O(1)}
t₅₀₉₈₁: X₁₁+X₉ {O(n)}
t₅₀₉₈₂: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₁₀₁: 1 {O(1)}
t₅₁₁₂₇: 1 {O(1)}
t₅₀₉₈₃: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₁₀₂: 1 {O(1)}
t₅₁₁₁₅: 1 {O(1)}
t₅₁₁₂₈: 1 {O(1)}
t₅₀₉₈₄: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₀₉₈₅: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₁₀₅: 1 {O(1)}
t₅₁₁₁₈: 1 {O(1)}
t₅₁₁₃₁: 1 {O(1)}
t₅₁₁₁₉: 1 {O(1)}
t₅₀₉₈₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₁₁₂₀: 1 {O(1)}
t₅₀₉₈₇: X₁₁+X₉+1 {O(n)}
t₅₁₁₀₉: 1 {O(1)}
t₅₁₁₂₂: 1 {O(1)}
t₅₁₁₃₅: 1 {O(1)}
t₅₀₉₈₈: 1 {O(1)}
t₅₁₁₁₀: 1 {O(1)}
t₅₁₁₃₆: 1 {O(1)}
t₅₀₉₈₉: 1 {O(1)}
t₅₁₁₁₁: 1 {O(1)}
t₅₁₁₂₄: 1 {O(1)}
t₅₁₁₃₇: 1 {O(1)}
t₅₀₉₉₀: X₁₁+X₉+1 {O(n)}
t₅₀₉₉₁: X₁₁+X₉+1 {O(n)}
t₅₁₀₀₃: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₀₄: X₁₁+X₉+1 {O(n)}
t₅₁₀₀₅: X₁₁+X₉ {O(n)}
t₅₁₀₀₆: X₁₁+X₉+1 {O(n)}
t₅₁₀₀₇: X₁₁+X₉ {O(n)}
t₅₁₀₀₈: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₁₆₁: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₁₆₆: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₀₉: 2⋅X₁₁+2⋅X₉ {O(n)}
t₅₁₁₆₂: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+X₁₁+X₉+1 {O(n)}
t₅₁₁₆₇: 54⋅X₁₀+54⋅X₁₂+58⋅X₁₄+3 {O(n)}
t₅₁₀₁₀: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₁₆₃: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₁₆₈: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₅₁₀₁₁: X₁₁+X₉ {O(n)}
t₅₁₁₆₄: X₁₁+X₉ {O(n)}
t₅₁₁₆₉: X₁₁+X₉ {O(n)}
t₅₁₀₁₂: 1 {O(1)}
t₅₁₁₆₅: 1 {O(1)}
t₅₁₁₇₀: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₀, X₁₂: X₁₂ {O(n)}
t₀, X₁₃: X₁₃ {O(n)}
t₀, X₁₄: X₁₄ {O(n)}
t₂₃, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₂₃, X₇: 3⋅X₇ {O(n)}
t₂₃, X₈: 3⋅X₈ {O(n)}
t₂₃, X₉: 3⋅X₉ {O(n)}
t₂₃, X₁₀: 3⋅X₁₀ {O(n)}
t₂₃, X₁₁: 3⋅X₁₁ {O(n)}
t₂₃, X₁₂: 3⋅X₁₂ {O(n)}
t₂₃, X₁₃: 3⋅X₁₃ {O(n)}
t₂₃, X₁₄: 3⋅X₁₄ {O(n)}
t₂₆, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₂₆, X₇: 3⋅X₇ {O(n)}
t₂₆, X₈: 3⋅X₈ {O(n)}
t₂₆, X₉: 3⋅X₉ {O(n)}
t₂₆, X₁₀: 3⋅X₁₀ {O(n)}
t₂₆, X₁₁: 3⋅X₁₁ {O(n)}
t₂₆, X₁₂: 3⋅X₁₂ {O(n)}
t₂₆, X₁₃: 3⋅X₁₃ {O(n)}
t₂₆, X₁₄: 3⋅X₁₄ {O(n)}
t₂₅, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₂₅, X₇: 3⋅X₇ {O(n)}
t₂₅, X₈: 3⋅X₈ {O(n)}
t₂₅, X₉: 3⋅X₉ {O(n)}
t₂₅, X₁₀: 3⋅X₁₀ {O(n)}
t₂₅, X₁₁: 3⋅X₁₁ {O(n)}
t₂₅, X₁₂: 3⋅X₁₂ {O(n)}
t₂₅, X₁₃: 3⋅X₁₃ {O(n)}
t₂₅, X₁₄: 3⋅X₁₄ {O(n)}
t₁, X₀: X₁₁ {O(n)}
t₁, X₁: X₁₂ {O(n)}
t₁, X₂: X₁₄ {O(n)}
t₁, X₃: X₁₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₁, X₁₂: X₁₂ {O(n)}
t₁, X₁₃: X₁₃ {O(n)}
t₁, X₁₄: X₁₄ {O(n)}
t₃₁, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₃₁, X₉: 3⋅X₉ {O(n)}
t₃₁, X₁₀: 3⋅X₁₀ {O(n)}
t₃₁, X₁₁: 3⋅X₁₁ {O(n)}
t₃₁, X₁₂: 3⋅X₁₂ {O(n)}
t₃₁, X₁₃: 3⋅X₁₃ {O(n)}
t₃₁, X₁₄: 3⋅X₁₄ {O(n)}
t₃₉, X₀: 12⋅X₉+30⋅X₁₁+12 {O(n)}
t₃₉, X₉: 18⋅X₉ {O(n)}
t₃₉, X₁₀: 18⋅X₁₀ {O(n)}
t₃₉, X₁₁: 18⋅X₁₁ {O(n)}
t₃₉, X₁₂: 18⋅X₁₂ {O(n)}
t₃₉, X₁₃: 18⋅X₁₃ {O(n)}
t₃₉, X₁₄: 18⋅X₁₄ {O(n)}
t₃₈, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₃₈, X₉: 3⋅X₉ {O(n)}
t₃₈, X₁₀: 3⋅X₁₀ {O(n)}
t₃₈, X₁₁: 3⋅X₁₁ {O(n)}
t₃₈, X₁₂: 3⋅X₁₂ {O(n)}
t₃₈, X₁₃: 3⋅X₁₃ {O(n)}
t₃₈, X₁₄: 3⋅X₁₄ {O(n)}
t₃₅, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₃₅, X₉: 3⋅X₉ {O(n)}
t₃₅, X₁₀: 3⋅X₁₀ {O(n)}
t₃₅, X₁₁: 3⋅X₁₁ {O(n)}
t₃₅, X₁₂: 3⋅X₁₂ {O(n)}
t₃₅, X₁₃: 3⋅X₁₃ {O(n)}
t₃₅, X₁₄: 3⋅X₁₄ {O(n)}
t₃₇, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₃₇, X₉: 3⋅X₉ {O(n)}
t₃₇, X₁₀: 3⋅X₁₀ {O(n)}
t₃₇, X₁₁: 3⋅X₁₁ {O(n)}
t₃₇, X₁₂: 3⋅X₁₂ {O(n)}
t₃₇, X₁₃: 3⋅X₁₃ {O(n)}
t₃₇, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₉₂, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₉₂, X₉: 57⋅X₉ {O(n)}
t₅₀₉₉₂, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₉₂, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₉₂, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₉₂, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₉₂, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₉₃, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₉₃, X₉: 57⋅X₉ {O(n)}
t₅₀₉₉₃, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₉₃, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₉₃, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₉₃, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₉₃, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₉₄, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₉₄, X₇: 3⋅X₇ {O(n)}
t₅₀₉₉₄, X₈: 3⋅X₈ {O(n)}
t₅₀₉₉₄, X₉: 3⋅X₉ {O(n)}
t₅₀₉₉₄, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₉₄, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₉₄, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₉₄, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₉₄, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₉₅, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₉₅, X₉: 57⋅X₉ {O(n)}
t₅₀₉₉₅, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₉₅, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₉₅, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₉₅, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₉₅, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₉₆, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₉₆, X₉: 57⋅X₉ {O(n)}
t₅₀₉₉₆, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₉₆, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₉₆, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₉₆, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₉₆, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₉₇, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₉₇, X₇: 3⋅X₇ {O(n)}
t₅₀₉₉₇, X₈: 3⋅X₈ {O(n)}
t₅₀₉₉₇, X₉: 3⋅X₉ {O(n)}
t₅₀₉₉₇, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₉₇, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₉₇, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₉₇, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₉₇, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₉₈, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₉₈, X₉: 57⋅X₉ {O(n)}
t₅₀₉₉₈, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₉₈, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₉₈, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₉₈, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₉₈, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₉₉, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₉₉, X₇: 3⋅X₇ {O(n)}
t₅₀₉₉₉, X₈: 3⋅X₈ {O(n)}
t₅₀₉₉₉, X₉: 3⋅X₉ {O(n)}
t₅₀₉₉₉, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₉₉, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₉₉, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₉₉, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₉₉, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₀₀₀, X₀: X₁₁ {O(n)}
t₅₁₀₀₀, X₁: X₁₂ {O(n)}
t₅₁₀₀₀, X₂: X₁₄ {O(n)}
t₅₁₀₀₀, X₃: X₁₃ {O(n)}
t₅₁₀₀₀, X₄: X₄ {O(n)}
t₅₁₀₀₀, X₅: X₅ {O(n)}
t₅₁₀₀₀, X₆: X₆ {O(n)}
t₅₁₀₀₀, X₇: X₇ {O(n)}
t₅₁₀₀₀, X₈: X₈ {O(n)}
t₅₁₀₀₀, X₉: X₉ {O(n)}
t₅₁₀₀₀, X₁₀: X₁₀ {O(n)}
t₅₁₀₀₀, X₁₁: X₁₁ {O(n)}
t₅₁₀₀₀, X₁₂: X₁₂ {O(n)}
t₅₁₀₀₀, X₁₃: X₁₃ {O(n)}
t₅₁₀₀₀, X₁₄: X₁₄ {O(n)}
t₅₁₀₀₁, X₀: X₁₁ {O(n)}
t₅₁₀₀₁, X₁: X₁₂ {O(n)}
t₅₁₀₀₁, X₂: X₁₄ {O(n)}
t₅₁₀₀₁, X₃: X₁₃ {O(n)}
t₅₁₀₀₁, X₄: X₄ {O(n)}
t₅₁₀₀₁, X₅: X₅ {O(n)}
t₅₁₀₀₁, X₆: X₆ {O(n)}
t₅₁₀₀₁, X₇: X₇ {O(n)}
t₅₁₀₀₁, X₈: X₈ {O(n)}
t₅₁₀₀₁, X₉: X₉ {O(n)}
t₅₁₀₀₁, X₁₀: X₁₀ {O(n)}
t₅₁₀₀₁, X₁₁: X₁₁ {O(n)}
t₅₁₀₀₁, X₁₂: X₁₂ {O(n)}
t₅₁₀₀₁, X₁₃: X₁₃ {O(n)}
t₅₁₀₀₁, X₁₄: X₁₄ {O(n)}
t₅₁₀₀₂, X₀: X₁₁ {O(n)}
t₅₁₀₀₂, X₁: X₁₂ {O(n)}
t₅₁₀₀₂, X₂: X₁₄ {O(n)}
t₅₁₀₀₂, X₃: X₁₃ {O(n)}
t₅₁₀₀₂, X₄: X₄ {O(n)}
t₅₁₀₀₂, X₅: X₅ {O(n)}
t₅₁₀₀₂, X₆: X₆ {O(n)}
t₅₁₀₀₂, X₇: X₇ {O(n)}
t₅₁₀₀₂, X₈: X₈ {O(n)}
t₅₁₀₀₂, X₉: X₉ {O(n)}
t₅₁₀₀₂, X₁₀: X₁₀ {O(n)}
t₅₁₀₀₂, X₁₁: X₁₁ {O(n)}
t₅₁₀₀₂, X₁₂: X₁₂ {O(n)}
t₅₁₀₀₂, X₁₃: X₁₃ {O(n)}
t₅₁₀₀₂, X₁₄: X₁₄ {O(n)}
t₅₀₉₀₀, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₀₀, X₇: 3⋅X₇ {O(n)}
t₅₀₉₀₀, X₈: 3⋅X₈ {O(n)}
t₅₀₉₀₀, X₉: 3⋅X₉ {O(n)}
t₅₀₉₀₀, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₀₀, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₀₀, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₀₀, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₀₀, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₀₁, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₀₁, X₄: 0 {O(1)}
t₅₀₉₀₁, X₇: 3⋅X₇ {O(n)}
t₅₀₉₀₁, X₈: 3⋅X₈ {O(n)}
t₅₀₉₀₁, X₉: 3⋅X₉ {O(n)}
t₅₀₉₀₁, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₀₁, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₀₁, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₀₁, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₀₁, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₀₂, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₀₂, X₇: 3⋅X₇ {O(n)}
t₅₀₉₀₂, X₈: 3⋅X₈ {O(n)}
t₅₀₉₀₂, X₉: 3⋅X₉ {O(n)}
t₅₀₉₀₂, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₀₂, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₀₂, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₀₂, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₀₂, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₀₃, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₀₃, X₇: 3⋅X₇ {O(n)}
t₅₀₉₀₃, X₈: 3⋅X₈ {O(n)}
t₅₀₉₀₃, X₉: 3⋅X₉ {O(n)}
t₅₀₉₀₃, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₀₃, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₀₃, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₀₃, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₀₃, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₀₄, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₀₄, X₄: 0 {O(1)}
t₅₀₉₀₄, X₇: 3⋅X₇ {O(n)}
t₅₀₉₀₄, X₈: 3⋅X₈ {O(n)}
t₅₀₉₀₄, X₉: 3⋅X₉ {O(n)}
t₅₀₉₀₄, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₀₄, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₀₄, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₀₄, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₀₄, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₀₅, X₀: X₁₁ {O(n)}
t₅₀₉₀₅, X₁: X₁₂ {O(n)}
t₅₀₉₀₅, X₂: X₁₄ {O(n)}
t₅₀₉₀₅, X₃: X₁₃ {O(n)}
t₅₀₉₀₅, X₄: X₄ {O(n)}
t₅₀₉₀₅, X₅: X₅ {O(n)}
t₅₀₉₀₅, X₆: X₆ {O(n)}
t₅₀₉₀₅, X₇: X₇ {O(n)}
t₅₀₉₀₅, X₈: X₈ {O(n)}
t₅₀₉₀₅, X₉: X₉ {O(n)}
t₅₀₉₀₅, X₁₀: X₁₀ {O(n)}
t₅₀₉₀₅, X₁₁: X₁₁ {O(n)}
t₅₀₉₀₅, X₁₂: X₁₂ {O(n)}
t₅₀₉₀₅, X₁₃: X₁₃ {O(n)}
t₅₀₉₀₅, X₁₄: X₁₄ {O(n)}
t₅₀₉₀₆, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₀₆, X₇: 3⋅X₇ {O(n)}
t₅₀₉₀₆, X₈: 3⋅X₈ {O(n)}
t₅₀₉₀₆, X₉: 3⋅X₉ {O(n)}
t₅₀₉₀₆, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₀₆, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₀₆, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₀₆, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₀₆, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₀₇, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₀₇, X₇: 3⋅X₇ {O(n)}
t₅₀₉₀₇, X₈: 3⋅X₈ {O(n)}
t₅₀₉₀₇, X₉: 3⋅X₉ {O(n)}
t₅₀₉₀₇, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₀₇, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₀₇, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₀₇, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₀₇, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₀₈, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₀₈, X₇: 3⋅X₇ {O(n)}
t₅₀₉₀₈, X₈: 3⋅X₈ {O(n)}
t₅₀₉₀₈, X₉: 3⋅X₉ {O(n)}
t₅₀₉₀₈, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₀₈, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₀₈, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₀₈, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₀₈, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₀₉, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₀₉, X₇: 3⋅X₇ {O(n)}
t₅₀₉₀₉, X₈: 3⋅X₈ {O(n)}
t₅₀₉₀₉, X₉: 3⋅X₉ {O(n)}
t₅₀₉₀₉, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₀₉, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₀₉, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₀₉, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₀₉, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₁₀, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₁₀, X₇: 3⋅X₇ {O(n)}
t₅₀₉₁₀, X₈: 3⋅X₈ {O(n)}
t₅₀₉₁₀, X₉: 3⋅X₉ {O(n)}
t₅₀₉₁₀, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₁₀, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₁₀, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₁₀, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₁₀, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₁₁, X₀: X₁₁ {O(n)}
t₅₀₉₁₁, X₁: X₁₂ {O(n)}
t₅₀₉₁₁, X₂: X₁₄ {O(n)}
t₅₀₉₁₁, X₃: X₁₃ {O(n)}
t₅₀₉₁₁, X₅: X₅ {O(n)}
t₅₀₉₁₁, X₆: X₆ {O(n)}
t₅₀₉₁₁, X₇: X₇ {O(n)}
t₅₀₉₁₁, X₈: X₈ {O(n)}
t₅₀₉₁₁, X₉: X₉ {O(n)}
t₅₀₉₁₁, X₁₀: X₁₀ {O(n)}
t₅₀₉₁₁, X₁₁: X₁₁ {O(n)}
t₅₀₉₁₁, X₁₂: X₁₂ {O(n)}
t₅₀₉₁₁, X₁₃: X₁₃ {O(n)}
t₅₀₉₁₁, X₁₄: X₁₄ {O(n)}
t₅₀₉₁₂, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₀₉₁₂, X₄: 0 {O(1)}
t₅₀₉₁₂, X₇: 3⋅X₇ {O(n)}
t₅₀₉₁₂, X₈: 3⋅X₈ {O(n)}
t₅₀₉₁₂, X₉: 3⋅X₉ {O(n)}
t₅₀₉₁₂, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₁₂, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₁₂, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₁₂, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₁₂, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₁₃, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₁₃, X₄: 0 {O(1)}
t₅₀₉₁₃, X₇: 3⋅X₇ {O(n)}
t₅₀₉₁₃, X₈: 3⋅X₈ {O(n)}
t₅₀₉₁₃, X₉: 3⋅X₉ {O(n)}
t₅₀₉₁₃, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₁₃, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₁₃, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₁₃, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₁₃, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₁₄, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₁₄, X₄: 0 {O(1)}
t₅₀₉₁₄, X₇: 3⋅X₇ {O(n)}
t₅₀₉₁₄, X₈: 3⋅X₈ {O(n)}
t₅₀₉₁₄, X₉: 3⋅X₉ {O(n)}
t₅₀₉₁₄, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₁₄, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₁₄, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₁₄, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₁₄, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₁₅, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₁₅, X₄: 0 {O(1)}
t₅₀₉₁₅, X₇: 3⋅X₇ {O(n)}
t₅₀₉₁₅, X₈: 3⋅X₈ {O(n)}
t₅₀₉₁₅, X₉: 3⋅X₉ {O(n)}
t₅₀₉₁₅, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₁₅, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₁₅, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₁₅, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₁₅, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₁₆, X₀: X₁₁+1 {O(n)}
t₅₀₉₁₆, X₁: X₁₂ {O(n)}
t₅₀₉₁₆, X₂: X₁₄ {O(n)}
t₅₀₉₁₆, X₃: X₁₃ {O(n)}
t₅₀₉₁₆, X₄: 0 {O(1)}
t₅₀₉₁₆, X₅: X₅ {O(n)}
t₅₀₉₁₆, X₆: X₆ {O(n)}
t₅₀₉₁₆, X₇: X₇ {O(n)}
t₅₀₉₁₆, X₈: X₈ {O(n)}
t₅₀₉₁₆, X₉: X₉ {O(n)}
t₅₀₉₁₆, X₁₀: X₁₀ {O(n)}
t₅₀₉₁₆, X₁₁: X₁₁ {O(n)}
t₅₀₉₁₆, X₁₂: X₁₂ {O(n)}
t₅₀₉₁₆, X₁₃: X₁₃ {O(n)}
t₅₀₉₁₆, X₁₄: X₁₄ {O(n)}
t₅₁₀₇₄, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₀₇₄, X₉: 57⋅X₉ {O(n)}
t₅₁₀₇₄, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₀₇₄, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₀₇₄, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₀₇₄, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₀₇₄, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₁₇, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₀₉₁₇, X₄: 0 {O(1)}
t₅₀₉₁₇, X₇: 3⋅X₇ {O(n)}
t₅₀₉₁₇, X₈: 3⋅X₈ {O(n)}
t₅₀₉₁₇, X₉: 3⋅X₉ {O(n)}
t₅₀₉₁₇, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₁₇, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₁₇, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₁₇, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₁₇, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₁₈, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₀₉₁₈, X₄: 0 {O(1)}
t₅₀₉₁₈, X₇: 3⋅X₇ {O(n)}
t₅₀₉₁₈, X₈: 3⋅X₈ {O(n)}
t₅₀₉₁₈, X₉: 3⋅X₉ {O(n)}
t₅₀₉₁₈, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₁₈, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₁₈, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₁₈, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₁₈, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₁₉, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₀₉₁₉, X₄: 0 {O(1)}
t₅₀₉₁₉, X₇: 3⋅X₇ {O(n)}
t₅₀₉₁₉, X₈: 3⋅X₈ {O(n)}
t₅₀₉₁₉, X₉: 3⋅X₉ {O(n)}
t₅₀₉₁₉, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₁₉, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₁₉, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₁₉, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₁₉, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₂₀, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₀₉₂₀, X₄: 0 {O(1)}
t₅₀₉₂₀, X₇: 3⋅X₇ {O(n)}
t₅₀₉₂₀, X₈: 3⋅X₈ {O(n)}
t₅₀₉₂₀, X₉: 3⋅X₉ {O(n)}
t₅₀₉₂₀, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₂₀, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₂₀, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₂₀, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₂₀, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₀₇₇, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₀₇₇, X₉: 57⋅X₉ {O(n)}
t₅₁₀₇₇, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₀₇₇, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₀₇₇, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₀₇₇, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₀₇₇, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₂₁, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₂₁, X₉: 57⋅X₉ {O(n)}
t₅₀₉₂₁, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₂₁, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₂₁, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₂₁, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₂₁, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₂₂, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₂₂, X₄: 0 {O(1)}
t₅₀₉₂₂, X₇: 3⋅X₇ {O(n)}
t₅₀₉₂₂, X₈: 3⋅X₈ {O(n)}
t₅₀₉₂₂, X₉: 3⋅X₉ {O(n)}
t₅₀₉₂₂, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₂₂, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₂₂, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₂₂, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₂₂, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₂₃, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₂₃, X₉: 57⋅X₉ {O(n)}
t₅₀₉₂₃, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₂₃, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₂₃, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₂₃, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₂₃, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₂₄, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₂₄, X₉: 57⋅X₉ {O(n)}
t₅₀₉₂₄, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₂₄, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₂₄, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₂₄, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₂₄, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₀₈₁, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₀₈₁, X₉: 57⋅X₉ {O(n)}
t₅₁₀₈₁, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₀₈₁, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₀₈₁, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₀₈₁, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₀₈₁, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₀₈₂, X₀: X₁₁ {O(n)}
t₅₁₀₈₂, X₁: X₁₂ {O(n)}
t₅₁₀₈₂, X₂: X₁₄ {O(n)}
t₅₁₀₈₂, X₃: X₁₃ {O(n)}
t₅₁₀₈₂, X₄: X₄ {O(n)}
t₅₁₀₈₂, X₅: X₅ {O(n)}
t₅₁₀₈₂, X₆: X₆ {O(n)}
t₅₁₀₈₂, X₇: X₇ {O(n)}
t₅₁₀₈₂, X₈: X₈ {O(n)}
t₅₁₀₈₂, X₉: X₉ {O(n)}
t₅₁₀₈₂, X₁₀: X₁₀ {O(n)}
t₅₁₀₈₂, X₁₁: X₁₁ {O(n)}
t₅₁₀₈₂, X₁₂: X₁₂ {O(n)}
t₅₁₀₈₂, X₁₃: X₁₃ {O(n)}
t₅₁₀₈₂, X₁₄: X₁₄ {O(n)}
t₅₀₉₂₅, X₀: X₁₁ {O(n)}
t₅₀₉₂₅, X₁: X₁₂ {O(n)}
t₅₀₉₂₅, X₂: X₁₄ {O(n)}
t₅₀₉₂₅, X₃: X₁₃ {O(n)}
t₅₀₉₂₅, X₄: X₄ {O(n)}
t₅₀₉₂₅, X₅: X₅ {O(n)}
t₅₀₉₂₅, X₆: X₆ {O(n)}
t₅₀₉₂₅, X₇: X₇ {O(n)}
t₅₀₉₂₅, X₈: X₈ {O(n)}
t₅₀₉₂₅, X₉: X₉ {O(n)}
t₅₀₉₂₅, X₁₀: X₁₀ {O(n)}
t₅₀₉₂₅, X₁₁: X₁₁ {O(n)}
t₅₀₉₂₅, X₁₂: X₁₂ {O(n)}
t₅₀₉₂₅, X₁₃: X₁₃ {O(n)}
t₅₀₉₂₅, X₁₄: X₁₄ {O(n)}
t₅₀₉₂₆, X₀: X₁₁ {O(n)}
t₅₀₉₂₆, X₁: X₁₂ {O(n)}
t₅₀₉₂₆, X₂: X₁₄ {O(n)}
t₅₀₉₂₆, X₃: X₁₃ {O(n)}
t₅₀₉₂₆, X₄: X₄ {O(n)}
t₅₀₉₂₆, X₅: X₅ {O(n)}
t₅₀₉₂₆, X₆: X₆ {O(n)}
t₅₀₉₂₆, X₇: X₇ {O(n)}
t₅₀₉₂₆, X₈: X₈ {O(n)}
t₅₀₉₂₆, X₉: X₉ {O(n)}
t₅₀₉₂₆, X₁₀: X₁₀ {O(n)}
t₅₀₉₂₆, X₁₁: X₁₁ {O(n)}
t₅₀₉₂₆, X₁₂: X₁₂ {O(n)}
t₅₀₉₂₆, X₁₃: X₁₃ {O(n)}
t₅₀₉₂₆, X₁₄: X₁₄ {O(n)}
t₅₀₉₂₇, X₀: X₁₁ {O(n)}
t₅₀₉₂₇, X₁: X₁₂ {O(n)}
t₅₀₉₂₇, X₂: X₁₄ {O(n)}
t₅₀₉₂₇, X₃: X₁₃ {O(n)}
t₅₀₉₂₇, X₄: X₄ {O(n)}
t₅₀₉₂₇, X₅: X₅ {O(n)}
t₅₀₉₂₇, X₆: X₆ {O(n)}
t₅₀₉₂₇, X₇: X₇ {O(n)}
t₅₀₉₂₇, X₈: X₈ {O(n)}
t₅₀₉₂₇, X₉: X₉ {O(n)}
t₅₀₉₂₇, X₁₀: X₁₀ {O(n)}
t₅₀₉₂₇, X₁₁: X₁₁ {O(n)}
t₅₀₉₂₇, X₁₂: X₁₂ {O(n)}
t₅₀₉₂₇, X₁₃: X₁₃ {O(n)}
t₅₀₉₂₇, X₁₄: X₁₄ {O(n)}
t₅₀₉₂₈, X₀: X₁₁ {O(n)}
t₅₀₉₂₈, X₁: X₁₂ {O(n)}
t₅₀₉₂₈, X₂: X₁₄ {O(n)}
t₅₀₉₂₈, X₃: X₁₃ {O(n)}
t₅₀₉₂₈, X₄: X₄ {O(n)}
t₅₀₉₂₈, X₅: X₅ {O(n)}
t₅₀₉₂₈, X₆: X₆ {O(n)}
t₅₀₉₂₈, X₇: X₇ {O(n)}
t₅₀₉₂₈, X₈: X₈ {O(n)}
t₅₀₉₂₈, X₉: X₉ {O(n)}
t₅₀₉₂₈, X₁₀: X₁₀ {O(n)}
t₅₀₉₂₈, X₁₁: X₁₁ {O(n)}
t₅₀₉₂₈, X₁₂: X₁₂ {O(n)}
t₅₀₉₂₈, X₁₃: X₁₃ {O(n)}
t₅₀₉₂₈, X₁₄: X₁₄ {O(n)}
t₅₀₉₂₉, X₀: 108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+11⋅X₁₁+4⋅X₉+7 {O(n)}
t₅₀₉₂₉, X₄: 0 {O(1)}
t₅₀₉₂₉, X₇: 7⋅X₇ {O(n)}
t₅₀₉₂₉, X₈: 7⋅X₈ {O(n)}
t₅₀₉₂₉, X₉: 7⋅X₉ {O(n)}
t₅₀₉₂₉, X₁₀: 7⋅X₁₀ {O(n)}
t₅₀₉₂₉, X₁₁: 7⋅X₁₁ {O(n)}
t₅₀₉₂₉, X₁₂: 7⋅X₁₂ {O(n)}
t₅₀₉₂₉, X₁₃: 7⋅X₁₃ {O(n)}
t₅₀₉₂₉, X₁₄: 7⋅X₁₄ {O(n)}
t₅₀₉₃₀, X₀: 108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+11⋅X₁₁+4⋅X₉+7 {O(n)}
t₅₀₉₃₀, X₄: 0 {O(1)}
t₅₀₉₃₀, X₇: 7⋅X₇ {O(n)}
t₅₀₉₃₀, X₈: 7⋅X₈ {O(n)}
t₅₀₉₃₀, X₉: 7⋅X₉ {O(n)}
t₅₀₉₃₀, X₁₀: 7⋅X₁₀ {O(n)}
t₅₀₉₃₀, X₁₁: 7⋅X₁₁ {O(n)}
t₅₀₉₃₀, X₁₂: 7⋅X₁₂ {O(n)}
t₅₀₉₃₀, X₁₃: 7⋅X₁₃ {O(n)}
t₅₀₉₃₀, X₁₄: 7⋅X₁₄ {O(n)}
t₅₀₉₃₁, X₀: 108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+11⋅X₁₁+4⋅X₉+7 {O(n)}
t₅₀₉₃₁, X₄: 0 {O(1)}
t₅₀₉₃₁, X₇: 7⋅X₇ {O(n)}
t₅₀₉₃₁, X₈: 7⋅X₈ {O(n)}
t₅₀₉₃₁, X₉: 7⋅X₉ {O(n)}
t₅₀₉₃₁, X₁₀: 7⋅X₁₀ {O(n)}
t₅₀₉₃₁, X₁₁: 7⋅X₁₁ {O(n)}
t₅₀₉₃₁, X₁₂: 7⋅X₁₂ {O(n)}
t₅₀₉₃₁, X₁₃: 7⋅X₁₃ {O(n)}
t₅₀₉₃₁, X₁₄: 7⋅X₁₄ {O(n)}
t₅₀₉₃₂, X₀: 108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+11⋅X₁₁+4⋅X₉+7 {O(n)}
t₅₀₉₃₂, X₄: 0 {O(1)}
t₅₀₉₃₂, X₇: 7⋅X₇ {O(n)}
t₅₀₉₃₂, X₈: 7⋅X₈ {O(n)}
t₅₀₉₃₂, X₉: 7⋅X₉ {O(n)}
t₅₀₉₃₂, X₁₀: 7⋅X₁₀ {O(n)}
t₅₀₉₃₂, X₁₁: 7⋅X₁₁ {O(n)}
t₅₀₉₃₂, X₁₂: 7⋅X₁₂ {O(n)}
t₅₀₉₃₂, X₁₃: 7⋅X₁₃ {O(n)}
t₅₀₉₃₂, X₁₄: 7⋅X₁₄ {O(n)}
t₅₀₉₃₃, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₃₃, X₉: 57⋅X₉ {O(n)}
t₅₀₉₃₃, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₃₃, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₃₃, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₃₃, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₃₃, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₃₄, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₃₄, X₉: 57⋅X₉ {O(n)}
t₅₀₉₃₄, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₃₄, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₃₄, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₃₄, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₃₄, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₅₀, X₀: 15⋅X₁₁+162⋅X₁₀+162⋅X₁₂+162⋅X₁₄+6⋅X₉+12 {O(n)}
t₅₁₁₅₀, X₄: 0 {O(1)}
t₅₁₁₅₀, X₇: 9⋅X₇ {O(n)}
t₅₁₁₅₀, X₈: 9⋅X₈ {O(n)}
t₅₁₁₅₀, X₉: 9⋅X₉ {O(n)}
t₅₁₁₅₀, X₁₀: 9⋅X₁₀ {O(n)}
t₅₁₁₅₀, X₁₁: 9⋅X₁₁ {O(n)}
t₅₁₁₅₀, X₁₂: 9⋅X₁₂ {O(n)}
t₅₁₁₅₀, X₁₃: 9⋅X₁₃ {O(n)}
t₅₁₁₅₀, X₁₄: 9⋅X₁₄ {O(n)}
t₅₁₁₅₁, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₁₁₅₁, X₄: 0 {O(1)}
t₅₁₁₅₁, X₇: 3⋅X₇ {O(n)}
t₅₁₁₅₁, X₈: 3⋅X₈ {O(n)}
t₅₁₁₅₁, X₉: 3⋅X₉ {O(n)}
t₅₁₁₅₁, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₁₅₁, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₁₅₁, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₁₅₁, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₁₅₁, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₅₂, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₅₂, X₉: 57⋅X₉ {O(n)}
t₅₁₁₅₂, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₅₂, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₅₂, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₅₂, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₅₂, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₅₃, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₁₅₃, X₄: 0 {O(1)}
t₅₁₁₅₃, X₇: 3⋅X₇ {O(n)}
t₅₁₁₅₃, X₈: 3⋅X₈ {O(n)}
t₅₁₁₅₃, X₉: 3⋅X₉ {O(n)}
t₅₁₁₅₃, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₁₅₃, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₁₅₃, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₁₅₃, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₁₅₃, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₅₄, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₅₄, X₉: 57⋅X₉ {O(n)}
t₅₁₁₅₄, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₅₄, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₅₄, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₅₄, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₅₄, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₅₅, X₀: 2⋅X₁₁ {O(n)}
t₅₁₁₅₅, X₁: 2⋅X₁₂ {O(n)}
t₅₁₁₅₅, X₂: 2⋅X₁₄ {O(n)}
t₅₁₁₅₅, X₃: 2⋅X₁₃ {O(n)}
t₅₁₁₅₅, X₄: 2⋅X₄ {O(n)}
t₅₁₁₅₅, X₅: 2⋅X₅ {O(n)}
t₅₁₁₅₅, X₆: 2⋅X₆ {O(n)}
t₅₁₁₅₅, X₇: 2⋅X₇ {O(n)}
t₅₁₁₅₅, X₈: 2⋅X₈ {O(n)}
t₅₁₁₅₅, X₉: 2⋅X₉ {O(n)}
t₅₁₁₅₅, X₁₀: 2⋅X₁₀ {O(n)}
t₅₁₁₅₅, X₁₁: 2⋅X₁₁ {O(n)}
t₅₁₁₅₅, X₁₂: 2⋅X₁₂ {O(n)}
t₅₁₁₅₅, X₁₃: 2⋅X₁₃ {O(n)}
t₅₁₁₅₅, X₁₄: 2⋅X₁₄ {O(n)}
t₅₁₁₅₆, X₀: X₁₁ {O(n)}
t₅₁₁₅₆, X₁: X₁₂ {O(n)}
t₅₁₁₅₆, X₂: X₁₄ {O(n)}
t₅₁₁₅₆, X₃: X₁₃ {O(n)}
t₅₁₁₅₆, X₄: X₄ {O(n)}
t₅₁₁₅₆, X₅: X₅ {O(n)}
t₅₁₁₅₆, X₆: X₆ {O(n)}
t₅₁₁₅₆, X₇: X₇ {O(n)}
t₅₁₁₅₆, X₈: X₈ {O(n)}
t₅₁₁₅₆, X₉: X₉ {O(n)}
t₅₁₁₅₆, X₁₀: X₁₀ {O(n)}
t₅₁₁₅₆, X₁₁: X₁₁ {O(n)}
t₅₁₁₅₆, X₁₂: X₁₂ {O(n)}
t₅₁₁₅₆, X₁₃: X₁₃ {O(n)}
t₅₁₁₅₆, X₁₄: X₁₄ {O(n)}
t₅₁₁₅₇, X₀: X₁₁ {O(n)}
t₅₁₁₅₇, X₁: X₁₂ {O(n)}
t₅₁₁₅₇, X₂: X₁₄ {O(n)}
t₅₁₁₅₇, X₃: X₁₃ {O(n)}
t₅₁₁₅₇, X₄: X₄ {O(n)}
t₅₁₁₅₇, X₅: X₅ {O(n)}
t₅₁₁₅₇, X₆: X₆ {O(n)}
t₅₁₁₅₇, X₇: X₇ {O(n)}
t₅₁₁₅₇, X₈: X₈ {O(n)}
t₅₁₁₅₇, X₉: X₉ {O(n)}
t₅₁₁₅₇, X₁₀: X₁₀ {O(n)}
t₅₁₁₅₇, X₁₁: X₁₁ {O(n)}
t₅₁₁₅₇, X₁₂: X₁₂ {O(n)}
t₅₁₁₅₇, X₁₃: X₁₃ {O(n)}
t₅₁₁₅₇, X₁₄: X₁₄ {O(n)}
t₅₁₁₅₈, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₅₈, X₉: 57⋅X₉ {O(n)}
t₅₁₁₅₈, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₅₈, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₅₈, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₅₈, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₅₈, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₅₉, X₀: 12⋅X₉+324⋅X₁₀+324⋅X₁₂+324⋅X₁₄+33⋅X₁₁+21 {O(n)}
t₅₁₁₅₉, X₄: 0 {O(1)}
t₅₁₁₅₉, X₇: 21⋅X₇ {O(n)}
t₅₁₁₅₉, X₈: 21⋅X₈ {O(n)}
t₅₁₁₅₉, X₉: 21⋅X₉ {O(n)}
t₅₁₁₅₉, X₁₀: 21⋅X₁₀ {O(n)}
t₅₁₁₅₉, X₁₁: 21⋅X₁₁ {O(n)}
t₅₁₁₅₉, X₁₂: 21⋅X₁₂ {O(n)}
t₅₁₁₅₉, X₁₃: 21⋅X₁₃ {O(n)}
t₅₁₁₅₉, X₁₄: 21⋅X₁₄ {O(n)}
t₅₁₁₆₀, X₀: 108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+11⋅X₁₁+4⋅X₉+7 {O(n)}
t₅₁₁₆₀, X₄: 0 {O(1)}
t₅₁₁₆₀, X₇: 7⋅X₇ {O(n)}
t₅₁₁₆₀, X₈: 7⋅X₈ {O(n)}
t₅₁₁₆₀, X₉: 7⋅X₉ {O(n)}
t₅₁₁₆₀, X₁₀: 7⋅X₁₀ {O(n)}
t₅₁₁₆₀, X₁₁: 7⋅X₁₁ {O(n)}
t₅₁₁₆₀, X₁₂: 7⋅X₁₂ {O(n)}
t₅₁₁₆₀, X₁₃: 7⋅X₁₃ {O(n)}
t₅₁₁₆₀, X₁₄: 7⋅X₁₄ {O(n)}
t₅₀₉₃₅, X₀: X₁₁ {O(n)}
t₅₀₉₃₅, X₁: X₁₂ {O(n)}
t₅₀₉₃₅, X₂: X₁₄ {O(n)}
t₅₀₉₃₅, X₃: X₁₃ {O(n)}
t₅₀₉₃₅, X₄: X₄ {O(n)}
t₅₀₉₃₅, X₅: X₅ {O(n)}
t₅₀₉₃₅, X₆: X₆ {O(n)}
t₅₀₉₃₅, X₇: X₇ {O(n)}
t₅₀₉₃₅, X₈: X₈ {O(n)}
t₅₀₉₃₅, X₉: X₉ {O(n)}
t₅₀₉₃₅, X₁₀: X₁₀ {O(n)}
t₅₀₉₃₅, X₁₁: X₁₁ {O(n)}
t₅₀₉₃₅, X₁₂: X₁₂ {O(n)}
t₅₀₉₃₅, X₁₃: X₁₃ {O(n)}
t₅₀₉₃₅, X₁₄: X₁₄ {O(n)}
t₅₀₉₃₆, X₀: X₁₁ {O(n)}
t₅₀₉₃₆, X₁: X₁₂ {O(n)}
t₅₀₉₃₆, X₂: X₁₄ {O(n)}
t₅₀₉₃₆, X₃: X₁₃ {O(n)}
t₅₀₉₃₆, X₄: X₄ {O(n)}
t₅₀₉₃₆, X₅: X₅ {O(n)}
t₅₀₉₃₆, X₆: X₆ {O(n)}
t₅₀₉₃₆, X₇: X₇ {O(n)}
t₅₀₉₃₆, X₈: X₈ {O(n)}
t₅₀₉₃₆, X₉: X₉ {O(n)}
t₅₀₉₃₆, X₁₀: X₁₀ {O(n)}
t₅₀₉₃₆, X₁₁: X₁₁ {O(n)}
t₅₀₉₃₆, X₁₂: X₁₂ {O(n)}
t₅₀₉₃₆, X₁₃: X₁₃ {O(n)}
t₅₀₉₃₆, X₁₄: X₁₄ {O(n)}
t₅₀₉₃₇, X₀: X₁₁ {O(n)}
t₅₀₉₃₇, X₁: X₁₂ {O(n)}
t₅₀₉₃₇, X₂: X₁₄ {O(n)}
t₅₀₉₃₇, X₃: X₁₃ {O(n)}
t₅₀₉₃₇, X₄: X₄ {O(n)}
t₅₀₉₃₇, X₅: X₅ {O(n)}
t₅₀₉₃₇, X₆: X₆ {O(n)}
t₅₀₉₃₇, X₇: X₇ {O(n)}
t₅₀₉₃₇, X₈: X₈ {O(n)}
t₅₀₉₃₇, X₉: X₉ {O(n)}
t₅₀₉₃₇, X₁₀: X₁₀ {O(n)}
t₅₀₉₃₇, X₁₁: X₁₁ {O(n)}
t₅₀₉₃₇, X₁₂: X₁₂ {O(n)}
t₅₀₉₃₇, X₁₃: X₁₃ {O(n)}
t₅₀₉₃₇, X₁₄: X₁₄ {O(n)}
t₅₀₉₃₈, X₀: X₁₁ {O(n)}
t₅₀₉₃₈, X₁: X₁₂ {O(n)}
t₅₀₉₃₈, X₂: X₁₄ {O(n)}
t₅₀₉₃₈, X₃: X₁₃ {O(n)}
t₅₀₉₃₈, X₄: X₄ {O(n)}
t₅₀₉₃₈, X₅: X₅ {O(n)}
t₅₀₉₃₈, X₆: X₆ {O(n)}
t₅₀₉₃₈, X₇: X₇ {O(n)}
t₅₀₉₃₈, X₈: X₈ {O(n)}
t₅₀₉₃₈, X₉: X₉ {O(n)}
t₅₀₉₃₈, X₁₀: X₁₀ {O(n)}
t₅₀₉₃₈, X₁₁: X₁₁ {O(n)}
t₅₀₉₃₈, X₁₂: X₁₂ {O(n)}
t₅₀₉₃₈, X₁₃: X₁₃ {O(n)}
t₅₀₉₃₈, X₁₄: X₁₄ {O(n)}
t₅₀₉₃₉, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₀₉₃₉, X₄: 0 {O(1)}
t₅₀₉₃₉, X₇: 3⋅X₇ {O(n)}
t₅₀₉₃₉, X₈: 3⋅X₈ {O(n)}
t₅₀₉₃₉, X₉: 3⋅X₉ {O(n)}
t₅₀₉₃₉, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₃₉, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₃₉, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₃₉, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₃₉, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₄₀, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₀₉₄₀, X₄: 0 {O(1)}
t₅₀₉₄₀, X₇: 3⋅X₇ {O(n)}
t₅₀₉₄₀, X₈: 3⋅X₈ {O(n)}
t₅₀₉₄₀, X₉: 3⋅X₉ {O(n)}
t₅₀₉₄₀, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₄₀, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₄₀, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₄₀, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₄₀, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₄₁, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₄₁, X₉: 57⋅X₉ {O(n)}
t₅₀₉₄₁, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₄₁, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₄₁, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₄₁, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₄₁, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₄₂, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₄₂, X₉: 57⋅X₉ {O(n)}
t₅₀₉₄₂, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₄₂, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₄₂, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₄₂, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₄₂, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₄₃, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₄₃, X₉: 57⋅X₉ {O(n)}
t₅₀₉₄₃, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₄₃, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₄₃, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₄₃, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₄₃, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₄₄, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₄₄, X₉: 57⋅X₉ {O(n)}
t₅₀₉₄₄, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₄₄, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₄₄, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₄₄, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₄₄, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₄₅, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₄₅, X₄: 0 {O(1)}
t₅₀₉₄₅, X₇: 3⋅X₇ {O(n)}
t₅₀₉₄₅, X₈: 3⋅X₈ {O(n)}
t₅₀₉₄₅, X₉: 3⋅X₉ {O(n)}
t₅₀₉₄₅, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₄₅, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₄₅, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₄₅, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₄₅, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₄₆, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₄₆, X₉: 57⋅X₉ {O(n)}
t₅₀₉₄₆, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₄₆, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₄₆, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₄₆, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₄₆, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₄₇, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₄₇, X₉: 57⋅X₉ {O(n)}
t₅₀₉₄₇, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₄₇, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₄₇, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₄₇, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₄₇, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₄₈, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₄₈, X₉: 57⋅X₉ {O(n)}
t₅₀₉₄₈, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₄₈, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₄₈, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₄₈, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₄₈, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₄₉, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₄₉, X₉: 57⋅X₉ {O(n)}
t₅₀₉₄₉, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₄₉, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₄₉, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₄₉, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₄₉, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₅₀, X₀: 108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+11⋅X₁₁+4⋅X₉+7 {O(n)}
t₅₀₉₅₀, X₄: 0 {O(1)}
t₅₀₉₅₀, X₇: 7⋅X₇ {O(n)}
t₅₀₉₅₀, X₈: 7⋅X₈ {O(n)}
t₅₀₉₅₀, X₉: 7⋅X₉ {O(n)}
t₅₀₉₅₀, X₁₀: 7⋅X₁₀ {O(n)}
t₅₀₉₅₀, X₁₁: 7⋅X₁₁ {O(n)}
t₅₀₉₅₀, X₁₂: 7⋅X₁₂ {O(n)}
t₅₀₉₅₀, X₁₃: 7⋅X₁₃ {O(n)}
t₅₀₉₅₀, X₁₄: 7⋅X₁₄ {O(n)}
t₅₀₉₅₁, X₀: 108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+11⋅X₁₁+4⋅X₉+7 {O(n)}
t₅₀₉₅₁, X₄: 0 {O(1)}
t₅₀₉₅₁, X₇: 7⋅X₇ {O(n)}
t₅₀₉₅₁, X₈: 7⋅X₈ {O(n)}
t₅₀₉₅₁, X₉: 7⋅X₉ {O(n)}
t₅₀₉₅₁, X₁₀: 7⋅X₁₀ {O(n)}
t₅₀₉₅₁, X₁₁: 7⋅X₁₁ {O(n)}
t₅₀₉₅₁, X₁₂: 7⋅X₁₂ {O(n)}
t₅₀₉₅₁, X₁₃: 7⋅X₁₃ {O(n)}
t₅₀₉₅₁, X₁₄: 7⋅X₁₄ {O(n)}
t₅₀₉₅₂, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₅₂, X₉: 57⋅X₉ {O(n)}
t₅₀₉₅₂, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₅₂, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₅₂, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₅₂, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₅₂, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₅₃, X₀: X₁₁ {O(n)}
t₅₀₉₅₃, X₁: X₁₂ {O(n)}
t₅₀₉₅₃, X₂: X₁₄ {O(n)}
t₅₀₉₅₃, X₃: X₁₃ {O(n)}
t₅₀₉₅₃, X₄: X₄ {O(n)}
t₅₀₉₅₃, X₅: X₅ {O(n)}
t₅₀₉₅₃, X₆: X₆ {O(n)}
t₅₀₉₅₃, X₇: X₇ {O(n)}
t₅₀₉₅₃, X₈: X₈ {O(n)}
t₅₀₉₅₃, X₉: X₉ {O(n)}
t₅₀₉₅₃, X₁₀: X₁₀ {O(n)}
t₅₀₉₅₃, X₁₁: X₁₁ {O(n)}
t₅₀₉₅₃, X₁₂: X₁₂ {O(n)}
t₅₀₉₅₃, X₁₃: X₁₃ {O(n)}
t₅₀₉₅₃, X₁₄: X₁₄ {O(n)}
t₅₀₉₅₄, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₀₉₅₄, X₄: 0 {O(1)}
t₅₀₉₅₄, X₇: 3⋅X₇ {O(n)}
t₅₀₉₅₄, X₈: 3⋅X₈ {O(n)}
t₅₀₉₅₄, X₉: 3⋅X₉ {O(n)}
t₅₀₉₅₄, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₅₄, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₅₄, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₅₄, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₅₄, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₅₅, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₀₉₅₅, X₄: 0 {O(1)}
t₅₀₉₅₅, X₇: 3⋅X₇ {O(n)}
t₅₀₉₅₅, X₈: 3⋅X₈ {O(n)}
t₅₀₉₅₅, X₉: 3⋅X₉ {O(n)}
t₅₀₉₅₅, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₅₅, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₅₅, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₅₅, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₅₅, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₅₆, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₅₆, X₉: 57⋅X₉ {O(n)}
t₅₀₉₅₆, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₅₆, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₅₆, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₅₆, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₅₆, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₅₇, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₅₇, X₇: 3⋅X₇ {O(n)}
t₅₀₉₅₇, X₈: 3⋅X₈ {O(n)}
t₅₀₉₅₇, X₉: 3⋅X₉ {O(n)}
t₅₀₉₅₇, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₅₇, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₅₇, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₅₇, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₅₇, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₅₈, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₅₈, X₉: 57⋅X₉ {O(n)}
t₅₀₉₅₈, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₅₈, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₅₈, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₅₈, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₅₈, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₅₉, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₅₉, X₉: 57⋅X₉ {O(n)}
t₅₀₉₅₉, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₅₉, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₅₉, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₅₉, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₅₉, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₆₀, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₆₀, X₄: 0 {O(1)}
t₅₀₉₆₀, X₇: 3⋅X₇ {O(n)}
t₅₀₉₆₀, X₈: 3⋅X₈ {O(n)}
t₅₀₉₆₀, X₉: 3⋅X₉ {O(n)}
t₅₀₉₆₀, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₆₀, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₆₀, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₆₀, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₆₀, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₆₁, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₆₁, X₄: 0 {O(1)}
t₅₀₉₆₁, X₇: 3⋅X₇ {O(n)}
t₅₀₉₆₁, X₈: 3⋅X₈ {O(n)}
t₅₀₉₆₁, X₉: 3⋅X₉ {O(n)}
t₅₀₉₆₁, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₆₁, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₆₁, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₆₁, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₆₁, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₆₂, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₆₂, X₇: 3⋅X₇ {O(n)}
t₅₀₉₆₂, X₈: 3⋅X₈ {O(n)}
t₅₀₉₆₂, X₉: 3⋅X₉ {O(n)}
t₅₀₉₆₂, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₆₂, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₆₂, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₆₂, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₆₂, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₆₃, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₆₃, X₉: 57⋅X₉ {O(n)}
t₅₀₉₆₃, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₆₃, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₆₃, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₆₃, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₆₃, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₆₄, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₆₄, X₉: 57⋅X₉ {O(n)}
t₅₀₉₆₄, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₆₄, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₆₄, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₆₄, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₆₄, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₆₅, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₆₅, X₇: 3⋅X₇ {O(n)}
t₅₀₉₆₅, X₈: 3⋅X₈ {O(n)}
t₅₀₉₆₅, X₉: 3⋅X₉ {O(n)}
t₅₀₉₆₅, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₆₅, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₆₅, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₆₅, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₆₅, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₆₆, X₀: X₁₁ {O(n)}
t₅₀₉₆₆, X₁: X₁₂ {O(n)}
t₅₀₉₆₆, X₂: X₁₄ {O(n)}
t₅₀₉₆₆, X₃: X₁₃ {O(n)}
t₅₀₉₆₆, X₄: X₄ {O(n)}
t₅₀₉₆₆, X₅: X₅ {O(n)}
t₅₀₉₆₆, X₆: X₆ {O(n)}
t₅₀₉₆₆, X₇: X₇ {O(n)}
t₅₀₉₆₆, X₈: X₈ {O(n)}
t₅₀₉₆₆, X₉: X₉ {O(n)}
t₅₀₉₆₆, X₁₀: X₁₀ {O(n)}
t₅₀₉₆₆, X₁₁: X₁₁ {O(n)}
t₅₀₉₆₆, X₁₂: X₁₂ {O(n)}
t₅₀₉₆₆, X₁₃: X₁₃ {O(n)}
t₅₀₉₆₆, X₁₄: X₁₄ {O(n)}
t₅₀₉₆₇, X₀: X₁₁ {O(n)}
t₅₀₉₆₇, X₁: X₁₂ {O(n)}
t₅₀₉₆₇, X₂: X₁₄ {O(n)}
t₅₀₉₆₇, X₃: X₁₃ {O(n)}
t₅₀₉₆₇, X₄: X₄ {O(n)}
t₅₀₉₆₇, X₅: X₅ {O(n)}
t₅₀₉₆₇, X₆: X₆ {O(n)}
t₅₀₉₆₇, X₇: X₇ {O(n)}
t₅₀₉₆₇, X₈: X₈ {O(n)}
t₅₀₉₆₇, X₉: X₉ {O(n)}
t₅₀₉₆₇, X₁₀: X₁₀ {O(n)}
t₅₀₉₆₇, X₁₁: X₁₁ {O(n)}
t₅₀₉₆₇, X₁₂: X₁₂ {O(n)}
t₅₀₉₆₇, X₁₃: X₁₃ {O(n)}
t₅₀₉₆₇, X₁₄: X₁₄ {O(n)}
t₅₀₉₆₈, X₀: X₁₁ {O(n)}
t₅₀₉₆₈, X₁: X₁₂ {O(n)}
t₅₀₉₆₈, X₂: X₁₄ {O(n)}
t₅₀₉₆₈, X₃: X₁₃ {O(n)}
t₅₀₉₆₈, X₄: X₄ {O(n)}
t₅₀₉₆₈, X₅: X₅ {O(n)}
t₅₀₉₆₈, X₆: X₆ {O(n)}
t₅₀₉₆₈, X₇: X₇ {O(n)}
t₅₀₉₆₈, X₈: X₈ {O(n)}
t₅₀₉₆₈, X₉: X₉ {O(n)}
t₅₀₉₆₈, X₁₀: X₁₀ {O(n)}
t₅₀₉₆₈, X₁₁: X₁₁ {O(n)}
t₅₀₉₆₈, X₁₂: X₁₂ {O(n)}
t₅₀₉₆₈, X₁₃: X₁₃ {O(n)}
t₅₀₉₆₈, X₁₄: X₁₄ {O(n)}
t₅₀₉₆₉, X₀: 108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+11⋅X₁₁+4⋅X₉+7 {O(n)}
t₅₀₉₆₉, X₄: 0 {O(1)}
t₅₀₉₆₉, X₇: 7⋅X₇ {O(n)}
t₅₀₉₆₉, X₈: 7⋅X₈ {O(n)}
t₅₀₉₆₉, X₉: 7⋅X₉ {O(n)}
t₅₀₉₆₉, X₁₀: 7⋅X₁₀ {O(n)}
t₅₀₉₆₉, X₁₁: 7⋅X₁₁ {O(n)}
t₅₀₉₆₉, X₁₂: 7⋅X₁₂ {O(n)}
t₅₀₉₆₉, X₁₃: 7⋅X₁₃ {O(n)}
t₅₀₉₆₉, X₁₄: 7⋅X₁₄ {O(n)}
t₅₀₉₇₀, X₀: 108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+11⋅X₁₁+4⋅X₉+7 {O(n)}
t₅₀₉₇₀, X₄: 0 {O(1)}
t₅₀₉₇₀, X₇: 7⋅X₇ {O(n)}
t₅₀₉₇₀, X₈: 7⋅X₈ {O(n)}
t₅₀₉₇₀, X₉: 7⋅X₉ {O(n)}
t₅₀₉₇₀, X₁₀: 7⋅X₁₀ {O(n)}
t₅₀₉₇₀, X₁₁: 7⋅X₁₁ {O(n)}
t₅₀₉₇₀, X₁₂: 7⋅X₁₂ {O(n)}
t₅₀₉₇₀, X₁₃: 7⋅X₁₃ {O(n)}
t₅₀₉₇₀, X₁₄: 7⋅X₁₄ {O(n)}
t₅₀₉₇₁, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₇₁, X₄: 0 {O(1)}
t₅₀₉₇₁, X₇: 3⋅X₇ {O(n)}
t₅₀₉₇₁, X₈: 3⋅X₈ {O(n)}
t₅₀₉₇₁, X₉: 3⋅X₉ {O(n)}
t₅₀₉₇₁, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₇₁, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₇₁, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₇₁, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₇₁, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₇₂, X₀: X₁₁ {O(n)}
t₅₀₉₇₂, X₁: X₁₂ {O(n)}
t₅₀₉₇₂, X₂: X₁₄ {O(n)}
t₅₀₉₇₂, X₃: X₁₃ {O(n)}
t₅₀₉₇₂, X₄: X₄ {O(n)}
t₅₀₉₇₂, X₅: X₅ {O(n)}
t₅₀₉₇₂, X₆: X₆ {O(n)}
t₅₀₉₇₂, X₇: X₇ {O(n)}
t₅₀₉₇₂, X₈: X₈ {O(n)}
t₅₀₉₇₂, X₉: X₉ {O(n)}
t₅₀₉₇₂, X₁₀: X₁₀ {O(n)}
t₅₀₉₇₂, X₁₁: X₁₁ {O(n)}
t₅₀₉₇₂, X₁₂: X₁₂ {O(n)}
t₅₀₉₇₂, X₁₃: X₁₃ {O(n)}
t₅₀₉₇₂, X₁₄: X₁₄ {O(n)}
t₅₁₀₆₄, X₀: X₁₁ {O(n)}
t₅₁₀₆₄, X₁: X₁₂ {O(n)}
t₅₁₀₆₄, X₂: X₁₄ {O(n)}
t₅₁₀₆₄, X₃: X₁₃ {O(n)}
t₅₁₀₆₄, X₄: X₄ {O(n)}
t₅₁₀₆₄, X₅: X₅ {O(n)}
t₅₁₀₆₄, X₆: X₆ {O(n)}
t₅₁₀₆₄, X₇: X₇ {O(n)}
t₅₁₀₆₄, X₈: X₈ {O(n)}
t₅₁₀₆₄, X₉: X₉ {O(n)}
t₅₁₀₆₄, X₁₀: X₁₀ {O(n)}
t₅₁₀₆₄, X₁₁: X₁₁ {O(n)}
t₅₁₀₆₄, X₁₂: X₁₂ {O(n)}
t₅₁₀₆₄, X₁₃: X₁₃ {O(n)}
t₅₁₀₆₄, X₁₄: X₁₄ {O(n)}
t₅₁₁₄₀, X₀: X₁₁ {O(n)}
t₅₁₁₄₀, X₁: X₁₂ {O(n)}
t₅₁₁₄₀, X₂: X₁₄ {O(n)}
t₅₁₁₄₀, X₃: X₁₃ {O(n)}
t₅₁₁₄₀, X₄: X₄ {O(n)}
t₅₁₁₄₀, X₅: X₅ {O(n)}
t₅₁₁₄₀, X₆: X₆ {O(n)}
t₅₁₁₄₀, X₇: X₇ {O(n)}
t₅₁₁₄₀, X₈: X₈ {O(n)}
t₅₁₁₄₀, X₉: X₉ {O(n)}
t₅₁₁₄₀, X₁₀: X₁₀ {O(n)}
t₅₁₁₄₀, X₁₁: X₁₁ {O(n)}
t₅₁₁₄₀, X₁₂: X₁₂ {O(n)}
t₅₁₁₄₀, X₁₃: X₁₃ {O(n)}
t₅₁₁₄₀, X₁₄: X₁₄ {O(n)}
t₅₀₉₇₃, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₇₃, X₇: 3⋅X₇ {O(n)}
t₅₀₉₇₃, X₈: 3⋅X₈ {O(n)}
t₅₀₉₇₃, X₉: 3⋅X₉ {O(n)}
t₅₀₉₇₃, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₇₃, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₇₃, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₇₃, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₇₃, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₀₆₅, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₀₆₅, X₇: 3⋅X₇ {O(n)}
t₅₁₀₆₅, X₈: 3⋅X₈ {O(n)}
t₅₁₀₆₅, X₉: 3⋅X₉ {O(n)}
t₅₁₀₆₅, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₀₆₅, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₀₆₅, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₀₆₅, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₀₆₅, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₄₁, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₁₄₁, X₇: 3⋅X₇ {O(n)}
t₅₁₁₄₁, X₈: 3⋅X₈ {O(n)}
t₅₁₁₄₁, X₉: 3⋅X₉ {O(n)}
t₅₁₁₄₁, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₁₄₁, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₁₄₁, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₁₄₁, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₁₄₁, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₇₄, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₇₄, X₉: 57⋅X₉ {O(n)}
t₅₀₉₇₄, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₇₄, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₇₄, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₇₄, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₇₄, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₇₅, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₇₅, X₉: 57⋅X₉ {O(n)}
t₅₀₉₇₅, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₇₅, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₇₅, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₇₅, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₇₅, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₀₆₇, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₀₆₇, X₉: 57⋅X₉ {O(n)}
t₅₁₀₆₇, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₀₆₇, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₀₆₇, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₀₆₇, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₀₆₇, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₄₃, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₄₃, X₉: 57⋅X₉ {O(n)}
t₅₁₁₄₃, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₄₃, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₄₃, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₄₃, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₄₃, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₇₆, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₇₆, X₄: 0 {O(1)}
t₅₀₉₇₆, X₇: 3⋅X₇ {O(n)}
t₅₀₉₇₆, X₈: 3⋅X₈ {O(n)}
t₅₀₉₇₆, X₉: 3⋅X₉ {O(n)}
t₅₀₉₇₆, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₇₆, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₇₆, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₇₆, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₇₆, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₇₇, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₇₇, X₇: 3⋅X₇ {O(n)}
t₅₀₉₇₇, X₈: 3⋅X₈ {O(n)}
t₅₀₉₇₇, X₉: 3⋅X₉ {O(n)}
t₅₀₉₇₇, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₇₇, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₇₇, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₇₇, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₇₇, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₇₈, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₇₈, X₉: 57⋅X₉ {O(n)}
t₅₀₉₇₈, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₇₈, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₇₈, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₇₈, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₇₈, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₀₇₀, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₀₇₀, X₉: 57⋅X₉ {O(n)}
t₅₁₀₇₀, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₀₇₀, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₀₇₀, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₀₇₀, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₀₇₀, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₄₆, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₄₆, X₉: 57⋅X₉ {O(n)}
t₅₁₁₄₆, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₄₆, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₄₆, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₄₆, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₄₆, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₇₉, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₇₉, X₇: 3⋅X₇ {O(n)}
t₅₀₉₇₉, X₈: 3⋅X₈ {O(n)}
t₅₀₉₇₉, X₉: 3⋅X₉ {O(n)}
t₅₀₉₇₉, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₇₉, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₇₉, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₇₉, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₇₉, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₀₇₁, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₀₇₁, X₇: 3⋅X₇ {O(n)}
t₅₁₀₇₁, X₈: 3⋅X₈ {O(n)}
t₅₁₀₇₁, X₉: 3⋅X₉ {O(n)}
t₅₁₀₇₁, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₀₇₁, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₀₇₁, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₀₇₁, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₀₇₁, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₄₇, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₁₄₇, X₇: 3⋅X₇ {O(n)}
t₅₁₁₄₇, X₈: 3⋅X₈ {O(n)}
t₅₁₁₄₇, X₉: 3⋅X₉ {O(n)}
t₅₁₁₄₇, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₁₄₇, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₁₄₇, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₁₄₇, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₁₄₇, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₈₀, X₀: X₁₁ {O(n)}
t₅₀₉₈₀, X₁: X₁₂ {O(n)}
t₅₀₉₈₀, X₂: X₁₄ {O(n)}
t₅₀₉₈₀, X₃: X₁₃ {O(n)}
t₅₀₉₈₀, X₄: X₄ {O(n)}
t₅₀₉₈₀, X₅: X₅ {O(n)}
t₅₀₉₈₀, X₆: X₆ {O(n)}
t₅₀₉₈₀, X₇: X₇ {O(n)}
t₅₀₉₈₀, X₈: X₈ {O(n)}
t₅₀₉₈₀, X₉: X₉ {O(n)}
t₅₀₉₈₀, X₁₀: X₁₀ {O(n)}
t₅₀₉₈₀, X₁₁: X₁₁ {O(n)}
t₅₀₉₈₀, X₁₂: X₁₂ {O(n)}
t₅₀₉₈₀, X₁₃: X₁₃ {O(n)}
t₅₀₉₈₀, X₁₄: X₁₄ {O(n)}
t₅₁₀₇₂, X₀: X₁₁ {O(n)}
t₅₁₀₇₂, X₁: X₁₂ {O(n)}
t₅₁₀₇₂, X₂: X₁₄ {O(n)}
t₅₁₀₇₂, X₃: X₁₃ {O(n)}
t₅₁₀₇₂, X₄: X₄ {O(n)}
t₅₁₀₇₂, X₅: X₅ {O(n)}
t₅₁₀₇₂, X₆: X₆ {O(n)}
t₅₁₀₇₂, X₇: X₇ {O(n)}
t₅₁₀₇₂, X₈: X₈ {O(n)}
t₅₁₀₇₂, X₉: X₉ {O(n)}
t₅₁₀₇₂, X₁₀: X₁₀ {O(n)}
t₅₁₀₇₂, X₁₁: X₁₁ {O(n)}
t₅₁₀₇₂, X₁₂: X₁₂ {O(n)}
t₅₁₀₇₂, X₁₃: X₁₃ {O(n)}
t₅₁₀₇₂, X₁₄: X₁₄ {O(n)}
t₅₁₁₄₈, X₀: X₁₁ {O(n)}
t₅₁₁₄₈, X₁: X₁₂ {O(n)}
t₅₁₁₄₈, X₂: X₁₄ {O(n)}
t₅₁₁₄₈, X₃: X₁₃ {O(n)}
t₅₁₁₄₈, X₄: X₄ {O(n)}
t₅₁₁₄₈, X₅: X₅ {O(n)}
t₅₁₁₄₈, X₆: X₆ {O(n)}
t₅₁₁₄₈, X₇: X₇ {O(n)}
t₅₁₁₄₈, X₈: X₈ {O(n)}
t₅₁₁₄₈, X₉: X₉ {O(n)}
t₅₁₁₄₈, X₁₀: X₁₀ {O(n)}
t₅₁₁₄₈, X₁₁: X₁₁ {O(n)}
t₅₁₁₄₈, X₁₂: X₁₂ {O(n)}
t₅₁₁₄₈, X₁₃: X₁₃ {O(n)}
t₅₁₁₄₈, X₁₄: X₁₄ {O(n)}
t₅₀₉₈₁, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₈₁, X₄: 0 {O(1)}
t₅₀₉₈₁, X₇: 3⋅X₇ {O(n)}
t₅₀₉₈₁, X₈: 3⋅X₈ {O(n)}
t₅₀₉₈₁, X₉: 3⋅X₉ {O(n)}
t₅₀₉₈₁, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₈₁, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₈₁, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₈₁, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₈₁, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₈₂, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₈₂, X₉: 57⋅X₉ {O(n)}
t₅₀₉₈₂, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₈₂, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₈₂, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₈₂, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₈₂, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₀₁, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₀₁, X₉: 57⋅X₉ {O(n)}
t₅₁₁₀₁, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₀₁, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₀₁, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₀₁, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₀₁, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₂₇, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₂₇, X₉: 57⋅X₉ {O(n)}
t₅₁₁₂₇, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₂₇, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₂₇, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₂₇, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₂₇, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₈₃, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₈₃, X₉: 57⋅X₉ {O(n)}
t₅₀₉₈₃, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₈₃, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₈₃, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₈₃, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₈₃, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₀₂, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₀₂, X₉: 57⋅X₉ {O(n)}
t₅₁₁₀₂, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₀₂, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₀₂, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₀₂, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₀₂, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₁₅, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₁₅, X₉: 57⋅X₉ {O(n)}
t₅₁₁₁₅, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₁₅, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₁₅, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₁₅, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₁₅, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₂₈, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₂₈, X₉: 57⋅X₉ {O(n)}
t₅₁₁₂₈, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₂₈, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₂₈, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₂₈, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₂₈, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₈₄, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₀₉₈₄, X₄: 0 {O(1)}
t₅₀₉₈₄, X₇: 3⋅X₇ {O(n)}
t₅₀₉₈₄, X₈: 3⋅X₈ {O(n)}
t₅₀₉₈₄, X₉: 3⋅X₉ {O(n)}
t₅₀₉₈₄, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₈₄, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₈₄, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₈₄, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₈₄, X₁₄: 3⋅X₁₄ {O(n)}
t₅₀₉₈₅, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₀₉₈₅, X₄: 0 {O(1)}
t₅₀₉₈₅, X₇: 3⋅X₇ {O(n)}
t₅₀₉₈₅, X₈: 3⋅X₈ {O(n)}
t₅₀₉₈₅, X₉: 3⋅X₉ {O(n)}
t₅₀₉₈₅, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₈₅, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₈₅, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₈₅, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₈₅, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₀₅, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₀₅, X₉: 57⋅X₉ {O(n)}
t₅₁₁₀₅, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₀₅, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₀₅, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₀₅, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₀₅, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₁₈, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₁₈, X₉: 57⋅X₉ {O(n)}
t₅₁₁₁₈, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₁₈, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₁₈, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₁₈, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₁₈, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₃₁, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₃₁, X₉: 57⋅X₉ {O(n)}
t₅₁₁₃₁, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₃₁, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₃₁, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₃₁, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₃₁, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₁₉, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₁₉, X₉: 57⋅X₉ {O(n)}
t₅₁₁₁₉, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₁₉, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₁₉, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₁₉, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₁₉, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₈₆, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₀₉₈₆, X₉: 57⋅X₉ {O(n)}
t₅₀₉₈₆, X₁₀: 57⋅X₁₀ {O(n)}
t₅₀₉₈₆, X₁₁: 57⋅X₁₁ {O(n)}
t₅₀₉₈₆, X₁₂: 57⋅X₁₂ {O(n)}
t₅₀₉₈₆, X₁₃: 57⋅X₁₃ {O(n)}
t₅₀₉₈₆, X₁₄: 57⋅X₁₄ {O(n)}
t₅₁₁₂₀, X₀: 33⋅X₉+702⋅X₁₀+702⋅X₁₂+702⋅X₁₄+90⋅X₁₁+54 {O(n)}
t₅₁₁₂₀, X₉: 57⋅X₉ {O(n)}
t₅₁₁₂₀, X₁₀: 57⋅X₁₀ {O(n)}
t₅₁₁₂₀, X₁₁: 57⋅X₁₁ {O(n)}
t₅₁₁₂₀, X₁₂: 57⋅X₁₂ {O(n)}
t₅₁₁₂₀, X₁₃: 57⋅X₁₃ {O(n)}
t₅₁₁₂₀, X₁₄: 57⋅X₁₄ {O(n)}
t₅₀₉₈₇, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₀₉₈₇, X₄: 0 {O(1)}
t₅₀₉₈₇, X₇: 3⋅X₇ {O(n)}
t₅₀₉₈₇, X₈: 3⋅X₈ {O(n)}
t₅₀₉₈₇, X₉: 3⋅X₉ {O(n)}
t₅₀₉₈₇, X₁₀: 3⋅X₁₀ {O(n)}
t₅₀₉₈₇, X₁₁: 3⋅X₁₁ {O(n)}
t₅₀₉₈₇, X₁₂: 3⋅X₁₂ {O(n)}
t₅₀₉₈₇, X₁₃: 3⋅X₁₃ {O(n)}
t₅₀₉₈₇, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₀₉, X₀: X₁₁ {O(n)}
t₅₁₁₀₉, X₁: X₁₂ {O(n)}
t₅₁₁₀₉, X₂: X₁₄ {O(n)}
t₅₁₁₀₉, X₃: X₁₃ {O(n)}
t₅₁₁₀₉, X₄: X₄ {O(n)}
t₅₁₁₀₉, X₅: X₅ {O(n)}
t₅₁₁₀₉, X₆: X₆ {O(n)}
t₅₁₁₀₉, X₇: X₇ {O(n)}
t₅₁₁₀₉, X₈: X₈ {O(n)}
t₅₁₁₀₉, X₉: X₉ {O(n)}
t₅₁₁₀₉, X₁₀: X₁₀ {O(n)}
t₅₁₁₀₉, X₁₁: X₁₁ {O(n)}
t₅₁₁₀₉, X₁₂: X₁₂ {O(n)}
t₅₁₁₀₉, X₁₃: X₁₃ {O(n)}
t₅₁₁₀₉, X₁₄: X₁₄ {O(n)}
t₅₁₁₂₂, X₀: X₁₁ {O(n)}
t₅₁₁₂₂, X₁: X₁₂ {O(n)}
t₅₁₁₂₂, X₂: X₁₄ {O(n)}
t₅₁₁₂₂, X₃: X₁₃ {O(n)}
t₅₁₁₂₂, X₄: X₄ {O(n)}
t₅₁₁₂₂, X₅: X₅ {O(n)}
t₅₁₁₂₂, X₆: X₆ {O(n)}
t₅₁₁₂₂, X₇: X₇ {O(n)}
t₅₁₁₂₂, X₈: X₈ {O(n)}
t₅₁₁₂₂, X₉: X₉ {O(n)}
t₅₁₁₂₂, X₁₀: X₁₀ {O(n)}
t₅₁₁₂₂, X₁₁: X₁₁ {O(n)}
t₅₁₁₂₂, X₁₂: X₁₂ {O(n)}
t₅₁₁₂₂, X₁₃: X₁₃ {O(n)}
t₅₁₁₂₂, X₁₄: X₁₄ {O(n)}
t₅₁₁₃₅, X₀: X₁₁ {O(n)}
t₅₁₁₃₅, X₁: X₁₂ {O(n)}
t₅₁₁₃₅, X₂: X₁₄ {O(n)}
t₅₁₁₃₅, X₃: X₁₃ {O(n)}
t₅₁₁₃₅, X₄: X₄ {O(n)}
t₅₁₁₃₅, X₅: X₅ {O(n)}
t₅₁₁₃₅, X₆: X₆ {O(n)}
t₅₁₁₃₅, X₇: X₇ {O(n)}
t₅₁₁₃₅, X₈: X₈ {O(n)}
t₅₁₁₃₅, X₉: X₉ {O(n)}
t₅₁₁₃₅, X₁₀: X₁₀ {O(n)}
t₅₁₁₃₅, X₁₁: X₁₁ {O(n)}
t₅₁₁₃₅, X₁₂: X₁₂ {O(n)}
t₅₁₁₃₅, X₁₃: X₁₃ {O(n)}
t₅₁₁₃₅, X₁₄: X₁₄ {O(n)}
t₅₀₉₈₈, X₀: X₁₁ {O(n)}
t₅₀₉₈₈, X₁: X₁₂ {O(n)}
t₅₀₉₈₈, X₂: X₁₄ {O(n)}
t₅₀₉₈₈, X₃: X₁₃ {O(n)}
t₅₀₉₈₈, X₄: X₄ {O(n)}
t₅₀₉₈₈, X₅: X₅ {O(n)}
t₅₀₉₈₈, X₆: X₆ {O(n)}
t₅₀₉₈₈, X₇: X₇ {O(n)}
t₅₀₉₈₈, X₈: X₈ {O(n)}
t₅₀₉₈₈, X₉: X₉ {O(n)}
t₅₀₉₈₈, X₁₀: X₁₀ {O(n)}
t₅₀₉₈₈, X₁₁: X₁₁ {O(n)}
t₅₀₉₈₈, X₁₂: X₁₂ {O(n)}
t₅₀₉₈₈, X₁₃: X₁₃ {O(n)}
t₅₀₉₈₈, X₁₄: X₁₄ {O(n)}
t₅₁₁₁₀, X₀: X₁₁ {O(n)}
t₅₁₁₁₀, X₁: X₁₂ {O(n)}
t₅₁₁₁₀, X₂: X₁₄ {O(n)}
t₅₁₁₁₀, X₃: X₁₃ {O(n)}
t₅₁₁₁₀, X₄: X₄ {O(n)}
t₅₁₁₁₀, X₅: X₅ {O(n)}
t₅₁₁₁₀, X₆: X₆ {O(n)}
t₅₁₁₁₀, X₇: X₇ {O(n)}
t₅₁₁₁₀, X₈: X₈ {O(n)}
t₅₁₁₁₀, X₉: X₉ {O(n)}
t₅₁₁₁₀, X₁₀: X₁₀ {O(n)}
t₅₁₁₁₀, X₁₁: X₁₁ {O(n)}
t₅₁₁₁₀, X₁₂: X₁₂ {O(n)}
t₅₁₁₁₀, X₁₃: X₁₃ {O(n)}
t₅₁₁₁₀, X₁₄: X₁₄ {O(n)}
t₅₁₁₃₆, X₀: X₁₁ {O(n)}
t₅₁₁₃₆, X₁: X₁₂ {O(n)}
t₅₁₁₃₆, X₂: X₁₄ {O(n)}
t₅₁₁₃₆, X₃: X₁₃ {O(n)}
t₅₁₁₃₆, X₄: X₄ {O(n)}
t₅₁₁₃₆, X₅: X₅ {O(n)}
t₅₁₁₃₆, X₆: X₆ {O(n)}
t₅₁₁₃₆, X₇: X₇ {O(n)}
t₅₁₁₃₆, X₈: X₈ {O(n)}
t₅₁₁₃₆, X₉: X₉ {O(n)}
t₅₁₁₃₆, X₁₀: X₁₀ {O(n)}
t₅₁₁₃₆, X₁₁: X₁₁ {O(n)}
t₅₁₁₃₆, X₁₂: X₁₂ {O(n)}
t₅₁₁₃₆, X₁₃: X₁₃ {O(n)}
t₅₁₁₃₆, X₁₄: X₁₄ {O(n)}
t₅₀₉₈₉, X₀: X₁₁ {O(n)}
t₅₀₉₈₉, X₁: X₁₂ {O(n)}
t₅₀₉₈₉, X₂: X₁₄ {O(n)}
t₅₀₉₈₉, X₃: X₁₃ {O(n)}
t₅₀₉₈₉, X₄: X₄ {O(n)}
t₅₀₉₈₉, X₅: X₅ {O(n)}
t₅₀₉₈₉, X₆: X₆ {O(n)}
t₅₀₉₈₉, X₇: X₇ {O(n)}
t₅₀₉₈₉, X₈: X₈ {O(n)}
t₅₀₉₈₉, X₉: X₉ {O(n)}
t₅₀₉₈₉, X₁₀: X₁₀ {O(n)}
t₅₀₉₈₉, X₁₁: X₁₁ {O(n)}
t₅₀₉₈₉, X₁₂: X₁₂ {O(n)}
t₅₀₉₈₉, X₁₃: X₁₃ {O(n)}
t₅₀₉₈₉, X₁₄: X₁₄ {O(n)}
t₅₁₁₁₁, X₀: X₁₁ {O(n)}
t₅₁₁₁₁, X₁: X₁₂ {O(n)}
t₅₁₁₁₁, X₂: X₁₄ {O(n)}
t₅₁₁₁₁, X₃: X₁₃ {O(n)}
t₅₁₁₁₁, X₄: X₄ {O(n)}
t₅₁₁₁₁, X₅: X₅ {O(n)}
t₅₁₁₁₁, X₆: X₆ {O(n)}
t₅₁₁₁₁, X₇: X₇ {O(n)}
t₅₁₁₁₁, X₈: X₈ {O(n)}
t₅₁₁₁₁, X₉: X₉ {O(n)}
t₅₁₁₁₁, X₁₀: X₁₀ {O(n)}
t₅₁₁₁₁, X₁₁: X₁₁ {O(n)}
t₅₁₁₁₁, X₁₂: X₁₂ {O(n)}
t₅₁₁₁₁, X₁₃: X₁₃ {O(n)}
t₅₁₁₁₁, X₁₄: X₁₄ {O(n)}
t₅₁₁₂₄, X₀: X₁₁ {O(n)}
t₅₁₁₂₄, X₁: X₁₂ {O(n)}
t₅₁₁₂₄, X₂: X₁₄ {O(n)}
t₅₁₁₂₄, X₃: X₁₃ {O(n)}
t₅₁₁₂₄, X₄: X₄ {O(n)}
t₅₁₁₂₄, X₅: X₅ {O(n)}
t₅₁₁₂₄, X₆: X₆ {O(n)}
t₅₁₁₂₄, X₇: X₇ {O(n)}
t₅₁₁₂₄, X₈: X₈ {O(n)}
t₅₁₁₂₄, X₉: X₉ {O(n)}
t₅₁₁₂₄, X₁₀: X₁₀ {O(n)}
t₅₁₁₂₄, X₁₁: X₁₁ {O(n)}
t₅₁₁₂₄, X₁₂: X₁₂ {O(n)}
t₅₁₁₂₄, X₁₃: X₁₃ {O(n)}
t₅₁₁₂₄, X₁₄: X₁₄ {O(n)}
t₅₁₁₃₇, X₀: X₁₁ {O(n)}
t₅₁₁₃₇, X₁: X₁₂ {O(n)}
t₅₁₁₃₇, X₂: X₁₄ {O(n)}
t₅₁₁₃₇, X₃: X₁₃ {O(n)}
t₅₁₁₃₇, X₄: X₄ {O(n)}
t₅₁₁₃₇, X₅: X₅ {O(n)}
t₅₁₁₃₇, X₆: X₆ {O(n)}
t₅₁₁₃₇, X₇: X₇ {O(n)}
t₅₁₁₃₇, X₈: X₈ {O(n)}
t₅₁₁₃₇, X₉: X₉ {O(n)}
t₅₁₁₃₇, X₁₀: X₁₀ {O(n)}
t₅₁₁₃₇, X₁₁: X₁₁ {O(n)}
t₅₁₁₃₇, X₁₂: X₁₂ {O(n)}
t₅₁₁₃₇, X₁₃: X₁₃ {O(n)}
t₅₁₁₃₇, X₁₄: X₁₄ {O(n)}
t₅₀₉₉₀, X₀: 108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+11⋅X₁₁+4⋅X₉+7 {O(n)}
t₅₀₉₉₀, X₄: 0 {O(1)}
t₅₀₉₉₀, X₇: 7⋅X₇ {O(n)}
t₅₀₉₉₀, X₈: 7⋅X₈ {O(n)}
t₅₀₉₉₀, X₉: 7⋅X₉ {O(n)}
t₅₀₉₉₀, X₁₀: 7⋅X₁₀ {O(n)}
t₅₀₉₉₀, X₁₁: 7⋅X₁₁ {O(n)}
t₅₀₉₉₀, X₁₂: 7⋅X₁₂ {O(n)}
t₅₀₉₉₀, X₁₃: 7⋅X₁₃ {O(n)}
t₅₀₉₉₀, X₁₄: 7⋅X₁₄ {O(n)}
t₅₀₉₉₁, X₀: 108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+11⋅X₁₁+4⋅X₉+7 {O(n)}
t₅₀₉₉₁, X₄: 0 {O(1)}
t₅₀₉₉₁, X₇: 7⋅X₇ {O(n)}
t₅₀₉₉₁, X₈: 7⋅X₈ {O(n)}
t₅₀₉₉₁, X₉: 7⋅X₉ {O(n)}
t₅₀₉₉₁, X₁₀: 7⋅X₁₀ {O(n)}
t₅₀₉₉₁, X₁₁: 7⋅X₁₁ {O(n)}
t₅₀₉₉₁, X₁₂: 7⋅X₁₂ {O(n)}
t₅₀₉₉₁, X₁₃: 7⋅X₁₃ {O(n)}
t₅₀₉₉₁, X₁₄: 7⋅X₁₄ {O(n)}
t₅₁₀₀₃, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+4 {O(n)}
t₅₁₀₀₃, X₄: 0 {O(1)}
t₅₁₀₀₃, X₇: 3⋅X₇ {O(n)}
t₅₁₀₀₃, X₈: 3⋅X₈ {O(n)}
t₅₁₀₀₃, X₉: 3⋅X₉ {O(n)}
t₅₁₀₀₃, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₀₀₃, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₀₀₃, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₀₀₃, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₀₀₃, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₀₀₄, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₀₀₄, X₄: 0 {O(1)}
t₅₁₀₀₄, X₇: 3⋅X₇ {O(n)}
t₅₁₀₀₄, X₈: 3⋅X₈ {O(n)}
t₅₁₀₀₄, X₉: 3⋅X₉ {O(n)}
t₅₁₀₀₄, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₀₀₄, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₀₀₄, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₀₀₄, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₀₀₄, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₀₀₅, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₀₀₅, X₄: 0 {O(1)}
t₅₁₀₀₅, X₇: 3⋅X₇ {O(n)}
t₅₁₀₀₅, X₈: 3⋅X₈ {O(n)}
t₅₁₀₀₅, X₉: 3⋅X₉ {O(n)}
t₅₁₀₀₅, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₀₀₅, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₀₀₅, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₀₀₅, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₀₀₅, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₀₀₆, X₀: 108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+11⋅X₁₁+4⋅X₉+7 {O(n)}
t₅₁₀₀₆, X₄: 0 {O(1)}
t₅₁₀₀₆, X₇: 7⋅X₇ {O(n)}
t₅₁₀₀₆, X₈: 7⋅X₈ {O(n)}
t₅₁₀₀₆, X₉: 7⋅X₉ {O(n)}
t₅₁₀₀₆, X₁₀: 7⋅X₁₀ {O(n)}
t₅₁₀₀₆, X₁₁: 7⋅X₁₁ {O(n)}
t₅₁₀₀₆, X₁₂: 7⋅X₁₂ {O(n)}
t₅₁₀₀₆, X₁₃: 7⋅X₁₃ {O(n)}
t₅₁₀₀₆, X₁₄: 7⋅X₁₄ {O(n)}
t₅₁₀₀₇, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₀₀₇, X₄: 0 {O(1)}
t₅₁₀₀₇, X₇: 3⋅X₇ {O(n)}
t₅₁₀₀₇, X₈: 3⋅X₈ {O(n)}
t₅₁₀₀₇, X₉: 3⋅X₉ {O(n)}
t₅₁₀₀₇, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₀₀₇, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₀₀₇, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₀₀₇, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₀₀₇, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₀₀₈, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₀₀₈, X₄: 0 {O(1)}
t₅₁₀₀₈, X₇: 3⋅X₇ {O(n)}
t₅₁₀₀₈, X₈: 3⋅X₈ {O(n)}
t₅₁₀₀₈, X₉: 3⋅X₉ {O(n)}
t₅₁₀₀₈, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₀₀₈, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₀₀₈, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₀₀₈, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₀₀₈, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₆₁, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₁₆₁, X₇: 3⋅X₇ {O(n)}
t₅₁₁₆₁, X₈: 3⋅X₈ {O(n)}
t₅₁₁₆₁, X₉: 3⋅X₉ {O(n)}
t₅₁₁₆₁, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₁₆₁, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₁₆₁, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₁₆₁, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₁₆₁, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₆₆, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₁₆₆, X₇: 3⋅X₇ {O(n)}
t₅₁₁₆₆, X₈: 3⋅X₈ {O(n)}
t₅₁₁₆₆, X₉: 3⋅X₉ {O(n)}
t₅₁₁₆₆, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₁₆₆, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₁₆₆, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₁₆₆, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₁₆₆, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₀₀₉, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₀₀₉, X₄: 0 {O(1)}
t₅₁₀₀₉, X₇: 3⋅X₇ {O(n)}
t₅₁₀₀₉, X₈: 3⋅X₈ {O(n)}
t₅₁₀₀₉, X₉: 3⋅X₉ {O(n)}
t₅₁₀₀₉, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₀₀₉, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₀₀₉, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₀₀₉, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₀₀₉, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₆₂, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₁₆₂, X₇: 3⋅X₇ {O(n)}
t₅₁₁₆₂, X₈: 3⋅X₈ {O(n)}
t₅₁₁₆₂, X₉: 3⋅X₉ {O(n)}
t₅₁₁₆₂, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₁₆₂, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₁₆₂, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₁₆₂, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₁₆₂, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₆₇, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₁₆₇, X₇: 3⋅X₇ {O(n)}
t₅₁₁₆₇, X₈: 3⋅X₈ {O(n)}
t₅₁₁₆₇, X₉: 3⋅X₉ {O(n)}
t₅₁₁₆₇, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₁₆₇, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₁₆₇, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₁₆₇, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₁₆₇, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₀₁₀, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₀₁₀, X₄: 0 {O(1)}
t₅₁₀₁₀, X₇: 3⋅X₇ {O(n)}
t₅₁₀₁₀, X₈: 3⋅X₈ {O(n)}
t₅₁₀₁₀, X₉: 3⋅X₉ {O(n)}
t₅₁₀₁₀, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₀₁₀, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₀₁₀, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₀₁₀, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₀₁₀, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₆₃, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₁₆₃, X₇: 3⋅X₇ {O(n)}
t₅₁₁₆₃, X₈: 3⋅X₈ {O(n)}
t₅₁₁₆₃, X₉: 3⋅X₉ {O(n)}
t₅₁₁₆₃, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₁₆₃, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₁₆₃, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₁₆₃, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₁₆₃, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₆₈, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₁₆₈, X₇: 3⋅X₇ {O(n)}
t₅₁₁₆₈, X₈: 3⋅X₈ {O(n)}
t₅₁₁₆₈, X₉: 3⋅X₉ {O(n)}
t₅₁₁₆₈, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₁₆₈, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₁₆₈, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₁₆₈, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₁₆₈, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₀₁₁, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₀₁₁, X₄: 0 {O(1)}
t₅₁₀₁₁, X₇: 3⋅X₇ {O(n)}
t₅₁₀₁₁, X₈: 3⋅X₈ {O(n)}
t₅₁₀₁₁, X₉: 3⋅X₉ {O(n)}
t₅₁₀₁₁, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₀₁₁, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₀₁₁, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₀₁₁, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₀₁₁, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₆₄, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₁₆₄, X₇: 3⋅X₇ {O(n)}
t₅₁₁₆₄, X₈: 3⋅X₈ {O(n)}
t₅₁₁₆₄, X₉: 3⋅X₉ {O(n)}
t₅₁₁₆₄, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₁₆₄, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₁₆₄, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₁₆₄, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₁₆₄, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₁₆₉, X₀: 2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+3 {O(n)}
t₅₁₁₆₉, X₇: 3⋅X₇ {O(n)}
t₅₁₁₆₉, X₈: 3⋅X₈ {O(n)}
t₅₁₁₆₉, X₉: 3⋅X₉ {O(n)}
t₅₁₁₆₉, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₁₆₉, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₁₆₉, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₁₆₉, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₁₆₉, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₀₁₂, X₀: X₁₁ {O(n)}
t₅₁₀₁₂, X₁: X₁₂ {O(n)}
t₅₁₀₁₂, X₂: X₁₄ {O(n)}
t₅₁₀₁₂, X₃: X₁₃ {O(n)}
t₅₁₀₁₂, X₄: 0 {O(1)}
t₅₁₀₁₂, X₅: X₅ {O(n)}
t₅₁₀₁₂, X₆: X₆ {O(n)}
t₅₁₀₁₂, X₇: X₇ {O(n)}
t₅₁₀₁₂, X₈: X₈ {O(n)}
t₅₁₀₁₂, X₉: X₉ {O(n)}
t₅₁₀₁₂, X₁₀: X₁₀ {O(n)}
t₅₁₀₁₂, X₁₁: X₁₁ {O(n)}
t₅₁₀₁₂, X₁₂: X₁₂ {O(n)}
t₅₁₀₁₂, X₁₃: X₁₃ {O(n)}
t₅₁₀₁₂, X₁₄: X₁₄ {O(n)}
t₅₁₁₆₅, X₀: X₁₁ {O(n)}
t₅₁₁₆₅, X₁: X₁₂ {O(n)}
t₅₁₁₆₅, X₂: X₁₄ {O(n)}
t₅₁₁₆₅, X₃: X₁₃ {O(n)}
t₅₁₁₆₅, X₅: X₅ {O(n)}
t₅₁₁₆₅, X₆: X₆ {O(n)}
t₅₁₁₆₅, X₇: X₇ {O(n)}
t₅₁₁₆₅, X₈: X₈ {O(n)}
t₅₁₁₆₅, X₉: X₉ {O(n)}
t₅₁₁₆₅, X₁₀: X₁₀ {O(n)}
t₅₁₁₆₅, X₁₁: X₁₁ {O(n)}
t₅₁₁₆₅, X₁₂: X₁₂ {O(n)}
t₅₁₁₆₅, X₁₃: X₁₃ {O(n)}
t₅₁₁₆₅, X₁₄: X₁₄ {O(n)}
t₅₁₁₇₀, X₀: X₁₁ {O(n)}
t₅₁₁₇₀, X₁: X₁₂ {O(n)}
t₅₁₁₇₀, X₂: X₁₄ {O(n)}
t₅₁₁₇₀, X₃: X₁₃ {O(n)}
t₅₁₁₇₀, X₅: X₅ {O(n)}
t₅₁₁₇₀, X₆: X₆ {O(n)}
t₅₁₁₇₀, X₇: X₇ {O(n)}
t₅₁₁₇₀, X₈: X₈ {O(n)}
t₅₁₁₇₀, X₉: X₉ {O(n)}
t₅₁₁₇₀, X₁₀: X₁₀ {O(n)}
t₅₁₁₇₀, X₁₁: X₁₁ {O(n)}
t₅₁₁₇₀, X₁₂: X₁₂ {O(n)}
t₅₁₁₇₀, X₁₃: X₁₃ {O(n)}
t₅₁₁₇₀, X₁₄: X₁₄ {O(n)}