Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₀ ∧ 0 < X₁
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₄, X₅, X₂, X₃, X₄, X₅)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₁ < X₀
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₁, X₄, X₅) :|: X₀ ≤ X₁
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅)
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₂, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ 0
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₂
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₃, X₂, X₃, X₄, X₅) :|: X₃ ≤ 0
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₃
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂-1, X₃, X₄, X₅)
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃-1, X₄, X₅)

Preprocessing

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7

Found invariant 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₁ ≤ X₅ ∧ X₀ ≤ X₄ for location l1

Found invariant X₁ ≤ X₅ ∧ X₀ ≤ X₄ for location l4

Found invariant X₁ ≤ X₅ ∧ X₀ ≤ X₄ for location l9

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₀ ∧ 0 < X₁ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₄
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₄
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₄, X₅, X₂, X₃, X₄, X₅)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₁, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₅ ∧ X₀ ≤ X₄
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₂, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ 0 ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₂ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₃, X₂, X₃, X₄, X₅) :|: X₃ ≤ 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂-1, X₃, X₄, X₅) :|: 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₀ ∧ 0 < X₁ ∧ X₁ ≤ X₅ ∧ X₀ ≤ X₄

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₁, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7

Found invariant 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₁ ≤ X₅ ∧ X₀ ≤ X₄ for location l1

Found invariant X₁ ≤ X₅ ∧ X₀ ≤ X₄ for location l4

Found invariant X₁ ≤ X₅ ∧ X₀ ≤ X₄ for location l9

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₇ 2⋅X₄+4 {O(n)}

TWN-Loops:

entry: t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀,X₁,X₂-1,X₃,X₄,X₅) :|: 0 < X₂
order: [X₀; X₁; X₂; X₄; X₅]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂ + [[n != 0]] * -1 * n^1
X₄: X₄
X₅: X₅

Termination: true
Formula:

1 < 0
∨ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}

relevant size-bounds w.r.t. t₅:
X₂: X₄ {O(n)}
Runtime-bound of t₅: 1 {O(1)}
Results in: 2⋅X₄+4 {O(n)}

2⋅X₄+4 {O(n)}

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7

Found invariant 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₁ ≤ X₅ ∧ X₀ ≤ X₄ for location l1

Found invariant X₁ ≤ X₅ ∧ X₀ ≤ X₄ for location l4

Found invariant X₁ ≤ X₅ ∧ X₀ ≤ X₄ for location l9

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₁₀ 2⋅X₅+4 {O(n)}

TWN-Loops:

entry: t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₁, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀,X₁,X₂,X₃-1,X₄,X₅) :|: 0 < X₃
order: [X₀; X₁; X₃; X₄; X₅]
closed-form:
X₀: X₀
X₁: X₁
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄
X₅: X₅

Termination: true
Formula:

1 < 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}

relevant size-bounds w.r.t. t₆:
X₃: X₅ {O(n)}
Runtime-bound of t₆: 1 {O(1)}
Results in: 2⋅X₅+4 {O(n)}

2⋅X₅+4 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₉ 2⋅X₄+4 {O(n)}

relevant size-bounds w.r.t. t₅:
X₂: X₄ {O(n)}
Runtime-bound of t₅: 1 {O(1)}
Results in: 2⋅X₄+4 {O(n)}

2⋅X₄+4 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₁₂ 2⋅X₅+4 {O(n)}

relevant size-bounds w.r.t. t₆:
X₃: X₅ {O(n)}
Runtime-bound of t₆: 1 {O(1)}
Results in: 2⋅X₅+4 {O(n)}

2⋅X₅+4 {O(n)}

knowledge_propagation leads to new time bound 2⋅X₄+4 {O(n)} for transition t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₂, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ 0 ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₅+4 {O(n)} for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₃, X₂, X₃, X₄, X₅) :|: X₃ ≤ 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:6⋅X₄+6⋅X₅+32 {O(n)}
t₀: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₁₃: 1 {O(1)}
t₇: 2⋅X₄+4 {O(n)}
t₈: 2⋅X₄+4 {O(n)}
t₁₀: 2⋅X₅+4 {O(n)}
t₁₁: 2⋅X₅+4 {O(n)}
t₉: 2⋅X₄+4 {O(n)}
t₁₂: 2⋅X₅+4 {O(n)}

Costbounds

Overall costbound: 6⋅X₄+6⋅X₅+32 {O(n)}
t₀: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₁₃: 1 {O(1)}
t₇: 2⋅X₄+4 {O(n)}
t₈: 2⋅X₄+4 {O(n)}
t₁₀: 2⋅X₅+4 {O(n)}
t₁₁: 2⋅X₅+4 {O(n)}
t₉: 2⋅X₄+4 {O(n)}
t₁₂: 2⋅X₅+4 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₂, X₀: X₄ {O(n)}
t₂, X₁: X₅ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₃, X₀: X₄ {O(n)}
t₃, X₁: 2⋅X₅ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₃, X₄: 2⋅X₄ {O(n)}
t₃, X₅: 2⋅X₅ {O(n)}
t₄, X₀: 2⋅X₄ {O(n)}
t₄, X₁: X₅ {O(n)}
t₄, X₂: 2⋅X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: 2⋅X₄ {O(n)}
t₄, X₅: 2⋅X₅ {O(n)}
t₁, X₀: X₄ {O(n)}
t₁, X₁: X₅ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₅, X₀: X₄ {O(n)}
t₅, X₁: X₅ {O(n)}
t₅, X₂: X₄ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₆, X₀: X₄ {O(n)}
t₆, X₁: X₅ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₅ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₁₃, X₀: 3⋅X₄ {O(n)}
t₁₃, X₁: 3⋅X₅ {O(n)}
t₁₃, X₂: 3⋅X₂ {O(n)}
t₁₃, X₃: 3⋅X₃ {O(n)}
t₁₃, X₄: 4⋅X₄ {O(n)}
t₁₃, X₅: 4⋅X₅ {O(n)}
t₇, X₀: X₄ {O(n)}
t₇, X₁: X₅ {O(n)}
t₇, X₂: X₄ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₈, X₀: 0 {O(1)}
t₈, X₁: X₅ {O(n)}
t₈, X₂: 0 {O(1)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₁₀, X₀: X₄ {O(n)}
t₁₀, X₁: X₅ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₅ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₁, X₀: X₄ {O(n)}
t₁₁, X₁: 0 {O(1)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: 0 {O(1)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₉, X₀: X₄ {O(n)}
t₉, X₁: X₅ {O(n)}
t₉, X₂: X₄ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₁₂, X₀: X₄ {O(n)}
t₁₂, X₁: X₅ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₅ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₅ {O(n)}