Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₁, X₄, X₅) :|: X₀ ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₄, X₅, X₂, X₃, X₄, X₅)
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀+999, X₁+1000, X₂, X₃, X₄, X₅)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₃
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₃ ≤ 0
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃-1, X₄, X₅)
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ < 0
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₂
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂+1, X₃, X₄, X₅)
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅)

Preprocessing

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l6

Found invariant X₅ ≤ X₁ ∧ 1+X₄ ≤ 0 ∧ 1+X₃+X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₂+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 2+X₀+X₄ ≤ 0 ∧ X₃ ≤ 0 ∧ 1+X₂+X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 1+X₀+X₃ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location l7

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ for location l5

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l8

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₀ for location l1

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ for location l4

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l9

Found invariant X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₀
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₁, X₄, X₅) :|: X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₄, X₅, X₂, X₃, X₄, X₅)
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀+999, X₁+1000, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₃ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₃ ≤ 0 ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃-1, X₄, X₅) :|: X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ < 0 ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂+1, X₃, X₄, X₅) :|: X₅ ≤ X₁ ∧ 1+X₄ ≤ 0 ∧ 1+X₃+X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₂+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 2+X₀+X₄ ≤ 0 ∧ X₃ ≤ 0 ∧ 1+X₂+X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 1+X₀+X₃ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l6

Found invariant X₅ ≤ X₁ ∧ 1+X₄ ≤ 0 ∧ 1+X₃+X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₂+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 2+X₀+X₄ ≤ 0 ∧ X₃ ≤ 0 ∧ 1+X₂+X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 1+X₀+X₃ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location l7

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ for location l5

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l8

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₀ for location l1

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ for location l4

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l9

Found invariant X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₂ 2⋅X₄+2⋅X₅+4 {O(n)}

TWN-Loops:

entry: t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₄, X₅, X₂, X₃, X₄, X₅)
results in twn-loop: twn:Inv: [X₅ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1+X₁ ≤ X₀] , (X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀+999,X₁+1000,X₂,X₃,X₄,X₅) :|: X₁ < X₀
order: [X₀; X₁; X₄; X₅]
closed-form:
X₀: X₀ + [[n != 0]] * 999 * n^1
X₁: X₁ + [[n != 0]] * 1000 * n^1
X₄: X₄
X₅: X₅

Termination: true
Formula:

1 < 0
∨ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: X₁ < X₀
alphas_abs: X₁+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}

relevant size-bounds w.r.t. t₁:
X₀: X₄ {O(n)}
X₁: X₅ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₄+2⋅X₅+4 {O(n)}

2⋅X₄+2⋅X₅+4 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₄ 2⋅X₄+2⋅X₅+4 {O(n)}

relevant size-bounds w.r.t. t₁:
X₀: X₄ {O(n)}
X₁: X₅ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₄+2⋅X₅+4 {O(n)}

2⋅X₄+2⋅X₅+4 {O(n)}

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l6

Found invariant X₅ ≤ X₁ ∧ 1+X₄ ≤ 0 ∧ 1+X₃+X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₂+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 2+X₀+X₄ ≤ 0 ∧ X₃ ≤ 0 ∧ 1+X₂+X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 1+X₀+X₃ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location l7

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ for location l5

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l8

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₀ for location l1

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ for location l4

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l9

Found invariant X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₅ 4000⋅X₄+4004⋅X₅+8004 {O(n)}

TWN-Loops:

entry: t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₁, X₄, X₅) :|: X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₀
results in twn-loop: twn:Inv: [X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁] , (X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀,X₁,X₂,X₃-1,X₄,X₅) :|: 0 < X₃
order: [X₀; X₁; X₃; X₄; X₅]
closed-form:
X₀: X₀
X₁: X₁
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄
X₅: X₅

Termination: true
Formula:

1 < 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}

relevant size-bounds w.r.t. t₃:
X₃: 2000⋅X₄+2002⋅X₅+4000 {O(n)}
Runtime-bound of t₃: 1 {O(1)}
Results in: 4000⋅X₄+4004⋅X₅+8004 {O(n)}

4000⋅X₄+4004⋅X₅+8004 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₇ 4000⋅X₄+4004⋅X₅+8004 {O(n)}

relevant size-bounds w.r.t. t₃:
X₃: 2000⋅X₄+2002⋅X₅+4000 {O(n)}
Runtime-bound of t₃: 1 {O(1)}
Results in: 4000⋅X₄+4004⋅X₅+8004 {O(n)}

4000⋅X₄+4004⋅X₅+8004 {O(n)}

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l6

Found invariant X₅ ≤ X₁ ∧ 1+X₄ ≤ 0 ∧ 1+X₃+X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₂+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 2+X₀+X₄ ≤ 0 ∧ X₃ ≤ 0 ∧ 1+X₂+X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 1+X₀+X₃ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location l7

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ for location l5

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l8

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₀ for location l1

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ for location l4

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l9

Found invariant X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₈ 7992⋅X₅+8000⋅X₄+15988 {O(n)}

TWN-Loops:

entry: t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₃ ≤ 0 ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁
results in twn-loop: twn:Inv: [X₅ ≤ X₁ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ 0 ∧ 1+X₃+X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₂+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 2+X₀+X₄ ≤ 0 ∧ X₃ ≤ 0 ∧ 1+X₂+X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 1+X₀+X₃ ≤ 0 ∧ 1+X₂ ≤ 0 ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0] , (X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀,X₁,X₂+1,X₃,X₄,X₅) :|: X₂ < 0
order: [X₀; X₁; X₂; X₃; X₄; X₅]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂ + [[n != 0]] * n^1
X₃: X₃
X₄: X₄
X₅: X₅

Termination: true
Formula:

1 < 0
∨ X₂ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: X₂ < 0
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}

relevant size-bounds w.r.t. t₆:
X₂: 3996⋅X₅+4000⋅X₄+7992 {O(n)}
Runtime-bound of t₆: 1 {O(1)}
Results in: 7992⋅X₅+8000⋅X₄+15988 {O(n)}

7992⋅X₅+8000⋅X₄+15988 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₁₀ 7992⋅X₅+8000⋅X₄+15988 {O(n)}

relevant size-bounds w.r.t. t₆:
X₂: 3996⋅X₅+4000⋅X₄+7992 {O(n)}
Runtime-bound of t₆: 1 {O(1)}
Results in: 7992⋅X₅+8000⋅X₄+15988 {O(n)}

7992⋅X₅+8000⋅X₄+15988 {O(n)}

All Bounds

Timebounds

Overall timebound:23996⋅X₅+24004⋅X₄+47998 {O(n)}
t₀: 1 {O(1)}
t₂: 2⋅X₄+2⋅X₅+4 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 2⋅X₄+2⋅X₅+4 {O(n)}
t₅: 4000⋅X₄+4004⋅X₅+8004 {O(n)}
t₆: 1 {O(1)}
t₇: 4000⋅X₄+4004⋅X₅+8004 {O(n)}
t₈: 7992⋅X₅+8000⋅X₄+15988 {O(n)}
t₉: 1 {O(1)}
t₁₀: 7992⋅X₅+8000⋅X₄+15988 {O(n)}
t₁₁: 1 {O(1)}

Costbounds

Overall costbound: 23996⋅X₅+24004⋅X₄+47998 {O(n)}
t₀: 1 {O(1)}
t₂: 2⋅X₄+2⋅X₅+4 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 2⋅X₄+2⋅X₅+4 {O(n)}
t₅: 4000⋅X₄+4004⋅X₅+8004 {O(n)}
t₆: 1 {O(1)}
t₇: 4000⋅X₄+4004⋅X₅+8004 {O(n)}
t₈: 7992⋅X₅+8000⋅X₄+15988 {O(n)}
t₉: 1 {O(1)}
t₁₀: 7992⋅X₅+8000⋅X₄+15988 {O(n)}
t₁₁: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₂, X₀: 1998⋅X₅+1999⋅X₄+3996 {O(n)}
t₂, X₁: 2000⋅X₄+2001⋅X₅+4000 {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₃, X₀: 1998⋅X₅+2000⋅X₄+3996 {O(n)}
t₃, X₁: 2000⋅X₄+2002⋅X₅+4000 {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2000⋅X₄+2002⋅X₅+4000 {O(n)}
t₃, X₄: 2⋅X₄ {O(n)}
t₃, X₅: 2⋅X₅ {O(n)}
t₁, X₀: X₄ {O(n)}
t₁, X₁: X₅ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₄, X₀: 1998⋅X₅+1999⋅X₄+3996 {O(n)}
t₄, X₁: 2000⋅X₄+2001⋅X₅+4000 {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₅, X₀: 1998⋅X₅+2000⋅X₄+3996 {O(n)}
t₅, X₁: 2000⋅X₄+2002⋅X₅+4000 {O(n)}
t₅, X₂: 2⋅X₂ {O(n)}
t₅, X₃: 2000⋅X₄+2002⋅X₅+4000 {O(n)}
t₅, X₄: 2⋅X₄ {O(n)}
t₅, X₅: 2⋅X₅ {O(n)}
t₆, X₀: 3996⋅X₅+4000⋅X₄+7992 {O(n)}
t₆, X₁: 4000⋅X₄+4004⋅X₅+8000 {O(n)}
t₆, X₂: 3996⋅X₅+4000⋅X₄+7992 {O(n)}
t₆, X₃: 4000⋅X₄+4004⋅X₅+8000 {O(n)}
t₆, X₄: 4⋅X₄ {O(n)}
t₆, X₅: 4⋅X₅ {O(n)}
t₇, X₀: 1998⋅X₅+2000⋅X₄+3996 {O(n)}
t₇, X₁: 2000⋅X₄+2002⋅X₅+4000 {O(n)}
t₇, X₂: 2⋅X₂ {O(n)}
t₇, X₃: 2000⋅X₄+2002⋅X₅+4000 {O(n)}
t₇, X₄: 2⋅X₄ {O(n)}
t₇, X₅: 2⋅X₅ {O(n)}
t₈, X₀: 3996⋅X₅+4000⋅X₄+7992 {O(n)}
t₈, X₁: 4000⋅X₄+4004⋅X₅+8000 {O(n)}
t₈, X₂: 3996⋅X₅+4000⋅X₄+7992 {O(n)}
t₈, X₃: 4000⋅X₄+4004⋅X₅+8000 {O(n)}
t₈, X₄: 4⋅X₄ {O(n)}
t₈, X₅: 4⋅X₅ {O(n)}
t₉, X₀: 7992⋅X₅+8000⋅X₄+15984 {O(n)}
t₉, X₁: 8000⋅X₄+8008⋅X₅+16000 {O(n)}
t₉, X₂: 7992⋅X₅+8000⋅X₄+15984 {O(n)}
t₉, X₃: 8000⋅X₄+8008⋅X₅+16000 {O(n)}
t₉, X₄: 8⋅X₄ {O(n)}
t₉, X₅: 8⋅X₅ {O(n)}
t₁₀, X₀: 3996⋅X₅+4000⋅X₄+7992 {O(n)}
t₁₀, X₁: 4000⋅X₄+4004⋅X₅+8000 {O(n)}
t₁₀, X₂: 3996⋅X₅+4000⋅X₄+7992 {O(n)}
t₁₀, X₃: 4000⋅X₄+4004⋅X₅+8000 {O(n)}
t₁₀, X₄: 4⋅X₄ {O(n)}
t₁₀, X₅: 4⋅X₅ {O(n)}
t₁₁, X₀: 7992⋅X₅+8000⋅X₄+15984 {O(n)}
t₁₁, X₁: 8000⋅X₄+8008⋅X₅+16000 {O(n)}
t₁₁, X₂: 7992⋅X₅+8000⋅X₄+15984 {O(n)}
t₁₁, X₃: 8000⋅X₄+8008⋅X₅+16000 {O(n)}
t₁₁, X₄: 8⋅X₄ {O(n)}
t₁₁, X₅: 8⋅X₅ {O(n)}