Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₄: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₁ < X₀
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁
t₆: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)
t₁: l3(X₀, X₁, X₂, X₃) → l1(X₃, X₁, X₂, X₃) :|: 0 < X₂
t₂: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₅: l4(X₀, X₁, X₂, X₃) → l1(X₀+X₂, X₁, X₂, X₃)
Found invariant X₃ ≤ X₀ ∧ 1 ≤ X₂ for location l1
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ for location l4
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₄: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₁ < X₀ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂
t₆: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)
t₁: l3(X₀, X₁, X₂, X₃) → l1(X₃, X₁, X₂, X₃) :|: 0 < X₂
t₂: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₅: l4(X₀, X₁, X₂, X₃) → l1(X₀+X₂, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁
Found invariant X₃ ≤ X₀ ∧ 1 ≤ X₂ for location l1
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ for location l4
Termination: true
Formula:
relevant size-bounds w.r.t. t₁:
X₀: X₃ {O(n)}
X₁: X₁ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₁+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₁:
X₀: X₃ {O(n)}
X₁: X₁ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₁+2⋅X₃+4 {O(n)}
Overall timebound:4⋅X₁+4⋅X₃+13 {O(n)}
t₀: 1 {O(1)}
t₃: 2⋅X₁+2⋅X₃+4 {O(n)}
t₄: 1 {O(1)}
t₆: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: 2⋅X₁+2⋅X₃+4 {O(n)}
Overall costbound: 4⋅X₁+4⋅X₃+13 {O(n)}
t₀: 1 {O(1)}
t₃: 2⋅X₁+2⋅X₃+4 {O(n)}
t₄: 1 {O(1)}
t₆: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: 2⋅X₁+2⋅X₃+4 {O(n)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₃, X₀: 2⋅X₁⋅X₂+2⋅X₂⋅X₃+5⋅X₂+X₃ {O(n^2)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₄, X₀: 2⋅X₁⋅X₂+2⋅X₂⋅X₃+2⋅X₃+5⋅X₂ {O(n^2)}
t₄, X₁: 2⋅X₁ {O(n)}
t₄, X₂: 2⋅X₂ {O(n)}
t₄, X₃: 2⋅X₃ {O(n)}
t₆, X₀: 2⋅X₁⋅X₂+2⋅X₂⋅X₃+2⋅X₃+5⋅X₂+X₀ {O(n^2)}
t₆, X₁: 3⋅X₁ {O(n)}
t₆, X₂: 3⋅X₂ {O(n)}
t₆, X₃: 3⋅X₃ {O(n)}
t₁, X₀: X₃ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₅, X₀: 2⋅X₁⋅X₂+2⋅X₂⋅X₃+5⋅X₂+X₃ {O(n^2)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}