Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ < X₁
t₃: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ < X₀
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ < X₀
t₆: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₀ ≤ X₁
t₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ < X₀
t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₁
t₉: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)
Preprocessing
Cut unsatisfiable transition t₆: l3→l1
Cut unsatisfiable transition t₇: l3→l1
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5
Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ for location l1
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4
Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₃: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₉: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5
Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ for location l1
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4
Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ for location l3
Time-Bound by TWN-Loops:
TWN-Loops: t₂ 4⋅X₂+4⋅X₃+6 {O(n)}
TWN-Loops:
entry: t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
results in twn-loop: twn:Inv: [X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀] , (X₀,X₁,X₂,X₃) -> (X₀+1,X₁,X₂,X₃) :|: X₀ < X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ X₁
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁
X₂: X₂
X₃: X₃
Termination: true
Formula:
1 < 0
∨ 1 < 0 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₀ ≤ X₁
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₀ < X₁
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
relevant size-bounds w.r.t. t₁:
X₀: X₂ {O(n)}
X₁: X₃ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 4⋅X₂+4⋅X₃+6 {O(n)}
4⋅X₂+4⋅X₃+6 {O(n)}
Time-Bound by TWN-Loops:
TWN-Loops: t₈ 4⋅X₂+4⋅X₃+6 {O(n)}
relevant size-bounds w.r.t. t₁:
X₀: X₂ {O(n)}
X₁: X₃ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 4⋅X₂+4⋅X₃+6 {O(n)}
4⋅X₂+4⋅X₃+6 {O(n)}
Found invariant 1 ≤ 0 for location l5
Found invariant 1 ≤ 0 for location l1
Found invariant 1 ≤ 0 for location l4
Found invariant 1 ≤ 0 for location l3
Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5
Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1
Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4
Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l3
Time-Bound by TWN-Loops:
TWN-Loops: t₃ 40⋅X₂⋅X₂+40⋅X₃⋅X₃+80⋅X₂⋅X₃+126⋅X₂+126⋅X₃+100 {O(n^2)}
TWN-Loops:
entry: t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
results in twn-loop: twn:Inv: [X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀] , (X₀,X₁,X₂,X₃) -> (X₀,X₁+1,X₂,X₃) :|: X₁ < X₀ ∧ X₁ < X₀ ∧ X₁ < X₀
entry: t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
results in twn-loop: twn:Inv: [X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀] , (X₀,X₁,X₂,X₃) -> (X₀,X₁+1,X₂,X₃) :|: X₁ < X₀ ∧ X₁ < X₀ ∧ X₁ < X₀
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: X₂
X₃: X₃
Termination: true
Formula:
1 < 0
∨ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₁ < X₀
alphas_abs: X₁+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
relevant size-bounds w.r.t. t₈:
X₀: 4⋅X₃+5⋅X₂+6 {O(n)}
X₁: X₃ {O(n)}
Runtime-bound of t₈: 4⋅X₂+4⋅X₃+6 {O(n)}
Results in: 40⋅X₂⋅X₂+40⋅X₃⋅X₃+80⋅X₂⋅X₃+124⋅X₂+124⋅X₃+96 {O(n^2)}
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: X₂
X₃: X₃
Termination: true
Formula:
1 < 0
∨ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₁ < X₀
alphas_abs: X₁+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
relevant size-bounds w.r.t. t₁:
X₀: X₂ {O(n)}
X₁: X₃ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₂+2⋅X₃+4 {O(n)}
40⋅X₂⋅X₂+40⋅X₃⋅X₃+80⋅X₂⋅X₃+126⋅X₂+126⋅X₃+100 {O(n^2)}
Time-Bound by TWN-Loops:
TWN-Loops: t₅ 40⋅X₂⋅X₂+40⋅X₃⋅X₃+80⋅X₂⋅X₃+126⋅X₂+126⋅X₃+100 {O(n^2)}
relevant size-bounds w.r.t. t₈:
X₀: 4⋅X₃+5⋅X₂+6 {O(n)}
X₁: X₃ {O(n)}
Runtime-bound of t₈: 4⋅X₂+4⋅X₃+6 {O(n)}
Results in: 40⋅X₂⋅X₂+40⋅X₃⋅X₃+80⋅X₂⋅X₃+124⋅X₂+124⋅X₃+96 {O(n^2)}
relevant size-bounds w.r.t. t₁:
X₀: X₂ {O(n)}
X₁: X₃ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₂+2⋅X₃+4 {O(n)}
40⋅X₂⋅X₂+40⋅X₃⋅X₃+80⋅X₂⋅X₃+126⋅X₂+126⋅X₃+100 {O(n^2)}
Analysing control-flow refined program
Cut unsatisfiable transition t₁₅₄: n_l1___3→n_l3___2
Cut unsatisfiable transition t₁₅₅: n_l1___6→n_l3___4
Cut unreachable locations [n_l3___2; n_l3___4] from the program graph
Found invariant X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ for location n_l1___6
Found invariant X₃ ≤ X₁ ∧ 2+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___5
Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l1___3
Found invariant X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l3___8
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5
Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4
Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___1
Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___7
Found invariant X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ for location n_l1___6
Found invariant X₃ ≤ X₁ ∧ 2+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___5
Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l1___3
Found invariant X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l3___8
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5
Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4
Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___1
Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___7
Time-Bound by TWN-Loops:
TWN-Loops: t₁₅₃ 2⋅X₂+6⋅X₃+11 {O(n)}
TWN-Loops:
entry: t₁₆₃: n_l3___7(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀
results in twn-loop: twn:Inv: [1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀] , (X₀,X₁,X₂,X₃) -> (X₀,X₁+1,X₂,X₃) :|: X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: X₂
X₃: X₃
Termination: true
Formula:
0 < 1 ∧ 1 < 0 ∧ X₂ < X₀
∨ 0 < 1 ∧ 1 < 0 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
∨ 0 < 1 ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₀
∨ 0 < 1 ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
∨ X₃ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ X₂ < X₀
∨ X₃ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
∨ X₃ < X₁ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₀
∨ X₃ < X₁ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 < 0 ∧ X₂ < X₀
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 < 0 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₁ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
Stabilization-Threshold for: X₃ ≤ X₁
alphas_abs: X₁+X₃
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₃+2 {O(n)}
Stabilization-Threshold for: X₁ < X₀
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
relevant size-bounds w.r.t. t₁₆₃:
X₀: X₂ {O(n)}
X₁: X₃+1 {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₁₆₃: 1 {O(1)}
Results in: 2⋅X₂+6⋅X₃+11 {O(n)}
2⋅X₂+6⋅X₃+11 {O(n)}
Time-Bound by TWN-Loops:
TWN-Loops: t₁₅₉ 2⋅X₂+6⋅X₃+11 {O(n)}
relevant size-bounds w.r.t. t₁₆₃:
X₀: X₂ {O(n)}
X₁: X₃+1 {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₁₆₃: 1 {O(1)}
Results in: 2⋅X₂+6⋅X₃+11 {O(n)}
2⋅X₂+6⋅X₃+11 {O(n)}
Found invariant X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ for location n_l1___6
Found invariant X₃ ≤ X₁ ∧ 2+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___5
Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l1___3
Found invariant X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l3___8
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5
Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4
Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___1
Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___7
Time-Bound by TWN-Loops:
TWN-Loops: t₁₅₆ 14⋅X₂+6⋅X₃+27 {O(n)}
TWN-Loops:
entry: t₁₆₄: n_l3___8(X₀, X₁, X₂, X₃) → n_l1___6(X₀+1, X₁, X₂, X₃) :|: X₀ < X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₀ ≤ X₁
results in twn-loop: twn:Inv: [X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁] , (X₀,X₁,X₂,X₃) -> (X₀+1,X₁,X₂,X₃) :|: X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₀ < X₁ ∧ 1+X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁
X₂: X₂
X₃: X₃
Termination: true
Formula:
X₃ < X₁ ∧ 0 < 1 ∧ 1 < 0
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ < X₁ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ < X₁ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ < X₁ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ < X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 < 1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 < 1 ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₀ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ X₀ < 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀
Stabilization-Threshold for: X₀ ≤ X₁
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₂ ≤ X₀
alphas_abs: X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+2 {O(n)}
Stabilization-Threshold for: 1+X₂ ≤ X₀
alphas_abs: 1+X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}
Stabilization-Threshold for: X₀ < X₁
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₀ ≤ 1+X₁
alphas_abs: 1+X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+4 {O(n)}
relevant size-bounds w.r.t. t₁₆₄:
X₀: X₂+1 {O(n)}
X₁: X₃ {O(n)}
X₂: X₂ {O(n)}
Runtime-bound of t₁₆₄: 1 {O(1)}
Results in: 14⋅X₂+6⋅X₃+27 {O(n)}
14⋅X₂+6⋅X₃+27 {O(n)}
Time-Bound by TWN-Loops:
TWN-Loops: t₁₆₂ 14⋅X₂+6⋅X₃+27 {O(n)}
relevant size-bounds w.r.t. t₁₆₄:
X₀: X₂+1 {O(n)}
X₁: X₃ {O(n)}
X₂: X₂ {O(n)}
Runtime-bound of t₁₆₄: 1 {O(1)}
Results in: 14⋅X₂+6⋅X₃+27 {O(n)}
14⋅X₂+6⋅X₃+27 {O(n)}
CFR: Improvement to new bound with the following program:
new bound:
24⋅X₃+32⋅X₂+76 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l4, l5, n_l1___3, n_l1___6, n_l3___1, n_l3___5, n_l3___7, n_l3___8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
t₁₅₇: l1(X₀, X₁, X₂, X₃) → n_l3___7(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
t₁₅₈: l1(X₀, X₁, X₂, X₃) → n_l3___8(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₉: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
t₁₇₅: n_l1___3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀
t₁₅₃: n_l1___3(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀
t₁₇₆: n_l1___6(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁
t₁₅₆: n_l1___6(X₀, X₁, X₂, X₃) → n_l3___5(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁
t₁₅₉: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀
t₁₆₂: n_l3___5(X₀, X₁, X₂, X₃) → n_l1___6(X₀+1, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₀ < X₁ ∧ 1+X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁
t₁₆₃: n_l3___7(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀
t₁₆₄: n_l3___8(X₀, X₁, X₂, X₃) → n_l1___6(X₀+1, X₁, X₂, X₃) :|: X₀ < X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₀ ≤ X₁
All Bounds
Timebounds
Overall timebound:24⋅X₃+32⋅X₂+86 {O(n)}
t₀: 1 {O(1)}
t₄: 1 {O(1)}
t₁₅₇: 1 {O(1)}
t₁₅₈: 1 {O(1)}
t₁: 1 {O(1)}
t₉: 1 {O(1)}
t₁₅₃: 2⋅X₂+6⋅X₃+11 {O(n)}
t₁₇₅: 1 {O(1)}
t₁₅₆: 14⋅X₂+6⋅X₃+27 {O(n)}
t₁₇₆: 1 {O(1)}
t₁₅₉: 2⋅X₂+6⋅X₃+11 {O(n)}
t₁₆₂: 14⋅X₂+6⋅X₃+27 {O(n)}
t₁₆₃: 1 {O(1)}
t₁₆₄: 1 {O(1)}
Costbounds
Overall costbound: 24⋅X₃+32⋅X₂+86 {O(n)}
t₀: 1 {O(1)}
t₄: 1 {O(1)}
t₁₅₇: 1 {O(1)}
t₁₅₈: 1 {O(1)}
t₁: 1 {O(1)}
t₉: 1 {O(1)}
t₁₅₃: 2⋅X₂+6⋅X₃+11 {O(n)}
t₁₇₅: 1 {O(1)}
t₁₅₆: 14⋅X₂+6⋅X₃+27 {O(n)}
t₁₇₆: 1 {O(1)}
t₁₅₉: 2⋅X₂+6⋅X₃+11 {O(n)}
t₁₆₂: 14⋅X₂+6⋅X₃+27 {O(n)}
t₁₆₃: 1 {O(1)}
t₁₆₄: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₄, X₀: X₂ {O(n)}
t₄, X₁: X₃ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₁₅₇, X₀: X₂ {O(n)}
t₁₅₇, X₁: X₃ {O(n)}
t₁₅₇, X₂: X₂ {O(n)}
t₁₅₇, X₃: X₃ {O(n)}
t₁₅₈, X₀: X₂ {O(n)}
t₁₅₈, X₁: X₃ {O(n)}
t₁₅₈, X₂: X₂ {O(n)}
t₁₅₈, X₃: X₃ {O(n)}
t₁, X₀: X₂ {O(n)}
t₁, X₁: X₃ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₉, X₀: 19⋅X₂+6⋅X₃+29 {O(n)}
t₉, X₁: 11⋅X₃+2⋅X₂+13 {O(n)}
t₉, X₂: 5⋅X₂ {O(n)}
t₉, X₃: 5⋅X₃ {O(n)}
t₁₅₃, X₀: X₂ {O(n)}
t₁₅₃, X₁: 2⋅X₂+7⋅X₃+12 {O(n)}
t₁₅₃, X₂: X₂ {O(n)}
t₁₅₃, X₃: X₃ {O(n)}
t₁₇₅, X₀: 2⋅X₂ {O(n)}
t₁₇₅, X₁: 2⋅X₂+8⋅X₃+13 {O(n)}
t₁₇₅, X₂: 2⋅X₂ {O(n)}
t₁₇₅, X₃: 2⋅X₃ {O(n)}
t₁₅₆, X₀: 15⋅X₂+6⋅X₃+28 {O(n)}
t₁₅₆, X₁: X₃ {O(n)}
t₁₅₆, X₂: X₂ {O(n)}
t₁₅₆, X₃: X₃ {O(n)}
t₁₇₆, X₀: 16⋅X₂+6⋅X₃+29 {O(n)}
t₁₇₆, X₁: 2⋅X₃ {O(n)}
t₁₇₆, X₂: 2⋅X₂ {O(n)}
t₁₇₆, X₃: 2⋅X₃ {O(n)}
t₁₅₉, X₀: X₂ {O(n)}
t₁₅₉, X₁: 2⋅X₂+7⋅X₃+12 {O(n)}
t₁₅₉, X₂: X₂ {O(n)}
t₁₅₉, X₃: X₃ {O(n)}
t₁₆₂, X₀: 15⋅X₂+6⋅X₃+28 {O(n)}
t₁₆₂, X₁: X₃ {O(n)}
t₁₆₂, X₂: X₂ {O(n)}
t₁₆₂, X₃: X₃ {O(n)}
t₁₆₃, X₀: X₂ {O(n)}
t₁₆₃, X₁: X₃+1 {O(n)}
t₁₆₃, X₂: X₂ {O(n)}
t₁₆₃, X₃: X₃ {O(n)}
t₁₆₄, X₀: X₂+1 {O(n)}
t₁₆₄, X₁: X₃ {O(n)}
t₁₆₄, X₂: X₂ {O(n)}
t₁₆₄, X₃: X₃ {O(n)}