Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ < X₀
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₄: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁+1, X₂, X₃)
t₅: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)

Preprocessing

Found invariant X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l5

Found invariant X₃ ≤ X₁ ∧ X₀ ≤ X₂ for location l1

Found invariant X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l4

Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₄: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁+1, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀
t₅: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁

Found invariant X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l5

Found invariant X₃ ≤ X₁ ∧ X₀ ≤ X₂ for location l1

Found invariant X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ for location l4

Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l3

Time-Bound by TWN-Loops:

TWN-Loops: t₂ 2⋅X₂+2⋅X₃+4 {O(n)}

TWN-Loops:

entry: t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
results in twn-loop: twn:Inv: [X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀] , (X₀,X₁,X₂,X₃) -> (X₀-1,X₁+1,X₂,X₃) :|: X₁ < X₀
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀ + [[n != 0]] * -1 * n^1
X₁: X₁ + [[n != 0]] * n^1
X₂: X₂
X₃: X₃

Termination: true
Formula:

2 < 0
∨ 2 < 0 ∧ 1+X₁ < X₀ ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 2 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ 1+X₁
∨ X₁ < X₀ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 2 < 0
∨ X₁ < X₀ ∧ 1+X₁ < X₀ ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₁ < X₀ ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ 1+X₁

Stabilization-Threshold for: X₁ < X₀
alphas_abs: X₁+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}

relevant size-bounds w.r.t. t₁:
X₀: X₂ {O(n)}
X₁: X₃ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₂+2⋅X₃+4 {O(n)}

2⋅X₂+2⋅X₃+4 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₄ 2⋅X₂+2⋅X₃+4 {O(n)}

relevant size-bounds w.r.t. t₁:
X₀: X₂ {O(n)}
X₁: X₃ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₂+2⋅X₃+4 {O(n)}

2⋅X₂+2⋅X₃+4 {O(n)}

All Bounds

Timebounds

Overall timebound:4⋅X₂+4⋅X₃+12 {O(n)}
t₀: 1 {O(1)}
t₂: 2⋅X₂+2⋅X₃+4 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 2⋅X₂+2⋅X₃+4 {O(n)}
t₅: 1 {O(1)}

Costbounds

Overall costbound: 4⋅X₂+4⋅X₃+12 {O(n)}
t₀: 1 {O(1)}
t₂: 2⋅X₂+2⋅X₃+4 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 2⋅X₂+2⋅X₃+4 {O(n)}
t₅: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₂, X₀: 2⋅X₃+3⋅X₂+4 {O(n)}
t₂, X₁: 2⋅X₂+3⋅X₃+4 {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₃, X₀: 2⋅X₃+4⋅X₂+4 {O(n)}
t₃, X₁: 2⋅X₂+4⋅X₃+4 {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₁, X₀: X₂ {O(n)}
t₁, X₁: X₃ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₄, X₀: 2⋅X₃+3⋅X₂+4 {O(n)}
t₄, X₁: 2⋅X₂+3⋅X₃+4 {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₅, X₀: 2⋅X₃+4⋅X₂+4 {O(n)}
t₅, X₁: 2⋅X₂+4⋅X₃+4 {O(n)}
t₅, X₂: 2⋅X₂ {O(n)}
t₅, X₃: 2⋅X₃ {O(n)}