Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 0 < X₀
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ 0
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, 0, X₂, X₃)
t₄: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, 0, X₂, X₃) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 10 ∧ 10 ≤ X₀
t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, 1, X₂, X₃) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ < 10
t₆: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, 1, X₂, X₃) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 10 < X₀
t₇: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, 0, X₂, X₃) :|: X₀ < 1 ∧ X₀ ≤ 10 ∧ 10 ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, 0, X₂, X₃) :|: 1 < X₀ ∧ X₀ ≤ 10 ∧ 10 ≤ X₀
t₉: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: X₀ < 1 ∧ X₀ < 10 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
t₁₀: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: X₀ < 1 ∧ 10 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
t₁₁: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: 1 < X₀ ∧ X₀ < 10 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
t₁₂: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: 1 < X₀ ∧ 10 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
t₁₃: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: X₀ < 1 ∧ X₀ < 10 ∧ X₁ < 1
t₁₄: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: X₀ < 1 ∧ X₀ < 10 ∧ 1 < X₁
t₁₅: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: X₀ < 1 ∧ 10 < X₀ ∧ X₁ < 1
t₁₆: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: X₀ < 1 ∧ 10 < X₀ ∧ 1 < X₁
t₁₇: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 1 < X₀ ∧ X₀ < 10 ∧ X₁ < 1
t₁₈: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 1 < X₀ ∧ X₀ < 10 ∧ 1 < X₁
t₁₉: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 1 < X₀ ∧ 10 < X₀ ∧ X₁ < 1
t₂₀: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 1 < X₀ ∧ 10 < X₀ ∧ 1 < X₁
t₂₁: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)

Preprocessing

Cut unsatisfiable transition t₄: l3→l1

Cut unsatisfiable transition t₆: l3→l1

Cut unsatisfiable transition t₇: l3→l1

Cut unsatisfiable transition t₉: l3→l1

Cut unsatisfiable transition t₁₀: l3→l1

Cut unsatisfiable transition t₁₃: l3→l1

Cut unsatisfiable transition t₁₄: l3→l1

Cut unsatisfiable transition t₁₅: l3→l1

Cut unsatisfiable transition t₁₆: l3→l1

Eliminate variables {X₃} that do not contribute to the problem

Found invariant X₁ ≤ 1 ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l5

Found invariant X₁ ≤ 1 ∧ 0 ≤ X₁ for location l1

Found invariant X₁ ≤ 1 ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l4

Found invariant X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

Cut unsatisfiable transition t₅₉: l3→l1

Cut unsatisfiable transition t₆₁: l3→l1

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₅₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₅₁: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: 0 < X₀ ∧ X₁ ≤ 1 ∧ 0 ≤ X₁
t₅₂: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₀ ≤ 0 ∧ X₁ ≤ 1 ∧ 0 ≤ X₁
t₅₃: l2(X₀, X₁, X₂) → l1(X₂, 0, X₂)
t₅₄: l3(X₀, X₁, X₂) → l1(X₀+1, 1, X₂) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ < 10 ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅₅: l3(X₀, X₁, X₂) → l1(X₀-1, 0, X₂) :|: 1 < X₀ ∧ X₀ ≤ 10 ∧ 10 ≤ X₀ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅₆: l3(X₀, X₁, X₂) → l1(X₀+1, X₁, X₂) :|: 1 < X₀ ∧ X₀ < 10 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅₇: l3(X₀, X₁, X₂) → l1(X₀+1, X₁, X₂) :|: 1 < X₀ ∧ 10 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅₈: l3(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 1 < X₀ ∧ X₀ < 10 ∧ X₁ < 1 ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₀: l3(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 1 < X₀ ∧ 10 < X₀ ∧ X₁ < 1 ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₂: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ 1 ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0

Analysing control-flow refined program

Found invariant X₁ ≤ 1 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 11 ∧ 1 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 10 ∧ 4 ≤ X₀ for location n_l1___9

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location n_l1___11

Found invariant X₁ ≤ 0 ∧ 8+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 8 ≤ X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 8 ∧ 8 ≤ X₀ for location n_l1___4

Found invariant X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___17

Found invariant X₁ ≤ 1 ∧ 11+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 12 ≤ X₀ for location n_l1___7

Found invariant X₁ ≤ 0 ∧ 8+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 8 ≤ X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 8 ∧ 8 ≤ X₀ for location n_l3___3

Found invariant X₁ ≤ 0 ∧ 9+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 9 ∧ 9 ≤ X₀ for location n_l3___5

Found invariant X₁ ≤ 1 ∧ 11+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 12 ≤ X₀ for location n_l3___6

Found invariant 11 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 11+X₁ ≤ X₂ ∧ 21 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 10+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ 10 ≤ X₀ for location n_l1___13

Found invariant X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location n_l3___12

Found invariant X₁ ≤ 1 ∧ 3+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l3___8

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l5

Found invariant X₁ ≤ 0 ∧ 9+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 9 ∧ 9 ≤ X₀ for location n_l1___15

Found invariant X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location n_l1___16

Found invariant X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 9 ∧ 1 ≤ X₀ for location n_l3___2

Found invariant X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ for location l1

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l4

Found invariant X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 8 ∧ 1 ≤ X₀ for location n_l1___14

Found invariant 11 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 11+X₁ ≤ X₂ ∧ 21 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 10+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ 10 ≤ X₀ for location n_l3___1

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location n_l3___10

Cut unsatisfiable transition t₅₁₉: n_l3___1→n_l1___14

Cut unsatisfiable transition t₅₃₃: n_l3___8→n_l1___7

Cut unreachable locations [n_l1___7; n_l3___6] from the program graph

Found invariant X₁ ≤ 1 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 11 ∧ 1 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 10 ∧ 4 ≤ X₀ for location n_l1___9

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location n_l1___11

Found invariant X₁ ≤ 0 ∧ 8+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 8 ≤ X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 8 ∧ 8 ≤ X₀ for location n_l1___4

Found invariant X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___17

Found invariant X₁ ≤ 0 ∧ 8+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 8 ≤ X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 8 ∧ 8 ≤ X₀ for location n_l3___3

Found invariant X₁ ≤ 0 ∧ 9+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 9 ∧ 9 ≤ X₀ for location n_l3___5

Found invariant 11 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 11+X₁ ≤ X₂ ∧ 21 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 10+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ 10 ≤ X₀ for location n_l1___13

Found invariant X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location n_l3___12

Found invariant X₁ ≤ 1 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 11 ∧ 1 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 10 ∧ 4 ≤ X₀ for location n_l3___8

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l5

Found invariant X₁ ≤ 0 ∧ 9+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 9 ∧ 9 ≤ X₀ for location n_l1___15

Found invariant X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location n_l1___16

Found invariant X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 8 ∧ 1 ≤ X₀ for location n_l3___2

Found invariant X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ for location l1

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l4

Found invariant X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 8 ∧ 1 ≤ X₀ for location n_l1___14

Found invariant 11 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 11+X₁ ≤ X₂ ∧ 21 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 10+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ 10 ≤ X₀ for location n_l3___1

Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location n_l3___10

Time-Bound by TWN-Loops:

TWN-Loops: t₅₁₀ 8⋅X₂+37 {O(n)}

TWN-Loops:

entry: t₅₂₃: n_l3___17(X₀, X₁, X₂) → n_l1___13(X₀-1, X₁, X₂) :|: 0 < X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 10 < X₀ ∧ X₁ < 1 ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
results in twn-loop: twn:Inv: [11 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 11+X₁ ≤ X₂ ∧ 21 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 10+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ 10 ≤ X₀ ∧ 11 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 11+X₁ ≤ X₂ ∧ 21 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 10+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ 10 ≤ X₀] , (X₀,X₁,X₂) -> (X₀-1,X₁,X₂) :|: X₁ ≤ 1 ∧ 0 ≤ X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ X₁ < 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₀ ∧ X₁ < 1 ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 10 < X₀ ∧ X₁ < 1
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀ + [[n != 0]] * -1 * n^1
X₁: X₁
X₂: X₂

Termination: true
Formula:

0 < X₁ ∧ X₁ < 1 ∧ 1 < 0
∨ 0 < X₁ ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 0 < X₁ ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 0 < X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ < 1 ∧ 0 < X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 0 < X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 1 ∧ 0 < X₁ ∧ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 0 < X₁ ∧ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 0 < X₁ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 1 ∧ 1 < 0
∨ 0 < X₁ ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < X₁ ∧ 1 < X₀ ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 0 < X₁ ∧ 1 < X₀ ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < X₁ ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < X₁ ∧ 1 < X₀ ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 0 < X₁ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ < 1 ∧ 0 < X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 0 < X₁ ∧ 1 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 0 < X₁ ∧ 1 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 1 ∧ 1 < 0
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ < 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 1 ∧ 1 < 0
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ < 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 1 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 10 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 1 ∧ 1 < 0
∨ 10 < X₀ ∧ 0 < X₁ ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 10 < X₀ ∧ 0 < X₁ ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 10 < X₀ ∧ 0 < X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 10 < X₀ ∧ 0 < X₁ ∧ 1 < 0 ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 < X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 < X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 < X₁ ∧ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 < X₁ ∧ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 10 < X₀ ∧ 0 < X₁ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 1 ∧ 1 < 0
∨ 10 < X₀ ∧ 0 < X₁ ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 10 < X₀ ∧ 0 < X₁ ∧ 1 < X₀ ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 10 < X₀ ∧ 0 < X₁ ∧ 1 < X₀ ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 10 < X₀ ∧ 0 < X₁ ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 10 < X₀ ∧ 0 < X₁ ∧ 1 < X₀ ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 < X₁ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 < X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 < X₁ ∧ 1 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 < X₁ ∧ 1 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 < X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 < X₁ ∧ 1 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 10 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 1 ∧ 1 < 0
∨ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 1 ∧ 1 < 0
∨ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ X₁ < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ X₁ < 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < 1 ∧ 10 < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₀ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1

Stabilization-Threshold for: 10 < X₀
alphas_abs: 10+X₀
M: 0
N: 1
Bound: 2⋅X₀+22 {O(n)}
Stabilization-Threshold for: 1 < X₀
alphas_abs: 1+X₀
M: 0
N: 1
Bound: 2⋅X₀+4 {O(n)}
Stabilization-Threshold for: 0 < X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 1+X₀
M: 0
N: 1
Bound: 2⋅X₀+4 {O(n)}

relevant size-bounds w.r.t. t₅₂₃:
X₀: X₂ {O(n)}
Runtime-bound of t₅₂₃: 1 {O(1)}
Results in: 8⋅X₂+37 {O(n)}

8⋅X₂+37 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₅₁₈ 8⋅X₂+37 {O(n)}

relevant size-bounds w.r.t. t₅₂₃:
X₀: X₂ {O(n)}
Runtime-bound of t₅₂₃: 1 {O(1)}
Results in: 8⋅X₂+37 {O(n)}

8⋅X₂+37 {O(n)}

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₅₀: 1 {O(1)}
t₅₁: inf {Infinity}
t₅₂: 1 {O(1)}
t₅₃: 1 {O(1)}
t₅₄: inf {Infinity}
t₅₅: inf {Infinity}
t₅₆: inf {Infinity}
t₅₇: inf {Infinity}
t₅₈: inf {Infinity}
t₆₀: inf {Infinity}
t₆₂: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₅₀: 1 {O(1)}
t₅₁: inf {Infinity}
t₅₂: 1 {O(1)}
t₅₃: 1 {O(1)}
t₅₄: inf {Infinity}
t₅₅: inf {Infinity}
t₅₆: inf {Infinity}
t₅₇: inf {Infinity}
t₅₈: inf {Infinity}
t₆₀: inf {Infinity}
t₆₂: 1 {O(1)}

Sizebounds

t₅₀, X₀: X₀ {O(n)}
t₅₀, X₁: X₁ {O(n)}
t₅₀, X₂: X₂ {O(n)}
t₅₁, X₁: 1 {O(1)}
t₅₁, X₂: X₂ {O(n)}
t₅₂, X₀: X₂ {O(n)}
t₅₂, X₁: 1 {O(1)}
t₅₂, X₂: X₂ {O(n)}
t₅₃, X₀: X₂ {O(n)}
t₅₃, X₁: 0 {O(1)}
t₅₃, X₂: X₂ {O(n)}
t₅₄, X₀: 2 {O(1)}
t₅₄, X₁: 1 {O(1)}
t₅₄, X₂: X₂ {O(n)}
t₅₅, X₀: 9 {O(1)}
t₅₅, X₁: 0 {O(1)}
t₅₅, X₂: X₂ {O(n)}
t₅₆, X₀: 10 {O(1)}
t₅₆, X₁: 1 {O(1)}
t₅₆, X₂: X₂ {O(n)}
t₅₇, X₁: 1 {O(1)}
t₅₇, X₂: X₂ {O(n)}
t₅₈, X₀: 8 {O(1)}
t₅₈, X₁: 0 {O(1)}
t₅₈, X₂: X₂ {O(n)}
t₆₀, X₁: 0 {O(1)}
t₆₀, X₂: X₂ {O(n)}
t₆₂, X₀: X₂ {O(n)}
t₆₂, X₁: 1 {O(1)}
t₆₂, X₂: X₂ {O(n)}