Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 0 ≤ X₀
t₃: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ < 0 ∧ X₁ < 0
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 0 ≤ X₀ ∧ 0 ≤ X₀
t₆: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: 0 ≤ X₀ ∧ X₀ < 0
t₇: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁-1, X₂, X₃) :|: X₀ < 0 ∧ 0 ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: X₀ < 0 ∧ X₀ < 0
t₉: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)

Preprocessing

Cut unsatisfiable transition t₆: l3→l1

Cut unsatisfiable transition t₇: l3→l1

Found invariant X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location l5

Found invariant X₁ ≤ X₃ ∧ X₀ ≤ X₂ for location l1

Found invariant X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location l4

Found invariant X₁ ≤ X₃ ∧ X₀ ≤ X₂ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 0 ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ < 0 ∧ X₁ < 0 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂
t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: X₀ < 0 ∧ X₀ < 0 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂
t₉: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0

Analysing control-flow refined program

Cut unsatisfiable transition t₂₄₅: n_l1___6→l4

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ 1+X₀ for location n_l1___6

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l3___4

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₀ for location n_l1___9

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ for location n_l3___3

Found invariant 0 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l1___2

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ for location n_l3___11

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ for location n_l3___8

Found invariant X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location l5

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ for location n_l1___5

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1

Found invariant X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location l4

Found invariant 1 ≤ X₃ ∧ 2+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___1

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ for location n_l3___10

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ 1+X₀ for location n_l3___7

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ 1+X₀ for location n_l1___6

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l3___4

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₀ for location n_l1___9

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ for location n_l3___3

Found invariant 0 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l1___2

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ for location n_l3___11

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ for location n_l3___8

Found invariant X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location l5

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ for location n_l1___5

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1

Found invariant X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location l4

Found invariant 1 ≤ X₃ ∧ 2+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___1

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ for location n_l3___10

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ 1+X₀ for location n_l3___7

Time-Bound by TWN-Loops:

TWN-Loops: t₂₁₈ 6⋅X₃+12 {O(n)}

TWN-Loops:

entry: t₂₂₅: n_l3___10(X₀, X₁, X₂, X₃) → n_l1___2(X₀, X₁-1, X₂, X₃) :|: 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ < 0 ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁
results in twn-loop: twn:Inv: [0 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ 1 ≤ X₃ ∧ 2+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0] , (X₀,X₁,X₂,X₃) -> (X₀,X₁-1,X₂,X₃) :|: X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ < 0 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ < 0
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂
X₃: X₃

Termination: true
Formula:

X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0

Stabilization-Threshold for: X₁ ≤ X₃
alphas_abs: X₁+X₃
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}

relevant size-bounds w.r.t. t₂₂₅:
X₁: X₃+1 {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₂₂₅: 1 {O(1)}
Results in: 6⋅X₃+12 {O(n)}

6⋅X₃+12 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₂₂₄ 6⋅X₃+12 {O(n)}

relevant size-bounds w.r.t. t₂₂₅:
X₁: X₃+1 {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₂₂₅: 1 {O(1)}
Results in: 6⋅X₃+12 {O(n)}

6⋅X₃+12 {O(n)}

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ 1+X₀ for location n_l1___6

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l3___4

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₀ for location n_l1___9

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ for location n_l3___3

Found invariant 0 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l1___2

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ for location n_l3___11

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ for location n_l3___8

Found invariant X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location l5

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ for location n_l1___5

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1

Found invariant X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location l4

Found invariant 1 ≤ X₃ ∧ 2+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___1

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ for location n_l3___10

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ 1+X₀ for location n_l3___7

Time-Bound by TWN-Loops:

TWN-Loops: t₂₂₃ 12⋅X₂+23 {O(n)}

TWN-Loops:

entry: t₂₂₇: n_l3___11(X₀, X₁, X₂, X₃) → n_l1___9(X₀-1, X₁, X₂, X₃) :|: 0 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀
results in twn-loop: twn:Inv: [X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀] , (X₀,X₁,X₂,X₃) -> (X₀-1,X₁,X₂,X₃) :|: X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀ + [[n != 0]] * -1 * n^1
X₁: X₁
X₂: X₂
X₃: X₃

Termination: true
Formula:

X₁ < X₃ ∧ 0 < 1 ∧ 1 < 0
∨ X₁ < X₃ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₃ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 < 1 ∧ X₁ < X₃ ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ X₁ < X₃ ∧ 1 < 0 ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ < X₃ ∧ 1 < 0 ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ 0 < 1 ∧ X₁ < X₃ ∧ 1 < 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ < X₃ ∧ 1 < 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₁ < X₃ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₁ < X₃ ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₃ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < 1 ∧ 1 < 0
∨ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ < X₃ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 1 < 0 ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 1 < 0 ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 1 < 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 1 < 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1 < 0 ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1 < 0 ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1 < 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1 < 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 < 0
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 0 < 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0

Stabilization-Threshold for: X₀ ≤ X₂
alphas_abs: X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: 1+X₀ ≤ X₂
alphas_abs: 1+X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}
Stabilization-Threshold for: 0 ≤ 1+X₀
alphas_abs: 1+X₀
M: 0
N: 1
Bound: 2⋅X₀+4 {O(n)}

relevant size-bounds w.r.t. t₂₂₇:
X₀: X₂+1 {O(n)}
X₂: X₂ {O(n)}
Runtime-bound of t₂₂₇: 1 {O(1)}
Results in: 12⋅X₂+23 {O(n)}

12⋅X₂+23 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₂₃₂ 12⋅X₂+23 {O(n)}

relevant size-bounds w.r.t. t₂₂₇:
X₀: X₂+1 {O(n)}
X₂: X₂ {O(n)}
Runtime-bound of t₂₂₇: 1 {O(1)}
Results in: 12⋅X₂+23 {O(n)}

12⋅X₂+23 {O(n)}

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ 1+X₀ for location n_l1___6

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l3___4

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₀ for location n_l1___9

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ for location n_l3___3

Found invariant 0 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l1___2

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ for location n_l3___11

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ for location n_l3___8

Found invariant X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location l5

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ for location n_l1___5

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1

Found invariant X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location l4

Found invariant 1 ≤ X₃ ∧ 2+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___1

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ for location n_l3___10

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ 1+X₀ for location n_l3___7

Time-Bound by TWN-Loops:

TWN-Loops: t₂₁₉ 36⋅X₃+18 {O(n)}

TWN-Loops:

entry: t₂₃₀: n_l3___7(X₀, X₁, X₂, X₃) → n_l1___5(X₀, X₁-1, X₂, X₃) :|: X₁ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ < 0 ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ 1+X₀
results in twn-loop: twn:Inv: [0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀] , (X₀,X₁,X₂,X₃) -> (X₀,X₁-1,X₂,X₃) :|: X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ < 0 ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ < 0
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂
X₃: X₃

Termination: true
Formula:

X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ < X₂ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 < 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < 1+X₀ ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 < 1+X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ < X₂
∨ X₀ < 0 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1+X₀ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀

Stabilization-Threshold for: X₁ ≤ X₃
alphas_abs: X₁+X₃
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}

relevant size-bounds w.r.t. t₂₃₀:
X₁: 6⋅X₃+2 {O(n)}
X₃: 6⋅X₃ {O(n)}
Runtime-bound of t₂₃₀: 1 {O(1)}
Results in: 36⋅X₃+18 {O(n)}

36⋅X₃+18 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₂₂₈ 36⋅X₃+18 {O(n)}

relevant size-bounds w.r.t. t₂₃₀:
X₁: 6⋅X₃+2 {O(n)}
X₃: 6⋅X₃ {O(n)}
Runtime-bound of t₂₃₀: 1 {O(1)}
Results in: 36⋅X₃+18 {O(n)}

36⋅X₃+18 {O(n)}

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₂: inf {Infinity}
t₃: inf {Infinity}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₅: inf {Infinity}
t₈: inf {Infinity}
t₉: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₂: inf {Infinity}
t₃: inf {Infinity}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₅: inf {Infinity}
t₈: inf {Infinity}
t₉: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₂, X₀: 2⋅X₂+1 {O(n)}
t₂, X₂: 2⋅X₂ {O(n)}
t₂, X₃: 2⋅X₃ {O(n)}
t₃, X₀: 2⋅X₂+1 {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₄, X₀: 5⋅X₂+2 {O(n)}
t₄, X₂: 5⋅X₂ {O(n)}
t₄, X₃: 5⋅X₃ {O(n)}
t₁, X₀: X₂ {O(n)}
t₁, X₁: X₃ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₅, X₀: 2⋅X₂+1 {O(n)}
t₅, X₂: 2⋅X₂ {O(n)}
t₅, X₃: 2⋅X₃ {O(n)}
t₈, X₀: 2⋅X₂+1 {O(n)}
t₈, X₂: 2⋅X₂ {O(n)}
t₈, X₃: 2⋅X₃ {O(n)}
t₉, X₀: 5⋅X₂+2 {O(n)}
t₉, X₂: 5⋅X₂ {O(n)}
t₉, X₃: 5⋅X₃ {O(n)}