Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₅: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0
t₆: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: 0 < X₁ ∧ X₁ < X₃
t₁₀: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)
t₃: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₂, X₂, X₃) :|: 0 < X₂ ∧ X₂ < X₃
t₁: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₂: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂
t₇: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₈: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: X₀ < 1
t₉: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: 1 < X₀
Preprocessing
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₅: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₆: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: 0 < X₁ ∧ X₁ < X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₀: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)
t₃: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₂, X₂, X₃) :|: 0 < X₂ ∧ X₂ < X₃
t₁: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₂: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂
t₇: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₈: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: X₀ < 1 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₉: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: 1 < X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
Analysing control-flow refined program
Cut unsatisfiable transition t₅: l1→l2
Cut unsatisfiable transition t₆: l1→l2
Cut unsatisfiable transition t₂₂₀: n_l1___4→l2
Cut unsatisfiable transition t₂₂₁: n_l1___5→l2
Cut unsatisfiable transition t₂₁₉: n_l1___6→l2
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___4
Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___3
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___2
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l4___1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___5
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l4___7
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___4
Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___3
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___2
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l4___1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___5
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l4___7
Time-Bound by TWN-Loops:
TWN-Loops: t₁₉₅ 4⋅X₃+8⋅X₂+15 {O(n)}
TWN-Loops:
entry: t₂₀₂: n_l4___7(X₀, X₁, X₂, X₃) → n_l1___4(X₀, X₁-1, X₂, X₃) :|: X₁ < X₃ ∧ 0 < X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 < X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
results in twn-loop: twn:Inv: [2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀] , (X₀,X₁,X₂,X₃) -> (X₀,X₁-1,X₂,X₃) :|: X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 < X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 < X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂
X₃: X₃
Termination: true
Formula:
1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 < X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
Stabilization-Threshold for: 1+X₁ ≤ X₃
alphas_abs: 1+X₁+X₃
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₃+4 {O(n)}
Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 0 < X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₁ < X₃
alphas_abs: X₁+X₃
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₃+2 {O(n)}
relevant size-bounds w.r.t. t₂₀₂:
X₁: X₂ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₂₀₂: 1 {O(1)}
Results in: 4⋅X₃+8⋅X₂+15 {O(n)}
4⋅X₃+8⋅X₂+15 {O(n)}
Time-Bound by TWN-Loops:
TWN-Loops: t₁₉₉ 4⋅X₃+8⋅X₂+15 {O(n)}
relevant size-bounds w.r.t. t₂₀₂:
X₁: X₂ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₂₀₂: 1 {O(1)}
Results in: 4⋅X₃+8⋅X₂+15 {O(n)}
4⋅X₃+8⋅X₂+15 {O(n)}
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___4
Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___3
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___2
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l4___1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___5
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l4___7
Time-Bound by TWN-Loops:
TWN-Loops: t₁₉₆ 4⋅X₃+8⋅X₂+15 {O(n)}
TWN-Loops:
entry: t₂₀₃: n_l4___7(X₀, X₁, X₂, X₃) → n_l1___5(X₀, X₁-1, X₂, X₃) :|: X₁ < X₃ ∧ 0 < X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₀ < 1 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
results in twn-loop: twn:Inv: [2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0] , (X₀,X₁,X₂,X₃) -> (X₀,X₁-1,X₂,X₃) :|: X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₃ ∧ X₀ < 1 ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₀ < 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₀ < 1
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₂: X₂
X₃: X₃
Termination: true
Formula:
X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 0 < 1 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ < X₃ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ < X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ < X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < 0 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 < X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₂ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 < 0 ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0
Stabilization-Threshold for: 1+X₁ ≤ X₃
alphas_abs: 1+X₁+X₃
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₃+4 {O(n)}
Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 0 < X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₁ < X₃
alphas_abs: X₁+X₃
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₃+2 {O(n)}
relevant size-bounds w.r.t. t₂₀₃:
X₁: X₂ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₂₀₃: 1 {O(1)}
Results in: 4⋅X₃+8⋅X₂+15 {O(n)}
4⋅X₃+8⋅X₂+15 {O(n)}
Time-Bound by TWN-Loops:
TWN-Loops: t₂₀₀ 4⋅X₃+8⋅X₂+15 {O(n)}
relevant size-bounds w.r.t. t₂₀₃:
X₁: X₂ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₂₀₃: 1 {O(1)}
Results in: 4⋅X₃+8⋅X₂+15 {O(n)}
4⋅X₃+8⋅X₂+15 {O(n)}
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___4
Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___3
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___2
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l4___1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___5
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l4___7
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___4
Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___3
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___2
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l4___1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___5
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l4___7
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___4
Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___3
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___2
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l4___1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___5
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l4___7
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___6
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___4
Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l4___3
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___2
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l4___1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l1___5
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l1
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l4___7
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₄: inf {Infinity}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₇: inf {Infinity}
t₈: inf {Infinity}
t₉: inf {Infinity}
Costbounds
Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₄: inf {Infinity}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₇: inf {Infinity}
t₈: inf {Infinity}
t₉: inf {Infinity}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₄, X₀: X₀+1 {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₅, X₀: 2⋅X₀+2 {O(n)}
t₅, X₁: 0 {O(1)}
t₅, X₂: 2⋅X₂ {O(n)}
t₅, X₃: 2⋅X₃ {O(n)}
t₆, X₀: 1 {O(1)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₁₀, X₀: 4⋅X₀+3 {O(n)}
t₁₀, X₂: 5⋅X₂ {O(n)}
t₁₀, X₃: 5⋅X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₂ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₇, X₀: 1 {O(1)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₈, X₀: X₀+1 {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₉, X₀: X₀+1 {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}