Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4
Transitions:
t₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l1(X₀, X₁, X₂-1) :|: 2 < X₂
t₃: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₂ ≤ 2
t₁: l2(X₀, X₁, X₂) → l1(X₀, X₁, X₁)
t₄: l3(X₀, X₁, X₂) → l4(X₀, X₁, X₂)
Eliminate variables {X₀} that do not contribute to the problem
Found invariant X₂ ≤ X₁ for location l1
Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ for location l4
Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ for location l3
Start: l0
Program_Vars: X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4
Transitions:
t₁₀: l0(X₁, X₂) → l2(X₁, X₂)
t₁₁: l1(X₁, X₂) → l1(X₁, X₂-1) :|: 2 < X₂ ∧ X₂ ≤ X₁
t₁₂: l1(X₁, X₂) → l3(X₁, X₂) :|: X₂ ≤ 2 ∧ X₂ ≤ X₁
t₁₃: l2(X₁, X₂) → l1(X₁, X₁)
t₁₄: l3(X₁, X₂) → l4(X₁, X₂) :|: X₂ ≤ 2 ∧ X₂ ≤ X₁
Found invariant X₂ ≤ X₁ for location l1
Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ for location l4
Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ for location l3
Termination: true
Formula:
relevant size-bounds w.r.t. t₁₃:
X₂: X₁ {O(n)}
Runtime-bound of t₁₃: 1 {O(1)}
Results in: 2⋅X₁+4 {O(n)}
Overall timebound:2⋅X₁+8 {O(n)}
t₁₀: 1 {O(1)}
t₁₁: 2⋅X₁+4 {O(n)}
t₁₂: 1 {O(1)}
t₁₃: 1 {O(1)}
t₁₄: 1 {O(1)}
Overall costbound: 2⋅X₁+8 {O(n)}
t₁₀: 1 {O(1)}
t₁₁: 2⋅X₁+4 {O(n)}
t₁₂: 1 {O(1)}
t₁₃: 1 {O(1)}
t₁₄: 1 {O(1)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₁ {O(n)}
t₁₂, X₁: 2⋅X₁ {O(n)}
t₁₂, X₂: 2⋅X₁ {O(n)}
t₁₃, X₁: X₁ {O(n)}
t₁₃, X₂: X₁ {O(n)}
t₁₄, X₁: 2⋅X₁ {O(n)}
t₁₄, X₂: 2⋅X₁ {O(n)}