Initial Problem

Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁) → l2(X₀, X₁)
t₂: l1(X₀, X₁) → l3(X₀, X₁) :|: X₀ < 0
t₃: l1(X₀, X₁) → l4(X₀, X₁) :|: 0 ≤ X₀
t₁: l2(X₀, X₁) → l1(X₁, X₁)
t₄: l3(X₀, X₁) → l1(X₀+1, X₁) :|: X₀+5 < 0
t₅: l3(X₀, X₁) → l1(X₀+1, X₁) :|: 0 < 5+X₀
t₆: l3(X₀, X₁) → l1(X₀, X₁) :|: X₀+5 ≤ 0 ∧ 0 ≤ 5+X₀
t₇: l4(X₀, X₁) → l5(X₀, X₁)

Preprocessing

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l5

Found invariant X₁ ≤ X₀ for location l1

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l4

Found invariant 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁) → l2(X₀, X₁)
t₂: l1(X₀, X₁) → l3(X₀, X₁) :|: X₀ < 0 ∧ X₁ ≤ X₀
t₃: l1(X₀, X₁) → l4(X₀, X₁) :|: 0 ≤ X₀ ∧ X₁ ≤ X₀
t₁: l2(X₀, X₁) → l1(X₁, X₁)
t₄: l3(X₀, X₁) → l1(X₀+1, X₁) :|: X₀+5 < 0 ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0
t₅: l3(X₀, X₁) → l1(X₀+1, X₁) :|: 0 < 5+X₀ ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0
t₆: l3(X₀, X₁) → l1(X₀, X₁) :|: X₀+5 ≤ 0 ∧ 0 ≤ 5+X₀ ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0
t₇: l4(X₀, X₁) → l5(X₀, X₁) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀

Analysing control-flow refined program

Cut unsatisfiable transition t₁₉₉: n_l1___10→l4

Cut unsatisfiable transition t₂₀₀: n_l1___5→l4

Cut unsatisfiable transition t₂₀₂: n_l1___8→l4

Found invariant 1 ≤ 0 for location n_l1___6

Found invariant 1 ≤ 0 for location n_l3___4

Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 3+X₀ for location n_l1___9

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l3___3

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 for location n_l1___10

Found invariant 5+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 10+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l1___8

Found invariant 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___11

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l1___5

Found invariant 2+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 3+X₀ for location n_l3___2

Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l1

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ 0 ≤ X₀ for location l4

Found invariant 5+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 10+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l3___1

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 for location n_l3___7

Cut unsatisfiable transition t₁₇₇: n_l1___6→n_l3___4

Cut unsatisfiable transition t₂₀₁: n_l1___6→l4

Cut unsatisfiable transition t₁₈₆: n_l3___4→n_l1___6

Cut unsatisfiable transition t₁₈₉: n_l3___7→n_l1___6

Cut unreachable locations [n_l1___6; n_l3___4] from the program graph

Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 3+X₀ for location n_l1___9

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l3___3

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 for location n_l1___10

Found invariant 5+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 10+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l1___8

Found invariant 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___11

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l1___5

Found invariant 2+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 3+X₀ for location n_l3___2

Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l1

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ 0 ≤ X₀ for location l4

Found invariant 5+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 10+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l3___1

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 for location n_l3___7

Time-Bound by TWN-Loops:

TWN-Loops: t₁₇₄ 10⋅X₁+11 {O(n)}

TWN-Loops:

entry: t₁₈₁: n_l3___11(X₀, X₁) → n_l1___10(X₀+1, X₁) :|: X₀ < 0 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 5+X₀ < 0 ∧ X₁ ≤ X₀ ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
results in twn-loop: twn:Inv: [6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 ∧ 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0] , (X₀,X₁) -> (X₀+1,X₁) :|: X₁ ≤ X₀ ∧ X₀ < 0 ∧ 1+X₀ ≤ 0 ∧ 5+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀ < 0 ∧ 1+X₀ ≤ 0 ∧ X₁ ≤ X₀ ∧ 5+X₁ ≤ 0 ∧ 5+X₀ < 0 ∧ X₁ ≤ X₀
order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁

Termination: true
Formula:

0 < 1 ∧ 5+X₁ < 0 ∧ 1 < 0
∨ 0 < 1 ∧ 5+X₁ < 0 ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 5+X₁ < 0 ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 5+X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 < 0
∨ 0 < 1 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 5+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 5+X₁ < 0 ∧ 1 < 0
∨ 0 < 1 ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < 1 ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 5+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 < 0
∨ 0 < 1 ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < 1 ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 5+X₁ < 0 ∧ 1 < 0
∨ X₁ < X₀ ∧ 5+X₁ < 0 ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 5+X₁ < 0 ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < X₀ ∧ 1 < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 5+X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 < 0
∨ X₁ < X₀ ∧ 1 < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 < 0
∨ X₁ < X₀ ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < X₀ ∧ 1 < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 < 0
∨ X₁ < X₀ ∧ 1 < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 5+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 5+X₁ < 0 ∧ 1 < 0
∨ X₁ < X₀ ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < X₀ ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 < 0
∨ X₁ < X₀ ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 5+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 < 0
∨ X₁ < X₀ ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ < X₀ ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ < X₀ ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 < 0
∨ X₁ < X₀ ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₁ < 0 ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₁ < 0 ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₁ < 0 ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 5+X₁ < 0 ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₀ < 0 ∧ 5+X₁ < 0 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ < 0 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 1 < 0
∨ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 5+X₀ < 0 ∧ 5+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: X₁ ≤ X₀
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 5+X₀ < 0
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: 1+X₀ ≤ 0
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: X₀ < 0
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}

relevant size-bounds w.r.t. t₁₈₁:
X₀: X₁ {O(n)}
X₁: X₁ {O(n)}
Runtime-bound of t₁₈₁: 1 {O(1)}
Results in: 10⋅X₁+11 {O(n)}

10⋅X₁+11 {O(n)}

Time-Bound by TWN-Loops:

TWN-Loops: t₁₈₇ 10⋅X₁+11 {O(n)}

relevant size-bounds w.r.t. t₁₈₁:
X₀: X₁ {O(n)}
X₁: X₁ {O(n)}
Runtime-bound of t₁₈₁: 1 {O(1)}
Results in: 10⋅X₁+11 {O(n)}

10⋅X₁+11 {O(n)}

Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 3+X₀ for location n_l1___9

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l3___3

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 for location n_l1___10

Found invariant 5+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 10+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l1___8

Found invariant 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___11

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l1___5

Found invariant 2+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 3+X₀ for location n_l3___2

Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l1

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ 0 ≤ X₀ for location l4

Found invariant 5+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 10+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l3___1

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 for location n_l3___7

Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 3+X₀ for location n_l1___9

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l3___3

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 for location n_l1___10

Found invariant 5+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 10+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l1___8

Found invariant 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___11

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l1___5

Found invariant 2+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 3+X₀ for location n_l3___2

Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l1

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ 0 ≤ X₀ for location l4

Found invariant 5+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 10+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l3___1

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 for location n_l3___7

Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 3+X₀ for location n_l1___9

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l3___3

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 for location n_l1___10

Found invariant 5+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 10+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l1___8

Found invariant 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___11

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l1___5

Found invariant 2+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 3+X₀ for location n_l3___2

Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l1

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ 0 ≤ X₀ for location l4

Found invariant 5+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 10+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ 5+X₀ ≤ 0 ∧ 0 ≤ 5+X₀ for location n_l3___1

Found invariant 6+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 11+X₀+X₁ ≤ 0 ∧ 5+X₀ ≤ 0 for location n_l3___7

Time-Bound by TWN-Loops:

TWN-Loops: t₁₇₉ 54 {O(1)}

TWN-Loops:

entry: t₁₈₃: n_l3___11(X₀, X₁) → n_l1___9(X₀+1, X₁) :|: X₀ < 0 ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ 0 ∧ 0 < 5+X₀ ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
results in twn-loop: twn:Inv: [1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 3+X₀ ∧ 2+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 3+X₀] , (X₀,X₁) -> (X₀+1,X₁) :|: X₁ ≤ X₀ ∧ 0 < 5+X₀ ∧ X₁ ≤ X₀ ∧ X₀ < 0 ∧ X₀ < 0 ∧ 0 < 5+X₀ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ 0 ∧ 0 < 5+X₀
order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁

Termination: true
Formula:

0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ X₁ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ X₁ < X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ < 0 ∧ 0 < 1 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1+X₀ < 0 ∧ X₁ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1+X₀ < 0 ∧ X₁ < X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1+X₀ < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 < 0
∨ 0 < 1 ∧ 1+X₀ < 0 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 0 < 1 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₁ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₁ < X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 < 0
∨ 0 < 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 5+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 0 < 5+X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 5+X₀ ∧ X₁ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 5+X₀ ∧ 1 < 0 ∧ X₁ < X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 5+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 < 0
∨ 0 < 5+X₀ ∧ 1 < 0 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 5+X₀ ∧ 1+X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 0 < 5+X₀ ∧ 1+X₀ < 0 ∧ 0 < 1 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 5+X₀ ∧ 1+X₀ < 0 ∧ X₁ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 5+X₀ ∧ 1+X₀ < 0 ∧ X₁ < X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 5+X₀ ∧ 1+X₀ < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 < 0
∨ 0 < 5+X₀ ∧ 1+X₀ < 0 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 0 < 1 ∧ 1 < 0
∨ 0 < 5+X₀ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 0 < 1 ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 5+X₀ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₁ < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 5+X₀ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₁ < X₀ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 5+X₀ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 < 0
∨ 0 < 5+X₀ ∧ 1+X₀ ≤ 0 ∧ 0 ≤ 1+X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < 5+X₀
alphas_abs: 5+X₀
M: 0
N: 1
Bound: 2⋅X₀+12 {O(n)}
Stabilization-Threshold for: 1+X₀ ≤ 0
alphas_abs: 1+X₀
M: 0
N: 1
Bound: 2⋅X₀+4 {O(n)}
Stabilization-Threshold for: X₁ ≤ X₀
alphas_abs: X₀+X₁
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₀ < 0
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}

relevant size-bounds w.r.t. t₁₈₃:
X₀: 3 {O(1)}
X₁: 4 {O(1)}
Runtime-bound of t₁₈₃: 1 {O(1)}
Results in: 54 {O(1)}

54 {O(1)}

Time-Bound by TWN-Loops:

TWN-Loops: t₁₈₄ 54 {O(1)}

relevant size-bounds w.r.t. t₁₈₃:
X₀: 3 {O(1)}
X₁: 4 {O(1)}
Runtime-bound of t₁₈₃: 1 {O(1)}
Results in: 54 {O(1)}

54 {O(1)}

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₂: inf {Infinity}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: inf {Infinity}
t₅: inf {Infinity}
t₆: inf {Infinity}
t₇: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₂: inf {Infinity}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: inf {Infinity}
t₅: inf {Infinity}
t₆: inf {Infinity}
t₇: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₂, X₀: X₁+8 {O(n)}
t₂, X₁: X₁ {O(n)}
t₃, X₀: X₁+3 {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₁, X₀: X₁ {O(n)}
t₁, X₁: X₁ {O(n)}
t₄, X₀: X₁+8 {O(n)}
t₄, X₁: X₁ {O(n)}
t₅, X₀: 3 {O(1)}
t₅, X₁: X₁ {O(n)}
t₆, X₀: 5 {O(1)}
t₆, X₁: X₁ {O(n)}
t₇, X₀: X₁+3 {O(n)}
t₇, X₁: 2⋅X₁ {O(n)}