Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ < X₃
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₀, X₂, X₃) :|: X₃ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₁, X₂, X₃)
t₄: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃)
t₅: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: 2 < X₁
t₆: l4(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ 2
t₇: l5(X₀, X₁, X₂, X₃) → l4(X₀, X₁-3, X₂, X₃)
t₈: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
Found invariant X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ for location l6
Found invariant X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ for location l7
Found invariant X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5
Found invariant X₂ ≤ X₀ for location l1
Found invariant X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ for location l4
Found invariant 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location l3
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ < X₃ ∧ X₂ ≤ X₀
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₀, X₂, X₃) :|: X₃ ≤ X₀ ∧ X₂ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₁, X₂, X₃)
t₄: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀
t₅: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: 2 < X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀
t₆: l4(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀
t₇: l5(X₀, X₁, X₂, X₃) → l4(X₀, X₁-3, X₂, X₃) :|: X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₈: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀
Found invariant X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ for location l6
Found invariant X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ for location l7
Found invariant X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5
Found invariant X₂ ≤ X₀ for location l1
Found invariant X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ for location l4
Found invariant 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location l3
Termination: true
Formula:
relevant size-bounds w.r.t. t₁:
X₀: X₂ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₁:
X₀: X₂ {O(n)}
X₃: X₃ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 2⋅X₂+2⋅X₃+4 {O(n)}
Found invariant X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ for location l6
Found invariant X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ for location l7
Found invariant X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5
Found invariant X₂ ≤ X₀ for location l1
Found invariant X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ for location l4
Found invariant 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ for location l3
Termination: true
Formula:
relevant size-bounds w.r.t. t₃:
X₁: 2⋅X₃+4⋅X₂+4 {O(n)}
Runtime-bound of t₃: 1 {O(1)}
Results in: 4⋅X₃+8⋅X₂+12 {O(n)}
relevant size-bounds w.r.t. t₃:
X₁: 2⋅X₃+4⋅X₂+4 {O(n)}
Runtime-bound of t₃: 1 {O(1)}
Results in: 4⋅X₃+8⋅X₂+12 {O(n)}
Overall timebound:12⋅X₃+20⋅X₂+37 {O(n)}
t₀: 1 {O(1)}
t₂: 2⋅X₂+2⋅X₃+4 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 2⋅X₂+2⋅X₃+4 {O(n)}
t₅: 4⋅X₃+8⋅X₂+12 {O(n)}
t₆: 1 {O(1)}
t₇: 4⋅X₃+8⋅X₂+12 {O(n)}
t₈: 1 {O(1)}
Overall costbound: 12⋅X₃+20⋅X₂+37 {O(n)}
t₀: 1 {O(1)}
t₂: 2⋅X₂+2⋅X₃+4 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 2⋅X₂+2⋅X₃+4 {O(n)}
t₅: 4⋅X₃+8⋅X₂+12 {O(n)}
t₆: 1 {O(1)}
t₇: 4⋅X₃+8⋅X₂+12 {O(n)}
t₈: 1 {O(1)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₂, X₀: 2⋅X₃+3⋅X₂+4 {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₃, X₀: 2⋅X₃+4⋅X₂+4 {O(n)}
t₃, X₁: 2⋅X₃+4⋅X₂+4 {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₁, X₀: X₂ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₄, X₀: 2⋅X₃+3⋅X₂+4 {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₅, X₀: 2⋅X₃+4⋅X₂+4 {O(n)}
t₅, X₁: 2⋅X₃+4⋅X₂+4 {O(n)}
t₅, X₂: 2⋅X₂ {O(n)}
t₅, X₃: 2⋅X₃ {O(n)}
t₆, X₀: 4⋅X₃+8⋅X₂+8 {O(n)}
t₆, X₁: 4⋅X₃+8⋅X₂+8 {O(n)}
t₆, X₂: 4⋅X₂ {O(n)}
t₆, X₃: 4⋅X₃ {O(n)}
t₇, X₀: 2⋅X₃+4⋅X₂+4 {O(n)}
t₇, X₁: 2⋅X₃+4⋅X₂+4 {O(n)}
t₇, X₂: 2⋅X₂ {O(n)}
t₇, X₃: 2⋅X₃ {O(n)}
t₈, X₀: 4⋅X₃+8⋅X₂+8 {O(n)}
t₈, X₁: 4⋅X₃+8⋅X₂+8 {O(n)}
t₈, X₂: 4⋅X₂ {O(n)}
t₈, X₃: 4⋅X₃ {O(n)}