Initial Problem
Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁) → l2(X₀, X₁)
t₂: l1(X₀, X₁) → l3(X₀, X₁) :|: 0 ≤ 5+X₀ ∧ X₀ ≤ 5
t₃: l1(X₀, X₁) → l4(X₀, X₁) :|: X₀+5 < 0
t₄: l1(X₀, X₁) → l4(X₀, X₁) :|: 5 < X₀
t₁: l2(X₀, X₁) → l1(X₁, X₁)
t₅: l3(X₀, X₁) → l1(X₀, X₁) :|: 0 < X₀ ∧ X₀ < 1
t₆: l3(X₀, X₁) → l1(X₀-1, X₁) :|: 0 < X₀ ∧ 1 ≤ X₀
t₇: l3(X₀, X₁) → l1(X₀+1, X₁) :|: X₀ ≤ 0 ∧ X₀ < 0
t₈: l3(X₀, X₁) → l1(X₀, X₁) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₉: l4(X₀, X₁) → l5(X₀, X₁)
Preprocessing
Cut unsatisfiable transition t₅: l3→l1
Found invariant X₀ ≤ 5 ∧ 0 ≤ 5+X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁) → l2(X₀, X₁)
t₂: l1(X₀, X₁) → l3(X₀, X₁) :|: 0 ≤ 5+X₀ ∧ X₀ ≤ 5
t₃: l1(X₀, X₁) → l4(X₀, X₁) :|: X₀+5 < 0
t₄: l1(X₀, X₁) → l4(X₀, X₁) :|: 5 < X₀
t₁: l2(X₀, X₁) → l1(X₁, X₁)
t₆: l3(X₀, X₁) → l1(X₀-1, X₁) :|: 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 5 ∧ 0 ≤ 5+X₀
t₇: l3(X₀, X₁) → l1(X₀+1, X₁) :|: X₀ ≤ 0 ∧ X₀ < 0 ∧ X₀ ≤ 5 ∧ 0 ≤ 5+X₀
t₈: l3(X₀, X₁) → l1(X₀, X₁) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 5 ∧ 0 ≤ 5+X₀
t₉: l4(X₀, X₁) → l5(X₀, X₁)
Analysing control-flow refined program
Found invariant X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___6
Found invariant 0 ≤ 5+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___4
Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 9+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 4+X₀ for location n_l1___7
Found invariant 0 ≤ 5+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___3
Found invariant X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 0 ≤ X₀ for location n_l3___5
Found invariant X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 0 ≤ X₀ for location n_l1___8
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5
Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 9+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 4+X₀ for location n_l3___2
Found invariant X₁ ≤ 5 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 0 ≤ 5+X₀ for location n_l3___9
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l1
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4
Found invariant X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___1
Cut unsatisfiable transition t₂₂₄: n_l3___2→n_l1___8
Found invariant X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___6
Found invariant 0 ≤ 5+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___4
Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 9+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 4+X₀ for location n_l1___7
Found invariant 0 ≤ 5+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___3
Found invariant X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 0 ≤ X₀ for location n_l3___5
Found invariant X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 0 ≤ X₀ for location n_l1___8
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5
Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 9+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 4+X₀ for location n_l3___2
Found invariant X₁ ≤ 5 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 0 ≤ 5+X₀ for location n_l3___9
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l1
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4
Found invariant X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___1
Found invariant X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___6
Found invariant 0 ≤ 5+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___4
Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 9+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 4+X₀ for location n_l1___7
Found invariant 0 ≤ 5+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___3
Found invariant X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 0 ≤ X₀ for location n_l3___5
Found invariant X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 0 ≤ X₀ for location n_l1___8
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5
Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 9+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 4+X₀ for location n_l3___2
Found invariant X₁ ≤ 5 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 0 ≤ 5+X₀ for location n_l3___9
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l1
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4
Found invariant X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___1
Time-Bound by TWN-Loops:
TWN-Loops: t₂₁₉ 52 {O(1)}
TWN-Loops:
entry: t₂₂₉: n_l3___9(X₀, X₁) → n_l1___7(X₀+1, X₁) :|: X₁ ≤ 5 ∧ 0 ≤ 5+X₁ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ 5+X₀ ∧ X₀ < 0 ∧ X₁ ≤ 5 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 0 ≤ 5+X₀
results in twn-loop: twn:Inv: [1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 9+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 4+X₀ ∧ 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 9+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 4+X₀] , (X₀,X₁) -> (X₀+1,X₁) :|: X₀ ≤ 5 ∧ 0 ≤ 5+X₀ ∧ 0 ≤ 5+X₀ ∧ X₀ ≤ 5 ∧ 0 ≤ 5+X₀ ∧ X₀ ≤ 5 ∧ X₀ ≤ 5 ∧ 0 ≤ 5+X₀ ∧ 0 ≤ 5+X₀ ∧ X₀ < 0
order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₁: X₁
Termination: true
Formula:
0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ X₀ < 5 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
∨ 0 < 5+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 5+X₀ ∧ X₀ < 5 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0 ∧ X₀ < 5 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
∨ X₀ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 0 ∧ 0 < 1 ∧ X₀ < 5 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
∨ X₀ < 0 ∧ 0 < 5+X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 0 < 5+X₀ ∧ X₀ < 5 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
∨ X₀ < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0 ∧ 1 < 0
∨ X₀ < 0 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0 ∧ X₀ < 5 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 0 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
Stabilization-Threshold for: X₀ < 0
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: 0 ≤ 5+X₀
alphas_abs: 5+X₀
M: 0
N: 1
Bound: 2⋅X₀+12 {O(n)}
Stabilization-Threshold for: X₀ ≤ 5
alphas_abs: 5+X₀
M: 0
N: 1
Bound: 2⋅X₀+12 {O(n)}
relevant size-bounds w.r.t. t₂₂₉:
X₀: 4 {O(1)}
Runtime-bound of t₂₂₉: 1 {O(1)}
Results in: 52 {O(1)}
52 {O(1)}
Time-Bound by TWN-Loops:
TWN-Loops: t₂₂₃ 52 {O(1)}
relevant size-bounds w.r.t. t₂₂₉:
X₀: 4 {O(1)}
Runtime-bound of t₂₂₉: 1 {O(1)}
Results in: 52 {O(1)}
52 {O(1)}
Found invariant X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___6
Found invariant 0 ≤ 5+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___4
Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 9+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 4+X₀ for location n_l1___7
Found invariant 0 ≤ 5+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___3
Found invariant X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 0 ≤ X₀ for location n_l3___5
Found invariant X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 0 ≤ X₀ for location n_l1___8
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5
Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 9+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 4+X₀ for location n_l3___2
Found invariant X₁ ≤ 5 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 0 ≤ 5+X₀ for location n_l3___9
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l1
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4
Found invariant X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___1
Time-Bound by TWN-Loops:
TWN-Loops: t₂₂₀ 80 {O(1)}
TWN-Loops:
entry: t₂₃₀: n_l3___9(X₀, X₁) → n_l1___8(X₀-1, X₁) :|: X₁ ≤ 5 ∧ 0 ≤ 5+X₁ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 5 ∧ X₁ ≤ 5 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 0 ≤ 5+X₀
results in twn-loop: twn:Inv: [X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 0 ≤ X₀ ∧ X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 0 ≤ X₀] , (X₀,X₁) -> (X₀-1,X₁) :|: X₀ ≤ 5 ∧ 0 ≤ 5+X₀ ∧ 0 ≤ 5+X₀ ∧ X₀ ≤ 5 ∧ 0 ≤ X₀ ∧ X₀ ≤ 4 ∧ 0 ≤ 5+X₀ ∧ X₀ ≤ 5 ∧ X₀ ≤ 4 ∧ 0 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 5
order: [X₀; X₁]
closed-form:
X₀: X₀ + [[n != 0]] * -1 * n^1
X₁: X₁
Termination: true
Formula:
0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 1 < X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 1 < 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < X₀ ∧ 1 < 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < X₀ ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 1 < X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < X₀ ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₀ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 1 < 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < X₀ ∧ 1 < 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < X₀ ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ < 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 1 < 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 1 < 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 < X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 < 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 < X₀ ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ < 4 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 < 0
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 0 < 5+X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₀ ≤ 5 ∧ 5 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ X₀ ≤ 4 ∧ 4 ≤ X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 5+X₀ ∧ 5+X₀ ≤ 0
Stabilization-Threshold for: X₀ ≤ 5
alphas_abs: 5+X₀
M: 0
N: 1
Bound: 2⋅X₀+12 {O(n)}
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₀
alphas_abs: X₀
M: 0
N: 1
Bound: 2⋅X₀+2 {O(n)}
Stabilization-Threshold for: X₀ ≤ 4
alphas_abs: 4+X₀
M: 0
N: 1
Bound: 2⋅X₀+10 {O(n)}
Stabilization-Threshold for: 0 ≤ 5+X₀
alphas_abs: 5+X₀
M: 0
N: 1
Bound: 2⋅X₀+12 {O(n)}
relevant size-bounds w.r.t. t₂₃₀:
X₀: 4 {O(1)}
Runtime-bound of t₂₃₀: 1 {O(1)}
Results in: 80 {O(1)}
80 {O(1)}
Time-Bound by TWN-Loops:
TWN-Loops: t₂₂₇ 80 {O(1)}
relevant size-bounds w.r.t. t₂₃₀:
X₀: 4 {O(1)}
Runtime-bound of t₂₃₀: 1 {O(1)}
Results in: 80 {O(1)}
80 {O(1)}
Found invariant X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___6
Found invariant X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___4
Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 9+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 4+X₀ for location n_l1___7
Found invariant X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___3
Found invariant X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 0 ≤ X₀ for location n_l3___5
Found invariant X₁ ≤ 5 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 0 ≤ X₀ for location n_l1___8
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5
Found invariant 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 9+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ 4+X₀ for location n_l3___2
Found invariant X₁ ≤ 5 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 10+X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 0 ≤ 5+X₀ for location n_l3___9
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l1
Found invariant X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4
Found invariant X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___1
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₂: inf {Infinity}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₆: inf {Infinity}
t₇: inf {Infinity}
t₈: inf {Infinity}
t₉: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₂: inf {Infinity}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁: 1 {O(1)}
t₆: inf {Infinity}
t₇: inf {Infinity}
t₈: inf {Infinity}
t₉: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₂, X₀: 5 {O(1)}
t₂, X₁: X₁ {O(n)}
t₃, X₀: X₁ {O(n)}
t₃, X₁: X₁ {O(n)}
t₄, X₀: X₁ {O(n)}
t₄, X₁: X₁ {O(n)}
t₁, X₀: X₁ {O(n)}
t₁, X₁: X₁ {O(n)}
t₆, X₀: 4 {O(1)}
t₆, X₁: X₁ {O(n)}
t₇, X₀: 4 {O(1)}
t₇, X₁: X₁ {O(n)}
t₈, X₀: 0 {O(1)}
t₈, X₁: X₁ {O(n)}
t₉, X₀: 2⋅X₁ {O(n)}
t₉, X₁: 2⋅X₁ {O(n)}