Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef.0, nondef.1, nondef.3, nondef.5, nondef.6, nondef.7, nondef.8
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, nondef.6, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(nondef.5, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ < X₁
t₃₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₀
t₃₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+1)
t₄₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+2)
t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, nondef.8, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅
t₄₃: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, nondef.7, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < X₂
t₄₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₉, X₁₀, X₁₁) :|: X₂ ≤ X₃
t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₉, X₁₀, X₁₁)
t₅₀: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₇: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ 0 ∧ 0 ≤ 1+X₇ ∧ nondef.3 ≤ 0 ∧ 0 ≤ nondef.3
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1
t₁₉: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 < 0 ∧ nondef.3 ≤ 0 ∧ 1+X₇ ≤ 2⋅nondef.3 ∧ 2⋅nondef.3 < X₇+3
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0
t₃₀: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ < X₆
t₃₁: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈
t₂₉: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+3+2⋅X₈
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁)
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁)
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁)
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
Preprocessing
Cut unsatisfiable transition t₃₁: l30→l13
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l11
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l25
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l27
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l2
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l24
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l32
Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l6
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l15
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l31
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l30
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l19
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l26
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l23
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l12
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location l17
Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l7
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l21
Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l5
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l20
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l13
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l8
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l22
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l16
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l9
Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ for location l1
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l10
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l18
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l4
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l3
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l14
Cut unsatisfiable transition t₁₇: l26→l3
Cut unsatisfiable transition t₁₉: l26→l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef.0, nondef.1, nondef.3, nondef.5, nondef.6, nondef.7, nondef.8
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₃₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, nondef.6, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(nondef.5, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ < X₁ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+1) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+2) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, nondef.8, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₄₃: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, nondef.7, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < X₂ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₉, X₁₀, X₁₁) :|: X₂ ≤ X₃ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀
t₅₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀
t₅₀: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₃₀: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ < X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₉: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
MPRF for transition t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ of depth 1:
new bound:
X₆+2 {O(n)}
MPRF:
l11 [X₆-X₉ ]
l25 [X₆-X₉ ]
l27 [X₆-X₉ ]
l26 [X₆-X₉ ]
l10 [X₆-X₉ ]
l3 [X₆-X₉ ]
l4 [X₆-X₉ ]
l1 [X₆+1-X₉ ]
l9 [X₆-X₉ ]
l2 [X₆-X₉ ]
MPRF for transition t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:
new bound:
X₆+1 {O(n)}
MPRF:
l11 [X₆-X₉ ]
l25 [X₆-X₉ ]
l27 [X₆-X₉ ]
l26 [X₆-X₉ ]
l10 [X₆-X₉ ]
l3 [X₆-X₉ ]
l4 [X₆-X₉-1 ]
l1 [X₆-X₉ ]
l9 [X₆-X₉ ]
l2 [X₆-X₉ ]
MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:
new bound:
X₆+1 {O(n)}
MPRF:
l11 [X₆-X₉ ]
l25 [X₆-X₉ ]
l27 [X₆-X₉ ]
l26 [X₆-X₉ ]
l10 [X₆-X₉ ]
l3 [X₆-X₉ ]
l4 [X₆-X₉-1 ]
l1 [X₆-X₉ ]
l9 [X₆-X₉ ]
l2 [X₆-X₉ ]
MPRF for transition t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:
new bound:
X₆+2 {O(n)}
MPRF:
l11 [X₆+1-X₉ ]
l25 [X₆+1-X₉ ]
l27 [X₆+1-X₉ ]
l26 [X₆+1-X₉ ]
l10 [X₆+1-X₉ ]
l3 [X₆+1-X₉ ]
l4 [X₆+1-X₉ ]
l1 [X₆+1-X₉ ]
l9 [X₆+1-X₉ ]
l2 [X₆+1-X₉ ]
MPRF for transition t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:
new bound:
2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
MPRF:
l1 [2⋅X₉+1 ]
l11 [X₇ ]
l25 [X₇ ]
l27 [X₇ ]
l26 [X₇ ]
l10 [X₇+2 ]
l3 [2⋅X₇+1 ]
l4 [X₇ ]
l9 [X₇ ]
l2 [X₇ ]
MPRF for transition t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:
new bound:
2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
MPRF:
l1 [2⋅X₉+1 ]
l11 [X₇+2 ]
l25 [X₇ ]
l27 [X₇ ]
l26 [X₇ ]
l10 [X₇+2 ]
l3 [2⋅X₇+1 ]
l4 [X₇ ]
l9 [X₇ ]
l2 [X₇ ]
MPRF for transition t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:
new bound:
2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
MPRF:
l1 [2⋅X₉ ]
l11 [2⋅X₇-1 ]
l25 [X₇-2 ]
l27 [X₇-2 ]
l26 [X₇-2 ]
l10 [2⋅X₇-1 ]
l3 [2⋅X₇-1 ]
l4 [X₇-1 ]
l9 [2⋅X₇-1 ]
l2 [X₇ ]
MPRF for transition t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ of depth 1:
new bound:
2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
MPRF:
l1 [2⋅X₉ ]
l11 [X₇+1 ]
l25 [X₇ ]
l27 [X₇-1 ]
l26 [X₇-1 ]
l10 [X₇+1 ]
l3 [2⋅X₇ ]
l4 [X₇ ]
l9 [X₇+1 ]
l2 [X₇+1 ]
MPRF for transition t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ of depth 1:
new bound:
2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
MPRF:
l1 [2⋅X₉ ]
l11 [2⋅X₇ ]
l25 [2⋅X₇ ]
l27 [2⋅X₇ ]
l26 [X₇+1 ]
l10 [2⋅X₇ ]
l3 [2⋅X₇ ]
l4 [0 ]
l9 [2⋅X₇ ]
l2 [2⋅X₇ ]
MPRF for transition t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ of depth 1:
new bound:
2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
MPRF:
l1 [2⋅X₉ ]
l11 [2⋅X₇ ]
l25 [2⋅X₇ ]
l27 [2⋅X₇ ]
l26 [X₇-1 ]
l10 [2⋅X₇ ]
l3 [2⋅X₇ ]
l4 [2⋅X₇ ]
l9 [2⋅X₇ ]
l2 [2⋅X₇ ]
MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:
new bound:
2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
MPRF:
l1 [2⋅X₉+1 ]
l11 [2⋅X₇ ]
l25 [2⋅X₇ ]
l27 [2⋅X₇ ]
l26 [X₇ ]
l10 [2⋅X₇ ]
l3 [2⋅X₇+1 ]
l4 [2⋅X₇ ]
l9 [2⋅X₇ ]
l2 [2⋅X₇ ]
MPRF for transition t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:
new bound:
3⋅X₆⋅X₆+13⋅X₆+14 {O(n^2)}
MPRF:
l1 [X₆+2⋅X₉ ]
l11 [X₆+X₇-2 ]
l25 [X₆+X₇-4 ]
l27 [X₆+X₇-4 ]
l26 [X₆+X₇-4 ]
l10 [X₆+X₇-2 ]
l3 [X₆+2⋅X₇-3 ]
l4 [X₆+X₇-4 ]
l9 [X₆+X₇-2 ]
l2 [X₆+X₇-4 ]
Analysing control-flow refined program
Cut unsatisfiable transition t₆: l3→l4
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l32
Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l6
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l19
Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l10___15
Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l2___12
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l12
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l11___6
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l20
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l25___3
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l22
Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ for location l1
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l18
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l4
Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l3
Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l26___9
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l14
Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l25___11
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l24
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l15
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l31
Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l27___10
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l26___1
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l30
Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l11___14
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l23
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location l17
Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l7
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l27___2
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 4 ≤ X₆+X₉ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l3___8
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l21
Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l5
Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l9___13
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l13
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l8
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l16
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l10___7
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l2___4
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l9___5
MPRF for transition t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
X₆+4 {O(n)}
MPRF:
l14 [X₆-X₁₀ ]
l12 [X₉-X₁₀ ]
l15 [X₆-X₁₀ ]
l17 [X₆-X₁₀ ]
l19 [X₆-X₁₀ ]
l20 [X₉-X₁₀ ]
l18 [X₆-X₁₀ ]
l21 [X₆-X₁₀ ]
l22 [X₉-X₁₀ ]
l24 [X₆-X₁₀ ]
l23 [X₆-X₁₀ ]
l16 [X₉-X₁₀ ]
l13 [X₉-X₁₀ ]
l31 [X₉+1-X₁₀ ]
l6 [X₆-X₁₀ ]
l7 [X₆-X₁₀ ]
l5 [X₆-X₁₀ ]
l30 [X₆-X₁₀ ]
l8 [X₉-X₁₀ ]
l32 [X₆-X₁₀ ]
MPRF for transition t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
7⋅X₆+13 {O(n)}
MPRF:
l14 [X₆-X₁₀-2 ]
l12 [X₉-X₁₀-2 ]
l15 [X₉-X₁₀-2 ]
l17 [X₆-X₁₀-2 ]
l19 [X₉-X₁₀-2 ]
l20 [X₆-X₁₀-2 ]
l18 [X₉-X₁₀-2 ]
l21 [X₆-X₁₀-2 ]
l22 [X₆-X₁₀-2 ]
l24 [X₆-X₁₀-2 ]
l23 [X₉-X₁₀-2 ]
l16 [X₆-X₁₀-2 ]
l13 [X₆-X₁₀-2 ]
l31 [4⋅X₉-3⋅X₆-X₁₀-1 ]
l6 [2⋅X₉-X₆-X₁₀-1 ]
l7 [X₆-X₁₀-1 ]
l5 [X₆-X₁₀-1 ]
l30 [X₉-X₁₀-2 ]
l8 [X₉-X₁₀-2 ]
l32 [4⋅X₉-3⋅X₆-X₁₀-2 ]
MPRF for transition t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
X₆+4 {O(n)}
MPRF:
l14 [X₉-X₁₀ ]
l12 [X₉-X₁₀ ]
l15 [X₉-X₁₀ ]
l17 [X₆-X₁₀ ]
l19 [X₉-X₁₀ ]
l20 [X₆-X₁₀ ]
l18 [X₆-X₁₀ ]
l21 [X₆-X₁₀ ]
l22 [X₆-X₁₀ ]
l24 [X₉-X₁₀ ]
l23 [X₉-X₁₀ ]
l16 [X₆-X₁₀ ]
l13 [X₉-X₁₀ ]
l31 [X₉+1-X₁₀ ]
l6 [X₉+1-X₁₀ ]
l7 [X₉-X₁₀ ]
l5 [X₉-X₁₀ ]
l30 [X₉-X₁₀ ]
l8 [X₉-X₁₀ ]
l32 [X₉-X₁₀ ]
MPRF for transition t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
X₆+4 {O(n)}
MPRF:
l14 [X₆-X₁₀-2 ]
l12 [X₆-X₁₀-2 ]
l15 [X₆-X₁₀-2 ]
l17 [X₉-X₁₀-2 ]
l19 [X₆-X₁₀-2 ]
l20 [X₉-X₁₀-2 ]
l18 [X₉-X₁₀-2 ]
l21 [X₉-X₁₀-2 ]
l22 [X₉-X₁₀-2 ]
l24 [X₆-X₁₀-2 ]
l23 [X₉-X₁₀-2 ]
l16 [X₉-X₁₀-2 ]
l13 [X₆-X₁₀-2 ]
l31 [X₉-X₁₀-1 ]
l6 [X₆-X₁₀-1 ]
l7 [X₉-X₁₀-1 ]
l5 [X₆-X₁₀-2 ]
l30 [X₆-X₁₀-2 ]
l8 [X₉-X₁₀-2 ]
l32 [X₉-X₁₀-2 ]
MPRF for transition t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
2⋅X₆⋅X₆+12⋅X₆+16 {O(n^2)}
MPRF:
l14 [1 ]
l12 [1 ]
l15 [1 ]
l17 [1 ]
l19 [1 ]
l20 [1 ]
l18 [1 ]
l21 [1 ]
l22 [1 ]
l24 [1 ]
l23 [1 ]
l16 [1 ]
l13 [1 ]
l31 [0 ]
l5 [X₆+1-X₉ ]
l6 [0 ]
l7 [2-X₉-X₁₀ ]
l30 [1 ]
l8 [X₆+1-X₉ ]
l32 [1 ]
MPRF for transition t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
3⋅X₆+4⋅X₈+6 {O(n)}
MPRF:
l14 [1 ]
l12 [1 ]
l15 [1 ]
l17 [1 ]
l19 [1 ]
l20 [1 ]
l18 [1 ]
l21 [1 ]
l22 [1 ]
l24 [1 ]
l23 [1 ]
l16 [1 ]
l13 [1 ]
l31 [2⋅X₆-4⋅X₈-2⋅X₁₀-2 ]
l5 [1 ]
l6 [2⋅X₉-4⋅X₈-2⋅X₁₀-2 ]
l7 [2⋅X₉-4⋅X₈-2⋅X₁₀-2 ]
l30 [1 ]
l8 [1 ]
l32 [2⋅X₆-4⋅X₈-2⋅X₁₀-4 ]
knowledge_propagation leads to new time bound 3⋅X₆+4⋅X₈+6 {O(n)} for transition t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
Analysing control-flow refined program
Cut unsatisfiable transition t₇₇₀: n_l8___18→l32
Cut unsatisfiable transition t₇₇₁: n_l8___33→l32
Cut unsatisfiable transition t₇₇₂: n_l8___36→l32
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l17___71
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l22___59
Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₁₀ for location l32
Found invariant 1 ≤ 0 for location n_l19___30
Found invariant 1 ≤ 0 for location n_l20___22
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l21___84
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l23___80
Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l6
Found invariant 1 ≤ 0 for location n_l14___46
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l19___70
Found invariant 1 ≤ 0 for location n_l20___29
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l23___64
Found invariant 1 ≤ 0 for location n_l22___26
Found invariant 1 ≤ 0 for location n_l24___25
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l22___10
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l15___90
Found invariant 1 ≤ 0 for location n_l30___49
Found invariant 1 ≤ 0 for location n_l8___33
Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l18___54
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l21___67
Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l23___50
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l12___91
Found invariant 1 ≤ 0 for location n_l30___32
Found invariant 1 ≤ 0 for location n_l8___18
Found invariant X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l8___79
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l24___65
Found invariant 1 ≤ 0 for location n_l13___48
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l13___77
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l22___83
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l10
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l4
Found invariant 1 ≤ 0 for location n_l16___47
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l3
Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l19___56
Found invariant 1 ≤ 0 for location n_l20___40
Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l21___53
Found invariant 1 ≤ 0 for location n_l16___43
Found invariant 1 ≤ 0 for location n_l23___24
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l25
Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l22___3
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l2
Found invariant 1 ≤ 0 for location n_l23___16
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l16___89
Found invariant 1 ≤ 0 for location n_l15___44
Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l31
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l24___81
Found invariant 1 ≤ 0 for location n_l17___42
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l19___87
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l17___88
Found invariant 1 ≤ 0 for location n_l30___15
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l26
Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l16___93
Found invariant 1 ≤ 0 for location n_l19___41
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l19___63
Found invariant 1 ≤ 0 for location n_l24___35
Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l7
Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l5
Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l8
Found invariant 1 ≤ 0 for location n_l12___45
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l14___92
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l15___73
Found invariant 1 ≤ 0 for location n_l21___27
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l20___69
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l21___11
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l22___66
Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l23___1
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l18___12
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l27
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l18___68
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l18___85
Found invariant 1 ≤ 0 for location n_l19___23
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l21___60
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l20___62
Found invariant 1 ≤ 0 for location n_l21___38
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l20___86
Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l20___6
Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l24___51
Found invariant 1 ≤ 0 for location n_l24___17
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l16___72
Found invariant 1 ≤ 0 for location n_l22___19
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l23___8
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l18___61
Found invariant 1 ≤ 0 for location n_l18___28
Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ for location l1
Found invariant 1 ≤ 0 for location n_l21___20
Found invariant X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l30___95
Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l21___4
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l24___9
Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l18___5
Found invariant 1 ≤ 0 for location n_l30___31
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l11
Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l30___78
Found invariant 1 ≤ 0 for location n_l18___39
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l19___14
Found invariant X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l8___82
Found invariant 1 ≤ 0 for location n_l8___36
Found invariant 1 ≤ 0 for location n_l18___21
Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l19___7
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l12___74
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l14___75
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l20___13
Found invariant 1 ≤ 0 for location n_l22___37
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l23___57
Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l13___94
Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l24___58
Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l22___52
Found invariant 1 ≤ 0 for location n_l23___34
Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l24___2
Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l20___55
Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ for location n_l16___76
Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l9
Cut unsatisfiable transition t₆₃₆: n_l12___45→n_l15___44
Cut unsatisfiable transition t₆₃₉: n_l13___48→n_l14___46
Cut unsatisfiable transition t₆₄₂: n_l14___46→n_l12___45
Cut unsatisfiable transition t₆₄₅: n_l15___44→n_l16___43
Cut unsatisfiable transition t₆₄₆: n_l15___44→n_l17___42
Cut unsatisfiable transition t₆₅₁: n_l16___43→n_l19___41
Cut unsatisfiable transition t₆₅₂: n_l16___47→n_l19___23
Cut unsatisfiable transition t₆₅₇: n_l17___42→n_l19___30
Cut unsatisfiable transition t₆₆₁: n_l18___21→n_l21___20
Cut unsatisfiable transition t₆₆₂: n_l18___28→n_l21___27
Cut unsatisfiable transition t₆₆₃: n_l18___39→n_l21___38
Cut unsatisfiable transition t₆₇₀: n_l19___23→n_l20___22
Cut unsatisfiable transition t₆₇₁: n_l19___30→n_l20___29
Cut unsatisfiable transition t₆₇₂: n_l19___41→n_l20___40
Cut unsatisfiable transition t₆₇₉: n_l20___22→n_l18___21
Cut unsatisfiable transition t₆₈₀: n_l20___29→n_l18___28
Cut unsatisfiable transition t₆₈₁: n_l20___40→n_l18___39
Cut unsatisfiable transition t₆₈₉: n_l21___20→n_l22___19
Cut unsatisfiable transition t₆₉₀: n_l21___20→n_l8___18
Cut unsatisfiable transition t₆₉₁: n_l21___27→n_l22___26
Cut unsatisfiable transition t₆₉₂: n_l21___27→n_l8___36
Cut unsatisfiable transition t₆₉₃: n_l21___38→n_l22___37
Cut unsatisfiable transition t₆₉₄: n_l21___38→n_l8___36
Cut unsatisfiable transition t₇₀₆: n_l22___19→n_l24___17
Cut unsatisfiable transition t₇₀₇: n_l22___26→n_l24___25
Cut unsatisfiable transition t₇₀₉: n_l22___37→n_l24___35
Cut unsatisfiable transition t₇₁₅: n_l23___16→n_l8___33
Cut unsatisfiable transition t₇₁₆: n_l23___24→n_l8___33
Cut unsatisfiable transition t₇₁₇: n_l23___34→n_l8___33
Cut unsatisfiable transition t₇₂₃: n_l24___17→n_l23___16
Cut unsatisfiable transition t₇₂₅: n_l24___25→n_l23___24
Cut unsatisfiable transition t₇₂₆: n_l24___35→n_l23___34
Cut unsatisfiable transition t₇₃₂: n_l30___15→n_l16___47
Cut unsatisfiable transition t₇₃₃: n_l30___31→n_l13___48
Cut unsatisfiable transition t₇₃₄: n_l30___32→n_l13___77
Cut unsatisfiable transition t₇₃₅: n_l30___49→n_l13___48
Cut unsatisfiable transition t₇₃₆: n_l30___49→n_l16___47
Cut unsatisfiable transition t₇₄₁: n_l8___18→n_l30___15
Cut unsatisfiable transition t₇₄₂: n_l8___33→n_l30___32
Cut unsatisfiable transition t₇₄₃: n_l8___36→n_l30___31
Cut unsatisfiable transition t₇₄₅: n_l8___82→n_l30___49
Cut unreachable locations [n_l12___45; n_l13___48; n_l14___46; n_l15___44; n_l16___43; n_l16___47; n_l17___42; n_l18___21; n_l18___28; n_l18___39; n_l19___23; n_l19___30; n_l19___41; n_l20___22; n_l20___29; n_l20___40; n_l21___20; n_l21___27; n_l21___38; n_l22___19; n_l22___26; n_l22___37; n_l23___16; n_l23___24; n_l23___34; n_l24___17; n_l24___25; n_l24___35; n_l30___15; n_l30___31; n_l30___32; n_l30___49; n_l8___18; n_l8___33; n_l8___36] from the program graph
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₄₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2+X₁₀ ≤ X₉ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₃₉: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₄₀: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₄₁: n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₄₄: n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___91(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₅₆: n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₇₅: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₈₃: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___5(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₃₈: n_l12___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___90(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₄₉: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₅₀: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₅₅: n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₅₉: n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₆₄: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___4(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₆₉: n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₇₇: n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₇₈: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___12(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₈₆: n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___85(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₉₅: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₉₆: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₀₈: n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₂₄: n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₆₀: n_l18___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___11(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₆₈: n_l18___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___84(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₈₇: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₆₈₈: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₀₃: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₀₄: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₀₅: n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₁₃: n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₁₄: n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₃₀: n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₃₁: n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₂₁: n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
knowledge_propagation leads to new time bound 7⋅X₆+13 {O(n)} for transition t₇₂₂: n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
MPRF for transition t₆₃₇: n_l12___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___73(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
7⋅X₆⋅X₆+13⋅X₆+X₁₁+1 {O(n^2)}
MPRF:
l31 [-X₁₀-X₁₁-1 ]
l6 [-X₁₀-X₁₁-1 ]
l7 [-X₁₀-X₁₁-1 ]
l5 [-X₁₀-X₁₁-1 ]
l8 [-X₁₀-X₁₁-1 ]
n_l30___95 [-X₁₀-X₁₁-1 ]
n_l13___94 [X₆ ]
n_l14___75 [X₉-X₁₀-X₁₁-4 ]
n_l12___74 [X₉-X₁₀-X₁₁-4 ]
n_l14___92 [X₉ ]
n_l12___91 [X₉ ]
n_l15___73 [X₉-X₈-X₁₀-5 ]
n_l15___90 [X₉ ]
n_l16___72 [X₆-X₈-X₁₀-5 ]
n_l16___89 [X₆ ]
n_l16___93 [0 ]
n_l17___71 [X₆-X₁₀-X₁₁-5 ]
n_l17___88 [X₉ ]
n_l19___14 [X₉ ]
n_l19___56 [X₉-2⋅X₈-X₁₀-3 ]
n_l19___63 [X₆-X₈-X₁₀-5 ]
n_l19___7 [0 ]
n_l19___70 [X₉-X₈-X₁₀-5 ]
n_l19___87 [X₉ ]
n_l20___13 [X₉ ]
n_l18___12 [X₉ ]
n_l20___55 [X₉-2⋅X₈-X₁₀-3 ]
n_l18___54 [X₆-2⋅X₈-X₁₀-3 ]
n_l20___6 [0 ]
n_l18___5 [0 ]
n_l20___62 [X₉-X₈-X₁₀-5 ]
n_l18___61 [X₉-X₈-X₁₀-5 ]
n_l20___69 [X₉-X₈-X₁₀-5 ]
n_l18___68 [X₆-X₈-X₁₀-5 ]
n_l20___86 [X₉ ]
n_l18___85 [X₉ ]
n_l21___11 [X₉ ]
n_l21___4 [0 ]
n_l21___53 [X₉-2⋅X₈-X₁₀-3 ]
n_l21___60 [X₉-X₈-X₁₀-5 ]
n_l21___67 [X₉-X₈-X₁₀-5 ]
n_l21___84 [X₉ ]
n_l22___10 [X₉ ]
n_l22___3 [X₉-X₁₀-3 ]
n_l22___52 [X₉-2⋅X₈-X₁₀-3 ]
n_l22___59 [X₆-X₈-X₁₀-7 ]
n_l22___66 [X₉-X₁₀-X₁₁-4 ]
n_l22___83 [X₉ ]
n_l24___2 [X₉-X₁₀-3⋅X₁₁ ]
n_l23___1 [X₆-X₁₀-X₁₁-2 ]
n_l24___51 [X₉-2⋅X₈-X₁₀-3 ]
n_l23___50 [X₆-X₁₀-X₁₁-2 ]
n_l24___58 [X₉-X₈-X₁₀-7 ]
n_l23___57 [X₉-X₁₀-X₁₁-4 ]
n_l24___65 [X₆-X₁₀-X₁₁-4 ]
n_l23___64 [X₆-X₁₀-X₁₁-4 ]
n_l24___81 [X₉ ]
n_l23___80 [X₆-X₁₁ ]
n_l24___9 [X₆-X₁₁ ]
n_l23___8 [X₆-X₁₁ ]
n_l13___77 [X₉-X₁₀-X₁₁-4 ]
n_l16___76 [X₆-2⋅X₈-X₁₀-3 ]
n_l30___78 [X₉-X₁₀-X₁₁-4 ]
n_l8___79 [X₉-X₈-X₁₀-4 ]
n_l8___82 [2⋅X₆-X₈-X₉ ]
l32 [-X₁₀-X₁₁-1 ]
MPRF for transition t₆₄₀: n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
28⋅X₆⋅X₈+70⋅X₆⋅X₆+193⋅X₆+2⋅X₁₁+52⋅X₈+117 {O(n^2)}
MPRF:
l31 [-X₁₀-2⋅X₁₁ ]
l6 [-X₁₀-2⋅X₁₁ ]
l7 [-X₁₀-2⋅X₁₁ ]
l5 [-X₁₀-2⋅X₁₁ ]
l8 [-X₁₀-2⋅X₁₁ ]
n_l30___95 [-X₁₀-2⋅X₁₁ ]
n_l13___94 [X₆-X₁₀ ]
n_l14___75 [X₆-X₈-X₁₀-5 ]
n_l12___74 [X₉-X₁₀-X₁₁-5 ]
n_l14___92 [X₉-X₁₀ ]
n_l12___91 [X₉-X₁₀ ]
n_l15___73 [X₆-X₈-X₁₀-5 ]
n_l15___90 [X₆-X₁₀ ]
n_l16___72 [X₆-X₈-X₁₀-5 ]
n_l16___89 [X₆-X₁₀-4 ]
n_l16___93 [X₁₀+3-X₆ ]
n_l17___71 [X₆-X₁₀-X₁₁-5 ]
n_l17___88 [X₉-X₁₀ ]
n_l19___14 [X₉-X₁₀ ]
n_l19___56 [0 ]
n_l19___63 [X₉+X₁₁-3⋅X₈-X₁₀-7 ]
n_l19___7 [X₁₀+3⋅X₁₁-X₆ ]
n_l19___70 [X₉-X₈-X₁₀-5 ]
n_l19___87 [X₉-X₁₀-4⋅X₁₁ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [2⋅X₆-X₉-X₁₀ ]
n_l20___55 [X₁₁-2⋅X₈-1 ]
n_l18___54 [X₆-2⋅X₈-X₁₀-3 ]
n_l20___6 [X₁₀+3-X₉ ]
n_l18___5 [X₁₀+3⋅X₁₁-X₆ ]
n_l20___62 [X₆+X₁₁-3⋅X₈-X₁₀-7 ]
n_l18___61 [X₉+X₁₁-3⋅X₈-X₁₀-7 ]
n_l20___69 [X₆-X₈-X₁₀-5 ]
n_l18___68 [X₆-X₈-X₁₀-5 ]
n_l20___86 [X₉-X₁₀-4 ]
n_l18___85 [X₉-X₁₀-4 ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [X₁₀+3-X₆ ]
n_l21___53 [X₉-2⋅X₈-X₁₀-3 ]
n_l21___60 [X₉+X₁₁-3⋅X₈-X₁₀-7 ]
n_l21___67 [X₆-X₈-X₁₀-5 ]
n_l21___84 [X₉-X₁₀-4 ]
n_l22___10 [X₉-X₁₀-2⋅X₁₁-2 ]
n_l22___3 [X₁₀+X₁₁-X₆ ]
n_l22___52 [X₉-2⋅X₈-X₁₀-3 ]
n_l22___59 [X₉+X₁₁-3⋅X₈-X₁₀-7 ]
n_l22___66 [X₉-X₁₀-X₁₁-3 ]
n_l22___83 [X₆-X₁₀-5⋅X₁₁ ]
n_l24___2 [X₁₀+1-X₉ ]
n_l23___1 [X₆-X₉-X₁₁-1 ]
n_l24___51 [X₉-2⋅X₈-X₁₀-3 ]
n_l23___50 [X₆-X₁₀-X₁₁-4 ]
n_l24___58 [X₆+X₁₁-3⋅X₈-X₁₀-9 ]
n_l23___57 [X₆+X₁₁-3⋅X₈-X₁₀-9 ]
n_l24___65 [X₆-X₁₀-X₁₁-3 ]
n_l23___64 [X₉-X₁₀-X₁₁-4 ]
n_l24___81 [X₆-X₁₀-5 ]
n_l23___80 [X₆-X₁₀-X₁₁-4 ]
n_l24___9 [X₆-X₁₀-2⋅X₁₁-2 ]
n_l23___8 [X₆-X₁₀-X₁₁-4 ]
n_l13___77 [X₉-X₁₀-X₁₁-4 ]
n_l16___76 [2⋅X₁₁-X₈-1 ]
n_l30___78 [X₆-X₈-X₁₀-4 ]
n_l8___79 [X₉-X₈-X₁₀-4 ]
n_l8___82 [X₆+X₈-2⋅X₉ ]
l32 [-X₁₀-2⋅X₁₁ ]
MPRF for transition t₆₄₃: n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___74(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
14⋅X₆⋅X₆+2⋅X₁₁+55⋅X₆+62 {O(n^2)}
MPRF:
l31 [X₉-X₁₀-2⋅X₁₁-7 ]
l6 [X₉-X₁₀-2⋅X₁₁-7 ]
l7 [X₉-X₁₀-2⋅X₁₁-7 ]
l5 [X₆-X₁₀-2⋅X₁₁-7 ]
l8 [X₆-X₁₀-2⋅X₁₁-7 ]
n_l30___95 [2⋅X₆-X₉-X₁₀-2⋅X₁₁-7 ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l12___74 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-12 ]
n_l14___92 [2⋅X₉ ]
n_l12___91 [2⋅X₆ ]
n_l15___73 [2⋅X₉-2⋅X₈-2⋅X₁₀-12 ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-12 ]
n_l16___89 [2⋅X₉ ]
n_l16___93 [-4 ]
n_l17___71 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-12 ]
n_l17___88 [2⋅X₆ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [2⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l19___63 [2⋅X₆+8⋅X₈-2⋅X₁₀-5⋅X₁₁-2 ]
n_l19___7 [-4 ]
n_l19___70 [2⋅X₆-2⋅X₈-2⋅X₁₀-12 ]
n_l19___87 [2⋅X₉ ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [2⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l18___54 [2⋅X₉-2⋅X₁₀-X₁₁-7 ]
n_l20___6 [-4 ]
n_l18___5 [-4 ]
n_l20___62 [8⋅X₈+2⋅X₉-2⋅X₁₀-5⋅X₁₁-2 ]
n_l18___61 [8⋅X₈+2⋅X₉-2⋅X₁₀-5⋅X₁₁-2 ]
n_l20___69 [2⋅X₆-2⋅X₈-2⋅X₁₀-12 ]
n_l18___68 [2⋅X₆-2⋅X₈-2⋅X₁₀-12 ]
n_l20___86 [2⋅X₉ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₆ ]
n_l21___4 [-4⋅X₁₁ ]
n_l21___53 [2⋅X₉-2⋅X₁₀-X₁₁-7 ]
n_l21___60 [8⋅X₈+2⋅X₉-2⋅X₁₀-5⋅X₁₁-2 ]
n_l21___67 [2⋅X₉-2⋅X₈-2⋅X₁₀-12 ]
n_l21___84 [2⋅X₉ ]
n_l22___10 [2⋅X₆ ]
n_l22___3 [2⋅X₉-2⋅X₁₀-10⋅X₁₁ ]
n_l22___52 [2⋅X₉-2⋅X₁₀-X₁₁-7 ]
n_l22___59 [2⋅X₆+8⋅X₈-2⋅X₁₀-6⋅X₁₁ ]
n_l22___66 [2⋅X₉-2⋅X₈-2⋅X₁₀-12 ]
n_l22___83 [2⋅X₉ ]
n_l24___2 [2⋅X₉-2⋅X₁₀-10 ]
n_l23___1 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-8 ]
n_l24___51 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-4 ]
n_l23___50 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-4 ]
n_l24___58 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-8 ]
n_l23___57 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-8 ]
n_l24___65 [2⋅X₉-2⋅X₈-2⋅X₁₀-12 ]
n_l23___64 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-8 ]
n_l24___81 [2⋅X₉ ]
n_l23___80 [2⋅X₆-2⋅X₁₁ ]
n_l24___9 [2⋅X₆ ]
n_l23___8 [2⋅X₆-2⋅X₁₁ ]
n_l13___77 [2⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l16___76 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-8 ]
n_l30___78 [2⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l8___79 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-8 ]
n_l8___82 [2⋅X₆-X₈-X₁₀-8 ]
l32 [X₉-X₁₀-2⋅X₁₁-8 ]
MPRF for transition t₆₄₇: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
21⋅X₆⋅X₆+74⋅X₆+X₁₁+66 {O(n^2)}
MPRF:
l31 [-X₁₀-X₁₁-1 ]
l6 [-X₁₀-X₁₁-2 ]
l7 [-X₁₀-X₁₁-2 ]
l5 [-X₁₀-X₁₁-2 ]
l8 [-X₁₀-X₁₁-2 ]
n_l30___95 [X₆-X₉-X₁₀-X₁₁-2 ]
n_l13___94 [X₆ ]
n_l14___75 [X₈+X₉-X₁₀-2⋅X₁₁-4 ]
n_l12___74 [X₉-X₁₀-X₁₁-4 ]
n_l14___92 [X₉ ]
n_l12___91 [X₆ ]
n_l15___73 [X₉-X₈-X₁₀-4 ]
n_l15___90 [X₉ ]
n_l16___72 [X₉-X₈-X₁₀-5 ]
n_l16___89 [X₆-X₁₀ ]
n_l16___93 [X₉-X₁₀-5 ]
n_l17___71 [X₉-X₁₀-X₁₁-4 ]
n_l17___88 [X₆ ]
n_l19___14 [X₆ ]
n_l19___56 [X₉-X₁₀-X₁₁-2 ]
n_l19___63 [X₉+X₁₁-3⋅X₈-X₁₀-6 ]
n_l19___7 [X₁₀+X₁₁-X₉ ]
n_l19___70 [X₆+11⋅X₈+1-X₁₀-6⋅X₁₁ ]
n_l19___87 [X₉-X₁₀ ]
n_l20___13 [X₉ ]
n_l18___12 [X₉ ]
n_l20___55 [X₆-X₁₀-X₁₁-2 ]
n_l18___54 [X₆-X₁₀-X₁₁-2 ]
n_l20___6 [X₁₀+1-X₆ ]
n_l18___5 [X₁₀+X₁₁-X₉ ]
n_l20___62 [X₉+X₁₁-3⋅X₈-X₁₀-6 ]
n_l18___61 [X₉+X₁₁-3⋅X₈-X₁₀-6 ]
n_l20___69 [11⋅X₈+X₉+1-X₁₀-6⋅X₁₁ ]
n_l18___68 [X₆+11⋅X₈+1-X₁₀-6⋅X₁₁ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₉ ]
n_l21___4 [X₁₀+X₁₁-X₉ ]
n_l21___53 [X₆-X₁₀-X₁₁-2 ]
n_l21___60 [X₉-X₁₀-X₁₁-1 ]
n_l21___67 [X₆+11⋅X₈+1-X₁₀-6⋅X₁₁ ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₆-X₁₁ ]
n_l22___3 [X₉-X₁₀-5⋅X₁₁ ]
n_l22___52 [X₆-X₁₀-X₁₁-2 ]
n_l22___59 [X₆-X₁₀-X₁₁-1 ]
n_l22___66 [X₆+11⋅X₈+1-X₁₀-6⋅X₁₁ ]
n_l22___83 [X₉-X₁₀-X₁₁ ]
n_l24___2 [X₉-X₁₀-5 ]
n_l23___1 [X₆-X₁₀-X₁₁-4 ]
n_l24___51 [X₉-X₁₀-X₁₁-2 ]
n_l23___50 [X₆-X₁₀-X₁₁-2 ]
n_l24___58 [X₉-X₁₀-X₁₁-1 ]
n_l23___57 [X₉-X₁₀-X₁₁-1 ]
n_l24___65 [13⋅X₈+X₉+2-X₁₀-7⋅X₁₁ ]
n_l23___64 [9⋅X₈+X₉-X₁₀-5⋅X₁₁ ]
n_l24___81 [X₉-X₁₀-X₁₁ ]
n_l23___80 [X₆-X₁₀-X₁₁ ]
n_l24___9 [X₆-X₁₁ ]
n_l23___8 [X₆-X₁₀-X₁₁ ]
n_l13___77 [X₆+X₈-X₁₀-2⋅X₁₁-4 ]
n_l16___76 [X₆-X₁₀-2⋅X₁₁-3 ]
n_l30___78 [X₈+X₉-X₁₀-2⋅X₁₁-4 ]
n_l8___79 [X₉-X₁₀-X₁₁-4 ]
n_l8___82 [-2 ]
l32 [-X₁₀-X₁₁-2 ]
MPRF for transition t₆₄₈: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
28⋅X₆⋅X₆+108⋅X₆+X₁₁+108 {O(n^2)}
MPRF:
l31 [4-X₁₀-X₁₁ ]
l6 [4-X₁₀-X₁₁ ]
l7 [4-X₁₀-X₁₁ ]
l5 [X₉+4-X₆-X₁₀-X₁₁ ]
l8 [X₉+4-X₆-X₁₀-X₁₁ ]
n_l30___95 [4-X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆-3 ]
n_l14___75 [X₉+1-X₈-X₁₀ ]
n_l12___74 [X₉+1-X₁₀-X₁₁ ]
n_l14___92 [2⋅X₉+1-X₆ ]
n_l12___91 [X₉+1-X₁₀ ]
n_l15___73 [X₉+1-X₈-X₁₀ ]
n_l15___90 [X₉+1-X₁₀ ]
n_l16___72 [X₆+1-X₁₀-X₁₁ ]
n_l16___89 [X₉+1-X₁₀ ]
n_l16___93 [X₆+5-X₉ ]
n_l17___71 [X₉-X₈-X₁₀ ]
n_l17___88 [X₆+1-X₁₀ ]
n_l19___14 [X₉+1-X₁₀ ]
n_l19___56 [X₆+2-2⋅X₈-X₁₀ ]
n_l19___63 [X₆+5⋅X₈+6-X₁₀-3⋅X₁₁ ]
n_l19___7 [X₉+2-X₁₀ ]
n_l19___70 [X₆+1-X₈-X₁₀ ]
n_l19___87 [X₉+1-X₁₀ ]
n_l20___13 [X₉+X₁₁-X₁₀-1 ]
n_l18___12 [X₉+1-X₁₀ ]
n_l20___55 [X₉+2-2⋅X₈-X₁₀ ]
n_l18___54 [X₉+2-2⋅X₈-X₁₀ ]
n_l20___6 [X₉+2⋅X₁₁-X₁₀ ]
n_l18___5 [X₉+2-X₁₀ ]
n_l20___62 [5⋅X₈+X₉+6-X₁₀-3⋅X₁₁ ]
n_l18___61 [5⋅X₈+X₉+6-X₁₀-3⋅X₁₁ ]
n_l20___69 [X₆+2⋅X₁₁-6⋅X₈-X₁₀ ]
n_l18___68 [X₆+2⋅X₁₁-6⋅X₈-X₁₀ ]
n_l20___86 [X₉+X₁₁-X₁₀ ]
n_l18___85 [X₉+1-X₁₀ ]
n_l21___11 [X₉+1-X₁₀ ]
n_l21___4 [X₉+2-X₁₀ ]
n_l21___53 [X₉+2-2⋅X₈-X₁₀ ]
n_l21___60 [5⋅X₈+X₉+6-X₁₀-3⋅X₁₁ ]
n_l21___67 [X₉+2⋅X₁₁-6⋅X₈-X₁₀ ]
n_l21___84 [X₉+1-X₁₀ ]
n_l22___10 [X₆-X₁₀-1 ]
n_l22___3 [X₉-X₁₀ ]
n_l22___52 [X₉+2-2⋅X₈-X₁₀ ]
n_l22___59 [X₈+X₉-X₁₀-X₁₁ ]
n_l22___66 [X₆+2⋅X₁₁-6⋅X₈-X₁₀ ]
n_l22___83 [X₉-X₁₀ ]
n_l24___2 [X₉+1-X₁₀-X₁₁ ]
n_l23___1 [X₆+1-X₁₀-X₁₁ ]
n_l24___51 [X₉+2-2⋅X₈-X₁₀ ]
n_l23___50 [X₆+3-X₁₀-X₁₁ ]
n_l24___58 [X₉+1-X₁₀-X₁₁ ]
n_l23___57 [X₆+1-X₁₀-X₁₁ ]
n_l24___65 [X₆+2⋅X₁₁-6⋅X₈-X₁₀ ]
n_l23___64 [X₆+1-X₁₀-X₁₁ ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆+1-X₁₀-X₁₁ ]
n_l24___9 [X₆+1-X₁₀-X₁₁ ]
n_l23___8 [X₆+1-X₁₀-X₁₁ ]
n_l13___77 [X₆+1-X₈-X₁₀ ]
n_l16___76 [X₆+2-2⋅X₈-X₁₀ ]
n_l30___78 [X₉+1-X₈-X₁₀ ]
n_l8___79 [X₉+1-X₈-X₁₀ ]
n_l8___82 [5 ]
l32 [4-X₁₀-X₁₁ ]
MPRF for transition t₆₅₃: n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
35⋅X₆⋅X₆+73⋅X₆+X₁₁+17 {O(n^2)}
MPRF:
l31 [X₉+1-X₁₀-X₁₁ ]
l6 [X₉+1-X₁₀-X₁₁ ]
l7 [X₆+1-X₁₀-X₁₁ ]
l5 [X₆+1-X₁₀-X₁₁ ]
l8 [X₆+1-X₁₀-X₁₁ ]
n_l30___95 [X₆+1-X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₉-X₁₀-2⋅X₁₁ ]
n_l12___74 [X₈+2⋅X₉-X₁₀-3⋅X₁₁ ]
n_l14___92 [2⋅X₆ ]
n_l12___91 [2⋅X₉ ]
n_l15___73 [2⋅X₆+X₈-X₁₀-3⋅X₁₁ ]
n_l15___90 [2⋅X₆ ]
n_l16___72 [2⋅X₆-X₁₀-2⋅X₁₁ ]
n_l16___89 [2⋅X₆ ]
n_l16___93 [2⋅X₆+1-X₉ ]
n_l17___71 [2⋅X₆+X₈-X₁₀-3⋅X₁₁ ]
n_l17___88 [2⋅X₆ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [2⋅X₆+1-X₁₀-X₁₁ ]
n_l19___63 [2⋅X₆-2⋅X₈-X₁₀ ]
n_l19___7 [2⋅X₆-X₁₀-2 ]
n_l19___70 [2⋅X₉-2⋅X₈-X₁₀-1 ]
n_l19___87 [2⋅X₉ ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₆ ]
n_l20___55 [2⋅X₆+1-X₁₀-X₁₁ ]
n_l18___54 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l20___6 [2⋅X₉-X₁₀-2⋅X₁₁ ]
n_l18___5 [2⋅X₉-X₁₀-2 ]
n_l20___62 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l18___61 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l20___69 [2⋅X₉-2⋅X₈-X₁₀-1 ]
n_l18___68 [2⋅X₉-2⋅X₈-X₁₀-2 ]
n_l20___86 [2⋅X₆ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₆ ]
n_l21___4 [2⋅X₉-X₁₀-2 ]
n_l21___53 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l21___60 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l21___67 [2⋅X₆-2⋅X₈-X₁₀-2 ]
n_l21___84 [2⋅X₉ ]
n_l22___10 [2⋅X₆ ]
n_l22___3 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l22___52 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l22___59 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l22___66 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l22___83 [2⋅X₉ ]
n_l24___2 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l23___1 [2⋅X₆-X₁₀-X₁₁-1 ]
n_l24___51 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l23___50 [2⋅X₆+1-X₁₀-X₁₁ ]
n_l24___58 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l23___57 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l24___65 [2⋅X₆-X₁₀-X₁₁-1 ]
n_l23___64 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l24___81 [2⋅X₉ ]
n_l23___80 [2⋅X₆-X₁₁-1 ]
n_l24___9 [2⋅X₆+1-2⋅X₁₁ ]
n_l23___8 [2⋅X₆-X₁₁-1 ]
n_l13___77 [2⋅X₉-X₁₀-2⋅X₁₁ ]
n_l16___76 [2⋅X₆-2⋅X₈-X₁₀ ]
n_l30___78 [2⋅X₉-X₁₀-X₁₁-1 ]
n_l8___79 [2⋅X₉-X₈-X₁₀-1 ]
n_l8___82 [X₈+1 ]
l32 [X₆+1-X₁₀-X₁₁ ]
MPRF for transition t₆₅₄: n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 3+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₁₀+2⋅X₁₁+3 ∧ 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
28⋅X₆⋅X₈+77⋅X₆⋅X₆+2⋅X₁₁+228⋅X₆+52⋅X₈+159 {O(n^2)}
MPRF:
l31 [X₆+3-X₁₀-2⋅X₁₁ ]
l6 [X₉+3-X₁₀-2⋅X₁₁ ]
l7 [X₉+3-X₁₀-2⋅X₁₁ ]
l5 [X₉+3-X₁₀-2⋅X₁₁ ]
l8 [X₉+3-X₁₀-2⋅X₁₁ ]
n_l30___95 [X₉+3-X₁₀-2⋅X₁₁ ]
n_l13___94 [2⋅X₆-X₁₀ ]
n_l14___75 [2⋅X₉-2⋅X₈-2⋅X₁₀-2 ]
n_l12___74 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-2 ]
n_l14___92 [2⋅X₉-X₁₀ ]
n_l12___91 [2⋅X₉-X₁₀ ]
n_l15___73 [2⋅X₆-2⋅X₈-2⋅X₁₀-2 ]
n_l15___90 [2⋅X₉-X₁₀ ]
n_l16___72 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-2 ]
n_l16___89 [2⋅X₉-2⋅X₁₀ ]
n_l16___93 [X₆+6-X₉ ]
n_l17___71 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-2 ]
n_l17___88 [2⋅X₉-X₁₀-2 ]
n_l19___14 [2⋅X₆-X₁₀-2 ]
n_l19___56 [5⋅X₁₁-8⋅X₈ ]
n_l19___63 [2⋅X₆-2⋅X₁₀-X₁₁ ]
n_l19___7 [X₉+3-X₁₀ ]
n_l19___70 [2⋅X₉-2⋅X₈-2⋅X₁₀-2 ]
n_l19___87 [2⋅X₆-2⋅X₁₀ ]
n_l20___13 [2⋅X₉-X₁₀-2 ]
n_l18___12 [2⋅X₉-X₁₀-X₁₁ ]
n_l20___55 [5⋅X₁₁-8⋅X₈ ]
n_l18___54 [5⋅X₁₁-8⋅X₈ ]
n_l20___6 [X₆+3⋅X₁₁-X₁₀ ]
n_l18___5 [X₉+3-X₁₀ ]
n_l20___62 [2⋅X₉-2⋅X₁₀-X₁₁ ]
n_l18___61 [2⋅X₆-2⋅X₁₀-X₁₁ ]
n_l20___69 [2⋅X₈+2⋅X₉-2⋅X₁₀-2⋅X₁₁ ]
n_l18___68 [2⋅X₆+2⋅X₈-2⋅X₁₀-2⋅X₁₁ ]
n_l20___86 [2⋅X₉-2⋅X₁₀ ]
n_l18___85 [2⋅X₉-2⋅X₁₀ ]
n_l21___11 [2⋅X₉-X₁₀-2 ]
n_l21___4 [X₉+3-X₁₀ ]
n_l21___53 [4⋅X₁₀+5⋅X₁₁+12-4⋅X₉ ]
n_l21___60 [2⋅X₉-2⋅X₁₀-X₁₁ ]
n_l21___67 [2⋅X₈+2⋅X₉-2⋅X₁₀-2⋅X₁₁ ]
n_l21___84 [2⋅X₉-2⋅X₁₀ ]
n_l22___10 [2⋅X₉-X₁₀-2 ]
n_l22___3 [X₉+4-X₁₀-X₁₁ ]
n_l22___52 [2⋅X₆+3-2⋅X₁₀-2⋅X₁₁ ]
n_l22___59 [2⋅X₉+4-2⋅X₁₀-2⋅X₁₁ ]
n_l22___66 [2⋅X₆+2-2⋅X₁₀-2⋅X₁₁ ]
n_l22___83 [2⋅X₉+2-2⋅X₁₀-2⋅X₁₁ ]
n_l24___2 [X₉+4-X₁₀-X₁₁ ]
n_l23___1 [2⋅X₆+2-2⋅X₁₀-2⋅X₁₁ ]
n_l24___51 [2⋅X₆+3-2⋅X₁₀-2⋅X₁₁ ]
n_l23___50 [2⋅X₆+2-2⋅X₁₀-2⋅X₁₁ ]
n_l24___58 [2⋅X₉+2-2⋅X₁₀-2⋅X₁₁ ]
n_l23___57 [2⋅X₆+2-2⋅X₁₀-2⋅X₁₁ ]
n_l24___65 [2⋅X₉+2-2⋅X₁₀-2⋅X₁₁ ]
n_l23___64 [2⋅X₆+2-2⋅X₁₀-2⋅X₁₁ ]
n_l24___81 [2⋅X₉+2-2⋅X₁₀-2⋅X₁₁ ]
n_l23___80 [2⋅X₆+2-2⋅X₁₀-2⋅X₁₁ ]
n_l24___9 [2⋅X₉-2⋅X₁₀-2 ]
n_l23___8 [2⋅X₆+2-2⋅X₁₀-2⋅X₁₁ ]
n_l13___77 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-2 ]
n_l16___76 [2⋅X₈+6 ]
n_l30___78 [2⋅X₆-2⋅X₁₀-2⋅X₁₁ ]
n_l8___79 [3⋅X₉+2-X₆-X₈-2⋅X₁₀-X₁₁ ]
n_l8___82 [X₉+2-X₁₀ ]
l32 [X₉+2-X₁₀-2⋅X₁₁ ]
MPRF for transition t₆₅₈: n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:
new bound:
28⋅X₆⋅X₆+129⋅X₆+X₁₁+144 {O(n^2)}
MPRF:
l31 [1-2⋅X₁₀-X₁₁ ]
l6 [-2⋅X₁₀-X₁₁-1 ]
l7 [-2⋅X₁₀-X₁₁-1 ]
l5 [-2⋅X₁₀-X₁₁-1 ]
l8 [-2⋅X₁₀-X₁₁-1 ]
n_l30___95 [-2⋅X₁₀-X₁₁-1 ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₉-X₈-2⋅X₁₀-2 ]
n_l12___74 [2⋅X₉-2⋅X₁₀-X₁₁-2 ]
n_l14___92 [2⋅X₆ ]
n_l12___91 [2⋅X₆ ]
n_l15___73 [X₈+2⋅X₉-2⋅X₁₀-2⋅X₁₁-2 ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₆+X₈-2⋅X₁₀-2⋅X₁₁-2 ]
n_l16___89 [2⋅X₉ ]
n_l16___93 [X₁₀+11-X₉ ]
n_l17___71 [2⋅X₉-2⋅X₁₀-X₁₁-2 ]
n_l17___88 [2⋅X₆ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [2⋅X₆-2⋅X₈-2⋅X₁₀ ]
n_l19___63 [2⋅X₆-X₈-2⋅X₁₀-3 ]
n_l19___7 [2⋅X₉+2-2⋅X₁₀ ]
n_l19___70 [2⋅X₆+5⋅X₈+1-2⋅X₁₀-3⋅X₁₁ ]
n_l19___87 [2⋅X₉ ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l18___54 [2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l20___6 [2⋅X₉+2-2⋅X₁₀ ]
n_l18___5 [2⋅X₉+2-2⋅X₁₀ ]
n_l20___62 [2⋅X₉-X₈-2⋅X₁₀-3 ]
n_l18___61 [X₈+2⋅X₉-2⋅X₁₀-X₁₁-1 ]
n_l20___69 [5⋅X₈+2⋅X₉+1-2⋅X₁₀-3⋅X₁₁ ]
n_l18___68 [2⋅X₆+5⋅X₈+1-2⋅X₁₀-3⋅X₁₁ ]
n_l20___86 [2⋅X₉ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₉ ]
n_l21___4 [8⋅X₁₁ ]
n_l21___53 [2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l21___60 [2⋅X₆+X₈-2⋅X₁₀-X₁₁-1 ]
n_l21___67 [2⋅X₆+5⋅X₈+1-2⋅X₁₀-3⋅X₁₁ ]
n_l21___84 [2⋅X₆ ]
n_l22___10 [2⋅X₉ ]
n_l22___3 [2⋅X₉+2⋅X₁₁-2⋅X₁₀ ]
n_l22___52 [2⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l22___59 [2⋅X₉-2⋅X₁₀-X₁₁ ]
n_l22___66 [2⋅X₆+5⋅X₈+1-2⋅X₁₀-3⋅X₁₁ ]
n_l22___83 [2⋅X₆-2 ]
n_l24___2 [2⋅X₉+2⋅X₁₁-2⋅X₁₀ ]
n_l23___1 [2⋅X₆-2⋅X₁₀-X₁₁-1 ]
n_l24___51 [2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l23___50 [2⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l24___58 [2⋅X₉-2⋅X₁₀-X₁₁ ]
n_l23___57 [2⋅X₆-2⋅X₁₀-X₁₁-1 ]
n_l24___65 [2⋅X₆+5⋅X₈+1-2⋅X₁₀-3⋅X₁₁ ]
n_l23___64 [2⋅X₆+5⋅X₈-2⋅X₁₀-3⋅X₁₁ ]
n_l24___81 [2⋅X₉-X₁₁-1 ]
n_l23___80 [2⋅X₆-X₁₁-1 ]
n_l24___9 [2⋅X₉+2-X₁₁ ]
n_l23___8 [2⋅X₆-X₁₁-1 ]
n_l13___77 [2⋅X₆-X₈-2⋅X₁₀-2 ]
n_l16___76 [2⋅X₆-2⋅X₁₀-2⋅X₁₁ ]
n_l30___78 [2⋅X₉-X₈-2⋅X₁₀-1 ]
n_l8___79 [3⋅X₆-X₈-X₉-2⋅X₁₀-1 ]
n_l8___82 [2⋅X₈+X₉+8-3⋅X₆ ]
l32 [-2⋅X₁₀-X₁₁-1 ]
MPRF for transition t₆₆₅: n_l18___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___53(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
112⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+2⋅X₁₁+335⋅X₆+238 {O(n^2)}
MPRF:
l31 [X₉+1-X₁₀-2⋅X₁₁ ]
l6 [X₉+1-X₁₀-2⋅X₁₁ ]
l7 [X₉+1-X₁₀-2⋅X₁₁ ]
l5 [X₆+1-X₁₀-2⋅X₁₁ ]
l8 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l30___95 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l13___94 [2⋅X₆-2⋅X₁₀-2 ]
n_l14___75 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l12___74 [2⋅X₉-2⋅X₁₀-2⋅X₁₁ ]
n_l14___92 [2⋅X₆-2⋅X₁₀-2 ]
n_l12___91 [2⋅X₉-2⋅X₁₀-2 ]
n_l15___73 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l15___90 [2⋅X₉-2⋅X₁₀-2 ]
n_l16___72 [2⋅X₆-2⋅X₁₀-2⋅X₁₁ ]
n_l16___89 [2⋅X₉-2⋅X₁₀-2 ]
n_l16___93 [4 ]
n_l17___71 [2⋅X₉-2⋅X₁₀-2⋅X₁₁ ]
n_l17___88 [2⋅X₉-2⋅X₁₀-2 ]
n_l19___14 [2⋅X₆-2⋅X₁₀-4 ]
n_l19___56 [5⋅X₉-5⋅X₁₀-4⋅X₁₁-7 ]
n_l19___63 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l19___7 [4 ]
n_l19___70 [2⋅X₆-2⋅X₈-2⋅X₁₀ ]
n_l19___87 [2⋅X₉-2⋅X₁₀-2 ]
n_l20___13 [2⋅X₉-2⋅X₁₀-4 ]
n_l18___12 [2⋅X₆-2⋅X₁₀-2⋅X₁₁ ]
n_l20___55 [X₉+X₁₁+3-X₆ ]
n_l18___54 [X₁₁+3 ]
n_l20___6 [4 ]
n_l18___5 [3⋅X₁₁+1 ]
n_l20___62 [2⋅X₆-2⋅X₈-2⋅X₁₀ ]
n_l18___61 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l20___69 [2⋅X₆-2⋅X₈-2⋅X₁₀ ]
n_l18___68 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l20___86 [2⋅X₆-2⋅X₁₀-2⋅X₁₁ ]
n_l18___85 [2⋅X₉-2⋅X₁₀-2 ]
n_l21___11 [2⋅X₉-2⋅X₁₀-4 ]
n_l21___4 [3⋅X₁₁+1 ]
n_l21___53 [X₁₁+2 ]
n_l21___60 [2⋅X₆-2⋅X₁₀-X₁₁ ]
n_l21___67 [2⋅X₆-2⋅X₈-2⋅X₁₀ ]
n_l21___84 [2⋅X₉-2⋅X₁₀-2⋅X₁₁ ]
n_l22___10 [2⋅X₉-2⋅X₁₀-4 ]
n_l22___3 [X₉+3⋅X₁₁-X₁₀-2 ]
n_l22___52 [X₁₁+1 ]
n_l22___59 [2⋅X₉-2⋅X₁₀-X₁₁ ]
n_l22___66 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l22___83 [2⋅X₉-2⋅X₁₀-2 ]
n_l24___2 [X₉+X₁₁-X₁₀ ]
n_l23___1 [2⋅X₆-2⋅X₁₀-2 ]
n_l24___51 [2⋅X₆+X₁₁-4⋅X₈-2⋅X₁₀-5 ]
n_l23___50 [2⋅X₆-2⋅X₁₀-2⋅X₁₁ ]
n_l24___58 [2⋅X₉-2⋅X₁₀-X₁₁ ]
n_l23___57 [2⋅X₆-2⋅X₁₀-X₁₁ ]
n_l24___65 [2⋅X₆-2⋅X₈-2⋅X₁₀ ]
n_l23___64 [2⋅X₉-2⋅X₁₀-2⋅X₁₁ ]
n_l24___81 [2⋅X₉-2⋅X₁₀-2⋅X₁₁ ]
n_l23___80 [2⋅X₆-2⋅X₁₀-2⋅X₁₁ ]
n_l24___9 [2⋅X₉-2⋅X₁₀-4 ]
n_l23___8 [2⋅X₆-2⋅X₁₀-2⋅X₁₁ ]
n_l13___77 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l16___76 [X₁₀+4⋅X₁₁+9-X₆ ]
n_l30___78 [X₆+X₉-2⋅X₈-2⋅X₁₀ ]
n_l8___79 [X₆+X₉-2⋅X₈-2⋅X₁₀ ]
n_l8___82 [X₈-X₁₀ ]
l32 [X₉-X₁₀-2⋅X₁₁ ]
MPRF for transition t₆₆₆: n_l18___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___60(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:
new bound:
28⋅X₆⋅X₈+84⋅X₆⋅X₆+276⋅X₆+52⋅X₈+X₁₁+230 {O(n^2)}
MPRF:
l31 [X₉+6-X₁₀-X₁₁ ]
l6 [X₉+5-X₁₀-X₁₁ ]
l7 [X₆+5-X₁₀-X₁₁ ]
l5 [2⋅X₆+5-X₉-X₁₀-X₁₁ ]
l8 [2⋅X₆+5-X₉-X₁₀-X₁₁ ]
n_l30___95 [X₉+5-X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆+2-X₁₀ ]
n_l14___75 [X₆+X₉+2-X₁₀-X₁₁ ]
n_l12___74 [2⋅X₉+2-X₈-X₁₀ ]
n_l14___92 [2⋅X₆+2-X₁₀ ]
n_l12___91 [2⋅X₉+2-X₁₀ ]
n_l15___73 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l15___90 [2⋅X₉+2-X₁₀ ]
n_l16___72 [2⋅X₆+1-X₈-X₁₀ ]
n_l16___89 [2⋅X₆+2-X₁₀ ]
n_l16___93 [X₉+X₁₀+9-X₆ ]
n_l17___71 [2⋅X₆+2-X₈-X₁₀ ]
n_l17___88 [2⋅X₆+2-X₁₀ ]
n_l19___14 [2⋅X₉+X₁₁-X₁₀ ]
n_l19___56 [4⋅X₈+X₁₀+10-X₁₁ ]
n_l19___63 [2⋅X₆+X₁₁-3⋅X₈-X₁₀ ]
n_l19___7 [2⋅X₁₀+12-X₉ ]
n_l19___70 [2⋅X₆+X₈+2-X₁₀-X₁₁ ]
n_l19___87 [2⋅X₆+2-X₁₀ ]
n_l20___13 [2⋅X₉+2-X₁₀ ]
n_l18___12 [2⋅X₆+2-X₁₀ ]
n_l20___55 [4⋅X₈+X₁₀+10-X₁₁ ]
n_l18___54 [4⋅X₈+X₁₀+10-X₁₁ ]
n_l20___6 [2⋅X₁₀+12-X₉ ]
n_l18___5 [2⋅X₁₀+12-X₆ ]
n_l20___62 [2⋅X₆+X₁₁-3⋅X₈-X₁₀ ]
n_l18___61 [2⋅X₆+2-X₈-X₁₀ ]
n_l20___69 [2⋅X₉+3-X₁₀-X₁₁ ]
n_l18___68 [2⋅X₉+3-X₁₀-X₁₁ ]
n_l20___86 [2⋅X₉+2-X₁₀ ]
n_l18___85 [2⋅X₉+2⋅X₁₁-X₁₀ ]
n_l21___11 [2⋅X₉+2-X₁₀ ]
n_l21___4 [X₆+2⋅X₁₀+3⋅X₁₁+9-2⋅X₉ ]
n_l21___53 [4⋅X₈+X₁₀+10-X₁₁ ]
n_l21___60 [2⋅X₉+1-X₈-X₁₀ ]
n_l21___67 [2⋅X₉+3-X₁₀-X₁₁ ]
n_l21___84 [2⋅X₉+2⋅X₁₁-X₁₀ ]
n_l22___10 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l22___3 [X₉+6⋅X₁₁ ]
n_l22___52 [4⋅X₈+X₁₀+10-X₁₁ ]
n_l22___59 [2⋅X₆-X₈-X₁₀-1 ]
n_l22___66 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l22___83 [2⋅X₉+1-X₁₀ ]
n_l24___2 [X₉+6 ]
n_l23___1 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l24___51 [2⋅X₉+4-X₁₀-X₁₁ ]
n_l23___50 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l24___58 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l23___57 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l24___65 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l23___64 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l24___81 [2⋅X₉+1-X₁₀ ]
n_l23___80 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l24___9 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l23___8 [2⋅X₆-X₁₀ ]
n_l13___77 [2⋅X₆+2-X₈-X₁₀ ]
n_l16___76 [2⋅X₈+X₁₀+9 ]
n_l30___78 [2⋅X₆+2-X₈-X₁₀ ]
n_l8___79 [3⋅X₆+2-X₈-X₉-X₁₀ ]
n_l8___82 [2⋅X₉+6-X₆ ]
l32 [X₆+5-X₁₀-X₁₁ ]
MPRF for transition t₆₆₇: n_l18___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___67(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
112⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+2⋅X₁₁+327⋅X₆+224 {O(n^2)}
MPRF:
l31 [-2⋅X₁₀-2⋅X₁₁-3 ]
l6 [-2⋅X₁₀-2⋅X₁₁-3 ]
l7 [-2⋅X₁₀-2⋅X₁₁-5 ]
l5 [-2⋅X₁₀-2⋅X₁₁-5 ]
l8 [-2⋅X₁₀-2⋅X₁₁-5 ]
n_l30___95 [-2⋅X₁₀-2⋅X₁₁-5 ]
n_l13___94 [2⋅X₆-2⋅X₁₀ ]
n_l14___75 [2⋅X₆-2⋅X₈-2⋅X₁₀-9 ]
n_l12___74 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-9 ]
n_l14___92 [2⋅X₉-2⋅X₁₀ ]
n_l12___91 [2⋅X₉-2⋅X₁₀ ]
n_l15___73 [2⋅X₆-2⋅X₈-2⋅X₁₀-9 ]
n_l15___90 [2⋅X₉-2⋅X₁₀ ]
n_l16___72 [2⋅X₆-2⋅X₈-2⋅X₁₀-9 ]
n_l16___89 [2⋅X₉-2⋅X₁₀-11 ]
n_l16___93 [-5 ]
n_l17___71 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-9 ]
n_l17___88 [2⋅X₆-2⋅X₁₀ ]
n_l19___14 [2⋅X₉-2⋅X₁₀ ]
n_l19___56 [13⋅X₆-13⋅X₁₀-12⋅X₁₁-32 ]
n_l19___63 [2⋅X₉-2⋅X₁₀-X₁₁-7 ]
n_l19___7 [-5 ]
n_l19___70 [2⋅X₉+6⋅X₁₁-14⋅X₈-2⋅X₁₀-15 ]
n_l19___87 [2⋅X₆-2⋅X₁₀-11⋅X₁₁ ]
n_l20___13 [2⋅X₉-2⋅X₁₀ ]
n_l18___12 [2⋅X₆-2⋅X₁₀ ]
n_l20___55 [13⋅X₆-13⋅X₁₀-12⋅X₁₁-32 ]
n_l18___54 [X₉-X₁₀-8 ]
n_l20___6 [X₉-X₁₀-8⋅X₁₁ ]
n_l18___5 [X₉-X₁₀-8⋅X₁₁ ]
n_l20___62 [2⋅X₉-2⋅X₁₀-X₁₁-7 ]
n_l18___61 [2⋅X₉-2⋅X₁₀-X₁₁-7 ]
n_l20___69 [2⋅X₉+6⋅X₁₁-14⋅X₈-2⋅X₁₀-15 ]
n_l18___68 [2⋅X₉-2⋅X₈-2⋅X₁₀-9 ]
n_l20___86 [2⋅X₉-2⋅X₁₀-11 ]
n_l18___85 [2⋅X₆-2⋅X₁₀-11 ]
n_l21___11 [2⋅X₉-2⋅X₁₀ ]
n_l21___4 [X₆-X₁₀-8 ]
n_l21___53 [X₉-X₁₀-8 ]
n_l21___60 [2⋅X₆-2⋅X₁₀-X₁₁-7 ]
n_l21___67 [2⋅X₆-2⋅X₈-2⋅X₁₀-13 ]
n_l21___84 [3⋅X₉-X₆-2⋅X₁₀-11 ]
n_l22___10 [2⋅X₆-2⋅X₁₀ ]
n_l22___3 [X₆-X₁₀-8 ]
n_l22___52 [X₆-2⋅X₈-X₁₀-8 ]
n_l22___59 [2⋅X₆-2⋅X₈-2⋅X₁₀-9 ]
n_l22___66 [18⋅X₈+2⋅X₉-2⋅X₁₀-11⋅X₁₁ ]
n_l22___83 [2⋅X₉-2⋅X₁₀-11 ]
n_l24___2 [X₆-X₁₀-8 ]
n_l23___1 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-9 ]
n_l24___51 [X₆-2⋅X₈-X₁₀-8 ]
n_l23___50 [2⋅X₆-2⋅X₈-2⋅X₁₀-X₁₁-10 ]
n_l24___58 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-9 ]
n_l23___57 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-9 ]
n_l24___65 [2⋅X₆+18⋅X₈-2⋅X₁₀-11⋅X₁₁ ]
n_l23___64 [18⋅X₈+2⋅X₉-2⋅X₁₀-11⋅X₁₁ ]
n_l24___81 [2⋅X₆-2⋅X₁₀-11 ]
n_l23___80 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-9 ]
n_l24___9 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-9 ]
n_l23___8 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-9 ]
n_l13___77 [2⋅X₆-2⋅X₈-2⋅X₁₀-9 ]
n_l16___76 [13⋅X₆-22⋅X₈-13⋅X₁₀-2⋅X₁₁-44 ]
n_l30___78 [2⋅X₆-2⋅X₈-2⋅X₁₀-9 ]
n_l8___79 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-9 ]
n_l8___82 [X₁₁-6 ]
l32 [-2⋅X₁₀-2⋅X₁₁-5 ]
MPRF for transition t₆₇₃: n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
21⋅X₆⋅X₆+39⋅X₆+X₁₁+3 {O(n^2)}
MPRF:
l31 [3-X₁₁ ]
l6 [3-X₁₁ ]
l7 [3-X₁₁ ]
l5 [X₆+3-X₉-X₁₁ ]
l8 [3-X₁₁ ]
n_l30___95 [3-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₉-X₈-X₁₀ ]
n_l12___74 [X₉-X₁₀-X₁₁ ]
n_l14___92 [X₉ ]
n_l12___91 [X₉-1 ]
n_l15___73 [X₉-X₈-X₁₀ ]
n_l15___90 [X₉-1 ]
n_l16___72 [X₉-X₁₀-X₁₁ ]
n_l16___89 [X₉-1 ]
n_l16___93 [X₆-X₁₀ ]
n_l17___71 [X₉-X₁₀-X₁₁ ]
n_l17___88 [X₉-1 ]
n_l19___14 [X₉-1 ]
n_l19___56 [2⋅X₆+X₁₁-5⋅X₈-2⋅X₁₀-4 ]
n_l19___63 [X₉+1-2⋅X₈-X₁₀ ]
n_l19___7 [X₆-X₁₀ ]
n_l19___70 [X₉-X₈-X₁₀ ]
n_l19___87 [X₉-1 ]
n_l20___13 [X₉+1-X₁₁ ]
n_l18___12 [X₉-X₁₀-1 ]
n_l20___55 [X₆-X₈-X₁₀-1 ]
n_l18___54 [X₉-X₈-X₁₀-1 ]
n_l20___6 [X₆-X₁₀ ]
n_l18___5 [X₉-X₁₀ ]
n_l20___62 [X₉+1-2⋅X₈-X₁₀ ]
n_l18___61 [X₉+1-2⋅X₈-X₁₀ ]
n_l20___69 [X₉-X₈-X₁₀ ]
n_l18___68 [X₉-X₈-X₁₀ ]
n_l20___86 [X₆-1 ]
n_l18___85 [X₉-1 ]
n_l21___11 [X₉+X₁₁-X₁₀-3 ]
n_l21___4 [3 ]
n_l21___53 [X₉-X₈-X₁₀-1 ]
n_l21___60 [X₆+1-2⋅X₈-X₁₀ ]
n_l21___67 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l21___84 [X₉-1 ]
n_l22___10 [X₉-X₁₀-1 ]
n_l22___3 [X₆+3⋅X₁₁-X₉-1 ]
n_l22___52 [X₆-2⋅X₈-X₁₀-1 ]
n_l22___59 [X₆+1-2⋅X₈-X₁₀ ]
n_l22___66 [X₉+1-2⋅X₈-X₁₀ ]
n_l22___83 [X₉-1 ]
n_l24___2 [X₉+3⋅X₁₁-X₁₀-4 ]
n_l23___1 [X₆-X₁₀-X₁₁ ]
n_l24___51 [X₉-2⋅X₈-X₁₀-1 ]
n_l23___50 [X₆-2⋅X₈-X₁₀-1 ]
n_l24___58 [X₉+1-2⋅X₈-X₁₀ ]
n_l23___57 [X₉+1-2⋅X₈-X₁₀ ]
n_l24___65 [X₉-X₁₀-X₁₁ ]
n_l23___64 [X₉-X₁₀-X₁₁ ]
n_l24___81 [X₉-1 ]
n_l23___80 [X₆-X₁₁ ]
n_l24___9 [X₆-X₁₀-1 ]
n_l23___8 [X₆-X₁₀-X₁₁ ]
n_l13___77 [X₉-X₈-X₁₀ ]
n_l16___76 [2⋅X₉-2⋅X₈-2⋅X₁₀-X₁₁-3 ]
n_l30___78 [X₆-X₁₀-X₁₁ ]
n_l8___79 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l8___82 [X₆+3-X₈ ]
l32 [3-X₁₁ ]
MPRF for transition t₆₇₄: n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:
new bound:
21⋅X₆⋅X₆+81⋅X₆+X₁₁+80 {O(n^2)}
MPRF:
l31 [2-X₁₀-X₁₁ ]
l6 [2-X₁₀-X₁₁ ]
l7 [2-X₁₀-X₁₁ ]
l5 [2-X₁₀-X₁₁ ]
l8 [2-X₁₀-X₁₁ ]
n_l30___95 [2-X₁₀-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₆-X₈-X₁₀-1 ]
n_l12___74 [X₉-X₁₀-X₁₁-1 ]
n_l14___92 [X₆ ]
n_l12___91 [X₆ ]
n_l15___73 [X₉-X₈-X₁₀-1 ]
n_l15___90 [X₉ ]
n_l16___72 [X₆-X₁₀-X₁₁-2 ]
n_l16___89 [X₆-1 ]
n_l16___93 [X₁₀+6-X₆ ]
n_l17___71 [X₆-X₁₀-X₁₁-1 ]
n_l17___88 [X₉ ]
n_l19___14 [X₉ ]
n_l19___56 [X₆-2⋅X₈-X₁₀ ]
n_l19___63 [X₆-2⋅X₈-X₁₀ ]
n_l19___7 [X₁₀+6-X₆ ]
n_l19___70 [X₉+X₁₁-3⋅X₈-X₁₀-3 ]
n_l19___87 [X₉-1 ]
n_l20___13 [X₉ ]
n_l18___12 [X₆ ]
n_l20___55 [X₆-2⋅X₈-X₁₀ ]
n_l18___54 [X₆-2⋅X₈-X₁₀ ]
n_l20___6 [X₁₀+6-X₉ ]
n_l18___5 [X₁₀+6-X₆ ]
n_l20___62 [X₉-2⋅X₈-X₁₀-1 ]
n_l18___61 [X₆+1-X₁₀-X₁₁ ]
n_l20___69 [X₉+X₁₁-3⋅X₈-X₁₀-3 ]
n_l18___68 [X₆-2⋅X₈-X₁₀-1 ]
n_l20___86 [X₉-1 ]
n_l18___85 [X₉-1 ]
n_l21___11 [X₉ ]
n_l21___4 [X₁₀+2⋅X₁₁+4-X₉ ]
n_l21___53 [X₉-2⋅X₈-X₁₀ ]
n_l21___60 [X₆+1-X₁₀-X₁₁ ]
n_l21___67 [X₉-2⋅X₈-X₁₀-1 ]
n_l21___84 [X₉-1 ]
n_l22___10 [X₆-X₁₁-1 ]
n_l22___3 [X₉+2⋅X₁₁-X₁₀-4 ]
n_l22___52 [X₉-2⋅X₈-X₁₀ ]
n_l22___59 [X₉-X₁₀-X₁₁-1 ]
n_l22___66 [X₆-2⋅X₈-X₁₀-2 ]
n_l22___83 [X₉-2⋅X₁₁ ]
n_l24___2 [X₆-X₁₀-2 ]
n_l23___1 [X₆-X₁₀-X₁₁-1 ]
n_l24___51 [X₉-2⋅X₈-X₁₀ ]
n_l23___50 [X₆-X₁₀-X₁₁-1 ]
n_l24___58 [X₉-X₁₀-X₁₁-1 ]
n_l23___57 [X₆-X₁₀-X₁₁-1 ]
n_l24___65 [X₉-2⋅X₈-X₁₀-2 ]
n_l23___64 [X₉-X₁₀-X₁₁-1 ]
n_l24___81 [X₆-2 ]
n_l23___80 [X₆-X₁₁-1 ]
n_l24___9 [X₆-X₁₁-1 ]
n_l23___8 [X₆-X₁₁-1 ]
n_l13___77 [X₆-X₈-X₁₀-1 ]
n_l16___76 [X₆-X₁₀-2⋅X₁₁ ]
n_l30___78 [X₆-X₈-X₁₀-1 ]
n_l8___79 [X₆-X₈-X₁₀-1 ]
n_l8___82 [X₆+3-X₉ ]
l32 [2-X₁₀-X₁₁ ]
MPRF for transition t₆₇₆: n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
84⋅X₆⋅X₆+241⋅X₆+X₁₁+171 {O(n^2)}
MPRF:
l31 [X₉+12-3⋅X₁₀-X₁₁ ]
l6 [X₉+9-3⋅X₁₀-X₁₁ ]
l7 [X₆+9-3⋅X₁₀-X₁₁ ]
l5 [X₉+9-3⋅X₁₀-X₁₁ ]
l8 [X₆+9-3⋅X₁₀-X₁₁ ]
n_l30___95 [X₆+9-3⋅X₁₀-X₁₁ ]
n_l13___94 [5⋅X₆ ]
n_l14___75 [4⋅X₉-X₈-3⋅X₁₀ ]
n_l12___74 [4⋅X₉-X₈-3⋅X₁₀ ]
n_l14___92 [5⋅X₆ ]
n_l12___91 [5⋅X₉ ]
n_l15___73 [4⋅X₆-3⋅X₁₀-X₁₁ ]
n_l15___90 [4⋅X₉+1 ]
n_l16___72 [3⋅X₆+X₉-X₈-3⋅X₁₀ ]
n_l16___89 [4⋅X₉+1 ]
n_l16___93 [4⋅X₆+12-3⋅X₉ ]
n_l17___71 [4⋅X₉-3⋅X₁₀-X₁₁ ]
n_l17___88 [4⋅X₆+1 ]
n_l19___14 [4⋅X₉+1 ]
n_l19___56 [2⋅X₈+X₉+X₁₁+9 ]
n_l19___63 [4⋅X₆+X₈+2-3⋅X₁₀-X₁₁ ]
n_l19___7 [4⋅X₆+3-3⋅X₁₀ ]
n_l19___70 [4⋅X₉-X₈-3⋅X₁₀ ]
n_l19___87 [4⋅X₉+X₁₁ ]
n_l20___13 [4⋅X₉+3-X₁₁ ]
n_l18___12 [4⋅X₆+1 ]
n_l20___55 [2⋅X₈+X₉+X₁₁+9 ]
n_l18___54 [2⋅X₈+X₉+X₁₁+9 ]
n_l20___6 [4⋅X₉+3⋅X₁₁-3⋅X₁₀ ]
n_l18___5 [4⋅X₉+3-3⋅X₁₀ ]
n_l20___62 [4⋅X₆+X₈+2-3⋅X₁₀-X₁₁ ]
n_l18___61 [4⋅X₆+X₈+2-3⋅X₁₀-X₁₁ ]
n_l20___69 [4⋅X₉+1-3⋅X₁₀-X₁₁ ]
n_l18___68 [4⋅X₉+1-3⋅X₁₀-X₁₁ ]
n_l20___86 [4⋅X₉+1 ]
n_l18___85 [4⋅X₉+1 ]
n_l21___11 [4⋅X₉+1 ]
n_l21___4 [4⋅X₉+3-3⋅X₁₀ ]
n_l21___53 [X₆+2⋅X₈+X₁₁+9 ]
n_l21___60 [4⋅X₆+X₈+2-3⋅X₁₀-X₁₁ ]
n_l21___67 [4⋅X₉+1-3⋅X₁₀-X₁₁ ]
n_l21___84 [4⋅X₉+1 ]
n_l22___10 [4⋅X₆-X₁₁ ]
n_l22___3 [4⋅X₉-3⋅X₁₀-X₁₁ ]
n_l22___52 [X₆+2⋅X₈+X₁₁+9 ]
n_l22___59 [4⋅X₉+3-3⋅X₁₀-X₁₁ ]
n_l22___66 [4⋅X₉-3⋅X₁₀-X₁₁ ]
n_l22___83 [4⋅X₆ ]
n_l24___2 [4⋅X₉-3⋅X₁₀-1 ]
n_l23___1 [4⋅X₆-3⋅X₁₀-X₁₁ ]
n_l24___51 [2⋅X₈+X₉+X₁₁+9 ]
n_l23___50 [4⋅X₆-3⋅X₁₀-X₁₁ ]
n_l24___58 [4⋅X₆-3⋅X₁₀-X₁₁ ]
n_l23___57 [4⋅X₉-2⋅X₈-3⋅X₁₀-2 ]
n_l24___65 [4⋅X₉-3⋅X₁₀-X₁₁ ]
n_l23___64 [4⋅X₉-3⋅X₁₀-X₁₁ ]
n_l24___81 [4⋅X₉ ]
n_l23___80 [4⋅X₆-3⋅X₁₀-X₁₁ ]
n_l24___9 [4⋅X₉-X₁₁ ]
n_l23___8 [4⋅X₆-3⋅X₁₀-X₁₁ ]
n_l13___77 [4⋅X₆-3⋅X₁₀-X₁₁ ]
n_l16___76 [X₆+4⋅X₈+10 ]
n_l30___78 [4⋅X₆-3⋅X₁₀-X₁₁ ]
n_l8___79 [3⋅X₆+X₉+X₁₁-2⋅X₈-3⋅X₁₀ ]
n_l8___82 [X₈+X₉+9-X₁₀ ]
l32 [X₆+9-3⋅X₁₀-X₁₁ ]
MPRF for transition t₆₈₂: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___54(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
14⋅X₆⋅X₆+75⋅X₆+X₁₁+98 {O(n^2)}
MPRF:
l31 [7-X₁₁ ]
l6 [7-X₁₁ ]
l7 [7-X₁₁ ]
l5 [7-X₁₁ ]
l8 [7-X₁₁ ]
n_l30___95 [X₉+7-X₆-X₁₁ ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l12___74 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l14___92 [2⋅X₉ ]
n_l12___91 [2⋅X₉ ]
n_l15___73 [2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l16___89 [2⋅X₉ ]
n_l16___93 [7 ]
n_l17___71 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l17___88 [2⋅X₆ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [X₆+5-X₁₀ ]
n_l19___63 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l19___7 [7 ]
n_l19___70 [2⋅X₆+X₁₁-3⋅X₈-2⋅X₁₀ ]
n_l19___87 [2⋅X₉ ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [X₉+5-X₁₀ ]
n_l18___54 [X₉+4⋅X₁₁-8⋅X₈-X₁₀ ]
n_l20___6 [7 ]
n_l18___5 [7 ]
n_l20___62 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l18___61 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l20___69 [2⋅X₉+2-2⋅X₈-2⋅X₁₀ ]
n_l18___68 [2⋅X₉+2-2⋅X₈-2⋅X₁₀ ]
n_l20___86 [2⋅X₆ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₉ ]
n_l21___4 [3⋅X₁₁+4 ]
n_l21___53 [X₉+4⋅X₁₁-8⋅X₈-X₁₀ ]
n_l21___60 [X₈+2⋅X₉+3-2⋅X₁₀-X₁₁ ]
n_l21___67 [2⋅X₆+2-2⋅X₈-2⋅X₁₀ ]
n_l21___84 [2⋅X₉ ]
n_l22___10 [2⋅X₆+1-X₁₁ ]
n_l22___3 [X₆+3⋅X₁₁-X₁₀ ]
n_l22___52 [X₉+4⋅X₁₁-8⋅X₈-X₁₀ ]
n_l22___59 [X₈+2⋅X₉+3-2⋅X₁₀-X₁₁ ]
n_l22___66 [2⋅X₆+2-2⋅X₈-2⋅X₁₀ ]
n_l22___83 [2⋅X₉ ]
n_l24___2 [X₉+3⋅X₁₁-X₁₀ ]
n_l23___1 [2⋅X₆-2⋅X₁₀ ]
n_l24___51 [X₆+4⋅X₁₁-8⋅X₈-X₁₀ ]
n_l23___50 [2⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l24___58 [X₈+2⋅X₉+3-2⋅X₁₀-X₁₁ ]
n_l23___57 [X₈+2⋅X₉+3-2⋅X₁₀-X₁₁ ]
n_l24___65 [2⋅X₉+2-2⋅X₈-2⋅X₁₀ ]
n_l23___64 [2⋅X₉+2-2⋅X₈-2⋅X₁₀ ]
n_l24___81 [X₆+X₉ ]
n_l23___80 [2⋅X₆ ]
n_l24___9 [2⋅X₉+1-X₁₁ ]
n_l23___8 [2⋅X₆+1-X₁₁ ]
n_l13___77 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l16___76 [X₆+2⋅X₈+4-X₁₀-X₁₁ ]
n_l30___78 [X₆+X₉+1-2⋅X₁₀-X₁₁ ]
n_l8___79 [X₆+X₉+1-2⋅X₁₀-X₁₁ ]
n_l8___82 [X₈+X₉+4-X₆-X₁₀ ]
l32 [7-X₁₁ ]
MPRF for transition t₆₈₄: n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___61(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:
new bound:
28⋅X₆⋅X₆+153⋅X₆+X₁₁+196 {O(n^2)}
MPRF:
l31 [2⋅X₉+8-X₆-X₁₀-X₁₁ ]
l6 [2⋅X₉+8-X₆-X₁₀-X₁₁ ]
l7 [2⋅X₉+8-X₆-X₁₀-X₁₁ ]
l5 [X₆+8-X₁₀-X₁₁ ]
l8 [X₉+8-X₁₀-X₁₁ ]
n_l30___95 [X₉+8-X₁₀-X₁₁ ]
n_l13___94 [4⋅X₆-3 ]
n_l14___75 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l12___74 [2⋅X₉+6-X₈-2⋅X₁₀ ]
n_l14___92 [4⋅X₆-3 ]
n_l12___91 [4⋅X₉-3 ]
n_l15___73 [2⋅X₆+6-X₈-2⋅X₁₀ ]
n_l15___90 [4⋅X₉-2⋅X₁₀-3 ]
n_l16___72 [2⋅X₉+4-X₈-2⋅X₁₀ ]
n_l16___89 [4⋅X₉-2⋅X₁₀-3 ]
n_l16___93 [11 ]
n_l17___71 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l17___88 [4⋅X₆-2⋅X₁₀-3 ]
n_l19___14 [4⋅X₆-2⋅X₁₀-3 ]
n_l19___56 [2⋅X₆+5-2⋅X₈-2⋅X₁₀ ]
n_l19___63 [2⋅X₆+6-X₈-2⋅X₁₀ ]
n_l19___7 [4⋅X₆+11⋅X₁₁-4⋅X₉ ]
n_l19___70 [2⋅X₆+X₈+5-2⋅X₁₀-X₁₁ ]
n_l19___87 [4⋅X₆-2⋅X₁₀-3 ]
n_l20___13 [4⋅X₆-2⋅X₁₀-3 ]
n_l18___12 [4⋅X₉-2⋅X₁₀-3 ]
n_l20___55 [2⋅X₆+6-2⋅X₁₀-X₁₁ ]
n_l18___54 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l20___6 [4⋅X₉+11-4⋅X₆ ]
n_l18___5 [10⋅X₁₁+1 ]
n_l20___62 [2⋅X₆+3⋅X₁₁-7⋅X₈-2⋅X₁₀ ]
n_l18___61 [2⋅X₉+3⋅X₁₁-7⋅X₈-2⋅X₁₀-1 ]
n_l20___69 [X₈+2⋅X₉+5-2⋅X₁₀-X₁₁ ]
n_l18___68 [X₈+2⋅X₉+5-2⋅X₁₀-X₁₁ ]
n_l20___86 [4⋅X₉-2⋅X₁₀-3⋅X₁₁ ]
n_l18___85 [4⋅X₉+4-2⋅X₁₀-7⋅X₁₁ ]
n_l21___11 [4⋅X₉+X₁₁-2⋅X₁₀-5 ]
n_l21___4 [10⋅X₁₁+1 ]
n_l21___53 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l21___60 [2⋅X₉+3⋅X₁₁-7⋅X₈-2⋅X₁₀-3 ]
n_l21___67 [2⋅X₉+X₁₁+3-3⋅X₈-2⋅X₁₀ ]
n_l21___84 [4⋅X₆+4-2⋅X₁₀-7⋅X₁₁ ]
n_l22___10 [4⋅X₉+X₁₁-2⋅X₁₀-5 ]
n_l22___3 [4⋅X₉+10⋅X₁₁-4⋅X₁₀-11 ]
n_l22___52 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l22___59 [2⋅X₉+2⋅X₁₁-6⋅X₈-2⋅X₁₀ ]
n_l22___66 [2⋅X₆+X₁₁+3-3⋅X₈-2⋅X₁₀ ]
n_l22___83 [4⋅X₆-2⋅X₁₀-3⋅X₁₁ ]
n_l24___2 [4⋅X₆-4⋅X₁₀-X₁₁ ]
n_l23___1 [4⋅X₆-4⋅X₁₀-X₁₁ ]
n_l24___51 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l23___50 [5⋅X₆-5⋅X₁₀-4⋅X₁₁ ]
n_l24___58 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l23___57 [2⋅X₉+6-2⋅X₁₀-X₁₁ ]
n_l24___65 [2⋅X₆+4⋅X₁₁-9⋅X₈-2⋅X₁₀ ]
n_l23___64 [2⋅X₉+4⋅X₁₁-9⋅X₈-2⋅X₁₀ ]
n_l24___81 [4⋅X₉-2⋅X₁₀-3 ]
n_l23___80 [2⋅X₆+5⋅X₁₁ ]
n_l24___9 [4⋅X₆-2⋅X₁₀-3 ]
n_l23___8 [4⋅X₆-2⋅X₁₀-X₁₁-1 ]
n_l13___77 [2⋅X₆+6-2⋅X₁₀-X₁₁ ]
n_l16___76 [2⋅X₆+X₈+4-2⋅X₁₀-2⋅X₁₁ ]
n_l30___78 [2⋅X₆+6-2⋅X₁₀-X₁₁ ]
n_l8___79 [2⋅X₉+6-X₈-2⋅X₁₀ ]
n_l8___82 [2⋅X₉+8-X₆-X₁₀ ]
l32 [X₆+8-X₁₀-X₁₁ ]
MPRF for transition t₆₈₅: n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___68(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
28⋅X₆⋅X₆+116⋅X₆+2⋅X₁₁+122 {O(n^2)}
MPRF:
l31 [X₉-2⋅X₁₀-2⋅X₁₁-2 ]
l6 [X₆-2⋅X₁₀-2⋅X₁₁-2 ]
l7 [3⋅X₆-2⋅X₉-2⋅X₁₀-2⋅X₁₁-2 ]
l5 [3⋅X₆-2⋅X₉-2⋅X₁₀-2⋅X₁₁-2 ]
l8 [3⋅X₆-2⋅X₉-2⋅X₁₀-2⋅X₁₁-2 ]
n_l30___95 [6⋅X₆-5⋅X₉-2⋅X₁₀-2⋅X₁₁-2 ]
n_l13___94 [3⋅X₆-8 ]
n_l14___75 [3⋅X₆-2⋅X₁₀-2⋅X₁₁-6 ]
n_l12___74 [3⋅X₉-2⋅X₁₀-2⋅X₁₁-6 ]
n_l14___92 [3⋅X₆-8 ]
n_l12___91 [3⋅X₆-8 ]
n_l15___73 [3⋅X₆+X₈-2⋅X₁₀-3⋅X₁₁-6 ]
n_l15___90 [3⋅X₉-8 ]
n_l16___72 [3⋅X₆-2⋅X₁₀-2⋅X₁₁-6 ]
n_l16___89 [3⋅X₆-8 ]
n_l16___93 [X₁₀+1 ]
n_l17___71 [3⋅X₉-2⋅X₁₀-2⋅X₁₁-6 ]
n_l17___88 [3⋅X₉-2⋅X₁₀-8 ]
n_l19___14 [3⋅X₉-2⋅X₁₀-8 ]
n_l19___56 [3⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l19___63 [3⋅X₉-2⋅X₈-2⋅X₁₀-6 ]
n_l19___7 [X₁₀+1 ]
n_l19___70 [3⋅X₆-2⋅X₈-2⋅X₁₀-6 ]
n_l19___87 [3⋅X₉-8 ]
n_l20___13 [3⋅X₆-2⋅X₁₀-8 ]
n_l18___12 [3⋅X₉-2⋅X₁₀-4⋅X₁₁ ]
n_l20___55 [3⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l18___54 [3⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l20___6 [X₁₀+X₁₁ ]
n_l18___5 [X₁₀+1 ]
n_l20___62 [3⋅X₉-2⋅X₈-2⋅X₁₀-6 ]
n_l18___61 [3⋅X₉-2⋅X₈-2⋅X₁₀-6 ]
n_l20___69 [3⋅X₉-2⋅X₈-2⋅X₁₀-6 ]
n_l18___68 [28⋅X₈+3⋅X₉+5-2⋅X₁₀-15⋅X₁₁ ]
n_l20___86 [3⋅X₉-8 ]
n_l18___85 [3⋅X₉-8 ]
n_l21___11 [3⋅X₉-2⋅X₁₀-8 ]
n_l21___4 [X₁₀+1 ]
n_l21___53 [3⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l21___60 [3⋅X₆-2⋅X₈-2⋅X₁₀-6 ]
n_l21___67 [28⋅X₈+3⋅X₉+5-2⋅X₁₀-15⋅X₁₁ ]
n_l21___84 [3⋅X₆-8 ]
n_l22___10 [3⋅X₉-2⋅X₁₀-8 ]
n_l22___3 [3⋅X₆-2⋅X₁₀-8 ]
n_l22___52 [3⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l22___59 [3⋅X₆-2⋅X₁₀-X₁₁-4 ]
n_l22___66 [28⋅X₈+3⋅X₉+5-2⋅X₁₀-15⋅X₁₁ ]
n_l22___83 [3⋅X₆-8 ]
n_l24___2 [3⋅X₉-2⋅X₁₀-8⋅X₁₁ ]
n_l23___1 [3⋅X₆-2⋅X₁₀-2⋅X₁₁-6 ]
n_l24___51 [3⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l23___50 [3⋅X₆+2⋅X₈-2⋅X₁₀-2⋅X₁₁-6 ]
n_l24___58 [3⋅X₉-2⋅X₁₀-2⋅X₁₁-6 ]
n_l23___57 [3⋅X₉-2⋅X₁₀-2⋅X₁₁-6 ]
n_l24___65 [3⋅X₆+26⋅X₈+7-2⋅X₁₀-15⋅X₁₁ ]
n_l23___64 [26⋅X₈+3⋅X₉+7-2⋅X₁₀-15⋅X₁₁ ]
n_l24___81 [3⋅X₉-2⋅X₁₁-6 ]
n_l23___80 [3⋅X₆-2⋅X₁₁-6 ]
n_l24___9 [3⋅X₆-2⋅X₁₀-8 ]
n_l23___8 [3⋅X₆-2⋅X₁₀-2⋅X₁₁-6 ]
n_l13___77 [3⋅X₆-2⋅X₈-2⋅X₁₀-6 ]
n_l16___76 [3⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l30___78 [3⋅X₆-2⋅X₈-2⋅X₁₀-6 ]
n_l8___79 [3⋅X₉-2⋅X₈-2⋅X₁₀-6 ]
n_l8___82 [3⋅X₈+X₁₁-2⋅X₆-3 ]
l32 [X₉-2⋅X₁₀-2⋅X₁₁-2 ]
MPRF for transition t₆₉₇: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
35⋅X₆⋅X₆+174⋅X₆+X₁₁+198 {O(n^2)}
MPRF:
l31 [4⋅X₆+3-5⋅X₁₀-X₁₁ ]
l6 [4⋅X₉+3-5⋅X₁₀-X₁₁ ]
l7 [4⋅X₉+3-5⋅X₁₀-X₁₁ ]
l5 [4⋅X₆+3-5⋅X₁₀-X₁₁ ]
l8 [4⋅X₆+3-5⋅X₁₀-X₁₁ ]
n_l30___95 [4⋅X₉+3-5⋅X₁₀-X₁₁ ]
n_l13___94 [5⋅X₆ ]
n_l14___75 [5⋅X₉-2⋅X₈-5⋅X₁₀ ]
n_l12___74 [5⋅X₉-2⋅X₈-5⋅X₁₀ ]
n_l14___92 [5⋅X₉ ]
n_l12___91 [5⋅X₉ ]
n_l15___73 [5⋅X₉-5⋅X₁₀-2⋅X₁₁ ]
n_l15___90 [5⋅X₉ ]
n_l16___72 [5⋅X₉-2⋅X₈-5⋅X₁₀ ]
n_l16___89 [5⋅X₉ ]
n_l16___93 [15 ]
n_l17___71 [5⋅X₉-5⋅X₁₀-2⋅X₁₁ ]
n_l17___88 [5⋅X₆ ]
n_l19___14 [5⋅X₆ ]
n_l19___56 [8⋅X₈+2⋅X₁₀+2⋅X₁₁+20-2⋅X₆ ]
n_l19___63 [5⋅X₉+X₁₁-4⋅X₈-5⋅X₁₀-3 ]
n_l19___7 [15 ]
n_l19___70 [5⋅X₉-2⋅X₈-5⋅X₁₀ ]
n_l19___87 [5⋅X₉ ]
n_l20___13 [5⋅X₆ ]
n_l18___12 [5⋅X₆ ]
n_l20___55 [8⋅X₈+X₉+2⋅X₁₀+2⋅X₁₁+20-3⋅X₆ ]
n_l18___54 [8⋅X₈+2⋅X₁₀+2⋅X₁₁+20-2⋅X₆ ]
n_l20___6 [15 ]
n_l18___5 [15 ]
n_l20___62 [5⋅X₉+X₁₁-4⋅X₈-5⋅X₁₀-3 ]
n_l18___61 [5⋅X₆+X₁₁-4⋅X₈-5⋅X₁₀-3 ]
n_l20___69 [5⋅X₆-2⋅X₈-5⋅X₁₀ ]
n_l18___68 [5⋅X₉-2⋅X₈-5⋅X₁₀ ]
n_l20___86 [5⋅X₉ ]
n_l18___85 [5⋅X₉ ]
n_l21___11 [5⋅X₉ ]
n_l21___4 [15 ]
n_l21___53 [4⋅X₈+2⋅X₁₁+14 ]
n_l21___60 [5⋅X₉+X₁₁-4⋅X₈-5⋅X₁₀-3 ]
n_l21___67 [5⋅X₉+X₁₁-4⋅X₈-5⋅X₁₀-1 ]
n_l21___84 [5⋅X₉ ]
n_l22___10 [5⋅X₉ ]
n_l22___3 [15⋅X₁₁ ]
n_l22___52 [4⋅X₈+2⋅X₁₁+13 ]
n_l22___59 [5⋅X₉-2⋅X₈-5⋅X₁₀-1 ]
n_l22___66 [5⋅X₉+X₁₁-4⋅X₈-5⋅X₁₀-1 ]
n_l22___83 [5⋅X₉ ]
n_l24___2 [15 ]
n_l23___1 [5⋅X₆+1-5⋅X₁₀-X₁₁ ]
n_l24___51 [5⋅X₆+4⋅X₈+3-5⋅X₁₀-3⋅X₁₁ ]
n_l23___50 [5⋅X₆+1-5⋅X₁₀-X₁₁ ]
n_l24___58 [5⋅X₉+1-5⋅X₁₀-X₁₁ ]
n_l23___57 [5⋅X₆+1-5⋅X₁₀-X₁₁ ]
n_l24___65 [5⋅X₉-2⋅X₈-5⋅X₁₀ ]
n_l23___64 [5⋅X₆+1-5⋅X₁₀-X₁₁ ]
n_l24___81 [5⋅X₆+1-X₁₁ ]
n_l23___80 [5⋅X₆+1-X₁₁ ]
n_l24___9 [5⋅X₉ ]
n_l23___8 [5⋅X₆+1-X₁₁ ]
n_l13___77 [5⋅X₆-2⋅X₈-5⋅X₁₀ ]
n_l16___76 [2⋅X₁₀+12⋅X₁₁+22-2⋅X₆ ]
n_l30___78 [5⋅X₆+1-2⋅X₈-5⋅X₁₀ ]
n_l8___79 [4⋅X₆+X₉+1-X₈-5⋅X₁₀ ]
n_l8___82 [X₈+3⋅X₉-4⋅X₁₀-1 ]
l32 [4⋅X₉-5⋅X₁₀-X₁₁-1 ]
MPRF for transition t₆₉₈: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l31 [X₆-X₁₀ ]
l6 [X₆-X₁₀ ]
l7 [X₉-X₁₀ ]
l5 [X₉-X₁₀ ]
l8 [X₆-X₁₀ ]
n_l14___75 [X₆-X₁₀ ]
n_l12___74 [X₉-X₁₀ ]
n_l14___92 [X₉-X₁₀ ]
n_l12___91 [X₉-X₁₀ ]
n_l15___73 [X₉-X₁₀ ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₆-X₁₀ ]
n_l16___89 [X₉-X₁₀ ]
n_l17___71 [X₉-X₁₀ ]
n_l17___88 [X₆-X₁₀ ]
n_l19___14 [X₆-X₁₀ ]
n_l19___56 [2⋅X₈+X₉+3-X₆ ]
n_l19___63 [X₉-X₁₀ ]
n_l19___7 [X₆-X₁₀ ]
n_l19___70 [X₉-X₁₀ ]
n_l19___87 [X₆-X₁₀ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₉-X₁₀ ]
n_l20___55 [X₉+X₁₁+2-X₆ ]
n_l18___54 [X₉-X₁₀ ]
n_l20___6 [X₉-X₁₀ ]
n_l18___5 [X₉-X₁₀ ]
n_l20___62 [X₉-X₁₀ ]
n_l18___61 [X₆-X₁₀ ]
n_l20___69 [X₉-X₁₀ ]
n_l18___68 [X₆-X₁₀ ]
n_l20___86 [X₆-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [X₉-X₁₀ ]
n_l21___53 [X₉-X₁₀ ]
n_l21___60 [X₆-X₁₀ ]
n_l21___67 [X₉-X₁₀ ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₉-X₁₀ ]
n_l22___3 [X₉-X₁₀ ]
n_l22___52 [2⋅X₈+X₉+1-X₁₀-X₁₁ ]
n_l22___59 [X₆-X₁₀ ]
n_l22___66 [X₉-X₁₀ ]
n_l22___83 [X₉-X₁₀ ]
n_l24___2 [X₉-X₁₀ ]
n_l23___1 [X₆-X₁₀ ]
n_l24___51 [X₆+2⋅X₈+1-X₁₀-X₁₁ ]
n_l23___50 [X₆+2⋅X₈+1-X₁₀-X₁₁ ]
n_l24___58 [X₉-X₁₀ ]
n_l23___57 [X₉-X₁₀ ]
n_l24___65 [X₉-X₁₀ ]
n_l23___64 [X₉-X₁₀ ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆-X₁₀ ]
n_l24___9 [X₆-X₁₀ ]
n_l23___8 [X₆-X₁₀ ]
n_l13___77 [X₉-X₁₀ ]
n_l16___76 [2⋅X₁₁+3 ]
n_l13___94 [X₆-X₁₀ ]
n_l30___95 [X₆-X₁₀ ]
n_l16___93 [3 ]
n_l30___78 [X₆-X₁₀ ]
n_l8___79 [X₉-X₁₀ ]
n_l8___82 [X₉-X₁₀-1 ]
l32 [X₆-X₁₀-1 ]
MPRF for transition t₆₉₉: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:
new bound:
7⋅X₆⋅X₆+27⋅X₆+X₁₁+26 {O(n^2)}
MPRF:
l31 [-X₁₀-X₁₁ ]
l6 [X₉-X₆-X₁₀-X₁₁ ]
l7 [-X₁₀-X₁₁ ]
l5 [-X₁₀-X₁₁ ]
l8 [-X₁₀-X₁₁ ]
n_l30___95 [-X₁₀-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₉-X₈-X₁₀ ]
n_l12___74 [X₉-X₁₀-X₁₁ ]
n_l14___92 [X₆ ]
n_l12___91 [X₉ ]
n_l15___73 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l15___90 [X₉-1 ]
n_l16___72 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l16___89 [X₆-1 ]
n_l16___93 [2 ]
n_l17___71 [X₉-X₁₀-X₁₁ ]
n_l17___88 [X₉-1 ]
n_l19___14 [X₉-X₁₁ ]
n_l19___56 [4 ]
n_l19___63 [X₉-X₈-X₁₀ ]
n_l19___7 [X₉+2-X₆ ]
n_l19___70 [X₉+1-2⋅X₈-X₁₀ ]
n_l19___87 [X₆-X₁₁ ]
n_l20___13 [X₉-2 ]
n_l18___12 [X₉-2 ]
n_l20___55 [4 ]
n_l18___54 [X₆+2-X₁₀-X₁₁ ]
n_l20___6 [2 ]
n_l18___5 [X₆+2-X₉ ]
n_l20___62 [X₆-X₈-X₁₀ ]
n_l18___61 [X₉-X₈-X₁₀-2 ]
n_l20___69 [X₉+1-2⋅X₈-X₁₀ ]
n_l18___68 [X₆+1-2⋅X₈-X₁₀ ]
n_l20___86 [X₆-1 ]
n_l18___85 [X₉-X₁₁ ]
n_l21___11 [X₆-2 ]
n_l21___4 [2 ]
n_l21___53 [X₉+2-X₁₀-X₁₁ ]
n_l21___60 [X₉-X₈-X₁₀-2 ]
n_l21___67 [X₆+2-X₁₀-X₁₁ ]
n_l21___84 [X₉-1 ]
n_l22___10 [X₆-2 ]
n_l22___3 [X₉-X₁₀-X₁₁ ]
n_l22___52 [X₉-X₁₀-X₁₁ ]
n_l22___59 [X₉-X₁₀-X₁₁ ]
n_l22___66 [X₉-X₁₀-X₁₁ ]
n_l22___83 [X₉-1 ]
n_l24___2 [X₉-X₁₀-1 ]
n_l23___1 [X₆-X₁₀-X₁₁ ]
n_l24___51 [X₉-X₁₀-X₁₁ ]
n_l23___50 [X₆-X₁₀-X₁₁ ]
n_l24___58 [X₉-X₁₀-X₁₁ ]
n_l23___57 [X₆-X₁₀-X₁₁ ]
n_l24___65 [X₆-X₁₀-X₁₁ ]
n_l23___64 [X₉-X₁₀-X₁₁ ]
n_l24___81 [X₆-1 ]
n_l23___80 [X₆-1 ]
n_l24___9 [X₆+2-2⋅X₁₁ ]
n_l23___8 [X₆-X₁₁ ]
n_l13___77 [X₆-X₁₀-X₁₁ ]
n_l16___76 [4 ]
n_l30___78 [X₆-X₈-X₁₀ ]
n_l8___79 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l8___82 [2 ]
l32 [-X₁₀-X₁₁ ]
MPRF for transition t₇₀₀: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:
new bound:
X₆+3 {O(n)}
MPRF:
l31 [X₉-X₁₀ ]
l6 [X₉-X₁₀ ]
l7 [X₆-X₁₀ ]
l5 [X₆-X₁₀ ]
l8 [X₉-X₁₀ ]
n_l14___75 [X₆-X₁₀ ]
n_l12___74 [X₉-X₁₀ ]
n_l14___92 [X₉-X₁₀ ]
n_l12___91 [X₉-X₁₀ ]
n_l15___73 [X₉-X₁₀ ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₉-X₁₀ ]
n_l16___89 [X₉-X₁₀ ]
n_l17___71 [X₉-X₁₀ ]
n_l17___88 [X₉-X₁₀ ]
n_l19___14 [X₉-X₁₀ ]
n_l19___56 [2⋅X₈+3 ]
n_l19___63 [X₉-X₁₀ ]
n_l19___7 [X₉-X₁₀ ]
n_l19___70 [X₉-X₁₀ ]
n_l19___87 [X₉-X₁₀ ]
n_l20___13 [X₆-X₁₀ ]
n_l18___12 [X₆-X₁₀ ]
n_l20___55 [2⋅X₈+3 ]
n_l18___54 [2⋅X₈+3 ]
n_l20___6 [X₉-X₁₀ ]
n_l18___5 [X₆-X₁₀ ]
n_l20___62 [X₆-X₁₀ ]
n_l18___61 [X₆-X₁₀ ]
n_l20___69 [X₉-X₁₀ ]
n_l18___68 [X₉-X₁₀ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [X₉-X₁₀ ]
n_l21___53 [2⋅X₈+3 ]
n_l21___60 [X₆-X₁₀ ]
n_l21___67 [X₆-X₁₀ ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₆-X₁₀ ]
n_l22___3 [X₆+3-X₉ ]
n_l22___52 [2⋅X₈+3 ]
n_l22___59 [X₆-X₁₀ ]
n_l22___66 [X₆-X₁₀ ]
n_l22___83 [X₆-X₁₀ ]
n_l24___2 [X₉-X₁₀ ]
n_l23___1 [X₆-X₁₀ ]
n_l24___51 [X₉-X₁₀ ]
n_l23___50 [X₆-X₁₀ ]
n_l24___58 [X₆-X₁₀ ]
n_l23___57 [X₆-X₁₀ ]
n_l24___65 [X₉-X₁₀ ]
n_l23___64 [X₉-X₁₀ ]
n_l24___81 [X₆-X₁₀ ]
n_l23___80 [X₆-X₁₀ ]
n_l24___9 [X₉-X₁₀ ]
n_l23___8 [X₆-X₁₀ ]
n_l13___77 [X₆-X₁₀ ]
n_l16___76 [2⋅X₈+3 ]
n_l13___94 [X₆-X₁₀ ]
n_l30___95 [X₉-X₁₀ ]
n_l16___93 [3 ]
n_l30___78 [X₆-X₁₀ ]
n_l8___79 [X₉-X₁₀ ]
n_l8___82 [X₉-X₁₀-1 ]
l32 [X₆-X₁₀-1 ]
MPRF for transition t₇₀₁: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
224⋅X₆⋅X₈+448⋅X₆⋅X₆+1335⋅X₆+416⋅X₈+X₁₁+930 {O(n^2)}
MPRF:
l31 [6⋅X₆+7-8⋅X₁₀-X₁₁ ]
l6 [6⋅X₆+5-8⋅X₁₀-X₁₁ ]
l7 [6⋅X₆+5-8⋅X₁₀-X₁₁ ]
l5 [6⋅X₆+5-8⋅X₁₀-X₁₁ ]
l8 [6⋅X₆+5-8⋅X₁₀-X₁₁ ]
n_l30___95 [X₆+5⋅X₉+5-8⋅X₁₀-X₁₁ ]
n_l13___94 [8⋅X₆-8⋅X₁₀ ]
n_l14___75 [8⋅X₆-8⋅X₁₀-X₁₁-1 ]
n_l12___74 [8⋅X₉-X₈-8⋅X₁₀-1 ]
n_l14___92 [8⋅X₆-8⋅X₁₀ ]
n_l12___91 [8⋅X₆-8⋅X₁₀ ]
n_l15___73 [8⋅X₉-8⋅X₁₀-X₁₁-1 ]
n_l15___90 [8⋅X₉-8⋅X₁₀ ]
n_l16___72 [8⋅X₉-X₈-8⋅X₁₀-1 ]
n_l16___89 [8⋅X₆-8⋅X₁₀ ]
n_l16___93 [23 ]
n_l17___71 [8⋅X₆-X₈-8⋅X₁₀-1 ]
n_l17___88 [8⋅X₉-8⋅X₁₀ ]
n_l19___14 [8⋅X₆-8⋅X₁₀ ]
n_l19___56 [X₉+7⋅X₁₁+14-2⋅X₈-X₁₀ ]
n_l19___63 [8⋅X₆-X₈-8⋅X₁₀-1 ]
n_l19___7 [X₆+23⋅X₁₁-X₉ ]
n_l19___70 [X₈+8⋅X₉-8⋅X₁₀-X₁₁ ]
n_l19___87 [8⋅X₉-8⋅X₁₀ ]
n_l20___13 [8⋅X₆-8⋅X₁₀ ]
n_l18___12 [8⋅X₆-8⋅X₁₀ ]
n_l20___55 [X₉+7⋅X₁₁+14-2⋅X₈-X₁₀ ]
n_l18___54 [X₆+7⋅X₁₁+14-2⋅X₈-X₁₀ ]
n_l20___6 [X₉+23⋅X₁₁-X₁₀-3 ]
n_l18___5 [X₉+20⋅X₁₁-X₁₀ ]
n_l20___62 [8⋅X₆-X₈-8⋅X₁₀-1 ]
n_l18___61 [8⋅X₉-X₈-8⋅X₁₀-1 ]
n_l20___69 [7⋅X₆+X₈+X₉-8⋅X₁₀-X₁₁ ]
n_l18___68 [8⋅X₆+X₈-8⋅X₁₀-X₁₁ ]
n_l20___86 [8⋅X₉-8⋅X₁₀ ]
n_l18___85 [8⋅X₉-8⋅X₁₀ ]
n_l21___11 [8⋅X₆-8⋅X₁₀ ]
n_l21___4 [X₉+20-X₁₀ ]
n_l21___53 [X₉+7⋅X₁₁+14-2⋅X₈-X₁₀ ]
n_l21___60 [8⋅X₉-X₈-8⋅X₁₀-1 ]
n_l21___67 [X₈+8⋅X₉-8⋅X₁₀-X₁₁ ]
n_l21___84 [8⋅X₉-8⋅X₁₀ ]
n_l22___10 [8⋅X₆-8⋅X₁₀ ]
n_l22___3 [X₉+20⋅X₁₁-X₁₀ ]
n_l22___52 [X₆+7⋅X₁₁+14-2⋅X₈-X₁₀ ]
n_l22___59 [8⋅X₉-X₈-8⋅X₁₀-1 ]
n_l22___66 [8⋅X₉-8⋅X₁₀-X₁₁ ]
n_l22___83 [8⋅X₉-8⋅X₁₀ ]
n_l24___2 [X₉+22-X₁₀-2⋅X₁₁ ]
n_l23___1 [8⋅X₆-8⋅X₁₀-X₁₁ ]
n_l24___51 [X₉+7⋅X₁₁+14-2⋅X₈-X₁₀ ]
n_l23___50 [8⋅X₆-8⋅X₁₀-X₁₁ ]
n_l24___58 [8⋅X₉+2-8⋅X₁₀-X₁₁ ]
n_l23___57 [8⋅X₉-8⋅X₁₀-X₁₁ ]
n_l24___65 [8⋅X₉-8⋅X₁₀-X₁₁ ]
n_l23___64 [8⋅X₆-8⋅X₁₀-X₁₁ ]
n_l24___81 [8⋅X₉-8⋅X₁₀ ]
n_l23___80 [8⋅X₆-8⋅X₁₀-X₁₁ ]
n_l24___9 [8⋅X₉-8⋅X₁₀ ]
n_l23___8 [8⋅X₆-8⋅X₁₀-X₁₁ ]
n_l13___77 [8⋅X₆-X₈-8⋅X₁₀-1 ]
n_l16___76 [X₆+14⋅X₈+21-X₁₀-2⋅X₁₁ ]
n_l30___78 [8⋅X₆-8⋅X₁₀-X₁₁-1 ]
n_l8___79 [8⋅X₆-8⋅X₁₀-X₁₁ ]
n_l8___82 [X₆+5⋅X₉-6⋅X₁₀-1 ]
l32 [6⋅X₉-8⋅X₁₀-X₁₁-1 ]
MPRF for transition t₇₀₂: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
X₆+3 {O(n)}
MPRF:
l31 [X₆-X₁₀-3 ]
l6 [X₉-X₁₀-3 ]
l7 [X₆-X₁₀-3 ]
l5 [X₉-X₁₀-3 ]
l8 [X₉-X₁₀-3 ]
n_l14___75 [X₆-X₁₀-3 ]
n_l12___74 [X₉-X₁₀-3 ]
n_l14___92 [X₆-X₁₀-3 ]
n_l12___91 [X₉-X₁₀-3 ]
n_l15___73 [X₉-X₁₀-3 ]
n_l15___90 [X₉-X₁₀-3 ]
n_l16___72 [X₉-X₁₀-3 ]
n_l16___89 [X₆-X₁₀-3 ]
n_l17___71 [X₉-X₁₀-3 ]
n_l17___88 [X₉-X₁₀-3 ]
n_l19___14 [X₆-X₁₀-3 ]
n_l19___56 [X₉-X₁₀-3 ]
n_l19___63 [X₆-X₁₀-3 ]
n_l19___7 [0 ]
n_l19___70 [X₉-X₁₀-3 ]
n_l19___87 [X₉-X₁₀-3 ]
n_l20___13 [X₆-X₁₀-3 ]
n_l18___12 [X₉-X₁₀-3 ]
n_l20___55 [X₆+6⋅X₈-X₁₀-3⋅X₁₁ ]
n_l18___54 [6⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l20___6 [0 ]
n_l18___5 [0 ]
n_l20___62 [X₆-X₁₀-3 ]
n_l18___61 [X₆-X₁₀-3 ]
n_l20___69 [X₉-X₁₀-3 ]
n_l18___68 [X₉-X₁₀-3 ]
n_l20___86 [X₉-X₁₀-3⋅X₁₁ ]
n_l18___85 [X₉-X₁₀-3 ]
n_l21___11 [X₉+X₁₁-X₁₀-5 ]
n_l21___4 [0 ]
n_l21___53 [6⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l21___60 [X₉-X₁₀-3 ]
n_l21___67 [X₆-X₁₀-3 ]
n_l21___84 [X₉-X₁₀-3⋅X₁₁ ]
n_l22___10 [X₆-X₁₀-3 ]
n_l22___3 [X₉-X₁₀-3 ]
n_l22___52 [6⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l22___59 [X₆-X₁₀-3 ]
n_l22___66 [X₉-X₁₀-3 ]
n_l22___83 [X₉-X₁₀-3⋅X₁₁ ]
n_l24___2 [X₉-X₁₀-3 ]
n_l23___1 [X₆-X₁₀-3 ]
n_l24___51 [X₆+6⋅X₈-X₁₀-3⋅X₁₁ ]
n_l23___50 [X₆+6⋅X₈-X₁₀-3⋅X₁₁ ]
n_l24___58 [X₆-X₁₀-3 ]
n_l23___57 [X₉-X₁₀-3 ]
n_l24___65 [X₉-X₁₀-3 ]
n_l23___64 [X₉-X₁₀-3 ]
n_l24___81 [X₉-X₁₀-3⋅X₁₁ ]
n_l23___80 [X₆-X₁₀-3 ]
n_l24___9 [X₆-X₁₀-X₁₁-1 ]
n_l23___8 [X₆-X₁₀-X₁₁-1 ]
n_l13___77 [X₆-X₁₀-3 ]
n_l16___76 [X₆-X₁₀-3 ]
n_l13___94 [X₆-X₁₀-3 ]
n_l30___95 [X₉-X₁₀-3 ]
n_l16___93 [0 ]
n_l30___78 [X₆-X₁₀-3 ]
n_l8___79 [X₉-X₁₀-3 ]
n_l8___82 [X₉-X₁₀-4 ]
l32 [X₉-X₁₀-4 ]
MPRF for transition t₇₁₀: n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
28⋅X₆⋅X₈+77⋅X₆⋅X₆+2⋅X₁₁+256⋅X₆+52⋅X₈+216 {O(n^2)}
MPRF:
l31 [X₉+5-2⋅X₁₀-2⋅X₁₁ ]
l6 [X₆+5-2⋅X₁₀-2⋅X₁₁ ]
l7 [X₆+5-2⋅X₁₀-2⋅X₁₁ ]
l5 [X₆+5-2⋅X₁₀-2⋅X₁₁ ]
l8 [X₉+5-2⋅X₁₀-2⋅X₁₁ ]
n_l30___95 [X₉+5-2⋅X₁₀-2⋅X₁₁ ]
n_l13___94 [2⋅X₆+2-X₁₀ ]
n_l14___75 [2⋅X₆-2⋅X₁₀-2⋅X₁₁ ]
n_l12___74 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l14___92 [2⋅X₉+2-X₁₀ ]
n_l12___91 [2⋅X₉+2-X₁₀ ]
n_l15___73 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l15___90 [2⋅X₉+2-2⋅X₁₀ ]
n_l16___72 [2⋅X₉-2⋅X₁₀-2⋅X₁₁ ]
n_l16___89 [2⋅X₉+2-2⋅X₁₀ ]
n_l16___93 [X₆+8-X₉ ]
n_l17___71 [2⋅X₉-2⋅X₁₀-2⋅X₁₁ ]
n_l17___88 [2⋅X₉-2⋅X₁₀ ]
n_l19___14 [2⋅X₉-2⋅X₁₀ ]
n_l19___56 [7⋅X₁₁-12⋅X₈ ]
n_l19___63 [2⋅X₉+2-2⋅X₁₀-X₁₁ ]
n_l19___7 [X₉+5⋅X₁₁-X₁₀ ]
n_l19___70 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l19___87 [2⋅X₉+2⋅X₁₁-2⋅X₁₀ ]
n_l20___13 [2⋅X₉-2⋅X₁₀ ]
n_l18___12 [2⋅X₆-2⋅X₁₀ ]
n_l20___55 [7⋅X₁₁-12⋅X₈ ]
n_l18___54 [2⋅X₁₁+5-2⋅X₈ ]
n_l20___6 [8⋅X₁₁ ]
n_l18___5 [8 ]
n_l20___62 [2⋅X₉+2-2⋅X₁₀-X₁₁ ]
n_l18___61 [2⋅X₉+2-2⋅X₁₀-X₁₁ ]
n_l20___69 [2⋅X₆-2⋅X₈-2⋅X₁₀ ]
n_l18___68 [2⋅X₆-2⋅X₈-2⋅X₁₀ ]
n_l20___86 [2⋅X₉+2-2⋅X₁₀ ]
n_l18___85 [2⋅X₆+2-2⋅X₁₀ ]
n_l21___11 [2⋅X₆-2⋅X₁₀ ]
n_l21___4 [8 ]
n_l21___53 [2⋅X₁₁+5-2⋅X₈ ]
n_l21___60 [2⋅X₉+2-2⋅X₁₀-X₁₁ ]
n_l21___67 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l21___84 [2⋅X₉+2-2⋅X₁₀ ]
n_l22___10 [2⋅X₆-2⋅X₁₀ ]
n_l22___3 [X₆+8⋅X₁₁-X₉ ]
n_l22___52 [9 ]
n_l22___59 [2⋅X₉+2-2⋅X₁₀-X₁₁ ]
n_l22___66 [2⋅X₉+4-2⋅X₁₀-2⋅X₁₁ ]
n_l22___83 [2⋅X₆+2-2⋅X₁₀ ]
n_l24___2 [X₉+5-X₁₀ ]
n_l23___1 [2⋅X₆+2-2⋅X₁₀ ]
n_l24___51 [8 ]
n_l23___50 [2⋅X₆+2⋅X₁₁-8⋅X₈-2⋅X₁₀ ]
n_l24___58 [2⋅X₉+6-2⋅X₁₀-2⋅X₁₁ ]
n_l23___57 [2⋅X₆+6-2⋅X₁₀-2⋅X₁₁ ]
n_l24___65 [2⋅X₉+4-2⋅X₁₀-2⋅X₁₁ ]
n_l23___64 [2⋅X₉+4-2⋅X₁₀-2⋅X₁₁ ]
n_l24___81 [2⋅X₉+2-2⋅X₁₀ ]
n_l23___80 [2⋅X₆+4-2⋅X₁₀-2⋅X₁₁ ]
n_l24___9 [2⋅X₉-2⋅X₁₀ ]
n_l23___8 [2⋅X₆+4-2⋅X₁₀-2⋅X₁₁ ]
n_l13___77 [2⋅X₆+10⋅X₈-2⋅X₁₀-12⋅X₁₁ ]
n_l16___76 [2⋅X₈+7 ]
n_l30___78 [2⋅X₆+10⋅X₈+1-2⋅X₁₀-12⋅X₁₁ ]
n_l8___79 [X₆+X₈+X₉+4-2⋅X₁₀-3⋅X₁₁ ]
n_l8___82 [3⋅X₆+4-2⋅X₈-X₁₀ ]
l32 [X₆+4-2⋅X₁₀-2⋅X₁₁ ]
MPRF for transition t₇₁₁: n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:
new bound:
154⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+519⋅X₆+X₁₁+446 {O(n^2)}
MPRF:
l31 [2⋅X₉+11-2⋅X₁₀-X₁₁ ]
l6 [2⋅X₉+9-2⋅X₁₀-X₁₁ ]
l7 [2⋅X₆+9-2⋅X₁₀-X₁₁ ]
l5 [2⋅X₆+9-2⋅X₁₀-X₁₁ ]
l8 [2⋅X₆+9-2⋅X₁₀-X₁₁ ]
n_l30___95 [2⋅X₆+9-2⋅X₁₀-X₁₁ ]
n_l13___94 [4⋅X₆+3-2⋅X₁₀ ]
n_l14___75 [4⋅X₆+4-X₈-2⋅X₁₀ ]
n_l12___74 [4⋅X₉+4-X₈-2⋅X₁₀ ]
n_l14___92 [4⋅X₆+3-2⋅X₁₀ ]
n_l12___91 [4⋅X₉+3-2⋅X₁₀ ]
n_l15___73 [4⋅X₉+4-X₈-2⋅X₁₀ ]
n_l15___90 [4⋅X₉+3-2⋅X₁₀ ]
n_l16___72 [4⋅X₉+2-2⋅X₁₀-X₁₁ ]
n_l16___89 [4⋅X₉+3-2⋅X₁₀ ]
n_l16___93 [14⋅X₈+3⋅X₁₀+18-X₆ ]
n_l17___71 [4⋅X₉+4-X₈-2⋅X₁₀ ]
n_l17___88 [4⋅X₉+2-2⋅X₁₀ ]
n_l19___14 [4⋅X₉+X₁₁-2⋅X₁₀ ]
n_l19___56 [4⋅X₆+2-X₈-2⋅X₁₀ ]
n_l19___63 [4⋅X₉+2⋅X₁₁-5⋅X₈-2⋅X₁₀ ]
n_l19___7 [3⋅X₁₀+7⋅X₁₁+11-X₉ ]
n_l19___70 [4⋅X₉+2-X₈-2⋅X₁₀ ]
n_l19___87 [4⋅X₉+3-2⋅X₁₀ ]
n_l20___13 [4⋅X₉+2-2⋅X₁₀ ]
n_l18___12 [4⋅X₉+X₁₁-2⋅X₁₀ ]
n_l20___55 [4⋅X₉+2-X₈-2⋅X₁₀ ]
n_l18___54 [4⋅X₉+2-X₈-2⋅X₁₀ ]
n_l20___6 [3⋅X₁₀+7⋅X₁₁+11-X₆ ]
n_l18___5 [3⋅X₉+3⋅X₁₀+18-4⋅X₆ ]
n_l20___62 [4⋅X₆+2⋅X₁₁-5⋅X₈-2⋅X₁₀ ]
n_l18___61 [4⋅X₉+2⋅X₁₁-5⋅X₈-2⋅X₁₀ ]
n_l20___69 [4⋅X₆+2-X₈-2⋅X₁₀ ]
n_l18___68 [4⋅X₆+2-X₈-2⋅X₁₀ ]
n_l20___86 [4⋅X₉+3⋅X₁₁-2⋅X₁₀ ]
n_l18___85 [4⋅X₉+3-2⋅X₁₀ ]
n_l21___11 [4⋅X₉+2-2⋅X₁₀ ]
n_l21___4 [3⋅X₁₀+18-X₉ ]
n_l21___53 [4⋅X₉+2-X₈-2⋅X₁₀ ]
n_l21___60 [4⋅X₆+2⋅X₁₁-5⋅X₈-2⋅X₁₀ ]
n_l21___67 [4⋅X₆+2-X₈-2⋅X₁₀ ]
n_l21___84 [4⋅X₉+3-2⋅X₁₀ ]
n_l22___10 [4⋅X₉+4-2⋅X₁₀-X₁₁ ]
n_l22___3 [2⋅X₉+9 ]
n_l22___52 [4⋅X₉+2-X₈-2⋅X₁₀ ]
n_l22___59 [4⋅X₉+X₁₁+2-3⋅X₈-2⋅X₁₀ ]
n_l22___66 [4⋅X₉+2-X₈-2⋅X₁₀ ]
n_l22___83 [4⋅X₉+3-2⋅X₁₀ ]
n_l24___2 [2⋅X₉+9⋅X₁₁ ]
n_l23___1 [4⋅X₆+4-2⋅X₁₀-X₁₁ ]
n_l24___51 [4⋅X₉+3-2⋅X₈-2⋅X₁₀ ]
n_l23___50 [4⋅X₆+4-2⋅X₁₀-X₁₁ ]
n_l24___58 [4⋅X₉+X₁₁+1-3⋅X₈-2⋅X₁₀ ]
n_l23___57 [4⋅X₆+4-2⋅X₁₀-X₁₁ ]
n_l24___65 [4⋅X₉+2-X₈-2⋅X₁₀ ]
n_l23___64 [4⋅X₉+4-2⋅X₁₀-X₁₁ ]
n_l24___81 [4⋅X₉+3-2⋅X₁₀ ]
n_l23___80 [4⋅X₆+4-2⋅X₁₀-X₁₁ ]
n_l24___9 [4⋅X₆+4-2⋅X₁₀-X₁₁ ]
n_l23___8 [4⋅X₆+4-2⋅X₁₀-X₁₁ ]
n_l13___77 [4⋅X₆+4-2⋅X₁₀-X₁₁ ]
n_l16___76 [4⋅X₆+3⋅X₈+2-2⋅X₁₀-4⋅X₁₁ ]
n_l30___78 [4⋅X₆+4-2⋅X₁₀-X₁₁ ]
n_l8___79 [4⋅X₆+4-2⋅X₁₀-X₁₁ ]
n_l8___82 [2⋅X₈+X₁₁+8 ]
l32 [2⋅X₆+9-2⋅X₁₀-X₁₁ ]
MPRF for transition t₇₁₂: n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
21⋅X₆⋅X₆+2⋅X₁₁+39⋅X₆ {O(n^2)}
MPRF:
l31 [-2⋅X₁₁ ]
l6 [-2⋅X₁₁ ]
l7 [-2⋅X₁₁ ]
l5 [-2⋅X₁₁ ]
l8 [-2⋅X₁₁ ]
n_l30___95 [-2⋅X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₆-2⋅X₈-X₁₀-3 ]
n_l12___74 [X₉-X₁₀-2⋅X₁₁-3 ]
n_l14___92 [X₆ ]
n_l12___91 [X₆ ]
n_l15___73 [X₉-2⋅X₈-X₁₀-3 ]
n_l15___90 [X₉ ]
n_l16___72 [X₆-X₁₀-2⋅X₁₁-3 ]
n_l16___89 [X₆-4 ]
n_l16___93 [X₆-X₉ ]
n_l17___71 [X₉-2⋅X₈-X₁₀-3 ]
n_l17___88 [X₉ ]
n_l19___14 [X₉ ]
n_l19___56 [X₆-2⋅X₈-X₁₀-3 ]
n_l19___63 [X₆+X₁₁-4⋅X₈-X₁₀-5 ]
n_l19___7 [X₉-X₁₀-3 ]
n_l19___70 [X₉+6⋅X₁₁-14⋅X₈-X₁₀-9 ]
n_l19___87 [X₆-4 ]
n_l20___13 [X₆ ]
n_l18___12 [X₉ ]
n_l20___55 [X₆-2⋅X₈-X₁₀-3 ]
n_l18___54 [X₉-2⋅X₈-X₁₀-3 ]
n_l20___6 [X₉-X₁₀-3 ]
n_l18___5 [X₉-X₁₀-3⋅X₁₁ ]
n_l20___62 [X₉+X₁₁-4⋅X₈-X₁₀-5 ]
n_l18___61 [X₉+X₁₁-4⋅X₈-X₁₀-5 ]
n_l20___69 [X₆+6⋅X₁₁-14⋅X₈-X₁₀-9 ]
n_l18___68 [X₆+6⋅X₁₁-14⋅X₈-X₁₀-9 ]
n_l20___86 [X₉-4⋅X₁₁ ]
n_l18___85 [X₆-4⋅X₁₁ ]
n_l21___11 [X₉ ]
n_l21___4 [X₉-X₁₀-3 ]
n_l21___53 [X₉-2⋅X₈-X₁₀-3 ]
n_l21___60 [X₉+X₁₁-4⋅X₈-X₁₀-5 ]
n_l21___67 [X₉+6⋅X₁₁-14⋅X₈-X₁₀-9 ]
n_l21___84 [X₉-4 ]
n_l22___10 [X₆ ]
n_l22___3 [X₉-X₁₀-2⋅X₁₁-1 ]
n_l22___52 [X₆-2⋅X₈-X₁₀-3 ]
n_l22___59 [X₉+X₁₁-6⋅X₈-X₁₀-3 ]
n_l22___66 [X₆-2⋅X₈-X₁₀-3 ]
n_l22___83 [X₆-5⋅X₁₁ ]
n_l24___2 [X₉-X₁₀-2⋅X₁₁-3 ]
n_l23___1 [X₆-X₁₀-2⋅X₁₁-3 ]
n_l24___51 [X₉-2⋅X₈-X₁₀-3 ]
n_l23___50 [X₆-2⋅X₈-X₁₀-3 ]
n_l24___58 [X₆+X₁₁-6⋅X₈-X₁₀-3 ]
n_l23___57 [X₉+X₁₁-6⋅X₈-X₁₀-9 ]
n_l24___65 [X₆+12⋅X₈-X₁₀-7⋅X₁₁ ]
n_l23___64 [12⋅X₈+X₉-X₁₀-7⋅X₁₁ ]
n_l24___81 [X₆-5 ]
n_l23___80 [X₆-5 ]
n_l24___9 [X₆ ]
n_l23___8 [X₆-2⋅X₁₁-3 ]
n_l13___77 [X₆-2⋅X₈-X₁₀-3 ]
n_l16___76 [X₆-2⋅X₈-X₁₀-3 ]
n_l30___78 [X₆-X₁₀-2⋅X₁₁-3 ]
n_l8___79 [X₆-X₁₀-2⋅X₁₁-3 ]
n_l8___82 [0 ]
l32 [-2⋅X₁₁ ]
MPRF for transition t₇₁₈: n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
168⋅X₆⋅X₆+84⋅X₆⋅X₈+156⋅X₈+510⋅X₆+X₁₁+374 {O(n^2)}
MPRF:
l31 [2⋅X₉+4-2⋅X₁₀-X₁₁ ]
l6 [3⋅X₆+4-X₉-2⋅X₁₀-X₁₁ ]
l7 [2⋅X₉+4-2⋅X₁₀-X₁₁ ]
l5 [2⋅X₉+4-2⋅X₁₀-X₁₁ ]
l8 [3⋅X₆+4-X₉-2⋅X₁₀-X₁₁ ]
n_l30___95 [3⋅X₆+4-X₉-2⋅X₁₀-X₁₁ ]
n_l13___94 [3⋅X₆-3⋅X₁₀ ]
n_l14___75 [3⋅X₉-X₈-3⋅X₁₀ ]
n_l12___74 [3⋅X₉-3⋅X₁₀-X₁₁ ]
n_l14___92 [3⋅X₆-3⋅X₁₀ ]
n_l12___91 [3⋅X₉-3⋅X₁₀ ]
n_l15___73 [3⋅X₉-X₈-3⋅X₁₀ ]
n_l15___90 [3⋅X₉-3⋅X₁₀ ]
n_l16___72 [3⋅X₆-3⋅X₁₀-X₁₁ ]
n_l16___89 [3⋅X₉-3⋅X₁₀ ]
n_l16___93 [10 ]
n_l17___71 [3⋅X₉-X₈-3⋅X₁₀ ]
n_l17___88 [3⋅X₆-3⋅X₁₀ ]
n_l19___14 [3⋅X₉-3⋅X₁₀ ]
n_l19___56 [X₈+2⋅X₁₁+7 ]
n_l19___63 [3⋅X₉+X₁₁-3⋅X₈-3⋅X₁₀-2 ]
n_l19___7 [4⋅X₉-4⋅X₁₀-2 ]
n_l19___70 [3⋅X₉-X₈-3⋅X₁₀ ]
n_l19___87 [3⋅X₉-3⋅X₁₀ ]
n_l20___13 [3⋅X₉-3⋅X₁₀ ]
n_l18___12 [3⋅X₉-3⋅X₁₀ ]
n_l20___55 [X₈+2⋅X₁₁+7 ]
n_l18___54 [X₈+2⋅X₁₁+7 ]
n_l20___6 [4⋅X₆-4⋅X₁₀-2 ]
n_l18___5 [4⋅X₉-4⋅X₁₀-2 ]
n_l20___62 [3⋅X₆+X₁₁-3⋅X₈-3⋅X₁₀-2 ]
n_l18___61 [3⋅X₆+X₁₁-3⋅X₈-3⋅X₁₀-2 ]
n_l20___69 [3⋅X₉-X₈-3⋅X₁₀ ]
n_l18___68 [3⋅X₉-X₈-3⋅X₁₀ ]
n_l20___86 [3⋅X₉-3⋅X₁₀ ]
n_l18___85 [3⋅X₉-3⋅X₁₀ ]
n_l21___11 [3⋅X₉-3⋅X₁₀ ]
n_l21___4 [10⋅X₁₁ ]
n_l21___53 [X₈+2⋅X₁₁+7 ]
n_l21___60 [3⋅X₆+X₁₁-3⋅X₈-3⋅X₁₀-2 ]
n_l21___67 [3⋅X₉-X₈-3⋅X₁₀ ]
n_l21___84 [3⋅X₉-3⋅X₁₀ ]
n_l22___10 [3⋅X₉-3⋅X₁₀ ]
n_l22___3 [3⋅X₉+X₁₁-3⋅X₁₀ ]
n_l22___52 [3⋅X₉+X₁₁-3⋅X₈-3⋅X₁₀-1 ]
n_l22___59 [3⋅X₆+3-3⋅X₁₀-X₁₁ ]
n_l22___66 [3⋅X₆-X₈-3⋅X₁₀ ]
n_l22___83 [3⋅X₆+3-3⋅X₁₀-3⋅X₁₁ ]
n_l24___2 [3⋅X₉+1-3⋅X₁₀ ]
n_l23___1 [3⋅X₆+2-3⋅X₁₀-X₁₁ ]
n_l24___51 [3⋅X₉+X₁₁-3⋅X₈-3⋅X₁₀-1 ]
n_l23___50 [3⋅X₉+2-3⋅X₁₀-X₁₁ ]
n_l24___58 [3⋅X₆+3-3⋅X₁₀-X₁₁ ]
n_l23___57 [3⋅X₉+3-3⋅X₁₀-X₁₁ ]
n_l24___65 [3⋅X₆-X₈-3⋅X₁₀ ]
n_l23___64 [3⋅X₆-X₈-3⋅X₁₀ ]
n_l24___81 [3⋅X₉+3-3⋅X₁₀-3⋅X₁₁ ]
n_l23___80 [3⋅X₆+1-3⋅X₁₀-X₁₁ ]
n_l24___9 [3⋅X₉-3⋅X₁₀ ]
n_l23___8 [3⋅X₆+1-3⋅X₁₀-X₁₁ ]
n_l13___77 [3⋅X₆+6⋅X₈-3⋅X₁₀-7⋅X₁₁ ]
n_l16___76 [5⋅X₈+9 ]
n_l30___78 [6⋅X₈+3⋅X₉-3⋅X₁₀-7⋅X₁₁ ]
n_l8___79 [6⋅X₈+3⋅X₉+1-3⋅X₁₀-7⋅X₁₁ ]
n_l8___82 [4⋅X₈+2⋅X₉+4-4⋅X₆-2⋅X₁₀ ]
l32 [2⋅X₉+2-2⋅X₁₀-X₁₁ ]
MPRF for transition t₇₁₉: n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:
new bound:
154⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+405⋅X₆+X₁₁+229 {O(n^2)}
MPRF:
l31 [8-X₁₁ ]
l6 [8-X₁₁ ]
l7 [8-X₁₁ ]
l5 [2⋅X₉+8-2⋅X₆-X₁₁ ]
l8 [2⋅X₉+8-2⋅X₆-X₁₁ ]
n_l30___95 [2⋅X₉+8-2⋅X₆-X₁₁ ]
n_l13___94 [4⋅X₆-2⋅X₁₀ ]
n_l14___75 [4⋅X₆-4⋅X₁₀-X₁₁-4 ]
n_l12___74 [4⋅X₉-4⋅X₁₀-X₁₁-4 ]
n_l14___92 [4⋅X₆-2⋅X₁₀ ]
n_l12___91 [4⋅X₉-2⋅X₁₀ ]
n_l15___73 [3⋅X₆+X₉-X₈-4⋅X₁₀-4 ]
n_l15___90 [4⋅X₉-2⋅X₁₀-3 ]
n_l16___72 [4⋅X₆-X₈-4⋅X₁₀-4 ]
n_l16___89 [4⋅X₆-2⋅X₁₀-3 ]
n_l16___93 [2⋅X₆+5-2⋅X₁₀ ]
n_l17___71 [4⋅X₉-4⋅X₁₀-X₁₁-4 ]
n_l17___88 [4⋅X₆-2⋅X₁₀-3 ]
n_l19___14 [4⋅X₉-2⋅X₁₀-3 ]
n_l19___56 [X₆+2⋅X₁₁+4-X₁₀ ]
n_l19___63 [4⋅X₆+8⋅X₁₁-17⋅X₈-4⋅X₁₀-20 ]
n_l19___7 [2⋅X₆+5-2⋅X₁₀ ]
n_l19___70 [4⋅X₉-X₈-4⋅X₁₀-4 ]
n_l19___87 [4⋅X₉-2⋅X₁₀-3 ]
n_l20___13 [4⋅X₉+X₁₁-2⋅X₁₀-5 ]
n_l18___12 [4⋅X₉-2⋅X₁₀-3 ]
n_l20___55 [2⋅X₆+X₁₁+2-2⋅X₁₀ ]
n_l18___54 [2⋅X₉+X₁₁+2-2⋅X₁₀ ]
n_l20___6 [2⋅X₉+5-2⋅X₁₀ ]
n_l18___5 [2⋅X₉+5-2⋅X₁₀ ]
n_l20___62 [4⋅X₉+8⋅X₁₁-17⋅X₈-4⋅X₁₀-20 ]
n_l18___61 [4⋅X₉-X₈-4⋅X₁₀-4 ]
n_l20___69 [4⋅X₆-X₈-4⋅X₁₀-4 ]
n_l18___68 [7⋅X₈+4⋅X₉-4⋅X₁₀-4⋅X₁₁ ]
n_l20___86 [4⋅X₉-2⋅X₁₀-3 ]
n_l18___85 [4⋅X₉-2⋅X₁₀-3⋅X₁₁ ]
n_l21___11 [4⋅X₆-2⋅X₁₀-3 ]
n_l21___4 [2⋅X₆+5-2⋅X₁₀ ]
n_l21___53 [2⋅X₉+X₁₁+2-2⋅X₁₀ ]
n_l21___60 [4⋅X₉-X₈-4⋅X₁₀-4 ]
n_l21___67 [7⋅X₈+4⋅X₉-4⋅X₁₀-4⋅X₁₁ ]
n_l21___84 [4⋅X₉-2⋅X₁₀-3 ]
n_l22___10 [4⋅X₆-2⋅X₁₀-3 ]
n_l22___3 [2⋅X₆+X₁₁-2⋅X₁₀ ]
n_l22___52 [2⋅X₉+X₁₁+2-2⋅X₁₀ ]
n_l22___59 [4⋅X₉-X₈-4⋅X₁₀-4 ]
n_l22___66 [4⋅X₆+7⋅X₈-4⋅X₁₀-4⋅X₁₁ ]
n_l22___83 [4⋅X₆-2⋅X₁₀-3⋅X₁₁ ]
n_l24___2 [2⋅X₉+X₁₁-2⋅X₁₀ ]
n_l23___1 [4⋅X₆+X₁₁-2⋅X₉-2⋅X₁₀ ]
n_l24___51 [2⋅X₉+X₁₁+2-2⋅X₁₀ ]
n_l23___50 [4⋅X₆-4⋅X₁₀-X₁₁-2 ]
n_l24___58 [4⋅X₉-X₈-4⋅X₁₀-6 ]
n_l23___57 [4⋅X₉-X₈-4⋅X₁₀-6 ]
n_l24___65 [7⋅X₈+4⋅X₉-4⋅X₁₀-4⋅X₁₁ ]
n_l23___64 [4⋅X₆-4⋅X₁₀-X₁₁-4 ]
n_l24___81 [4⋅X₉-2⋅X₁₀-3 ]
n_l23___80 [4⋅X₆-2⋅X₁₀-X₁₁-4 ]
n_l24___9 [4⋅X₆-2⋅X₁₀-2⋅X₁₁-2 ]
n_l23___8 [4⋅X₆-2⋅X₁₀-X₁₁-4 ]
n_l13___77 [4⋅X₆-4⋅X₁₀-X₁₁-4 ]
n_l16___76 [X₆+8⋅X₁₁+6-4⋅X₈-X₁₀ ]
n_l30___78 [4⋅X₆-4⋅X₁₀-X₁₁-4 ]
n_l8___79 [4⋅X₉-4⋅X₁₀-X₁₁-4 ]
n_l8___82 [3⋅X₆+5-X₉-2⋅X₁₀ ]
l32 [8-X₁₁ ]
MPRF for transition t₇₂₀: n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
21⋅X₆⋅X₆+60⋅X₆+X₁₁+40 {O(n^2)}
MPRF:
l31 [1-X₁₀-X₁₁ ]
l6 [-X₁₀-X₁₁ ]
l7 [X₉-X₆-X₁₀-X₁₁ ]
l5 [-X₁₀-X₁₁ ]
l8 [-X₁₀-X₁₁ ]
n_l30___95 [-X₁₀-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₈+X₉-X₁₀-2⋅X₁₁-4 ]
n_l12___74 [X₉-X₈-X₁₀-4 ]
n_l14___92 [X₆ ]
n_l12___91 [X₉ ]
n_l15___73 [2⋅X₆-X₈-X₉-X₁₀-4 ]
n_l15___90 [X₉ ]
n_l16___72 [X₉-X₁₀-X₁₁-4 ]
n_l16___89 [X₉ ]
n_l16___93 [X₁₀+3-X₆ ]
n_l17___71 [X₉-X₈-X₁₀-5 ]
n_l17___88 [X₉ ]
n_l19___14 [X₉-X₁₀ ]
n_l19___56 [X₈-1 ]
n_l19___63 [X₉-X₈-X₁₀-5 ]
n_l19___7 [X₁₀+3-X₉ ]
n_l19___70 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l19___87 [X₉ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₆-X₁₀ ]
n_l20___55 [X₈-1 ]
n_l18___54 [X₆+X₈-X₁₀-X₁₁-3 ]
n_l20___6 [X₁₀+3⋅X₁₁-X₆ ]
n_l18___5 [X₁₀+3-X₉ ]
n_l20___62 [X₉-X₈-X₁₀-5 ]
n_l18___61 [X₉-X₈-X₁₀-5 ]
n_l20___69 [X₆+X₈-X₁₀-X₁₁-3 ]
n_l18___68 [X₆+X₈-X₁₀-X₁₁-3 ]
n_l20___86 [X₉ ]
n_l18___85 [X₉ ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [X₁₀+3-X₉ ]
n_l21___53 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l21___60 [X₉-X₈-X₁₀-5 ]
n_l21___67 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l21___84 [X₉ ]
n_l22___10 [X₉-X₁₀-X₁₁ ]
n_l22___3 [X₉-X₁₀-3 ]
n_l22___52 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l22___59 [X₉-X₈-X₁₀-6 ]
n_l22___66 [X₆+X₈-X₁₀-X₁₁-3 ]
n_l22___83 [X₉-X₁₁-3 ]
n_l24___2 [X₆-X₁₀-3 ]
n_l23___1 [X₆-X₁₀-X₁₁-2 ]
n_l24___51 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l23___50 [X₆-X₁₀-X₁₁-2 ]
n_l24___58 [X₆-X₁₀-X₁₁-3 ]
n_l23___57 [X₉-X₁₀-X₁₁-3 ]
n_l24___65 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l23___64 [X₆+X₈-X₁₀-X₁₁-3 ]
n_l24___81 [X₉-X₁₁-3 ]
n_l23___80 [X₆-X₁₀-X₁₁-3 ]
n_l24___9 [X₆-X₁₀-X₁₁ ]
n_l23___8 [X₆-X₁₀-X₁₁ ]
n_l13___77 [X₆+X₈-X₁₀-2⋅X₁₁-4 ]
n_l16___76 [X₈-1 ]
n_l30___78 [X₈+X₉-X₁₀-2⋅X₁₁-4 ]
n_l8___79 [X₆-X₈-X₁₀-3 ]
n_l8___82 [0 ]
l32 [-X₁₀-X₁₁ ]
MPRF for transition t₇₂₇: n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
28⋅X₆⋅X₈+56⋅X₆⋅X₆+175⋅X₆+2⋅X₁₁+52⋅X₈+137 {O(n^2)}
MPRF:
l31 [4-X₉-X₁₀-2⋅X₁₁ ]
l6 [4-X₉-X₁₀-2⋅X₁₁ ]
l7 [4-X₉-X₁₀-2⋅X₁₁ ]
l5 [4-X₉-X₁₀-2⋅X₁₁ ]
l8 [4-X₉-X₁₀-2⋅X₁₁ ]
n_l30___95 [4-X₆-X₁₀-2⋅X₁₁ ]
n_l13___94 [X₆-X₁₀ ]
n_l14___75 [X₆-X₁₀-2⋅X₁₁ ]
n_l12___74 [X₉-2⋅X₈-X₁₀ ]
n_l14___92 [X₉-X₁₀ ]
n_l12___91 [X₉-X₁₀ ]
n_l15___73 [X₉-X₁₀-2⋅X₁₁ ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₉-2⋅X₈-X₁₀ ]
n_l16___89 [X₉-X₁₀ ]
n_l16___93 [4 ]
n_l17___71 [X₉-X₁₀-2⋅X₁₁ ]
n_l17___88 [X₉-X₁₀ ]
n_l19___14 [X₉-X₁₀ ]
n_l19___56 [4⋅X₁₁-8⋅X₈ ]
n_l19___63 [2⋅X₈+X₉+4-X₁₀-2⋅X₁₁ ]
n_l19___7 [4 ]
n_l19___70 [X₆-2⋅X₈-X₁₀ ]
n_l19___87 [X₉-X₁₀ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₉-X₁₀ ]
n_l20___55 [4⋅X₁₁-8⋅X₈ ]
n_l18___54 [4 ]
n_l20___6 [4⋅X₁₁ ]
n_l18___5 [4⋅X₁₁ ]
n_l20___62 [2⋅X₈+X₉+4-X₁₀-2⋅X₁₁ ]
n_l18___61 [X₆+2⋅X₈+4-X₁₀-2⋅X₁₁ ]
n_l20___69 [X₉-2⋅X₈-X₁₀ ]
n_l18___68 [X₉-2⋅X₈-X₁₀ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [4⋅X₁₁ ]
n_l21___53 [4 ]
n_l21___60 [2⋅X₈+X₉+4-X₁₀-2⋅X₁₁ ]
n_l21___67 [X₉-2⋅X₈-X₁₀ ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₉-X₁₀-2 ]
n_l22___3 [3⋅X₉-3⋅X₁₀-5⋅X₁₁ ]
n_l22___52 [2 ]
n_l22___59 [X₉+6-X₁₀-2⋅X₁₁ ]
n_l22___66 [X₆-2⋅X₈-X₁₀ ]
n_l22___83 [X₆-X₁₀ ]
n_l24___2 [3⋅X₉-3⋅X₁₀-5⋅X₁₁ ]
n_l23___1 [6-2⋅X₁₁ ]
n_l24___51 [2 ]
n_l23___50 [2⋅X₈+2-X₁₁ ]
n_l24___58 [X₉+6-X₁₀-2⋅X₁₁ ]
n_l23___57 [X₆+6-X₁₀-2⋅X₁₁ ]
n_l24___65 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l23___64 [X₆+2-X₁₀-2⋅X₁₁ ]
n_l24___81 [X₉+4-X₁₀-4⋅X₁₁ ]
n_l23___80 [X₆+2-X₁₀-2⋅X₁₁ ]
n_l24___9 [X₉+6-X₁₀-4⋅X₁₁ ]
n_l23___8 [X₆+2-X₁₀-2⋅X₁₁ ]
n_l13___77 [3⋅X₈+X₉-X₁₀-5⋅X₁₁ ]
n_l16___76 [X₆+1-X₁₀-2⋅X₁₁ ]
n_l30___78 [X₆+3⋅X₈+2-X₁₀-5⋅X₁₁ ]
n_l8___79 [2⋅X₆+2-X₉-X₁₀-2⋅X₁₁ ]
n_l8___82 [2⋅X₉+4-2⋅X₆ ]
l32 [4-X₉-X₁₀-2⋅X₁₁ ]
MPRF for transition t₇₂₈: n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:
new bound:
7⋅X₆⋅X₆+2⋅X₁₁+20⋅X₆+14 {O(n^2)}
MPRF:
l31 [1-X₁₀-2⋅X₁₁ ]
l6 [1-X₁₀-2⋅X₁₁ ]
l7 [1-X₁₀-2⋅X₁₁ ]
l5 [1-X₁₀-2⋅X₁₁ ]
l8 [1-X₁₀-2⋅X₁₁ ]
n_l30___95 [1-X₁₀-2⋅X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₉-X₁₀-2⋅X₁₁ ]
n_l12___74 [X₉-2⋅X₈-X₁₀ ]
n_l14___92 [X₆ ]
n_l12___91 [X₆-X₁₀ ]
n_l15___73 [X₉-2⋅X₈-X₁₀ ]
n_l15___90 [X₆-X₁₀ ]
n_l16___72 [X₉-X₁₀-2⋅X₁₁ ]
n_l16___89 [X₆-X₁₀ ]
n_l16___93 [1 ]
n_l17___71 [X₉-X₁₀-2⋅X₁₁ ]
n_l17___88 [X₆-X₁₀ ]
n_l19___14 [X₉-X₁₀ ]
n_l19___56 [X₁₁-2⋅X₈ ]
n_l19___63 [X₆+2-X₁₀-X₁₁ ]
n_l19___7 [1 ]
n_l19___70 [X₆+1-X₁₀-X₁₁ ]
n_l19___87 [X₉-X₁₀ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₆-X₁₀ ]
n_l20___55 [X₆-2⋅X₈-X₁₀-2 ]
n_l18___54 [X₉-2⋅X₈-X₁₀-2 ]
n_l20___6 [X₁₁ ]
n_l18___5 [1 ]
n_l20___62 [X₆+2-X₁₀-X₁₁ ]
n_l18___61 [X₉-X₁₀-X₁₁ ]
n_l20___69 [X₉-X₁₀-X₁₁-1 ]
n_l18___68 [X₉-X₁₀-X₁₁-1 ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₆-X₁₀ ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [X₁₁ ]
n_l21___53 [X₉-2⋅X₈-X₁₀-2 ]
n_l21___60 [X₆-2⋅X₈-X₁₀-2 ]
n_l21___67 [X₆-X₁₀-X₁₁-1 ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₆-X₁₀ ]
n_l22___3 [X₁₁ ]
n_l22___52 [X₉-2⋅X₈-X₁₀-2 ]
n_l22___59 [X₆-2⋅X₈-X₁₀-2 ]
n_l22___66 [X₆-X₁₀-X₁₁-1 ]
n_l22___83 [X₆-X₁₀ ]
n_l24___2 [X₆+X₁₁-X₉ ]
n_l23___1 [X₆-X₁₀-X₁₁-1 ]
n_l24___51 [X₉-2⋅X₈-X₁₀-2 ]
n_l23___50 [X₆-X₁₀-X₁₁-1 ]
n_l24___58 [X₉-2⋅X₈-X₁₀-2 ]
n_l23___57 [X₉-X₁₀-X₁₁-1 ]
n_l24___65 [X₆-X₁₀-X₁₁-1 ]
n_l23___64 [X₉-X₁₀-X₁₁-1 ]
n_l24___81 [X₆-X₁₀ ]
n_l23___80 [X₆-X₁₀-X₁₁ ]
n_l24___9 [X₆-X₁₀-X₁₁ ]
n_l23___8 [X₆-X₁₀-X₁₁ ]
n_l13___77 [X₆-2⋅X₈-X₁₀ ]
n_l16___76 [1 ]
n_l30___78 [X₆-X₁₀-2⋅X₁₁ ]
n_l8___79 [2⋅X₆+X₈-X₉-X₁₀-2⋅X₁₁-1 ]
n_l8___82 [1 ]
l32 [1-X₁₀-2⋅X₁₁ ]
MPRF for transition t₇₂₉: n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
35⋅X₆⋅X₆+3⋅X₁₁+80⋅X₆+28 {O(n^2)}
MPRF:
l31 [X₆+2-3⋅X₁₁ ]
l6 [X₉+2-3⋅X₁₁ ]
l7 [X₆+2-3⋅X₁₁ ]
l5 [2⋅X₉+2-X₆-3⋅X₁₁ ]
l8 [2⋅X₉+2-X₆-3⋅X₁₁ ]
n_l30___95 [X₆+2-3⋅X₁₁ ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₆-X₈-X₁₀ ]
n_l12___74 [2⋅X₉-X₁₀-X₁₁ ]
n_l14___92 [2⋅X₆ ]
n_l12___91 [2⋅X₉ ]
n_l15___73 [2⋅X₆-X₁₀-X₁₁-1 ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₉-X₁₀-2⋅X₁₁ ]
n_l16___89 [2⋅X₉-X₁₀ ]
n_l16___93 [2⋅X₆+2-X₉ ]
n_l17___71 [2⋅X₉-X₈-X₁₀-1 ]
n_l17___88 [2⋅X₉ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [X₉+2 ]
n_l19___63 [2⋅X₉-X₈-X₁₀-1 ]
n_l19___7 [2⋅X₉-X₁₀-1 ]
n_l19___70 [2⋅X₉-2⋅X₈-X₁₀ ]
n_l19___87 [2⋅X₉-X₁₀ ]
n_l20___13 [2⋅X₆ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [2⋅X₆-X₁₀-X₁₁ ]
n_l18___54 [2⋅X₉-X₁₀-X₁₁ ]
n_l20___6 [2⋅X₉-X₁₀-X₁₁ ]
n_l18___5 [2⋅X₉-X₁₀-X₁₁ ]
n_l20___62 [2⋅X₉-X₈-X₁₀-1 ]
n_l18___61 [2⋅X₉-X₈-X₁₀-1 ]
n_l20___69 [2⋅X₉+X₁₁-4⋅X₈-X₁₀-1 ]
n_l18___68 [2⋅X₆+X₁₁-4⋅X₈-X₁₀-1 ]
n_l20___86 [2⋅X₉-X₁₀ ]
n_l18___85 [2⋅X₉-X₁₀ ]
n_l21___11 [2⋅X₆ ]
n_l21___4 [2⋅X₉-X₁₀-1 ]
n_l21___53 [2⋅X₆-X₁₀-X₁₁ ]
n_l21___60 [2⋅X₉-X₈-X₁₀-1 ]
n_l21___67 [2⋅X₉+X₁₁-4⋅X₈-X₁₀-1 ]
n_l21___84 [2⋅X₉-X₁₀ ]
n_l22___10 [2⋅X₆-X₁₁ ]
n_l22___3 [2⋅X₉-X₁₀-X₁₁ ]
n_l22___52 [2⋅X₆-X₁₀-X₁₁ ]
n_l22___59 [2⋅X₆-2⋅X₈-X₁₀ ]
n_l22___66 [2⋅X₆+X₁₁-4⋅X₈-X₁₀-1 ]
n_l22___83 [2⋅X₉-X₁₀ ]
n_l24___2 [2⋅X₉-X₁₀-X₁₁ ]
n_l23___1 [2⋅X₆-X₁₀-X₁₁ ]
n_l24___51 [2⋅X₉-X₁₀-X₁₁ ]
n_l23___50 [2⋅X₆-X₁₀-X₁₁ ]
n_l24___58 [2⋅X₉-2⋅X₈-X₁₀ ]
n_l23___57 [2⋅X₉-X₁₀-X₁₁ ]
n_l24___65 [2⋅X₉-2⋅X₈-X₁₀ ]
n_l23___64 [2⋅X₉-X₁₀-X₁₁ ]
n_l24___81 [2⋅X₉-X₁₀ ]
n_l23___80 [2⋅X₆-X₁₀-X₁₁ ]
n_l24___9 [2⋅X₆-X₁₁ ]
n_l23___8 [2⋅X₆-X₁₁ ]
n_l13___77 [2⋅X₆-X₁₀-X₁₁ ]
n_l16___76 [X₆+4 ]
n_l30___78 [2⋅X₆-X₈-X₁₀ ]
n_l8___79 [2⋅X₈+2⋅X₉-X₁₀-3⋅X₁₁ ]
n_l8___82 [2⋅X₈+2-X₆ ]
l32 [X₆+2-3⋅X₁₁ ]
MPRF for transition t₇₃₇: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
112⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+306⋅X₆+X₁₁+184 {O(n^2)}
MPRF:
l31 [-2⋅X₁₀-X₁₁-2 ]
l6 [-2⋅X₁₀-X₁₁-2 ]
l7 [-2⋅X₁₀-X₁₁-2 ]
l5 [-2⋅X₁₀-X₁₁-2 ]
l8 [-2⋅X₁₀-X₁₁-2 ]
n_l30___95 [-2⋅X₁₀-X₁₁-2 ]
n_l13___94 [2⋅X₆-2⋅X₁₀ ]
n_l14___75 [2⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l12___74 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-8 ]
n_l14___92 [2⋅X₆-2⋅X₁₀ ]
n_l12___91 [2⋅X₉-2⋅X₁₀ ]
n_l15___73 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-8 ]
n_l15___90 [2⋅X₉-2⋅X₁₀ ]
n_l16___72 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-8 ]
n_l16___89 [2⋅X₆-2⋅X₁₀ ]
n_l16___93 [-2 ]
n_l17___71 [2⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l17___88 [2⋅X₆-2⋅X₁₀ ]
n_l19___14 [2⋅X₉-2⋅X₁₀ ]
n_l19___56 [2⋅X₈ ]
n_l19___63 [2⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l19___7 [-2⋅X₁₁ ]
n_l19___70 [2⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l19___87 [2⋅X₆-2⋅X₁₀ ]
n_l20___13 [2⋅X₉-2⋅X₁₀ ]
n_l18___12 [2⋅X₉-2⋅X₁₀ ]
n_l20___55 [2⋅X₁₁-2⋅X₈-2 ]
n_l18___54 [2⋅X₆-2⋅X₈-2⋅X₁₀-6 ]
n_l20___6 [-2 ]
n_l18___5 [-2 ]
n_l20___62 [2⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l18___61 [2⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l20___69 [2⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l18___68 [2⋅X₆-2⋅X₁₀-X₁₁-7 ]
n_l20___86 [2⋅X₆-2⋅X₁₀ ]
n_l18___85 [2⋅X₉-2⋅X₁₀ ]
n_l21___11 [2⋅X₉-2⋅X₁₀ ]
n_l21___4 [-2⋅X₁₁ ]
n_l21___53 [2⋅X₆-2⋅X₈-2⋅X₁₀-6 ]
n_l21___60 [2⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l21___67 [2⋅X₆-2⋅X₁₀-X₁₁-7 ]
n_l21___84 [2⋅X₉-2⋅X₁₀ ]
n_l22___10 [2⋅X₉-2⋅X₁₀-X₁₁-7 ]
n_l22___3 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-6 ]
n_l22___52 [2⋅X₆-2⋅X₈-2⋅X₁₀-6 ]
n_l22___59 [2⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l22___66 [2⋅X₆-2⋅X₁₀-X₁₁-7 ]
n_l22___83 [2⋅X₆-2⋅X₁₀ ]
n_l24___2 [2⋅X₉-2⋅X₁₀-8 ]
n_l23___1 [2⋅X₆-2⋅X₁₀-X₁₁-7 ]
n_l24___51 [2⋅X₉-2⋅X₈-2⋅X₁₀-6 ]
n_l23___50 [2⋅X₆-2⋅X₁₀-X₁₁-5 ]
n_l24___58 [2⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l23___57 [2⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l24___65 [2⋅X₉-2⋅X₁₀-X₁₁-7 ]
n_l23___64 [2⋅X₆-2⋅X₁₀-X₁₁-7 ]
n_l24___81 [2⋅X₉-2⋅X₁₀ ]
n_l23___80 [2⋅X₆-2⋅X₁₀-X₁₁-7 ]
n_l24___9 [2⋅X₉-2⋅X₁₀-X₁₁-7 ]
n_l23___8 [2⋅X₆-2⋅X₁₀-X₁₁-7 ]
n_l13___77 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-7 ]
n_l16___76 [6⋅X₁₁-4⋅X₈ ]
n_l30___78 [2⋅X₆+2⋅X₁₁-4⋅X₈-2⋅X₁₀-6 ]
n_l8___79 [2⋅X₉-X₈-2⋅X₁₀-7 ]
n_l8___82 [2⋅X₉-X₆-X₁₀-5 ]
l32 [-2⋅X₁₀-X₁₁-2 ]
MPRF for transition t₇₃₈: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
7⋅X₆⋅X₆+2⋅X₁₁+27⋅X₆+28 {O(n^2)}
MPRF:
l31 [2-X₁₀-2⋅X₁₁ ]
l6 [2-X₁₀-2⋅X₁₁ ]
l7 [2-X₁₀-2⋅X₁₁ ]
l5 [2-X₁₀-2⋅X₁₁ ]
l8 [2-X₁₀-2⋅X₁₁ ]
n_l30___95 [2-X₁₀-2⋅X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₉-X₁₀-2⋅X₁₁ ]
n_l12___74 [X₉-2⋅X₈-X₁₀-2 ]
n_l14___92 [X₉ ]
n_l12___91 [X₉ ]
n_l15___73 [X₆-X₁₀-2⋅X₁₁-2 ]
n_l15___90 [X₆ ]
n_l16___72 [X₆-X₁₀-2⋅X₁₁-2 ]
n_l16___89 [X₆ ]
n_l16___93 [2 ]
n_l17___71 [X₉-X₁₀-2⋅X₁₁-2 ]
n_l17___88 [X₉ ]
n_l19___14 [X₉ ]
n_l19___56 [2⋅X₉+2⋅X₁₁-8⋅X₈-2⋅X₁₀-6 ]
n_l19___63 [X₆+2⋅X₈+2-X₁₀-2⋅X₁₁ ]
n_l19___7 [2 ]
n_l19___70 [2⋅X₈+X₉-X₁₀-2⋅X₁₁ ]
n_l19___87 [X₉ ]
n_l20___13 [X₉ ]
n_l18___12 [X₉ ]
n_l20___55 [2⋅X₉+2⋅X₁₁-8⋅X₈-2⋅X₁₀-6 ]
n_l18___54 [2⋅X₉+2⋅X₁₁-8⋅X₈-2⋅X₁₀-6 ]
n_l20___6 [2 ]
n_l18___5 [2⋅X₁₁ ]
n_l20___62 [X₆+2⋅X₈+2-X₁₀-2⋅X₁₁ ]
n_l18___61 [2⋅X₈+X₉+2-X₁₀-2⋅X₁₁ ]
n_l20___69 [2⋅X₈+X₉-X₁₀-2⋅X₁₁ ]
n_l18___68 [X₆+2⋅X₈-X₁₀-2⋅X₁₁ ]
n_l20___86 [X₉ ]
n_l18___85 [X₉ ]
n_l21___11 [X₉ ]
n_l21___4 [X₆+2⋅X₁₁-X₉ ]
n_l21___53 [2⋅X₉+2⋅X₁₁-8⋅X₈-2⋅X₁₀-6 ]
n_l21___60 [X₆+2⋅X₈+2-X₁₀-2⋅X₁₁ ]
n_l21___67 [2⋅X₈+X₉-X₁₀-2⋅X₁₁ ]
n_l21___84 [X₉ ]
n_l22___10 [X₉ ]
n_l22___3 [2⋅X₁₁ ]
n_l22___52 [2⋅X₆+2⋅X₁₁-8⋅X₈-2⋅X₁₀-6 ]
n_l22___59 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l22___66 [X₆+2⋅X₈-X₁₀-2⋅X₁₁-1 ]
n_l22___83 [X₉ ]
n_l24___2 [X₁₁+1 ]
n_l23___1 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l24___51 [2⋅X₆+2⋅X₁₁-8⋅X₈-2⋅X₁₀-6 ]
n_l23___50 [X₆+1-X₁₀-2⋅X₁₁ ]
n_l24___58 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l23___57 [X₆+1-X₁₀-2⋅X₁₁ ]
n_l24___65 [X₆+2⋅X₈-X₁₀-2⋅X₁₁-1 ]
n_l23___64 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l24___81 [X₆ ]
n_l23___80 [X₆-1 ]
n_l24___9 [X₉ ]
n_l23___8 [X₆-3 ]
n_l13___77 [X₆-X₁₀-2⋅X₁₁ ]
n_l16___76 [2 ]
n_l30___78 [X₉-2⋅X₈-X₁₀ ]
n_l8___79 [2⋅X₆+1-2⋅X₈-X₉-X₁₀ ]
n_l8___82 [2 ]
l32 [2-X₁₀-2⋅X₁₁ ]
MPRF for transition t₇₄₄: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
35⋅X₆⋅X₆+2⋅X₁₁+66⋅X₆+3 {O(n^2)}
MPRF:
l31 [X₆+3-2⋅X₁₁ ]
l6 [X₆+3-2⋅X₁₁ ]
l7 [X₆+3-2⋅X₁₁ ]
l5 [X₉+3-2⋅X₁₁ ]
l8 [X₉+3-2⋅X₁₁ ]
n_l30___95 [X₉+3-2⋅X₁₁ ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₉-X₁₀-X₁₁ ]
n_l12___74 [2⋅X₉-X₈-X₁₀ ]
n_l14___92 [2⋅X₆ ]
n_l12___91 [2⋅X₆ ]
n_l15___73 [2⋅X₉-X₈-X₁₀ ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₉-X₈-X₁₀-1 ]
n_l16___89 [2⋅X₉ ]
n_l16___93 [2⋅X₆-X₁₀ ]
n_l17___71 [2⋅X₉-X₁₀-X₁₁ ]
n_l17___88 [2⋅X₆ ]
n_l19___14 [2⋅X₆ ]
n_l19___56 [2⋅X₉-X₈-X₁₀ ]
n_l19___63 [2⋅X₆-X₈-X₁₀ ]
n_l19___7 [2⋅X₆-X₁₀ ]
n_l19___70 [2⋅X₉-X₈-X₁₀-1 ]
n_l19___87 [2⋅X₉ ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [2⋅X₉-X₈-X₁₀ ]
n_l18___54 [2⋅X₉-X₈-X₁₀ ]
n_l20___6 [2⋅X₉-X₁₀ ]
n_l18___5 [2⋅X₆-X₁₀ ]
n_l20___62 [2⋅X₉-X₈-X₁₀ ]
n_l18___61 [2⋅X₆-X₈-X₁₀ ]
n_l20___69 [2⋅X₆+X₈-X₁₀-X₁₁ ]
n_l18___68 [X₈+2⋅X₉-X₁₀-X₁₁ ]
n_l20___86 [2⋅X₉ ]
n_l18___85 [2⋅X₆ ]
n_l21___11 [2⋅X₉ ]
n_l21___4 [2⋅X₉-X₁₀ ]
n_l21___53 [2⋅X₉-X₈-X₁₀ ]
n_l21___60 [2⋅X₆+X₈+2-X₁₀-X₁₁ ]
n_l21___67 [X₈+2⋅X₉-X₁₀-X₁₁ ]
n_l21___84 [2⋅X₉ ]
n_l22___10 [2⋅X₆+1-X₁₁ ]
n_l22___3 [2⋅X₉+2-X₁₀-2⋅X₁₁ ]
n_l22___52 [2⋅X₆-X₈-X₁₀ ]
n_l22___59 [2⋅X₆+4⋅X₈+5-X₁₀-3⋅X₁₁ ]
n_l22___66 [X₈+2⋅X₉-X₁₀-X₁₁ ]
n_l22___83 [2⋅X₉ ]
n_l24___2 [2⋅X₉+2-X₁₀-2⋅X₁₁ ]
n_l23___1 [2⋅X₆+1-X₁₀-X₁₁ ]
n_l24___51 [2⋅X₉-X₈-X₁₀-1 ]
n_l23___50 [2⋅X₆+1-X₁₀-X₁₁ ]
n_l24___58 [2⋅X₆+4⋅X₈+5-X₁₀-3⋅X₁₁ ]
n_l23___57 [2⋅X₉+1-X₁₀-X₁₁ ]
n_l24___65 [2⋅X₆+10⋅X₈+6-X₁₀-6⋅X₁₁ ]
n_l23___64 [2⋅X₆+1-X₁₀-X₁₁ ]
n_l24___81 [2⋅X₉ ]
n_l23___80 [2⋅X₆+1-X₁₁ ]
n_l24___9 [2⋅X₉+1-X₁₁ ]
n_l23___8 [2⋅X₆+1-X₁₁ ]
n_l13___77 [2⋅X₆-X₈-X₁₀ ]
n_l16___76 [2⋅X₆+X₈-X₁₀-2⋅X₁₁ ]
n_l30___78 [2⋅X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l8___79 [X₈+2⋅X₉+1-X₁₀-2⋅X₁₁ ]
n_l8___82 [X₈+3 ]
l32 [X₉+3-2⋅X₁₁ ]
MPRF for transition t₇₇₃: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
X₆+3 {O(n)}
MPRF:
l31 [X₉-X₁₀ ]
l6 [X₉-X₁₀ ]
l7 [X₆-X₁₀ ]
l5 [X₆-X₁₀ ]
l8 [X₆-X₁₀ ]
n_l14___75 [X₉-X₁₀ ]
n_l12___74 [X₉-X₁₀ ]
n_l14___92 [X₆-X₁₀ ]
n_l12___91 [X₆-X₁₀ ]
n_l15___73 [X₉-X₁₀ ]
n_l15___90 [3⋅X₆-2⋅X₉-X₁₀ ]
n_l16___72 [X₆-X₁₀ ]
n_l16___89 [X₆-X₁₀ ]
n_l17___71 [X₉-X₁₀ ]
n_l17___88 [X₆-X₁₀ ]
n_l19___14 [X₉-X₁₀ ]
n_l19___56 [2⋅X₈+3 ]
n_l19___63 [X₉-X₁₀ ]
n_l19___7 [2⋅X₉-2⋅X₁₀-3 ]
n_l19___70 [X₆-X₁₀ ]
n_l19___87 [X₉-X₁₀ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₉-X₁₀ ]
n_l20___55 [X₁₁+2 ]
n_l18___54 [X₁₁+2 ]
n_l20___6 [3⋅X₉-3⋅X₁₀-3⋅X₁₁-3 ]
n_l18___5 [2⋅X₉-2⋅X₁₀-3⋅X₁₁ ]
n_l20___62 [X₉-X₁₀ ]
n_l18___61 [X₉-X₁₀ ]
n_l20___69 [X₉-X₁₀ ]
n_l18___68 [X₆-X₁₀ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₆-X₁₀ ]
n_l21___11 [2⋅X₉-X₆-X₁₀ ]
n_l21___4 [X₆+X₉-2⋅X₁₀-3⋅X₁₁ ]
n_l21___53 [X₁₁+2 ]
n_l21___60 [X₉-X₁₀ ]
n_l21___67 [X₉-X₁₀ ]
n_l21___84 [3⋅X₆-2⋅X₉-X₁₀ ]
n_l22___10 [X₉+X₁₁-X₁₀-2 ]
n_l22___3 [3⋅X₆-X₉-2⋅X₁₀-3 ]
n_l22___52 [X₁₁+2 ]
n_l22___59 [X₉-X₁₀ ]
n_l22___66 [X₉-X₁₀ ]
n_l22___83 [X₆+X₁₁-X₁₀-1 ]
n_l24___2 [3⋅X₉-3⋅X₁₀-6 ]
n_l23___1 [X₆-X₁₀ ]
n_l24___51 [X₆-X₁₀ ]
n_l23___50 [X₆-X₁₀ ]
n_l24___58 [5⋅X₉-4⋅X₆-X₁₀ ]
n_l23___57 [X₉-X₁₀ ]
n_l24___65 [5⋅X₉-4⋅X₆-X₁₀ ]
n_l23___64 [X₉-X₁₀ ]
n_l24___81 [X₆+X₁₁-X₁₀-1 ]
n_l23___80 [X₉-X₁₀ ]
n_l24___9 [X₆+X₁₁-X₁₀-2 ]
n_l23___8 [X₆-X₁₀ ]
n_l13___77 [X₆-X₁₀ ]
n_l16___76 [2⋅X₈+3 ]
n_l13___94 [X₆-X₁₀ ]
n_l30___95 [X₆-X₁₀ ]
n_l16___93 [2⋅X₉-X₆-X₁₀ ]
n_l30___78 [X₆-X₁₀ ]
n_l8___79 [X₆-X₁₀ ]
n_l8___82 [X₆-X₁₀ ]
l32 [X₉-X₁₀-1 ]
MPRF for transition t₇₇₄: n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
X₆+2 {O(n)}
MPRF:
l31 [X₆+2-X₁₀ ]
l6 [X₉+2-X₁₀ ]
l7 [X₆+2-X₁₀ ]
l5 [X₆+2-X₁₀ ]
l8 [X₉+2-X₁₀ ]
n_l14___75 [X₉+2-X₁₀ ]
n_l12___74 [X₆+2-X₁₀ ]
n_l14___92 [X₉+2-X₁₀ ]
n_l12___91 [X₉+2-X₁₀ ]
n_l15___73 [2⋅X₆+2-X₉-X₁₀ ]
n_l15___90 [2⋅X₆+2-X₉-X₁₀ ]
n_l16___72 [X₆+2-X₁₀ ]
n_l16___89 [X₉+2-X₁₀ ]
n_l17___71 [X₉+2-X₁₀ ]
n_l17___88 [X₉+2-X₁₀ ]
n_l19___14 [X₉+2-X₁₀ ]
n_l19___56 [X₁₁+4 ]
n_l19___63 [X₉+2-X₁₀ ]
n_l19___7 [2⋅X₁₀+11-X₆-X₉ ]
n_l19___70 [X₆+2⋅X₁₁-4⋅X₈-X₁₀ ]
n_l19___87 [X₉+2-X₁₀ ]
n_l20___13 [X₆+X₁₁-X₁₀ ]
n_l18___12 [X₆+2-X₁₀ ]
n_l20___55 [X₆+2-X₁₀ ]
n_l18___54 [X₉+2⋅X₁₁-4⋅X₈-X₁₀ ]
n_l20___6 [X₆+2-X₁₀ ]
n_l18___5 [5 ]
n_l20___62 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l18___61 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l20___69 [X₆+4⋅X₈+4-X₁₀-2⋅X₁₁ ]
n_l18___68 [4⋅X₈+X₉+4-X₁₀-2⋅X₁₁ ]
n_l20___86 [X₆+2⋅X₁₁-X₁₀ ]
n_l18___85 [X₉+X₁₁+1-X₁₀ ]
n_l21___11 [2⋅X₉+X₁₁-X₆-X₁₀ ]
n_l21___4 [3⋅X₉+5-3⋅X₆ ]
n_l21___53 [X₉+2⋅X₁₁-4⋅X₈-X₁₀ ]
n_l21___60 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l21___67 [X₆+4⋅X₈+4-X₁₀-2⋅X₁₁ ]
n_l21___84 [2⋅X₆+X₁₁+1-X₉-X₁₀ ]
n_l22___10 [X₉+2-X₁₀ ]
n_l22___3 [5 ]
n_l22___52 [X₉+2⋅X₁₁-4⋅X₈-X₁₀ ]
n_l22___59 [X₆+X₁₁-2⋅X₈-X₁₀ ]
n_l22___66 [4⋅X₈+X₉+4-X₁₀-2⋅X₁₁ ]
n_l22___83 [X₉+2⋅X₁₁-X₁₀ ]
n_l24___2 [2⋅X₉+5-2⋅X₆ ]
n_l23___1 [X₉+2-X₁₀ ]
n_l24___51 [X₆+2⋅X₁₁-4⋅X₈-X₁₀ ]
n_l23___50 [X₉+2-X₁₀ ]
n_l24___58 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l23___57 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l24___65 [X₆+4⋅X₈+4-X₁₀-2⋅X₁₁ ]
n_l23___64 [X₉+2-X₁₀ ]
n_l24___81 [X₉+2-X₁₀ ]
n_l23___80 [X₉+2-X₁₀ ]
n_l24___9 [X₆+X₁₁-X₁₀ ]
n_l23___8 [X₉+2-X₁₀ ]
n_l13___77 [X₆+2-X₁₀ ]
n_l16___76 [2⋅X₈+5 ]
n_l13___94 [X₆+2-X₁₀ ]
n_l30___95 [X₉+2-X₁₀ ]
n_l16___93 [2⋅X₁₀+11-2⋅X₆ ]
n_l30___78 [X₆+2-X₁₀ ]
n_l8___79 [X₉+2-X₁₀ ]
n_l8___82 [X₆+2-X₁₀ ]
l32 [X₆+1-X₁₀ ]
CFR: Improvement to new bound with the following program:
new bound:
2121⋅X₆⋅X₆+728⋅X₆⋅X₈+1360⋅X₈+46⋅X₁₁+6781⋅X₆+5392 {O(n^2)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: Arg10_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l2, l25, l26, l27, l28, l29, l3, l31, l32, l33, l4, l5, l6, l7, l8, l9, n_l12___74, n_l12___91, n_l13___77, n_l13___94, n_l14___75, n_l14___92, n_l15___73, n_l15___90, n_l16___72, n_l16___76, n_l16___89, n_l16___93, n_l17___71, n_l17___88, n_l18___12, n_l18___5, n_l18___54, n_l18___61, n_l18___68, n_l18___85, n_l19___14, n_l19___56, n_l19___63, n_l19___7, n_l19___70, n_l19___87, n_l20___13, n_l20___55, n_l20___6, n_l20___62, n_l20___69, n_l20___86, n_l21___11, n_l21___4, n_l21___53, n_l21___60, n_l21___67, n_l21___84, n_l22___10, n_l22___3, n_l22___52, n_l22___59, n_l22___66, n_l22___83, n_l23___1, n_l23___50, n_l23___57, n_l23___64, n_l23___8, n_l23___80, n_l24___2, n_l24___51, n_l24___58, n_l24___65, n_l24___81, n_l24___9, n_l30___78, n_l30___95, n_l8___79, n_l8___82
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₁₀
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₇₄₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2+X₁₀ ≤ X₉ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₆₃₇: n_l12___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___73(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₃₈: n_l12___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___90(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₆₄₀: n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₄₁: n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₆₄₃: n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___74(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₄₄: n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___91(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₆₄₇: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₄₈: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₄₉: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₆₅₀: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₆₅₃: n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₅₄: n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 3+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₁₀+2⋅X₁₁+3 ∧ 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁
t₆₅₅: n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₅₆: n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₆₅₈: n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₅₉: n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₆₀: n_l18___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___11(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₆₄: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___4(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₆₅: n_l18___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___53(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₆₆: n_l18___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___60(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₆₇: n_l18___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___67(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₆₈: n_l18___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___84(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₆₉: n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₇₃: n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₇₄: n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₇₅: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₇₆: n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₇₇: n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₇₈: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___12(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₈₂: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___54(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₈₃: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___5(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₈₄: n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___61(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₈₅: n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___68(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₈₆: n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___85(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₈₇: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₈₈: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₉₅: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₉₆: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₉₇: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₉₈: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₉₉: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₀₀: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₀₁: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₀₂: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₀₃: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₀₄: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₀₅: n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₀₈: n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₁₀: n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₁₁: n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₁₂: n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₁₃: n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₁₄: n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₁₈: n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₁₉: n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₂₀: n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₂₁: n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₂₂: n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₂₄: n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₂₇: n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₂₈: n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₂₉: n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₃₀: n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₃₁: n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₃₇: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₃₈: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₃₉: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₇₄₀: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₇₇₃: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₄₄: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₇₄: n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
All Bounds
Timebounds
Overall timebound:2138⋅X₆⋅X₆+728⋅X₆⋅X₈+1360⋅X₈+46⋅X₁₁+6871⋅X₆+5525 {O(n^2)}
t₀: 1 {O(1)}
t₃: X₆+2 {O(n)}
t₄: 1 {O(1)}
t₇: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₉: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₁₂: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₃: X₆+1 {O(n)}
t₁₄: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₈: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₆: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₅₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₆: X₆+1 {O(n)}
t₂₁: X₆+4 {O(n)}
t₂₂: 1 {O(1)}
t₅₂: 3⋅X₆+4⋅X₈+6 {O(n)}
t₂₀: X₆+2 {O(n)}
t₂₆: 7⋅X₆+13 {O(n)}
t₂₃: X₆+4 {O(n)}
t₂₅: X₆+4 {O(n)}
t₂₈: 3⋅X₆+4⋅X₈+6 {O(n)}
t₇₄₆: 7⋅X₆+13 {O(n)}
t₁₁: 3⋅X₆⋅X₆+13⋅X₆+14 {O(n^2)}
t₆₃₇: 7⋅X₆⋅X₆+13⋅X₆+X₁₁+1 {O(n^2)}
t₆₃₈: 7⋅X₆+13 {O(n)}
t₆₄₀: 28⋅X₆⋅X₈+70⋅X₆⋅X₆+193⋅X₆+2⋅X₁₁+52⋅X₈+117 {O(n^2)}
t₆₄₁: 7⋅X₆+13 {O(n)}
t₆₄₃: 14⋅X₆⋅X₆+2⋅X₁₁+55⋅X₆+62 {O(n^2)}
t₆₄₄: 7⋅X₆+13 {O(n)}
t₆₄₇: 21⋅X₆⋅X₆+74⋅X₆+X₁₁+66 {O(n^2)}
t₆₄₈: 28⋅X₆⋅X₆+108⋅X₆+X₁₁+108 {O(n^2)}
t₆₄₉: 7⋅X₆+13 {O(n)}
t₆₅₀: 7⋅X₆+13 {O(n)}
t₆₅₃: 35⋅X₆⋅X₆+73⋅X₆+X₁₁+17 {O(n^2)}
t₆₅₄: 28⋅X₆⋅X₈+77⋅X₆⋅X₆+2⋅X₁₁+228⋅X₆+52⋅X₈+159 {O(n^2)}
t₆₅₅: 7⋅X₆+13 {O(n)}
t₆₅₆: 7⋅X₆+13 {O(n)}
t₆₅₈: 28⋅X₆⋅X₆+129⋅X₆+X₁₁+144 {O(n^2)}
t₆₅₉: 7⋅X₆+13 {O(n)}
t₆₆₀: 7⋅X₆+13 {O(n)}
t₆₆₄: 7⋅X₆+13 {O(n)}
t₆₆₅: 112⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+2⋅X₁₁+335⋅X₆+238 {O(n^2)}
t₆₆₆: 28⋅X₆⋅X₈+84⋅X₆⋅X₆+276⋅X₆+52⋅X₈+X₁₁+230 {O(n^2)}
t₆₆₇: 112⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+2⋅X₁₁+327⋅X₆+224 {O(n^2)}
t₆₆₈: 7⋅X₆+13 {O(n)}
t₆₆₉: 7⋅X₆+13 {O(n)}
t₆₇₃: 21⋅X₆⋅X₆+39⋅X₆+X₁₁+3 {O(n^2)}
t₆₇₄: 21⋅X₆⋅X₆+81⋅X₆+X₁₁+80 {O(n^2)}
t₆₇₅: 7⋅X₆+13 {O(n)}
t₆₇₆: 84⋅X₆⋅X₆+241⋅X₆+X₁₁+171 {O(n^2)}
t₆₇₇: 7⋅X₆+13 {O(n)}
t₆₇₈: 7⋅X₆+13 {O(n)}
t₆₈₂: 14⋅X₆⋅X₆+75⋅X₆+X₁₁+98 {O(n^2)}
t₆₈₃: 7⋅X₆+13 {O(n)}
t₆₈₄: 28⋅X₆⋅X₆+153⋅X₆+X₁₁+196 {O(n^2)}
t₆₈₅: 28⋅X₆⋅X₆+116⋅X₆+2⋅X₁₁+122 {O(n^2)}
t₆₈₆: 7⋅X₆+13 {O(n)}
t₆₈₇: 7⋅X₆+13 {O(n)}
t₆₈₈: 7⋅X₆+13 {O(n)}
t₆₉₅: 7⋅X₆+13 {O(n)}
t₆₉₆: 7⋅X₆+13 {O(n)}
t₆₉₇: 35⋅X₆⋅X₆+174⋅X₆+X₁₁+198 {O(n^2)}
t₆₉₈: X₆ {O(n)}
t₆₉₉: 7⋅X₆⋅X₆+27⋅X₆+X₁₁+26 {O(n^2)}
t₇₀₀: X₆+3 {O(n)}
t₇₀₁: 224⋅X₆⋅X₈+448⋅X₆⋅X₆+1335⋅X₆+416⋅X₈+X₁₁+930 {O(n^2)}
t₇₀₂: X₆+3 {O(n)}
t₇₀₃: 7⋅X₆+13 {O(n)}
t₇₀₄: 7⋅X₆+13 {O(n)}
t₇₀₅: 7⋅X₆+13 {O(n)}
t₇₀₈: 7⋅X₆+13 {O(n)}
t₇₁₀: 28⋅X₆⋅X₈+77⋅X₆⋅X₆+2⋅X₁₁+256⋅X₆+52⋅X₈+216 {O(n^2)}
t₇₁₁: 154⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+519⋅X₆+X₁₁+446 {O(n^2)}
t₇₁₂: 21⋅X₆⋅X₆+2⋅X₁₁+39⋅X₆ {O(n^2)}
t₇₁₃: 7⋅X₆+13 {O(n)}
t₇₁₄: 7⋅X₆+13 {O(n)}
t₇₁₈: 168⋅X₆⋅X₆+84⋅X₆⋅X₈+156⋅X₈+510⋅X₆+X₁₁+374 {O(n^2)}
t₇₁₉: 154⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+405⋅X₆+X₁₁+229 {O(n^2)}
t₇₂₀: 21⋅X₆⋅X₆+60⋅X₆+X₁₁+40 {O(n^2)}
t₇₂₁: 7⋅X₆+13 {O(n)}
t₇₂₂: 7⋅X₆+13 {O(n)}
t₇₂₄: 7⋅X₆+13 {O(n)}
t₇₂₇: 28⋅X₆⋅X₈+56⋅X₆⋅X₆+175⋅X₆+2⋅X₁₁+52⋅X₈+137 {O(n^2)}
t₇₂₈: 7⋅X₆⋅X₆+2⋅X₁₁+20⋅X₆+14 {O(n^2)}
t₇₂₉: 35⋅X₆⋅X₆+3⋅X₁₁+80⋅X₆+28 {O(n^2)}
t₇₃₀: 7⋅X₆+13 {O(n)}
t₇₃₁: 7⋅X₆+13 {O(n)}
t₇₃₇: 112⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+306⋅X₆+X₁₁+184 {O(n^2)}
t₇₃₈: 7⋅X₆⋅X₆+2⋅X₁₁+27⋅X₆+28 {O(n^2)}
t₇₃₉: 7⋅X₆+13 {O(n)}
t₇₄₀: 7⋅X₆+13 {O(n)}
t₇₄₄: 35⋅X₆⋅X₆+2⋅X₁₁+66⋅X₆+3 {O(n^2)}
t₇₇₃: X₆+3 {O(n)}
t₇₇₄: X₆+2 {O(n)}
Costbounds
Overall costbound: 2138⋅X₆⋅X₆+728⋅X₆⋅X₈+1360⋅X₈+46⋅X₁₁+6871⋅X₆+5525 {O(n^2)}
t₀: 1 {O(1)}
t₃: X₆+2 {O(n)}
t₄: 1 {O(1)}
t₇: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₉: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₁₂: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₃: X₆+1 {O(n)}
t₁₄: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₈: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₆: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₅₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₆: X₆+1 {O(n)}
t₂₁: X₆+4 {O(n)}
t₂₂: 1 {O(1)}
t₅₂: 3⋅X₆+4⋅X₈+6 {O(n)}
t₂₀: X₆+2 {O(n)}
t₂₆: 7⋅X₆+13 {O(n)}
t₂₃: X₆+4 {O(n)}
t₂₅: X₆+4 {O(n)}
t₂₈: 3⋅X₆+4⋅X₈+6 {O(n)}
t₇₄₆: 7⋅X₆+13 {O(n)}
t₁₁: 3⋅X₆⋅X₆+13⋅X₆+14 {O(n^2)}
t₆₃₇: 7⋅X₆⋅X₆+13⋅X₆+X₁₁+1 {O(n^2)}
t₆₃₈: 7⋅X₆+13 {O(n)}
t₆₄₀: 28⋅X₆⋅X₈+70⋅X₆⋅X₆+193⋅X₆+2⋅X₁₁+52⋅X₈+117 {O(n^2)}
t₆₄₁: 7⋅X₆+13 {O(n)}
t₆₄₃: 14⋅X₆⋅X₆+2⋅X₁₁+55⋅X₆+62 {O(n^2)}
t₆₄₄: 7⋅X₆+13 {O(n)}
t₆₄₇: 21⋅X₆⋅X₆+74⋅X₆+X₁₁+66 {O(n^2)}
t₆₄₈: 28⋅X₆⋅X₆+108⋅X₆+X₁₁+108 {O(n^2)}
t₆₄₉: 7⋅X₆+13 {O(n)}
t₆₅₀: 7⋅X₆+13 {O(n)}
t₆₅₃: 35⋅X₆⋅X₆+73⋅X₆+X₁₁+17 {O(n^2)}
t₆₅₄: 28⋅X₆⋅X₈+77⋅X₆⋅X₆+2⋅X₁₁+228⋅X₆+52⋅X₈+159 {O(n^2)}
t₆₅₅: 7⋅X₆+13 {O(n)}
t₆₅₆: 7⋅X₆+13 {O(n)}
t₆₅₈: 28⋅X₆⋅X₆+129⋅X₆+X₁₁+144 {O(n^2)}
t₆₅₉: 7⋅X₆+13 {O(n)}
t₆₆₀: 7⋅X₆+13 {O(n)}
t₆₆₄: 7⋅X₆+13 {O(n)}
t₆₆₅: 112⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+2⋅X₁₁+335⋅X₆+238 {O(n^2)}
t₆₆₆: 28⋅X₆⋅X₈+84⋅X₆⋅X₆+276⋅X₆+52⋅X₈+X₁₁+230 {O(n^2)}
t₆₆₇: 112⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+2⋅X₁₁+327⋅X₆+224 {O(n^2)}
t₆₆₈: 7⋅X₆+13 {O(n)}
t₆₆₉: 7⋅X₆+13 {O(n)}
t₆₇₃: 21⋅X₆⋅X₆+39⋅X₆+X₁₁+3 {O(n^2)}
t₆₇₄: 21⋅X₆⋅X₆+81⋅X₆+X₁₁+80 {O(n^2)}
t₆₇₅: 7⋅X₆+13 {O(n)}
t₆₇₆: 84⋅X₆⋅X₆+241⋅X₆+X₁₁+171 {O(n^2)}
t₆₇₇: 7⋅X₆+13 {O(n)}
t₆₇₈: 7⋅X₆+13 {O(n)}
t₆₈₂: 14⋅X₆⋅X₆+75⋅X₆+X₁₁+98 {O(n^2)}
t₆₈₃: 7⋅X₆+13 {O(n)}
t₆₈₄: 28⋅X₆⋅X₆+153⋅X₆+X₁₁+196 {O(n^2)}
t₆₈₅: 28⋅X₆⋅X₆+116⋅X₆+2⋅X₁₁+122 {O(n^2)}
t₆₈₆: 7⋅X₆+13 {O(n)}
t₆₈₇: 7⋅X₆+13 {O(n)}
t₆₈₈: 7⋅X₆+13 {O(n)}
t₆₉₅: 7⋅X₆+13 {O(n)}
t₆₉₆: 7⋅X₆+13 {O(n)}
t₆₉₇: 35⋅X₆⋅X₆+174⋅X₆+X₁₁+198 {O(n^2)}
t₆₉₈: X₆ {O(n)}
t₆₉₉: 7⋅X₆⋅X₆+27⋅X₆+X₁₁+26 {O(n^2)}
t₇₀₀: X₆+3 {O(n)}
t₇₀₁: 224⋅X₆⋅X₈+448⋅X₆⋅X₆+1335⋅X₆+416⋅X₈+X₁₁+930 {O(n^2)}
t₇₀₂: X₆+3 {O(n)}
t₇₀₃: 7⋅X₆+13 {O(n)}
t₇₀₄: 7⋅X₆+13 {O(n)}
t₇₀₅: 7⋅X₆+13 {O(n)}
t₇₀₈: 7⋅X₆+13 {O(n)}
t₇₁₀: 28⋅X₆⋅X₈+77⋅X₆⋅X₆+2⋅X₁₁+256⋅X₆+52⋅X₈+216 {O(n^2)}
t₇₁₁: 154⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+519⋅X₆+X₁₁+446 {O(n^2)}
t₇₁₂: 21⋅X₆⋅X₆+2⋅X₁₁+39⋅X₆ {O(n^2)}
t₇₁₃: 7⋅X₆+13 {O(n)}
t₇₁₄: 7⋅X₆+13 {O(n)}
t₇₁₈: 168⋅X₆⋅X₆+84⋅X₆⋅X₈+156⋅X₈+510⋅X₆+X₁₁+374 {O(n^2)}
t₇₁₉: 154⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+405⋅X₆+X₁₁+229 {O(n^2)}
t₇₂₀: 21⋅X₆⋅X₆+60⋅X₆+X₁₁+40 {O(n^2)}
t₇₂₁: 7⋅X₆+13 {O(n)}
t₇₂₂: 7⋅X₆+13 {O(n)}
t₇₂₄: 7⋅X₆+13 {O(n)}
t₇₂₇: 28⋅X₆⋅X₈+56⋅X₆⋅X₆+175⋅X₆+2⋅X₁₁+52⋅X₈+137 {O(n^2)}
t₇₂₈: 7⋅X₆⋅X₆+2⋅X₁₁+20⋅X₆+14 {O(n^2)}
t₇₂₉: 35⋅X₆⋅X₆+3⋅X₁₁+80⋅X₆+28 {O(n^2)}
t₇₃₀: 7⋅X₆+13 {O(n)}
t₇₃₁: 7⋅X₆+13 {O(n)}
t₇₃₇: 112⋅X₆⋅X₆+56⋅X₆⋅X₈+104⋅X₈+306⋅X₆+X₁₁+184 {O(n^2)}
t₇₃₈: 7⋅X₆⋅X₆+2⋅X₁₁+27⋅X₆+28 {O(n^2)}
t₇₃₉: 7⋅X₆+13 {O(n)}
t₇₄₀: 7⋅X₆+13 {O(n)}
t₇₄₄: 35⋅X₆⋅X₆+2⋅X₁₁+66⋅X₆+3 {O(n^2)}
t₇₇₃: X₆+3 {O(n)}
t₇₇₄: X₆+2 {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₆+4 {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₆+3 {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₆+4 {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₆+3 {O(n)}
t₄, X₁₀: 0 {O(1)}
t₄, X₁₁: X₁₁ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₆+4 {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₆+3 {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₇, X₁₁: X₁₁ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₆+4 {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₆+3 {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₉, X₁₁: X₁₁ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₆+4 {O(n)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₆+3 {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₂, X₁₁: X₁₁ {O(n)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₁ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁₃, X₇: X₆+4 {O(n)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₆+3 {O(n)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₁₃, X₁₁: X₁₁ {O(n)}
t₁₄, X₀: X₀ {O(n)}
t₁₄, X₁: X₁ {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: X₆+4 {O(n)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₆+3 {O(n)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₄, X₁₁: X₁₁ {O(n)}
t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₇: X₆+4 {O(n)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₆+3 {O(n)}
t₁₈, X₁₀: X₁₀ {O(n)}
t₁₈, X₁₁: X₁₁ {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: X₁ {O(n)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₆: X₆ {O(n)}
t₁₆, X₇: X₆+4 {O(n)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₆+3 {O(n)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₁₆, X₁₁: X₁₁ {O(n)}
t₅₃, X₆: 2⋅X₆ {O(n)}
t₅₃, X₇: X₆+X₇+4 {O(n)}
t₅₃, X₈: 252⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅656+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅8⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅808⋅X₆+6⋅X₆+X₈+6 {O(EXP)}
t₅₃, X₉: X₆+X₉+3 {O(n)}
t₅₃, X₁₀: 4⋅X₈+7⋅X₆+X₁₀+6 {O(n)}
t₅₃, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+2⋅X₁₁+12 {O(EXP)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: 1 {O(1)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₆+4 {O(n)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₆+3 {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₅, X₁₁: X₁₁ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: 0 {O(1)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₆+3 {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₆, X₁₁: X₁₁ {O(n)}
t₂₁, X₆: X₆ {O(n)}
t₂₁, X₇: X₆+4 {O(n)}
t₂₁, X₈: 252⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅656+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅8⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅808⋅X₆+6⋅X₆+X₈+6 {O(EXP)}
t₂₁, X₉: X₆+3 {O(n)}
t₂₁, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₂₁, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₇: X₆+4 {O(n)}
t₂₂, X₈: 252⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅656+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅8⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅808⋅X₆+6⋅X₆+6 {O(EXP)}
t₂₂, X₉: X₆+3 {O(n)}
t₂₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₂₂, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₅₂, X₆: X₆ {O(n)}
t₅₂, X₇: X₆+4 {O(n)}
t₅₂, X₈: 252⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅656+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅8⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅808⋅X₆+6⋅X₆+6 {O(EXP)}
t₅₂, X₉: X₆+3 {O(n)}
t₅₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₅₂, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₂₀, X₀: X₀ {O(n)}
t₂₀, X₁: X₁ {O(n)}
t₂₀, X₂: X₂ {O(n)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₆: X₆ {O(n)}
t₂₀, X₇: X₆+4 {O(n)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₆+3 {O(n)}
t₂₀, X₁₀: X₁₀ {O(n)}
t₂₀, X₁₁: X₁₁ {O(n)}
t₂₆, X₆: X₆ {O(n)}
t₂₆, X₇: X₆+4 {O(n)}
t₂₆, X₈: 0 {O(1)}
t₂₆, X₉: X₆+3 {O(n)}
t₂₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₂₆, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₇: X₆+4 {O(n)}
t₂₃, X₈: 252⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅656+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅8⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅808⋅X₆+6⋅X₆+X₈+6 {O(EXP)}
t₂₃, X₉: X₆+3 {O(n)}
t₂₃, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₂₃, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₂₅, X₆: X₆ {O(n)}
t₂₅, X₇: X₆+4 {O(n)}
t₂₅, X₈: 252⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅656+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅8⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅808⋅X₆+6⋅X₆+X₈+6 {O(EXP)}
t₂₅, X₉: X₆+3 {O(n)}
t₂₅, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₂₅, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₂₈, X₆: X₆ {O(n)}
t₂₈, X₇: X₆+4 {O(n)}
t₂₈, X₈: 0 {O(1)}
t₂₈, X₉: X₆+3 {O(n)}
t₂₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₂₈, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₇₄₆, X₆: X₆ {O(n)}
t₇₄₆, X₇: X₆+4 {O(n)}
t₇₄₆, X₈: 0 {O(1)}
t₇₄₆, X₉: X₆ {O(n)}
t₇₄₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₄₆, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₆+4 {O(n)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₆+3 {O(n)}
t₁₁, X₁₀: X₁₀ {O(n)}
t₁₁, X₁₁: X₁₁ {O(n)}
t₆₃₇, X₆: X₆ {O(n)}
t₆₃₇, X₇: X₆+4 {O(n)}
t₆₃₇, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₃₇, X₉: X₆ {O(n)}
t₆₃₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₃₇, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+3 {O(EXP)}
t₆₃₈, X₆: X₆ {O(n)}
t₆₃₈, X₇: X₆+4 {O(n)}
t₆₃₈, X₈: 0 {O(1)}
t₆₃₈, X₉: X₆ {O(n)}
t₆₃₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₃₈, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₆₄₀, X₆: X₆ {O(n)}
t₆₄₀, X₇: X₆+4 {O(n)}
t₆₄₀, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₄₀, X₉: X₆ {O(n)}
t₆₄₀, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₄₀, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+3 {O(EXP)}
t₆₄₁, X₆: X₆ {O(n)}
t₆₄₁, X₇: X₆+4 {O(n)}
t₆₄₁, X₈: 0 {O(1)}
t₆₄₁, X₉: X₆ {O(n)}
t₆₄₁, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₄₁, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₆₄₃, X₆: X₆ {O(n)}
t₆₄₃, X₇: X₆+4 {O(n)}
t₆₄₃, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₄₃, X₉: X₆ {O(n)}
t₆₄₃, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₄₃, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+3 {O(EXP)}
t₆₄₄, X₆: X₆ {O(n)}
t₆₄₄, X₇: X₆+4 {O(n)}
t₆₄₄, X₈: 0 {O(1)}
t₆₄₄, X₉: X₆ {O(n)}
t₆₄₄, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₄₄, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₆₄₇, X₆: X₆ {O(n)}
t₆₄₇, X₇: X₆+4 {O(n)}
t₆₄₇, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₄₇, X₉: X₆ {O(n)}
t₆₄₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₄₇, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+3 {O(EXP)}
t₆₄₈, X₆: X₆ {O(n)}
t₆₄₈, X₇: X₆+4 {O(n)}
t₆₄₈, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₄₈, X₉: X₆ {O(n)}
t₆₄₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₄₈, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+3 {O(EXP)}
t₆₄₉, X₆: X₆ {O(n)}
t₆₄₉, X₇: X₆+4 {O(n)}
t₆₄₉, X₈: 0 {O(1)}
t₆₄₉, X₉: X₆ {O(n)}
t₆₄₉, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₄₉, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₆₅₀, X₆: X₆ {O(n)}
t₆₅₀, X₇: X₆+4 {O(n)}
t₆₅₀, X₈: 0 {O(1)}
t₆₅₀, X₉: X₆ {O(n)}
t₆₅₀, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₅₀, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₆₅₃, X₆: X₆ {O(n)}
t₆₅₃, X₇: X₆+4 {O(n)}
t₆₅₃, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₅₃, X₉: X₆ {O(n)}
t₆₅₃, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₅₃, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₅₄, X₆: X₆ {O(n)}
t₆₅₄, X₇: X₆+4 {O(n)}
t₆₅₄, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₅₄, X₉: X₆ {O(n)}
t₆₅₄, X₁₀: X₆ {O(n)}
t₆₅₄, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+2 {O(EXP)}
t₆₅₅, X₆: X₆ {O(n)}
t₆₅₅, X₇: X₆+4 {O(n)}
t₆₅₅, X₈: 0 {O(1)}
t₆₅₅, X₉: X₆ {O(n)}
t₆₅₅, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₅₅, X₁₁: 1 {O(1)}
t₆₅₆, X₆: X₆ {O(n)}
t₆₅₆, X₇: X₆+4 {O(n)}
t₆₅₆, X₈: 0 {O(1)}
t₆₅₆, X₉: X₆ {O(n)}
t₆₅₆, X₁₀: X₆ {O(n)}
t₆₅₆, X₁₁: 1 {O(1)}
t₆₅₈, X₆: X₆ {O(n)}
t₆₅₈, X₇: X₆+4 {O(n)}
t₆₅₈, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₅₈, X₉: X₆ {O(n)}
t₆₅₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₅₈, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₅₉, X₆: X₆ {O(n)}
t₆₅₉, X₇: X₆+4 {O(n)}
t₆₅₉, X₈: 0 {O(1)}
t₆₅₉, X₉: X₆ {O(n)}
t₆₅₉, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₅₉, X₁₁: 2 {O(1)}
t₆₆₀, X₆: X₆ {O(n)}
t₆₆₀, X₇: X₆+4 {O(n)}
t₆₆₀, X₈: 0 {O(1)}
t₆₆₀, X₉: X₆ {O(n)}
t₆₆₀, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₆₀, X₁₁: 2 {O(1)}
t₆₆₄, X₆: X₆ {O(n)}
t₆₆₄, X₇: X₆+4 {O(n)}
t₆₆₄, X₈: 0 {O(1)}
t₆₆₄, X₉: X₆ {O(n)}
t₆₆₄, X₁₀: X₆ {O(n)}
t₆₆₄, X₁₁: 1 {O(1)}
t₆₆₅, X₆: X₆ {O(n)}
t₆₆₅, X₇: X₆+4 {O(n)}
t₆₆₅, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₆₅, X₉: X₆ {O(n)}
t₆₆₅, X₁₀: X₆ {O(n)}
t₆₆₅, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+2 {O(EXP)}
t₆₆₆, X₆: X₆ {O(n)}
t₆₆₆, X₇: X₆+4 {O(n)}
t₆₆₆, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₆₆, X₉: X₆ {O(n)}
t₆₆₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₆₆, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₆₇, X₆: X₆ {O(n)}
t₆₆₇, X₇: X₆+4 {O(n)}
t₆₆₇, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₆₇, X₉: X₆ {O(n)}
t₆₆₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₆₇, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₆₈, X₆: X₆ {O(n)}
t₆₆₈, X₇: X₆+4 {O(n)}
t₆₆₈, X₈: 0 {O(1)}
t₆₆₈, X₉: X₆ {O(n)}
t₆₆₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₆₈, X₁₁: 1 {O(1)}
t₆₆₉, X₆: X₆ {O(n)}
t₆₆₉, X₇: X₆+4 {O(n)}
t₆₆₉, X₈: 0 {O(1)}
t₆₆₉, X₉: X₆ {O(n)}
t₆₆₉, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₆₉, X₁₁: 2 {O(1)}
t₆₇₃, X₆: X₆ {O(n)}
t₆₇₃, X₇: X₆+4 {O(n)}
t₆₇₃, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₇₃, X₉: X₆ {O(n)}
t₆₇₃, X₁₀: X₆ {O(n)}
t₆₇₃, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+2 {O(EXP)}
t₆₇₄, X₆: X₆ {O(n)}
t₆₇₄, X₇: X₆+4 {O(n)}
t₆₇₄, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₇₄, X₉: X₆ {O(n)}
t₆₇₄, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₇₄, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₇₅, X₆: X₆ {O(n)}
t₆₇₅, X₇: X₆+4 {O(n)}
t₆₇₅, X₈: 0 {O(1)}
t₆₇₅, X₉: X₆ {O(n)}
t₆₇₅, X₁₀: X₆ {O(n)}
t₆₇₅, X₁₁: 1 {O(1)}
t₆₇₆, X₆: X₆ {O(n)}
t₆₇₆, X₇: X₆+4 {O(n)}
t₆₇₆, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₇₆, X₉: X₆ {O(n)}
t₆₇₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₇₆, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₇₇, X₆: X₆ {O(n)}
t₆₇₇, X₇: X₆+4 {O(n)}
t₆₇₇, X₈: 0 {O(1)}
t₆₇₇, X₉: X₆ {O(n)}
t₆₇₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₇₇, X₁₁: 1 {O(1)}
t₆₇₈, X₆: X₆ {O(n)}
t₆₇₈, X₇: X₆+4 {O(n)}
t₆₇₈, X₈: 0 {O(1)}
t₆₇₈, X₉: X₆ {O(n)}
t₆₇₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₇₈, X₁₁: 2 {O(1)}
t₆₈₂, X₆: X₆ {O(n)}
t₆₈₂, X₇: X₆+4 {O(n)}
t₆₈₂, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₈₂, X₉: X₆ {O(n)}
t₆₈₂, X₁₀: X₆ {O(n)}
t₆₈₂, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+2 {O(EXP)}
t₆₈₃, X₆: X₆ {O(n)}
t₆₈₃, X₇: X₆+4 {O(n)}
t₆₈₃, X₈: 0 {O(1)}
t₆₈₃, X₉: X₆ {O(n)}
t₆₈₃, X₁₀: X₆ {O(n)}
t₆₈₃, X₁₁: 1 {O(1)}
t₆₈₄, X₆: X₆ {O(n)}
t₆₈₄, X₇: X₆+4 {O(n)}
t₆₈₄, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₈₄, X₉: X₆ {O(n)}
t₆₈₄, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₈₄, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₈₅, X₆: X₆ {O(n)}
t₆₈₅, X₇: X₆+4 {O(n)}
t₆₈₅, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₈₅, X₉: X₆ {O(n)}
t₆₈₅, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₈₅, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₈₆, X₆: X₆ {O(n)}
t₆₈₆, X₇: X₆+4 {O(n)}
t₆₈₆, X₈: 0 {O(1)}
t₆₈₆, X₉: X₆ {O(n)}
t₆₈₆, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₈₆, X₁₁: 1 {O(1)}
t₆₈₇, X₆: X₆ {O(n)}
t₆₈₇, X₇: X₆+4 {O(n)}
t₆₈₇, X₈: 0 {O(1)}
t₆₈₇, X₉: X₆ {O(n)}
t₆₈₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₈₇, X₁₁: 2 {O(1)}
t₆₈₈, X₆: X₆ {O(n)}
t₆₈₈, X₇: X₆+4 {O(n)}
t₆₈₈, X₈: X₆ {O(n)}
t₆₈₈, X₉: X₆ {O(n)}
t₆₈₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₈₈, X₁₁: 2 {O(1)}
t₆₉₅, X₆: X₆ {O(n)}
t₆₉₅, X₇: X₆+4 {O(n)}
t₆₉₅, X₈: 0 {O(1)}
t₆₉₅, X₉: X₆ {O(n)}
t₆₉₅, X₁₀: X₆ {O(n)}
t₆₉₅, X₁₁: 1 {O(1)}
t₆₉₆, X₆: X₆ {O(n)}
t₆₉₆, X₇: X₆+4 {O(n)}
t₆₉₆, X₈: X₆ {O(n)}
t₆₉₆, X₉: X₆ {O(n)}
t₆₉₆, X₁₀: X₆ {O(n)}
t₆₉₆, X₁₁: 1 {O(1)}
t₆₉₇, X₆: X₆ {O(n)}
t₆₉₇, X₇: X₆+4 {O(n)}
t₆₉₇, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₉₇, X₉: X₆ {O(n)}
t₆₉₇, X₁₀: X₆ {O(n)}
t₆₉₇, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+2 {O(EXP)}
t₆₉₈, X₆: X₆ {O(n)}
t₆₉₈, X₇: X₆+4 {O(n)}
t₆₉₈, X₈: X₆ {O(n)}
t₆₉₈, X₉: X₆ {O(n)}
t₆₉₈, X₁₀: X₆ {O(n)}
t₆₉₈, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+2 {O(EXP)}
t₆₉₉, X₆: X₆ {O(n)}
t₆₉₉, X₇: X₆+4 {O(n)}
t₆₉₉, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₆₉₉, X₉: X₆ {O(n)}
t₆₉₉, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₆₉₉, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₀₀, X₆: X₆ {O(n)}
t₇₀₀, X₇: X₆+4 {O(n)}
t₇₀₀, X₈: X₆ {O(n)}
t₇₀₀, X₉: X₆ {O(n)}
t₇₀₀, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₀₀, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₀₁, X₆: X₆ {O(n)}
t₇₀₁, X₇: X₆+4 {O(n)}
t₇₀₁, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₀₁, X₉: X₆ {O(n)}
t₇₀₁, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₀₁, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₀₂, X₆: X₆ {O(n)}
t₇₀₂, X₇: X₆+4 {O(n)}
t₇₀₂, X₈: X₆ {O(n)}
t₇₀₂, X₉: X₆ {O(n)}
t₇₀₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₀₂, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₀₃, X₆: X₆ {O(n)}
t₇₀₃, X₇: X₆+4 {O(n)}
t₇₀₃, X₈: 0 {O(1)}
t₇₀₃, X₉: X₆ {O(n)}
t₇₀₃, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₀₃, X₁₁: 1 {O(1)}
t₇₀₄, X₆: X₆ {O(n)}
t₇₀₄, X₇: X₆+4 {O(n)}
t₇₀₄, X₈: X₆ {O(n)}
t₇₀₄, X₉: X₆ {O(n)}
t₇₀₄, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₀₄, X₁₁: 1 {O(1)}
t₇₀₅, X₆: X₆ {O(n)}
t₇₀₅, X₇: X₆+4 {O(n)}
t₇₀₅, X₈: 0 {O(1)}
t₇₀₅, X₉: X₆ {O(n)}
t₇₀₅, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₀₅, X₁₁: 2 {O(1)}
t₇₀₈, X₆: X₆ {O(n)}
t₇₀₈, X₇: X₆+4 {O(n)}
t₇₀₈, X₈: 0 {O(1)}
t₇₀₈, X₉: X₆ {O(n)}
t₇₀₈, X₁₀: X₆ {O(n)}
t₇₀₈, X₁₁: 1 {O(1)}
t₇₁₀, X₆: X₆ {O(n)}
t₇₁₀, X₇: X₆+4 {O(n)}
t₇₁₀, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₁₀, X₉: X₆ {O(n)}
t₇₁₀, X₁₀: X₆ {O(n)}
t₇₁₀, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+2 {O(EXP)}
t₇₁₁, X₆: X₆ {O(n)}
t₇₁₁, X₇: X₆+4 {O(n)}
t₇₁₁, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₁₁, X₉: X₆ {O(n)}
t₇₁₁, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₁₁, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₁₂, X₆: X₆ {O(n)}
t₇₁₂, X₇: X₆+4 {O(n)}
t₇₁₂, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₁₂, X₉: X₆ {O(n)}
t₇₁₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₁₂, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₁₃, X₆: X₆ {O(n)}
t₇₁₃, X₇: X₆+4 {O(n)}
t₇₁₃, X₈: 0 {O(1)}
t₇₁₃, X₉: X₆ {O(n)}
t₇₁₃, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₁₃, X₁₁: 1 {O(1)}
t₇₁₄, X₆: X₆ {O(n)}
t₇₁₄, X₇: X₆+4 {O(n)}
t₇₁₄, X₈: 1 {O(1)}
t₇₁₄, X₉: X₆ {O(n)}
t₇₁₄, X₁₀: X₆ {O(n)}
t₇₁₄, X₁₁: 1 {O(1)}
t₇₁₈, X₆: X₆ {O(n)}
t₇₁₈, X₇: X₆+4 {O(n)}
t₇₁₈, X₈: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+2 {O(EXP)}
t₇₁₈, X₉: X₆ {O(n)}
t₇₁₈, X₁₀: X₆ {O(n)}
t₇₁₈, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+2 {O(EXP)}
t₇₁₉, X₆: X₆ {O(n)}
t₇₁₉, X₇: X₆+4 {O(n)}
t₇₁₉, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₁₉, X₉: X₆ {O(n)}
t₇₁₉, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₁₉, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₂₀, X₆: X₆ {O(n)}
t₇₂₀, X₇: X₆+4 {O(n)}
t₇₂₀, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₂₀, X₉: X₆ {O(n)}
t₇₂₀, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₂₀, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₂₁, X₆: X₆ {O(n)}
t₇₂₁, X₇: X₆+4 {O(n)}
t₇₂₁, X₈: 2 {O(1)}
t₇₂₁, X₉: X₆ {O(n)}
t₇₂₁, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₂₁, X₁₁: 2 {O(1)}
t₇₂₂, X₆: X₆ {O(n)}
t₇₂₂, X₇: X₆+4 {O(n)}
t₇₂₂, X₈: 1 {O(1)}
t₇₂₂, X₉: X₆ {O(n)}
t₇₂₂, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₂₂, X₁₁: 1 {O(1)}
t₇₂₄, X₆: X₆ {O(n)}
t₇₂₄, X₇: X₆+4 {O(n)}
t₇₂₄, X₈: 0 {O(1)}
t₇₂₄, X₉: X₆ {O(n)}
t₇₂₄, X₁₀: X₆ {O(n)}
t₇₂₄, X₁₁: 1 {O(1)}
t₇₂₇, X₆: X₆ {O(n)}
t₇₂₇, X₇: X₆+4 {O(n)}
t₇₂₇, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₂₇, X₉: X₆ {O(n)}
t₇₂₇, X₁₀: X₆ {O(n)}
t₇₂₇, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+2 {O(EXP)}
t₇₂₈, X₆: X₆ {O(n)}
t₇₂₈, X₇: X₆+4 {O(n)}
t₇₂₈, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₂₈, X₉: X₆ {O(n)}
t₇₂₈, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₂₈, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₂₉, X₆: X₆ {O(n)}
t₇₂₉, X₇: X₆+4 {O(n)}
t₇₂₉, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₂₉, X₉: X₆ {O(n)}
t₇₂₉, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₂₉, X₁₁: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₃₀, X₆: X₆ {O(n)}
t₇₃₀, X₇: X₆+4 {O(n)}
t₇₃₀, X₈: 0 {O(1)}
t₇₃₀, X₉: X₆ {O(n)}
t₇₃₀, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₃₀, X₁₁: 1 {O(1)}
t₇₃₁, X₆: X₆ {O(n)}
t₇₃₁, X₇: X₆+4 {O(n)}
t₇₃₁, X₈: 0 {O(1)}
t₇₃₁, X₉: X₆ {O(n)}
t₇₃₁, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₃₁, X₁₁: 2 {O(1)}
t₇₃₇, X₆: X₆ {O(n)}
t₇₃₇, X₇: X₆+4 {O(n)}
t₇₃₇, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₃₇, X₉: X₆ {O(n)}
t₇₃₇, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₃₇, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+3 {O(EXP)}
t₇₃₈, X₆: X₆ {O(n)}
t₇₃₈, X₇: X₆+4 {O(n)}
t₇₃₈, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₃₈, X₉: X₆ {O(n)}
t₇₃₈, X₁₀: X₆ {O(n)}
t₇₃₈, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+3 {O(EXP)}
t₇₃₉, X₆: X₆ {O(n)}
t₇₃₉, X₇: X₆+4 {O(n)}
t₇₃₉, X₈: 0 {O(1)}
t₇₃₉, X₉: X₆ {O(n)}
t₇₃₉, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₃₉, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₇₄₀, X₆: X₆ {O(n)}
t₇₄₀, X₇: X₆+4 {O(n)}
t₇₄₀, X₈: 0 {O(1)}
t₇₄₀, X₉: X₆ {O(n)}
t₇₄₀, X₁₀: X₆ {O(n)}
t₇₄₀, X₁₁: 1312⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+16⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+1616⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅504⋅X₆⋅X₆+X₁₁+12 {O(EXP)}
t₇₄₄, X₆: X₆ {O(n)}
t₇₄₄, X₇: X₆+4 {O(n)}
t₇₄₄, X₈: 164⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)+2⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₁₁+202⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅63⋅X₆⋅X₆ {O(EXP)}
t₇₄₄, X₉: 4⋅X₆ {O(n)}
t₇₄₄, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₄₄, X₁₁: 126⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅328+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅4⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅404⋅X₆+3 {O(EXP)}
t₇₇₃, X₆: X₆ {O(n)}
t₇₇₃, X₇: X₆+4 {O(n)}
t₇₇₃, X₈: 252⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅656+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅8⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅808⋅X₆+6 {O(EXP)}
t₇₇₃, X₉: 6⋅X₆ {O(n)}
t₇₇₃, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₇₃, X₁₁: 252⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅656+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅8⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅808⋅X₆+6 {O(EXP)}
t₇₇₄, X₆: X₆ {O(n)}
t₇₇₄, X₇: X₆+4 {O(n)}
t₇₇₄, X₈: 6⋅X₆ {O(n)}
t₇₇₄, X₉: 6⋅X₆ {O(n)}
t₇₇₄, X₁₀: 4⋅X₈+7⋅X₆+6 {O(n)}
t₇₇₄, X₁₁: 252⋅2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅X₆⋅X₆+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅656+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅8⋅X₁₁+2^(28⋅X₆⋅X₆+129⋅X₆+X₁₁+144)⋅2^(35⋅X₆⋅X₆+73⋅X₆+X₁₁+17)⋅808⋅X₆+6 {O(EXP)}