Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₁+X₃, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₅, X₃, X₆, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₁₁, X₁₂, X₁₄, X₁₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₈: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁
t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀
t₃₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀
t₃₁: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < X₉
t₃₄: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂+1 ≤ X₃
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1
t₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁
t₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀
t₇: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀
t₁₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀
t₁₅: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₂+1 ≤ X₃
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < X₉
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1
t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₇, X₃, X₈, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁+X₃, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀
t₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄
t₂₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ ≤ 0 ∧ 0 ≤ X₄

Preprocessing

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l11

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l2

Found invariant X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l6

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l15

Found invariant 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l19

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l12

Found invariant 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l17

Found invariant X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l7

Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l20

Found invariant 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l21

Found invariant X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l5

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l13

Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l8

Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l1

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l10

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ for location l18

Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l4

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l9

Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l3

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₁₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₁+X₃, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₅, X₃, X₆, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₁₁, X₁₂, X₁₄, X₁₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₈: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₁: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁
t₃₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₄: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂+1 ≤ X₃ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₇: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₅: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₂+1 ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₇, X₃, X₈, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁+X₃, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

MPRF for transition t₂₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l11 [X₉+1-X₀ ]
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉+1-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
l9 [X₉+1-X₀ ]
l13 [X₉+1-X₀ ]

MPRF for transition t₂₈: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l11 [X₉+1-X₀ ]
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉+1-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
l9 [X₉+1-X₀ ]
l13 [X₉-X₀ ]

MPRF for transition t₃₁: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l11 [X₉+1-X₀ ]
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l18 [X₉+1-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉+1-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
l9 [X₉+1-X₀ ]
l13 [X₉-X₀ ]

MPRF for transition t₂₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l11 [X₉+1-X₀ ]
l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉+1-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]
l9 [X₉+1-X₀ ]
l13 [X₉-X₀ ]

MPRF for transition t₃₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ of depth 2:

new bound:

8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}

MPRF:

l11 [-X₂ ; X₁₀-X₁ ]
l15 [-X₃ ; X₁₀-X₅ ]
l14 [-X₃ ; X₁₀-X₅ ]
l18 [-X₂ ; X₁₀-X₁ ]
l19 [-X₂ ; X₁₀-X₁ ]
l10 [-X₂ ; X₁₀-X₁ ]
l17 [-X₂ ; X₁₀-X₁ ]
l3 [-X₂ ; X₁₀-X₁ ]
l21 [-X₂ ; X₁₀-X₁ ]
l6 [-X₂-1 ; X₁₀-X₁-X₂-1 ]
l7 [-X₃ ; X₃+X₁₀-X₂-X₇-1 ]
l5 [-X₃ ; X₃+X₁₀-X₂-X₇-1 ]
l2 [-X₂ ; X₁₀-X₁ ]
l8 [-X₂ ; X₁₀-X₁ ]
l20 [-X₂ ; X₁₀-X₁ ]
l12 [-X₃ ; X₁₀-X₁-X₃ ]
l9 [-X₂ ; X₁₀-X₁ ]
l13 [-X₂ ; X₁₀-X₁ ]

MPRF for transition t₃₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁+X₃, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 2:

new bound:

8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}

MPRF:

l11 [-X₂ ; X₁₀-X₁ ]
l15 [-X₃ ; X₁₀-X₅ ]
l14 [-X₃ ; X₁₀-X₅ ]
l18 [-X₂ ; X₁₀-X₁ ]
l19 [-X₂ ; X₁₀-X₁ ]
l10 [-X₂ ; X₁₀-X₁ ]
l17 [-X₂ ; X₁₀-X₁ ]
l3 [-X₂ ; X₁₀-X₁ ]
l21 [-X₂ ; X₁₀-X₁ ]
l6 [1-X₃ ; X₁₀-X₁ ]
l7 [-X₃ ; X₁₀-X₇ ]
l5 [-X₃ ; X₁₀-X₇ ]
l2 [-X₂ ; X₁₀-X₁ ]
l8 [-X₂ ; X₁₀-X₁ ]
l20 [-X₂ ; X₁₀-X₁ ]
l12 [-X₃ ; X₁₀-X₁-X₃ ]
l9 [-X₂ ; X₁₀-X₁ ]
l13 [-X₂ ; X₁₀-X₁ ]

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)} for transition t₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)} for transition t₃₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₇, X₃, X₈, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

MPRF for transition t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₁+X₃, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 3:

new bound:

54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}

MPRF:

l11 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l15 [-X₂-1 ; X₃+X₁₀-X₂-X₅-X₁₄-1 ; X₃+2⋅X₁₀-X₁-X₅-X₁₄-1 ]
l14 [-X₂-1 ; X₃+X₁₀-X₂-X₅-X₁₄-1 ; X₁₀-X₅ ]
l18 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l19 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l10 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l17 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l3 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l21 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l6 [-X₂ ; X₁₀-X₁-X₁₄ ; 0 ]
l7 [-X₂ ; X₃+X₁₀-X₇-X₁₄ ; 0 ]
l5 [-X₂-1 ; X₁₀-X₇-X₁₄ ; X₃+X₁₀-X₇-X₁₄-1 ]
l2 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l8 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l20 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l12 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l9 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]
l13 [-X₂ ; X₁₀-X₁-X₁₄ ; X₁₀-X₁ ]

MPRF for transition t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₅, X₃, X₆, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 3:

new bound:

108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}

MPRF:

l11 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l15 [1-X₃ ; X₃+X₁₀+1-X₅-X₁₄ ; X₂-X₁₄ ]
l14 [1-X₃ ; X₃+X₁₀+1-X₅-X₁₄ ; 0 ]
l18 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l19 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l10 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l17 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l3 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l21 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l6 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l7 [-X₂ ; X₃+X₁₀+1-X₇-X₁₄ ; 0 ]
l5 [-X₂-1 ; X₁₀+1-X₇-X₁₄ ; X₃+X₁₀-X₇-X₁₄ ]
l2 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l8 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l20 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l12 [1-X₃ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l9 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]
l13 [-X₂ ; X₁₀+1-X₁-X₁₄ ; X₂+X₁₀-X₁-X₁₄ ]

MPRF for transition t₂₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 3:

new bound:

108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}

MPRF:

l11 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l15 [1-X₂ ; X₂+X₃+X₁₀-X₅-2⋅X₁₄ ; 0 ]
l14 [-X₂ ; X₃+X₁₀-X₅-2⋅X₁₄ ; X₃+X₁₀-X₂-X₅-1 ]
l18 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l19 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l10 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l17 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l3 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l21 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l6 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; 0 ]
l7 [1-X₂ ; X₂+X₃+X₁₀-X₇-2⋅X₁₄ ; 0 ]
l5 [1-X₃ ; X₃+X₁₀-X₇-2⋅X₁₄ ; X₂+X₁₀-X₇-X₁₄ ]
l2 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l8 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l20 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l12 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l9 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]
l13 [1-X₂ ; X₂+X₁₀-X₁-2⋅X₁₄ ; X₁₀-X₁ ]

MPRF for transition t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 3:

new bound:

54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}

MPRF:

l11 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l15 [-X₂-1 ; X₁₀-X₂-X₅-1 ; X₃+X₁₀-X₂-X₅-1 ]
l14 [-X₃ ; X₁₀-X₂-X₅-1 ; X₃+X₁₀-X₂-X₅-1 ]
l18 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l19 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l10 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l17 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l3 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l21 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l6 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l7 [-X₂ ; X₃+X₁₀-X₂-X₇ ; X₁₀-X₁ ]
l5 [-X₂-1 ; X₁₀-X₃-X₇ ; X₃+2⋅X₁₀-X₁-X₂-X₇-1 ]
l2 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l8 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l20 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l12 [-X₂-1 ; X₁₀-X₁-X₂-X₃-1 ; 2⋅X₁₀-2⋅X₁-X₂-1 ]
l9 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l13 [-X₂ ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]

MPRF for transition t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 3:

new bound:

54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+28 {O(n)}

MPRF:

l11 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l15 [-X₂-2 ; X₁₀-X₃-X₅ ; X₃+2⋅X₁₀-X₁-X₂-X₅-1 ]
l14 [-X₂-2 ; X₁₀-X₃-X₅ ; X₃+2⋅X₁₀-X₁-X₂-X₅-1 ]
l18 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l19 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l10 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l17 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l3 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l21 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l6 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l7 [-X₂-1 ; X₃+X₁₀-X₂-X₇ ; X₁₀-X₁ ]
l5 [-X₃-1 ; X₁₀-X₂-X₇-1 ; X₃+X₁₀-X₂-X₇-1 ]
l2 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l8 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l20 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l12 [-X₂-2 ; X₁₀-X₁-2⋅X₃ ; 2⋅X₁₀-2⋅X₁-X₂-1 ]
l9 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]
l13 [-X₂-1 ; X₁₀-X₁-X₂ ; X₁₀-X₁ ]

MPRF for transition t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

324⋅X₁₀⋅X₁₁+324⋅X₁₀⋅X₉+324⋅X₁₁⋅X₁₂+324⋅X₁₁⋅X₁₄+324⋅X₁₂⋅X₉+324⋅X₁₄⋅X₉+108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+88⋅X₁₁+88⋅X₉+30 {O(n^2)}

MPRF:

l11 [X₉-X₀ ]
l12 [X₉+1-X₁₁ ]
l15 [X₉+1-X₁₁ ]
l14 [X₉+1-X₁₁ ]
l18 [X₉+1-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉+1-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l9 [X₉-X₀ ]
l13 [X₉-X₀ ]

MPRF for transition t₁₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

324⋅X₁₀⋅X₁₁+324⋅X₁₀⋅X₉+324⋅X₁₁⋅X₁₂+324⋅X₁₁⋅X₁₄+324⋅X₁₂⋅X₉+324⋅X₁₄⋅X₉+108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+88⋅X₁₁+88⋅X₉+30 {O(n^2)}

MPRF:

l11 [X₉+1-X₀ ]
l12 [X₉+1-X₁₁ ]
l15 [X₉+1-X₁₁ ]
l14 [X₉+1-X₀ ]
l18 [X₉+1-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉+1-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l9 [X₉-X₀ ]
l13 [X₉-X₀ ]

MPRF for transition t₁₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ of depth 1:

new bound:

324⋅X₁₀⋅X₁₁+324⋅X₁₀⋅X₉+324⋅X₁₁⋅X₁₂+324⋅X₁₁⋅X₁₄+324⋅X₁₂⋅X₉+324⋅X₁₄⋅X₉+108⋅X₁₀+108⋅X₁₂+108⋅X₁₄+88⋅X₁₁+88⋅X₉+30 {O(n^2)}

MPRF:

l11 [X₉-X₀ ]
l12 [X₉+1-X₁₁ ]
l15 [X₉+1-X₁₁ ]
l14 [X₉+1-X₁₁ ]
l18 [X₉+1-X₀ ]
l19 [X₉+1-X₀ ]
l10 [X₉-X₀ ]
l17 [X₉+1-X₀ ]
l3 [X₉+1-X₀ ]
l21 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l2 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
l20 [X₉+1-X₀ ]
l9 [X₉-X₀ ]
l13 [X₉-X₀ ]

Analysing control-flow refined program

Cut unsatisfiable transition t₅₂₈: n_l17___13→l18

Cut unsatisfiable transition t₅₂₉: n_l17___17→l18

Cut unsatisfiable transition t₅₃₁: n_l17___36→l18

Cut unsatisfiable transition t₅₃₂: n_l17___40→l18

Cut unsatisfiable transition t₅₃₃: n_l17___5→l18

Cut unsatisfiable transition t₅₃₆: n_l17___72→l18

Cut unsatisfiable transition t₅₃₇: n_l17___76→l18

Cut unsatisfiable transition t₅₃₈: n_l17___80→l18

Cut unsatisfiable transition t₅₃₉: n_l17___84→l18

Cut unsatisfiable transition t₅₄₀: n_l17___9→l18

Cut unsatisfiable transition t₅₁₉: n_l2___34→l4

Cut unsatisfiable transition t₅₉₅: n_l2___34→l4

Cut unsatisfiable transition t₅₂₁: n_l2___47→l4

Cut unsatisfiable transition t₅₉₇: n_l2___47→l4

Cut unsatisfiable transition t₅₂₂: n_l2___56→l4

Cut unsatisfiable transition t₅₉₈: n_l2___56→l4

Cut unsatisfiable transition t₅₂₆: n_l2___94→l4

Cut unsatisfiable transition t₆₀₂: n_l2___94→l4

Cut unsatisfiable transition t₅₄₁: n_l3___11→l4

Cut unsatisfiable transition t₅₆₇: n_l3___11→l4

Cut unsatisfiable transition t₅₄₂: n_l3___12→l4

Cut unsatisfiable transition t₅₄₃: n_l3___19→l4

Cut unsatisfiable transition t₅₅₆: n_l3___19→l4

Cut unsatisfiable transition t₅₆₉: n_l3___19→l4

Cut unsatisfiable transition t₅₈₂: n_l3___19→l4

Cut unsatisfiable transition t₅₄₄: n_l3___20→l4

Cut unsatisfiable transition t₅₅₇: n_l3___20→l4

Cut unsatisfiable transition t₅₇₀: n_l3___20→l4

Cut unsatisfiable transition t₅₈₃: n_l3___20→l4

Cut unsatisfiable transition t₅₄₅: n_l3___3→l4

Cut unsatisfiable transition t₅₄₆: n_l3___33→l4

Cut unsatisfiable transition t₅₅₉: n_l3___33→l4

Cut unsatisfiable transition t₅₈₅: n_l3___33→l4

Cut unsatisfiable transition t₅₄₇: n_l3___38→l4

Cut unsatisfiable transition t₅₆₀: n_l3___38→l4

Cut unsatisfiable transition t₅₈₆: n_l3___38→l4

Cut unsatisfiable transition t₅₄₈: n_l3___42→l4

Cut unsatisfiable transition t₅₆₁: n_l3___42→l4

Cut unsatisfiable transition t₅₇₄: n_l3___42→l4

Cut unsatisfiable transition t₅₈₇: n_l3___42→l4

Cut unsatisfiable transition t₅₄₉: n_l3___69→l4

Cut unsatisfiable transition t₅₅₀: n_l3___78→l4

Cut unsatisfiable transition t₅₇₆: n_l3___78→l4

Cut unsatisfiable transition t₅₅₁: n_l3___79→l4

Cut unsatisfiable transition t₅₅₂: n_l3___86→l4

Cut unsatisfiable transition t₅₆₅: n_l3___86→l4

Cut unsatisfiable transition t₅₇₈: n_l3___86→l4

Cut unsatisfiable transition t₅₉₁: n_l3___86→l4

Cut unsatisfiable transition t₅₅₃: n_l3___87→l4

Cut unsatisfiable transition t₅₆₆: n_l3___87→l4

Cut unsatisfiable transition t₅₇₉: n_l3___87→l4

Cut unsatisfiable transition t₅₉₂: n_l3___87→l4

Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀ for location n_l19___74

Found invariant X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁ for location n_l20___101

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l3___86

Found invariant 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l2___47

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l17___80

Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l21___77

Found invariant 1+X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l6

Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location n_l20___29

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l2___34

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l21___37

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l21___64

Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀ for location n_l21___73

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l3___19

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l9___97

Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l13___23

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l19___15

Found invariant 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l19___39

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l12

Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location n_l3___12

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l20___21

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l21___100

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l3___20

Found invariant 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l11___43

Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l4

Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l11___25

Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l21___10

Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l17___5

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l21___53

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l14

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l10___99

Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l2___30

Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l21___6

Found invariant 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l20___46

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l17___31

Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀ for location n_l19___71

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l8___22

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l11___90

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l19___35

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁ for location n_l17___67

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l19___82

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l20___93

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l9___50

Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l17___9

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l20___65

Found invariant 1+X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l7

Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l10___26

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l17___84

Found invariant 1+X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l5

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l13___96

Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l8

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l11___62

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l17___13

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l19___83

Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l21___27

Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁ for location n_l3___69

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l3___87

Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l17___76

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l21___32

Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l2___4

Found invariant X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l20___28

Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀ for location n_l3___78

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l10___52

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l13___88

Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ for location n_l20___102

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ for location n_l3___38

Found invariant 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l21___45

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l10___63

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l17___17

Found invariant 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l3___42

Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l9___24

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l11___51

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l17___57

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁ for location n_l2___70

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l2___94

Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l3___11

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l13___60

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁ for location n_l21___68

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l3___33

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l20___54

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l21___85

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l2___103

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l2___66

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l9___89

Found invariant X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ for location l1

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location l18

Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀ for location n_l17___72

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l21___14

Found invariant 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l21___41

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l21___58

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l19___16

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l8___95

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location l15

Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l19___7

Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l17___1

Found invariant X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l21___2

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l2___56

Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l3___3

Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ for location n_l3___79

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l9___61

Found invariant 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l19___75

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l8___48

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ for location n_l20___55

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ for location n_l21___81

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l10___91

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l21___18

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁ for location n_l2___59

Found invariant 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l10___44

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l21___92

Found invariant X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀ for location n_l11___98

Found invariant 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l13___49

Found invariant 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l17___36

Found invariant 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l17___40

Found invariant 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ for location n_l19___8

knowledge_propagation leads to new time bound 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)} for transition t₄₄₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₄₄₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₄₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)} for transition t₄₄₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₄₄₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₅₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)} for transition t₄₅₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₅₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₅₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___101(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₅₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___102(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₅₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___103(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₈₈: n_l20___101(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₉₀: n_l20___102(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₉₁: n_l20___102(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁

knowledge_propagation leads to new time bound 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)} for transition t₃₉₄: n_l20___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₃₉₆: n_l20___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₃₉₇: n_l20___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)} for transition t₃₉₉: n_l20___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₄₀₁: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)} for transition t₄₀₂: n_l20___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₂₅: n_l2___103(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___100(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₂₆: n_l2___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)} for transition t₄₂₇: n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)} for transition t₄₂₈: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₃₀: n_l2___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)} for transition t₄₃₁: n_l2___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₀ ≤ X₉ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₃₂: n_l2___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₃₃: n_l2___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ < X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₄₃₅: n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₄₃₆: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₄₃₉: n_l3___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₄₁: n_l3___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₄₂: n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₄₀₅: n_l21___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₀₆: n_l21___100(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___99(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₁₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)} for transition t₄₀₉: n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₁₀: n_l21___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)} for transition t₄₁₁: n_l21___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₄₁₂: n_l21___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₁₅: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)} for transition t₄₁₆: n_l21___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ X₁₀ < X₁ ∧ 1+X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₄₁₇: n_l21___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₁₈: n_l21___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₁₉: n_l21___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₁₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₂₀: n_l21___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₁ < X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₂₁: n_l21___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₁₃ ∧ X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₅₃: n_l10___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₅₅: n_l10___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₅₆: n_l10___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₅₈: n_l10___99(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___98(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₅₉: n_l11___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___24(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₆₁: n_l11___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___50(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₆₂: n_l11___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___61(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₆₄: n_l11___98(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___97(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)} for transition t₅₂₇: n_l17___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)} for transition t₅₃₀: n_l17___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₃₇₄: n_l17___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₃₇₆: n_l17___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₃₇₇: n_l17___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)} for transition t₅₃₄: n_l17___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₃₅: n_l17___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₇₈: n_l17___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₁ < X₁₀ ∧ 1+X₂ ≤ X₁₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₇₉: n_l17___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₁ < X₁₀ ∧ 1+X₂ ≤ X₁₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₈₀: n_l17___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₈₁: n_l17___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₃₈₆: n_l17___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₃₈₇: n_l17___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₆₀₅: n_l19___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 24⋅X₁₀+24⋅X₁₂+24⋅X₁₄+3⋅X₁₁+3⋅X₉+6 {O(n)} for transition t₆₀₇: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 2 {O(1)} for transition t₆₀₈: n_l19___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₀₉: n_l19___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₁₀: n_l19___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)} for transition t₆₁₁: n_l19___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₆₁: n_l9___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___23(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₆₁₄: n_l9___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₆₁₉: n_l9___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₆₃: n_l9___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___60(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₆₁₆: n_l9___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₆₂₁: n_l9___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₆₅: n_l9___97(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___96(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₁₈: n_l9___97(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₂₃: n_l9___97(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₆₅: n_l13___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___22(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₆₇: n_l13___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___95(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₆₉: n_l13___96(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___95(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₅₆: n_l8___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₉₂: n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₉₃: n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₃₇: n_l3___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₃₈: n_l3___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₀₇: n_l21___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₄₀₈: n_l21___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₇₀: n_l17___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₇₁: n_l17___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₇₂: n_l17___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₃₇₃: n_l17___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 162⋅X₁₀+162⋅X₁₂+324⋅X₁₄+84 {O(n)} for transition t₆₀₃: n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀

knowledge_propagation leads to new time bound 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)} for transition t₆₀₄: n_l19___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀

MPRF for transition t₃₅₄: n_l10___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

2⋅X₁₁+2⋅X₉ {O(n)}

MPRF:

l15 [2⋅X₉-X₀-X₁₁ ]
l14 [2⋅X₉-X₀-X₁₁ ]
l7 [2⋅X₉-X₀-X₁₁ ]
l5 [2⋅X₉-X₀-X₁₁ ]
l8 [2⋅X₉-X₀-X₁₁ ]
n_l11___25 [X₀-X₁₁ ]
n_l11___43 [2⋅X₉-X₀-X₁₁ ]
n_l11___51 [2⋅X₉-X₀-X₁₁ ]
n_l11___62 [2⋅X₉-X₀-X₁₁ ]
n_l11___90 [2⋅X₉-X₀-X₁₁ ]
n_l11___98 [2⋅X₉-2⋅X₀ ]
l18 [2⋅X₉-X₀-X₁₁ ]
n_l19___15 [X₉-X₁₁ ]
n_l19___16 [X₉-X₁₁ ]
n_l19___35 [X₀-X₁₁-2 ]
n_l19___39 [X₀-X₁₁-1 ]
n_l19___7 [2⋅X₉-X₀-X₁₁ ]
n_l19___71 [2⋅X₉-2⋅X₁₁ ]
n_l19___74 [2⋅X₉-2⋅X₁₁ ]
n_l19___75 [2⋅X₉-2⋅X₁₁ ]
n_l19___8 [2⋅X₉-X₀-X₁₁ ]
n_l19___82 [X₉-X₁₁ ]
n_l19___83 [X₀-X₁₁-1 ]
l6 [2⋅X₉-X₀-X₁₁ ]
n_l20___101 [2⋅X₉-2⋅X₀ ]
n_l20___102 [2⋅X₉-2⋅X₀ ]
n_l20___28 [2⋅X₉-X₀-X₁₁ ]
n_l20___29 [2⋅X₉-X₀-X₁₁ ]
n_l20___54 [2⋅X₉-X₀-X₁₁ ]
n_l20___55 [X₉-X₁₁-1 ]
n_l20___65 [2⋅X₉-X₀-X₁₁ ]
n_l17___9 [2⋅X₉-X₀-X₁₁ ]
n_l10___99 [2⋅X₉-2⋅X₀ ]
n_l17___13 [X₀-X₁₁-1 ]
n_l17___17 [X₀-X₁₁-1 ]
n_l17___1 [X₀-X₁₁ ]
n_l10___26 [X₉-X₁₁ ]
n_l17___31 [2⋅X₉-X₀-X₁₁ ]
n_l17___36 [X₀-X₁₁-2 ]
n_l17___40 [X₀-X₁₁-1 ]
n_l10___44 [2⋅X₉+1-X₀-X₁₁ ]
n_l10___52 [2⋅X₉-X₀-X₁₁ ]
n_l17___57 [2⋅X₉-X₀-X₁₁ ]
n_l17___5 [2⋅X₉-X₀-X₁₁ ]
n_l10___63 [2⋅X₉-X₀-X₁₁ ]
n_l17___67 [2⋅X₉-X₀-X₁₁ ]
n_l17___72 [2⋅X₉-2⋅X₀ ]
n_l17___76 [2⋅X₉-2⋅X₀ ]
n_l17___80 [X₀-X₁₁-1 ]
n_l17___84 [X₀-X₁₁-1 ]
n_l10___91 [2⋅X₉-X₀-X₁₁ ]
n_l2___103 [2⋅X₉-2⋅X₁₁ ]
n_l21___100 [2⋅X₉-2⋅X₁₁ ]
n_l2___30 [X₉-X₁₁ ]
n_l21___27 [X₀-X₁₁ ]
n_l2___34 [2⋅X₉-X₀-X₁₁ ]
n_l21___32 [2⋅X₉-X₀-X₁₁ ]
n_l2___4 [2⋅X₉-X₀-X₁₁ ]
n_l21___2 [X₉-X₁₁ ]
n_l21___45 [2⋅X₉+1-X₀-X₁₁ ]
n_l2___56 [2⋅X₉-X₀-X₁₁ ]
n_l21___53 [2⋅X₉-X₀-X₁₁ ]
n_l2___59 [2⋅X₉-X₀-X₁₁ ]
n_l21___58 [2⋅X₉-X₀-X₁₁ ]
n_l2___66 [2⋅X₉-X₀-X₁₁ ]
n_l21___64 [2⋅X₉-X₀-X₁₁ ]
n_l2___70 [2⋅X₉-2⋅X₀ ]
n_l21___68 [2⋅X₉-X₀-X₁₁ ]
n_l21___92 [2⋅X₉-X₀-X₁₁ ]
n_l3___11 [2⋅X₉-X₀-X₁₁ ]
n_l21___6 [2⋅X₉-X₀-X₁₁ ]
n_l3___12 [2⋅X₉-X₀-X₁₁ ]
n_l21___10 [2⋅X₉-X₀-X₁₁ ]
n_l3___19 [2⋅X₀-X₉-X₁₁-2 ]
n_l21___14 [X₀-X₁₁-1 ]
n_l3___20 [X₉-X₁₁ ]
n_l21___18 [X₀-X₁₁-1 ]
n_l3___38 [X₉-X₁₁-1 ]
n_l21___37 [X₀-X₁₁-2 ]
n_l3___42 [2⋅X₉+1-X₀-X₁₁ ]
n_l21___41 [X₀-X₁₁-1 ]
n_l3___78 [2⋅X₉-2⋅X₀ ]
n_l21___73 [2⋅X₉-2⋅X₀ ]
n_l3___79 [2⋅X₉-2⋅X₀ ]
n_l21___77 [2⋅X₉-2⋅X₀ ]
n_l3___86 [2⋅X₀-X₉-X₁₁-2 ]
n_l21___81 [X₉-X₁₁ ]
n_l3___87 [2⋅X₀-X₉-X₁₁-2 ]
n_l21___85 [X₀-X₁₁-1 ]
n_l8___22 [2⋅X₀-X₉-X₁₁-2 ]
n_l20___21 [X₉-X₁₁ ]
n_l20___46 [2⋅X₉+1-X₀-X₁₁ ]
n_l8___48 [2⋅X₉+1-X₀-X₁₁ ]
n_l2___47 [2⋅X₉+1-X₀-X₁₁ ]
n_l20___93 [2⋅X₀-X₉-X₁₁-2 ]
n_l8___95 [2⋅X₉+1-X₀-X₁₁ ]
n_l2___94 [2⋅X₉-X₀-X₁₁ ]
n_l13___23 [2⋅X₀-X₉-X₁₁ ]
n_l9___24 [X₉-X₁₁ ]
n_l13___49 [2⋅X₉-X₀-X₁₁ ]
n_l9___50 [2⋅X₉-X₀-X₁₁ ]
n_l13___60 [2⋅X₉-X₀-X₁₁ ]
n_l9___61 [2⋅X₉-X₀-X₁₁ ]
n_l13___88 [2⋅X₉-X₀-X₁₁ ]
n_l9___89 [2⋅X₉-X₀-X₁₁ ]
n_l13___96 [2⋅X₉-X₀-X₁₁ ]
n_l9___97 [2⋅X₉-2⋅X₀ ]
l12 [2⋅X₉-X₀-X₁₁ ]

MPRF for transition t₃₅₇: n_l10___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉-X₀ ]
n_l19___39 [-1 ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₀ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉-X₀ ]
n_l17___40 [-1 ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [X₉-X₀ ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [-1 ]
n_l21___37 [X₉-X₀ ]
n_l3___42 [-1 ]
n_l21___41 [-1 ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₁₁ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [-1 ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₁₁ ]
l12 [X₉-X₀ ]

MPRF for transition t₃₆₀: n_l11___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___50(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₀ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉-X₀ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [-1 ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [X₉-X₀ ]
n_l21___27 [X₉-X₀ ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [X₈+X₉+1-X₀-X₃ ]
n_l21___14 [0 ]
n_l3___20 [X₉+1-X₀ ]
n_l21___18 [X₃-X₈ ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [-1 ]
n_l3___42 [0 ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₀ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₁₁ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [0 ]
n_l3___87 [X₉+1-X₀ ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [X₉+1-X₀ ]
n_l20___46 [0 ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]

MPRF for transition t₃₆₃: n_l11___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___89(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉-X₀ ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₀ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [-1 ]
n_l19___83 [X₉-X₀ ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉-X₀ ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₁₁ ]
n_l17___80 [X₉-X₀ ]
n_l17___84 [X₉-X₀ ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₀ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [X₉-X₀ ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₁₁ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [X₉-X₀ ]
n_l21___81 [X₉-X₀ ]
n_l3___87 [X₉-X₀ ]
n_l21___85 [X₉-X₀ ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [X₉-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]

MPRF for transition t₃₆₆: n_l13___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___48(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [0 ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₀ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [X₀-X₉ ]
n_l21___14 [0 ]
n_l3___20 [X₀-X₉ ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [X₀-X₉ ]
n_l20___21 [X₀-X₉ ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [X₀+1-X₉ ]
n_l9___24 [1 ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₃₆₈: n_l13___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___95(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₁₁ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [-1 ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₀ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [X₉-X₀ ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [-1 ]
n_l21___37 [-1 ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₁₁ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]

MPRF for transition t₃₇₅: n_l17___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [0 ]
n_l19___39 [0 ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [1 ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₁₁ ]
n_l17___72 [X₉+1-X₁₁ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [X₉+2-X₀ ]
n_l21___41 [1 ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+2-X₀ ]
n_l8___48 [X₉+2-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₃₈₂: n_l17___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+2-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [1 ]
n_l17___84 [0 ]
n_l10___91 [X₉+2-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+2-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [0 ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [1 ]
n_l21___81 [1 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+2-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₃₈₃: n_l17___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+2-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [0 ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [0 ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [1 ]
n_l17___84 [0 ]
n_l10___91 [X₉+2-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [X₉+1-X₀ ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [X₉-X₀ ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+2-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [0 ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [0 ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [1 ]
n_l21___81 [1 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+2-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₃₈₄: n_l17___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+2-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₀ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [X₉+1-X₀ ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₁₁ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [1 ]
n_l10___91 [X₉+2-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [X₉+1-X₀ ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+2-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [0 ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [1 ]
n_l21___85 [1 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+2-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₃₈₅: n_l17___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [0 ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [1 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [1 ]
n_l21___85 [1 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₁₁ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₆₀₆: n_l19___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [0 ]
n_l19___39 [1 ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [1 ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₁₁ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [1 ]
n_l21___41 [1 ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [X₉+1-X₀ ]
n_l3___87 [X₉+1-X₀ ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [1 ]
n_l8___48 [X₉+2-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₁₁ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₆₁₂: n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+2-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [0 ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₀ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [1 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₁₁ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [1 ]
n_l17___84 [1 ]
n_l10___91 [X₉+2-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+2-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [1 ]
n_l21___81 [1 ]
n_l3___87 [1 ]
n_l21___85 [1 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+2-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₆₁₃: n_l19___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₀ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [1 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [1 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [1 ]
n_l21___85 [1 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₃₉₈: n_l20___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [0 ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₀ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉+1-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉+1-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉+1-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉+1-X₀ ]
n_l17___72 [X₉+1-X₁₁ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [X₉+1-X₀ ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉+1-X₀ ]
n_l21___58 [X₉+1-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₅+X₉+1-X₀-X₁ ]
n_l2___70 [X₉+1-X₀ ]
n_l21___68 [X₉+X₁₂+1-X₀-X₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [X₀-X₉ ]
n_l21___14 [0 ]
n_l3___20 [X₀+X₃-X₈-X₉ ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [0 ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [X₉+1-X₀ ]
n_l3___87 [X₉+1-X₀ ]
n_l21___85 [0 ]
n_l8___22 [X₉+2-X₀ ]
n_l20___21 [X₀+X₃-X₈-X₉ ]
n_l20___46 [1 ]
n_l8___48 [X₉+2-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [X₉+1-X₀ ]
n_l9___24 [1 ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₄₀₃: n_l20___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₄₀₄: n_l20___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [1 ]
n_l19___35 [0 ]
n_l19___39 [0 ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [1 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [0 ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₁₁ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [X₀-X₉ ]
n_l21___14 [0 ]
n_l3___20 [X₀-X₉ ]
n_l21___18 [1 ]
n_l3___38 [0 ]
n_l21___37 [0 ]
n_l3___42 [0 ]
n_l21___41 [0 ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [1 ]
n_l20___21 [X₀-X₉ ]
n_l20___46 [0 ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [1 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₁₁ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₄₁₃: n_l21___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [0 ]
n_l10___44 [X₉+2-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [X₉-X₀ ]
n_l21___45 [X₉+2-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+2-X₀ ]
n_l21___41 [1 ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+2-X₀ ]
n_l8___48 [X₉+2-X₀ ]
n_l2___47 [X₉+2-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [X₉+1-X₀ ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₁₁ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₄₁₄: n_l21___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉-X₀ ]
n_l19___39 [-1 ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₁₁ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉-X₀ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [X₉-X₀ ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉-X₀ ]
n_l17___40 [-1 ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₀ ]
n_l2___30 [X₉-X₀ ]
n_l21___27 [X₉-X₀ ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [X₀-X₉-1 ]
n_l21___14 [0 ]
n_l3___20 [X₀-X₉-1 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [X₉-X₀ ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [-1 ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₀ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [X₀-X₉-1 ]
n_l20___21 [X₀-X₉-1 ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉-X₀ ]
n_l13___23 [X₀-X₉ ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₁₁ ]
l12 [X₉-X₀ ]

MPRF for transition t₄₂₂: n_l21___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+2-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₀ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₀ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₁₁ ]
n_l17___72 [X₉+1-X₁₁ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+2-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+2-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [0 ]
n_l21___37 [0 ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [1 ]
n_l21___81 [1 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [1 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [1 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+2-X₀ ]
n_l13___96 [X₉+1-X₁₁ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₄₂₃: n_l21___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₁₁ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [1 ]
n_l21___85 [1 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₁₁ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₄₂₄: n_l21___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉-X₀ ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₁₁ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [-1 ]
n_l19___83 [X₉-X₀ ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉-X₀ ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₀ ]
n_l17___80 [0 ]
n_l17___84 [X₉-X₀ ]
n_l10___91 [X₉-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₀ ]
n_l2___30 [X₉-X₀ ]
n_l21___27 [X₉-X₀ ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [X₉-X₀ ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [X₉+1-X₀ ]
n_l3___87 [X₉-X₀ ]
n_l21___85 [X₉-X₀ ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀-1 ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]

MPRF for transition t₄₂₉: n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉-X₀ ]
n_l19___39 [-1 ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₁₁ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉-X₀ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉-X₀ ]
n_l17___40 [-1 ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₀ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [X₀-X₉-1 ]
n_l21___14 [X₀-X₉-1 ]
n_l3___20 [X₀-X₉-1 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [X₉-X₀ ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [-1 ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₀ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [0 ]
n_l3___87 [X₉+1-X₀ ]
n_l21___85 [0 ]
n_l8___22 [X₀-X₉-1 ]
n_l20___21 [X₀-X₉-1 ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉-X₀ ]
n_l13___23 [X₀-X₉ ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]

MPRF for transition t₄₃₄: n_l2___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₁₁ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [-1 ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [X₉-X₀ ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [-1 ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₁₁ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [X₉+1-X₀ ]
n_l3___87 [X₉+1-X₀ ]
n_l21___85 [X₉+1-X₀ ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀-1 ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]

MPRF for transition t₄₄₀: n_l3___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [0 ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₈+X₉+1-X₀-X₃ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₁₁ ]
n_l21___100 [X₉+1-X₁₁ ]
n_l2___30 [1 ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [X₉+2-X₀ ]
n_l21___41 [0 ]
n_l3___78 [X₉+1-X₁₁ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+2-X₀ ]
n_l8___48 [X₉+2-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉+1-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₄₄₃: n_l3___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+2-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [0 ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [0 ]
n_l17___40 [0 ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+2-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [X₉+1-X₀ ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+2-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [0 ]
n_l3___42 [0 ]
n_l21___41 [0 ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [1 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [0 ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+2-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+2-X₀ ]
n_l13___96 [X₉+1-X₁₁ ]
n_l9___97 [X₉+1-X₁₁ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₄₄₄: n_l3___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₀ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [X₉+1-X₀ ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₁₁ ]
n_l3___79 [X₉+1-X₁₁ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [1 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [1 ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₄₅₇: n_l8___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

2⋅X₁₁+2⋅X₉ {O(n)}

MPRF:

l15 [2⋅X₉-X₀-X₁₁ ]
l14 [2⋅X₉-X₀-X₁₁ ]
l7 [2⋅X₉-X₀-X₁₁ ]
l5 [2⋅X₉-X₀-X₁₁ ]
l8 [2⋅X₉-X₀-X₁₁ ]
n_l11___25 [X₀-X₁₁ ]
n_l11___43 [2⋅X₉-X₀-X₁₁ ]
n_l11___51 [2⋅X₉-X₀-X₁₁ ]
n_l11___62 [2⋅X₉-X₀-X₁₁ ]
n_l11___90 [2⋅X₉-X₀-X₁₁ ]
n_l11___98 [2⋅X₉-2⋅X₁₁ ]
l18 [2⋅X₉-X₀-X₁₁-1 ]
n_l19___15 [X₉-X₁₁ ]
n_l19___16 [X₀-X₁₁-1 ]
n_l19___35 [X₀-X₁₁-2 ]
n_l19___39 [X₀-X₁₁-2 ]
n_l19___7 [2⋅X₉-X₀-X₁₁ ]
n_l19___71 [2⋅X₉-2⋅X₁₁ ]
n_l19___74 [2⋅X₉-2⋅X₁₁ ]
n_l19___75 [2⋅X₉-2⋅X₁₁ ]
n_l19___8 [2⋅X₉-X₀-X₁₁ ]
n_l19___82 [X₉-X₁₁ ]
n_l19___83 [X₀-X₁₁-1 ]
l6 [2⋅X₉-X₀-X₁₁ ]
n_l20___101 [2⋅X₉-2⋅X₁₁ ]
n_l20___102 [2⋅X₉-2⋅X₁₁ ]
n_l20___28 [2⋅X₉-X₀-X₁₁-1 ]
n_l20___29 [2⋅X₉-X₀-X₁₁ ]
n_l20___54 [2⋅X₉-X₀-X₁₁ ]
n_l20___55 [X₉-X₁₁-1 ]
n_l20___65 [2⋅X₉-X₀-X₁₁ ]
n_l17___9 [2⋅X₉-X₀-X₁₁ ]
n_l10___99 [2⋅X₉-2⋅X₀ ]
n_l17___13 [X₀-X₁₁-1 ]
n_l17___17 [X₀-X₁₁-1 ]
n_l17___1 [2⋅X₉-X₀-X₁₁-1 ]
n_l10___26 [X₉-X₁₁ ]
n_l17___31 [2⋅X₉-X₀-X₁₁-1 ]
n_l17___36 [X₀-X₁₁-2 ]
n_l17___40 [X₀-X₁₁-2 ]
n_l10___44 [2⋅X₉+1-X₀-X₁₁ ]
n_l10___52 [2⋅X₉-X₀-X₁₁ ]
n_l17___57 [2⋅X₉-X₀-X₁₁ ]
n_l17___5 [2⋅X₉-X₀-X₁₁ ]
n_l10___63 [2⋅X₉-X₀-X₁₁ ]
n_l17___67 [2⋅X₉-X₀-X₁₁ ]
n_l17___72 [2⋅X₉-2⋅X₀ ]
n_l17___76 [2⋅X₉-2⋅X₀ ]
n_l17___80 [X₉-X₁₁ ]
n_l17___84 [X₀-X₁₁-1 ]
n_l10___91 [2⋅X₉-X₀-X₁₁ ]
n_l2___103 [2⋅X₉-2⋅X₁₁ ]
n_l21___100 [2⋅X₉-2⋅X₁₁ ]
n_l2___30 [X₉-X₁₁ ]
n_l21___27 [X₀-X₁₁ ]
n_l2___34 [2⋅X₉-X₀-X₁₁ ]
n_l21___32 [2⋅X₉-X₀-X₁₁-1 ]
n_l2___4 [2⋅X₉-X₀-X₁₁-1 ]
n_l21___2 [X₀-X₁₁-1 ]
n_l21___45 [2⋅X₉+1-X₀-X₁₁ ]
n_l2___56 [2⋅X₉-X₀-X₁₁ ]
n_l21___53 [2⋅X₉-X₀-X₁₁ ]
n_l2___59 [2⋅X₉-X₀-X₁₁ ]
n_l21___58 [2⋅X₉-X₀-X₁₁ ]
n_l2___66 [2⋅X₉-X₀-X₁₁ ]
n_l21___64 [2⋅X₉-X₀-X₁₁ ]
n_l2___70 [2⋅X₉-2⋅X₁₁ ]
n_l21___68 [2⋅X₉-2⋅X₀ ]
n_l21___92 [2⋅X₉-X₀-X₁₁ ]
n_l3___11 [2⋅X₉-X₀-X₁₁ ]
n_l21___6 [2⋅X₉-X₀-X₁₁ ]
n_l3___12 [2⋅X₉-X₀-X₁₁ ]
n_l21___10 [2⋅X₉-X₀-X₁₁ ]
n_l3___19 [X₀-X₁₁-1 ]
n_l21___14 [X₀-X₁₁-1 ]
n_l3___20 [X₀-X₁₁-1 ]
n_l21___18 [X₀-X₁₁-1 ]
n_l3___38 [X₉-X₁₁-1 ]
n_l21___37 [X₀-X₁₁-2 ]
n_l3___42 [X₀-X₁₁-2 ]
n_l21___41 [X₀-X₁₁-2 ]
n_l3___78 [2⋅X₉-2⋅X₁₁ ]
n_l21___73 [2⋅X₉-2⋅X₀ ]
n_l3___79 [2⋅X₉-2⋅X₁₁ ]
n_l21___77 [2⋅X₉-2⋅X₀ ]
n_l3___86 [X₀-X₁₁-1 ]
n_l21___81 [X₉-X₁₁ ]
n_l3___87 [X₀-X₁₁-1 ]
n_l21___85 [X₀-X₁₁-1 ]
n_l8___22 [X₀-X₁₁-1 ]
n_l20___21 [X₀-X₁₁-1 ]
n_l20___46 [2⋅X₉-X₀-X₁₁ ]
n_l8___48 [2⋅X₉+1-X₀-X₁₁ ]
n_l2___47 [2⋅X₉+1-X₀-X₁₁ ]
n_l20___93 [X₀-X₁₁-1 ]
n_l8___95 [2⋅X₉+1-X₀-X₁₁ ]
n_l2___94 [2⋅X₉-X₀-X₁₁ ]
n_l13___23 [X₀-X₁₁ ]
n_l9___24 [X₉-X₁₁ ]
n_l13___49 [2⋅X₉-X₀-X₁₁ ]
n_l9___50 [2⋅X₉-X₀-X₁₁ ]
n_l13___60 [2⋅X₉-X₀-X₁₁ ]
n_l9___61 [2⋅X₉-X₀-X₁₁ ]
n_l13___88 [2⋅X₉-X₀-X₁₁ ]
n_l9___89 [2⋅X₉-X₀-X₁₁ ]
n_l13___96 [2⋅X₉-2⋅X₁₁ ]
n_l9___97 [2⋅X₉-2⋅X₀ ]
l12 [2⋅X₉-X₀-X₁₁ ]

MPRF for transition t₄₅₈: n_l8___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [-1 ]
n_l19___16 [-1 ]
n_l19___35 [X₉-X₀ ]
n_l19___39 [0 ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉-X₀ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₀ ]
n_l17___13 [-1 ]
n_l17___17 [-1 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉-X₀ ]
n_l17___40 [0 ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉-X₀ ]
n_l2___103 [X₉-X₀ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [X₉-X₀ ]
n_l21___14 [-1 ]
n_l3___20 [X₉-X₀ ]
n_l21___18 [-1 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [X₉-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [0 ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₀ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [X₀-X₉-1 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [X₉-X₀ ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [X₀-X₉-1 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₁₁ ]
n_l9___97 [X₉-X₁₁ ]
l12 [X₉-X₀ ]

MPRF for transition t₄₅₉: n_l8___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉+1 {O(n)}

MPRF:

l15 [X₉+1-X₀ ]
l14 [X₉+1-X₀ ]
l7 [X₉+1-X₀ ]
l5 [X₉+1-X₀ ]
l8 [X₉+1-X₀ ]
n_l11___25 [1 ]
n_l11___43 [X₉+1-X₀ ]
n_l11___51 [X₉+1-X₀ ]
n_l11___62 [X₉+1-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉+1-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [X₉+1-X₀ ]
n_l19___35 [X₉+1-X₀ ]
n_l19___39 [X₉+1-X₀ ]
n_l19___7 [X₉+1-X₀ ]
n_l19___71 [X₉+1-X₁₁ ]
n_l19___74 [X₉+1-X₁₁ ]
n_l19___75 [X₉+1-X₀ ]
n_l19___8 [X₉+1-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉+1-X₀ ]
l6 [X₉+1-X₀ ]
n_l20___101 [X₉-X₀ ]
n_l20___102 [X₉+1-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉+1-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉+1-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉+1-X₀ ]
n_l10___99 [X₉+1-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [1 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉+1-X₀ ]
n_l17___40 [X₉+1-X₀ ]
n_l10___44 [X₉+1-X₀ ]
n_l10___52 [X₉+1-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉+1-X₀ ]
n_l10___63 [X₉+1-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉+1-X₀ ]
n_l17___76 [X₉+1-X₀ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉+1-X₀ ]
n_l21___100 [X₉+1-X₀ ]
n_l2___30 [X₉+1-X₀ ]
n_l21___27 [1 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉+1-X₀ ]
n_l2___56 [X₉+1-X₀ ]
n_l21___53 [X₉+1-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉+1-X₀ ]
n_l21___64 [X₉+1-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉+1-X₀ ]
n_l21___6 [X₉+1-X₀ ]
n_l3___12 [X₉+1-X₀ ]
n_l21___10 [X₉+1-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉+1-X₀ ]
n_l21___37 [X₉+1-X₀ ]
n_l3___42 [X₉+1-X₀ ]
n_l21___41 [X₉+1-X₀ ]
n_l3___78 [X₉+1-X₀ ]
n_l21___73 [X₉+1-X₀ ]
n_l3___79 [X₉+1-X₀ ]
n_l21___77 [X₉+1-X₀ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [X₉+1-X₀ ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [1 ]
n_l20___21 [0 ]
n_l20___46 [X₉+1-X₀ ]
n_l8___48 [X₉+1-X₀ ]
n_l2___47 [X₉+1-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+2-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [1 ]
n_l9___24 [1 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉+1-X₀ ]
n_l13___60 [X₉+1-X₀ ]
n_l9___61 [X₉+1-X₀ ]
n_l13___88 [X₉+1-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉+1-X₀ ]
n_l9___97 [X₉+1-X₀ ]
l12 [X₉+1-X₀ ]

MPRF for transition t₄₆₀: n_l8___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉-X₀ ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [-1 ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₀ ]
n_l17___80 [0 ]
n_l17___84 [X₉+1-X₀ ]
n_l10___91 [X₉-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₀ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [-1 ]
n_l3___42 [-1 ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₁₁ ]
n_l21___77 [X₉-X₁₁ ]
n_l3___86 [X₉+1-X₀ ]
n_l21___81 [X₉+1-X₀ ]
n_l3___87 [X₉+1-X₀ ]
n_l21___85 [X₉+1-X₀ ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [-1 ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [X₉+1-X₀ ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]

MPRF for transition t₄₆₂: n_l9___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___49(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

2⋅X₁₁+2⋅X₉ {O(n)}

MPRF:

l15 [2⋅X₉-X₀-X₁₁ ]
l14 [2⋅X₉-X₀-X₁₁ ]
l7 [2⋅X₉-X₀-X₁₁ ]
l5 [2⋅X₉-X₀-X₁₁ ]
l8 [2⋅X₉-X₀-X₁₁ ]
n_l11___25 [X₀-X₁₁ ]
n_l11___43 [2⋅X₉-X₀-X₁₁ ]
n_l11___51 [2⋅X₉-X₀-X₁₁ ]
n_l11___62 [2⋅X₉-X₀-X₁₁ ]
n_l11___90 [2⋅X₉-X₀-X₁₁ ]
n_l11___98 [2⋅X₉-2⋅X₁₁ ]
l18 [2⋅X₉-X₀-X₁₁ ]
n_l19___15 [X₀-X₁₁-1 ]
n_l19___16 [X₀-X₁₁-1 ]
n_l19___35 [2⋅X₉-X₀-X₁₁ ]
n_l19___39 [2⋅X₉-X₀-X₁₁ ]
n_l19___7 [2⋅X₉-X₀-X₁₁ ]
n_l19___71 [2⋅X₉-2⋅X₁₁ ]
n_l19___74 [2⋅X₉-2⋅X₁₁ ]
n_l19___75 [2⋅X₉-2⋅X₁₁ ]
n_l19___8 [2⋅X₉-X₀-X₁₁ ]
n_l19___82 [X₀-X₁₁-2 ]
n_l19___83 [X₀-X₁₁-2 ]
l6 [2⋅X₉-X₀-X₁₁ ]
n_l20___101 [2⋅X₉-2⋅X₀ ]
n_l20___102 [2⋅X₉-2⋅X₀ ]
n_l20___28 [2⋅X₉-X₀-X₁₁ ]
n_l20___29 [2⋅X₉-X₀-X₁₁ ]
n_l20___54 [2⋅X₉-X₀-X₁₁ ]
n_l20___55 [X₉-X₁₁-1 ]
n_l20___65 [2⋅X₉-X₀-X₁₁ ]
n_l17___9 [2⋅X₉-X₀-X₁₁ ]
n_l10___99 [2⋅X₉-2⋅X₀ ]
n_l17___13 [X₈+X₉-X₃-X₁₁ ]
n_l17___17 [X₉-X₁₁ ]
n_l17___1 [2⋅X₉-X₀-X₁₁ ]
n_l10___26 [X₉-X₁₁ ]
n_l17___31 [2⋅X₉-X₀-X₁₁ ]
n_l17___36 [2⋅X₉-X₀-X₁₁ ]
n_l17___40 [2⋅X₉-X₀-X₁₁ ]
n_l10___44 [2⋅X₉-X₀-X₁₁ ]
n_l10___52 [2⋅X₉-X₀-X₁₁ ]
n_l17___57 [2⋅X₉-X₀-X₁₁ ]
n_l17___5 [2⋅X₉-X₀-X₁₁ ]
n_l10___63 [2⋅X₉-X₀-X₁₁ ]
n_l17___67 [2⋅X₉-2⋅X₀ ]
n_l17___72 [2⋅X₉-2⋅X₀ ]
n_l17___76 [2⋅X₉-2⋅X₀ ]
n_l17___80 [X₉-X₁₁-1 ]
n_l17___84 [X₉-X₁₁-1 ]
n_l10___91 [2⋅X₉-X₀-X₁₁ ]
n_l2___103 [2⋅X₉-2⋅X₁₁ ]
n_l21___100 [2⋅X₉-2⋅X₁₁ ]
n_l2___30 [2⋅X₉-X₀-X₁₁ ]
n_l21___27 [2⋅X₉-X₀-X₁₁ ]
n_l2___34 [2⋅X₉-X₀-X₁₁ ]
n_l21___32 [2⋅X₉-X₀-X₁₁ ]
n_l2___4 [X₀-X₁₁ ]
n_l21___2 [X₀-X₁₁ ]
n_l21___45 [2⋅X₉-X₀-X₁₁ ]
n_l2___56 [2⋅X₉-X₀-X₁₁ ]
n_l21___53 [2⋅X₉-X₀-X₁₁ ]
n_l2___59 [2⋅X₉-X₀-X₁₁ ]
n_l21___58 [2⋅X₉-X₀-X₁₁ ]
n_l2___66 [2⋅X₉-X₀-X₁₁ ]
n_l21___64 [2⋅X₉-X₀-X₁₁ ]
n_l2___70 [2⋅X₉-2⋅X₀ ]
n_l21___68 [2⋅X₉-2⋅X₀ ]
n_l21___92 [2⋅X₉-X₀-X₁₁ ]
n_l3___11 [2⋅X₉-X₀-X₁₁ ]
n_l21___6 [2⋅X₉-X₀-X₁₁ ]
n_l3___12 [2⋅X₉-X₀-X₁₁ ]
n_l21___10 [2⋅X₉-X₀-X₁₁ ]
n_l3___19 [X₀-X₁₁-1 ]
n_l21___14 [X₈+X₉-X₃-X₁₁ ]
n_l3___20 [X₀+X₈-X₃-X₁₁-1 ]
n_l21___18 [X₉-X₁₁ ]
n_l3___38 [X₉-X₁₁-1 ]
n_l21___37 [2⋅X₉-X₀-X₁₁ ]
n_l3___42 [X₀-X₁₁-2 ]
n_l21___41 [2⋅X₉-X₀-X₁₁ ]
n_l3___78 [2⋅X₉-2⋅X₀ ]
n_l21___73 [2⋅X₉-2⋅X₀ ]
n_l3___79 [2⋅X₉-2⋅X₀ ]
n_l21___77 [2⋅X₉-2⋅X₀ ]
n_l3___86 [2⋅X₉-X₀-X₁₁ ]
n_l21___81 [X₉-X₁₁-1 ]
n_l3___87 [2⋅X₉-X₀-X₁₁ ]
n_l21___85 [X₉-X₁₁-1 ]
n_l8___22 [X₈+X₉-X₃-X₁₁ ]
n_l20___21 [X₀+X₈-X₃-X₁₁-1 ]
n_l20___46 [X₀-X₁₁-2 ]
n_l8___48 [2⋅X₉-X₀-X₁₁ ]
n_l2___47 [2⋅X₉-X₀-X₁₁ ]
n_l20___93 [2⋅X₉-X₀-X₁₁ ]
n_l8___95 [2⋅X₉-X₀-X₁₁ ]
n_l2___94 [2⋅X₉-X₀-X₁₁ ]
n_l13___23 [X₉-X₁₁ ]
n_l9___24 [X₀-X₁₁ ]
n_l13___49 [2⋅X₉-X₀-X₁₁-1 ]
n_l9___50 [2⋅X₉-X₀-X₁₁ ]
n_l13___60 [2⋅X₉-X₀-X₁₁ ]
n_l9___61 [2⋅X₉-X₀-X₁₁ ]
n_l13___88 [2⋅X₉-X₀-X₁₁ ]
n_l9___89 [2⋅X₉-X₀-X₁₁ ]
n_l13___96 [2⋅X₉-X₀-X₁₁ ]
n_l9___97 [2⋅X₉-2⋅X₁₁ ]
l12 [2⋅X₉-X₀-X₁₁ ]

MPRF for transition t₆₁₅: n_l9___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}

MPRF:

l15 [X₁₁+1-X₉ ]
l14 [X₁₁+1-X₉ ]
l7 [X₁₁+1-X₉ ]
l5 [X₁₁+1-X₉ ]
n_l2___56 [X₁₁+1-X₉ ]
l8 [X₁₁+1-X₉ ]
n_l11___25 [X₁₁+1-X₉ ]
n_l11___43 [1 ]
n_l11___51 [1 ]
n_l11___62 [X₁₁+1-X₉ ]
n_l11___90 [X₁₁+1-X₉ ]
n_l11___98 [X₁₁+1-X₉ ]
l18 [X₁₁+1-X₉ ]
n_l19___15 [X₁₁+1-X₉ ]
n_l19___16 [X₀+X₁₁-2⋅X₉ ]
n_l19___35 [X₀+X₁₁-2⋅X₉ ]
n_l19___39 [X₀+X₁₁-2⋅X₉ ]
n_l19___7 [X₁₁+1-X₉ ]
n_l19___71 [2⋅X₂+X₁₁+1-X₉-2⋅X₁₄ ]
n_l19___74 [X₁₁+1-X₉ ]
n_l19___75 [X₁₁+1-X₉ ]
n_l19___8 [X₁₁+1-X₉ ]
n_l19___82 [X₁₁+1-X₉ ]
n_l19___83 [X₁₁+1-X₉ ]
l6 [X₁₁+1-X₉ ]
n_l20___101 [X₀+1-X₉ ]
n_l20___102 [X₀+1-X₉ ]
n_l20___28 [X₁₁+1-X₉ ]
n_l20___29 [X₁₁+1-X₉ ]
n_l20___54 [X₁₁+1-X₉ ]
n_l20___55 [X₁₁+1-X₉ ]
n_l20___65 [X₁₁+1-X₉ ]
n_l17___9 [X₁₁+1-X₉ ]
n_l10___99 [X₀+1-X₉ ]
n_l17___13 [X₀+X₁₁-2⋅X₉ ]
n_l17___17 [X₀+X₁₁-2⋅X₉ ]
n_l17___1 [X₁₁+1-X₉ ]
n_l10___26 [X₁₁+1-X₉ ]
n_l17___31 [X₁₁+1-X₉ ]
n_l17___36 [X₀+X₁₁-2⋅X₉ ]
n_l17___40 [X₀+X₁₁-2⋅X₉ ]
n_l10___44 [1 ]
n_l21___53 [1 ]
n_l10___52 [1 ]
n_l17___57 [X₁₁+1-X₉ ]
n_l17___5 [X₁₁+1-X₉ ]
n_l10___63 [2⋅X₅+X₁₁+1-2⋅X₁-X₉ ]
n_l17___67 [2⋅X₁+X₁₁+1-X₉-2⋅X₁₂ ]
n_l17___72 [X₀+1-X₉ ]
n_l17___76 [X₀+1-X₉ ]
n_l17___80 [X₁₁+2-X₀ ]
n_l17___84 [X₁₁+1-X₉ ]
n_l10___91 [X₁₁+1-X₉ ]
n_l2___103 [X₀+1-X₉ ]
n_l21___100 [X₁₁+1-X₉ ]
n_l2___30 [X₁₁+1-X₉ ]
n_l21___27 [X₁₁+1-X₀ ]
n_l2___34 [X₁₁+1-X₉ ]
n_l21___32 [X₁₁+1-X₉ ]
n_l2___4 [X₁₁+1-X₉ ]
n_l21___2 [X₁₁+1-X₉ ]
n_l21___45 [1 ]
n_l2___59 [X₁₁+1-X₉ ]
n_l21___58 [X₁₁+1-X₉ ]
n_l2___66 [X₁₁+1-X₉ ]
n_l21___64 [2⋅X₅+X₁₁+1-2⋅X₁-X₉ ]
n_l2___70 [X₀+1-X₉ ]
n_l21___68 [X₁₁+1-X₉ ]
n_l21___92 [X₁₁+1-X₉ ]
n_l3___11 [X₁₁+1-X₉ ]
n_l21___6 [X₁₁+1-X₉ ]
n_l3___12 [X₁₁+1-X₉ ]
n_l21___10 [X₁₁+1-X₉ ]
n_l3___19 [2⋅X₃+4⋅X₉+X₁₁+6-5⋅X₀-2⋅X₈ ]
n_l21___14 [X₀+X₁₁-2⋅X₉ ]
n_l3___20 [X₁₁+1-X₉ ]
n_l21___18 [X₀+X₁₁-2⋅X₉ ]
n_l3___38 [X₁₁+1-X₉ ]
n_l21___37 [X₀+X₁₁-2⋅X₉ ]
n_l3___42 [X₁₁+1-X₉ ]
n_l21___41 [X₀+X₁₁-2⋅X₉ ]
n_l3___78 [X₀+1-X₉ ]
n_l21___73 [X₀+2⋅X₂+1-X₉-2⋅X₁₄ ]
n_l3___79 [X₀+1-X₉ ]
n_l21___77 [X₀+1-X₉ ]
n_l3___86 [X₀+X₁₁-2⋅X₉ ]
n_l21___81 [X₁₁+2-X₀ ]
n_l3___87 [X₀+X₁₁-2⋅X₉ ]
n_l21___85 [X₁₁+1-X₉ ]
n_l8___22 [2⋅X₈+X₁₁+1-2⋅X₃-X₉ ]
n_l20___21 [X₁₁+1-X₉ ]
n_l20___46 [X₁₁+1-X₉ ]
n_l8___48 [1 ]
n_l2___47 [1 ]
n_l20___93 [X₀+X₁₁-2⋅X₉ ]
n_l8___95 [X₁₁+1-X₉ ]
n_l2___94 [X₁₁+1-X₉ ]
n_l13___23 [2⋅X₈+X₁₁+1-2⋅X₃-X₉ ]
n_l9___24 [X₁₁+1-X₀ ]
n_l13___49 [1 ]
n_l9___50 [1 ]
n_l13___60 [X₁₁+1-X₉ ]
n_l9___61 [X₁₁+1-X₉ ]
n_l13___88 [X₁₁+1-X₉ ]
n_l9___89 [X₁₁+1-X₉ ]
n_l13___96 [X₁₁+1-X₉ ]
n_l9___97 [X₁₁+1-X₉ ]
l12 [X₁₁+1-X₉ ]

MPRF for transition t₆₂₀: n_l9___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

112⋅X₁₄+54⋅X₁₀+54⋅X₁₂+30 {O(n)}

MPRF:

l15 [2⋅X₁₄+2-2⋅X₃ ]
l14 [2⋅X₁₄+2-2⋅X₃ ]
l7 [2⋅X₁₄+2-2⋅X₃ ]
l5 [2⋅X₁₄+2-2⋅X₃ ]
n_l2___56 [2⋅X₁₄+2-2⋅X₂ ]
l8 [2⋅X₁₄+2-2⋅X₂ ]
n_l11___25 [2⋅X₁₄-2⋅X₂ ]
n_l11___43 [1 ]
n_l11___51 [1 ]
n_l11___62 [2⋅X₁₄-2⋅X₂ ]
n_l11___90 [2⋅X₁₄-2⋅X₂ ]
n_l11___98 [0 ]
l18 [2⋅X₁₄+2-2⋅X₂ ]
n_l19___15 [2⋅X₁₄-2⋅X₂ ]
n_l19___16 [2⋅X₁₄-2⋅X₂ ]
n_l19___35 [2⋅X₁₄-2⋅X₂ ]
n_l19___39 [0 ]
n_l19___7 [2⋅X₁₄-2⋅X₂ ]
n_l19___71 [0 ]
n_l19___74 [2⋅X₁₄-2⋅X₂ ]
n_l19___75 [0 ]
n_l19___8 [2⋅X₁₄-2⋅X₂ ]
n_l19___82 [2⋅X₁₄-2⋅X₂ ]
n_l19___83 [2⋅X₁₄-2⋅X₂ ]
l6 [2⋅X₁₄-2⋅X₂ ]
n_l20___101 [2 ]
n_l20___102 [0 ]
n_l20___28 [2⋅X₁₄+2-2⋅X₂ ]
n_l20___29 [2⋅X₁₄-2⋅X₂ ]
n_l20___54 [2⋅X₁₄+2-2⋅X₂ ]
n_l20___55 [2⋅X₁₄-2⋅X₂ ]
n_l20___65 [2⋅X₁₄+2-2⋅X₂ ]
n_l17___9 [2⋅X₁₄-2⋅X₂ ]
n_l10___99 [0 ]
n_l17___13 [2⋅X₁₄-2⋅X₂ ]
n_l17___17 [2⋅X₁₄-2⋅X₂ ]
n_l17___1 [2⋅X₁₄+2-2⋅X₂ ]
n_l10___26 [2⋅X₁₄-2⋅X₂ ]
n_l17___31 [2⋅X₁₄+2-2⋅X₂ ]
n_l17___36 [2⋅X₁₄-2⋅X₂ ]
n_l17___40 [0 ]
n_l10___44 [1 ]
n_l21___53 [1 ]
n_l10___52 [1 ]
n_l17___57 [2⋅X₁₄+2-2⋅X₂ ]
n_l17___5 [2⋅X₁₄-2⋅X₂ ]
n_l10___63 [2⋅X₁₄-2⋅X₂ ]
n_l17___67 [2 ]
n_l17___72 [0 ]
n_l17___76 [0 ]
n_l17___80 [2⋅X₁₄-2⋅X₂ ]
n_l17___84 [2⋅X₁₄-2⋅X₂ ]
n_l10___91 [2⋅X₁₄-2⋅X₂ ]
n_l2___103 [0 ]
n_l21___100 [0 ]
n_l2___30 [2⋅X₁₄-2⋅X₂ ]
n_l21___27 [2⋅X₁₄-2⋅X₂ ]
n_l2___34 [2⋅X₁₄+2-2⋅X₂ ]
n_l21___32 [2⋅X₁₄+2-2⋅X₂ ]
n_l2___4 [2⋅X₁₄+2-2⋅X₂ ]
n_l21___2 [2⋅X₁₄+2-2⋅X₂ ]
n_l21___45 [1 ]
n_l2___59 [2⋅X₁₄+2-2⋅X₂ ]
n_l21___58 [2⋅X₁₄+2-2⋅X₂ ]
n_l2___66 [2⋅X₁₄-2⋅X₂ ]
n_l21___64 [2⋅X₁₄-2⋅X₂ ]
n_l2___70 [2 ]
n_l21___68 [2 ]
n_l21___92 [2⋅X₁₄-2⋅X₂ ]
n_l3___11 [2⋅X₁₄-2⋅X₂ ]
n_l21___6 [2⋅X₁₄-2⋅X₂ ]
n_l3___12 [2⋅X₁₄-2⋅X₂ ]
n_l21___10 [2⋅X₁₄-2⋅X₂ ]
n_l3___19 [2⋅X₁₄-2⋅X₂ ]
n_l21___14 [2⋅X₁₄-2⋅X₂ ]
n_l3___20 [2⋅X₁₄-2⋅X₂ ]
n_l21___18 [2⋅X₁₄-2⋅X₂ ]
n_l3___38 [2⋅X₁₄-2⋅X₂ ]
n_l21___37 [2⋅X₁₄-2⋅X₂ ]
n_l3___42 [0 ]
n_l21___41 [0 ]
n_l3___78 [0 ]
n_l21___73 [0 ]
n_l3___79 [0 ]
n_l21___77 [0 ]
n_l3___86 [2⋅X₁₄-2⋅X₂ ]
n_l21___81 [2⋅X₁₄-2⋅X₂ ]
n_l3___87 [2⋅X₁₄-2⋅X₂ ]
n_l21___85 [2⋅X₁₄-2⋅X₂ ]
n_l8___22 [2⋅X₁₄-2⋅X₂ ]
n_l20___21 [2⋅X₁₄-2⋅X₂ ]
n_l20___46 [0 ]
n_l8___48 [1 ]
n_l2___47 [1 ]
n_l20___93 [2⋅X₁₄-2⋅X₂ ]
n_l8___95 [2⋅X₁₄-2⋅X₂ ]
n_l2___94 [2⋅X₁₄-2⋅X₂ ]
n_l13___23 [2⋅X₁₄-2⋅X₂ ]
n_l9___24 [2⋅X₁₄-2⋅X₂ ]
n_l13___49 [1 ]
n_l9___50 [1 ]
n_l13___60 [2⋅X₁₄-2⋅X₂ ]
n_l9___61 [2⋅X₁₄-2⋅X₂ ]
n_l13___88 [2⋅X₁₄-2⋅X₂ ]
n_l9___89 [2⋅X₁₄-2⋅X₂ ]
n_l13___96 [0 ]
n_l9___97 [0 ]
l12 [2⋅X₁₄+2-2⋅X₃ ]

MPRF for transition t₄₆₄: n_l9___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___88(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [X₉-X₀ ]
n_l19___39 [-1 ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₀ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉-X₀ ]
n_l17___40 [-1 ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₀ ]
n_l2___30 [X₉-X₀ ]
n_l21___27 [X₉-X₀ ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [-1 ]
n_l21___37 [X₉-X₀ ]
n_l3___42 [-1 ]
n_l21___41 [-1 ]
n_l3___78 [X₉-X₀ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₁₁ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [-1 ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₀ ]
l12 [X₉-X₀ ]

MPRF for transition t₆₁₇: n_l9___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉-X₁₁ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₀ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [X₉-X₀ ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₀ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [X₉-X₀ ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [-1 ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₀ ]
n_l17___76 [X₉-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉-X₀ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [0 ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [0 ]
n_l21___2 [X₉-X₀ ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₀ ]
n_l21___68 [X₉-X₁₁ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [-1 ]
n_l3___42 [X₉-X₀ ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₁₁ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₁₁ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [X₉-X₀ ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₁₁ ]
l12 [X₉-X₀ ]

MPRF for transition t₆₂₂: n_l9___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ of depth 1:

new bound:

X₁₁+X₉ {O(n)}

MPRF:

l15 [X₉-X₀ ]
l14 [X₉-X₀ ]
l7 [X₉-X₀ ]
l5 [X₉-X₀ ]
l8 [X₉-X₀ ]
n_l11___25 [0 ]
n_l11___43 [X₉-X₀ ]
n_l11___51 [X₉-X₀ ]
n_l11___62 [X₉-X₀ ]
n_l11___90 [X₉+1-X₀ ]
n_l11___98 [X₉-X₀ ]
l18 [X₉-X₀ ]
n_l19___15 [0 ]
n_l19___16 [0 ]
n_l19___35 [-1 ]
n_l19___39 [X₉-X₀ ]
n_l19___7 [X₉-X₀ ]
n_l19___71 [X₉-X₁₁ ]
n_l19___74 [X₉-X₁₁ ]
n_l19___75 [X₉-X₀ ]
n_l19___8 [X₉-X₀ ]
n_l19___82 [0 ]
n_l19___83 [0 ]
l6 [X₉-X₀ ]
n_l20___101 [X₉-X₁₁ ]
n_l20___102 [X₉-X₁₁ ]
n_l20___28 [X₉-X₀ ]
n_l20___29 [X₉-X₀ ]
n_l20___54 [X₉-X₀ ]
n_l20___55 [X₉-X₀ ]
n_l20___65 [X₉-X₀ ]
n_l17___9 [X₉-X₀ ]
n_l10___99 [X₉-X₁₁ ]
n_l17___13 [0 ]
n_l17___17 [0 ]
n_l17___1 [0 ]
n_l10___26 [0 ]
n_l17___31 [X₉-X₀ ]
n_l17___36 [X₉-X₀ ]
n_l17___40 [X₉-X₀ ]
n_l10___44 [X₉-X₀ ]
n_l10___52 [X₉-X₀ ]
n_l17___57 [X₉-X₀ ]
n_l17___5 [X₉-X₀ ]
n_l10___63 [X₉-X₀ ]
n_l17___67 [X₉-X₀ ]
n_l17___72 [X₉-X₁₁ ]
n_l17___76 [X₉-X₁₁ ]
n_l17___80 [0 ]
n_l17___84 [0 ]
n_l10___91 [X₉+1-X₀ ]
n_l2___103 [X₉-X₁₁ ]
n_l21___100 [X₉-X₁₁ ]
n_l2___30 [X₉-X₀ ]
n_l21___27 [0 ]
n_l2___34 [X₉-X₀ ]
n_l21___32 [X₉-X₀ ]
n_l2___4 [X₉-X₀ ]
n_l21___2 [0 ]
n_l21___45 [X₉-X₀ ]
n_l2___56 [X₉-X₀ ]
n_l21___53 [X₉-X₀ ]
n_l2___59 [X₉-X₀ ]
n_l21___58 [X₉-X₀ ]
n_l2___66 [X₉-X₀ ]
n_l21___64 [X₉-X₀ ]
n_l2___70 [X₉-X₁₁ ]
n_l21___68 [X₉-X₀ ]
n_l21___92 [X₉+1-X₀ ]
n_l3___11 [X₉-X₀ ]
n_l21___6 [X₉-X₀ ]
n_l3___12 [X₉-X₀ ]
n_l21___10 [X₉-X₀ ]
n_l3___19 [0 ]
n_l21___14 [0 ]
n_l3___20 [0 ]
n_l21___18 [0 ]
n_l3___38 [X₉-X₀ ]
n_l21___37 [X₉-X₀ ]
n_l3___42 [-1 ]
n_l21___41 [X₉-X₀ ]
n_l3___78 [X₉-X₁₁ ]
n_l21___73 [X₉-X₁₁ ]
n_l3___79 [X₉-X₀ ]
n_l21___77 [X₉-X₀ ]
n_l3___86 [0 ]
n_l21___81 [0 ]
n_l3___87 [0 ]
n_l21___85 [0 ]
n_l8___22 [0 ]
n_l20___21 [0 ]
n_l20___46 [-1 ]
n_l8___48 [X₉-X₀ ]
n_l2___47 [X₉-X₀ ]
n_l20___93 [0 ]
n_l8___95 [X₉+1-X₀ ]
n_l2___94 [X₉+1-X₀ ]
n_l13___23 [0 ]
n_l9___24 [0 ]
n_l13___49 [X₉-X₀ ]
n_l9___50 [X₉-X₀ ]
n_l13___60 [X₉-X₀ ]
n_l9___61 [X₉-X₀ ]
n_l13___88 [X₉-X₀ ]
n_l9___89 [X₉+1-X₀ ]
n_l13___96 [X₉-X₀ ]
n_l9___97 [X₉-X₁₁ ]
l12 [X₉-X₀ ]

CFR: Improvement to new bound with the following program:

new bound:

3404⋅X₁₀+3404⋅X₁₂+6486⋅X₁₄+76⋅X₁₁+76⋅X₉+1719 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: Arg10_P, Arg11_P, Arg14_P, Arg9_P, NoDet0, nondef.1, nondef.2
Locations: l0, l1, l12, l14, l15, l16, l18, l4, l5, l6, l7, l8, n_l10___26, n_l10___44, n_l10___52, n_l10___63, n_l10___91, n_l10___99, n_l11___25, n_l11___43, n_l11___51, n_l11___62, n_l11___90, n_l11___98, n_l13___23, n_l13___49, n_l13___60, n_l13___88, n_l13___96, n_l17___1, n_l17___13, n_l17___17, n_l17___31, n_l17___36, n_l17___40, n_l17___5, n_l17___57, n_l17___67, n_l17___72, n_l17___76, n_l17___80, n_l17___84, n_l17___9, n_l19___15, n_l19___16, n_l19___35, n_l19___39, n_l19___7, n_l19___71, n_l19___74, n_l19___75, n_l19___8, n_l19___82, n_l19___83, n_l20___101, n_l20___102, n_l20___21, n_l20___28, n_l20___29, n_l20___46, n_l20___54, n_l20___55, n_l20___65, n_l20___93, n_l21___10, n_l21___100, n_l21___14, n_l21___18, n_l21___2, n_l21___27, n_l21___32, n_l21___37, n_l21___41, n_l21___45, n_l21___53, n_l21___58, n_l21___6, n_l21___64, n_l21___68, n_l21___73, n_l21___77, n_l21___81, n_l21___85, n_l21___92, n_l2___103, n_l2___30, n_l2___34, n_l2___4, n_l2___47, n_l2___56, n_l2___59, n_l2___66, n_l2___70, n_l2___94, n_l3___11, n_l3___12, n_l3___19, n_l3___20, n_l3___3, n_l3___33, n_l3___38, n_l3___42, n_l3___69, n_l3___78, n_l3___79, n_l3___86, n_l3___87, n_l8___22, n_l8___48, n_l8___95, n_l9___24, n_l9___50, n_l9___61, n_l9___89, n_l9___97
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₁+X₃, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₅, X₃, X₆, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₂₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₁₁, X₁₂, X₁₄, X₁₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₁: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₇, X₃, X₈, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁+X₃, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₅₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___101(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄₅₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___102(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄₄₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄₄₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄₄₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄₄₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄₅₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄₅₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___103(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄₄₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄₅₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄₅₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₅₃: n_l10___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₅₄: n_l10___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₃₅₅: n_l10___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₃₅₆: n_l10___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₅₇: n_l10___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₅₈: n_l10___99(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l11___98(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₃₅₉: n_l11___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___24(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₆₀: n_l11___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___50(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₃₆₁: n_l11___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___50(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₃₆₂: n_l11___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___61(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₆₃: n_l11___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___89(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₆₄: n_l11___98(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l9___97(X₀, X₁, X₂, X₃, NoDet0, X₅, X₆, X₇, X₈, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃, Arg14_P) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ Arg10_P ∧ 1+X₂ ≤ X₃ ∧ Arg14_P ≤ X₂ ∧ X₀ ≤ Arg9_P ∧ Arg11_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₃₆₅: n_l13___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___22(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₆₆: n_l13___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___48(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₃₆₇: n_l13___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___95(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₆₈: n_l13___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___95(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₆₉: n_l13___96(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___95(X₀+1, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₂₇: n_l17___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₃₇₀: n_l17___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₃₇₁: n_l17___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₃₇₂: n_l17___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₇₃: n_l17___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₃₀: n_l17___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₃₇₄: n_l17___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₃₇₅: n_l17___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₃₇₆: n_l17___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₃₇₇: n_l17___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₃₄: n_l17___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₃₅: n_l17___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₃₇₈: n_l17___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₁ < X₁₀ ∧ 1+X₂ ≤ X₁₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₃₇₉: n_l17___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₁ < X₁₀ ∧ 1+X₂ ≤ X₁₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₃₈₀: n_l17___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₃₈₁: n_l17___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₃₈₂: n_l17___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₃₈₃: n_l17___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₃₈₄: n_l17___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₈₅: n_l17___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₈₆: n_l17___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₈₇: n_l17___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l19___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₆₀₃: n_l19___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₆₀₄: n_l19___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₆₀₅: n_l19___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₆₀₆: n_l19___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₆₀₇: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₆₀₈: n_l19___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₆₀₉: n_l19___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₆₁₀: n_l19___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₆₁₁: n_l19___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₆₁₂: n_l19___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₆₁₃: n_l19___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₈₈: n_l20___101(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₃₈₉: n_l20___101(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₃₉₀: n_l20___102(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
t₃₉₁: n_l20___102(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
t₃₉₂: n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₉₃: n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₃₉₄: n_l20___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₃₉₅: n_l20___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₃₉₆: n_l20___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₉₇: n_l20___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₃₉₈: n_l20___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₃₉₉: n_l20___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₄₀₀: n_l20___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₄₀₁: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁
t₄₀₂: n_l20___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₄₀₃: n_l20___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₀₄: n_l20___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l3___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₀₅: n_l21___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₀₆: n_l21___100(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___99(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₁₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₄₀₇: n_l21___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₄₀₈: n_l21___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₀₉: n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₄₁₀: n_l21___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₁₁: n_l21___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₄₁₂: n_l21___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₄₁₃: n_l21___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₄₁₄: n_l21___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₄₁₅: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₄₁₆: n_l21___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ X₁₀ < X₁ ∧ 1+X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₄₁₇: n_l21___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₄₁₈: n_l21___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₁₉: n_l21___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₁₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₄₂₀: n_l21___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₁ < X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₄₂₁: n_l21___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₁₃ ∧ X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₄₂₂: n_l21___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₄₂₃: n_l21___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l17___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₂₄: n_l21___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l10___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₁₇: n_l2___103(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₉₃: n_l2___103(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₄₂₅: n_l2___103(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___100(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₅₁₈: n_l2___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₉₄: n_l2___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₂₆: n_l2___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₂₇: n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₀ < X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₂₀: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₉₆: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₄₂₈: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₄₂₉: n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₄₃₀: n_l2___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₂₃: n_l2___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₉₉: n_l2___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₄₃₁: n_l2___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₀ ≤ X₉ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₁₀ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₂₄: n_l2___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₆₀₀: n_l2___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₃₂: n_l2___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₂₅: n_l2___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₆₀₁: n_l2___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₄₃₃: n_l2___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁₀ < X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₄₃₄: n_l2___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₅₄: n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₈₀: n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₄₃₅: n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₅₅₅: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₆₈: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₅₈₁: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄₃₆: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₉ < X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀
t₄₃₇: n_l3___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ < X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₄₃₈: n_l3___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₀ ≤ X₉+1 ∧ 1+X₉ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₅₅₈: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₇₁: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₈₄: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1+X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₇₂: n_l3___33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁₀ ≤ X₁
t₅₇₃: n_l3___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁
t₄₃₉: n_l3___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁
t₄₄₀: n_l3___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₅₆₂: n_l3___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₇₅: n_l3___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₈₈: n_l3___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₁
t₅₆₃: n_l3___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₅₈₉: n_l3___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₄₄₁: n_l3___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ X₉ < X₀ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₀
t₅₆₄: n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
t₅₇₇: n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀ < X₁ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
t₅₉₀: n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₂+1 ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
t₄₄₂: n_l3___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁
t₄₄₃: n_l3___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < X₁₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₁ ≤ X₁₀
t₄₄₄: n_l3___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l21___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₅₆: n_l8___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₉ < X₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₅₇: n_l8___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₄₅₈: n_l8___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁₀ ≤ X₁ ∧ 1+X₁₁ ≤ X₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₄ ≤ X₂ ∧ X₁₀ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 2+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₄₅₉: n_l8___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l20___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₉ < X₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₆₀: n_l8___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l2___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ 1+X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₆₁₄: n_l9___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₆₁₉: n_l9___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₆₁: n_l9___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___23(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₉ ≤ X₀ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₁ ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 2+X₁₄ ≤ X₈ ∧ X₇ ≤ X₁₀ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₆₁₅: n_l9___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₆₂₀: n_l9___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₄₆₂: n_l9___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___49(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
t₆₁₆: n_l9___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₆₂₁: n_l9___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₆₃: n_l9___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___60(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₆ ∧ 1+X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2+X₁₄ ≤ X₆ ∧ X₅ ≤ X₁₀ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁₄ ≤ X₃ ∧ 1+X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₆₁₇: n_l9___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₆₂₂: n_l9___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₄₆₄: n_l9___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___88(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀
t₆₁₈: n_l9___97(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ < 0 ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₆₂₃: n_l9___97(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₄ ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁ ≤ X₁₀ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀
t₄₆₅: n_l9___97(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l13___96(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₂ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₀ ≤ X₉ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₀ ∧ X₂ ≤ X₁₄ ∧ X₁₄ ≤ X₂ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₁₄ ≤ X₂ ∧ X₀ ≤ X₉ ∧ 1+X₂ ≤ X₃ ∧ X₁₁ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₁₁ ≤ X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ X₁₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁₄ ≤ X₃ ∧ X₁₃ ≤ X₃ ∧ X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₃ ∧ X₁₄ ≤ X₂ ∧ 1+X₁₄ ≤ X₁₃ ∧ X₁₂ ≤ X₁₀ ∧ X₁₂ ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₁ ≤ X₀ ∧ X₀ ≤ X₁₁ ∧ X₁ ≤ X₁₀

All Bounds

Timebounds

Overall timebound:3404⋅X₁₀+3404⋅X₁₂+6486⋅X₁₄+76⋅X₁₁+76⋅X₉+1755 {O(n)}
t₀: 1 {O(1)}
t₂₃: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₂₆: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₂₅: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₁: 1 {O(1)}
t₃₁: X₁₁+X₉+1 {O(n)}
t₃₉: 1 {O(1)}
t₃₈: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
t₃₅: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
t₃₇: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
t₄₄₅: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₄₄₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₄₄₇: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₄₈: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₄₄₉: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₄₅₀: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₅₁: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}
t₄₅₂: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₅₃: 1 {O(1)}
t₄₅₄: 1 {O(1)}
t₄₅₅: 1 {O(1)}
t₃₅₃: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₅₄: 2⋅X₁₁+2⋅X₉ {O(n)}
t₃₅₅: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₅₆: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₅₇: X₁₁+X₉ {O(n)}
t₃₅₈: 1 {O(1)}
t₃₅₉: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₆₀: X₁₁+X₉ {O(n)}
t₃₆₁: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₆₂: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₆₃: X₁₁+X₉ {O(n)}
t₃₆₄: 1 {O(1)}
t₃₆₅: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₆₆: X₁₁+X₉+1 {O(n)}
t₃₆₇: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₆₈: X₁₁+X₉ {O(n)}
t₃₆₉: 1 {O(1)}
t₅₂₇: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₃₇₀: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₇₁: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₇₂: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₇₃: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₅₃₀: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₃₇₄: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₃₇₅: X₁₁+X₉+1 {O(n)}
t₃₇₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₃₇₇: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₃₄: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}
t₅₃₅: 1 {O(1)}
t₃₇₈: 1 {O(1)}
t₃₇₉: 1 {O(1)}
t₃₈₀: 1 {O(1)}
t₃₈₁: 1 {O(1)}
t₃₈₂: X₁₁+X₉+1 {O(n)}
t₃₈₃: X₁₁+X₉+1 {O(n)}
t₃₈₄: X₁₁+X₉+1 {O(n)}
t₃₈₅: X₁₁+X₉+1 {O(n)}
t₃₈₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₃₈₇: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₆₀₃: 162⋅X₁₀+162⋅X₁₂+324⋅X₁₄+84 {O(n)}
t₆₀₄: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₆₀₅: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₆₀₆: X₁₁+X₉+1 {O(n)}
t₆₀₇: 24⋅X₁₀+24⋅X₁₂+24⋅X₁₄+3⋅X₁₁+3⋅X₉+6 {O(n)}
t₆₀₈: 2 {O(1)}
t₆₀₉: 1 {O(1)}
t₆₁₀: 1 {O(1)}
t₆₁₁: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₆₁₂: X₁₁+X₉+1 {O(n)}
t₆₁₃: X₁₁+X₉+1 {O(n)}
t₃₈₈: 1 {O(1)}
t₃₈₉: 1 {O(1)}
t₃₉₀: 1 {O(1)}
t₃₉₁: 1 {O(1)}
t₃₉₂: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₉₃: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₉₄: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₃₉₅: 1 {O(1)}
t₃₉₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₃₉₇: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₃₉₈: X₁₁+X₉+1 {O(n)}
t₃₉₉: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₄₀₀: 1 {O(1)}
t₄₀₁: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₄₀₂: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}
t₄₀₃: X₁₁+X₉+1 {O(n)}
t₄₀₄: X₁₁+X₉+1 {O(n)}
t₄₀₅: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₄₀₆: 1 {O(1)}
t₄₀₇: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₀₈: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₀₉: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₄₁₀: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₁₁: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₄₁₂: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₄₁₃: X₁₁+X₉+1 {O(n)}
t₄₁₄: X₁₁+X₉ {O(n)}
t₄₁₅: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₁₆: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}
t₄₁₇: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₄₁₈: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₁₉: 1 {O(1)}
t₄₂₀: 1 {O(1)}
t₄₂₁: 1 {O(1)}
t₄₂₂: X₁₁+X₉+1 {O(n)}
t₄₂₃: X₁₁+X₉+1 {O(n)}
t₄₂₄: X₁₁+X₉ {O(n)}
t₄₂₅: 1 {O(1)}
t₅₁₇: 1 {O(1)}
t₅₉₃: 1 {O(1)}
t₄₂₆: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₅₁₈: 1 {O(1)}
t₅₉₄: 1 {O(1)}
t₄₂₇: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₄₂₈: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₅₂₀: 1 {O(1)}
t₅₉₆: 1 {O(1)}
t₄₂₉: X₁₁+X₉ {O(n)}
t₄₃₀: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₃₁: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}
t₅₂₃: 1 {O(1)}
t₅₉₉: 1 {O(1)}
t₄₃₂: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₅₂₄: 1 {O(1)}
t₆₀₀: 1 {O(1)}
t₄₃₃: 1 {O(1)}
t₅₂₅: 1 {O(1)}
t₆₀₁: 1 {O(1)}
t₄₃₄: X₁₁+X₉ {O(n)}
t₄₃₅: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₅₄: 1 {O(1)}
t₅₈₀: 1 {O(1)}
t₄₃₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₅₅: 1 {O(1)}
t₅₆₈: 1 {O(1)}
t₅₈₁: 1 {O(1)}
t₄₃₇: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₃₈: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₅₅₈: 1 {O(1)}
t₅₇₁: 1 {O(1)}
t₅₈₄: 1 {O(1)}
t₅₇₂: 1 {O(1)}
t₄₃₉: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₇₃: 1 {O(1)}
t₄₄₀: X₁₁+X₉+1 {O(n)}
t₅₆₂: 1 {O(1)}
t₅₇₅: 1 {O(1)}
t₅₈₈: 1 {O(1)}
t₄₄₁: 1 {O(1)}
t₅₆₃: 1 {O(1)}
t₅₈₉: 1 {O(1)}
t₄₄₂: 1 {O(1)}
t₅₆₄: 1 {O(1)}
t₅₇₇: 1 {O(1)}
t₅₉₀: 1 {O(1)}
t₄₄₃: X₁₁+X₉+1 {O(n)}
t₄₄₄: X₁₁+X₉+1 {O(n)}
t₄₅₆: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₅₇: 2⋅X₁₁+2⋅X₉ {O(n)}
t₄₅₈: X₁₁+X₉ {O(n)}
t₄₅₉: X₁₁+X₉+1 {O(n)}
t₄₆₀: X₁₁+X₉ {O(n)}
t₄₆₁: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₆₁₄: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₆₁₉: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₆₂: 2⋅X₁₁+2⋅X₉ {O(n)}
t₆₁₅: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}
t₆₂₀: 112⋅X₁₄+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₆₃: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₆₁₆: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₆₂₁: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₆₄: X₁₁+X₉ {O(n)}
t₆₁₇: X₁₁+X₉ {O(n)}
t₆₂₂: X₁₁+X₉ {O(n)}
t₄₆₅: 1 {O(1)}
t₆₁₈: 1 {O(1)}
t₆₂₃: 1 {O(1)}

Costbounds

Overall costbound: 3404⋅X₁₀+3404⋅X₁₂+6486⋅X₁₄+76⋅X₁₁+76⋅X₉+1755 {O(n)}
t₀: 1 {O(1)}
t₂₃: 54⋅X₁₀+54⋅X₁₂+54⋅X₁₄+1 {O(n)}
t₂₆: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₂₅: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₁: 1 {O(1)}
t₃₁: X₁₁+X₉+1 {O(n)}
t₃₉: 1 {O(1)}
t₃₈: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
t₃₅: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
t₃₇: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+1 {O(n)}
t₄₄₅: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₄₄₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₄₄₇: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₄₈: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₄₄₉: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₄₅₀: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₅₁: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}
t₄₅₂: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₅₃: 1 {O(1)}
t₄₅₄: 1 {O(1)}
t₄₅₅: 1 {O(1)}
t₃₅₃: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₅₄: 2⋅X₁₁+2⋅X₉ {O(n)}
t₃₅₅: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₅₆: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₅₇: X₁₁+X₉ {O(n)}
t₃₅₈: 1 {O(1)}
t₃₅₉: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₆₀: X₁₁+X₉ {O(n)}
t₃₆₁: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₆₂: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₆₃: X₁₁+X₉ {O(n)}
t₃₆₄: 1 {O(1)}
t₃₆₅: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₆₆: X₁₁+X₉+1 {O(n)}
t₃₆₇: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₆₈: X₁₁+X₉ {O(n)}
t₃₆₉: 1 {O(1)}
t₅₂₇: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₃₇₀: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₇₁: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₇₂: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₇₃: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₅₃₀: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₃₇₄: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₃₇₅: X₁₁+X₉+1 {O(n)}
t₃₇₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₃₇₇: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₃₄: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}
t₅₃₅: 1 {O(1)}
t₃₇₈: 1 {O(1)}
t₃₇₉: 1 {O(1)}
t₃₈₀: 1 {O(1)}
t₃₈₁: 1 {O(1)}
t₃₈₂: X₁₁+X₉+1 {O(n)}
t₃₈₃: X₁₁+X₉+1 {O(n)}
t₃₈₄: X₁₁+X₉+1 {O(n)}
t₃₈₅: X₁₁+X₉+1 {O(n)}
t₃₈₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₃₈₇: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₆₀₃: 162⋅X₁₀+162⋅X₁₂+324⋅X₁₄+84 {O(n)}
t₆₀₄: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₆₀₅: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₆₀₆: X₁₁+X₉+1 {O(n)}
t₆₀₇: 24⋅X₁₀+24⋅X₁₂+24⋅X₁₄+3⋅X₁₁+3⋅X₉+6 {O(n)}
t₆₀₈: 2 {O(1)}
t₆₀₉: 1 {O(1)}
t₆₁₀: 1 {O(1)}
t₆₁₁: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₆₁₂: X₁₁+X₉+1 {O(n)}
t₆₁₃: X₁₁+X₉+1 {O(n)}
t₃₈₈: 1 {O(1)}
t₃₈₉: 1 {O(1)}
t₃₉₀: 1 {O(1)}
t₃₉₁: 1 {O(1)}
t₃₉₂: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₉₃: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₃₉₄: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₃₉₅: 1 {O(1)}
t₃₉₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₃₉₇: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₃₉₈: X₁₁+X₉+1 {O(n)}
t₃₉₉: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₄₀₀: 1 {O(1)}
t₄₀₁: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₄₀₂: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}
t₄₀₃: X₁₁+X₉+1 {O(n)}
t₄₀₄: X₁₁+X₉+1 {O(n)}
t₄₀₅: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₄₀₆: 1 {O(1)}
t₄₀₇: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₀₈: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₀₉: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₄₁₀: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₁₁: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₄₁₂: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₄₁₃: X₁₁+X₉+1 {O(n)}
t₄₁₄: X₁₁+X₉ {O(n)}
t₄₁₅: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₁₆: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}
t₄₁₇: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₄₁₈: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₁₉: 1 {O(1)}
t₄₂₀: 1 {O(1)}
t₄₂₁: 1 {O(1)}
t₄₂₂: X₁₁+X₉+1 {O(n)}
t₄₂₃: X₁₁+X₉+1 {O(n)}
t₄₂₄: X₁₁+X₉ {O(n)}
t₄₂₅: 1 {O(1)}
t₅₁₇: 1 {O(1)}
t₅₉₃: 1 {O(1)}
t₄₂₆: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₅₁₈: 1 {O(1)}
t₅₉₄: 1 {O(1)}
t₄₂₇: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₄₂₈: 116⋅X₁₄+62⋅X₁₀+62⋅X₁₂+X₁₁+X₉+30 {O(n)}
t₅₂₀: 1 {O(1)}
t₅₉₆: 1 {O(1)}
t₄₂₉: X₁₁+X₉ {O(n)}
t₄₃₀: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₃₁: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}
t₅₂₃: 1 {O(1)}
t₅₉₉: 1 {O(1)}
t₄₃₂: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₅₂₄: 1 {O(1)}
t₆₀₀: 1 {O(1)}
t₄₃₃: 1 {O(1)}
t₅₂₅: 1 {O(1)}
t₆₀₁: 1 {O(1)}
t₄₃₄: X₁₁+X₉ {O(n)}
t₄₃₅: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₅₄: 1 {O(1)}
t₅₈₀: 1 {O(1)}
t₄₃₆: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₅₅: 1 {O(1)}
t₅₆₈: 1 {O(1)}
t₅₈₁: 1 {O(1)}
t₄₃₇: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₃₈: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₅₅₈: 1 {O(1)}
t₅₇₁: 1 {O(1)}
t₅₈₄: 1 {O(1)}
t₅₇₂: 1 {O(1)}
t₄₃₉: 8⋅X₁₀+8⋅X₁₂+8⋅X₁₄+X₁₁+X₉+2 {O(n)}
t₅₇₃: 1 {O(1)}
t₄₄₀: X₁₁+X₉+1 {O(n)}
t₅₆₂: 1 {O(1)}
t₅₇₅: 1 {O(1)}
t₅₈₈: 1 {O(1)}
t₄₄₁: 1 {O(1)}
t₅₆₃: 1 {O(1)}
t₅₈₉: 1 {O(1)}
t₄₄₂: 1 {O(1)}
t₅₆₄: 1 {O(1)}
t₅₇₇: 1 {O(1)}
t₅₉₀: 1 {O(1)}
t₄₄₃: X₁₁+X₉+1 {O(n)}
t₄₄₄: X₁₁+X₉+1 {O(n)}
t₄₅₆: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₅₇: 2⋅X₁₁+2⋅X₉ {O(n)}
t₄₅₈: X₁₁+X₉ {O(n)}
t₄₅₉: X₁₁+X₉+1 {O(n)}
t₄₆₀: X₁₁+X₉ {O(n)}
t₄₆₁: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₆₁₄: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₆₁₉: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₆₂: 2⋅X₁₁+2⋅X₉ {O(n)}
t₆₁₅: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+X₁₁+X₉+29 {O(n)}
t₆₂₀: 112⋅X₁₄+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₆₃: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₆₁₆: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₆₂₁: 108⋅X₁₄+54⋅X₁₀+54⋅X₁₂+28 {O(n)}
t₄₆₄: X₁₁+X₉ {O(n)}
t₆₁₇: X₁₁+X₉ {O(n)}
t₆₂₂: X₁₁+X₉ {O(n)}
t₄₆₅: 1 {O(1)}
t₆₁₈: 1 {O(1)}
t₆₂₃: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₀, X₁₂: X₁₂ {O(n)}
t₀, X₁₃: X₁₃ {O(n)}
t₀, X₁₄: X₁₄ {O(n)}
t₂₃, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₂₃, X₇: 3⋅X₇ {O(n)}
t₂₃, X₈: 3⋅X₈ {O(n)}
t₂₃, X₉: 3⋅X₉ {O(n)}
t₂₃, X₁₀: 3⋅X₁₀ {O(n)}
t₂₃, X₁₁: 3⋅X₁₁ {O(n)}
t₂₃, X₁₂: 3⋅X₁₂ {O(n)}
t₂₃, X₁₃: 3⋅X₁₃ {O(n)}
t₂₃, X₁₄: 3⋅X₁₄ {O(n)}
t₂₆, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₂₆, X₇: 3⋅X₇ {O(n)}
t₂₆, X₈: 3⋅X₈ {O(n)}
t₂₆, X₉: 3⋅X₉ {O(n)}
t₂₆, X₁₀: 3⋅X₁₀ {O(n)}
t₂₆, X₁₁: 3⋅X₁₁ {O(n)}
t₂₆, X₁₂: 3⋅X₁₂ {O(n)}
t₂₆, X₁₃: 3⋅X₁₃ {O(n)}
t₂₆, X₁₄: 3⋅X₁₄ {O(n)}
t₂₅, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₂₅, X₇: 3⋅X₇ {O(n)}
t₂₅, X₈: 3⋅X₈ {O(n)}
t₂₅, X₉: 3⋅X₉ {O(n)}
t₂₅, X₁₀: 3⋅X₁₀ {O(n)}
t₂₅, X₁₁: 3⋅X₁₁ {O(n)}
t₂₅, X₁₂: 3⋅X₁₂ {O(n)}
t₂₅, X₁₃: 3⋅X₁₃ {O(n)}
t₂₅, X₁₄: 3⋅X₁₄ {O(n)}
t₁, X₀: X₁₁ {O(n)}
t₁, X₁: X₁₂ {O(n)}
t₁, X₂: X₁₄ {O(n)}
t₁, X₃: X₁₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₁, X₁₂: X₁₂ {O(n)}
t₁, X₁₃: X₁₃ {O(n)}
t₁, X₁₄: X₁₄ {O(n)}
t₃₁, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₃₁, X₉: 3⋅X₉ {O(n)}
t₃₁, X₁₀: 3⋅X₁₀ {O(n)}
t₃₁, X₁₁: 3⋅X₁₁ {O(n)}
t₃₁, X₁₂: 3⋅X₁₂ {O(n)}
t₃₁, X₁₃: 3⋅X₁₃ {O(n)}
t₃₁, X₁₄: 3⋅X₁₄ {O(n)}
t₃₉, X₀: 12⋅X₉+30⋅X₁₁+12 {O(n)}
t₃₉, X₉: 18⋅X₉ {O(n)}
t₃₉, X₁₀: 18⋅X₁₀ {O(n)}
t₃₉, X₁₁: 18⋅X₁₁ {O(n)}
t₃₉, X₁₂: 18⋅X₁₂ {O(n)}
t₃₉, X₁₃: 18⋅X₁₃ {O(n)}
t₃₉, X₁₄: 18⋅X₁₄ {O(n)}
t₃₈, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₃₈, X₉: 3⋅X₉ {O(n)}
t₃₈, X₁₀: 3⋅X₁₀ {O(n)}
t₃₈, X₁₁: 3⋅X₁₁ {O(n)}
t₃₈, X₁₂: 3⋅X₁₂ {O(n)}
t₃₈, X₁₃: 3⋅X₁₃ {O(n)}
t₃₈, X₁₄: 3⋅X₁₄ {O(n)}
t₃₅, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₃₅, X₉: 3⋅X₉ {O(n)}
t₃₅, X₁₀: 3⋅X₁₀ {O(n)}
t₃₅, X₁₁: 3⋅X₁₁ {O(n)}
t₃₅, X₁₂: 3⋅X₁₂ {O(n)}
t₃₅, X₁₃: 3⋅X₁₃ {O(n)}
t₃₅, X₁₄: 3⋅X₁₄ {O(n)}
t₃₇, X₀: 2⋅X₉+5⋅X₁₁+2 {O(n)}
t₃₇, X₉: 3⋅X₉ {O(n)}
t₃₇, X₁₀: 3⋅X₁₀ {O(n)}
t₃₇, X₁₁: 3⋅X₁₁ {O(n)}
t₃₇, X₁₂: 3⋅X₁₂ {O(n)}
t₃₇, X₁₃: 3⋅X₁₃ {O(n)}
t₃₇, X₁₄: 3⋅X₁₄ {O(n)}
t₄₄₅, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₄₅, X₉: 57⋅X₉ {O(n)}
t₄₄₅, X₁₀: 57⋅X₁₀ {O(n)}
t₄₄₅, X₁₁: 57⋅X₁₁ {O(n)}
t₄₄₅, X₁₂: 57⋅X₁₂ {O(n)}
t₄₄₅, X₁₃: 57⋅X₁₃ {O(n)}
t₄₄₅, X₁₄: 57⋅X₁₄ {O(n)}
t₄₄₆, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₄₆, X₉: 57⋅X₉ {O(n)}
t₄₄₆, X₁₀: 57⋅X₁₀ {O(n)}
t₄₄₆, X₁₁: 57⋅X₁₁ {O(n)}
t₄₄₆, X₁₂: 57⋅X₁₂ {O(n)}
t₄₄₆, X₁₃: 57⋅X₁₃ {O(n)}
t₄₄₆, X₁₄: 57⋅X₁₄ {O(n)}
t₄₄₇, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₄₇, X₇: 3⋅X₇ {O(n)}
t₄₄₇, X₈: 3⋅X₈ {O(n)}
t₄₄₇, X₉: 3⋅X₉ {O(n)}
t₄₄₇, X₁₀: 3⋅X₁₀ {O(n)}
t₄₄₇, X₁₁: 3⋅X₁₁ {O(n)}
t₄₄₇, X₁₂: 3⋅X₁₂ {O(n)}
t₄₄₇, X₁₃: 3⋅X₁₃ {O(n)}
t₄₄₇, X₁₄: 3⋅X₁₄ {O(n)}
t₄₄₈, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₄₈, X₉: 57⋅X₉ {O(n)}
t₄₄₈, X₁₀: 57⋅X₁₀ {O(n)}
t₄₄₈, X₁₁: 57⋅X₁₁ {O(n)}
t₄₄₈, X₁₂: 57⋅X₁₂ {O(n)}
t₄₄₈, X₁₃: 57⋅X₁₃ {O(n)}
t₄₄₈, X₁₄: 57⋅X₁₄ {O(n)}
t₄₄₉, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₄₉, X₉: 57⋅X₉ {O(n)}
t₄₄₉, X₁₀: 57⋅X₁₀ {O(n)}
t₄₄₉, X₁₁: 57⋅X₁₁ {O(n)}
t₄₄₉, X₁₂: 57⋅X₁₂ {O(n)}
t₄₄₉, X₁₃: 57⋅X₁₃ {O(n)}
t₄₄₉, X₁₄: 57⋅X₁₄ {O(n)}
t₄₅₀, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₅₀, X₇: 3⋅X₇ {O(n)}
t₄₅₀, X₈: 3⋅X₈ {O(n)}
t₄₅₀, X₉: 3⋅X₉ {O(n)}
t₄₅₀, X₁₀: 3⋅X₁₀ {O(n)}
t₄₅₀, X₁₁: 3⋅X₁₁ {O(n)}
t₄₅₀, X₁₂: 3⋅X₁₂ {O(n)}
t₄₅₀, X₁₃: 3⋅X₁₃ {O(n)}
t₄₅₀, X₁₄: 3⋅X₁₄ {O(n)}
t₄₅₁, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₅₁, X₉: 57⋅X₉ {O(n)}
t₄₅₁, X₁₀: 57⋅X₁₀ {O(n)}
t₄₅₁, X₁₁: 57⋅X₁₁ {O(n)}
t₄₅₁, X₁₂: 57⋅X₁₂ {O(n)}
t₄₅₁, X₁₃: 57⋅X₁₃ {O(n)}
t₄₅₁, X₁₄: 57⋅X₁₄ {O(n)}
t₄₅₂, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₅₂, X₇: 3⋅X₇ {O(n)}
t₄₅₂, X₈: 3⋅X₈ {O(n)}
t₄₅₂, X₉: 3⋅X₉ {O(n)}
t₄₅₂, X₁₀: 3⋅X₁₀ {O(n)}
t₄₅₂, X₁₁: 3⋅X₁₁ {O(n)}
t₄₅₂, X₁₂: 3⋅X₁₂ {O(n)}
t₄₅₂, X₁₃: 3⋅X₁₃ {O(n)}
t₄₅₂, X₁₄: 3⋅X₁₄ {O(n)}
t₄₅₃, X₀: X₁₁ {O(n)}
t₄₅₃, X₁: X₁₂ {O(n)}
t₄₅₃, X₂: X₁₄ {O(n)}
t₄₅₃, X₃: X₁₃ {O(n)}
t₄₅₃, X₄: X₄ {O(n)}
t₄₅₃, X₅: X₅ {O(n)}
t₄₅₃, X₆: X₆ {O(n)}
t₄₅₃, X₇: X₇ {O(n)}
t₄₅₃, X₈: X₈ {O(n)}
t₄₅₃, X₉: X₉ {O(n)}
t₄₅₃, X₁₀: X₁₀ {O(n)}
t₄₅₃, X₁₁: X₁₁ {O(n)}
t₄₅₃, X₁₂: X₁₂ {O(n)}
t₄₅₃, X₁₃: X₁₃ {O(n)}
t₄₅₃, X₁₄: X₁₄ {O(n)}
t₄₅₄, X₀: X₁₁ {O(n)}
t₄₅₄, X₁: X₁₂ {O(n)}
t₄₅₄, X₂: X₁₄ {O(n)}
t₄₅₄, X₃: X₁₃ {O(n)}
t₄₅₄, X₄: X₄ {O(n)}
t₄₅₄, X₅: X₅ {O(n)}
t₄₅₄, X₆: X₆ {O(n)}
t₄₅₄, X₇: X₇ {O(n)}
t₄₅₄, X₈: X₈ {O(n)}
t₄₅₄, X₉: X₉ {O(n)}
t₄₅₄, X₁₀: X₁₀ {O(n)}
t₄₅₄, X₁₁: X₁₁ {O(n)}
t₄₅₄, X₁₂: X₁₂ {O(n)}
t₄₅₄, X₁₃: X₁₃ {O(n)}
t₄₅₄, X₁₄: X₁₄ {O(n)}
t₄₅₅, X₀: X₁₁ {O(n)}
t₄₅₅, X₁: X₁₂ {O(n)}
t₄₅₅, X₂: X₁₄ {O(n)}
t₄₅₅, X₃: X₁₃ {O(n)}
t₄₅₅, X₄: X₄ {O(n)}
t₄₅₅, X₅: X₅ {O(n)}
t₄₅₅, X₆: X₆ {O(n)}
t₄₅₅, X₇: X₇ {O(n)}
t₄₅₅, X₈: X₈ {O(n)}
t₄₅₅, X₉: X₉ {O(n)}
t₄₅₅, X₁₀: X₁₀ {O(n)}
t₄₅₅, X₁₁: X₁₁ {O(n)}
t₄₅₅, X₁₂: X₁₂ {O(n)}
t₄₅₅, X₁₃: X₁₃ {O(n)}
t₄₅₅, X₁₄: X₁₄ {O(n)}
t₃₅₃, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₅₃, X₇: 3⋅X₇ {O(n)}
t₃₅₃, X₈: 3⋅X₈ {O(n)}
t₃₅₃, X₉: 3⋅X₉ {O(n)}
t₃₅₃, X₁₀: 3⋅X₁₀ {O(n)}
t₃₅₃, X₁₁: 3⋅X₁₁ {O(n)}
t₃₅₃, X₁₂: 3⋅X₁₂ {O(n)}
t₃₅₃, X₁₃: 3⋅X₁₃ {O(n)}
t₃₅₃, X₁₄: 3⋅X₁₄ {O(n)}
t₃₅₄, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₅₄, X₄: 0 {O(1)}
t₃₅₄, X₇: 3⋅X₇ {O(n)}
t₃₅₄, X₈: 3⋅X₈ {O(n)}
t₃₅₄, X₉: 3⋅X₉ {O(n)}
t₃₅₄, X₁₀: 3⋅X₁₀ {O(n)}
t₃₅₄, X₁₁: 3⋅X₁₁ {O(n)}
t₃₅₄, X₁₂: 3⋅X₁₂ {O(n)}
t₃₅₄, X₁₃: 3⋅X₁₃ {O(n)}
t₃₅₄, X₁₄: 3⋅X₁₄ {O(n)}
t₃₅₅, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₅₅, X₇: 3⋅X₇ {O(n)}
t₃₅₅, X₈: 3⋅X₈ {O(n)}
t₃₅₅, X₉: 3⋅X₉ {O(n)}
t₃₅₅, X₁₀: 3⋅X₁₀ {O(n)}
t₃₅₅, X₁₁: 3⋅X₁₁ {O(n)}
t₃₅₅, X₁₂: 3⋅X₁₂ {O(n)}
t₃₅₅, X₁₃: 3⋅X₁₃ {O(n)}
t₃₅₅, X₁₄: 3⋅X₁₄ {O(n)}
t₃₅₆, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₅₆, X₇: 3⋅X₇ {O(n)}
t₃₅₆, X₈: 3⋅X₈ {O(n)}
t₃₅₆, X₉: 3⋅X₉ {O(n)}
t₃₅₆, X₁₀: 3⋅X₁₀ {O(n)}
t₃₅₆, X₁₁: 3⋅X₁₁ {O(n)}
t₃₅₆, X₁₂: 3⋅X₁₂ {O(n)}
t₃₅₆, X₁₃: 3⋅X₁₃ {O(n)}
t₃₅₆, X₁₄: 3⋅X₁₄ {O(n)}
t₃₅₇, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₅₇, X₄: 0 {O(1)}
t₃₅₇, X₇: 3⋅X₇ {O(n)}
t₃₅₇, X₈: 3⋅X₈ {O(n)}
t₃₅₇, X₉: 3⋅X₉ {O(n)}
t₃₅₇, X₁₀: 3⋅X₁₀ {O(n)}
t₃₅₇, X₁₁: 3⋅X₁₁ {O(n)}
t₃₅₇, X₁₂: 3⋅X₁₂ {O(n)}
t₃₅₇, X₁₃: 3⋅X₁₃ {O(n)}
t₃₅₇, X₁₄: 3⋅X₁₄ {O(n)}
t₃₅₈, X₀: X₁₁ {O(n)}
t₃₅₈, X₁: X₁₂ {O(n)}
t₃₅₈, X₂: X₁₄ {O(n)}
t₃₅₈, X₃: X₁₃ {O(n)}
t₃₅₈, X₄: X₄ {O(n)}
t₃₅₈, X₅: X₅ {O(n)}
t₃₅₈, X₆: X₆ {O(n)}
t₃₅₈, X₇: X₇ {O(n)}
t₃₅₈, X₈: X₈ {O(n)}
t₃₅₈, X₉: X₉ {O(n)}
t₃₅₈, X₁₀: X₁₀ {O(n)}
t₃₅₈, X₁₁: X₁₁ {O(n)}
t₃₅₈, X₁₂: X₁₂ {O(n)}
t₃₅₈, X₁₃: X₁₃ {O(n)}
t₃₅₈, X₁₄: X₁₄ {O(n)}
t₃₅₉, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₅₉, X₇: 3⋅X₇ {O(n)}
t₃₅₉, X₈: 3⋅X₈ {O(n)}
t₃₅₉, X₉: 3⋅X₉ {O(n)}
t₃₅₉, X₁₀: 3⋅X₁₀ {O(n)}
t₃₅₉, X₁₁: 3⋅X₁₁ {O(n)}
t₃₅₉, X₁₂: 3⋅X₁₂ {O(n)}
t₃₅₉, X₁₃: 3⋅X₁₃ {O(n)}
t₃₅₉, X₁₄: 3⋅X₁₄ {O(n)}
t₃₆₀, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₆₀, X₇: 3⋅X₇ {O(n)}
t₃₆₀, X₈: 3⋅X₈ {O(n)}
t₃₆₀, X₉: 3⋅X₉ {O(n)}
t₃₆₀, X₁₀: 3⋅X₁₀ {O(n)}
t₃₆₀, X₁₁: 3⋅X₁₁ {O(n)}
t₃₆₀, X₁₂: 3⋅X₁₂ {O(n)}
t₃₆₀, X₁₃: 3⋅X₁₃ {O(n)}
t₃₆₀, X₁₄: 3⋅X₁₄ {O(n)}
t₃₆₁, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₆₁, X₇: 3⋅X₇ {O(n)}
t₃₆₁, X₈: 3⋅X₈ {O(n)}
t₃₆₁, X₉: 3⋅X₉ {O(n)}
t₃₆₁, X₁₀: 3⋅X₁₀ {O(n)}
t₃₆₁, X₁₁: 3⋅X₁₁ {O(n)}
t₃₆₁, X₁₂: 3⋅X₁₂ {O(n)}
t₃₆₁, X₁₃: 3⋅X₁₃ {O(n)}
t₃₆₁, X₁₄: 3⋅X₁₄ {O(n)}
t₃₆₂, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₆₂, X₇: 3⋅X₇ {O(n)}
t₃₆₂, X₈: 3⋅X₈ {O(n)}
t₃₆₂, X₉: 3⋅X₉ {O(n)}
t₃₆₂, X₁₀: 3⋅X₁₀ {O(n)}
t₃₆₂, X₁₁: 3⋅X₁₁ {O(n)}
t₃₆₂, X₁₂: 3⋅X₁₂ {O(n)}
t₃₆₂, X₁₃: 3⋅X₁₃ {O(n)}
t₃₆₂, X₁₄: 3⋅X₁₄ {O(n)}
t₃₆₃, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₆₃, X₇: 3⋅X₇ {O(n)}
t₃₆₃, X₈: 3⋅X₈ {O(n)}
t₃₆₃, X₉: 3⋅X₉ {O(n)}
t₃₆₃, X₁₀: 3⋅X₁₀ {O(n)}
t₃₆₃, X₁₁: 3⋅X₁₁ {O(n)}
t₃₆₃, X₁₂: 3⋅X₁₂ {O(n)}
t₃₆₃, X₁₃: 3⋅X₁₃ {O(n)}
t₃₆₃, X₁₄: 3⋅X₁₄ {O(n)}
t₃₆₄, X₀: X₁₁ {O(n)}
t₃₆₄, X₁: X₁₂ {O(n)}
t₃₆₄, X₂: X₁₄ {O(n)}
t₃₆₄, X₃: X₁₃ {O(n)}
t₃₆₄, X₅: X₅ {O(n)}
t₃₆₄, X₆: X₆ {O(n)}
t₃₆₄, X₇: X₇ {O(n)}
t₃₆₄, X₈: X₈ {O(n)}
t₃₆₄, X₉: X₉ {O(n)}
t₃₆₄, X₁₀: X₁₀ {O(n)}
t₃₆₄, X₁₁: X₁₁ {O(n)}
t₃₆₄, X₁₂: X₁₂ {O(n)}
t₃₆₄, X₁₃: X₁₃ {O(n)}
t₃₆₄, X₁₄: X₁₄ {O(n)}
t₃₆₅, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₃₆₅, X₄: 0 {O(1)}
t₃₆₅, X₇: 3⋅X₇ {O(n)}
t₃₆₅, X₈: 3⋅X₈ {O(n)}
t₃₆₅, X₉: 3⋅X₉ {O(n)}
t₃₆₅, X₁₀: 3⋅X₁₀ {O(n)}
t₃₆₅, X₁₁: 3⋅X₁₁ {O(n)}
t₃₆₅, X₁₂: 3⋅X₁₂ {O(n)}
t₃₆₅, X₁₃: 3⋅X₁₃ {O(n)}
t₃₆₅, X₁₄: 3⋅X₁₄ {O(n)}
t₃₆₆, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₆₆, X₄: 0 {O(1)}
t₃₆₆, X₇: 3⋅X₇ {O(n)}
t₃₆₆, X₈: 3⋅X₈ {O(n)}
t₃₆₆, X₉: 3⋅X₉ {O(n)}
t₃₆₆, X₁₀: 3⋅X₁₀ {O(n)}
t₃₆₆, X₁₁: 3⋅X₁₁ {O(n)}
t₃₆₆, X₁₂: 3⋅X₁₂ {O(n)}
t₃₆₆, X₁₃: 3⋅X₁₃ {O(n)}
t₃₆₆, X₁₄: 3⋅X₁₄ {O(n)}
t₃₆₇, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₆₇, X₄: 0 {O(1)}
t₃₆₇, X₇: 3⋅X₇ {O(n)}
t₃₆₇, X₈: 3⋅X₈ {O(n)}
t₃₆₇, X₉: 3⋅X₉ {O(n)}
t₃₆₇, X₁₀: 3⋅X₁₀ {O(n)}
t₃₆₇, X₁₁: 3⋅X₁₁ {O(n)}
t₃₆₇, X₁₂: 3⋅X₁₂ {O(n)}
t₃₆₇, X₁₃: 3⋅X₁₃ {O(n)}
t₃₆₇, X₁₄: 3⋅X₁₄ {O(n)}
t₃₆₈, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₆₈, X₄: 0 {O(1)}
t₃₆₈, X₇: 3⋅X₇ {O(n)}
t₃₆₈, X₈: 3⋅X₈ {O(n)}
t₃₆₈, X₉: 3⋅X₉ {O(n)}
t₃₆₈, X₁₀: 3⋅X₁₀ {O(n)}
t₃₆₈, X₁₁: 3⋅X₁₁ {O(n)}
t₃₆₈, X₁₂: 3⋅X₁₂ {O(n)}
t₃₆₈, X₁₃: 3⋅X₁₃ {O(n)}
t₃₆₈, X₁₄: 3⋅X₁₄ {O(n)}
t₃₆₉, X₀: X₁₁+1 {O(n)}
t₃₆₉, X₁: X₁₂ {O(n)}
t₃₆₉, X₂: X₁₄ {O(n)}
t₃₆₉, X₃: X₁₃ {O(n)}
t₃₆₉, X₄: 0 {O(1)}
t₃₆₉, X₅: X₅ {O(n)}
t₃₆₉, X₆: X₆ {O(n)}
t₃₆₉, X₇: X₇ {O(n)}
t₃₆₉, X₈: X₈ {O(n)}
t₃₆₉, X₉: X₉ {O(n)}
t₃₆₉, X₁₀: X₁₀ {O(n)}
t₃₆₉, X₁₁: X₁₁ {O(n)}
t₃₆₉, X₁₂: X₁₂ {O(n)}
t₃₆₉, X₁₃: X₁₃ {O(n)}
t₃₆₉, X₁₄: X₁₄ {O(n)}
t₅₂₇, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₂₇, X₉: 57⋅X₉ {O(n)}
t₅₂₇, X₁₀: 57⋅X₁₀ {O(n)}
t₅₂₇, X₁₁: 57⋅X₁₁ {O(n)}
t₅₂₇, X₁₂: 57⋅X₁₂ {O(n)}
t₅₂₇, X₁₃: 57⋅X₁₃ {O(n)}
t₅₂₇, X₁₄: 57⋅X₁₄ {O(n)}
t₃₇₀, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₃₇₀, X₄: 0 {O(1)}
t₃₇₀, X₇: 3⋅X₇ {O(n)}
t₃₇₀, X₈: 3⋅X₈ {O(n)}
t₃₇₀, X₉: 3⋅X₉ {O(n)}
t₃₇₀, X₁₀: 3⋅X₁₀ {O(n)}
t₃₇₀, X₁₁: 3⋅X₁₁ {O(n)}
t₃₇₀, X₁₂: 3⋅X₁₂ {O(n)}
t₃₇₀, X₁₃: 3⋅X₁₃ {O(n)}
t₃₇₀, X₁₄: 3⋅X₁₄ {O(n)}
t₃₇₁, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₃₇₁, X₄: 0 {O(1)}
t₃₇₁, X₇: 3⋅X₇ {O(n)}
t₃₇₁, X₈: 3⋅X₈ {O(n)}
t₃₇₁, X₉: 3⋅X₉ {O(n)}
t₃₇₁, X₁₀: 3⋅X₁₀ {O(n)}
t₃₇₁, X₁₁: 3⋅X₁₁ {O(n)}
t₃₇₁, X₁₂: 3⋅X₁₂ {O(n)}
t₃₇₁, X₁₃: 3⋅X₁₃ {O(n)}
t₃₇₁, X₁₄: 3⋅X₁₄ {O(n)}
t₃₇₂, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₃₇₂, X₄: 0 {O(1)}
t₃₇₂, X₇: 3⋅X₇ {O(n)}
t₃₇₂, X₈: 3⋅X₈ {O(n)}
t₃₇₂, X₉: 3⋅X₉ {O(n)}
t₃₇₂, X₁₀: 3⋅X₁₀ {O(n)}
t₃₇₂, X₁₁: 3⋅X₁₁ {O(n)}
t₃₇₂, X₁₂: 3⋅X₁₂ {O(n)}
t₃₇₂, X₁₃: 3⋅X₁₃ {O(n)}
t₃₇₂, X₁₄: 3⋅X₁₄ {O(n)}
t₃₇₃, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₃₇₃, X₄: 0 {O(1)}
t₃₇₃, X₇: 3⋅X₇ {O(n)}
t₃₇₃, X₈: 3⋅X₈ {O(n)}
t₃₇₃, X₉: 3⋅X₉ {O(n)}
t₃₇₃, X₁₀: 3⋅X₁₀ {O(n)}
t₃₇₃, X₁₁: 3⋅X₁₁ {O(n)}
t₃₇₃, X₁₂: 3⋅X₁₂ {O(n)}
t₃₇₃, X₁₃: 3⋅X₁₃ {O(n)}
t₃₇₃, X₁₄: 3⋅X₁₄ {O(n)}
t₅₃₀, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₃₀, X₉: 57⋅X₉ {O(n)}
t₅₃₀, X₁₀: 57⋅X₁₀ {O(n)}
t₅₃₀, X₁₁: 57⋅X₁₁ {O(n)}
t₅₃₀, X₁₂: 57⋅X₁₂ {O(n)}
t₅₃₀, X₁₃: 57⋅X₁₃ {O(n)}
t₅₃₀, X₁₄: 57⋅X₁₄ {O(n)}
t₃₇₄, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₃₇₄, X₉: 57⋅X₉ {O(n)}
t₃₇₄, X₁₀: 57⋅X₁₀ {O(n)}
t₃₇₄, X₁₁: 57⋅X₁₁ {O(n)}
t₃₇₄, X₁₂: 57⋅X₁₂ {O(n)}
t₃₇₄, X₁₃: 57⋅X₁₃ {O(n)}
t₃₇₄, X₁₄: 57⋅X₁₄ {O(n)}
t₃₇₅, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₇₅, X₄: 0 {O(1)}
t₃₇₅, X₇: 3⋅X₇ {O(n)}
t₃₇₅, X₈: 3⋅X₈ {O(n)}
t₃₇₅, X₉: 3⋅X₉ {O(n)}
t₃₇₅, X₁₀: 3⋅X₁₀ {O(n)}
t₃₇₅, X₁₁: 3⋅X₁₁ {O(n)}
t₃₇₅, X₁₂: 3⋅X₁₂ {O(n)}
t₃₇₅, X₁₃: 3⋅X₁₃ {O(n)}
t₃₇₅, X₁₄: 3⋅X₁₄ {O(n)}
t₃₇₆, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₃₇₆, X₉: 57⋅X₉ {O(n)}
t₃₇₆, X₁₀: 57⋅X₁₀ {O(n)}
t₃₇₆, X₁₁: 57⋅X₁₁ {O(n)}
t₃₇₆, X₁₂: 57⋅X₁₂ {O(n)}
t₃₇₆, X₁₃: 57⋅X₁₃ {O(n)}
t₃₇₆, X₁₄: 57⋅X₁₄ {O(n)}
t₃₇₇, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₃₇₇, X₉: 57⋅X₉ {O(n)}
t₃₇₇, X₁₀: 57⋅X₁₀ {O(n)}
t₃₇₇, X₁₁: 57⋅X₁₁ {O(n)}
t₃₇₇, X₁₂: 57⋅X₁₂ {O(n)}
t₃₇₇, X₁₃: 57⋅X₁₃ {O(n)}
t₃₇₇, X₁₄: 57⋅X₁₄ {O(n)}
t₅₃₄, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₃₄, X₉: 57⋅X₉ {O(n)}
t₅₃₄, X₁₀: 57⋅X₁₀ {O(n)}
t₅₃₄, X₁₁: 57⋅X₁₁ {O(n)}
t₅₃₄, X₁₂: 57⋅X₁₂ {O(n)}
t₅₃₄, X₁₃: 57⋅X₁₃ {O(n)}
t₅₃₄, X₁₄: 57⋅X₁₄ {O(n)}
t₅₃₅, X₀: X₁₁ {O(n)}
t₅₃₅, X₁: X₁₂ {O(n)}
t₅₃₅, X₂: X₁₄ {O(n)}
t₅₃₅, X₃: X₁₃ {O(n)}
t₅₃₅, X₄: X₄ {O(n)}
t₅₃₅, X₅: X₅ {O(n)}
t₅₃₅, X₆: X₆ {O(n)}
t₅₃₅, X₇: X₇ {O(n)}
t₅₃₅, X₈: X₈ {O(n)}
t₅₃₅, X₉: X₉ {O(n)}
t₅₃₅, X₁₀: X₁₀ {O(n)}
t₅₃₅, X₁₁: X₁₁ {O(n)}
t₅₃₅, X₁₂: X₁₂ {O(n)}
t₅₃₅, X₁₃: X₁₃ {O(n)}
t₅₃₅, X₁₄: X₁₄ {O(n)}
t₃₇₈, X₀: X₁₁ {O(n)}
t₃₇₈, X₁: X₁₂ {O(n)}
t₃₇₈, X₂: X₁₄ {O(n)}
t₃₇₈, X₃: X₁₃ {O(n)}
t₃₇₈, X₄: X₄ {O(n)}
t₃₇₈, X₅: X₅ {O(n)}
t₃₇₈, X₆: X₆ {O(n)}
t₃₇₈, X₇: X₇ {O(n)}
t₃₇₈, X₈: X₈ {O(n)}
t₃₇₈, X₉: X₉ {O(n)}
t₃₇₈, X₁₀: X₁₀ {O(n)}
t₃₇₈, X₁₁: X₁₁ {O(n)}
t₃₇₈, X₁₂: X₁₂ {O(n)}
t₃₇₈, X₁₃: X₁₃ {O(n)}
t₃₇₈, X₁₄: X₁₄ {O(n)}
t₃₇₉, X₀: X₁₁ {O(n)}
t₃₇₉, X₁: X₁₂ {O(n)}
t₃₇₉, X₂: X₁₄ {O(n)}
t₃₇₉, X₃: X₁₃ {O(n)}
t₃₇₉, X₄: X₄ {O(n)}
t₃₇₉, X₅: X₅ {O(n)}
t₃₇₉, X₆: X₆ {O(n)}
t₃₇₉, X₇: X₇ {O(n)}
t₃₇₉, X₈: X₈ {O(n)}
t₃₇₉, X₉: X₉ {O(n)}
t₃₇₉, X₁₀: X₁₀ {O(n)}
t₃₇₉, X₁₁: X₁₁ {O(n)}
t₃₇₉, X₁₂: X₁₂ {O(n)}
t₃₇₉, X₁₃: X₁₃ {O(n)}
t₃₇₉, X₁₄: X₁₄ {O(n)}
t₃₈₀, X₀: X₁₁ {O(n)}
t₃₈₀, X₁: X₁₂ {O(n)}
t₃₈₀, X₂: X₁₄ {O(n)}
t₃₈₀, X₃: X₁₃ {O(n)}
t₃₈₀, X₄: X₄ {O(n)}
t₃₈₀, X₅: X₅ {O(n)}
t₃₈₀, X₆: X₆ {O(n)}
t₃₈₀, X₇: X₇ {O(n)}
t₃₈₀, X₈: X₈ {O(n)}
t₃₈₀, X₉: X₉ {O(n)}
t₃₈₀, X₁₀: X₁₀ {O(n)}
t₃₈₀, X₁₁: X₁₁ {O(n)}
t₃₈₀, X₁₂: X₁₂ {O(n)}
t₃₈₀, X₁₃: X₁₃ {O(n)}
t₃₈₀, X₁₄: X₁₄ {O(n)}
t₃₈₁, X₀: X₁₁ {O(n)}
t₃₈₁, X₁: X₁₂ {O(n)}
t₃₈₁, X₂: X₁₄ {O(n)}
t₃₈₁, X₃: X₁₃ {O(n)}
t₃₈₁, X₄: X₄ {O(n)}
t₃₈₁, X₅: X₅ {O(n)}
t₃₈₁, X₆: X₆ {O(n)}
t₃₈₁, X₇: X₇ {O(n)}
t₃₈₁, X₈: X₈ {O(n)}
t₃₈₁, X₉: X₉ {O(n)}
t₃₈₁, X₁₀: X₁₀ {O(n)}
t₃₈₁, X₁₁: X₁₁ {O(n)}
t₃₈₁, X₁₂: X₁₂ {O(n)}
t₃₈₁, X₁₃: X₁₃ {O(n)}
t₃₈₁, X₁₄: X₁₄ {O(n)}
t₃₈₂, X₀: 108⋅X₁₀+108⋅X₁₂+11⋅X₁₁+216⋅X₁₄+4⋅X₉+61 {O(n)}
t₃₈₂, X₄: 0 {O(1)}
t₃₈₂, X₇: 7⋅X₇ {O(n)}
t₃₈₂, X₈: 7⋅X₈ {O(n)}
t₃₈₂, X₉: 7⋅X₉ {O(n)}
t₃₈₂, X₁₀: 7⋅X₁₀ {O(n)}
t₃₈₂, X₁₁: 7⋅X₁₁ {O(n)}
t₃₈₂, X₁₂: 7⋅X₁₂ {O(n)}
t₃₈₂, X₁₃: 7⋅X₁₃ {O(n)}
t₃₈₂, X₁₄: 7⋅X₁₄ {O(n)}
t₃₈₃, X₀: 108⋅X₁₀+108⋅X₁₂+11⋅X₁₁+216⋅X₁₄+4⋅X₉+61 {O(n)}
t₃₈₃, X₄: 0 {O(1)}
t₃₈₃, X₇: 7⋅X₇ {O(n)}
t₃₈₃, X₈: 7⋅X₈ {O(n)}
t₃₈₃, X₉: 7⋅X₉ {O(n)}
t₃₈₃, X₁₀: 7⋅X₁₀ {O(n)}
t₃₈₃, X₁₁: 7⋅X₁₁ {O(n)}
t₃₈₃, X₁₂: 7⋅X₁₂ {O(n)}
t₃₈₃, X₁₃: 7⋅X₁₃ {O(n)}
t₃₈₃, X₁₄: 7⋅X₁₄ {O(n)}
t₃₈₄, X₀: 108⋅X₁₀+108⋅X₁₂+11⋅X₁₁+216⋅X₁₄+4⋅X₉+61 {O(n)}
t₃₈₄, X₄: 0 {O(1)}
t₃₈₄, X₇: 7⋅X₇ {O(n)}
t₃₈₄, X₈: 7⋅X₈ {O(n)}
t₃₈₄, X₉: 7⋅X₉ {O(n)}
t₃₈₄, X₁₀: 7⋅X₁₀ {O(n)}
t₃₈₄, X₁₁: 7⋅X₁₁ {O(n)}
t₃₈₄, X₁₂: 7⋅X₁₂ {O(n)}
t₃₈₄, X₁₃: 7⋅X₁₃ {O(n)}
t₃₈₄, X₁₄: 7⋅X₁₄ {O(n)}
t₃₈₅, X₀: 108⋅X₁₀+108⋅X₁₂+11⋅X₁₁+216⋅X₁₄+4⋅X₉+61 {O(n)}
t₃₈₅, X₄: 0 {O(1)}
t₃₈₅, X₇: 7⋅X₇ {O(n)}
t₃₈₅, X₈: 7⋅X₈ {O(n)}
t₃₈₅, X₉: 7⋅X₉ {O(n)}
t₃₈₅, X₁₀: 7⋅X₁₀ {O(n)}
t₃₈₅, X₁₁: 7⋅X₁₁ {O(n)}
t₃₈₅, X₁₂: 7⋅X₁₂ {O(n)}
t₃₈₅, X₁₃: 7⋅X₁₃ {O(n)}
t₃₈₅, X₁₄: 7⋅X₁₄ {O(n)}
t₃₈₆, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₃₈₆, X₉: 57⋅X₉ {O(n)}
t₃₈₆, X₁₀: 57⋅X₁₀ {O(n)}
t₃₈₆, X₁₁: 57⋅X₁₁ {O(n)}
t₃₈₆, X₁₂: 57⋅X₁₂ {O(n)}
t₃₈₆, X₁₃: 57⋅X₁₃ {O(n)}
t₃₈₆, X₁₄: 57⋅X₁₄ {O(n)}
t₃₈₇, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₃₈₇, X₉: 57⋅X₉ {O(n)}
t₃₈₇, X₁₀: 57⋅X₁₀ {O(n)}
t₃₈₇, X₁₁: 57⋅X₁₁ {O(n)}
t₃₈₇, X₁₂: 57⋅X₁₂ {O(n)}
t₃₈₇, X₁₃: 57⋅X₁₃ {O(n)}
t₃₈₇, X₁₄: 57⋅X₁₄ {O(n)}
t₆₀₃, X₀: 15⋅X₁₁+162⋅X₁₀+162⋅X₁₂+324⋅X₁₄+6⋅X₉+93 {O(n)}
t₆₀₃, X₄: 0 {O(1)}
t₆₀₃, X₇: 9⋅X₇ {O(n)}
t₆₀₃, X₈: 9⋅X₈ {O(n)}
t₆₀₃, X₉: 9⋅X₉ {O(n)}
t₆₀₃, X₁₀: 9⋅X₁₀ {O(n)}
t₆₀₃, X₁₁: 9⋅X₁₁ {O(n)}
t₆₀₃, X₁₂: 9⋅X₁₂ {O(n)}
t₆₀₃, X₁₃: 9⋅X₁₃ {O(n)}
t₆₀₃, X₁₄: 9⋅X₁₄ {O(n)}
t₆₀₄, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₆₀₄, X₄: 0 {O(1)}
t₆₀₄, X₇: 3⋅X₇ {O(n)}
t₆₀₄, X₈: 3⋅X₈ {O(n)}
t₆₀₄, X₉: 3⋅X₉ {O(n)}
t₆₀₄, X₁₀: 3⋅X₁₀ {O(n)}
t₆₀₄, X₁₁: 3⋅X₁₁ {O(n)}
t₆₀₄, X₁₂: 3⋅X₁₂ {O(n)}
t₆₀₄, X₁₃: 3⋅X₁₃ {O(n)}
t₆₀₄, X₁₄: 3⋅X₁₄ {O(n)}
t₆₀₅, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₆₀₅, X₉: 57⋅X₉ {O(n)}
t₆₀₅, X₁₀: 57⋅X₁₀ {O(n)}
t₆₀₅, X₁₁: 57⋅X₁₁ {O(n)}
t₆₀₅, X₁₂: 57⋅X₁₂ {O(n)}
t₆₀₅, X₁₃: 57⋅X₁₃ {O(n)}
t₆₀₅, X₁₄: 57⋅X₁₄ {O(n)}
t₆₀₆, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₆₀₆, X₄: 0 {O(1)}
t₆₀₆, X₇: 3⋅X₇ {O(n)}
t₆₀₆, X₈: 3⋅X₈ {O(n)}
t₆₀₆, X₉: 3⋅X₉ {O(n)}
t₆₀₆, X₁₀: 3⋅X₁₀ {O(n)}
t₆₀₆, X₁₁: 3⋅X₁₁ {O(n)}
t₆₀₆, X₁₂: 3⋅X₁₂ {O(n)}
t₆₀₆, X₁₃: 3⋅X₁₃ {O(n)}
t₆₀₆, X₁₄: 3⋅X₁₄ {O(n)}
t₆₀₇, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₆₀₇, X₉: 57⋅X₉ {O(n)}
t₆₀₇, X₁₀: 57⋅X₁₀ {O(n)}
t₆₀₇, X₁₁: 57⋅X₁₁ {O(n)}
t₆₀₇, X₁₂: 57⋅X₁₂ {O(n)}
t₆₀₇, X₁₃: 57⋅X₁₃ {O(n)}
t₆₀₇, X₁₄: 57⋅X₁₄ {O(n)}
t₆₀₈, X₀: 2⋅X₁₁ {O(n)}
t₆₀₈, X₁: 2⋅X₁₂ {O(n)}
t₆₀₈, X₂: 2⋅X₁₄ {O(n)}
t₆₀₈, X₃: 2⋅X₁₃ {O(n)}
t₆₀₈, X₄: 2⋅X₄ {O(n)}
t₆₀₈, X₅: 2⋅X₅ {O(n)}
t₆₀₈, X₆: 2⋅X₆ {O(n)}
t₆₀₈, X₇: 2⋅X₇ {O(n)}
t₆₀₈, X₈: 2⋅X₈ {O(n)}
t₆₀₈, X₉: 2⋅X₉ {O(n)}
t₆₀₈, X₁₀: 2⋅X₁₀ {O(n)}
t₆₀₈, X₁₁: 2⋅X₁₁ {O(n)}
t₆₀₈, X₁₂: 2⋅X₁₂ {O(n)}
t₆₀₈, X₁₃: 2⋅X₁₃ {O(n)}
t₆₀₈, X₁₄: 2⋅X₁₄ {O(n)}
t₆₀₉, X₀: X₁₁ {O(n)}
t₆₀₉, X₁: X₁₂ {O(n)}
t₆₀₉, X₂: X₁₄ {O(n)}
t₆₀₉, X₃: X₁₃ {O(n)}
t₆₀₉, X₄: X₄ {O(n)}
t₆₀₉, X₅: X₅ {O(n)}
t₆₀₉, X₆: X₆ {O(n)}
t₆₀₉, X₇: X₇ {O(n)}
t₆₀₉, X₈: X₈ {O(n)}
t₆₀₉, X₉: X₉ {O(n)}
t₆₀₉, X₁₀: X₁₀ {O(n)}
t₆₀₉, X₁₁: X₁₁ {O(n)}
t₆₀₉, X₁₂: X₁₂ {O(n)}
t₆₀₉, X₁₃: X₁₃ {O(n)}
t₆₀₉, X₁₄: X₁₄ {O(n)}
t₆₁₀, X₀: X₁₁ {O(n)}
t₆₁₀, X₁: X₁₂ {O(n)}
t₆₁₀, X₂: X₁₄ {O(n)}
t₆₁₀, X₃: X₁₃ {O(n)}
t₆₁₀, X₄: X₄ {O(n)}
t₆₁₀, X₅: X₅ {O(n)}
t₆₁₀, X₆: X₆ {O(n)}
t₆₁₀, X₇: X₇ {O(n)}
t₆₁₀, X₈: X₈ {O(n)}
t₆₁₀, X₉: X₉ {O(n)}
t₆₁₀, X₁₀: X₁₀ {O(n)}
t₆₁₀, X₁₁: X₁₁ {O(n)}
t₆₁₀, X₁₂: X₁₂ {O(n)}
t₆₁₀, X₁₃: X₁₃ {O(n)}
t₆₁₀, X₁₄: X₁₄ {O(n)}
t₆₁₁, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₆₁₁, X₉: 57⋅X₉ {O(n)}
t₆₁₁, X₁₀: 57⋅X₁₀ {O(n)}
t₆₁₁, X₁₁: 57⋅X₁₁ {O(n)}
t₆₁₁, X₁₂: 57⋅X₁₂ {O(n)}
t₆₁₁, X₁₃: 57⋅X₁₃ {O(n)}
t₆₁₁, X₁₄: 57⋅X₁₄ {O(n)}
t₆₁₂, X₀: 12⋅X₉+324⋅X₁₀+324⋅X₁₂+33⋅X₁₁+648⋅X₁₄+183 {O(n)}
t₆₁₂, X₄: 0 {O(1)}
t₆₁₂, X₇: 21⋅X₇ {O(n)}
t₆₁₂, X₈: 21⋅X₈ {O(n)}
t₆₁₂, X₉: 21⋅X₉ {O(n)}
t₆₁₂, X₁₀: 21⋅X₁₀ {O(n)}
t₆₁₂, X₁₁: 21⋅X₁₁ {O(n)}
t₆₁₂, X₁₂: 21⋅X₁₂ {O(n)}
t₆₁₂, X₁₃: 21⋅X₁₃ {O(n)}
t₆₁₂, X₁₄: 21⋅X₁₄ {O(n)}
t₆₁₃, X₀: 108⋅X₁₀+108⋅X₁₂+11⋅X₁₁+216⋅X₁₄+4⋅X₉+61 {O(n)}
t₆₁₃, X₄: 0 {O(1)}
t₆₁₃, X₇: 7⋅X₇ {O(n)}
t₆₁₃, X₈: 7⋅X₈ {O(n)}
t₆₁₃, X₉: 7⋅X₉ {O(n)}
t₆₁₃, X₁₀: 7⋅X₁₀ {O(n)}
t₆₁₃, X₁₁: 7⋅X₁₁ {O(n)}
t₆₁₃, X₁₂: 7⋅X₁₂ {O(n)}
t₆₁₃, X₁₃: 7⋅X₁₃ {O(n)}
t₆₁₃, X₁₄: 7⋅X₁₄ {O(n)}
t₃₈₈, X₀: X₁₁ {O(n)}
t₃₈₈, X₁: X₁₂ {O(n)}
t₃₈₈, X₂: X₁₄ {O(n)}
t₃₈₈, X₃: X₁₃ {O(n)}
t₃₈₈, X₄: X₄ {O(n)}
t₃₈₈, X₅: X₅ {O(n)}
t₃₈₈, X₆: X₆ {O(n)}
t₃₈₈, X₇: X₇ {O(n)}
t₃₈₈, X₈: X₈ {O(n)}
t₃₈₈, X₉: X₉ {O(n)}
t₃₈₈, X₁₀: X₁₀ {O(n)}
t₃₈₈, X₁₁: X₁₁ {O(n)}
t₃₈₈, X₁₂: X₁₂ {O(n)}
t₃₈₈, X₁₃: X₁₃ {O(n)}
t₃₈₈, X₁₄: X₁₄ {O(n)}
t₃₈₉, X₀: X₁₁ {O(n)}
t₃₈₉, X₁: X₁₂ {O(n)}
t₃₈₉, X₂: X₁₄ {O(n)}
t₃₈₉, X₃: X₁₃ {O(n)}
t₃₈₉, X₄: X₄ {O(n)}
t₃₈₉, X₅: X₅ {O(n)}
t₃₈₉, X₆: X₆ {O(n)}
t₃₈₉, X₇: X₇ {O(n)}
t₃₈₉, X₈: X₈ {O(n)}
t₃₈₉, X₉: X₉ {O(n)}
t₃₈₉, X₁₀: X₁₀ {O(n)}
t₃₈₉, X₁₁: X₁₁ {O(n)}
t₃₈₉, X₁₂: X₁₂ {O(n)}
t₃₈₉, X₁₃: X₁₃ {O(n)}
t₃₈₉, X₁₄: X₁₄ {O(n)}
t₃₉₀, X₀: X₁₁ {O(n)}
t₃₉₀, X₁: X₁₂ {O(n)}
t₃₉₀, X₂: X₁₄ {O(n)}
t₃₉₀, X₃: X₁₃ {O(n)}
t₃₉₀, X₄: X₄ {O(n)}
t₃₉₀, X₅: X₅ {O(n)}
t₃₉₀, X₆: X₆ {O(n)}
t₃₉₀, X₇: X₇ {O(n)}
t₃₉₀, X₈: X₈ {O(n)}
t₃₉₀, X₉: X₉ {O(n)}
t₃₉₀, X₁₀: X₁₀ {O(n)}
t₃₉₀, X₁₁: X₁₁ {O(n)}
t₃₉₀, X₁₂: X₁₂ {O(n)}
t₃₉₀, X₁₃: X₁₃ {O(n)}
t₃₉₀, X₁₄: X₁₄ {O(n)}
t₃₉₁, X₀: X₁₁ {O(n)}
t₃₉₁, X₁: X₁₂ {O(n)}
t₃₉₁, X₂: X₁₄ {O(n)}
t₃₉₁, X₃: X₁₃ {O(n)}
t₃₉₁, X₄: X₄ {O(n)}
t₃₉₁, X₅: X₅ {O(n)}
t₃₉₁, X₆: X₆ {O(n)}
t₃₉₁, X₇: X₇ {O(n)}
t₃₉₁, X₈: X₈ {O(n)}
t₃₉₁, X₉: X₉ {O(n)}
t₃₉₁, X₁₀: X₁₀ {O(n)}
t₃₉₁, X₁₁: X₁₁ {O(n)}
t₃₉₁, X₁₂: X₁₂ {O(n)}
t₃₉₁, X₁₃: X₁₃ {O(n)}
t₃₉₁, X₁₄: X₁₄ {O(n)}
t₃₉₂, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₃₉₂, X₄: 0 {O(1)}
t₃₉₂, X₇: 3⋅X₇ {O(n)}
t₃₉₂, X₈: 3⋅X₈ {O(n)}
t₃₉₂, X₉: 3⋅X₉ {O(n)}
t₃₉₂, X₁₀: 3⋅X₁₀ {O(n)}
t₃₉₂, X₁₁: 3⋅X₁₁ {O(n)}
t₃₉₂, X₁₂: 3⋅X₁₂ {O(n)}
t₃₉₂, X₁₃: 3⋅X₁₃ {O(n)}
t₃₉₂, X₁₄: 3⋅X₁₄ {O(n)}
t₃₉₃, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₃₉₃, X₄: 0 {O(1)}
t₃₉₃, X₇: 3⋅X₇ {O(n)}
t₃₉₃, X₈: 3⋅X₈ {O(n)}
t₃₉₃, X₉: 3⋅X₉ {O(n)}
t₃₉₃, X₁₀: 3⋅X₁₀ {O(n)}
t₃₉₃, X₁₁: 3⋅X₁₁ {O(n)}
t₃₉₃, X₁₂: 3⋅X₁₂ {O(n)}
t₃₉₃, X₁₃: 3⋅X₁₃ {O(n)}
t₃₉₃, X₁₄: 3⋅X₁₄ {O(n)}
t₃₉₄, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₃₉₄, X₉: 57⋅X₉ {O(n)}
t₃₉₄, X₁₀: 57⋅X₁₀ {O(n)}
t₃₉₄, X₁₁: 57⋅X₁₁ {O(n)}
t₃₉₄, X₁₂: 57⋅X₁₂ {O(n)}
t₃₉₄, X₁₃: 57⋅X₁₃ {O(n)}
t₃₉₄, X₁₄: 57⋅X₁₄ {O(n)}
t₃₉₅, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₃₉₅, X₉: 57⋅X₉ {O(n)}
t₃₉₅, X₁₀: 57⋅X₁₀ {O(n)}
t₃₉₅, X₁₁: 57⋅X₁₁ {O(n)}
t₃₉₅, X₁₂: 57⋅X₁₂ {O(n)}
t₃₉₅, X₁₃: 57⋅X₁₃ {O(n)}
t₃₉₅, X₁₄: 57⋅X₁₄ {O(n)}
t₃₉₆, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₃₉₆, X₉: 57⋅X₉ {O(n)}
t₃₉₆, X₁₀: 57⋅X₁₀ {O(n)}
t₃₉₆, X₁₁: 57⋅X₁₁ {O(n)}
t₃₉₆, X₁₂: 57⋅X₁₂ {O(n)}
t₃₉₆, X₁₃: 57⋅X₁₃ {O(n)}
t₃₉₆, X₁₄: 57⋅X₁₄ {O(n)}
t₃₉₇, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₃₉₇, X₉: 57⋅X₉ {O(n)}
t₃₉₇, X₁₀: 57⋅X₁₀ {O(n)}
t₃₉₇, X₁₁: 57⋅X₁₁ {O(n)}
t₃₉₇, X₁₂: 57⋅X₁₂ {O(n)}
t₃₉₇, X₁₃: 57⋅X₁₃ {O(n)}
t₃₉₇, X₁₄: 57⋅X₁₄ {O(n)}
t₃₉₈, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₃₉₈, X₄: 0 {O(1)}
t₃₉₈, X₇: 3⋅X₇ {O(n)}
t₃₉₈, X₈: 3⋅X₈ {O(n)}
t₃₉₈, X₉: 3⋅X₉ {O(n)}
t₃₉₈, X₁₀: 3⋅X₁₀ {O(n)}
t₃₉₈, X₁₁: 3⋅X₁₁ {O(n)}
t₃₉₈, X₁₂: 3⋅X₁₂ {O(n)}
t₃₉₈, X₁₃: 3⋅X₁₃ {O(n)}
t₃₉₈, X₁₄: 3⋅X₁₄ {O(n)}
t₃₉₉, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₃₉₉, X₉: 57⋅X₉ {O(n)}
t₃₉₉, X₁₀: 57⋅X₁₀ {O(n)}
t₃₉₉, X₁₁: 57⋅X₁₁ {O(n)}
t₃₉₉, X₁₂: 57⋅X₁₂ {O(n)}
t₃₉₉, X₁₃: 57⋅X₁₃ {O(n)}
t₃₉₉, X₁₄: 57⋅X₁₄ {O(n)}
t₄₀₀, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₀₀, X₉: 57⋅X₉ {O(n)}
t₄₀₀, X₁₀: 57⋅X₁₀ {O(n)}
t₄₀₀, X₁₁: 57⋅X₁₁ {O(n)}
t₄₀₀, X₁₂: 57⋅X₁₂ {O(n)}
t₄₀₀, X₁₃: 57⋅X₁₃ {O(n)}
t₄₀₀, X₁₄: 57⋅X₁₄ {O(n)}
t₄₀₁, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₀₁, X₉: 57⋅X₉ {O(n)}
t₄₀₁, X₁₀: 57⋅X₁₀ {O(n)}
t₄₀₁, X₁₁: 57⋅X₁₁ {O(n)}
t₄₀₁, X₁₂: 57⋅X₁₂ {O(n)}
t₄₀₁, X₁₃: 57⋅X₁₃ {O(n)}
t₄₀₁, X₁₄: 57⋅X₁₄ {O(n)}
t₄₀₂, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₀₂, X₉: 57⋅X₉ {O(n)}
t₄₀₂, X₁₀: 57⋅X₁₀ {O(n)}
t₄₀₂, X₁₁: 57⋅X₁₁ {O(n)}
t₄₀₂, X₁₂: 57⋅X₁₂ {O(n)}
t₄₀₂, X₁₃: 57⋅X₁₃ {O(n)}
t₄₀₂, X₁₄: 57⋅X₁₄ {O(n)}
t₄₀₃, X₀: 108⋅X₁₀+108⋅X₁₂+11⋅X₁₁+216⋅X₁₄+4⋅X₉+61 {O(n)}
t₄₀₃, X₄: 0 {O(1)}
t₄₀₃, X₇: 7⋅X₇ {O(n)}
t₄₀₃, X₈: 7⋅X₈ {O(n)}
t₄₀₃, X₉: 7⋅X₉ {O(n)}
t₄₀₃, X₁₀: 7⋅X₁₀ {O(n)}
t₄₀₃, X₁₁: 7⋅X₁₁ {O(n)}
t₄₀₃, X₁₂: 7⋅X₁₂ {O(n)}
t₄₀₃, X₁₃: 7⋅X₁₃ {O(n)}
t₄₀₃, X₁₄: 7⋅X₁₄ {O(n)}
t₄₀₄, X₀: 108⋅X₁₀+108⋅X₁₂+11⋅X₁₁+216⋅X₁₄+4⋅X₉+61 {O(n)}
t₄₀₄, X₄: 0 {O(1)}
t₄₀₄, X₇: 7⋅X₇ {O(n)}
t₄₀₄, X₈: 7⋅X₈ {O(n)}
t₄₀₄, X₉: 7⋅X₉ {O(n)}
t₄₀₄, X₁₀: 7⋅X₁₀ {O(n)}
t₄₀₄, X₁₁: 7⋅X₁₁ {O(n)}
t₄₀₄, X₁₂: 7⋅X₁₂ {O(n)}
t₄₀₄, X₁₃: 7⋅X₁₃ {O(n)}
t₄₀₄, X₁₄: 7⋅X₁₄ {O(n)}
t₄₀₅, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₀₅, X₉: 57⋅X₉ {O(n)}
t₄₀₅, X₁₀: 57⋅X₁₀ {O(n)}
t₄₀₅, X₁₁: 57⋅X₁₁ {O(n)}
t₄₀₅, X₁₂: 57⋅X₁₂ {O(n)}
t₄₀₅, X₁₃: 57⋅X₁₃ {O(n)}
t₄₀₅, X₁₄: 57⋅X₁₄ {O(n)}
t₄₀₆, X₀: X₁₁ {O(n)}
t₄₀₆, X₁: X₁₂ {O(n)}
t₄₀₆, X₂: X₁₄ {O(n)}
t₄₀₆, X₃: X₁₃ {O(n)}
t₄₀₆, X₄: X₄ {O(n)}
t₄₀₆, X₅: X₅ {O(n)}
t₄₀₆, X₆: X₆ {O(n)}
t₄₀₆, X₇: X₇ {O(n)}
t₄₀₆, X₈: X₈ {O(n)}
t₄₀₆, X₉: X₉ {O(n)}
t₄₀₆, X₁₀: X₁₀ {O(n)}
t₄₀₆, X₁₁: X₁₁ {O(n)}
t₄₀₆, X₁₂: X₁₂ {O(n)}
t₄₀₆, X₁₃: X₁₃ {O(n)}
t₄₀₆, X₁₄: X₁₄ {O(n)}
t₄₀₇, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₄₀₇, X₄: 0 {O(1)}
t₄₀₇, X₇: 3⋅X₇ {O(n)}
t₄₀₇, X₈: 3⋅X₈ {O(n)}
t₄₀₇, X₉: 3⋅X₉ {O(n)}
t₄₀₇, X₁₀: 3⋅X₁₀ {O(n)}
t₄₀₇, X₁₁: 3⋅X₁₁ {O(n)}
t₄₀₇, X₁₂: 3⋅X₁₂ {O(n)}
t₄₀₇, X₁₃: 3⋅X₁₃ {O(n)}
t₄₀₇, X₁₄: 3⋅X₁₄ {O(n)}
t₄₀₈, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₄₀₈, X₄: 0 {O(1)}
t₄₀₈, X₇: 3⋅X₇ {O(n)}
t₄₀₈, X₈: 3⋅X₈ {O(n)}
t₄₀₈, X₉: 3⋅X₉ {O(n)}
t₄₀₈, X₁₀: 3⋅X₁₀ {O(n)}
t₄₀₈, X₁₁: 3⋅X₁₁ {O(n)}
t₄₀₈, X₁₂: 3⋅X₁₂ {O(n)}
t₄₀₈, X₁₃: 3⋅X₁₃ {O(n)}
t₄₀₈, X₁₄: 3⋅X₁₄ {O(n)}
t₄₀₉, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₀₉, X₉: 57⋅X₉ {O(n)}
t₄₀₉, X₁₀: 57⋅X₁₀ {O(n)}
t₄₀₉, X₁₁: 57⋅X₁₁ {O(n)}
t₄₀₉, X₁₂: 57⋅X₁₂ {O(n)}
t₄₀₉, X₁₃: 57⋅X₁₃ {O(n)}
t₄₀₉, X₁₄: 57⋅X₁₄ {O(n)}
t₄₁₀, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₁₀, X₇: 3⋅X₇ {O(n)}
t₄₁₀, X₈: 3⋅X₈ {O(n)}
t₄₁₀, X₉: 3⋅X₉ {O(n)}
t₄₁₀, X₁₀: 3⋅X₁₀ {O(n)}
t₄₁₀, X₁₁: 3⋅X₁₁ {O(n)}
t₄₁₀, X₁₂: 3⋅X₁₂ {O(n)}
t₄₁₀, X₁₃: 3⋅X₁₃ {O(n)}
t₄₁₀, X₁₄: 3⋅X₁₄ {O(n)}
t₄₁₁, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₁₁, X₉: 57⋅X₉ {O(n)}
t₄₁₁, X₁₀: 57⋅X₁₀ {O(n)}
t₄₁₁, X₁₁: 57⋅X₁₁ {O(n)}
t₄₁₁, X₁₂: 57⋅X₁₂ {O(n)}
t₄₁₁, X₁₃: 57⋅X₁₃ {O(n)}
t₄₁₁, X₁₄: 57⋅X₁₄ {O(n)}
t₄₁₂, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₁₂, X₉: 57⋅X₉ {O(n)}
t₄₁₂, X₁₀: 57⋅X₁₀ {O(n)}
t₄₁₂, X₁₁: 57⋅X₁₁ {O(n)}
t₄₁₂, X₁₂: 57⋅X₁₂ {O(n)}
t₄₁₂, X₁₃: 57⋅X₁₃ {O(n)}
t₄₁₂, X₁₄: 57⋅X₁₄ {O(n)}
t₄₁₃, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₁₃, X₄: 0 {O(1)}
t₄₁₃, X₇: 3⋅X₇ {O(n)}
t₄₁₃, X₈: 3⋅X₈ {O(n)}
t₄₁₃, X₉: 3⋅X₉ {O(n)}
t₄₁₃, X₁₀: 3⋅X₁₀ {O(n)}
t₄₁₃, X₁₁: 3⋅X₁₁ {O(n)}
t₄₁₃, X₁₂: 3⋅X₁₂ {O(n)}
t₄₁₃, X₁₃: 3⋅X₁₃ {O(n)}
t₄₁₃, X₁₄: 3⋅X₁₄ {O(n)}
t₄₁₄, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₁₄, X₄: 0 {O(1)}
t₄₁₄, X₇: 3⋅X₇ {O(n)}
t₄₁₄, X₈: 3⋅X₈ {O(n)}
t₄₁₄, X₉: 3⋅X₉ {O(n)}
t₄₁₄, X₁₀: 3⋅X₁₀ {O(n)}
t₄₁₄, X₁₁: 3⋅X₁₁ {O(n)}
t₄₁₄, X₁₂: 3⋅X₁₂ {O(n)}
t₄₁₄, X₁₃: 3⋅X₁₃ {O(n)}
t₄₁₄, X₁₄: 3⋅X₁₄ {O(n)}
t₄₁₅, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₁₅, X₇: 3⋅X₇ {O(n)}
t₄₁₅, X₈: 3⋅X₈ {O(n)}
t₄₁₅, X₉: 3⋅X₉ {O(n)}
t₄₁₅, X₁₀: 3⋅X₁₀ {O(n)}
t₄₁₅, X₁₁: 3⋅X₁₁ {O(n)}
t₄₁₅, X₁₂: 3⋅X₁₂ {O(n)}
t₄₁₅, X₁₃: 3⋅X₁₃ {O(n)}
t₄₁₅, X₁₄: 3⋅X₁₄ {O(n)}
t₄₁₆, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₁₆, X₉: 57⋅X₉ {O(n)}
t₄₁₆, X₁₀: 57⋅X₁₀ {O(n)}
t₄₁₆, X₁₁: 57⋅X₁₁ {O(n)}
t₄₁₆, X₁₂: 57⋅X₁₂ {O(n)}
t₄₁₆, X₁₃: 57⋅X₁₃ {O(n)}
t₄₁₆, X₁₄: 57⋅X₁₄ {O(n)}
t₄₁₇, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₁₇, X₉: 57⋅X₉ {O(n)}
t₄₁₇, X₁₀: 57⋅X₁₀ {O(n)}
t₄₁₇, X₁₁: 57⋅X₁₁ {O(n)}
t₄₁₇, X₁₂: 57⋅X₁₂ {O(n)}
t₄₁₇, X₁₃: 57⋅X₁₃ {O(n)}
t₄₁₇, X₁₄: 57⋅X₁₄ {O(n)}
t₄₁₈, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₁₈, X₇: 3⋅X₇ {O(n)}
t₄₁₈, X₈: 3⋅X₈ {O(n)}
t₄₁₈, X₉: 3⋅X₉ {O(n)}
t₄₁₈, X₁₀: 3⋅X₁₀ {O(n)}
t₄₁₈, X₁₁: 3⋅X₁₁ {O(n)}
t₄₁₈, X₁₂: 3⋅X₁₂ {O(n)}
t₄₁₈, X₁₃: 3⋅X₁₃ {O(n)}
t₄₁₈, X₁₄: 3⋅X₁₄ {O(n)}
t₄₁₉, X₀: X₁₁ {O(n)}
t₄₁₉, X₁: X₁₂ {O(n)}
t₄₁₉, X₂: X₁₄ {O(n)}
t₄₁₉, X₃: X₁₃ {O(n)}
t₄₁₉, X₄: X₄ {O(n)}
t₄₁₉, X₅: X₅ {O(n)}
t₄₁₉, X₆: X₆ {O(n)}
t₄₁₉, X₇: X₇ {O(n)}
t₄₁₉, X₈: X₈ {O(n)}
t₄₁₉, X₉: X₉ {O(n)}
t₄₁₉, X₁₀: X₁₀ {O(n)}
t₄₁₉, X₁₁: X₁₁ {O(n)}
t₄₁₉, X₁₂: X₁₂ {O(n)}
t₄₁₉, X₁₃: X₁₃ {O(n)}
t₄₁₉, X₁₄: X₁₄ {O(n)}
t₄₂₀, X₀: X₁₁ {O(n)}
t₄₂₀, X₁: X₁₂ {O(n)}
t₄₂₀, X₂: X₁₄ {O(n)}
t₄₂₀, X₃: X₁₃ {O(n)}
t₄₂₀, X₄: X₄ {O(n)}
t₄₂₀, X₅: X₅ {O(n)}
t₄₂₀, X₆: X₆ {O(n)}
t₄₂₀, X₇: X₇ {O(n)}
t₄₂₀, X₈: X₈ {O(n)}
t₄₂₀, X₉: X₉ {O(n)}
t₄₂₀, X₁₀: X₁₀ {O(n)}
t₄₂₀, X₁₁: X₁₁ {O(n)}
t₄₂₀, X₁₂: X₁₂ {O(n)}
t₄₂₀, X₁₃: X₁₃ {O(n)}
t₄₂₀, X₁₄: X₁₄ {O(n)}
t₄₂₁, X₀: X₁₁ {O(n)}
t₄₂₁, X₁: X₁₂ {O(n)}
t₄₂₁, X₂: X₁₄ {O(n)}
t₄₂₁, X₃: X₁₃ {O(n)}
t₄₂₁, X₄: X₄ {O(n)}
t₄₂₁, X₅: X₅ {O(n)}
t₄₂₁, X₆: X₆ {O(n)}
t₄₂₁, X₇: X₇ {O(n)}
t₄₂₁, X₈: X₈ {O(n)}
t₄₂₁, X₉: X₉ {O(n)}
t₄₂₁, X₁₀: X₁₀ {O(n)}
t₄₂₁, X₁₁: X₁₁ {O(n)}
t₄₂₁, X₁₂: X₁₂ {O(n)}
t₄₂₁, X₁₃: X₁₃ {O(n)}
t₄₂₁, X₁₄: X₁₄ {O(n)}
t₄₂₂, X₀: 108⋅X₁₀+108⋅X₁₂+11⋅X₁₁+216⋅X₁₄+4⋅X₉+61 {O(n)}
t₄₂₂, X₄: 0 {O(1)}
t₄₂₂, X₇: 7⋅X₇ {O(n)}
t₄₂₂, X₈: 7⋅X₈ {O(n)}
t₄₂₂, X₉: 7⋅X₉ {O(n)}
t₄₂₂, X₁₀: 7⋅X₁₀ {O(n)}
t₄₂₂, X₁₁: 7⋅X₁₁ {O(n)}
t₄₂₂, X₁₂: 7⋅X₁₂ {O(n)}
t₄₂₂, X₁₃: 7⋅X₁₃ {O(n)}
t₄₂₂, X₁₄: 7⋅X₁₄ {O(n)}
t₄₂₃, X₀: 108⋅X₁₀+108⋅X₁₂+11⋅X₁₁+216⋅X₁₄+4⋅X₉+61 {O(n)}
t₄₂₃, X₄: 0 {O(1)}
t₄₂₃, X₇: 7⋅X₇ {O(n)}
t₄₂₃, X₈: 7⋅X₈ {O(n)}
t₄₂₃, X₉: 7⋅X₉ {O(n)}
t₄₂₃, X₁₀: 7⋅X₁₀ {O(n)}
t₄₂₃, X₁₁: 7⋅X₁₁ {O(n)}
t₄₂₃, X₁₂: 7⋅X₁₂ {O(n)}
t₄₂₃, X₁₃: 7⋅X₁₃ {O(n)}
t₄₂₃, X₁₄: 7⋅X₁₄ {O(n)}
t₄₂₄, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₂₄, X₄: 0 {O(1)}
t₄₂₄, X₇: 3⋅X₇ {O(n)}
t₄₂₄, X₈: 3⋅X₈ {O(n)}
t₄₂₄, X₉: 3⋅X₉ {O(n)}
t₄₂₄, X₁₀: 3⋅X₁₀ {O(n)}
t₄₂₄, X₁₁: 3⋅X₁₁ {O(n)}
t₄₂₄, X₁₂: 3⋅X₁₂ {O(n)}
t₄₂₄, X₁₃: 3⋅X₁₃ {O(n)}
t₄₂₄, X₁₄: 3⋅X₁₄ {O(n)}
t₄₂₅, X₀: X₁₁ {O(n)}
t₄₂₅, X₁: X₁₂ {O(n)}
t₄₂₅, X₂: X₁₄ {O(n)}
t₄₂₅, X₃: X₁₃ {O(n)}
t₄₂₅, X₄: X₄ {O(n)}
t₄₂₅, X₅: X₅ {O(n)}
t₄₂₅, X₆: X₆ {O(n)}
t₄₂₅, X₇: X₇ {O(n)}
t₄₂₅, X₈: X₈ {O(n)}
t₄₂₅, X₉: X₉ {O(n)}
t₄₂₅, X₁₀: X₁₀ {O(n)}
t₄₂₅, X₁₁: X₁₁ {O(n)}
t₄₂₅, X₁₂: X₁₂ {O(n)}
t₄₂₅, X₁₃: X₁₃ {O(n)}
t₄₂₅, X₁₄: X₁₄ {O(n)}
t₅₁₇, X₀: X₁₁ {O(n)}
t₅₁₇, X₁: X₁₂ {O(n)}
t₅₁₇, X₂: X₁₄ {O(n)}
t₅₁₇, X₃: X₁₃ {O(n)}
t₅₁₇, X₄: X₄ {O(n)}
t₅₁₇, X₅: X₅ {O(n)}
t₅₁₇, X₆: X₆ {O(n)}
t₅₁₇, X₇: X₇ {O(n)}
t₅₁₇, X₈: X₈ {O(n)}
t₅₁₇, X₉: X₉ {O(n)}
t₅₁₇, X₁₀: X₁₀ {O(n)}
t₅₁₇, X₁₁: X₁₁ {O(n)}
t₅₁₇, X₁₂: X₁₂ {O(n)}
t₅₁₇, X₁₃: X₁₃ {O(n)}
t₅₁₇, X₁₄: X₁₄ {O(n)}
t₅₉₃, X₀: X₁₁ {O(n)}
t₅₉₃, X₁: X₁₂ {O(n)}
t₅₉₃, X₂: X₁₄ {O(n)}
t₅₉₃, X₃: X₁₃ {O(n)}
t₅₉₃, X₄: X₄ {O(n)}
t₅₉₃, X₅: X₅ {O(n)}
t₅₉₃, X₆: X₆ {O(n)}
t₅₉₃, X₇: X₇ {O(n)}
t₅₉₃, X₈: X₈ {O(n)}
t₅₉₃, X₉: X₉ {O(n)}
t₅₉₃, X₁₀: X₁₀ {O(n)}
t₅₉₃, X₁₁: X₁₁ {O(n)}
t₅₉₃, X₁₂: X₁₂ {O(n)}
t₅₉₃, X₁₃: X₁₃ {O(n)}
t₅₉₃, X₁₄: X₁₄ {O(n)}
t₄₂₆, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₂₆, X₇: 3⋅X₇ {O(n)}
t₄₂₆, X₈: 3⋅X₈ {O(n)}
t₄₂₆, X₉: 3⋅X₉ {O(n)}
t₄₂₆, X₁₀: 3⋅X₁₀ {O(n)}
t₄₂₆, X₁₁: 3⋅X₁₁ {O(n)}
t₄₂₆, X₁₂: 3⋅X₁₂ {O(n)}
t₄₂₆, X₁₃: 3⋅X₁₃ {O(n)}
t₄₂₆, X₁₄: 3⋅X₁₄ {O(n)}
t₅₁₈, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₅₁₈, X₇: 3⋅X₇ {O(n)}
t₅₁₈, X₈: 3⋅X₈ {O(n)}
t₅₁₈, X₉: 3⋅X₉ {O(n)}
t₅₁₈, X₁₀: 3⋅X₁₀ {O(n)}
t₅₁₈, X₁₁: 3⋅X₁₁ {O(n)}
t₅₁₈, X₁₂: 3⋅X₁₂ {O(n)}
t₅₁₈, X₁₃: 3⋅X₁₃ {O(n)}
t₅₁₈, X₁₄: 3⋅X₁₄ {O(n)}
t₅₉₄, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₅₉₄, X₇: 3⋅X₇ {O(n)}
t₅₉₄, X₈: 3⋅X₈ {O(n)}
t₅₉₄, X₉: 3⋅X₉ {O(n)}
t₅₉₄, X₁₀: 3⋅X₁₀ {O(n)}
t₅₉₄, X₁₁: 3⋅X₁₁ {O(n)}
t₅₉₄, X₁₂: 3⋅X₁₂ {O(n)}
t₅₉₄, X₁₃: 3⋅X₁₃ {O(n)}
t₅₉₄, X₁₄: 3⋅X₁₄ {O(n)}
t₄₂₇, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₂₇, X₉: 57⋅X₉ {O(n)}
t₄₂₇, X₁₀: 57⋅X₁₀ {O(n)}
t₄₂₇, X₁₁: 57⋅X₁₁ {O(n)}
t₄₂₇, X₁₂: 57⋅X₁₂ {O(n)}
t₄₂₇, X₁₃: 57⋅X₁₃ {O(n)}
t₄₂₇, X₁₄: 57⋅X₁₄ {O(n)}
t₄₂₈, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₂₈, X₉: 57⋅X₉ {O(n)}
t₄₂₈, X₁₀: 57⋅X₁₀ {O(n)}
t₄₂₈, X₁₁: 57⋅X₁₁ {O(n)}
t₄₂₈, X₁₂: 57⋅X₁₂ {O(n)}
t₄₂₈, X₁₃: 57⋅X₁₃ {O(n)}
t₄₂₈, X₁₄: 57⋅X₁₄ {O(n)}
t₅₂₀, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₂₀, X₉: 57⋅X₉ {O(n)}
t₅₂₀, X₁₀: 57⋅X₁₀ {O(n)}
t₅₂₀, X₁₁: 57⋅X₁₁ {O(n)}
t₅₂₀, X₁₂: 57⋅X₁₂ {O(n)}
t₅₂₀, X₁₃: 57⋅X₁₃ {O(n)}
t₅₂₀, X₁₄: 57⋅X₁₄ {O(n)}
t₅₉₆, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₉₆, X₉: 57⋅X₉ {O(n)}
t₅₉₆, X₁₀: 57⋅X₁₀ {O(n)}
t₅₉₆, X₁₁: 57⋅X₁₁ {O(n)}
t₅₉₆, X₁₂: 57⋅X₁₂ {O(n)}
t₅₉₆, X₁₃: 57⋅X₁₃ {O(n)}
t₅₉₆, X₁₄: 57⋅X₁₄ {O(n)}
t₄₂₉, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₂₉, X₄: 0 {O(1)}
t₄₂₉, X₇: 3⋅X₇ {O(n)}
t₄₂₉, X₈: 3⋅X₈ {O(n)}
t₄₂₉, X₉: 3⋅X₉ {O(n)}
t₄₂₉, X₁₀: 3⋅X₁₀ {O(n)}
t₄₂₉, X₁₁: 3⋅X₁₁ {O(n)}
t₄₂₉, X₁₂: 3⋅X₁₂ {O(n)}
t₄₂₉, X₁₃: 3⋅X₁₃ {O(n)}
t₄₂₉, X₁₄: 3⋅X₁₄ {O(n)}
t₄₃₀, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₃₀, X₇: 3⋅X₇ {O(n)}
t₄₃₀, X₈: 3⋅X₈ {O(n)}
t₄₃₀, X₉: 3⋅X₉ {O(n)}
t₄₃₀, X₁₀: 3⋅X₁₀ {O(n)}
t₄₃₀, X₁₁: 3⋅X₁₁ {O(n)}
t₄₃₀, X₁₂: 3⋅X₁₂ {O(n)}
t₄₃₀, X₁₃: 3⋅X₁₃ {O(n)}
t₄₃₀, X₁₄: 3⋅X₁₄ {O(n)}
t₄₃₁, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₃₁, X₉: 57⋅X₉ {O(n)}
t₄₃₁, X₁₀: 57⋅X₁₀ {O(n)}
t₄₃₁, X₁₁: 57⋅X₁₁ {O(n)}
t₄₃₁, X₁₂: 57⋅X₁₂ {O(n)}
t₄₃₁, X₁₃: 57⋅X₁₃ {O(n)}
t₄₃₁, X₁₄: 57⋅X₁₄ {O(n)}
t₅₂₃, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₂₃, X₉: 57⋅X₉ {O(n)}
t₅₂₃, X₁₀: 57⋅X₁₀ {O(n)}
t₅₂₃, X₁₁: 57⋅X₁₁ {O(n)}
t₅₂₃, X₁₂: 57⋅X₁₂ {O(n)}
t₅₂₃, X₁₃: 57⋅X₁₃ {O(n)}
t₅₂₃, X₁₄: 57⋅X₁₄ {O(n)}
t₅₉₉, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₉₉, X₉: 57⋅X₉ {O(n)}
t₅₉₉, X₁₀: 57⋅X₁₀ {O(n)}
t₅₉₉, X₁₁: 57⋅X₁₁ {O(n)}
t₅₉₉, X₁₂: 57⋅X₁₂ {O(n)}
t₅₉₉, X₁₃: 57⋅X₁₃ {O(n)}
t₅₉₉, X₁₄: 57⋅X₁₄ {O(n)}
t₄₃₂, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₃₂, X₇: 3⋅X₇ {O(n)}
t₄₃₂, X₈: 3⋅X₈ {O(n)}
t₄₃₂, X₉: 3⋅X₉ {O(n)}
t₄₃₂, X₁₀: 3⋅X₁₀ {O(n)}
t₄₃₂, X₁₁: 3⋅X₁₁ {O(n)}
t₄₃₂, X₁₂: 3⋅X₁₂ {O(n)}
t₄₃₂, X₁₃: 3⋅X₁₃ {O(n)}
t₄₃₂, X₁₄: 3⋅X₁₄ {O(n)}
t₅₂₄, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₅₂₄, X₇: 3⋅X₇ {O(n)}
t₅₂₄, X₈: 3⋅X₈ {O(n)}
t₅₂₄, X₉: 3⋅X₉ {O(n)}
t₅₂₄, X₁₀: 3⋅X₁₀ {O(n)}
t₅₂₄, X₁₁: 3⋅X₁₁ {O(n)}
t₅₂₄, X₁₂: 3⋅X₁₂ {O(n)}
t₅₂₄, X₁₃: 3⋅X₁₃ {O(n)}
t₅₂₄, X₁₄: 3⋅X₁₄ {O(n)}
t₆₀₀, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₆₀₀, X₇: 3⋅X₇ {O(n)}
t₆₀₀, X₈: 3⋅X₈ {O(n)}
t₆₀₀, X₉: 3⋅X₉ {O(n)}
t₆₀₀, X₁₀: 3⋅X₁₀ {O(n)}
t₆₀₀, X₁₁: 3⋅X₁₁ {O(n)}
t₆₀₀, X₁₂: 3⋅X₁₂ {O(n)}
t₆₀₀, X₁₃: 3⋅X₁₃ {O(n)}
t₆₀₀, X₁₄: 3⋅X₁₄ {O(n)}
t₄₃₃, X₀: X₁₁ {O(n)}
t₄₃₃, X₁: X₁₂ {O(n)}
t₄₃₃, X₂: X₁₄ {O(n)}
t₄₃₃, X₃: X₁₃ {O(n)}
t₄₃₃, X₄: X₄ {O(n)}
t₄₃₃, X₅: X₅ {O(n)}
t₄₃₃, X₆: X₆ {O(n)}
t₄₃₃, X₇: X₇ {O(n)}
t₄₃₃, X₈: X₈ {O(n)}
t₄₃₃, X₉: X₉ {O(n)}
t₄₃₃, X₁₀: X₁₀ {O(n)}
t₄₃₃, X₁₁: X₁₁ {O(n)}
t₄₃₃, X₁₂: X₁₂ {O(n)}
t₄₃₃, X₁₃: X₁₃ {O(n)}
t₄₃₃, X₁₄: X₁₄ {O(n)}
t₅₂₅, X₀: X₁₁ {O(n)}
t₅₂₅, X₁: X₁₂ {O(n)}
t₅₂₅, X₂: X₁₄ {O(n)}
t₅₂₅, X₃: X₁₃ {O(n)}
t₅₂₅, X₄: X₄ {O(n)}
t₅₂₅, X₅: X₅ {O(n)}
t₅₂₅, X₆: X₆ {O(n)}
t₅₂₅, X₇: X₇ {O(n)}
t₅₂₅, X₈: X₈ {O(n)}
t₅₂₅, X₉: X₉ {O(n)}
t₅₂₅, X₁₀: X₁₀ {O(n)}
t₅₂₅, X₁₁: X₁₁ {O(n)}
t₅₂₅, X₁₂: X₁₂ {O(n)}
t₅₂₅, X₁₃: X₁₃ {O(n)}
t₅₂₅, X₁₄: X₁₄ {O(n)}
t₆₀₁, X₀: X₁₁ {O(n)}
t₆₀₁, X₁: X₁₂ {O(n)}
t₆₀₁, X₂: X₁₄ {O(n)}
t₆₀₁, X₃: X₁₃ {O(n)}
t₆₀₁, X₄: X₄ {O(n)}
t₆₀₁, X₅: X₅ {O(n)}
t₆₀₁, X₆: X₆ {O(n)}
t₆₀₁, X₇: X₇ {O(n)}
t₆₀₁, X₈: X₈ {O(n)}
t₆₀₁, X₉: X₉ {O(n)}
t₆₀₁, X₁₀: X₁₀ {O(n)}
t₆₀₁, X₁₁: X₁₁ {O(n)}
t₆₀₁, X₁₂: X₁₂ {O(n)}
t₆₀₁, X₁₃: X₁₃ {O(n)}
t₆₀₁, X₁₄: X₁₄ {O(n)}
t₄₃₄, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₃₄, X₄: 0 {O(1)}
t₄₃₄, X₇: 3⋅X₇ {O(n)}
t₄₃₄, X₈: 3⋅X₈ {O(n)}
t₄₃₄, X₉: 3⋅X₉ {O(n)}
t₄₃₄, X₁₀: 3⋅X₁₀ {O(n)}
t₄₃₄, X₁₁: 3⋅X₁₁ {O(n)}
t₄₃₄, X₁₂: 3⋅X₁₂ {O(n)}
t₄₃₄, X₁₃: 3⋅X₁₃ {O(n)}
t₄₃₄, X₁₄: 3⋅X₁₄ {O(n)}
t₄₃₅, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₃₅, X₉: 57⋅X₉ {O(n)}
t₄₃₅, X₁₀: 57⋅X₁₀ {O(n)}
t₄₃₅, X₁₁: 57⋅X₁₁ {O(n)}
t₄₃₅, X₁₂: 57⋅X₁₂ {O(n)}
t₄₃₅, X₁₃: 57⋅X₁₃ {O(n)}
t₄₃₅, X₁₄: 57⋅X₁₄ {O(n)}
t₅₅₄, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₅₄, X₉: 57⋅X₉ {O(n)}
t₅₅₄, X₁₀: 57⋅X₁₀ {O(n)}
t₅₅₄, X₁₁: 57⋅X₁₁ {O(n)}
t₅₅₄, X₁₂: 57⋅X₁₂ {O(n)}
t₅₅₄, X₁₃: 57⋅X₁₃ {O(n)}
t₅₅₄, X₁₄: 57⋅X₁₄ {O(n)}
t₅₈₀, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₈₀, X₉: 57⋅X₉ {O(n)}
t₅₈₀, X₁₀: 57⋅X₁₀ {O(n)}
t₅₈₀, X₁₁: 57⋅X₁₁ {O(n)}
t₅₈₀, X₁₂: 57⋅X₁₂ {O(n)}
t₅₈₀, X₁₃: 57⋅X₁₃ {O(n)}
t₅₈₀, X₁₄: 57⋅X₁₄ {O(n)}
t₄₃₆, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₃₆, X₉: 57⋅X₉ {O(n)}
t₄₃₆, X₁₀: 57⋅X₁₀ {O(n)}
t₄₃₆, X₁₁: 57⋅X₁₁ {O(n)}
t₄₃₆, X₁₂: 57⋅X₁₂ {O(n)}
t₄₃₆, X₁₃: 57⋅X₁₃ {O(n)}
t₄₃₆, X₁₄: 57⋅X₁₄ {O(n)}
t₅₅₅, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₅₅, X₉: 57⋅X₉ {O(n)}
t₅₅₅, X₁₀: 57⋅X₁₀ {O(n)}
t₅₅₅, X₁₁: 57⋅X₁₁ {O(n)}
t₅₅₅, X₁₂: 57⋅X₁₂ {O(n)}
t₅₅₅, X₁₃: 57⋅X₁₃ {O(n)}
t₅₅₅, X₁₄: 57⋅X₁₄ {O(n)}
t₅₆₈, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₆₈, X₉: 57⋅X₉ {O(n)}
t₅₆₈, X₁₀: 57⋅X₁₀ {O(n)}
t₅₆₈, X₁₁: 57⋅X₁₁ {O(n)}
t₅₆₈, X₁₂: 57⋅X₁₂ {O(n)}
t₅₆₈, X₁₃: 57⋅X₁₃ {O(n)}
t₅₆₈, X₁₄: 57⋅X₁₄ {O(n)}
t₅₈₁, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₈₁, X₉: 57⋅X₉ {O(n)}
t₅₈₁, X₁₀: 57⋅X₁₀ {O(n)}
t₅₈₁, X₁₁: 57⋅X₁₁ {O(n)}
t₅₈₁, X₁₂: 57⋅X₁₂ {O(n)}
t₅₈₁, X₁₃: 57⋅X₁₃ {O(n)}
t₅₈₁, X₁₄: 57⋅X₁₄ {O(n)}
t₄₃₇, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₄₃₇, X₄: 0 {O(1)}
t₄₃₇, X₇: 3⋅X₇ {O(n)}
t₄₃₇, X₈: 3⋅X₈ {O(n)}
t₄₃₇, X₉: 3⋅X₉ {O(n)}
t₄₃₇, X₁₀: 3⋅X₁₀ {O(n)}
t₄₃₇, X₁₁: 3⋅X₁₁ {O(n)}
t₄₃₇, X₁₂: 3⋅X₁₂ {O(n)}
t₄₃₇, X₁₃: 3⋅X₁₃ {O(n)}
t₄₃₇, X₁₄: 3⋅X₁₄ {O(n)}
t₄₃₈, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₄₃₈, X₄: 0 {O(1)}
t₄₃₈, X₇: 3⋅X₇ {O(n)}
t₄₃₈, X₈: 3⋅X₈ {O(n)}
t₄₃₈, X₉: 3⋅X₉ {O(n)}
t₄₃₈, X₁₀: 3⋅X₁₀ {O(n)}
t₄₃₈, X₁₁: 3⋅X₁₁ {O(n)}
t₄₃₈, X₁₂: 3⋅X₁₂ {O(n)}
t₄₃₈, X₁₃: 3⋅X₁₃ {O(n)}
t₄₃₈, X₁₄: 3⋅X₁₄ {O(n)}
t₅₅₈, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₅₈, X₉: 57⋅X₉ {O(n)}
t₅₅₈, X₁₀: 57⋅X₁₀ {O(n)}
t₅₅₈, X₁₁: 57⋅X₁₁ {O(n)}
t₅₅₈, X₁₂: 57⋅X₁₂ {O(n)}
t₅₅₈, X₁₃: 57⋅X₁₃ {O(n)}
t₅₅₈, X₁₄: 57⋅X₁₄ {O(n)}
t₅₇₁, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₇₁, X₉: 57⋅X₉ {O(n)}
t₅₇₁, X₁₀: 57⋅X₁₀ {O(n)}
t₅₇₁, X₁₁: 57⋅X₁₁ {O(n)}
t₅₇₁, X₁₂: 57⋅X₁₂ {O(n)}
t₅₇₁, X₁₃: 57⋅X₁₃ {O(n)}
t₅₇₁, X₁₄: 57⋅X₁₄ {O(n)}
t₅₈₄, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₈₄, X₉: 57⋅X₉ {O(n)}
t₅₈₄, X₁₀: 57⋅X₁₀ {O(n)}
t₅₈₄, X₁₁: 57⋅X₁₁ {O(n)}
t₅₈₄, X₁₂: 57⋅X₁₂ {O(n)}
t₅₈₄, X₁₃: 57⋅X₁₃ {O(n)}
t₅₈₄, X₁₄: 57⋅X₁₄ {O(n)}
t₅₇₂, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₇₂, X₉: 57⋅X₉ {O(n)}
t₅₇₂, X₁₀: 57⋅X₁₀ {O(n)}
t₅₇₂, X₁₁: 57⋅X₁₁ {O(n)}
t₅₇₂, X₁₂: 57⋅X₁₂ {O(n)}
t₅₇₂, X₁₃: 57⋅X₁₃ {O(n)}
t₅₇₂, X₁₄: 57⋅X₁₄ {O(n)}
t₄₃₉, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₄₃₉, X₉: 57⋅X₉ {O(n)}
t₄₃₉, X₁₀: 57⋅X₁₀ {O(n)}
t₄₃₉, X₁₁: 57⋅X₁₁ {O(n)}
t₄₃₉, X₁₂: 57⋅X₁₂ {O(n)}
t₄₃₉, X₁₃: 57⋅X₁₃ {O(n)}
t₄₃₉, X₁₄: 57⋅X₁₄ {O(n)}
t₅₇₃, X₀: 1404⋅X₁₄+33⋅X₉+702⋅X₁₀+702⋅X₁₂+90⋅X₁₁+405 {O(n)}
t₅₇₃, X₉: 57⋅X₉ {O(n)}
t₅₇₃, X₁₀: 57⋅X₁₀ {O(n)}
t₅₇₃, X₁₁: 57⋅X₁₁ {O(n)}
t₅₇₃, X₁₂: 57⋅X₁₂ {O(n)}
t₅₇₃, X₁₃: 57⋅X₁₃ {O(n)}
t₅₇₃, X₁₄: 57⋅X₁₄ {O(n)}
t₄₄₀, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₄₀, X₄: 0 {O(1)}
t₄₄₀, X₇: 3⋅X₇ {O(n)}
t₄₄₀, X₈: 3⋅X₈ {O(n)}
t₄₄₀, X₉: 3⋅X₉ {O(n)}
t₄₄₀, X₁₀: 3⋅X₁₀ {O(n)}
t₄₄₀, X₁₁: 3⋅X₁₁ {O(n)}
t₄₄₀, X₁₂: 3⋅X₁₂ {O(n)}
t₄₄₀, X₁₃: 3⋅X₁₃ {O(n)}
t₄₄₀, X₁₄: 3⋅X₁₄ {O(n)}
t₅₆₂, X₀: X₁₁ {O(n)}
t₅₆₂, X₁: X₁₂ {O(n)}
t₅₆₂, X₂: X₁₄ {O(n)}
t₅₆₂, X₃: X₁₃ {O(n)}
t₅₆₂, X₄: X₄ {O(n)}
t₅₆₂, X₅: X₅ {O(n)}
t₅₆₂, X₆: X₆ {O(n)}
t₅₆₂, X₇: X₇ {O(n)}
t₅₆₂, X₈: X₈ {O(n)}
t₅₆₂, X₉: X₉ {O(n)}
t₅₆₂, X₁₀: X₁₀ {O(n)}
t₅₆₂, X₁₁: X₁₁ {O(n)}
t₅₆₂, X₁₂: X₁₂ {O(n)}
t₅₆₂, X₁₃: X₁₃ {O(n)}
t₅₆₂, X₁₄: X₁₄ {O(n)}
t₅₇₅, X₀: X₁₁ {O(n)}
t₅₇₅, X₁: X₁₂ {O(n)}
t₅₇₅, X₂: X₁₄ {O(n)}
t₅₇₅, X₃: X₁₃ {O(n)}
t₅₇₅, X₄: X₄ {O(n)}
t₅₇₅, X₅: X₅ {O(n)}
t₅₇₅, X₆: X₆ {O(n)}
t₅₇₅, X₇: X₇ {O(n)}
t₅₇₅, X₈: X₈ {O(n)}
t₅₇₅, X₉: X₉ {O(n)}
t₅₇₅, X₁₀: X₁₀ {O(n)}
t₅₇₅, X₁₁: X₁₁ {O(n)}
t₅₇₅, X₁₂: X₁₂ {O(n)}
t₅₇₅, X₁₃: X₁₃ {O(n)}
t₅₇₅, X₁₄: X₁₄ {O(n)}
t₅₈₈, X₀: X₁₁ {O(n)}
t₅₈₈, X₁: X₁₂ {O(n)}
t₅₈₈, X₂: X₁₄ {O(n)}
t₅₈₈, X₃: X₁₃ {O(n)}
t₅₈₈, X₄: X₄ {O(n)}
t₅₈₈, X₅: X₅ {O(n)}
t₅₈₈, X₆: X₆ {O(n)}
t₅₈₈, X₇: X₇ {O(n)}
t₅₈₈, X₈: X₈ {O(n)}
t₅₈₈, X₉: X₉ {O(n)}
t₅₈₈, X₁₀: X₁₀ {O(n)}
t₅₈₈, X₁₁: X₁₁ {O(n)}
t₅₈₈, X₁₂: X₁₂ {O(n)}
t₅₈₈, X₁₃: X₁₃ {O(n)}
t₅₈₈, X₁₄: X₁₄ {O(n)}
t₄₄₁, X₀: X₁₁ {O(n)}
t₄₄₁, X₁: X₁₂ {O(n)}
t₄₄₁, X₂: X₁₄ {O(n)}
t₄₄₁, X₃: X₁₃ {O(n)}
t₄₄₁, X₄: X₄ {O(n)}
t₄₄₁, X₅: X₅ {O(n)}
t₄₄₁, X₆: X₆ {O(n)}
t₄₄₁, X₇: X₇ {O(n)}
t₄₄₁, X₈: X₈ {O(n)}
t₄₄₁, X₉: X₉ {O(n)}
t₄₄₁, X₁₀: X₁₀ {O(n)}
t₄₄₁, X₁₁: X₁₁ {O(n)}
t₄₄₁, X₁₂: X₁₂ {O(n)}
t₄₄₁, X₁₃: X₁₃ {O(n)}
t₄₄₁, X₁₄: X₁₄ {O(n)}
t₅₆₃, X₀: X₁₁ {O(n)}
t₅₆₃, X₁: X₁₂ {O(n)}
t₅₆₃, X₂: X₁₄ {O(n)}
t₅₆₃, X₃: X₁₃ {O(n)}
t₅₆₃, X₄: X₄ {O(n)}
t₅₆₃, X₅: X₅ {O(n)}
t₅₆₃, X₆: X₆ {O(n)}
t₅₆₃, X₇: X₇ {O(n)}
t₅₆₃, X₈: X₈ {O(n)}
t₅₆₃, X₉: X₉ {O(n)}
t₅₆₃, X₁₀: X₁₀ {O(n)}
t₅₆₃, X₁₁: X₁₁ {O(n)}
t₅₆₃, X₁₂: X₁₂ {O(n)}
t₅₆₃, X₁₃: X₁₃ {O(n)}
t₅₆₃, X₁₄: X₁₄ {O(n)}
t₅₈₉, X₀: X₁₁ {O(n)}
t₅₈₉, X₁: X₁₂ {O(n)}
t₅₈₉, X₂: X₁₄ {O(n)}
t₅₈₉, X₃: X₁₃ {O(n)}
t₅₈₉, X₄: X₄ {O(n)}
t₅₈₉, X₅: X₅ {O(n)}
t₅₈₉, X₆: X₆ {O(n)}
t₅₈₉, X₇: X₇ {O(n)}
t₅₈₉, X₈: X₈ {O(n)}
t₅₈₉, X₉: X₉ {O(n)}
t₅₈₉, X₁₀: X₁₀ {O(n)}
t₅₈₉, X₁₁: X₁₁ {O(n)}
t₅₈₉, X₁₂: X₁₂ {O(n)}
t₅₈₉, X₁₃: X₁₃ {O(n)}
t₅₈₉, X₁₄: X₁₄ {O(n)}
t₄₄₂, X₀: X₁₁ {O(n)}
t₄₄₂, X₁: X₁₂ {O(n)}
t₄₄₂, X₂: X₁₄ {O(n)}
t₄₄₂, X₃: X₁₃ {O(n)}
t₄₄₂, X₄: X₄ {O(n)}
t₄₄₂, X₅: X₅ {O(n)}
t₄₄₂, X₆: X₆ {O(n)}
t₄₄₂, X₇: X₇ {O(n)}
t₄₄₂, X₈: X₈ {O(n)}
t₄₄₂, X₉: X₉ {O(n)}
t₄₄₂, X₁₀: X₁₀ {O(n)}
t₄₄₂, X₁₁: X₁₁ {O(n)}
t₄₄₂, X₁₂: X₁₂ {O(n)}
t₄₄₂, X₁₃: X₁₃ {O(n)}
t₄₄₂, X₁₄: X₁₄ {O(n)}
t₅₆₄, X₀: X₁₁ {O(n)}
t₅₆₄, X₁: X₁₂ {O(n)}
t₅₆₄, X₂: X₁₄ {O(n)}
t₅₆₄, X₃: X₁₃ {O(n)}
t₅₆₄, X₄: X₄ {O(n)}
t₅₆₄, X₅: X₅ {O(n)}
t₅₆₄, X₆: X₆ {O(n)}
t₅₆₄, X₇: X₇ {O(n)}
t₅₆₄, X₈: X₈ {O(n)}
t₅₆₄, X₉: X₉ {O(n)}
t₅₆₄, X₁₀: X₁₀ {O(n)}
t₅₆₄, X₁₁: X₁₁ {O(n)}
t₅₆₄, X₁₂: X₁₂ {O(n)}
t₅₆₄, X₁₃: X₁₃ {O(n)}
t₅₆₄, X₁₄: X₁₄ {O(n)}
t₅₇₇, X₀: X₁₁ {O(n)}
t₅₇₇, X₁: X₁₂ {O(n)}
t₅₇₇, X₂: X₁₄ {O(n)}
t₅₇₇, X₃: X₁₃ {O(n)}
t₅₇₇, X₄: X₄ {O(n)}
t₅₇₇, X₅: X₅ {O(n)}
t₅₇₇, X₆: X₆ {O(n)}
t₅₇₇, X₇: X₇ {O(n)}
t₅₇₇, X₈: X₈ {O(n)}
t₅₇₇, X₉: X₉ {O(n)}
t₅₇₇, X₁₀: X₁₀ {O(n)}
t₅₇₇, X₁₁: X₁₁ {O(n)}
t₅₇₇, X₁₂: X₁₂ {O(n)}
t₅₇₇, X₁₃: X₁₃ {O(n)}
t₅₇₇, X₁₄: X₁₄ {O(n)}
t₅₉₀, X₀: X₁₁ {O(n)}
t₅₉₀, X₁: X₁₂ {O(n)}
t₅₉₀, X₂: X₁₄ {O(n)}
t₅₉₀, X₃: X₁₃ {O(n)}
t₅₉₀, X₄: X₄ {O(n)}
t₅₉₀, X₅: X₅ {O(n)}
t₅₉₀, X₆: X₆ {O(n)}
t₅₉₀, X₇: X₇ {O(n)}
t₅₉₀, X₈: X₈ {O(n)}
t₅₉₀, X₉: X₉ {O(n)}
t₅₉₀, X₁₀: X₁₀ {O(n)}
t₅₉₀, X₁₁: X₁₁ {O(n)}
t₅₉₀, X₁₂: X₁₂ {O(n)}
t₅₉₀, X₁₃: X₁₃ {O(n)}
t₅₉₀, X₁₄: X₁₄ {O(n)}
t₄₄₃, X₀: 108⋅X₁₀+108⋅X₁₂+11⋅X₁₁+216⋅X₁₄+4⋅X₉+61 {O(n)}
t₄₄₃, X₄: 0 {O(1)}
t₄₄₃, X₇: 7⋅X₇ {O(n)}
t₄₄₃, X₈: 7⋅X₈ {O(n)}
t₄₄₃, X₉: 7⋅X₉ {O(n)}
t₄₄₃, X₁₀: 7⋅X₁₀ {O(n)}
t₄₄₃, X₁₁: 7⋅X₁₁ {O(n)}
t₄₄₃, X₁₂: 7⋅X₁₂ {O(n)}
t₄₄₃, X₁₃: 7⋅X₁₃ {O(n)}
t₄₄₃, X₁₄: 7⋅X₁₄ {O(n)}
t₄₄₄, X₀: 108⋅X₁₀+108⋅X₁₂+11⋅X₁₁+216⋅X₁₄+4⋅X₉+61 {O(n)}
t₄₄₄, X₄: 0 {O(1)}
t₄₄₄, X₇: 7⋅X₇ {O(n)}
t₄₄₄, X₈: 7⋅X₈ {O(n)}
t₄₄₄, X₉: 7⋅X₉ {O(n)}
t₄₄₄, X₁₀: 7⋅X₁₀ {O(n)}
t₄₄₄, X₁₁: 7⋅X₁₁ {O(n)}
t₄₄₄, X₁₂: 7⋅X₁₂ {O(n)}
t₄₄₄, X₁₃: 7⋅X₁₃ {O(n)}
t₄₄₄, X₁₄: 7⋅X₁₄ {O(n)}
t₄₅₆, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+31 {O(n)}
t₄₅₆, X₄: 0 {O(1)}
t₄₅₆, X₇: 3⋅X₇ {O(n)}
t₄₅₆, X₈: 3⋅X₈ {O(n)}
t₄₅₆, X₉: 3⋅X₉ {O(n)}
t₄₅₆, X₁₀: 3⋅X₁₀ {O(n)}
t₄₅₆, X₁₁: 3⋅X₁₁ {O(n)}
t₄₅₆, X₁₂: 3⋅X₁₂ {O(n)}
t₄₅₆, X₁₃: 3⋅X₁₃ {O(n)}
t₄₅₆, X₁₄: 3⋅X₁₄ {O(n)}
t₄₅₇, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₅₇, X₄: 0 {O(1)}
t₄₅₇, X₇: 3⋅X₇ {O(n)}
t₄₅₇, X₈: 3⋅X₈ {O(n)}
t₄₅₇, X₉: 3⋅X₉ {O(n)}
t₄₅₇, X₁₀: 3⋅X₁₀ {O(n)}
t₄₅₇, X₁₁: 3⋅X₁₁ {O(n)}
t₄₅₇, X₁₂: 3⋅X₁₂ {O(n)}
t₄₅₇, X₁₃: 3⋅X₁₃ {O(n)}
t₄₅₇, X₁₄: 3⋅X₁₄ {O(n)}
t₄₅₈, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₅₈, X₄: 0 {O(1)}
t₄₅₈, X₇: 3⋅X₇ {O(n)}
t₄₅₈, X₈: 3⋅X₈ {O(n)}
t₄₅₈, X₉: 3⋅X₉ {O(n)}
t₄₅₈, X₁₀: 3⋅X₁₀ {O(n)}
t₄₅₈, X₁₁: 3⋅X₁₁ {O(n)}
t₄₅₈, X₁₂: 3⋅X₁₂ {O(n)}
t₄₅₈, X₁₃: 3⋅X₁₃ {O(n)}
t₄₅₈, X₁₄: 3⋅X₁₄ {O(n)}
t₄₅₉, X₀: 108⋅X₁₀+108⋅X₁₂+11⋅X₁₁+216⋅X₁₄+4⋅X₉+61 {O(n)}
t₄₅₉, X₄: 0 {O(1)}
t₄₅₉, X₇: 7⋅X₇ {O(n)}
t₄₅₉, X₈: 7⋅X₈ {O(n)}
t₄₅₉, X₉: 7⋅X₉ {O(n)}
t₄₅₉, X₁₀: 7⋅X₁₀ {O(n)}
t₄₅₉, X₁₁: 7⋅X₁₁ {O(n)}
t₄₅₉, X₁₂: 7⋅X₁₂ {O(n)}
t₄₅₉, X₁₃: 7⋅X₁₃ {O(n)}
t₄₅₉, X₁₄: 7⋅X₁₄ {O(n)}
t₄₆₀, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₆₀, X₄: 0 {O(1)}
t₄₆₀, X₇: 3⋅X₇ {O(n)}
t₄₆₀, X₈: 3⋅X₈ {O(n)}
t₄₆₀, X₉: 3⋅X₉ {O(n)}
t₄₆₀, X₁₀: 3⋅X₁₀ {O(n)}
t₄₆₀, X₁₁: 3⋅X₁₁ {O(n)}
t₄₆₀, X₁₂: 3⋅X₁₂ {O(n)}
t₄₆₀, X₁₃: 3⋅X₁₃ {O(n)}
t₄₆₀, X₁₄: 3⋅X₁₄ {O(n)}
t₄₆₁, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₆₁, X₄: 0 {O(1)}
t₄₆₁, X₇: 3⋅X₇ {O(n)}
t₄₆₁, X₈: 3⋅X₈ {O(n)}
t₄₆₁, X₉: 3⋅X₉ {O(n)}
t₄₆₁, X₁₀: 3⋅X₁₀ {O(n)}
t₄₆₁, X₁₁: 3⋅X₁₁ {O(n)}
t₄₆₁, X₁₂: 3⋅X₁₂ {O(n)}
t₄₆₁, X₁₃: 3⋅X₁₃ {O(n)}
t₄₆₁, X₁₄: 3⋅X₁₄ {O(n)}
t₆₁₄, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₆₁₄, X₇: 3⋅X₇ {O(n)}
t₆₁₄, X₈: 3⋅X₈ {O(n)}
t₆₁₄, X₉: 3⋅X₉ {O(n)}
t₆₁₄, X₁₀: 3⋅X₁₀ {O(n)}
t₆₁₄, X₁₁: 3⋅X₁₁ {O(n)}
t₆₁₄, X₁₂: 3⋅X₁₂ {O(n)}
t₆₁₄, X₁₃: 3⋅X₁₃ {O(n)}
t₆₁₄, X₁₄: 3⋅X₁₄ {O(n)}
t₆₁₉, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₆₁₉, X₇: 3⋅X₇ {O(n)}
t₆₁₉, X₈: 3⋅X₈ {O(n)}
t₆₁₉, X₉: 3⋅X₉ {O(n)}
t₆₁₉, X₁₀: 3⋅X₁₀ {O(n)}
t₆₁₉, X₁₁: 3⋅X₁₁ {O(n)}
t₆₁₉, X₁₂: 3⋅X₁₂ {O(n)}
t₆₁₉, X₁₃: 3⋅X₁₃ {O(n)}
t₆₁₉, X₁₄: 3⋅X₁₄ {O(n)}
t₄₆₂, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₆₂, X₄: 0 {O(1)}
t₄₆₂, X₇: 3⋅X₇ {O(n)}
t₄₆₂, X₈: 3⋅X₈ {O(n)}
t₄₆₂, X₉: 3⋅X₉ {O(n)}
t₄₆₂, X₁₀: 3⋅X₁₀ {O(n)}
t₄₆₂, X₁₁: 3⋅X₁₁ {O(n)}
t₄₆₂, X₁₂: 3⋅X₁₂ {O(n)}
t₄₆₂, X₁₃: 3⋅X₁₃ {O(n)}
t₄₆₂, X₁₄: 3⋅X₁₄ {O(n)}
t₆₁₅, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₆₁₅, X₇: 3⋅X₇ {O(n)}
t₆₁₅, X₈: 3⋅X₈ {O(n)}
t₆₁₅, X₉: 3⋅X₉ {O(n)}
t₆₁₅, X₁₀: 3⋅X₁₀ {O(n)}
t₆₁₅, X₁₁: 3⋅X₁₁ {O(n)}
t₆₁₅, X₁₂: 3⋅X₁₂ {O(n)}
t₆₁₅, X₁₃: 3⋅X₁₃ {O(n)}
t₆₁₅, X₁₄: 3⋅X₁₄ {O(n)}
t₆₂₀, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₆₂₀, X₇: 3⋅X₇ {O(n)}
t₆₂₀, X₈: 3⋅X₈ {O(n)}
t₆₂₀, X₉: 3⋅X₉ {O(n)}
t₆₂₀, X₁₀: 3⋅X₁₀ {O(n)}
t₆₂₀, X₁₁: 3⋅X₁₁ {O(n)}
t₆₂₀, X₁₂: 3⋅X₁₂ {O(n)}
t₆₂₀, X₁₃: 3⋅X₁₃ {O(n)}
t₆₂₀, X₁₄: 3⋅X₁₄ {O(n)}
t₄₆₃, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₆₃, X₄: 0 {O(1)}
t₄₆₃, X₇: 3⋅X₇ {O(n)}
t₄₆₃, X₈: 3⋅X₈ {O(n)}
t₄₆₃, X₉: 3⋅X₉ {O(n)}
t₄₆₃, X₁₀: 3⋅X₁₀ {O(n)}
t₄₆₃, X₁₁: 3⋅X₁₁ {O(n)}
t₄₆₃, X₁₂: 3⋅X₁₂ {O(n)}
t₄₆₃, X₁₃: 3⋅X₁₃ {O(n)}
t₄₆₃, X₁₄: 3⋅X₁₄ {O(n)}
t₆₁₆, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₆₁₆, X₇: 3⋅X₇ {O(n)}
t₆₁₆, X₈: 3⋅X₈ {O(n)}
t₆₁₆, X₉: 3⋅X₉ {O(n)}
t₆₁₆, X₁₀: 3⋅X₁₀ {O(n)}
t₆₁₆, X₁₁: 3⋅X₁₁ {O(n)}
t₆₁₆, X₁₂: 3⋅X₁₂ {O(n)}
t₆₁₆, X₁₃: 3⋅X₁₃ {O(n)}
t₆₁₆, X₁₄: 3⋅X₁₄ {O(n)}
t₆₂₁, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₆₂₁, X₇: 3⋅X₇ {O(n)}
t₆₂₁, X₈: 3⋅X₈ {O(n)}
t₆₂₁, X₉: 3⋅X₉ {O(n)}
t₆₂₁, X₁₀: 3⋅X₁₀ {O(n)}
t₆₂₁, X₁₁: 3⋅X₁₁ {O(n)}
t₆₂₁, X₁₂: 3⋅X₁₂ {O(n)}
t₆₂₁, X₁₃: 3⋅X₁₃ {O(n)}
t₆₂₁, X₁₄: 3⋅X₁₄ {O(n)}
t₄₆₄, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₄₆₄, X₄: 0 {O(1)}
t₄₆₄, X₇: 3⋅X₇ {O(n)}
t₄₆₄, X₈: 3⋅X₈ {O(n)}
t₄₆₄, X₉: 3⋅X₉ {O(n)}
t₄₆₄, X₁₀: 3⋅X₁₀ {O(n)}
t₄₆₄, X₁₁: 3⋅X₁₁ {O(n)}
t₄₆₄, X₁₂: 3⋅X₁₂ {O(n)}
t₄₆₄, X₁₃: 3⋅X₁₃ {O(n)}
t₄₆₄, X₁₄: 3⋅X₁₄ {O(n)}
t₆₁₇, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₆₁₇, X₇: 3⋅X₇ {O(n)}
t₆₁₇, X₈: 3⋅X₈ {O(n)}
t₆₁₇, X₉: 3⋅X₉ {O(n)}
t₆₁₇, X₁₀: 3⋅X₁₀ {O(n)}
t₆₁₇, X₁₁: 3⋅X₁₁ {O(n)}
t₆₁₇, X₁₂: 3⋅X₁₂ {O(n)}
t₆₁₇, X₁₃: 3⋅X₁₃ {O(n)}
t₆₁₇, X₁₄: 3⋅X₁₄ {O(n)}
t₆₂₂, X₀: 108⋅X₁₄+2⋅X₉+5⋅X₁₁+54⋅X₁₀+54⋅X₁₂+30 {O(n)}
t₆₂₂, X₇: 3⋅X₇ {O(n)}
t₆₂₂, X₈: 3⋅X₈ {O(n)}
t₆₂₂, X₉: 3⋅X₉ {O(n)}
t₆₂₂, X₁₀: 3⋅X₁₀ {O(n)}
t₆₂₂, X₁₁: 3⋅X₁₁ {O(n)}
t₆₂₂, X₁₂: 3⋅X₁₂ {O(n)}
t₆₂₂, X₁₃: 3⋅X₁₃ {O(n)}
t₆₂₂, X₁₄: 3⋅X₁₄ {O(n)}
t₄₆₅, X₀: X₁₁ {O(n)}
t₄₆₅, X₁: X₁₂ {O(n)}
t₄₆₅, X₂: X₁₄ {O(n)}
t₄₆₅, X₃: X₁₃ {O(n)}
t₄₆₅, X₄: 0 {O(1)}
t₄₆₅, X₅: X₅ {O(n)}
t₄₆₅, X₆: X₆ {O(n)}
t₄₆₅, X₇: X₇ {O(n)}
t₄₆₅, X₈: X₈ {O(n)}
t₄₆₅, X₉: X₉ {O(n)}
t₄₆₅, X₁₀: X₁₀ {O(n)}
t₄₆₅, X₁₁: X₁₁ {O(n)}
t₄₆₅, X₁₂: X₁₂ {O(n)}
t₄₆₅, X₁₃: X₁₃ {O(n)}
t₄₆₅, X₁₄: X₁₄ {O(n)}
t₆₁₈, X₀: X₁₁ {O(n)}
t₆₁₈, X₁: X₁₂ {O(n)}
t₆₁₈, X₂: X₁₄ {O(n)}
t₆₁₈, X₃: X₁₃ {O(n)}
t₆₁₈, X₅: X₅ {O(n)}
t₆₁₈, X₆: X₆ {O(n)}
t₆₁₈, X₇: X₇ {O(n)}
t₆₁₈, X₈: X₈ {O(n)}
t₆₁₈, X₉: X₉ {O(n)}
t₆₁₈, X₁₀: X₁₀ {O(n)}
t₆₁₈, X₁₁: X₁₁ {O(n)}
t₆₁₈, X₁₂: X₁₂ {O(n)}
t₆₁₈, X₁₃: X₁₃ {O(n)}
t₆₁₈, X₁₄: X₁₄ {O(n)}
t₆₂₃, X₀: X₁₁ {O(n)}
t₆₂₃, X₁: X₁₂ {O(n)}
t₆₂₃, X₂: X₁₄ {O(n)}
t₆₂₃, X₃: X₁₃ {O(n)}
t₆₂₃, X₅: X₅ {O(n)}
t₆₂₃, X₆: X₆ {O(n)}
t₆₂₃, X₇: X₇ {O(n)}
t₆₂₃, X₈: X₈ {O(n)}
t₆₂₃, X₉: X₉ {O(n)}
t₆₂₃, X₁₀: X₁₀ {O(n)}
t₆₂₃, X₁₁: X₁₁ {O(n)}
t₆₂₃, X₁₂: X₁₂ {O(n)}
t₆₂₃, X₁₃: X₁₃ {O(n)}
t₆₂₃, X₁₄: X₁₄ {O(n)}