Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, 1, X₄, X₅) :|: X₁ ≤ X₅
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, 1, X₂, X₃, X₄, X₅)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₃
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₃ ≤ X₁
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l10(X₀, X₁, X₂, X₃, X₄, X₅)
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅)
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₂+1, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₂+1
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₂+1, X₁, X₂, X₃, 1, X₅) :|: X₂+1 ≤ X₅
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅)
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₀ < X₄
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₀
t₁₀: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄+1, X₅)

Preprocessing

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l6

Found invariant X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7

Found invariant 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l5

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l8

Found invariant 1 ≤ X₁ for location l1

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₁ for location l10

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₁ for location l4

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l9

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, 1, X₄, X₅) :|: X₁ ≤ X₅ ∧ 1 ≤ X₁
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₁ ∧ 1 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, 1, X₂, X₃, X₄, X₅)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₃ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l10(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₅ ≤ X₁ ∧ 1 ≤ X₁
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₂+1, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₂+1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₂+1, X₁, X₂, X₃, 1, X₅) :|: X₂+1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅) :|: X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₀ < X₄ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₀: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀

MPRF for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, 1, X₄, X₅) :|: X₁ ≤ X₅ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅+2 {O(n)}

MPRF:

l5 [X₅-X₁ ]
l1 [X₅+1-X₁ ]
l7 [X₅-X₁ ]
l3 [X₅-X₁ ]
l6 [X₅-X₁ ]
l9 [X₅-X₁ ]
l8 [X₅-X₁ ]

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅+2 {O(n)}

MPRF:

l5 [X₅-X₁ ]
l1 [X₅+1-X₁ ]
l7 [X₅+1-X₁ ]
l3 [X₅+1-X₁ ]
l6 [X₅+1-X₁ ]
l9 [X₅+1-X₁ ]
l8 [X₅+1-X₁ ]

MPRF for transition t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₅+1 {O(n)}

MPRF:

l5 [2⋅X₅-X₁ ]
l1 [2⋅X₅-X₁ ]
l7 [2⋅X₅-X₁ ]
l3 [2⋅X₅-X₁ ]
l6 [2⋅X₅-X₁ ]
l9 [2⋅X₅-X₁ ]
l8 [2⋅X₅-X₁ ]

MPRF for transition t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₃ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}

MPRF:

l1 [X₅ ]
l5 [X₅-X₃ ]
l7 [X₅-X₃ ]
l3 [X₅+1-X₃ ]
l6 [X₅-X₃ ]
l9 [X₅-X₃ ]
l8 [X₅-X₃ ]

MPRF for transition t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₂+1, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₂+1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

4⋅X₅⋅X₅+6⋅X₅+3 {O(n^2)}

MPRF:

l1 [X₁ ]
l5 [X₁-X₃ ]
l7 [X₁-X₃ ]
l3 [X₁+1-X₃ ]
l6 [X₁+1-X₃ ]
l9 [X₁+1-X₃ ]
l8 [X₁+1-X₃ ]

MPRF for transition t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅) :|: X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

6⋅X₅⋅X₅+6⋅X₅ {O(n^2)}

MPRF:

l1 [3⋅X₅ ]
l5 [3⋅X₅-X₃-1 ]
l7 [3⋅X₅-X₃-1 ]
l3 [3⋅X₅-X₃-1 ]
l6 [3⋅X₅-X₃-1 ]
l9 [X₂+3⋅X₅-X₀-X₃ ]
l8 [3⋅X₅-X₃-1 ]

MPRF for transition t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₂+1, X₁, X₂, X₃, 1, X₅) :|: X₂+1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+X₅ {O(n^3)}

MPRF:

l3 [X₅ ]
l5 [X₅ ]
l1 [X₅ ]
l7 [X₅-X₂ ]
l6 [X₅-X₂ ]
l9 [X₅-X₂-1 ]
l8 [X₅-X₂-1 ]

MPRF for transition t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₀ < X₄ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

18⋅X₅⋅X₅⋅X₅+30⋅X₅⋅X₅+13⋅X₅+1 {O(n^3)}

MPRF:

l3 [X₅-X₁ ]
l5 [X₅-X₁ ]
l1 [X₅-X₁ ]
l7 [X₅-X₂ ]
l6 [X₅-X₂ ]
l9 [X₅+1-X₀ ]
l8 [X₅+1-X₀ ]

MPRF for transition t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+342⋅X₅⋅X₅⋅X₅+251⋅X₅⋅X₅+84⋅X₅+8 {O(n^6)}

MPRF:

l5 [X₅+2 ]
l1 [X₅+2 ]
l6 [X₂+2 ]
l7 [X₀+1 ]
l3 [X₅+2 ]
l9 [X₀+1-X₄ ]
l8 [X₀+2-X₄ ]

MPRF for transition t₁₀: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+71⋅X₅+6 {O(n^6)}

MPRF:

l5 [X₅+1 ]
l1 [X₅+1 ]
l6 [X₂+1 ]
l7 [X₂+1 ]
l3 [X₅+1 ]
l9 [X₂+2-X₄ ]
l8 [X₂+2-X₄ ]

Analysing control-flow refined program

Cut unsatisfiable transition t₅: l3→l5

Found invariant 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l6___3

Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location n_l6___9

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l6___13

Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location n_l7___12

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l8___11

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l9___7

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l8___6

Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location n_l7___8

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___2

Found invariant X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5

Found invariant 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l8___4

Found invariant 1 ≤ X₁ for location l1

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₁ for location l10

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₁ for location l4

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___1

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l3

Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location n_l3___10

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l9___5

knowledge_propagation leads to new time bound X₅+2 {O(n)} for transition t₁₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___13(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₁ ≤ X₅ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound X₅+2 {O(n)} for transition t₁₁₅: n_l6___13(X₀, X₁, X₂, X₃, X₄, X₅) → n_l7___12(X₂+1, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₅ < 1+X₂ ∧ X₂ ≤ X₅ ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound X₅+2 {O(n)} for transition t₁₂₀: n_l7___12(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___10(X₀, X₁, X₀-1, X₃+1, X₄, X₀-1) :|: 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₅ < X₀ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₅+1 ∧ 1+X₅ ≤ X₀ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀

MPRF for transition t₁₁₂: n_l3___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___13(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₀ ≤ 1+X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

4⋅X₅⋅X₅+8⋅X₅+5 {O(n^2)}

MPRF:

l1 [X₁-1 ]
l3 [X₁-X₃ ]
l5 [X₁-X₃ ]
n_l6___13 [X₁-X₃ ]
n_l6___9 [X₅-X₃ ]
n_l7___12 [X₁-X₃ ]
n_l7___2 [X₁-X₃ ]
n_l3___1 [X₁+1-X₃ ]
n_l7___8 [X₁-X₃ ]
n_l3___10 [X₁-X₃ ]
n_l8___11 [X₁-X₃ ]
n_l6___3 [X₁-X₃ ]
n_l9___5 [X₁-X₃ ]
n_l8___4 [X₁-X₃ ]
n_l9___7 [X₁-X₃ ]
n_l8___6 [X₁-X₃ ]

MPRF for transition t₁₄₁: n_l3___1(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF:

l3 [X₅-X₁ ]
l1 [X₅-X₁ ]
l5 [X₅-X₃ ]
n_l6___13 [X₅-X₁ ]
n_l6___9 [0 ]
n_l7___12 [X₅-X₁ ]
n_l7___2 [X₅-X₁ ]
n_l3___1 [X₅-X₁ ]
n_l7___8 [0 ]
n_l3___10 [0 ]
n_l8___11 [X₅-X₁ ]
n_l6___3 [X₅-X₁ ]
n_l9___5 [X₅-X₁ ]
n_l8___4 [X₅-X₁ ]
n_l9___7 [X₅-X₁ ]
n_l8___6 [X₅-X₁ ]

MPRF for transition t₁₁₃: n_l3___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___9(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₅ < 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ 1+X₂ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₅⋅X₅+10⋅X₅+12 {O(n^2)}

MPRF:

l3 [0 ]
l1 [0 ]
l5 [0 ]
n_l7___12 [X₅-X₁ ]
n_l6___13 [0 ]
n_l6___9 [X₀+X₂-X₃-X₅ ]
n_l7___2 [2⋅X₄-2⋅X₂-2 ]
n_l3___1 [0 ]
n_l7___8 [X₀-X₃ ]
n_l3___10 [X₀+1-X₃ ]
n_l8___11 [0 ]
n_l6___3 [2⋅X₄-2⋅X₂-2 ]
n_l9___5 [0 ]
n_l8___4 [0 ]
n_l9___7 [0 ]
n_l8___6 [0 ]

MPRF for transition t₁₄₂: n_l3___10(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₅+2 {O(n)}

MPRF:

l3 [X₅+1-X₁ ]
l1 [X₅+1-X₁ ]
l5 [X₂+1-X₃ ]
n_l6___13 [X₅+1-X₁ ]
n_l6___9 [1 ]
n_l7___12 [1 ]
n_l7___2 [X₄-X₁ ]
n_l3___1 [X₄-X₁ ]
n_l7___8 [1 ]
n_l3___10 [1 ]
n_l8___11 [X₄+X₅-X₁ ]
n_l6___3 [X₄+X₅-X₀-X₁ ]
n_l9___5 [X₂+X₅+2-X₀-X₁ ]
n_l8___4 [X₂+X₅+2-X₀-X₁ ]
n_l9___7 [X₄+X₅-X₁ ]
n_l8___6 [X₄+X₅-X₁-1 ]

MPRF for transition t₁₁₆: n_l6___13(X₀, X₁, X₂, X₃, X₄, X₅) → n_l8___11(X₂+1, X₁, X₂, X₃, 1, X₅) :|: X₁ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₅ ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}

MPRF:

l1 [X₅ ]
l3 [X₅ ]
l5 [X₁-X₃ ]
n_l6___13 [X₁+1-X₃ ]
n_l6___9 [X₂-X₃ ]
n_l7___12 [X₁-X₃ ]
n_l7___2 [X₁-X₃ ]
n_l3___1 [X₁+1-X₃ ]
n_l7___8 [X₂-X₃ ]
n_l3___10 [X₁-X₃ ]
n_l8___11 [X₁-X₃ ]
n_l6___3 [X₁-X₃ ]
n_l9___5 [X₁-X₃ ]
n_l8___4 [X₁-X₃ ]
n_l9___7 [X₁-X₃ ]
n_l8___6 [X₁-X₃ ]

MPRF for transition t₁₁₇: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l7___2(X₂+1, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₅ < 1+X₂ ∧ X₂ ≤ X₅ ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}

MPRF:

l1 [X₅ ]
l3 [X₅ ]
l5 [-X₃ ]
n_l6___13 [X₅+1-X₃ ]
n_l6___9 [-X₃ ]
n_l7___12 [0 ]
n_l7___2 [X₂-X₃ ]
n_l3___1 [X₄-X₃ ]
n_l7___8 [-X₃ ]
n_l3___10 [-X₃ ]
n_l8___11 [X₄+X₅-X₃ ]
n_l6___3 [X₅+1-X₃ ]
n_l9___5 [X₅+1-X₃ ]
n_l8___4 [X₅+1-X₃ ]
n_l9___7 [X₄+X₅-X₃ ]
n_l8___6 [X₅+1-X₃ ]

MPRF for transition t₁₁₉: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅) → n_l7___8(X₂+1, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₅ < 1+X₂ ∧ X₂ ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₅ < 1+X₂ ∧ X₂ ≤ X₅ ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₅⋅X₅+10⋅X₅+13 {O(n^2)}

MPRF:

l3 [X₅-X₁-2 ]
l1 [X₅-X₁-2 ]
l5 [2⋅X₂-X₀-X₃ ]
n_l7___12 [X₁+X₅-2⋅X₂-2 ]
n_l6___13 [X₅-X₂-2 ]
n_l6___9 [X₅+1-X₃ ]
n_l7___2 [X₅-X₁-2 ]
n_l3___1 [X₄-X₁-3 ]
n_l7___8 [X₅-X₃ ]
n_l3___10 [X₁+1-X₃ ]
n_l8___11 [X₅-X₁-2⋅X₄ ]
n_l6___3 [X₅-X₁-2 ]
n_l9___5 [2⋅X₂+X₅-2⋅X₀-X₁ ]
n_l8___4 [X₅-X₁-2 ]
n_l9___7 [X₅-X₁-2⋅X₄ ]
n_l8___6 [X₅-X₁-2 ]

MPRF for transition t₁₂₁: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___1(X₀, X₁, X₀-1, X₃+1, X₄, X₀-1) :|: 1+X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₅ < X₀ ∧ X₀ ≤ 1+X₅ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₅+1 ∧ 1+X₅ ≤ X₀ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

4⋅X₅⋅X₅+6⋅X₅+3 {O(n^2)}

MPRF:

l1 [X₁ ]
l3 [X₁+1-X₃ ]
l5 [X₁-X₃ ]
n_l6___13 [X₁+1-X₃ ]
n_l6___9 [X₁-X₃ ]
n_l7___12 [X₁-X₃ ]
n_l7___2 [X₁+1-X₃ ]
n_l3___1 [X₁+1-X₃ ]
n_l7___8 [X₁-X₃ ]
n_l3___10 [X₁-X₃ ]
n_l8___11 [X₁+1-X₃ ]
n_l6___3 [X₁+1-X₃ ]
n_l9___5 [X₁+1-X₃ ]
n_l8___4 [X₁+1-X₃ ]
n_l9___7 [X₁+X₄-X₃ ]
n_l8___6 [X₁+1-X₃ ]

MPRF for transition t₁₂₂: n_l7___8(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___10(X₀, X₁, X₀-1, X₃+1, X₄, X₀-1) :|: 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₅+1 ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₅+1 ∧ 1+X₅ ≤ X₀ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₅⋅X₅+9⋅X₅+10 {O(n^2)}

MPRF:

l3 [0 ]
l1 [0 ]
l5 [0 ]
n_l7___12 [0 ]
n_l6___13 [0 ]
n_l6___9 [X₀-X₃ ]
n_l7___2 [X₄-X₂-1 ]
n_l3___1 [0 ]
n_l7___8 [X₀-X₃ ]
n_l3___10 [X₀-X₃ ]
n_l8___11 [0 ]
n_l6___3 [X₄-X₂-1 ]
n_l9___5 [0 ]
n_l8___4 [0 ]
n_l9___7 [0 ]
n_l8___6 [0 ]

All Bounds

Timebounds

Overall timebound:216⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+576⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+696⋅X₅⋅X₅⋅X₅⋅X₅+690⋅X₅⋅X₅⋅X₅+520⋅X₅⋅X₅+187⋅X₅+27 {O(n^6)}
t₀: 1 {O(1)}
t₂: X₅+2 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₅: X₅+2 {O(n)}
t₁₃: 1 {O(1)}
t₁₂: 2⋅X₅+1 {O(n)}
t₆: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+X₅ {O(n^3)}
t₇: 4⋅X₅⋅X₅+6⋅X₅+3 {O(n^2)}
t₁₁: 6⋅X₅⋅X₅+6⋅X₅ {O(n^2)}
t₈: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+342⋅X₅⋅X₅⋅X₅+251⋅X₅⋅X₅+84⋅X₅+8 {O(n^6)}
t₉: 18⋅X₅⋅X₅⋅X₅+30⋅X₅⋅X₅+13⋅X₅+1 {O(n^3)}
t₁₀: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+71⋅X₅+6 {O(n^6)}

Costbounds

Overall costbound: 216⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+576⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+696⋅X₅⋅X₅⋅X₅⋅X₅+690⋅X₅⋅X₅⋅X₅+520⋅X₅⋅X₅+187⋅X₅+27 {O(n^6)}
t₀: 1 {O(1)}
t₂: X₅+2 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₅: X₅+2 {O(n)}
t₁₃: 1 {O(1)}
t₁₂: 2⋅X₅+1 {O(n)}
t₆: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+X₅ {O(n^3)}
t₇: 4⋅X₅⋅X₅+6⋅X₅+3 {O(n^2)}
t₁₁: 6⋅X₅⋅X₅+6⋅X₅ {O(n^2)}
t₈: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+342⋅X₅⋅X₅⋅X₅+251⋅X₅⋅X₅+84⋅X₅+8 {O(n^6)}
t₉: 18⋅X₅⋅X₅⋅X₅+30⋅X₅⋅X₅+13⋅X₅+1 {O(n^3)}
t₁₀: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+71⋅X₅+6 {O(n^6)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₂, X₀: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+X₀+10 {O(n^3)}
t₂, X₁: 2⋅X₅+2 {O(n)}
t₂, X₂: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+X₂+8 {O(n^3)}
t₂, X₃: 1 {O(1)}
t₂, X₄: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+71⋅X₅+X₄+7 {O(n^6)}
t₂, X₅: X₅ {O(n)}
t₃, X₀: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+X₀+10 {O(n^3)}
t₃, X₁: 2⋅X₅+3 {O(n)}
t₃, X₂: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+X₂+8 {O(n^3)}
t₃, X₃: 6⋅X₅⋅X₅+6⋅X₅+X₃+1 {O(n^2)}
t₃, X₄: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+2⋅X₄+71⋅X₅+7 {O(n^6)}
t₃, X₅: 2⋅X₅ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: 1 {O(1)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₄, X₀: 12⋅X₅⋅X₅⋅X₅+12⋅X₅⋅X₅+18⋅X₅+X₀+20 {O(n^3)}
t₄, X₁: 2⋅X₅+2 {O(n)}
t₄, X₂: 4⋅X₅+4 {O(n)}
t₄, X₃: 6⋅X₅⋅X₅+6⋅X₅+1 {O(n^2)}
t₄, X₄: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+71⋅X₅+X₄+7 {O(n^6)}
t₄, X₅: X₅ {O(n)}
t₅, X₀: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+10 {O(n^3)}
t₅, X₁: 2⋅X₅+2 {O(n)}
t₅, X₂: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₅, X₃: 6⋅X₅⋅X₅+6⋅X₅+1 {O(n^2)}
t₅, X₄: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+71⋅X₅+X₄+7 {O(n^6)}
t₅, X₅: X₅ {O(n)}
t₁₃, X₀: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+X₀+10 {O(n^3)}
t₁₃, X₁: 2⋅X₅+3 {O(n)}
t₁₃, X₂: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+X₂+8 {O(n^3)}
t₁₃, X₃: 6⋅X₅⋅X₅+6⋅X₅+X₃+1 {O(n^2)}
t₁₃, X₄: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+2⋅X₄+71⋅X₅+7 {O(n^6)}
t₁₃, X₅: 2⋅X₅ {O(n)}
t₁₂, X₀: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+10 {O(n^3)}
t₁₂, X₁: 2⋅X₅+2 {O(n)}
t₁₂, X₂: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₁₂, X₃: 6⋅X₅⋅X₅+6⋅X₅+1 {O(n^2)}
t₁₂, X₄: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+71⋅X₅+X₄+7 {O(n^6)}
t₁₂, X₅: X₅ {O(n)}
t₆, X₀: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+5⋅X₅+4 {O(n^3)}
t₆, X₁: 2⋅X₅+2 {O(n)}
t₆, X₂: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₆, X₃: 6⋅X₅⋅X₅+6⋅X₅+1 {O(n^2)}
t₆, X₄: 1 {O(1)}
t₆, X₅: X₅ {O(n)}
t₇, X₀: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+10 {O(n^3)}
t₇, X₁: 2⋅X₅+2 {O(n)}
t₇, X₂: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₇, X₃: 6⋅X₅⋅X₅+6⋅X₅+1 {O(n^2)}
t₇, X₄: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+71⋅X₅+X₄+7 {O(n^6)}
t₇, X₅: X₅ {O(n)}
t₁₁, X₀: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+10 {O(n^3)}
t₁₁, X₁: 2⋅X₅+2 {O(n)}
t₁₁, X₂: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₁₁, X₃: 6⋅X₅⋅X₅+6⋅X₅+1 {O(n^2)}
t₁₁, X₄: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+71⋅X₅+X₄+7 {O(n^6)}
t₁₁, X₅: X₅ {O(n)}
t₈, X₀: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+5⋅X₅+4 {O(n^3)}
t₈, X₁: 2⋅X₅+2 {O(n)}
t₈, X₂: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₈, X₃: 6⋅X₅⋅X₅+6⋅X₅+1 {O(n^2)}
t₈, X₄: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+71⋅X₅+7 {O(n^6)}
t₈, X₅: X₅ {O(n)}
t₉, X₀: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+5⋅X₅+4 {O(n^3)}
t₉, X₁: 2⋅X₅+2 {O(n)}
t₉, X₂: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+5⋅X₅+4 {O(n^3)}
t₉, X₃: 6⋅X₅⋅X₅+6⋅X₅+1 {O(n^2)}
t₉, X₄: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+71⋅X₅+7 {O(n^6)}
t₉, X₅: X₅ {O(n)}
t₁₀, X₀: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+5⋅X₅+4 {O(n^3)}
t₁₀, X₁: 2⋅X₅+2 {O(n)}
t₁₀, X₂: 6⋅X₅⋅X₅⋅X₅+6⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₁₀, X₃: 6⋅X₅⋅X₅+6⋅X₅+1 {O(n^2)}
t₁₀, X₄: 108⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+348⋅X₅⋅X₅⋅X₅⋅X₅+324⋅X₅⋅X₅⋅X₅+221⋅X₅⋅X₅+71⋅X₅+7 {O(n^6)}
t₁₀, X₅: X₅ {O(n)}