Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₂-1, X₄)
t₃: l10(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₂
t₂: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₂ < X₄
t₁: l11(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, 1, X₃, X₄)
t₁₇: l12(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄)
t₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄)
t₈: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₃
t₉: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₃ < 0
t₁₃: l5(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀ < X₁
t₁₄: l5(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀
t₁₀: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, nondef.1, X₂, X₃, X₄)
t₁₅: l8(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃-1, X₄)
t₁₆: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂+1, X₃, X₄)
Preprocessing
Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l2
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l6
Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₂ for location l12
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l7
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l5
Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₂ for location l13
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l8
Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l1
Found invariant 1 ≤ X₂ for location l10
Found invariant 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l4
Found invariant 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l9
Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₂-1, X₄) :|: 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂
t₃: l10(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₂ ∧ 1 ≤ X₂
t₂: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₂ < X₄ ∧ 1 ≤ X₂
t₁: l11(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, 1, X₃, X₄)
t₁₇: l12(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₂ ∧ 1 ≤ X₂
t₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂
t₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂
t₈: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₃ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₉: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₃ < 0 ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₃: l5(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀ < X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₄: l5(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₀: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₂: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, nondef.1, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₅: l8(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃-1, X₄) :|: 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₁₆: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂+1, X₃, X₄) :|: 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂
MPRF for transition t₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₂-1, X₄) :|: 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF:
l2 [X₄-X₂ ]
l3 [X₄-X₂ ]
l1 [X₄-X₂ ]
l6 [X₄-X₂-1 ]
l7 [X₄-X₂-1 ]
l5 [X₄-X₂-1 ]
l8 [X₄-X₂-1 ]
l4 [X₄-X₂-1 ]
l9 [X₄-X₂-1 ]
l10 [X₄-X₂ ]
MPRF for transition t₂: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₂ < X₄ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+2 {O(n)}
MPRF:
l2 [X₄-X₂ ]
l3 [X₄-X₂ ]
l1 [X₄-X₂ ]
l6 [X₄-X₂ ]
l7 [X₄-X₂ ]
l5 [X₄-X₂ ]
l8 [X₄-X₂ ]
l4 [X₄-X₂ ]
l9 [X₄-X₂ ]
l10 [X₄+1-X₂ ]
MPRF for transition t₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+2 {O(n)}
MPRF:
l2 [X₄+1-X₂ ]
l3 [X₄-X₂ ]
l1 [X₄-X₂ ]
l6 [X₄-X₂ ]
l7 [X₄-X₂ ]
l5 [X₄-X₂ ]
l8 [X₄-X₂ ]
l4 [X₄-X₂ ]
l9 [X₄-X₂ ]
l10 [X₄+1-X₂ ]
MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF:
l2 [X₄-X₂ ]
l3 [X₄-X₂ ]
l1 [X₄-X₂-1 ]
l6 [X₄-X₂-1 ]
l7 [X₄-X₂-1 ]
l5 [X₄-X₂-1 ]
l8 [X₄-X₂-1 ]
l4 [X₄-X₂-1 ]
l9 [X₄-X₂-1 ]
l10 [X₄-X₂ ]
MPRF for transition t₉: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₃ < 0 ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
2⋅X₄+2 {O(n)}
MPRF:
l2 [2⋅X₄-X₂-1 ]
l3 [2⋅X₄-X₂-1 ]
l1 [2⋅X₄-X₂-1 ]
l6 [2⋅X₄-X₂-1 ]
l7 [2⋅X₄-X₂-1 ]
l5 [2⋅X₄-X₂-1 ]
l8 [2⋅X₄-X₂-1 ]
l4 [2⋅X₄-X₂-1 ]
l9 [2⋅X₄-X₂-2 ]
l10 [2⋅X₄-X₂-1 ]
MPRF for transition t₁₄: l5(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+2 {O(n)}
MPRF:
l2 [X₄+1-X₂ ]
l3 [X₄+1-X₂ ]
l1 [X₄+1-X₂ ]
l6 [X₄+1-X₂ ]
l7 [X₄+1-X₂ ]
l5 [X₄+1-X₂ ]
l8 [X₄+1-X₂ ]
l4 [X₄+1-X₂ ]
l9 [X₄-X₂ ]
l10 [X₄+1-X₂ ]
MPRF for transition t₁₆: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂+1, X₃, X₄) :|: 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF:
l2 [X₄-X₂ ]
l3 [X₄-X₂ ]
l1 [X₄-X₂ ]
l6 [X₄-X₂ ]
l7 [X₄-X₂ ]
l5 [X₄-X₂ ]
l8 [X₄-X₂ ]
l4 [X₄-X₂ ]
l9 [X₄-X₂ ]
l10 [X₄-X₂ ]
MPRF for transition t₈: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₃ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+3⋅X₄+3 {O(n^2)}
MPRF:
l10 [X₂ ]
l2 [X₂ ]
l3 [X₂ ]
l1 [X₂ ]
l9 [X₃ ]
l6 [X₃ ]
l7 [X₃ ]
l5 [X₃ ]
l8 [X₃ ]
l4 [X₃+1 ]
MPRF for transition t₁₃: l5(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀ < X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+4⋅X₄+5 {O(n^2)}
MPRF:
l10 [X₂+1 ]
l2 [X₂+1 ]
l3 [X₂+1 ]
l1 [X₂+1 ]
l9 [X₃ ]
l6 [X₃+2 ]
l7 [X₃+2 ]
l5 [X₃+2 ]
l8 [X₃+1 ]
l4 [X₃+2 ]
MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+3⋅X₄+3 {O(n^2)}
MPRF:
l10 [X₂ ]
l2 [X₂ ]
l3 [X₂ ]
l1 [X₂ ]
l9 [X₃ ]
l6 [X₃+1 ]
l7 [X₃ ]
l5 [X₃ ]
l8 [X₃ ]
l4 [X₃+1 ]
MPRF for transition t₁₂: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, nondef.1, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
3⋅X₄⋅X₄+7⋅X₄+3 {O(n^2)}
MPRF:
l10 [2⋅X₄-X₂ ]
l2 [2⋅X₄-X₂ ]
l3 [2⋅X₄-X₂ ]
l1 [X₂+2 ]
l9 [X₂+X₃-X₄ ]
l6 [X₃+2 ]
l7 [X₃+2 ]
l5 [X₃+1 ]
l8 [X₃+1 ]
l4 [X₃+2 ]
MPRF for transition t₁₅: l8(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃-1, X₄) :|: 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
X₄⋅X₄+3⋅X₄+3 {O(n^2)}
MPRF:
l10 [X₂ ]
l2 [X₂ ]
l3 [X₂ ]
l1 [X₂ ]
l9 [X₃ ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₃+1 ]
l8 [X₃+1 ]
l4 [X₃+1 ]
Analysing control-flow refined program
Cut unsatisfiable transition t₉: l4→l9
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂ for location n_l6___9
Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l2
Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l8___1
Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___4
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l8___6
Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l7___3
Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location n_l5___2
Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₂ for location l12
Found invariant 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l4___5
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂ for location n_l7___8
Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₂ for location l13
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂ for location n_l5___7
Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l1
Found invariant 1 ≤ X₂ for location l10
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂ for location l4
Found invariant 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l9
Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l3
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₁₁₁: l4(X₀, X₁, X₂, X₃, X₄) → n_l6___9(X₀, X₁, X₂, X₃, X₄) :|: 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₂ ≤ 1+X₃ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₁₁₆: n_l6___9(X₀, X₁, X₂, X₃, X₄) → n_l7___8(X₀, X₁, X₂, X₃, X₄) :|: 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₃+1 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₁₁₈: n_l7___8(X₀, X₁, X₂, X₃, X₄) → n_l5___7(X₀, NoDet0, Arg2_P, Arg3_P, Arg4_P) :|: 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₃+1 ∧ 1+X₃ ≤ X₂ ∧ 1+Arg2_P ≤ Arg4_P ∧ 1+Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₁₁₄: n_l5___7(X₀, X₁, X₂, X₃, X₄) → n_l8___6(X₀, X₁, X₂, X₃, X₄) :|: 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₃+1 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₀ < X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₁₃₀: n_l5___7(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₁₂₀: n_l8___6(X₀, X₁, X₂, X₃, X₄) → n_l4___5(X₀, X₁, X₂, X₃-1, X₄) :|: X₀ < X₁ ∧ 2+X₃ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₃+1 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁
MPRF for transition t₁₁₂: n_l4___5(X₀, X₁, X₂, X₃, X₄) → n_l6___4(X₀, X₁, X₂, X₃, X₄) :|: 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 2+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
X₄⋅X₄+6⋅X₄+5 {O(n^2)}
MPRF:
l2 [0 ]
l3 [0 ]
l1 [0 ]
l4 [0 ]
l10 [0 ]
n_l8___6 [0 ]
l9 [0 ]
n_l6___4 [X₃+1 ]
n_l6___9 [0 ]
n_l7___3 [X₃+1 ]
n_l5___2 [X₃+1 ]
n_l7___8 [0 ]
n_l5___7 [0 ]
n_l8___1 [X₃+1 ]
n_l4___5 [X₃+2 ]
MPRF for transition t₁₂₈: n_l4___5(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₃ < 0 ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF:
l2 [X₄-X₂ ]
l3 [X₄-X₂ ]
l1 [X₄-X₂ ]
l4 [X₄-X₂ ]
l10 [X₄-X₂ ]
l9 [X₄-X₂-1 ]
n_l6___4 [X₄-X₂ ]
n_l6___9 [X₄-X₂ ]
n_l7___3 [X₄-X₂ ]
n_l5___2 [X₄-X₂ ]
n_l7___8 [X₄-X₂ ]
n_l5___7 [X₄-X₂ ]
n_l8___1 [X₄-X₂ ]
n_l8___6 [X₄-X₂ ]
n_l4___5 [X₄-X₂ ]
MPRF for transition t₁₁₃: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l8___1(X₀, X₁, X₂, X₃, X₄) :|: 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₀ < X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
3⋅X₄⋅X₄+11⋅X₄+9 {O(n^2)}
MPRF:
l2 [X₄+1-X₂ ]
l3 [X₄+1-X₂ ]
l1 [X₄+1-X₂ ]
l4 [X₄-X₃ ]
l10 [X₄+1-X₂ ]
n_l8___6 [X₄-X₃ ]
l9 [X₄-X₂ ]
n_l6___4 [X₃+X₄+2-X₂ ]
n_l6___9 [X₄-X₃ ]
n_l7___3 [X₃+X₄+2-X₂ ]
n_l5___2 [X₃+X₄+2-X₂ ]
n_l7___8 [X₄-X₃ ]
n_l5___7 [X₄-X₃ ]
n_l8___1 [X₃+X₄+1-X₂ ]
n_l4___5 [X₃+X₄+2-X₂ ]
MPRF for transition t₁₂₉: n_l5___2(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
X₄+2 {O(n)}
MPRF:
l2 [X₄+1-X₂ ]
l3 [X₄+1-X₂ ]
l1 [X₄+1-X₂ ]
l4 [X₂+X₄-2⋅X₃-1 ]
l10 [X₄+1-X₂ ]
l9 [X₄-X₂ ]
n_l6___4 [X₄+1-X₂ ]
n_l6___9 [X₂+X₄-2⋅X₃-1 ]
n_l7___3 [X₄+1-X₂ ]
n_l5___2 [X₄+1-X₂ ]
n_l7___8 [X₂+X₄-2⋅X₃-1 ]
n_l5___7 [X₂+X₄-2⋅X₃-1 ]
n_l8___1 [X₄+1-X₂ ]
n_l8___6 [X₂+X₄-2⋅X₃-1 ]
n_l4___5 [X₄+1-X₂ ]
MPRF for transition t₁₁₅: n_l6___4(X₀, X₁, X₂, X₃, X₄) → n_l7___3(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
3⋅X₄⋅X₄+10⋅X₄+8 {O(n^2)}
MPRF:
l2 [X₄+1-X₂ ]
l3 [X₄+1-X₂ ]
l1 [X₄+1-X₂ ]
l4 [X₄-X₃ ]
l10 [X₄+1-X₂ ]
n_l8___6 [X₄-X₃ ]
l9 [X₄-X₂ ]
n_l6___4 [X₃+X₄+1-X₂ ]
n_l6___9 [X₄-X₃ ]
n_l7___3 [X₃+X₄-X₂ ]
n_l5___2 [X₃+X₄-X₂ ]
n_l7___8 [X₄-X₃ ]
n_l5___7 [X₄-X₃ ]
n_l8___1 [X₃+X₄-X₂ ]
n_l4___5 [X₃+X₄+1-X₂ ]
MPRF for transition t₁₁₇: n_l7___3(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, NoDet0, Arg2_P, Arg3_P, Arg4_P) :|: 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+Arg2_P ≤ Arg4_P ∧ 1+Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
X₄⋅X₄+5⋅X₄+4 {O(n^2)}
MPRF:
l2 [0 ]
l3 [0 ]
l1 [0 ]
l4 [0 ]
l10 [0 ]
n_l8___6 [0 ]
l9 [0 ]
n_l6___4 [X₃+1 ]
n_l6___9 [2⋅X₃+2-2⋅X₂ ]
n_l7___3 [X₃+1 ]
n_l5___2 [X₃ ]
n_l7___8 [X₂-X₃-1 ]
n_l5___7 [0 ]
n_l8___1 [X₃ ]
n_l4___5 [X₃+1 ]
MPRF for transition t₁₁₉: n_l8___1(X₀, X₁, X₂, X₃, X₄) → n_l4___5(X₀, X₁, X₂, X₃-1, X₄) :|: X₀ < X₁ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:
new bound:
3⋅X₄⋅X₄+10⋅X₄+8 {O(n^2)}
MPRF:
l2 [X₄+1-X₂ ]
l3 [X₄+1-X₂ ]
l1 [X₄+1-X₂ ]
l4 [X₄+1-X₂ ]
l10 [X₄+1-X₂ ]
n_l8___6 [X₄-X₂ ]
l9 [X₄-X₂ ]
n_l6___4 [X₃+X₄+1-X₂ ]
n_l6___9 [X₄+1-X₂ ]
n_l7___3 [X₃+X₄+1-X₂ ]
n_l5___2 [X₃+X₄+1-X₂ ]
n_l7___8 [X₄+1-X₂ ]
n_l5___7 [X₄-X₃ ]
n_l8___1 [X₃+X₄+1-X₂ ]
n_l4___5 [X₃+X₄+1-X₂ ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:7⋅X₄⋅X₄+28⋅X₄+32 {O(n^2)}
t₀: 1 {O(1)}
t₇: X₄+1 {O(n)}
t₂: X₄+2 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₁₇: 1 {O(1)}
t₄: X₄+2 {O(n)}
t₆: X₄+1 {O(n)}
t₈: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₉: 2⋅X₄+2 {O(n)}
t₁₃: X₄⋅X₄+4⋅X₄+5 {O(n^2)}
t₁₄: X₄+2 {O(n)}
t₁₀: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₁₂: 3⋅X₄⋅X₄+7⋅X₄+3 {O(n^2)}
t₁₅: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₁₆: X₄+1 {O(n)}
Costbounds
Overall costbound: 7⋅X₄⋅X₄+28⋅X₄+32 {O(n^2)}
t₀: 1 {O(1)}
t₇: X₄+1 {O(n)}
t₂: X₄+2 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₁₇: 1 {O(1)}
t₄: X₄+2 {O(n)}
t₆: X₄+1 {O(n)}
t₈: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₉: 2⋅X₄+2 {O(n)}
t₁₃: X₄⋅X₄+4⋅X₄+5 {O(n^2)}
t₁₄: X₄+2 {O(n)}
t₁₀: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₁₂: 3⋅X₄⋅X₄+7⋅X₄+3 {O(n^2)}
t₁₅: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₁₆: X₄+1 {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₇, X₂: X₄+2 {O(n)}
t₇, X₃: X₄+2 {O(n)}
t₇, X₄: X₄ {O(n)}
t₂, X₂: X₄+2 {O(n)}
t₂, X₃: X₃+X₄+4 {O(n)}
t₂, X₄: X₄ {O(n)}
t₃, X₂: X₄+3 {O(n)}
t₃, X₃: X₃+X₄+4 {O(n)}
t₃, X₄: 2⋅X₄ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: 1 {O(1)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁₇, X₂: X₄+3 {O(n)}
t₁₇, X₃: X₃+X₄+4 {O(n)}
t₁₇, X₄: 2⋅X₄ {O(n)}
t₄, X₂: X₄+2 {O(n)}
t₄, X₃: X₃+X₄+4 {O(n)}
t₄, X₄: X₄ {O(n)}
t₆, X₂: X₄+2 {O(n)}
t₆, X₃: X₃+X₄+4 {O(n)}
t₆, X₄: X₄ {O(n)}
t₈, X₂: X₄+2 {O(n)}
t₈, X₃: X₄+3 {O(n)}
t₈, X₄: X₄ {O(n)}
t₉, X₂: X₄+2 {O(n)}
t₉, X₃: 1 {O(1)}
t₉, X₄: X₄ {O(n)}
t₁₃, X₂: X₄+2 {O(n)}
t₁₃, X₃: X₄+3 {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₄, X₂: X₄+2 {O(n)}
t₁₄, X₃: X₄+3 {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₀, X₂: X₄+2 {O(n)}
t₁₀, X₃: X₄+3 {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₂, X₂: X₄+2 {O(n)}
t₁₂, X₃: X₄+3 {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₅, X₂: X₄+2 {O(n)}
t₁₅, X₃: X₄+3 {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₆, X₂: X₄+2 {O(n)}
t₁₆, X₃: X₄+4 {O(n)}
t₁₆, X₄: X₄ {O(n)}