Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: X₃ < 0 ∧ X₃ < 0
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: X₃ < 0 ∧ 0 < X₃
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ X₃ < 0
t₁₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 0 < X₃
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₁+X₀, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₁+X₀, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ < 0
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 < X₃
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₁+X₀, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: X₁ < X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₁
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆)
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀
t₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0
t₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₄, X₅, X₂, X₃, X₄, X₅, X₆)
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)

Preprocessing

Cut unsatisfiable transition t₁₀: l1→l4

Cut unsatisfiable transition t₁₁: l1→l4

Cut unsatisfiable transition t₁₃: l1→l4

Cut unsatisfiable transition t₁₄: l1→l4

Cut unsatisfiable transition t₁₅: l1→l4

Cut unsatisfiable transition t₁₆: l1→l4

Eliminate variables {X₆} that do not contribute to the problem

Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2

Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l1

Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: nondef.0
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₃₇: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅)
t₃₈: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅) :|: X₃ < 0 ∧ X₃ < 0 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅) :|: 0 < X₃ ∧ 0 < X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₁+X₀, X₂-1, X₂, X₃, X₄, X₅) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₄₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₂: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₃: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅) :|: X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₄: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁ ∧ 0 < X₀
t₄₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0
t₄₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0
t₄₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₄, X₅, X₂, X₃, X₄, X₅)
t₄₈: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅)

Analysing control-flow refined program

Cut unsatisfiable transition t₁₄₇: n_l4___8→l6

Cut unsatisfiable transition t₁₅₁: n_l4___8→l6

Cut unsatisfiable transition t₁₅₅: n_l4___8→l6

Cut unsatisfiable transition t₁₄₆: n_l4___9→l6

Cut unsatisfiable transition t₁₅₀: n_l4___9→l6

Cut unsatisfiable transition t₁₅₄: n_l4___9→l6

Found invariant 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___7

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l4___9

Found invariant 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___3

Found invariant 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___6

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___10

Found invariant 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___2

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l3___12

Found invariant X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___11

Found invariant 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___5

Found invariant X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ for location l4

Found invariant 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l4___8

Found invariant X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___1

Found invariant X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___13

Found invariant 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l2___4

MPRF for transition t₁₁₂: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

5⋅X₄+X₅+2 {O(n)}

MPRF:

n_l3___3 [X₁ ]
n_l1___2 [X₁ ]
n_l3___6 [X₂ ]
n_l1___5 [X₀ ]
n_l4___8 [X₂-1 ]
n_l2___4 [X₂-1 ]
n_l4___9 [X₀ ]
n_l2___7 [X₀ ]

MPRF for transition t₁₁₃: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ < 0 ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₄+4⋅X₅+8 {O(n)}

MPRF:

n_l3___3 [X₂ ]
n_l1___2 [X₂ ]
n_l3___6 [X₂-1 ]
n_l1___5 [X₀-1 ]
n_l4___8 [X₁ ]
n_l2___4 [X₁ ]
n_l4___9 [X₂-2 ]
n_l2___7 [X₂-2 ]

MPRF for transition t₁₁₄: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 < X₃ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

5⋅X₄+X₅+6 {O(n)}

MPRF:

n_l3___3 [X₁ ]
n_l1___2 [X₂ ]
n_l3___6 [X₀-1 ]
n_l1___5 [X₀-1 ]
n_l4___8 [X₂-1 ]
n_l2___4 [X₁ ]
n_l4___9 [X₀-1 ]
n_l2___7 [X₀-1 ]

MPRF for transition t₁₁₅: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄+3⋅X₅+8 {O(n)}

MPRF:

n_l3___3 [X₂-1 ]
n_l1___2 [X₁-1 ]
n_l3___6 [X₀ ]
n_l1___5 [X₀ ]
n_l4___8 [X₂-2 ]
n_l2___4 [X₂-2 ]
n_l4___9 [X₂-1 ]
n_l2___7 [X₂-1 ]

MPRF for transition t₁₁₆: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ < 0 ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₄+4⋅X₅+4 {O(n)}

MPRF:

n_l3___3 [X₁ ]
n_l1___2 [X₁ ]
n_l3___6 [X₀ ]
n_l1___5 [X₀ ]
n_l4___8 [X₁ ]
n_l2___4 [X₁ ]
n_l4___9 [X₂-1 ]
n_l2___7 [X₂-1 ]

MPRF for transition t₁₁₇: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 < X₃ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₄ {O(n)}

MPRF:

n_l3___3 [X₂ ]
n_l1___2 [X₁ ]
n_l3___6 [X₀ ]
n_l1___5 [X₀ ]
n_l4___8 [X₁ ]
n_l2___4 [X₁ ]
n_l4___9 [X₀ ]
n_l2___7 [X₀ ]

MPRF for transition t₁₂₀: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___3(X₀, X₁, X₁, X₃, X₄, X₅) :|: 1 ≤ X₀ ∧ X₁ < X₀ ∧ 0 < X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ < X₀ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₄+4⋅X₅+2 {O(n)}

MPRF:

n_l3___3 [X₂ ]
n_l1___2 [X₂ ]
n_l3___6 [X₂ ]
n_l1___5 [X₀ ]
n_l4___8 [X₁+1 ]
n_l2___4 [X₁+1 ]
n_l4___9 [X₂ ]
n_l2___7 [X₂ ]

MPRF for transition t₁₂₁: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___6(X₀, X₁, X₀, X₃, X₄, X₅) :|: 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄+3⋅X₅+6 {O(n)}

MPRF:

n_l3___3 [X₂ ]
n_l1___2 [X₁-1 ]
n_l3___6 [X₂-1 ]
n_l1___5 [X₂-1 ]
n_l4___8 [X₂-1 ]
n_l2___4 [X₁ ]
n_l4___9 [X₂-1 ]
n_l2___7 [X₂-1 ]

MPRF for transition t₁₂₄: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___2(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₄ {O(n)}

MPRF:

n_l3___3 [X₁ ]
n_l1___2 [X₂-1 ]
n_l3___6 [X₀ ]
n_l1___5 [X₂ ]
n_l4___8 [X₁ ]
n_l2___4 [X₁ ]
n_l4___9 [X₀ ]
n_l2___7 [X₀ ]

MPRF for transition t₁₂₅: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___5(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄+3⋅X₅+6 {O(n)}

MPRF:

n_l3___3 [X₂ ]
n_l1___2 [X₁ ]
n_l3___6 [X₀ ]
n_l1___5 [X₀-1 ]
n_l4___8 [X₂-1 ]
n_l2___4 [X₁ ]
n_l4___9 [X₂-1 ]
n_l2___7 [X₀ ]

MPRF for transition t₁₂₇: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₄+2 {O(n)}

MPRF:

n_l3___3 [X₂ ]
n_l1___2 [X₂ ]
n_l3___6 [X₀ ]
n_l1___5 [X₂ ]
n_l4___8 [X₁+1 ]
n_l2___4 [X₁ ]
n_l4___9 [X₀ ]
n_l2___7 [X₀ ]

MPRF for transition t₁₂₈: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₄+3⋅X₅+4 {O(n)}

MPRF:

n_l3___3 [X₁+1 ]
n_l1___2 [X₁+1 ]
n_l3___6 [2⋅X₀+1-X₂ ]
n_l1___5 [X₂+1 ]
n_l4___8 [X₂ ]
n_l2___4 [X₂ ]
n_l4___9 [X₂+1 ]
n_l2___7 [X₀+1 ]

CFR: Improvement to new bound with the following program:

new bound:

32⋅X₅+40⋅X₄+48 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: Arg2_P, NoDet0
Locations: l0, l4, l5, l6, l7, n_l1___1, n_l1___10, n_l1___2, n_l1___5, n_l2___13, n_l2___4, n_l2___7, n_l3___11, n_l3___12, n_l3___3, n_l3___6, n_l4___8, n_l4___9
Transitions:
t₃₇: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅)
t₄₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
t₄₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
t₁₂₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ 0 < X₀ ∧ 0 < X₁ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
t₄₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₄, X₅, X₂, X₃, X₄, X₅)
t₄₈: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅)
t₁₀₆: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀₇: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ < 0 ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀₈: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 < X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀₉: n_l1___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₁₀: n_l1___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ < 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₁₁: n_l1___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 < X₃ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₁₂: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₁₁₃: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ < 0 ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₁₁₄: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 < X₃ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₁₁₅: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁₆: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ < 0 ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁₇: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 < X₃ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁₈: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___11(X₀, X₁, X₀, X₃, X₄, X₅) :|: 0 < X₁ ∧ 0 < X₄ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₁₉: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___12(X₀, X₁, X₁, X₃, X₄, X₅) :|: 0 < X₁ ∧ 0 < X₄ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₀: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___3(X₀, X₁, X₁, X₃, X₄, X₅) :|: 1 ≤ X₀ ∧ X₁ < X₀ ∧ 0 < X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ < X₀ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₁₂₁: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___6(X₀, X₁, X₀, X₃, X₄, X₅) :|: 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₂₂: n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___1(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₂₃: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___10(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₂₄: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___2(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₁₂₅: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___5(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₄₅: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₄₉: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₅₃: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₂₇: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₄₈: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₅₂: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₅₆: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₂₈: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀

All Bounds

Timebounds

Overall timebound:32⋅X₅+40⋅X₄+70 {O(n)}
t₃₇: 1 {O(1)}
t₄₅: 1 {O(1)}
t₄₆: 1 {O(1)}
t₁₂₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈: 1 {O(1)}
t₁₀₆: 1 {O(1)}
t₁₀₇: 1 {O(1)}
t₁₀₈: 1 {O(1)}
t₁₀₉: 1 {O(1)}
t₁₁₀: 1 {O(1)}
t₁₁₁: 1 {O(1)}
t₁₁₂: 5⋅X₄+X₅+2 {O(n)}
t₁₁₃: 2⋅X₄+4⋅X₅+8 {O(n)}
t₁₁₄: 5⋅X₄+X₅+6 {O(n)}
t₁₁₅: 3⋅X₄+3⋅X₅+8 {O(n)}
t₁₁₆: 2⋅X₄+4⋅X₅+4 {O(n)}
t₁₁₇: 2⋅X₅+4⋅X₄ {O(n)}
t₁₁₈: 1 {O(1)}
t₁₁₉: 1 {O(1)}
t₁₂₀: 2⋅X₄+4⋅X₅+2 {O(n)}
t₁₂₁: 3⋅X₄+3⋅X₅+6 {O(n)}
t₁₂₂: 1 {O(1)}
t₁₂₃: 1 {O(1)}
t₁₂₄: 2⋅X₅+4⋅X₄ {O(n)}
t₁₂₅: 3⋅X₄+3⋅X₅+6 {O(n)}
t₁₂₇: 2⋅X₅+4⋅X₄+2 {O(n)}
t₁₄₅: 1 {O(1)}
t₁₄₉: 1 {O(1)}
t₁₅₃: 1 {O(1)}
t₁₂₈: 3⋅X₄+3⋅X₅+4 {O(n)}
t₁₄₈: 1 {O(1)}
t₁₅₂: 1 {O(1)}
t₁₅₆: 1 {O(1)}

Costbounds

Overall costbound: 32⋅X₅+40⋅X₄+70 {O(n)}
t₃₇: 1 {O(1)}
t₄₅: 1 {O(1)}
t₄₆: 1 {O(1)}
t₁₂₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈: 1 {O(1)}
t₁₀₆: 1 {O(1)}
t₁₀₇: 1 {O(1)}
t₁₀₈: 1 {O(1)}
t₁₀₉: 1 {O(1)}
t₁₁₀: 1 {O(1)}
t₁₁₁: 1 {O(1)}
t₁₁₂: 5⋅X₄+X₅+2 {O(n)}
t₁₁₃: 2⋅X₄+4⋅X₅+8 {O(n)}
t₁₁₄: 5⋅X₄+X₅+6 {O(n)}
t₁₁₅: 3⋅X₄+3⋅X₅+8 {O(n)}
t₁₁₆: 2⋅X₄+4⋅X₅+4 {O(n)}
t₁₁₇: 2⋅X₅+4⋅X₄ {O(n)}
t₁₁₈: 1 {O(1)}
t₁₁₉: 1 {O(1)}
t₁₂₀: 2⋅X₄+4⋅X₅+2 {O(n)}
t₁₂₁: 3⋅X₄+3⋅X₅+6 {O(n)}
t₁₂₂: 1 {O(1)}
t₁₂₃: 1 {O(1)}
t₁₂₄: 2⋅X₅+4⋅X₄ {O(n)}
t₁₂₅: 3⋅X₄+3⋅X₅+6 {O(n)}
t₁₂₇: 2⋅X₅+4⋅X₄+2 {O(n)}
t₁₄₅: 1 {O(1)}
t₁₄₉: 1 {O(1)}
t₁₅₃: 1 {O(1)}
t₁₂₈: 3⋅X₄+3⋅X₅+4 {O(n)}
t₁₄₈: 1 {O(1)}
t₁₅₂: 1 {O(1)}
t₁₅₆: 1 {O(1)}

Sizebounds

t₃₇, X₀: X₀ {O(n)}
t₃₇, X₁: X₁ {O(n)}
t₃₇, X₂: X₂ {O(n)}
t₃₇, X₃: X₃ {O(n)}
t₃₇, X₄: X₄ {O(n)}
t₃₇, X₅: X₅ {O(n)}
t₄₅, X₀: X₄ {O(n)}
t₄₅, X₁: X₅ {O(n)}
t₄₅, X₂: X₂ {O(n)}
t₄₅, X₃: X₃ {O(n)}
t₄₅, X₄: X₄ {O(n)}
t₄₅, X₅: X₅ {O(n)}
t₄₆, X₀: X₄ {O(n)}
t₄₆, X₁: X₅ {O(n)}
t₄₆, X₂: X₂ {O(n)}
t₄₆, X₃: X₃ {O(n)}
t₄₆, X₄: X₄ {O(n)}
t₄₆, X₅: X₅ {O(n)}
t₁₂₆, X₀: X₄ {O(n)}
t₁₂₆, X₁: X₅ {O(n)}
t₁₂₆, X₂: X₂ {O(n)}
t₁₂₆, X₃: X₃ {O(n)}
t₁₂₆, X₄: X₄ {O(n)}
t₁₂₆, X₅: X₅ {O(n)}
t₄₇, X₀: X₄ {O(n)}
t₄₇, X₁: X₅ {O(n)}
t₄₇, X₂: X₂ {O(n)}
t₄₇, X₃: X₃ {O(n)}
t₄₇, X₄: X₄ {O(n)}
t₄₇, X₅: X₅ {O(n)}
t₄₈, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅36⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅36⋅X₅+6⋅X₅+8⋅X₄ {O(EXP)}
t₄₈, X₁: 24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅48⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅48⋅X₅+12⋅X₄+14⋅X₅ {O(EXP)}
t₄₈, X₂: 2⋅X₂+6 {O(n)}
t₄₈, X₄: 8⋅X₄ {O(n)}
t₄₈, X₅: 8⋅X₅ {O(n)}
t₁₀₆, X₀: 2⋅X₅ {O(n)}
t₁₀₆, X₁: X₅ {O(n)}
t₁₀₆, X₂: X₄ {O(n)}
t₁₀₆, X₃: 0 {O(1)}
t₁₀₆, X₄: X₄ {O(n)}
t₁₀₆, X₅: X₅ {O(n)}
t₁₀₇, X₀: X₄ {O(n)}
t₁₀₇, X₁: 2⋅X₅ {O(n)}
t₁₀₇, X₂: X₄ {O(n)}
t₁₀₇, X₄: X₄ {O(n)}
t₁₀₇, X₅: X₅ {O(n)}
t₁₀₈, X₀: X₄ {O(n)}
t₁₀₈, X₁: 2⋅X₅ {O(n)}
t₁₀₈, X₂: X₄ {O(n)}
t₁₀₈, X₄: X₄ {O(n)}
t₁₀₈, X₅: X₅ {O(n)}
t₁₀₉, X₀: 2⋅X₄ {O(n)}
t₁₀₉, X₁: X₅ {O(n)}
t₁₀₉, X₂: X₅ {O(n)}
t₁₀₉, X₃: 0 {O(1)}
t₁₀₉, X₄: X₄ {O(n)}
t₁₀₉, X₅: X₅ {O(n)}
t₁₁₀, X₀: X₄ {O(n)}
t₁₁₀, X₁: 2⋅X₄ {O(n)}
t₁₁₀, X₂: X₅ {O(n)}
t₁₁₀, X₄: X₄ {O(n)}
t₁₁₀, X₅: X₅ {O(n)}
t₁₁₁, X₀: X₄ {O(n)}
t₁₁₁, X₁: 2⋅X₄ {O(n)}
t₁₁₁, X₂: X₅ {O(n)}
t₁₁₁, X₄: X₄ {O(n)}
t₁₁₁, X₅: X₅ {O(n)}
t₁₁₂, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₁₂, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₁₁₂, X₂: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₁₁₂, X₃: 0 {O(1)}
t₁₁₂, X₄: 6⋅X₄ {O(n)}
t₁₁₂, X₅: 6⋅X₅ {O(n)}
t₁₁₃, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₁₃, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₁₃, X₂: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₁₁₃, X₄: 6⋅X₄ {O(n)}
t₁₁₃, X₅: 6⋅X₅ {O(n)}
t₁₁₄, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₁₄, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₁₄, X₂: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₁₁₄, X₄: 6⋅X₄ {O(n)}
t₁₁₄, X₅: 6⋅X₅ {O(n)}
t₁₁₅, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₁₅, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₁₅, X₂: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄ {O(EXP)}
t₁₁₅, X₃: 0 {O(1)}
t₁₁₅, X₄: 6⋅X₄ {O(n)}
t₁₁₅, X₅: 6⋅X₅ {O(n)}
t₁₁₆, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄ {O(EXP)}
t₁₁₆, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₁₆, X₂: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄ {O(EXP)}
t₁₁₆, X₄: 6⋅X₄ {O(n)}
t₁₁₆, X₅: 6⋅X₅ {O(n)}
t₁₁₇, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄ {O(EXP)}
t₁₁₇, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₁₇, X₂: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄ {O(EXP)}
t₁₁₇, X₄: 6⋅X₄ {O(n)}
t₁₁₇, X₅: 6⋅X₅ {O(n)}
t₁₁₈, X₀: X₄ {O(n)}
t₁₁₈, X₁: X₅ {O(n)}
t₁₁₈, X₂: X₄ {O(n)}
t₁₁₈, X₃: X₃ {O(n)}
t₁₁₈, X₄: X₄ {O(n)}
t₁₁₈, X₅: X₅ {O(n)}
t₁₁₉, X₀: X₄ {O(n)}
t₁₁₉, X₁: X₅ {O(n)}
t₁₁₉, X₂: X₅ {O(n)}
t₁₁₉, X₃: X₃ {O(n)}
t₁₁₉, X₄: X₄ {O(n)}
t₁₁₉, X₅: X₅ {O(n)}
t₁₂₀, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₂₀, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₁₂₀, X₂: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₁₂₀, X₃: 0 {O(1)}
t₁₂₀, X₄: 6⋅X₄ {O(n)}
t₁₂₀, X₅: 6⋅X₅ {O(n)}
t₁₂₁, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄ {O(EXP)}
t₁₂₁, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₂₁, X₂: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄ {O(EXP)}
t₁₂₁, X₄: 6⋅X₄ {O(n)}
t₁₂₁, X₅: 6⋅X₅ {O(n)}
t₁₂₂, X₀: X₄ {O(n)}
t₁₂₂, X₁: X₅ {O(n)}
t₁₂₂, X₂: X₄ {O(n)}
t₁₂₂, X₄: X₄ {O(n)}
t₁₂₂, X₅: X₅ {O(n)}
t₁₂₃, X₀: X₄ {O(n)}
t₁₂₃, X₁: X₅ {O(n)}
t₁₂₃, X₂: X₅ {O(n)}
t₁₂₃, X₄: X₄ {O(n)}
t₁₂₃, X₅: X₅ {O(n)}
t₁₂₄, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₂₄, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₁₂₄, X₂: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₁₂₄, X₄: 6⋅X₄ {O(n)}
t₁₂₄, X₅: 6⋅X₅ {O(n)}
t₁₂₅, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄ {O(EXP)}
t₁₂₅, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₂₅, X₂: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄ {O(EXP)}
t₁₂₅, X₄: 6⋅X₄ {O(n)}
t₁₂₅, X₅: 6⋅X₅ {O(n)}
t₁₂₇, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₂₇, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₁₂₇, X₂: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅+3⋅X₅+5⋅X₄ {O(EXP)}
t₁₂₇, X₃: 0 {O(1)}
t₁₂₇, X₄: 6⋅X₄ {O(n)}
t₁₂₇, X₅: 6⋅X₅ {O(n)}
t₁₄₅, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+2⋅X₄+2⋅X₅ {O(EXP)}
t₁₄₅, X₁: 0 {O(1)}
t₁₄₅, X₂: 1 {O(1)}
t₁₄₅, X₃: 0 {O(1)}
t₁₄₅, X₄: 14⋅X₄ {O(n)}
t₁₄₅, X₅: 14⋅X₅ {O(n)}
t₁₄₉, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+2⋅X₄+2⋅X₅ {O(EXP)}
t₁₄₉, X₁: 0 {O(1)}
t₁₄₉, X₂: 1 {O(1)}
t₁₄₉, X₃: 0 {O(1)}
t₁₄₉, X₄: 14⋅X₄ {O(n)}
t₁₄₉, X₅: 14⋅X₅ {O(n)}
t₁₅₃, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+2⋅X₄+2⋅X₅ {O(EXP)}
t₁₅₃, X₁: 0 {O(1)}
t₁₅₃, X₂: 1 {O(1)}
t₁₅₃, X₃: 0 {O(1)}
t₁₅₃, X₄: 14⋅X₄ {O(n)}
t₁₅₃, X₅: 14⋅X₅ {O(n)}
t₁₂₈, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄ {O(EXP)}
t₁₂₈, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅6⋅X₅ {O(EXP)}
t₁₂₈, X₂: 2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅36⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅36⋅X₅+10⋅X₄+6⋅X₅ {O(EXP)}
t₁₂₈, X₄: 6⋅X₄ {O(n)}
t₁₂₈, X₅: 6⋅X₅ {O(n)}
t₁₄₈, X₀: 0 {O(1)}
t₁₄₈, X₁: 24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄+4⋅X₅ {O(EXP)}
t₁₄₈, X₂: 1 {O(1)}
t₁₄₈, X₄: 28⋅X₄ {O(n)}
t₁₄₈, X₅: 28⋅X₅ {O(n)}
t₁₅₂, X₀: 0 {O(1)}
t₁₅₂, X₁: 24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄+4⋅X₅ {O(EXP)}
t₁₅₂, X₂: 1 {O(1)}
t₁₅₂, X₄: 28⋅X₄ {O(n)}
t₁₅₂, X₅: 28⋅X₅ {O(n)}
t₁₅₆, X₀: 0 {O(1)}
t₁₅₆, X₁: 24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₄+24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(2⋅X₄+4⋅X₅+8)⋅2^(2⋅X₅+4⋅X₄)⋅2^(3⋅X₄+3⋅X₅+8)⋅2^(5⋅X₄+X₅+2)⋅2^(5⋅X₄+X₅+6)⋅X₅+4⋅X₄+4⋅X₅ {O(EXP)}
t₁₅₆, X₂: 1 {O(1)}
t₁₅₆, X₄: 28⋅X₄ {O(n)}
t₁₅₆, X₅: 28⋅X₅ {O(n)}