Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ < X₅
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ ≤ X₂
t₁₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-16, X₈)
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₃, 0, X₇, X₈) :|: X₂ < X₄
t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄ ≤ X₂
t₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₈)
t₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈)
t₂₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ < 0
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₁
t₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆+1)
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0) :|: X₇ ≤ 15
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 15 < X₇
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₈, X₇, X₈)
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₀ < 0
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₀
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆, X₈) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
Preprocessing
Found invariant X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l11
Found invariant X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l2
Found invariant 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ for location l6
Found invariant 0 ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1+X₂ ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ for location l15
Found invariant X₃ ≤ X₄ for location l12
Found invariant 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ for location l7
Found invariant X₈ ≤ 1+X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ for location l5
Found invariant 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ for location l8
Found invariant 0 ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ for location l1
Found invariant X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l10
Found invariant 0 ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1+X₂ ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ for location l16
Found invariant X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l4
Found invariant X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l9
Found invariant 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ for location l3
Found invariant X₄ ≤ X₂ ∧ X₃ ≤ X₄ ∧ X₃ ≤ X₂ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₂ < X₅ ∧ 0 ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄
t₁₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-16, X₈) :|: X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₃, 0, X₇, X₈) :|: X₂ < X₄ ∧ X₃ ≤ X₄
t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄ ≤ X₂ ∧ X₃ ≤ X₄
t₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₈)
t₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈) :|: X₄ ≤ X₂ ∧ X₃ ≤ X₄ ∧ X₃ ≤ X₂
t₂₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1+X₂ ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ < 0 ∧ X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₁ ∧ X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆+1) :|: 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0) :|: X₇ ≤ 15 ∧ X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 15 < X₇ ∧ X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₈, X₇, X₈) :|: X₈ ≤ 1+X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₀ < 0 ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₀ ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆, X₈) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂
t₁₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
MPRF for transition t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄ ≤ X₂ ∧ X₃ ≤ X₄ of depth 1:
new bound:
X₂+X₃+1 {O(n)}
MPRF:
l14 [X₂-X₄ ]
l12 [X₂+1-X₄ ]
MPRF for transition t₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈) :|: X₄ ≤ X₂ ∧ X₃ ≤ X₄ ∧ X₃ ≤ X₂ of depth 1:
new bound:
X₂+X₃+1 {O(n)}
MPRF:
l14 [X₂+1-X₄ ]
l12 [X₂+1-X₄ ]
MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₃ ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ of depth 1:
new bound:
10⋅X₃+2⋅X₂+3 {O(n)}
MPRF:
l11 [2⋅X₄-X₃-X₅ ]
l2 [2⋅X₄-X₃-X₅ ]
l5 [2⋅X₄-X₃-X₅ ]
l1 [2⋅X₄+1-X₃-X₅ ]
l3 [2⋅X₄-X₃-X₅ ]
l4 [2⋅X₄-X₃-X₅ ]
l7 [2⋅X₄-X₃-X₅ ]
l8 [2⋅X₄-X₃-X₅ ]
l6 [2⋅X₄-X₃-X₅ ]
l9 [2⋅X₄-X₃-X₅ ]
l10 [2⋅X₄-X₃-X₅ ]
MPRF for transition t₁₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₂+2⋅X₃+1 {O(n)}
MPRF:
l11 [X₂+X₇-X₅-16 ]
l2 [X₂+X₇-X₅-16 ]
l5 [X₂+X₈-X₅ ]
l1 [X₂+X₆+1-X₅ ]
l3 [X₂+X₆+1-X₅ ]
l4 [X₂+X₇-X₅ ]
l7 [X₂+X₆+1-X₅ ]
l8 [X₂+X₆+1-X₅ ]
l6 [X₂+X₆+1-X₅ ]
l9 [X₂+X₇-X₅ ]
l10 [X₂+X₇-X₅-15 ]
MPRF for transition t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-16, X₈) :|: X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
5⋅X₃+X₂+2 {O(n)}
MPRF:
l11 [X₄+X₇+1-X₅ ]
l2 [X₄+X₇+1-X₅ ]
l5 [X₄+X₈-X₅ ]
l1 [X₄+X₆+1-X₅ ]
l3 [X₄+X₆+1-X₅ ]
l4 [X₄+X₇+1-X₅ ]
l7 [X₄+X₆+1-X₅ ]
l8 [X₄+X₆+1-X₅ ]
l6 [X₄+X₆+1-X₅ ]
l9 [X₄+X₇+1-X₅ ]
l10 [X₄+X₇+1-X₅ ]
MPRF for transition t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ < 0 ∧ X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₂+2⋅X₃+1 {O(n)}
MPRF:
l11 [X₂+X₇-X₅-16 ]
l2 [X₂+X₇-X₅-15 ]
l5 [X₂+X₈-X₅ ]
l1 [X₂+X₆+1-X₅ ]
l3 [X₂+X₆+1-X₅ ]
l4 [X₂+X₇-X₅ ]
l7 [X₂+X₆+1-X₅ ]
l8 [X₂+X₆+1-X₅ ]
l6 [X₂+X₆+1-X₅ ]
l9 [X₂+X₇-X₅ ]
l10 [X₂+X₇-X₅ ]
MPRF for transition t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₁ ∧ X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
5⋅X₃+X₂+2 {O(n)}
MPRF:
l11 [X₄+X₇-X₅-16 ]
l2 [X₄+X₇-X₅ ]
l5 [X₄+X₈-X₅ ]
l1 [X₄+X₆+1-X₅ ]
l3 [X₄+X₆+1-X₅ ]
l4 [X₄+X₇-X₅ ]
l7 [X₄+X₆+1-X₅ ]
l8 [X₄+X₆+1-X₅ ]
l6 [X₄+X₆+1-X₅ ]
l9 [X₄+X₇-X₅ ]
l10 [X₄+X₇-X₅ ]
MPRF for transition t₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
5⋅X₃+X₂+17 {O(n)}
MPRF:
l11 [X₄+X₆-X₅-16 ]
l2 [X₄+X₆-X₅-16 ]
l5 [X₄+X₈-X₅-17 ]
l1 [X₄+X₆-X₅-16 ]
l3 [X₄+X₆-X₅-16 ]
l4 [X₄+X₆-X₅-16 ]
l7 [X₄+X₆-X₅-16 ]
l8 [X₄+X₆-X₅-16 ]
l6 [X₄+X₆-X₅-16 ]
l9 [X₄+X₆-X₅-16 ]
l10 [X₄+X₆-X₅-16 ]
MPRF for transition t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆+1) :|: 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ of depth 1:
new bound:
5⋅X₃+X₂+1 {O(n)}
MPRF:
l11 [X₄-X₅-1 ]
l2 [X₄-X₅-1 ]
l5 [X₄-X₅-1 ]
l1 [X₄-X₅ ]
l3 [X₄-X₅ ]
l4 [X₄-X₅-1 ]
l7 [X₄-X₅ ]
l8 [X₄-X₅ ]
l6 [X₄-X₅ ]
l9 [X₄-X₅-1 ]
l10 [X₄-X₅-1 ]
MPRF for transition t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 15 < X₇ ∧ X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
5⋅X₃+X₂+2 {O(n)}
MPRF:
l11 [X₄+X₇-X₅-16 ]
l2 [X₄+X₇-X₅-16 ]
l5 [X₄+X₈-X₅ ]
l1 [X₄+X₆+1-X₅ ]
l3 [X₄+X₆+1-X₅ ]
l4 [X₄+X₇-X₅ ]
l7 [X₄+X₆+1-X₅ ]
l8 [X₄+X₆+1-X₅ ]
l6 [X₄+X₆+1-X₅ ]
l9 [X₄+X₇-X₅-16 ]
l10 [X₄+X₇-X₅-16 ]
MPRF for transition t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0) :|: X₇ ≤ 15 ∧ X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₂+2⋅X₃+1 {O(n)}
MPRF:
l11 [X₂+1-X₅ ]
l2 [X₂+1-X₅ ]
l5 [X₂-X₅ ]
l1 [X₂+1-X₅ ]
l3 [X₂-X₅ ]
l4 [X₂+1-X₅ ]
l7 [X₂+1-X₅ ]
l8 [X₂+1-X₅ ]
l6 [X₂+1-X₅ ]
l9 [X₂+1-X₅ ]
l10 [X₂+1-X₅ ]
MPRF for transition t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₈, X₇, X₈) :|: X₈ ≤ 1+X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ of depth 1:
new bound:
4⋅X₂+4⋅X₃+17 {O(n)}
MPRF:
l11 [2⋅X₂+X₇-2⋅X₅ ]
l2 [2⋅X₂+X₇-2⋅X₅ ]
l5 [2⋅X₂+X₈+16-2⋅X₅ ]
l1 [2⋅X₂+X₆+17-2⋅X₅ ]
l3 [2⋅X₂+X₆+17-2⋅X₅ ]
l4 [2⋅X₂+X₇+16-2⋅X₅ ]
l7 [2⋅X₂+X₆+17-2⋅X₅ ]
l8 [2⋅X₂+X₆+17-2⋅X₅ ]
l6 [2⋅X₂+X₆+17-2⋅X₅ ]
l9 [2⋅X₂+X₇-2⋅X₅ ]
l10 [2⋅X₂+X₇-2⋅X₅ ]
MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₀ < 0 ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ of depth 1:
new bound:
5⋅X₃+X₂+1 {O(n)}
MPRF:
l11 [X₄-X₅ ]
l2 [X₄-X₅ ]
l5 [X₄-X₅-1 ]
l1 [X₄-X₅ ]
l3 [X₄-X₅-1 ]
l4 [X₄-X₅ ]
l7 [X₄-X₅ ]
l8 [X₄-X₅ ]
l6 [X₄-X₅ ]
l9 [X₄-X₅ ]
l10 [X₄-X₅ ]
MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₀ ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ of depth 1:
new bound:
10⋅X₃+2⋅X₂+2 {O(n)}
MPRF:
l11 [2⋅X₄+X₇-2⋅X₅ ]
l2 [2⋅X₄+X₇-2⋅X₅ ]
l5 [2⋅X₄+X₈-2⋅X₅-2 ]
l1 [2⋅X₄+X₆-2⋅X₅ ]
l3 [2⋅X₄+X₆-2⋅X₅-1 ]
l4 [2⋅X₄+X₇-2⋅X₅ ]
l7 [2⋅X₄+X₆-2⋅X₅ ]
l8 [2⋅X₄+X₆-2⋅X₅ ]
l6 [2⋅X₄+X₆-2⋅X₅ ]
l9 [2⋅X₄+X₇-2⋅X₅ ]
l10 [2⋅X₄+X₇-2⋅X₅ ]
MPRF for transition t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆, X₈) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ of depth 1:
new bound:
2⋅X₂+2⋅X₃+1 {O(n)}
MPRF:
l11 [X₂-X₅ ]
l2 [X₂-X₅ ]
l5 [X₂-X₅ ]
l1 [X₂+1-X₅ ]
l3 [X₂-X₅ ]
l4 [X₂-X₅ ]
l7 [X₂+1-X₅ ]
l8 [X₂+1-X₅ ]
l6 [X₂+1-X₅ ]
l9 [X₂-X₅ ]
l10 [X₂-X₅ ]
MPRF for transition t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ of depth 1:
new bound:
2⋅X₂+2⋅X₃+1 {O(n)}
MPRF:
l11 [X₂-X₅ ]
l2 [X₂-X₅ ]
l5 [X₂-X₅ ]
l1 [X₂+1-X₅ ]
l3 [X₂-X₅ ]
l4 [X₂-X₅ ]
l7 [X₂+1-X₅ ]
l8 [X₂-X₅ ]
l6 [X₂-X₅ ]
l9 [X₂-X₅ ]
l10 [X₂-X₅ ]
MPRF for transition t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ of depth 1:
new bound:
2⋅X₂+2⋅X₃+1 {O(n)}
MPRF:
l11 [X₂-X₅ ]
l2 [X₂-X₅ ]
l5 [X₂-X₅ ]
l1 [X₂+1-X₅ ]
l3 [X₂-X₅ ]
l4 [X₂-X₅ ]
l7 [X₂+1-X₅ ]
l8 [X₂+1-X₅ ]
l6 [X₂-X₅ ]
l9 [X₂-X₅ ]
l10 [X₂-X₅ ]
MPRF for transition t₁₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₆ ∧ 16 ≤ X₇ ∧ 32 ≤ X₆+X₇ ∧ 16 ≤ X₀+X₇ ∧ 16+X₀ ≤ X₇ ∧ 16 ≤ X₆ ∧ 16 ≤ X₀+X₆ ∧ 16+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
64⋅X₂+64⋅X₃+16 {O(n)}
MPRF:
l11 [32⋅X₂+X₇-16⋅X₃-16⋅X₅ ]
l2 [32⋅X₂+X₇-16⋅X₃-16⋅X₅ ]
l5 [32⋅X₂+X₈-16⋅X₃-16⋅X₅ ]
l1 [32⋅X₂+X₆+16-16⋅X₃-16⋅X₅ ]
l3 [32⋅X₂+X₆+1-16⋅X₃-16⋅X₅ ]
l4 [32⋅X₂+X₇+16-16⋅X₃-16⋅X₅ ]
l7 [32⋅X₂+X₆+16-16⋅X₃-16⋅X₅ ]
l8 [32⋅X₂+X₆+16-16⋅X₃-16⋅X₅ ]
l6 [32⋅X₂+X₆+16-16⋅X₃-16⋅X₅ ]
l9 [32⋅X₂+X₇+16-16⋅X₃-16⋅X₅ ]
l10 [32⋅X₂+X₇-16⋅X₃-16⋅X₅ ]
All Bounds
Timebounds
Overall timebound:132⋅X₃+92⋅X₂+76 {O(n)}
t₀: 1 {O(1)}
t₅: 10⋅X₃+2⋅X₂+3 {O(n)}
t₆: 1 {O(1)}
t₁₈: 2⋅X₂+2⋅X₃+1 {O(n)}
t₂₂: 5⋅X₃+X₂+2 {O(n)}
t₂: X₂+X₃+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: X₂+X₃+1 {O(n)}
t₂₄: 1 {O(1)}
t₁₉: 2⋅X₂+2⋅X₃+1 {O(n)}
t₂₀: 5⋅X₃+X₂+2 {O(n)}
t₂₁: 5⋅X₃+X₂+17 {O(n)}
t₁₃: 5⋅X₃+X₂+1 {O(n)}
t₁₄: 5⋅X₃+X₂+2 {O(n)}
t₁₅: 2⋅X₂+2⋅X₃+1 {O(n)}
t₂₃: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₀: 5⋅X₃+X₂+1 {O(n)}
t₁₁: 10⋅X₃+2⋅X₂+2 {O(n)}
t₁₂: 2⋅X₂+2⋅X₃+1 {O(n)}
t₇: 2⋅X₂+2⋅X₃+1 {O(n)}
t₉: 2⋅X₂+2⋅X₃+1 {O(n)}
t₁₆: 64⋅X₂+64⋅X₃+16 {O(n)}
Costbounds
Overall costbound: 132⋅X₃+92⋅X₂+76 {O(n)}
t₀: 1 {O(1)}
t₅: 10⋅X₃+2⋅X₂+3 {O(n)}
t₆: 1 {O(1)}
t₁₈: 2⋅X₂+2⋅X₃+1 {O(n)}
t₂₂: 5⋅X₃+X₂+2 {O(n)}
t₂: X₂+X₃+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: X₂+X₃+1 {O(n)}
t₂₄: 1 {O(1)}
t₁₉: 2⋅X₂+2⋅X₃+1 {O(n)}
t₂₀: 5⋅X₃+X₂+2 {O(n)}
t₂₁: 5⋅X₃+X₂+17 {O(n)}
t₁₃: 5⋅X₃+X₂+1 {O(n)}
t₁₄: 5⋅X₃+X₂+2 {O(n)}
t₁₅: 2⋅X₂+2⋅X₃+1 {O(n)}
t₂₃: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₀: 5⋅X₃+X₂+1 {O(n)}
t₁₁: 10⋅X₃+2⋅X₂+2 {O(n)}
t₁₂: 2⋅X₂+2⋅X₃+1 {O(n)}
t₇: 2⋅X₂+2⋅X₃+1 {O(n)}
t₉: 2⋅X₂+2⋅X₃+1 {O(n)}
t₁₆: 64⋅X₂+64⋅X₃+16 {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₅, X₂: 2⋅X₂ {O(n)}
t₅, X₃: 2⋅X₃ {O(n)}
t₅, X₄: 3⋅X₃+X₂+1 {O(n)}
t₅, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₅, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₅, X₇: 2⋅X₇+4⋅X₂+4⋅X₃+32 {O(n)}
t₅, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₆, X₂: 4⋅X₂ {O(n)}
t₆, X₃: 4⋅X₃ {O(n)}
t₆, X₄: 2⋅X₂+6⋅X₃+2 {O(n)}
t₆, X₅: 4⋅X₂+8⋅X₃+17 {O(n)}
t₆, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₆, X₇: 4⋅X₂+4⋅X₃+4⋅X₇+32 {O(n)}
t₆, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₁₈, X₀: 0 {O(1)}
t₁₈, X₂: 2⋅X₂ {O(n)}
t₁₈, X₃: 2⋅X₃ {O(n)}
t₁₈, X₄: 3⋅X₃+X₂+1 {O(n)}
t₁₈, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₁₈, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₈, X₇: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₈, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₂₂, X₀: 0 {O(1)}
t₂₂, X₂: 2⋅X₂ {O(n)}
t₂₂, X₃: 2⋅X₃ {O(n)}
t₂₂, X₄: 3⋅X₃+X₂+1 {O(n)}
t₂₂, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₂₂, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₂₂, X₇: 4⋅X₂+4⋅X₃+17 {O(n)}
t₂₂, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: 2⋅X₃+X₂+1 {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₃, X₀: 2⋅X₀ {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₃, X₄: 3⋅X₃+X₂+1 {O(n)}
t₃, X₅: 2⋅X₃ {O(n)}
t₃, X₆: 0 {O(1)}
t₃, X₇: 2⋅X₇ {O(n)}
t₃, X₈: 2⋅X₈ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₃ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: 2⋅X₃+X₂+1 {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₂₄, X₂: 4⋅X₂ {O(n)}
t₂₄, X₃: 4⋅X₃ {O(n)}
t₂₄, X₄: 2⋅X₂+6⋅X₃+2 {O(n)}
t₂₄, X₅: 4⋅X₂+8⋅X₃+17 {O(n)}
t₂₄, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₂₄, X₇: 4⋅X₂+4⋅X₃+4⋅X₇+32 {O(n)}
t₂₄, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₁₉, X₀: 0 {O(1)}
t₁₉, X₂: 2⋅X₂ {O(n)}
t₁₉, X₃: 2⋅X₃ {O(n)}
t₁₉, X₄: 3⋅X₃+X₂+1 {O(n)}
t₁₉, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₁₉, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₉, X₇: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₉, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₂₀, X₀: 0 {O(1)}
t₂₀, X₂: 2⋅X₂ {O(n)}
t₂₀, X₃: 2⋅X₃ {O(n)}
t₂₀, X₄: 3⋅X₃+X₂+1 {O(n)}
t₂₀, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₂₀, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₂₀, X₇: 4⋅X₂+4⋅X₃+17 {O(n)}
t₂₀, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₂₁, X₀: 0 {O(1)}
t₂₁, X₁: 0 {O(1)}
t₂₁, X₂: 2⋅X₂ {O(n)}
t₂₁, X₃: 2⋅X₃ {O(n)}
t₂₁, X₄: 3⋅X₃+X₂+1 {O(n)}
t₂₁, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₂₁, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₂₁, X₇: 4⋅X₂+4⋅X₃+17 {O(n)}
t₂₁, X₈: 0 {O(1)}
t₁₃, X₂: 2⋅X₂ {O(n)}
t₁₃, X₃: 2⋅X₃ {O(n)}
t₁₃, X₄: 3⋅X₃+X₂+1 {O(n)}
t₁₃, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₁₃, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₃, X₇: 2⋅X₇+4⋅X₂+4⋅X₃+32 {O(n)}
t₁₃, X₈: 8⋅X₂+8⋅X₃+36 {O(n)}
t₁₄, X₀: 0 {O(1)}
t₁₄, X₂: 2⋅X₂ {O(n)}
t₁₄, X₃: 2⋅X₃ {O(n)}
t₁₄, X₄: 3⋅X₃+X₂+1 {O(n)}
t₁₄, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₁₄, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₄, X₇: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₄, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₁₅, X₀: 0 {O(1)}
t₁₅, X₂: 2⋅X₂ {O(n)}
t₁₅, X₃: 2⋅X₃ {O(n)}
t₁₅, X₄: 3⋅X₃+X₂+1 {O(n)}
t₁₅, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₁₅, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₅, X₇: 15 {O(1)}
t₁₅, X₈: 0 {O(1)}
t₂₃, X₂: 2⋅X₂ {O(n)}
t₂₃, X₃: 2⋅X₃ {O(n)}
t₂₃, X₄: 3⋅X₃+X₂+1 {O(n)}
t₂₃, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₂₃, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₂₃, X₇: 2⋅X₇+4⋅X₂+4⋅X₃+32 {O(n)}
t₂₃, X₈: 8⋅X₂+8⋅X₃+36 {O(n)}
t₁₀, X₂: 2⋅X₂ {O(n)}
t₁₀, X₃: 2⋅X₃ {O(n)}
t₁₀, X₄: 3⋅X₃+X₂+1 {O(n)}
t₁₀, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₁₀, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₀, X₇: 2⋅X₇+4⋅X₂+4⋅X₃+32 {O(n)}
t₁₀, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₁₁, X₂: 2⋅X₂ {O(n)}
t₁₁, X₃: 2⋅X₃ {O(n)}
t₁₁, X₄: 3⋅X₃+X₂+1 {O(n)}
t₁₁, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₁₁, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₁, X₇: 2⋅X₇+4⋅X₂+4⋅X₃+32 {O(n)}
t₁₁, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₁₂, X₀: 0 {O(1)}
t₁₂, X₂: 2⋅X₂ {O(n)}
t₁₂, X₃: 2⋅X₃ {O(n)}
t₁₂, X₄: 3⋅X₃+X₂+1 {O(n)}
t₁₂, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₁₂, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₂, X₇: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₂, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₇, X₂: 2⋅X₂ {O(n)}
t₇, X₃: 2⋅X₃ {O(n)}
t₇, X₄: 3⋅X₃+X₂+1 {O(n)}
t₇, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₇, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₇, X₇: 2⋅X₇+4⋅X₂+4⋅X₃+32 {O(n)}
t₇, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₉, X₂: 2⋅X₂ {O(n)}
t₉, X₃: 2⋅X₃ {O(n)}
t₉, X₄: 3⋅X₃+X₂+1 {O(n)}
t₉, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₉, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₉, X₇: 2⋅X₇+4⋅X₂+4⋅X₃+32 {O(n)}
t₉, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}
t₁₆, X₀: 0 {O(1)}
t₁₆, X₂: 2⋅X₂ {O(n)}
t₁₆, X₃: 2⋅X₃ {O(n)}
t₁₆, X₄: 3⋅X₃+X₂+1 {O(n)}
t₁₆, X₅: 4⋅X₂+6⋅X₃+17 {O(n)}
t₁₆, X₆: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₆, X₇: 4⋅X₂+4⋅X₃+17 {O(n)}
t₁₆, X₈: 2⋅X₈+8⋅X₂+8⋅X₃+36 {O(n)}