Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₂: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₂, X₂, X₃, X₄) :|: 0 < X₀
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁, X₂, X₃, X₄)
t₅: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 0
t₄: l3(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₁
t₈: l4(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₇: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀-1, X₁, X₂, X₃, X₄)
t₆: l6(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁-1, X₂, X₃, X₄)
Preprocessing
Eliminate variables {X₃,X₄} that do not contribute to the problem
Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l7
Found invariant 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant X₀ ≤ X₂ for location l1
Found invariant X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l4
Found invariant 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₁₈: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₁₉: l1(X₀, X₁, X₂) → l3(X₀, X₂, X₂) :|: 0 < X₀ ∧ X₀ ≤ X₂
t₂₀: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₀ ≤ 0 ∧ X₀ ≤ X₂
t₂₁: l2(X₀, X₁, X₂) → l1(X₂, X₁, X₂)
t₂₃: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ 0 ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₂: l3(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: 0 < X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₄: l4(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: X₀ ≤ X₂ ∧ X₀ ≤ 0
t₂₅: l5(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₆: l6(X₀, X₁, X₂) → l3(X₀, X₁-1, X₂) :|: 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
MPRF for transition t₁₉: l1(X₀, X₁, X₂) → l3(X₀, X₂, X₂) :|: 0 < X₀ ∧ X₀ ≤ X₂ of depth 1:
new bound:
X₂ {O(n)}
MPRF:
l5 [X₀-1 ]
l1 [X₀ ]
l6 [X₀-1 ]
l3 [X₀-1 ]
MPRF for transition t₂₃: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ 0 ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
MPRF:
l5 [X₀-1 ]
l1 [X₀ ]
l6 [X₀ ]
l3 [X₀ ]
MPRF for transition t₂₅: l5(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
MPRF:
l5 [X₀ ]
l1 [X₀ ]
l6 [X₀ ]
l3 [X₀ ]
MPRF for transition t₂₂: l3(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: 0 < X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂⋅X₂+2⋅X₂+1 {O(n^2)}
MPRF:
l1 [X₂+1 ]
l5 [0 ]
l6 [X₁ ]
l3 [X₁+1 ]
MPRF for transition t₂₆: l6(X₀, X₁, X₂) → l3(X₀, X₁-1, X₂) :|: 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+2⋅X₂ {O(n^2)}
MPRF:
l1 [2⋅X₂ ]
l5 [X₁+X₂-1 ]
l6 [X₁+X₂-1 ]
l3 [X₁+X₂-1 ]
Analysing control-flow refined program
Cut unsatisfiable transition t₂₃: l3→l5
Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___3
Found invariant 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l7
Found invariant 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___2
Found invariant X₀ ≤ X₂ for location l1
Found invariant X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l4
Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3
knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₆₁: l3(X₀, X₁, X₂) → n_l6___3(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ 0 < X₁ ∧ X₀ ≤ X₂ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₆₃: n_l6___3(X₀, X₁, X₂) → n_l3___2(X₀, X₁-1, X₂) :|: X₁ ≤ X₂ ∧ 0 < X₁ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
MPRF for transition t₆₀: n_l3___2(X₀, X₁, X₂) → n_l6___1(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+X₂ {O(n^2)}
MPRF:
l3 [0 ]
n_l6___3 [0 ]
l1 [0 ]
l5 [0 ]
n_l6___1 [X₁ ]
n_l3___2 [X₁+1 ]
MPRF for transition t₆₇: n_l3___2(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ 0 ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
MPRF:
l3 [X₀ ]
l1 [X₀ ]
l5 [X₀-1 ]
n_l6___1 [X₀ ]
n_l6___3 [X₀ ]
n_l3___2 [X₀ ]
MPRF for transition t₆₂: n_l6___1(X₀, X₁, X₂) → n_l3___2(X₀, X₁-1, X₂) :|: X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ 0 < X₁ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂ {O(n^2)}
MPRF:
l3 [0 ]
n_l6___3 [0 ]
l1 [0 ]
l5 [0 ]
n_l6___1 [X₁ ]
n_l3___2 [X₁ ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:3⋅X₂⋅X₂+7⋅X₂+5 {O(n^2)}
t₁₈: 1 {O(1)}
t₁₉: X₂ {O(n)}
t₂₀: 1 {O(1)}
t₂₁: 1 {O(1)}
t₂₂: X₂⋅X₂+2⋅X₂+1 {O(n^2)}
t₂₃: X₂ {O(n)}
t₂₄: 1 {O(1)}
t₂₅: X₂ {O(n)}
t₂₆: 2⋅X₂⋅X₂+2⋅X₂ {O(n^2)}
Costbounds
Overall costbound: 3⋅X₂⋅X₂+7⋅X₂+5 {O(n^2)}
t₁₈: 1 {O(1)}
t₁₉: X₂ {O(n)}
t₂₀: 1 {O(1)}
t₂₁: 1 {O(1)}
t₂₂: X₂⋅X₂+2⋅X₂+1 {O(n^2)}
t₂₃: X₂ {O(n)}
t₂₄: 1 {O(1)}
t₂₅: X₂ {O(n)}
t₂₆: 2⋅X₂⋅X₂+2⋅X₂ {O(n^2)}
Sizebounds
t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₉, X₀: X₂ {O(n)}
t₁₉, X₁: 2⋅X₂ {O(n)}
t₁₉, X₂: X₂ {O(n)}
t₂₀, X₀: 2⋅X₂ {O(n)}
t₂₀, X₁: X₁ {O(n)}
t₂₀, X₂: 2⋅X₂ {O(n)}
t₂₁, X₀: X₂ {O(n)}
t₂₁, X₁: X₁ {O(n)}
t₂₁, X₂: X₂ {O(n)}
t₂₂, X₀: X₂ {O(n)}
t₂₂, X₁: 2⋅X₂ {O(n)}
t₂₂, X₂: X₂ {O(n)}
t₂₃, X₀: X₂ {O(n)}
t₂₃, X₁: 0 {O(1)}
t₂₃, X₂: X₂ {O(n)}
t₂₄, X₀: 2⋅X₂ {O(n)}
t₂₄, X₁: X₁ {O(n)}
t₂₄, X₂: 2⋅X₂ {O(n)}
t₂₅, X₀: X₂ {O(n)}
t₂₅, X₁: 0 {O(1)}
t₂₅, X₂: X₂ {O(n)}
t₂₆, X₀: X₂ {O(n)}
t₂₆, X₁: 2⋅X₂ {O(n)}
t₂₆, X₂: X₂ {O(n)}