Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₁₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀
t₁₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0
t₁₃: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂+1 ≤ X₃
t₁₁: l10(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 0
t₁₂: l10(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₂+1
t₁₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₁₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄)
t₇: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂
t₆: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ X₁
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, 1, X₃, 0) :|: 1 ≤ X₁ ∧ 0 < X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1
t₄: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₂₂: l6(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₁: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₃, X₂, X₃, X₄) :|: 0 < X₃
t₂: l7(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₂₁: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₄, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ < X₁
t₁₉: l8(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ < 1
t₂₀: l8(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₄
t₁₀: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ X₂ ≤ X₃
t₈: l9(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 1
t₉: l9(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₂

Preprocessing

Cut unsatisfiable transition t₁₁: l10→l6

Cut unsatisfiable transition t₃: l5→l6

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l2

Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l5

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l8

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l1

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l10

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l4

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l9

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l3

Cut unsatisfiable transition t₁₂: l10→l6

Cut unsatisfiable transition t₄: l5→l6

Cut unsatisfiable transition t₂₀: l8→l6

Cut unsatisfiable transition t₈: l9→l6

Cut unsatisfiable transition t₉: l9→l6

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₁₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₃: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂+1 ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₇: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₆: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, 1, X₃, 0) :|: 1 ≤ X₁ ∧ 0 < X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁
t₂₂: l6(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₁: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₃, X₂, X₃, X₄) :|: 0 < X₃
t₂: l7(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₂₁: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₄, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ < X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₉: l8(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ < 1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₀: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

MPRF for transition t₇: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF:

l2 [X₁ ]
l3 [X₁ ]
l1 [X₁ ]
l4 [X₁ ]
l8 [X₁-1 ]
l5 [X₁ ]
l9 [X₁ ]
l10 [X₁ ]

MPRF for transition t₅: l5(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, 1, X₃, 0) :|: 1 ≤ X₁ ∧ 0 < X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF:

l2 [X₁ ]
l3 [X₁ ]
l1 [X₁ ]
l4 [X₁ ]
l8 [X₂ ]
l5 [X₁+1 ]
l9 [X₁ ]
l10 [X₁ ]

MPRF for transition t₂₁: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₄, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ < X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF:

l2 [X₁ ]
l3 [X₁ ]
l1 [X₁ ]
l4 [X₁ ]
l8 [X₄+1 ]
l5 [X₁ ]
l9 [X₁ ]
l10 [X₁ ]

MPRF for transition t₁₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF:

l2 [X₁+X₃-X₂-1 ]
l3 [X₁+X₃-X₂-1 ]
l1 [X₁+X₃-X₂-1 ]
l8 [X₁+X₃-X₂-1 ]
l5 [X₁+X₃ ]
l4 [X₁+X₃-X₂-1 ]
l9 [X₁+X₃-X₂-1 ]
l10 [X₁+X₃-X₂-1 ]

MPRF for transition t₁₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃+1 {O(n^2)}

MPRF:

l2 [X₁+2-X₂ ]
l3 [X₁+2-X₂ ]
l1 [X₁+2-X₂ ]
l8 [X₁-X₂ ]
l5 [X₁+1 ]
l4 [X₁+2-X₂ ]
l9 [X₁+2-X₂ ]
l10 [X₁+2-X₂ ]

MPRF for transition t₁₃: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂+1 ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF:

l2 [X₁+X₃-X₂-1 ]
l3 [X₁+X₃-X₂-1 ]
l1 [X₁+X₃-X₂-1 ]
l8 [X₁+X₃-X₂ ]
l5 [X₁+X₃ ]
l4 [X₁+X₃-X₂ ]
l9 [X₁+X₃-X₂ ]
l10 [X₁+X₃-X₂ ]

MPRF for transition t₁₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF:

l2 [X₁+X₃-X₂ ]
l3 [X₁+X₃-X₂-1 ]
l1 [X₁+X₃-X₂-1 ]
l8 [X₁+X₃-X₂ ]
l5 [X₁+X₃ ]
l4 [X₁+X₃-X₂ ]
l9 [X₁+X₃-X₂ ]
l10 [X₁+X₃-X₂ ]

MPRF for transition t₁₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+X₃ {O(n^2)}

MPRF:

l2 [X₁-X₂ ]
l3 [X₁-X₂ ]
l1 [X₁-X₂-1 ]
l8 [0 ]
l5 [X₁ ]
l4 [X₁-X₂ ]
l9 [X₁-X₂ ]
l10 [X₁-X₂ ]

MPRF for transition t₆: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+X₃ {O(n^2)}

MPRF:

l2 [X₁-X₂-1 ]
l3 [X₁-X₂-1 ]
l1 [X₁-X₂-1 ]
l8 [X₁-X₂ ]
l5 [X₁ ]
l4 [X₁-X₂ ]
l9 [X₁-X₂-1 ]
l10 [X₁-X₂-1 ]

MPRF for transition t₁₀: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+X₃ {O(n^2)}

MPRF:

l2 [X₁-X₂-1 ]
l3 [X₁-X₂-1 ]
l1 [X₁-X₂-1 ]
l8 [X₁-X₂ ]
l5 [X₁ ]
l4 [X₁-X₂ ]
l9 [X₁-X₂ ]
l10 [X₁-X₂-1 ]

Analysing control-flow refined program

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l2___15

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l1___6

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l9___10

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l10___4

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___12

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l1___13

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l2___3

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l3___14

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l9___17

Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l5

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l10___16

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___9

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l8

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l3___2

Found invariant X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l4

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___8

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l1___1

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___7

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l9___5

Found invariant 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___11

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₇₁: l4(X₀, X₁, X₂, X₃, X₄) → n_l9___17(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₇₃: n_l9___17(X₀, X₁, X₂, X₃, X₄) → n_l10___16(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₅₄: n_l10___16(X₀, X₁, X₂, X₃, X₄) → n_l2___15(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₆₃: n_l2___15(X₀, X₁, X₂, X₃, X₄) → n_l3___14(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₆₆: n_l3___14(X₀, X₁, X₂, X₃, X₄) → n_l1___13(NoDet0, X₁, Arg2_P, X₃, Arg4_P) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1+Arg2_P ≤ X₁ ∧ 1+Arg4_P ≤ Arg2_P ∧ 0 ≤ Arg4_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₅₉: n_l1___13(X₀, X₁, X₂, X₃, X₄) → n_l4___11(X₀, X₁, X₂+1, X₃, X₄) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ 0 ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₆₀: n_l1___13(X₀, X₁, X₂, X₃, X₄) → n_l4___12(X₀, X₁, X₂+1, X₃, X₂) :|: X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 < X₀ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

MPRF for transition t₁₅₅: n_l10___4(X₀, X₁, X₂, X₃, X₄) → n_l2___3(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃⋅X₃+X₃ {O(n^2)}

MPRF:

n_l9___17 [0 ]
l4 [0 ]
l5 [0 ]
n_l10___16 [X₁ ]
n_l2___15 [X₁ ]
n_l2___3 [X₁-X₂-1 ]
n_l2___8 [X₁-X₂ ]
n_l3___14 [X₁-X₂ ]
n_l1___13 [X₁-X₂ ]
n_l3___2 [X₁-X₂-1 ]
n_l1___1 [X₁-X₂-1 ]
n_l3___7 [X₁-X₂ ]
n_l1___6 [X₁-X₂-1 ]
n_l4___11 [X₁-X₂ ]
n_l4___12 [X₁-X₂ ]
l8 [X₁-X₂ ]
n_l9___10 [X₁-X₂ ]
n_l10___9 [X₁-X₂ ]
n_l9___5 [X₁-X₂ ]
n_l10___4 [X₁-X₂ ]

MPRF for transition t₁₅₆: n_l10___9(X₀, X₁, X₂, X₃, X₄) → n_l2___8(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₃⋅X₃+4⋅X₃+1 {O(n^2)}

MPRF:

n_l9___17 [X₁-X₂ ]
l4 [X₁ ]
l5 [X₁ ]
n_l10___16 [2⋅X₁-X₂ ]
n_l2___15 [2⋅X₁-X₂ ]
n_l2___3 [2⋅X₁-X₄-1 ]
n_l2___8 [2⋅X₁-X₄-1 ]
n_l3___14 [2⋅X₁-X₂ ]
n_l1___13 [2⋅X₁-X₂ ]
n_l3___2 [2⋅X₁-X₄-1 ]
n_l1___1 [2⋅X₁-X₄-1 ]
n_l3___7 [2⋅X₁-X₄-1 ]
n_l1___6 [2⋅X₁-X₂ ]
n_l4___11 [2⋅X₁-X₄-1 ]
n_l4___12 [2⋅X₁-X₄ ]
l8 [X₁ ]
n_l9___10 [2⋅X₁-X₄ ]
n_l10___9 [2⋅X₁-X₄ ]
n_l9___5 [2⋅X₁-X₄-1 ]
n_l10___4 [2⋅X₁-X₄-1 ]

MPRF for transition t₁₅₇: n_l1___1(X₀, X₁, X₂, X₃, X₄) → n_l4___11(X₀, X₁, X₂+1, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ 0 ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+X₃ {O(n^2)}

MPRF:

n_l9___17 [0 ]
l4 [0 ]
l5 [0 ]
n_l10___16 [X₁ ]
n_l2___15 [X₁ ]
n_l2___3 [X₁+1-X₂ ]
n_l2___8 [X₁-X₄ ]
n_l3___14 [X₁+1-X₂ ]
n_l1___13 [X₁+1-X₂ ]
n_l3___2 [X₁+1-X₂ ]
n_l1___1 [X₁+1-X₂ ]
n_l3___7 [X₁-X₄ ]
n_l1___6 [X₁+1-X₂ ]
n_l4___11 [X₁+1-X₂ ]
n_l4___12 [X₁+X₂-2⋅X₄ ]
l8 [0 ]
n_l9___10 [X₁+X₂-2⋅X₄ ]
n_l10___9 [X₁-X₄ ]
n_l9___5 [X₁+1-X₂ ]
n_l10___4 [X₁+1-X₂ ]

MPRF for transition t₁₅₈: n_l1___1(X₀, X₁, X₂, X₃, X₄) → n_l4___12(X₀, X₁, X₂+1, X₃, X₂) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 < X₀ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₃+1 {O(n^2)}

MPRF:

n_l9___17 [-X₂ ]
l4 [-1 ]
l5 [-1 ]
n_l10___16 [X₁+X₃ ]
n_l2___15 [X₁+X₃ ]
n_l2___3 [X₁-X₄-2 ]
n_l2___8 [X₁+X₄-2⋅X₂ ]
n_l3___14 [X₁+X₃ ]
n_l1___13 [X₁+X₃-X₂-3 ]
n_l3___2 [X₁-X₄-2 ]
n_l1___1 [X₁-X₄-2 ]
n_l3___7 [X₁+X₄-2⋅X₂ ]
n_l1___6 [X₁-X₂-1 ]
n_l4___11 [X₁-X₄-2 ]
n_l4___12 [X₁-X₄-2 ]
l8 [-1 ]
n_l9___10 [X₁+X₄-2⋅X₂ ]
n_l10___9 [X₁+X₄-2⋅X₂ ]
n_l9___5 [X₁-X₄-2 ]
n_l10___4 [X₁-X₄-2 ]

MPRF for transition t₁₆₁: n_l1___6(X₀, X₁, X₂, X₃, X₄) → n_l4___11(X₀, X₁, X₂+1, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}

MPRF:

n_l9___17 [X₃ ]
l4 [X₃ ]
l5 [X₃ ]
n_l10___16 [X₁+X₃ ]
n_l2___15 [X₁+X₃ ]
n_l2___3 [X₁+X₃-X₄-2 ]
n_l2___8 [X₁+X₃+1-X₂ ]
n_l3___14 [X₁+X₃ ]
n_l1___13 [X₁+X₃-X₄ ]
n_l3___2 [X₁+X₃-X₄-2 ]
n_l1___1 [X₁+X₃-X₄-2 ]
n_l3___7 [X₁+X₃-X₂ ]
n_l1___6 [X₁+X₃-X₄-1 ]
n_l4___11 [X₁+X₃-X₄-2 ]
n_l4___12 [X₁+X₃+1-X₂ ]
l8 [X₃ ]
n_l9___10 [X₁+X₃+1-X₂ ]
n_l10___9 [X₁+X₃+1-X₂ ]
n_l9___5 [X₁+X₃-X₄-2 ]
n_l10___4 [X₁+X₃-X₄-2 ]

MPRF for transition t₁₆₂: n_l1___6(X₀, X₁, X₂, X₃, X₄) → n_l4___12(X₀, X₁, X₂+1, X₃, X₂) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 < X₀ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+3⋅X₃+3 {O(n^2)}

MPRF:

n_l9___17 [X₃-3 ]
l4 [X₃-3 ]
l5 [X₃-3 ]
n_l10___16 [X₁+X₃ ]
n_l2___15 [X₁+X₃ ]
n_l2___3 [X₁+X₃-X₄-4 ]
n_l2___8 [X₁+X₃+2⋅X₄-3⋅X₂-1 ]
n_l3___14 [X₁+X₃ ]
n_l1___13 [X₁+X₃-X₄ ]
n_l3___2 [X₁+X₃-X₄-4 ]
n_l1___1 [X₁+X₃-X₄-4 ]
n_l3___7 [X₁+X₃+2⋅X₄-3⋅X₂-1 ]
n_l1___6 [X₁+X₃-X₄-4 ]
n_l4___11 [X₁+X₃-X₄-4 ]
n_l4___12 [X₁+X₃-X₄-4 ]
l8 [X₃-3 ]
n_l9___10 [X₁+X₃-X₄-4 ]
n_l10___9 [X₁+X₃+2⋅X₄-3⋅X₂-1 ]
n_l9___5 [X₁+X₃-X₄-4 ]
n_l10___4 [X₁+X₃-X₄-4 ]

MPRF for transition t₁₆₄: n_l2___3(X₀, X₁, X₂, X₃, X₄) → n_l3___2(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃⋅X₃+2⋅X₃+2 {O(n^2)}

MPRF:

n_l9___17 [-1 ]
l4 [-1 ]
l5 [-1 ]
n_l10___16 [X₁-X₂ ]
n_l2___15 [X₁-X₂ ]
n_l2___3 [X₁-X₂ ]
n_l2___8 [X₁-X₂-1 ]
n_l3___14 [X₁-X₂ ]
n_l1___13 [X₁-X₂ ]
n_l3___2 [X₁-X₂-1 ]
n_l1___1 [X₁-X₂-1 ]
n_l3___7 [X₁-X₂-1 ]
n_l1___6 [X₁-X₂-1 ]
n_l4___11 [X₁-X₂ ]
n_l4___12 [X₁-X₂-1 ]
l8 [-1 ]
n_l9___10 [X₁-X₂-1 ]
n_l10___9 [X₁-X₂-1 ]
n_l9___5 [X₁-X₂ ]
n_l10___4 [X₁-X₂ ]

MPRF for transition t₁₆₅: n_l2___8(X₀, X₁, X₂, X₃, X₄) → n_l3___7(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₃⋅X₃+3⋅X₃+2 {O(n^2)}

MPRF:

n_l9___17 [X₁-2 ]
l4 [X₁-2⋅X₂ ]
l5 [X₁-2 ]
n_l10___16 [2⋅X₁ ]
n_l2___15 [2⋅X₁ ]
n_l2___3 [2⋅X₁-X₄-5 ]
n_l2___8 [2⋅X₁-X₂-3 ]
n_l3___14 [2⋅X₁ ]
n_l1___13 [2⋅X₁-X₄ ]
n_l3___2 [2⋅X₁-X₄-5 ]
n_l1___1 [2⋅X₁-X₄-5 ]
n_l3___7 [2⋅X₁-X₂-4 ]
n_l1___6 [2⋅X₁-X₂-4 ]
n_l4___11 [2⋅X₁-X₄-5 ]
n_l4___12 [2⋅X₁-X₂-3 ]
l8 [X₄-2 ]
n_l9___10 [2⋅X₁-X₂-3 ]
n_l10___9 [2⋅X₁-X₂-3 ]
n_l9___5 [2⋅X₁-X₄-5 ]
n_l10___4 [2⋅X₁-X₄-5 ]

MPRF for transition t₁₆₇: n_l3___2(X₀, X₁, X₂, X₃, X₄) → n_l1___1(NoDet0, X₁, Arg2_P, X₃, Arg4_P) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1+Arg2_P ≤ X₁ ∧ 1+Arg4_P ≤ Arg2_P ∧ 0 ≤ Arg4_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

3⋅X₃⋅X₃+5⋅X₃+5 {O(n^2)}

MPRF:

n_l9___17 [X₁+X₃-5⋅X₂ ]
l4 [X₁+X₃-5 ]
l5 [X₁+X₃-5 ]
n_l10___16 [2⋅X₁+X₃ ]
n_l2___15 [2⋅X₁+X₃ ]
n_l2___3 [2⋅X₁+X₃-X₂-6 ]
n_l2___8 [2⋅X₁+X₃-X₄-7 ]
n_l3___14 [2⋅X₁+X₃-X₂ ]
n_l1___13 [2⋅X₁+X₃-X₂ ]
n_l3___2 [2⋅X₁+X₃-X₂-6 ]
n_l1___1 [2⋅X₁+X₃-X₂-7 ]
n_l3___7 [2⋅X₁+X₃-X₄-7 ]
n_l1___6 [2⋅X₁+X₃-X₄-8 ]
n_l4___11 [2⋅X₁+X₃-X₂-6 ]
n_l4___12 [2⋅X₁+X₃-X₄-7 ]
l8 [X₃+X₄-5 ]
n_l9___10 [2⋅X₁+X₃-X₄-7 ]
n_l10___9 [2⋅X₁+X₃-X₄-7 ]
n_l9___5 [2⋅X₁+X₃-X₂-6 ]
n_l10___4 [2⋅X₁+X₃-X₂-6 ]

MPRF for transition t₁₆₈: n_l3___7(X₀, X₁, X₂, X₃, X₄) → n_l1___6(NoDet0, X₁, Arg2_P, X₃, Arg4_P) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1+Arg2_P ≤ X₁ ∧ 1+Arg4_P ≤ Arg2_P ∧ 0 ≤ Arg4_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}

MPRF:

n_l9___17 [X₁ ]
l4 [X₁ ]
l5 [X₁ ]
n_l10___16 [2⋅X₁ ]
n_l2___15 [2⋅X₁ ]
n_l2___3 [2⋅X₁-X₂ ]
n_l2___8 [2⋅X₁-X₂ ]
n_l3___14 [2⋅X₁ ]
n_l1___13 [2⋅X₁-X₂ ]
n_l3___2 [2⋅X₁-X₂ ]
n_l1___1 [2⋅X₁-X₂-1 ]
n_l3___7 [2⋅X₁-X₄-1 ]
n_l1___6 [2⋅X₁-X₄-2 ]
n_l4___11 [2⋅X₁-X₂ ]
n_l4___12 [2⋅X₁-X₂ ]
l8 [X₄ ]
n_l9___10 [2⋅X₁-X₂ ]
n_l10___9 [2⋅X₁-X₂ ]
n_l9___5 [2⋅X₁-X₂ ]
n_l10___4 [2⋅X₁-X₂ ]

MPRF for transition t₁₆₉: n_l4___11(X₀, X₁, X₂, X₃, X₄) → n_l9___5(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₀ ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃⋅X₃+X₃ {O(n^2)}

MPRF:

n_l9___17 [0 ]
l4 [0 ]
l5 [0 ]
n_l10___16 [X₁ ]
n_l2___15 [X₁ ]
n_l2___3 [X₁-X₂ ]
n_l2___8 [X₁-X₂ ]
n_l3___14 [X₁ ]
n_l1___13 [X₁-X₂ ]
n_l3___2 [X₁-X₂ ]
n_l1___1 [X₁-X₂ ]
n_l3___7 [X₁-X₂ ]
n_l1___6 [X₁-X₂ ]
n_l4___11 [X₁+1-X₂ ]
n_l4___12 [X₁-X₄-1 ]
l8 [0 ]
n_l9___10 [X₁-X₂ ]
n_l10___9 [X₁-X₂ ]
n_l9___5 [X₁-X₂ ]
n_l10___4 [X₁-X₂ ]

MPRF for transition t₁₈₅: n_l4___11(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅X₃+3 {O(n)}

MPRF:

l4 [X₁+X₃-3⋅X₂ ]
l5 [X₁+X₃-3 ]
n_l2___15 [X₁+X₃-3 ]
n_l2___3 [X₁+X₃-3 ]
n_l2___8 [X₁+X₃-3 ]
n_l3___14 [X₁+X₃-3⋅X₂ ]
n_l1___13 [X₁+X₃-3⋅X₂ ]
n_l3___2 [X₁+X₃-3 ]
n_l1___1 [X₁+X₃-3 ]
n_l3___7 [X₁+X₃-3 ]
n_l1___6 [X₁+X₃-3 ]
n_l4___11 [X₁+X₃-3 ]
n_l4___12 [X₁+X₃-3 ]
l8 [X₃+X₄-2 ]
n_l9___10 [X₁+X₃-3 ]
n_l10___9 [X₁+X₃-3 ]
n_l9___17 [X₁+X₃-3 ]
n_l10___16 [X₁+X₃-3⋅X₂ ]
n_l9___5 [X₁+X₃-3 ]
n_l10___4 [X₁+X₃-3 ]

MPRF for transition t₁₇₀: n_l4___12(X₀, X₁, X₂, X₃, X₄) → n_l9___10(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₃⋅X₃+5⋅X₃+1 {O(n^2)}

MPRF:

n_l9___17 [2⋅X₃-X₂ ]
l4 [2⋅X₃-1 ]
l5 [2⋅X₃-1 ]
n_l10___16 [X₁+2⋅X₃ ]
n_l2___15 [X₁+2⋅X₃ ]
n_l2___3 [X₁+2⋅X₃-X₂-1 ]
n_l2___8 [X₁+2⋅X₂+2⋅X₃-3⋅X₄-5 ]
n_l3___14 [X₁+2⋅X₃+3-3⋅X₂ ]
n_l1___13 [X₁+2⋅X₃ ]
n_l3___2 [X₁+2⋅X₃-X₂-1 ]
n_l1___1 [X₁+2⋅X₃-X₂-1 ]
n_l3___7 [X₁+2⋅X₂+2⋅X₃-3⋅X₄-5 ]
n_l1___6 [X₁+2⋅X₂+2⋅X₃-3⋅X₄-5 ]
n_l4___11 [X₁+2⋅X₃-X₂-1 ]
n_l4___12 [X₁+2⋅X₂+2⋅X₃-3⋅X₄-4 ]
l8 [2⋅X₃-1 ]
n_l9___10 [X₁+2⋅X₂+2⋅X₃-3⋅X₄-5 ]
n_l10___9 [X₁+2⋅X₂+2⋅X₃-3⋅X₄-5 ]
n_l9___5 [X₁+2⋅X₃-X₂-1 ]
n_l10___4 [X₁+2⋅X₃-X₂-1 ]

MPRF for transition t₁₈₆: n_l4___12(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃ {O(n)}

MPRF:

l4 [X₁+1-X₂ ]
l5 [X₁ ]
n_l2___15 [X₁ ]
n_l2___3 [X₁ ]
n_l2___8 [X₁ ]
n_l3___14 [X₁+2⋅X₂-2 ]
n_l1___13 [X₁ ]
n_l3___2 [X₁ ]
n_l1___1 [X₁ ]
n_l3___7 [X₁+3⋅X₄+3-3⋅X₂ ]
n_l1___6 [X₁ ]
n_l4___11 [X₁ ]
n_l4___12 [X₁ ]
l8 [X₄ ]
n_l9___10 [X₁ ]
n_l10___9 [X₁ ]
n_l9___17 [X₁ ]
n_l10___16 [X₁ ]
n_l9___5 [X₁ ]
n_l10___4 [X₁ ]

MPRF for transition t₁₇₂: n_l9___10(X₀, X₁, X₂, X₃, X₄) → n_l10___9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}

MPRF:

n_l9___17 [X₁ ]
l4 [X₁ ]
l5 [X₁ ]
n_l10___16 [2⋅X₁ ]
n_l2___15 [2⋅X₁ ]
n_l2___3 [2⋅X₁-X₄-1 ]
n_l2___8 [2⋅X₁+X₄+1-2⋅X₂ ]
n_l3___14 [2⋅X₁ ]
n_l1___13 [2⋅X₁ ]
n_l3___2 [2⋅X₁-X₄-1 ]
n_l1___1 [2⋅X₁-X₄-1 ]
n_l3___7 [2⋅X₁-X₂ ]
n_l1___6 [2⋅X₁-X₂ ]
n_l4___11 [2⋅X₁-X₄-1 ]
n_l4___12 [2⋅X₁+1-X₂ ]
l8 [X₂ ]
n_l9___10 [2⋅X₁+X₄+2-2⋅X₂ ]
n_l10___9 [2⋅X₁+X₄+1-2⋅X₂ ]
n_l9___5 [2⋅X₁-X₄-1 ]
n_l10___4 [2⋅X₁-X₄-1 ]

MPRF for transition t₁₇₄: n_l9___5(X₀, X₁, X₂, X₃, X₄) → n_l10___4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}

MPRF:

n_l9___17 [X₁ ]
l4 [X₁ ]
l5 [X₁ ]
n_l10___16 [2⋅X₁ ]
n_l2___15 [2⋅X₁ ]
n_l2___3 [2⋅X₁-X₂-1 ]
n_l2___8 [2⋅X₁-X₂ ]
n_l3___14 [2⋅X₁-X₂ ]
n_l1___13 [2⋅X₁-X₂ ]
n_l3___2 [2⋅X₁-X₂-1 ]
n_l1___1 [2⋅X₁-X₂-1 ]
n_l3___7 [2⋅X₁-X₄-2 ]
n_l1___6 [2⋅X₁-X₂-1 ]
n_l4___11 [2⋅X₁-X₂ ]
n_l4___12 [2⋅X₁-X₂ ]
l8 [X₁+X₄-X₂ ]
n_l9___10 [2⋅X₁-X₂ ]
n_l10___9 [2⋅X₁-X₂ ]
n_l9___5 [2⋅X₁-X₂ ]
n_l10___4 [2⋅X₁-X₂-1 ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:10⋅X₃⋅X₃+14⋅X₃+7 {O(n^2)}
t₀: 1 {O(1)}
t₁₇: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₈: X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₃: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₄: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₆: X₃⋅X₃+X₃ {O(n^2)}
t₆: X₃⋅X₃+X₃ {O(n^2)}
t₇: X₃ {O(n)}
t₅: X₃+1 {O(n)}
t₂₂: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₁₉: 1 {O(1)}
t₂₁: X₃ {O(n)}
t₁₀: X₃⋅X₃+X₃ {O(n^2)}

Costbounds

Overall costbound: 10⋅X₃⋅X₃+14⋅X₃+7 {O(n^2)}
t₀: 1 {O(1)}
t₁₇: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₈: X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₃: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₄: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₆: X₃⋅X₃+X₃ {O(n^2)}
t₆: X₃⋅X₃+X₃ {O(n^2)}
t₇: X₃ {O(n)}
t₅: X₃+1 {O(n)}
t₂₂: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₁₉: 1 {O(1)}
t₂₁: X₃ {O(n)}
t₁₀: X₃⋅X₃+X₃ {O(n^2)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₁₇, X₁: X₃ {O(n)}
t₁₇, X₂: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₈, X₁: X₃ {O(n)}
t₁₈, X₂: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₄: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₃, X₁: X₃ {O(n)}
t₁₃, X₂: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₄, X₁: X₃ {O(n)}
t₁₄, X₂: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₆, X₁: X₃ {O(n)}
t₁₆, X₂: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₆, X₁: X₃ {O(n)}
t₆, X₂: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₇, X₁: X₃ {O(n)}
t₇, X₂: 6⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: 6⋅X₃⋅X₃+8⋅X₃+4 {O(n^2)}
t₅, X₁: X₃ {O(n)}
t₅, X₂: 1 {O(1)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 0 {O(1)}
t₂₂, X₁: X₁+X₃ {O(n)}
t₂₂, X₂: 6⋅X₃⋅X₃+8⋅X₃+X₂+5 {O(n^2)}
t₂₂, X₃: 2⋅X₃ {O(n)}
t₂₂, X₄: X₄ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₃ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₁₉, X₁: X₃ {O(n)}
t₁₉, X₂: 6⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: 0 {O(1)}
t₂₁, X₁: X₃ {O(n)}
t₂₁, X₂: 6⋅X₃⋅X₃+8⋅X₃+5 {O(n^2)}
t₂₁, X₃: X₃ {O(n)}
t₂₁, X₄: 6⋅X₃⋅X₃+8⋅X₃+4 {O(n^2)}
t₁₀, X₁: X₃ {O(n)}
t₁₀, X₂: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: 3⋅X₃⋅X₃+4⋅X₃+2 {O(n^2)}