Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef.0, nondef.1, nondef.3, nondef.5, nondef.6, nondef.7, nondef.8
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, nondef.6, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(nondef.5, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ < X₁
t₃₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₀
t₃₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+1)
t₄₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+2)
t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, nondef.8, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅
t₄₃: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, nondef.7, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < X₂
t₄₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₉, X₁₀, X₁₁) :|: X₂ ≤ X₃
t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₉, X₁₀, X₁₁)
t₅₀: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₇: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ 0 ∧ 0 ≤ 1+X₇ ∧ nondef.3 ≤ 0 ∧ 0 ≤ nondef.3
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1
t₁₉: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 < 0 ∧ nondef.3 ≤ 0 ∧ 1+X₇ ≤ 2⋅nondef.3 ∧ 2⋅nondef.3 < X₇+3
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0
t₃₀: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ < X₆
t₃₁: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈
t₂₉: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+3+2⋅X₈
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁)
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁)
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁)
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁)

Preprocessing

Cut unsatisfiable transition t₃₁: l30→l13

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l11

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l25

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l27

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l2

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l24

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l32

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l6

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l15

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l31

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l30

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l19

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l26

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l23

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l12

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location l17

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l7

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l21

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l5

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l20

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l13

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l8

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l22

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l16

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l9

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ for location l1

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l10

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l18

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l4

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l3

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l14

Cut unsatisfiable transition t₁₇: l26→l3

Cut unsatisfiable transition t₁₉: l26→l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef.0, nondef.1, nondef.3, nondef.5, nondef.6, nondef.7, nondef.8
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₃₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, nondef.6, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(nondef.5, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ < X₁ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+1) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+2) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, nondef.8, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₄₃: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, nondef.7, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < X₂ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₉, X₁₀, X₁₁) :|: X₂ ≤ X₃ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀
t₅₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀
t₅₀: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₃₀: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ < X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₉: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆

MPRF for transition t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ of depth 1:

new bound:

X₆+2 {O(n)}

MPRF:

l11 [X₆-X₉ ]
l25 [X₆-X₉ ]
l27 [X₆-X₉ ]
l26 [X₆-X₉ ]
l10 [X₆-X₉ ]
l3 [X₆-X₉ ]
l4 [X₆-X₉ ]
l1 [X₆+1-X₉ ]
l9 [X₆-X₉ ]
l2 [X₆-X₉ ]

MPRF for transition t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF:

l11 [X₆-X₉ ]
l25 [X₆-X₉ ]
l27 [X₆-X₉ ]
l26 [X₆-X₉ ]
l10 [X₆-X₉ ]
l3 [X₆-X₉ ]
l4 [X₆-X₉-1 ]
l1 [X₆-X₉ ]
l9 [X₆-X₉ ]
l2 [X₆-X₉ ]

MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF:

l11 [X₆-X₉ ]
l25 [X₆-X₉ ]
l27 [X₆-X₉ ]
l26 [X₆-X₉ ]
l10 [X₆-X₉ ]
l3 [X₆-X₉ ]
l4 [X₆-X₉-1 ]
l1 [X₆-X₉ ]
l9 [X₆-X₉ ]
l2 [X₆-X₉ ]

MPRF for transition t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

X₆+2 {O(n)}

MPRF:

l11 [X₆+1-X₉ ]
l25 [X₆+1-X₉ ]
l27 [X₆+1-X₉ ]
l26 [X₆+1-X₉ ]
l10 [X₆+1-X₉ ]
l3 [X₆+1-X₉ ]
l4 [X₆+1-X₉ ]
l1 [X₆+1-X₉ ]
l9 [X₆+1-X₉ ]
l2 [X₆+1-X₉ ]

MPRF for transition t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}

MPRF:

l1 [2⋅X₉+1 ]
l11 [X₇ ]
l25 [X₇ ]
l27 [X₇ ]
l26 [X₇ ]
l10 [X₇+2 ]
l3 [2⋅X₇+1 ]
l4 [X₇ ]
l9 [X₇ ]
l2 [X₇ ]

MPRF for transition t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}

MPRF:

l1 [2⋅X₉+1 ]
l11 [X₇+2 ]
l25 [X₇ ]
l27 [X₇ ]
l26 [X₇ ]
l10 [X₇+2 ]
l3 [2⋅X₇+1 ]
l4 [X₇ ]
l9 [X₇ ]
l2 [X₇ ]

MPRF for transition t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}

MPRF:

l1 [2⋅X₉ ]
l11 [2⋅X₇-1 ]
l25 [X₇-2 ]
l27 [X₇-2 ]
l26 [X₇-2 ]
l10 [2⋅X₇-1 ]
l3 [2⋅X₇-1 ]
l4 [X₇-1 ]
l9 [2⋅X₇-1 ]
l2 [X₇ ]

MPRF for transition t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ of depth 1:

new bound:

2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}

MPRF:

l1 [2⋅X₉ ]
l11 [X₇+1 ]
l25 [X₇ ]
l27 [X₇-1 ]
l26 [X₇-1 ]
l10 [X₇+1 ]
l3 [2⋅X₇ ]
l4 [X₇ ]
l9 [X₇+1 ]
l2 [X₇+1 ]

MPRF for transition t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ of depth 1:

new bound:

2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}

MPRF:

l1 [2⋅X₉ ]
l11 [2⋅X₇ ]
l25 [2⋅X₇ ]
l27 [2⋅X₇ ]
l26 [X₇+1 ]
l10 [2⋅X₇ ]
l3 [2⋅X₇ ]
l4 [0 ]
l9 [2⋅X₇ ]
l2 [2⋅X₇ ]

MPRF for transition t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ of depth 1:

new bound:

2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}

MPRF:

l1 [2⋅X₉ ]
l11 [2⋅X₇ ]
l25 [2⋅X₇ ]
l27 [2⋅X₇ ]
l26 [X₇-1 ]
l10 [2⋅X₇ ]
l3 [2⋅X₇ ]
l4 [2⋅X₇ ]
l9 [2⋅X₇ ]
l2 [2⋅X₇ ]

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}

MPRF:

l1 [2⋅X₉+1 ]
l11 [2⋅X₇ ]
l25 [2⋅X₇ ]
l27 [2⋅X₇ ]
l26 [X₇ ]
l10 [2⋅X₇ ]
l3 [2⋅X₇+1 ]
l4 [2⋅X₇ ]
l9 [2⋅X₇ ]
l2 [2⋅X₇ ]

MPRF for transition t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

3⋅X₆⋅X₆+13⋅X₆+14 {O(n^2)}

MPRF:

l1 [X₆+2⋅X₉ ]
l11 [X₆+X₇-2 ]
l25 [X₆+X₇-4 ]
l27 [X₆+X₇-4 ]
l26 [X₆+X₇-4 ]
l10 [X₆+X₇-2 ]
l3 [X₆+2⋅X₇-3 ]
l4 [X₆+X₇-4 ]
l9 [X₆+X₇-2 ]
l2 [X₆+X₇-4 ]

Analysing control-flow refined program

Cut unsatisfiable transition t₆: l3→l4

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l32

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l6

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l19

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l10___15

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l2___12

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l12

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l11___6

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l20

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l25___3

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l22

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ for location l1

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l18

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l4

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l3

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l26___9

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l14

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l25___11

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l24

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l15

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l31

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l27___10

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l26___1

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l30

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l11___14

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l23

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location l17

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l7

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l27___2

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 4 ≤ X₆+X₉ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l3___8

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l21

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l5

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l9___13

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l13

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l8

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l16

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l10___7

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l2___4

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l9___5

MPRF for transition t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+4 {O(n)}

MPRF:

l14 [X₉-X₁₀ ]
l12 [X₉-X₁₀ ]
l15 [X₉-X₁₀ ]
l17 [X₉-X₁₀ ]
l19 [X₉-X₁₀ ]
l20 [X₆-X₁₀ ]
l18 [X₉-X₁₀ ]
l21 [X₆-X₁₀ ]
l22 [X₉-X₁₀ ]
l24 [X₆-X₁₀ ]
l23 [X₆-X₁₀ ]
l16 [X₆-X₁₀ ]
l13 [X₆-X₁₀ ]
l31 [X₉+1-X₁₀ ]
l6 [X₆-X₁₀ ]
l7 [X₆-X₁₀ ]
l5 [X₆-X₁₀ ]
l30 [X₉-X₁₀ ]
l8 [X₉-X₁₀ ]
l32 [X₆-X₁₀ ]

MPRF for transition t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

5⋅X₆+10 {O(n)}

MPRF:

l14 [X₉-X₁₀-2 ]
l12 [X₉-X₁₀-2 ]
l15 [X₉-X₁₀-2 ]
l17 [X₉-X₁₀-2 ]
l19 [X₉-X₁₀-2 ]
l20 [X₆-X₁₀-2 ]
l18 [X₉-X₁₀-2 ]
l21 [X₉-X₁₀-2 ]
l22 [X₉-X₁₀-2 ]
l24 [X₉-X₁₀-2 ]
l23 [X₆-X₁₀-2 ]
l16 [X₆-X₁₀-2 ]
l13 [X₆-X₁₀-2 ]
l31 [3⋅X₉-2⋅X₆-X₁₀-1 ]
l6 [X₉-X₁₀-1 ]
l7 [2⋅X₆-X₉-X₁₀-1 ]
l5 [X₆-X₁₀-1 ]
l30 [X₉-X₁₀-2 ]
l8 [X₆-X₁₀-2 ]
l32 [3⋅X₉-2⋅X₆-X₁₀-2 ]

MPRF for transition t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+4 {O(n)}

MPRF:

l14 [X₆-X₁₀ ]
l12 [X₉-X₁₀ ]
l15 [X₉-X₁₀ ]
l17 [X₆-X₁₀ ]
l19 [X₉-X₁₀ ]
l20 [X₆-X₁₀ ]
l18 [X₆-X₁₀ ]
l21 [X₆-X₁₀ ]
l22 [X₆-X₁₀ ]
l24 [X₆-X₁₀ ]
l23 [X₉-X₁₀ ]
l16 [X₆-X₁₀ ]
l13 [X₉-X₁₀ ]
l31 [X₉+1-X₁₀ ]
l6 [X₉+1-X₁₀ ]
l7 [X₉-X₁₀ ]
l5 [X₉-X₁₀ ]
l30 [X₉-X₁₀ ]
l8 [X₉-X₁₀ ]
l32 [X₉-X₁₀ ]

MPRF for transition t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆ {O(n)}

MPRF:

l14 [X₉-X₁₀-1 ]
l12 [X₆-X₁₀-1 ]
l15 [X₆-X₁₀-1 ]
l17 [X₉-X₁₀-1 ]
l19 [X₆-X₁₀-1 ]
l20 [X₉-X₁₀-1 ]
l18 [X₆-X₁₀-1 ]
l21 [X₉-X₁₀-1 ]
l22 [X₉-X₁₀-1 ]
l24 [X₆-X₁₀-1 ]
l23 [X₉-X₁₀-1 ]
l16 [X₉-X₁₀-1 ]
l13 [X₆-X₁₀-1 ]
l31 [X₆-X₁₀ ]
l6 [X₆-X₁₀ ]
l7 [X₆-X₁₀ ]
l5 [X₆-X₁₀-1 ]
l30 [X₆-X₁₀-1 ]
l8 [X₆-X₁₀-1 ]
l32 [X₆-X₁₀-1 ]

MPRF for transition t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

2⋅X₆⋅X₆+4⋅X₆ {O(n^2)}

MPRF:

l14 [1 ]
l12 [1 ]
l15 [1 ]
l17 [1 ]
l19 [1 ]
l20 [1 ]
l18 [1 ]
l21 [1 ]
l22 [1 ]
l24 [1 ]
l23 [1 ]
l16 [1 ]
l13 [1 ]
l31 [0 ]
l5 [X₆+1-X₉ ]
l6 [0 ]
l7 [2-X₉-X₁₀ ]
l30 [1 ]
l8 [X₆+1-X₉ ]
l32 [1 ]

MPRF for transition t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

3⋅X₆+4⋅X₈+2 {O(n)}

MPRF:

l14 [1 ]
l12 [1 ]
l15 [1 ]
l17 [1 ]
l19 [1 ]
l20 [1 ]
l18 [1 ]
l21 [1 ]
l22 [1 ]
l24 [1 ]
l23 [1 ]
l16 [1 ]
l13 [1 ]
l31 [2⋅X₆-4⋅X₈-2⋅X₁₀-2 ]
l5 [1 ]
l6 [2⋅X₉-4⋅X₈-2⋅X₁₀-2 ]
l7 [2⋅X₆-4⋅X₈-2⋅X₁₀-2 ]
l30 [1 ]
l8 [1 ]
l32 [2⋅X₆-4⋅X₈-2⋅X₁₀-4 ]

knowledge_propagation leads to new time bound 3⋅X₆+4⋅X₈+2 {O(n)} for transition t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀

Analysing control-flow refined program

Cut unsatisfiable transition t₇₇₈: n_l8___18→l32

Cut unsatisfiable transition t₇₇₉: n_l8___33→l32

Cut unsatisfiable transition t₇₈₀: n_l8___36→l32

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l17___71

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l22___59

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₁₀ for location l32

Found invariant 1 ≤ 0 for location n_l19___30

Found invariant 1 ≤ 0 for location n_l20___22

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l21___84

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l23___80

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l6

Found invariant 1 ≤ 0 for location n_l14___46

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l19___70

Found invariant 1 ≤ 0 for location n_l20___29

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l23___64

Found invariant 1 ≤ 0 for location n_l22___26

Found invariant 1 ≤ 0 for location n_l24___25

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l22___10

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l15___90

Found invariant 1 ≤ 0 for location n_l30___49

Found invariant 1 ≤ 0 for location n_l8___33

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l18___54

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l21___67

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l23___50

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l12___91

Found invariant 1 ≤ 0 for location n_l30___32

Found invariant 1 ≤ 0 for location n_l8___18

Found invariant X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l8___79

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l24___65

Found invariant 1 ≤ 0 for location n_l13___48

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l13___77

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l22___83

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l10

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l4

Found invariant 1 ≤ 0 for location n_l16___47

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l3

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l19___56

Found invariant 1 ≤ 0 for location n_l20___40

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l21___53

Found invariant 1 ≤ 0 for location n_l16___43

Found invariant 1 ≤ 0 for location n_l23___24

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l25

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l22___3

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l2

Found invariant 1 ≤ 0 for location n_l23___16

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l16___89

Found invariant 1 ≤ 0 for location n_l15___44

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l31

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l24___81

Found invariant 1 ≤ 0 for location n_l17___42

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l19___87

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l17___88

Found invariant 1 ≤ 0 for location n_l30___15

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l26

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l16___93

Found invariant 1 ≤ 0 for location n_l19___41

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l19___63

Found invariant 1 ≤ 0 for location n_l24___35

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l7

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l5

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l8

Found invariant 1 ≤ 0 for location n_l12___45

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l14___92

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l15___73

Found invariant 1 ≤ 0 for location n_l21___27

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l20___69

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l21___11

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l22___66

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l23___1

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l18___12

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l27

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l18___68

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l18___85

Found invariant 1 ≤ 0 for location n_l19___23

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l21___60

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l20___62

Found invariant 1 ≤ 0 for location n_l21___38

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l20___86

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l20___6

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l24___51

Found invariant 1 ≤ 0 for location n_l24___17

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l16___72

Found invariant 1 ≤ 0 for location n_l22___19

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l23___8

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l18___61

Found invariant 1 ≤ 0 for location n_l18___28

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ for location l1

Found invariant 1 ≤ 0 for location n_l21___20

Found invariant X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l30___95

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l21___4

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l24___9

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l18___5

Found invariant 1 ≤ 0 for location n_l30___31

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l11

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l30___78

Found invariant 1 ≤ 0 for location n_l18___39

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l19___14

Found invariant X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l8___82

Found invariant 1 ≤ 0 for location n_l8___36

Found invariant 1 ≤ 0 for location n_l18___21

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l19___7

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l12___74

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l14___75

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l20___13

Found invariant 1 ≤ 0 for location n_l22___37

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l23___57

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l13___94

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l24___58

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l22___52

Found invariant 1 ≤ 0 for location n_l23___34

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l24___2

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l20___55

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ for location n_l16___76

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l9

Cut unsatisfiable transition t₆₄₄: n_l12___45→n_l15___44

Cut unsatisfiable transition t₆₄₇: n_l13___48→n_l14___46

Cut unsatisfiable transition t₆₅₀: n_l14___46→n_l12___45

Cut unsatisfiable transition t₆₅₃: n_l15___44→n_l16___43

Cut unsatisfiable transition t₆₅₄: n_l15___44→n_l17___42

Cut unsatisfiable transition t₆₅₉: n_l16___43→n_l19___41

Cut unsatisfiable transition t₆₆₀: n_l16___47→n_l19___23

Cut unsatisfiable transition t₆₆₅: n_l17___42→n_l19___30

Cut unsatisfiable transition t₆₆₉: n_l18___21→n_l21___20

Cut unsatisfiable transition t₆₇₀: n_l18___28→n_l21___27

Cut unsatisfiable transition t₆₇₁: n_l18___39→n_l21___38

Cut unsatisfiable transition t₆₇₈: n_l19___23→n_l20___22

Cut unsatisfiable transition t₆₇₉: n_l19___30→n_l20___29

Cut unsatisfiable transition t₆₈₀: n_l19___41→n_l20___40

Cut unsatisfiable transition t₆₈₇: n_l20___22→n_l18___21

Cut unsatisfiable transition t₆₈₈: n_l20___29→n_l18___28

Cut unsatisfiable transition t₆₈₉: n_l20___40→n_l18___39

Cut unsatisfiable transition t₆₉₇: n_l21___20→n_l22___19

Cut unsatisfiable transition t₆₉₈: n_l21___20→n_l8___18

Cut unsatisfiable transition t₆₉₉: n_l21___27→n_l22___26

Cut unsatisfiable transition t₇₀₀: n_l21___27→n_l8___36

Cut unsatisfiable transition t₇₀₁: n_l21___38→n_l22___37

Cut unsatisfiable transition t₇₀₂: n_l21___38→n_l8___36

Cut unsatisfiable transition t₇₁₄: n_l22___19→n_l24___17

Cut unsatisfiable transition t₇₁₅: n_l22___26→n_l24___25

Cut unsatisfiable transition t₇₁₇: n_l22___37→n_l24___35

Cut unsatisfiable transition t₇₂₃: n_l23___16→n_l8___33

Cut unsatisfiable transition t₇₂₄: n_l23___24→n_l8___33

Cut unsatisfiable transition t₇₂₅: n_l23___34→n_l8___33

Cut unsatisfiable transition t₇₃₁: n_l24___17→n_l23___16

Cut unsatisfiable transition t₇₃₃: n_l24___25→n_l23___24

Cut unsatisfiable transition t₇₃₄: n_l24___35→n_l23___34

Cut unsatisfiable transition t₇₄₀: n_l30___15→n_l16___47

Cut unsatisfiable transition t₇₄₁: n_l30___31→n_l13___48

Cut unsatisfiable transition t₇₄₂: n_l30___32→n_l13___77

Cut unsatisfiable transition t₇₄₃: n_l30___49→n_l13___48

Cut unsatisfiable transition t₇₄₄: n_l30___49→n_l16___47

Cut unsatisfiable transition t₇₄₉: n_l8___18→n_l30___15

Cut unsatisfiable transition t₇₅₀: n_l8___33→n_l30___32

Cut unsatisfiable transition t₇₅₁: n_l8___36→n_l30___31

Cut unsatisfiable transition t₇₅₃: n_l8___82→n_l30___49

Cut unreachable locations [n_l12___45; n_l13___48; n_l14___46; n_l15___44; n_l16___43; n_l16___47; n_l17___42; n_l18___21; n_l18___28; n_l18___39; n_l19___23; n_l19___30; n_l19___41; n_l20___22; n_l20___29; n_l20___40; n_l21___20; n_l21___27; n_l21___38; n_l22___19; n_l22___26; n_l22___37; n_l23___16; n_l23___24; n_l23___34; n_l24___17; n_l24___25; n_l24___35; n_l30___15; n_l30___31; n_l30___32; n_l30___49; n_l8___18; n_l8___33; n_l8___36] from the program graph

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₅₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2+X₁₀ ≤ X₉ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₄₇: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₄₈: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₄₉: n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₅₂: n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___91(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₆₄: n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₈₃: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₉₁: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___5(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₄₆: n_l12___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___90(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₅₇: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₅₈: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₆₃: n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₆₇: n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₇₂: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___4(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₇₇: n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₈₅: n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₈₆: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___12(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₉₄: n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___85(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₀₃: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₀₄: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₁₆: n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₃₂: n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₆₈: n_l18___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___11(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₇₆: n_l18___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___84(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₉₅: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₆₉₆: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₁₁: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₁₂: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₁₃: n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₂₁: n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₂₂: n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₃₈: n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₃₉: n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₂₉: n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound 5⋅X₆+10 {O(n)} for transition t₇₃₀: n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

MPRF for transition t₆₄₅: n_l12___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___73(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

15⋅X₆⋅X₆+37⋅X₆+14 {O(n^2)}

MPRF:

l31 [X₉-X₆-X₁₀-1 ]
l6 [X₉-X₆-X₁₀-2 ]
l7 [-X₁₀-2 ]
l5 [-X₁₀-2 ]
l8 [-X₁₀-2 ]
n_l30___95 [-X₁₀-2 ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₆-X₁₀-X₁₁-2 ]
n_l12___74 [2⋅X₉-X₁₀-X₁₁-2 ]
n_l14___92 [2⋅X₆ ]
n_l12___91 [2⋅X₉ ]
n_l15___73 [2⋅X₉-X₈-X₁₀-4 ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₉-X₁₀-X₁₁-4 ]
n_l16___89 [2⋅X₆ ]
n_l16___93 [X₆+1 ]
n_l17___71 [2⋅X₉-X₁₀-X₁₁-4 ]
n_l17___88 [2⋅X₉ ]
n_l19___14 [2⋅X₆ ]
n_l19___56 [X₉+1 ]
n_l19___63 [2⋅X₆+X₈-X₁₀-X₁₁-2 ]
n_l19___7 [X₆+X₁₁ ]
n_l19___70 [2⋅X₆-X₈-X₁₀-4 ]
n_l19___87 [2⋅X₆ ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [X₆+1 ]
n_l18___54 [X₉+1 ]
n_l20___6 [X₉+X₁₁ ]
n_l18___5 [X₉+X₁₁ ]
n_l20___62 [X₈+2⋅X₉-X₁₀-X₁₁-2 ]
n_l18___61 [X₈+2⋅X₉-X₁₀-X₁₁-2 ]
n_l20___69 [2⋅X₆+X₈-X₁₀-X₁₁-3 ]
n_l18___68 [2⋅X₆+X₈-X₁₀-X₁₁-3 ]
n_l20___86 [2⋅X₉ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₉ ]
n_l21___4 [X₉+X₁₁ ]
n_l21___53 [X₉+1 ]
n_l21___60 [2⋅X₆+X₈-X₁₀-X₁₁-2 ]
n_l21___67 [X₈+2⋅X₉-X₁₀-X₁₁-3 ]
n_l21___84 [2⋅X₉ ]
n_l22___10 [2⋅X₉-X₁₁ ]
n_l22___3 [X₉+1 ]
n_l22___52 [X₉+1 ]
n_l22___59 [2⋅X₆+2⋅X₈-X₁₀-2⋅X₁₁ ]
n_l22___66 [2⋅X₆+X₈-X₁₀-X₁₁-3 ]
n_l22___83 [2⋅X₆-X₁₁ ]
n_l24___2 [X₉ ]
n_l23___1 [2⋅X₆-X₁₀-X₁₁-2 ]
n_l24___51 [X₉+1 ]
n_l23___50 [X₆+1 ]
n_l24___58 [2⋅X₆+2⋅X₈-X₁₀-2⋅X₁₁ ]
n_l23___57 [2⋅X₈+2⋅X₉-X₁₀-2⋅X₁₁ ]
n_l24___65 [2⋅X₆-X₁₀-X₁₁-2 ]
n_l23___64 [2⋅X₆-X₁₀-X₁₁-2 ]
n_l24___81 [2⋅X₉-X₁₁ ]
n_l23___80 [2⋅X₆-X₁₀-X₁₁ ]
n_l24___9 [X₆+X₉-X₁₁ ]
n_l23___8 [2⋅X₆-X₁₁ ]
n_l13___77 [2⋅X₉-X₁₀-X₁₁-2 ]
n_l16___76 [X₆+2⋅X₈-X₁₁ ]
n_l30___78 [2⋅X₉-X₁₀-X₁₁-2 ]
n_l8___79 [X₆+X₉-X₈-X₁₀-2 ]
n_l8___82 [X₆+X₈+1-X₉ ]
l32 [-X₁₀-2 ]

MPRF for transition t₆₄₈: n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

20⋅X₆⋅X₈+40⋅X₆⋅X₆+100⋅X₆+40⋅X₈+X₁₁+42 {O(n^2)}

MPRF:

l31 [-X₁₀-X₁₁-2 ]
l6 [-X₁₀-X₁₁-2 ]
l7 [-X₁₀-X₁₁-2 ]
l5 [-X₁₀-X₁₁-2 ]
l8 [-X₁₀-X₁₁-2 ]
n_l30___95 [-X₁₀-X₁₁-2 ]
n_l13___94 [X₆-X₁₀ ]
n_l14___75 [X₉-X₈-X₁₀-5 ]
n_l12___74 [X₉-X₁₀-X₁₁-5 ]
n_l14___92 [X₉-X₁₀ ]
n_l12___91 [X₆-X₁₀ ]
n_l15___73 [X₉-X₈-X₁₀-5 ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₆-X₈-X₁₀-5 ]
n_l16___89 [X₆-X₁₀-5 ]
n_l16___93 [-2 ]
n_l17___71 [X₆-X₁₀-X₁₁-5 ]
n_l17___88 [X₆-X₁₀ ]
n_l19___14 [X₆-X₁₀ ]
n_l19___56 [3⋅X₈+X₁₀+2-X₆ ]
n_l19___63 [5⋅X₈+X₉+1-X₁₀-3⋅X₁₁ ]
n_l19___7 [-2 ]
n_l19___70 [X₆-X₈-X₁₀-5 ]
n_l19___87 [X₆-X₁₀-5 ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₉-X₁₀ ]
n_l20___55 [3⋅X₈+X₁₀+2-X₉ ]
n_l18___54 [X₆+3⋅X₈-X₁₀-2⋅X₁₁-2 ]
n_l20___6 [-2 ]
n_l18___5 [-2⋅X₁₁ ]
n_l20___62 [5⋅X₈+X₉+1-X₁₀-3⋅X₁₁ ]
n_l18___61 [5⋅X₈+X₉+1-X₁₀-3⋅X₁₁ ]
n_l20___69 [X₉-X₈-X₁₀-5 ]
n_l18___68 [X₉-X₈-X₁₀-5 ]
n_l20___86 [X₉-X₁₀-5 ]
n_l18___85 [X₉-X₁₀-5⋅X₁₁ ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [-2⋅X₁₁ ]
n_l21___53 [X₆+3⋅X₈-X₁₀-2⋅X₁₁-2 ]
n_l21___60 [X₆+5⋅X₈+1-X₁₀-3⋅X₁₁ ]
n_l21___67 [X₆-X₈-X₁₀-5 ]
n_l21___84 [X₉-X₁₀-5 ]
n_l22___10 [X₆-X₁₀ ]
n_l22___3 [X₆+3-X₉-5⋅X₁₁ ]
n_l22___52 [X₆+3⋅X₈-X₁₀-2⋅X₁₁-2 ]
n_l22___59 [5⋅X₈+X₉+1-X₁₀-3⋅X₁₁ ]
n_l22___66 [X₉-X₁₀-X₁₁-3 ]
n_l22___83 [X₉-X₁₀-5 ]
n_l24___2 [X₉-X₁₀-5⋅X₁₁ ]
n_l23___1 [X₆-X₁₀-X₁₁-4 ]
n_l24___51 [X₆+3⋅X₈-X₁₀-2⋅X₁₁-2 ]
n_l23___50 [X₆+4⋅X₈-X₁₀-3⋅X₁₁ ]
n_l24___58 [4⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l23___57 [X₆+4⋅X₈-X₁₀-3⋅X₁₁ ]
n_l24___65 [X₉-X₁₀-X₁₁-3 ]
n_l23___64 [X₆-X₁₀-X₁₁-3 ]
n_l24___81 [X₉-X₁₀-5 ]
n_l23___80 [X₆-X₁₀-X₁₁-4 ]
n_l24___9 [X₉-X₁₀-X₁₁-4 ]
n_l23___8 [X₆-X₁₀-X₁₁-4 ]
n_l13___77 [X₉-X₁₀-X₁₁-4 ]
n_l16___76 [5⋅X₈+X₁₀+2-X₆-2⋅X₁₁ ]
n_l30___78 [X₆-X₈-X₁₀-4 ]
n_l8___79 [X₆-X₈-X₁₀-4 ]
n_l8___82 [X₈-X₉-2 ]
l32 [-X₁₀-X₁₁-2 ]

MPRF for transition t₆₅₁: n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___74(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

110⋅X₆⋅X₆+40⋅X₆⋅X₈+241⋅X₆+80⋅X₈+X₁₁+49 {O(n^2)}

MPRF:

l31 [X₉+6-2⋅X₁₀-X₁₁ ]
l6 [X₆+6-2⋅X₁₀-X₁₁ ]
l7 [X₉+6-2⋅X₁₀-X₁₁ ]
l5 [X₆+6-2⋅X₁₀-X₁₁ ]
l8 [X₉+6-2⋅X₁₀-X₁₁ ]
n_l30___95 [X₉+6-2⋅X₁₀-X₁₁ ]
n_l13___94 [3⋅X₆-2⋅X₁₀ ]
n_l14___75 [3⋅X₉-X₈-2⋅X₁₀ ]
n_l12___74 [3⋅X₆-2⋅X₁₀-X₁₁-1 ]
n_l14___92 [3⋅X₉-2⋅X₁₀ ]
n_l12___91 [3⋅X₉-2⋅X₁₀ ]
n_l15___73 [3⋅X₉-2⋅X₁₀-X₁₁-1 ]
n_l15___90 [3⋅X₉-2⋅X₁₀ ]
n_l16___72 [3⋅X₆-X₈-2⋅X₁₀-1 ]
n_l16___89 [3⋅X₆-2⋅X₁₀ ]
n_l16___93 [3⋅X₉-2⋅X₁₀ ]
n_l17___71 [3⋅X₆-X₈-2⋅X₁₀-1 ]
n_l17___88 [3⋅X₆-2⋅X₁₀-1 ]
n_l19___14 [3⋅X₆-2⋅X₁₀-1 ]
n_l19___56 [X₆+2⋅X₈+7 ]
n_l19___63 [3⋅X₆+X₈+1-2⋅X₁₀-X₁₁ ]
n_l19___7 [3⋅X₉-2⋅X₁₀ ]
n_l19___70 [3⋅X₆-X₈-2⋅X₁₀-1 ]
n_l19___87 [3⋅X₆-2⋅X₁₀ ]
n_l20___13 [3⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l18___12 [3⋅X₉-2⋅X₁₀-1 ]
n_l20___55 [2⋅X₈+5⋅X₁₀+5⋅X₁₁+17-4⋅X₆ ]
n_l18___54 [2⋅X₈+5⋅X₁₀+5⋅X₁₁+17-4⋅X₉ ]
n_l20___6 [3⋅X₉-2⋅X₁₀ ]
n_l18___5 [3⋅X₆-2⋅X₁₀ ]
n_l20___62 [3⋅X₆+X₈+1-2⋅X₁₀-X₁₁ ]
n_l18___61 [X₈+3⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l20___69 [3⋅X₆-X₈-2⋅X₁₀-1 ]
n_l18___68 [3⋅X₉-X₈-2⋅X₁₀-1 ]
n_l20___86 [3⋅X₉-2⋅X₁₀ ]
n_l18___85 [3⋅X₉-2⋅X₁₀ ]
n_l21___11 [3⋅X₉-2⋅X₁₀-1 ]
n_l21___4 [X₁₀+9⋅X₁₁ ]
n_l21___53 [X₉+5⋅X₁₁+2-8⋅X₈ ]
n_l21___60 [3⋅X₆+X₈+1-2⋅X₁₀-X₁₁ ]
n_l21___67 [3⋅X₆-X₈-2⋅X₁₀-1 ]
n_l21___84 [3⋅X₉-2⋅X₁₀ ]
n_l22___10 [3⋅X₆+X₁₁-2⋅X₁₀-3 ]
n_l22___3 [X₉+9⋅X₁₁-3 ]
n_l22___52 [X₆+5⋅X₁₁+2-8⋅X₈ ]
n_l22___59 [3⋅X₆+X₈-2⋅X₁₀-X₁₁ ]
n_l22___66 [3⋅X₆-X₈-2⋅X₁₀-1 ]
n_l22___83 [3⋅X₉-2⋅X₁₀ ]
n_l24___2 [X₉+6⋅X₁₁ ]
n_l23___1 [3⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l24___51 [X₉+5⋅X₁₁+2-8⋅X₈ ]
n_l23___50 [3⋅X₆+2-2⋅X₁₀-X₁₁ ]
n_l24___58 [3⋅X₆+X₈-2⋅X₁₀-X₁₁ ]
n_l23___57 [3⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l24___65 [3⋅X₆-2⋅X₈-2⋅X₁₀ ]
n_l23___64 [3⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l24___81 [3⋅X₉-2⋅X₁₀ ]
n_l23___80 [3⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l24___9 [X₆+2⋅X₉-2⋅X₁₀-1 ]
n_l23___8 [3⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l13___77 [3⋅X₆-2⋅X₁₀-X₁₁ ]
n_l16___76 [X₆+2⋅X₈+7 ]
n_l30___78 [3⋅X₆-X₈-2⋅X₁₀ ]
n_l8___79 [4⋅X₉+1-X₆-X₈-2⋅X₁₀ ]
n_l8___82 [X₈+6 ]
l32 [X₉+6-2⋅X₁₀-X₁₁ ]

MPRF for transition t₆₅₅: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

15⋅X₆⋅X₆+2⋅X₁₁+30⋅X₆+3 {O(n^2)}

MPRF:

l31 [-X₁₀-2⋅X₁₁-3 ]
l6 [-X₁₀-2⋅X₁₁-3 ]
l7 [-X₁₀-2⋅X₁₁-3 ]
l5 [X₉-X₆-X₁₀-2⋅X₁₁-3 ]
l8 [X₉-X₆-X₁₀-2⋅X₁₁-3 ]
n_l30___95 [-X₁₀-2⋅X₁₁-3 ]
n_l13___94 [X₆ ]
n_l14___75 [X₆+X₈-X₁₀-3⋅X₁₁-3 ]
n_l12___74 [X₆-X₈-X₁₀-X₁₁-3 ]
n_l14___92 [X₉ ]
n_l12___91 [X₆ ]
n_l15___73 [X₆-2⋅X₈-X₁₀-3 ]
n_l15___90 [X₆ ]
n_l16___72 [X₉-2⋅X₈-X₁₀-4 ]
n_l16___89 [X₆ ]
n_l16___93 [X₆-X₉ ]
n_l17___71 [X₆-X₁₀-2⋅X₁₁-4 ]
n_l17___88 [X₉ ]
n_l19___14 [X₉ ]
n_l19___56 [X₆-2⋅X₈-X₁₀-3 ]
n_l19___63 [X₆-2⋅X₈-X₁₀-4 ]
n_l19___7 [X₉+5⋅X₁₁-X₁₀-8 ]
n_l19___70 [X₉-2⋅X₈-X₁₀-4 ]
n_l19___87 [X₉ ]
n_l20___13 [X₆ ]
n_l18___12 [X₆ ]
n_l20___55 [X₆-2⋅X₈-X₁₀-3 ]
n_l18___54 [X₉-2⋅X₈-X₁₀-3 ]
n_l20___6 [X₉-X₁₀-3⋅X₁₁ ]
n_l18___5 [X₉-X₁₀-3⋅X₁₁ ]
n_l20___62 [X₉-2⋅X₈-X₁₀-4 ]
n_l18___61 [X₆-2⋅X₈-X₁₀-4 ]
n_l20___69 [X₆-2⋅X₈-X₁₀-4 ]
n_l18___68 [X₆-2⋅X₈-X₁₀-4 ]
n_l20___86 [X₆ ]
n_l18___85 [X₉ ]
n_l21___11 [X₉ ]
n_l21___4 [X₉-X₁₀-3 ]
n_l21___53 [X₆-2⋅X₈-X₁₀-3 ]
n_l21___60 [X₉-2⋅X₈-X₁₀-4 ]
n_l21___67 [X₉-2⋅X₈-X₁₀-4 ]
n_l21___84 [X₉ ]
n_l22___10 [X₆ ]
n_l22___3 [X₉-X₁₀-5 ]
n_l22___52 [X₆-2⋅X₈-X₁₀-3 ]
n_l22___59 [X₆-4⋅X₈-X₁₀-7 ]
n_l22___66 [X₆-2⋅X₈-X₁₀-4 ]
n_l22___83 [X₉ ]
n_l24___2 [X₉-X₁₀-2⋅X₁₁-3 ]
n_l23___1 [X₆-X₁₀-2⋅X₁₁-3 ]
n_l24___51 [X₉-2⋅X₈-X₁₀-3 ]
n_l23___50 [X₆+1-X₁₀-2⋅X₁₁ ]
n_l24___58 [X₉-4⋅X₈-X₁₀-7 ]
n_l23___57 [X₆-X₁₀-2⋅X₁₁-3 ]
n_l24___65 [X₉-2⋅X₈-X₁₀-4 ]
n_l23___64 [X₉-X₁₀-2⋅X₁₁ ]
n_l24___81 [X₉ ]
n_l23___80 [X₆-2⋅X₁₁ ]
n_l24___9 [X₆ ]
n_l23___8 [X₆-2⋅X₁₁ ]
n_l13___77 [X₆+X₈-X₁₀-3⋅X₁₁-3 ]
n_l16___76 [X₈-X₁₁ ]
n_l30___78 [X₉-X₈-X₁₀-X₁₁-3 ]
n_l8___79 [X₉+X₁₁-3⋅X₈-X₁₀-3 ]
n_l8___82 [0 ]
l32 [-X₁₀-2⋅X₁₁-3 ]

MPRF for transition t₆₅₆: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

10⋅X₆⋅X₆+2⋅X₁₁+76⋅X₆+119 {O(n^2)}

MPRF:

l31 [X₉+6-2⋅X₁₀-2⋅X₁₁ ]
l6 [X₆+6-2⋅X₁₀-2⋅X₁₁ ]
l7 [X₆+6-2⋅X₁₀-2⋅X₁₁ ]
l5 [X₆+6-2⋅X₁₀-2⋅X₁₁ ]
l8 [X₆+6-2⋅X₁₀-2⋅X₁₁ ]
n_l30___95 [X₉+6-2⋅X₁₀-2⋅X₁₁ ]
n_l13___94 [2⋅X₆+2 ]
n_l14___75 [2⋅X₆+2-X₈-2⋅X₁₀ ]
n_l12___74 [2⋅X₆+2-2⋅X₁₀-X₁₁ ]
n_l14___92 [2⋅X₆+2 ]
n_l12___91 [2⋅X₉+2 ]
n_l15___73 [2⋅X₆+2-X₈-2⋅X₁₀ ]
n_l15___90 [2⋅X₉+2 ]
n_l16___72 [2⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l16___89 [2⋅X₆+2 ]
n_l16___93 [9 ]
n_l17___71 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l17___88 [2⋅X₉+2 ]
n_l19___14 [2⋅X₉+2 ]
n_l19___56 [9⋅X₁₁-16⋅X₈ ]
n_l19___63 [2⋅X₆+X₁₁-3⋅X₈-2⋅X₁₀-1 ]
n_l19___7 [9 ]
n_l19___70 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l19___87 [2⋅X₆+2 ]
n_l20___13 [2⋅X₉+X₁₁ ]
n_l18___12 [2⋅X₉+2 ]
n_l20___55 [2⋅X₆+7⋅X₁₁-16⋅X₈-2⋅X₁₀-4 ]
n_l18___54 [2⋅X₉+3-2⋅X₈-2⋅X₁₀ ]
n_l20___6 [9⋅X₁₁ ]
n_l18___5 [2⋅X₆+9-2⋅X₉ ]
n_l20___62 [2⋅X₉+X₁₁-3⋅X₈-2⋅X₁₀-1 ]
n_l18___61 [2⋅X₆+X₈+3-2⋅X₁₀-X₁₁ ]
n_l20___69 [2⋅X₆+1-X₈-2⋅X₁₀ ]
n_l18___68 [2⋅X₆+1-X₈-2⋅X₁₀ ]
n_l20___86 [2⋅X₉+2⋅X₁₁ ]
n_l18___85 [2⋅X₉+2 ]
n_l21___11 [2⋅X₆+2 ]
n_l21___4 [2⋅X₉+3-2⋅X₁₀ ]
n_l21___53 [2⋅X₉+3-2⋅X₈-2⋅X₁₀ ]
n_l21___60 [X₈+2⋅X₉+3-2⋅X₁₀-X₁₁ ]
n_l21___67 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l21___84 [2⋅X₉+2 ]
n_l22___10 [2⋅X₆ ]
n_l22___3 [2⋅X₉+1-2⋅X₁₀ ]
n_l22___52 [2⋅X₉+1-2⋅X₈-2⋅X₁₀ ]
n_l22___59 [X₈+2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l22___66 [2⋅X₆-X₈-2⋅X₁₀ ]
n_l22___83 [2⋅X₉+3-2⋅X₁₁ ]
n_l24___2 [2⋅X₉+3-2⋅X₁₀-2⋅X₁₁ ]
n_l23___1 [2⋅X₆+X₁₁-2⋅X₁₀ ]
n_l24___51 [2⋅X₉+1-2⋅X₈-2⋅X₁₀ ]
n_l23___50 [2⋅X₆+1-2⋅X₈-2⋅X₁₀ ]
n_l24___58 [X₈+2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l23___57 [2⋅X₉+2-2⋅X₁₀-X₁₁ ]
n_l24___65 [2⋅X₉-X₈-2⋅X₁₀ ]
n_l23___64 [2⋅X₉-X₈-2⋅X₁₀ ]
n_l24___81 [2⋅X₆+3-2⋅X₁₁ ]
n_l23___80 [2⋅X₆+X₁₁ ]
n_l24___9 [2⋅X₆+2-X₁₁ ]
n_l23___8 [2⋅X₆+2-X₁₁ ]
n_l13___77 [2⋅X₆+2-X₈-2⋅X₁₀ ]
n_l16___76 [4⋅X₁₁+9-2⋅X₈ ]
n_l30___78 [2⋅X₉+2-X₈-2⋅X₁₀ ]
n_l8___79 [2⋅X₉+2-X₈-2⋅X₁₀ ]
n_l8___82 [X₈+6-X₁₀ ]
l32 [X₆+6-2⋅X₁₀-2⋅X₁₁ ]

MPRF for transition t₆₆₁: n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

15⋅X₆⋅X₆+75⋅X₆+X₁₁+101 {O(n^2)}

MPRF:

l31 [11-2⋅X₁₀-X₁₁ ]
l6 [9-2⋅X₁₀-X₁₁ ]
l7 [9-2⋅X₁₀-X₁₁ ]
l5 [9-2⋅X₁₀-X₁₁ ]
l8 [X₉+9-X₆-2⋅X₁₀-X₁₁ ]
n_l30___95 [X₆+9-X₉-2⋅X₁₀-X₁₁ ]
n_l13___94 [3⋅X₆ ]
n_l14___75 [2⋅X₆+3-2⋅X₁₀-X₁₁ ]
n_l12___74 [X₈+2⋅X₉+3-2⋅X₁₀-2⋅X₁₁ ]
n_l14___92 [3⋅X₉ ]
n_l12___91 [2⋅X₆+X₉ ]
n_l15___73 [X₈+2⋅X₉+3-2⋅X₁₀-2⋅X₁₁ ]
n_l15___90 [2⋅X₉+3 ]
n_l16___72 [2⋅X₉+3-X₈-2⋅X₁₀ ]
n_l16___89 [2⋅X₉+3 ]
n_l16___93 [9 ]
n_l17___71 [2⋅X₆+X₈+3-2⋅X₁₀-2⋅X₁₁ ]
n_l17___88 [2⋅X₉+2 ]
n_l19___14 [2⋅X₉+2 ]
n_l19___56 [2⋅X₁₀+4⋅X₁₁+10-2⋅X₆-X₈ ]
n_l19___63 [2⋅X₆+3-X₈-2⋅X₁₀ ]
n_l19___7 [9 ]
n_l19___70 [2⋅X₆+3⋅X₁₁-8⋅X₈-2⋅X₁₀ ]
n_l19___87 [2⋅X₆+3⋅X₁₁ ]
n_l20___13 [2⋅X₉+2 ]
n_l18___12 [2⋅X₆+2 ]
n_l20___55 [2⋅X₁₀+4⋅X₁₁+10-X₈-2⋅X₉ ]
n_l18___54 [2⋅X₁₀+4⋅X₁₁+10-X₈-2⋅X₉ ]
n_l20___6 [X₆+6-X₁₀ ]
n_l18___5 [X₉+6-X₁₀ ]
n_l20___62 [2⋅X₉+3-X₈-2⋅X₁₀ ]
n_l18___61 [2⋅X₉+3-X₈-2⋅X₁₀ ]
n_l20___69 [2⋅X₉+3⋅X₁₁-8⋅X₈-2⋅X₁₀ ]
n_l18___68 [2⋅X₉+3⋅X₁₁-8⋅X₈-2⋅X₁₀ ]
n_l20___86 [2⋅X₉+3 ]
n_l18___85 [2⋅X₉+3 ]
n_l21___11 [2⋅X₆+X₁₁ ]
n_l21___4 [X₉+6-X₁₀ ]
n_l21___53 [2⋅X₁₁+6-X₈ ]
n_l21___60 [2⋅X₉+3-X₈-2⋅X₁₀ ]
n_l21___67 [2⋅X₉+3⋅X₁₁-8⋅X₈-2⋅X₁₀ ]
n_l21___84 [2⋅X₉+3 ]
n_l22___10 [2⋅X₆+2 ]
n_l22___3 [X₉+7-X₁₀-X₁₁ ]
n_l22___52 [2⋅X₁₁+6-X₈ ]
n_l22___59 [2⋅X₆+1-X₈-2⋅X₁₀ ]
n_l22___66 [2⋅X₉+3⋅X₁₁-8⋅X₈-2⋅X₁₀ ]
n_l22___83 [2⋅X₆+4-X₁₁ ]
n_l24___2 [X₉+7-X₁₀-X₁₁ ]
n_l23___1 [2⋅X₆+7-X₉-X₁₀-X₁₁ ]
n_l24___51 [X₉+X₁₁+4-X₈-X₁₀ ]
n_l23___50 [2⋅X₆+4-2⋅X₁₀-X₁₁ ]
n_l24___58 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l23___57 [2⋅X₆+1-X₈-2⋅X₁₀ ]
n_l24___65 [2⋅X₉+3⋅X₁₁-8⋅X₈-2⋅X₁₀ ]
n_l23___64 [2⋅X₉+3⋅X₁₁-8⋅X₈-2⋅X₁₀ ]
n_l24___81 [2⋅X₆+4-X₁₁ ]
n_l23___80 [2⋅X₆+4-X₁₁ ]
n_l24___9 [2⋅X₆+4-X₁₁ ]
n_l23___8 [2⋅X₆+4-X₁₁ ]
n_l13___77 [2⋅X₆+3-2⋅X₁₀-X₁₁ ]
n_l16___76 [3⋅X₈+2⋅X₁₀+4⋅X₁₁+14-2⋅X₆ ]
n_l30___78 [2⋅X₆+3-2⋅X₁₀-X₁₁ ]
n_l8___79 [3⋅X₆+X₁₁+4-2⋅X₈-X₉-2⋅X₁₀ ]
n_l8___82 [X₈+X₁₁+8-X₆ ]
l32 [9-2⋅X₁₀-X₁₁ ]

MPRF for transition t₆₆₂: n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 3+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₁₀+2⋅X₁₁+3 ∧ 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ of depth 1:

new bound:

15⋅X₆⋅X₆+41⋅X₆+X₁₁+28 {O(n^2)}

MPRF:

l31 [X₉-X₁₀-X₁₁-5 ]
l6 [X₉-X₁₀-X₁₁-5 ]
l7 [X₉-X₁₀-X₁₁-5 ]
l5 [X₆-X₁₀-X₁₁-5 ]
l8 [X₉-X₁₀-X₁₁-5 ]
n_l30___95 [X₆-X₁₀-X₁₁-5 ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₉-X₈-X₁₀-8 ]
n_l12___74 [2⋅X₉-X₁₀-X₁₁-8 ]
n_l14___92 [2⋅X₉ ]
n_l12___91 [2⋅X₆ ]
n_l15___73 [2⋅X₆-X₈-X₁₀-8 ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₆-X₁₀-X₁₁-8 ]
n_l16___89 [2⋅X₉ ]
n_l16___93 [X₁₀-2 ]
n_l17___71 [2⋅X₆-X₈-X₁₀-8 ]
n_l17___88 [2⋅X₆ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [2⋅X₆+X₈-X₁₀-X₁₁-8 ]
n_l19___63 [X₈+2⋅X₉-X₁₀-X₁₁-6 ]
n_l19___7 [X₁₀-2 ]
n_l19___70 [2⋅X₆-X₈-X₁₀-8 ]
n_l19___87 [2⋅X₉ ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [X₈+X₁₀+X₁₁-4 ]
n_l18___54 [X₁₀+2⋅X₁₁-X₈-5 ]
n_l20___6 [X₁₀-2 ]
n_l18___5 [X₁₀-2 ]
n_l20___62 [X₈+2⋅X₉-X₁₀-X₁₁-6 ]
n_l18___61 [2⋅X₉+X₁₁-3⋅X₈-X₁₀-10 ]
n_l20___69 [2⋅X₆-X₈-X₁₀-8 ]
n_l18___68 [2⋅X₆-X₈-X₁₀-8 ]
n_l20___86 [2⋅X₉ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₉ ]
n_l21___4 [X₁₀-2 ]
n_l21___53 [X₁₀+2⋅X₁₁-X₈-5 ]
n_l21___60 [2⋅X₆+X₁₁-3⋅X₈-X₁₀-10 ]
n_l21___67 [2⋅X₉+X₁₁-3⋅X₈-X₁₀-9 ]
n_l21___84 [2⋅X₉ ]
n_l22___10 [2⋅X₉-X₁₁ ]
n_l22___3 [3⋅X₁₀+3⋅X₁₁-2⋅X₆ ]
n_l22___52 [X₁₀+2⋅X₁₁-X₈-5 ]
n_l22___59 [2⋅X₆-X₁₀-X₁₁-5 ]
n_l22___66 [2⋅X₆+X₁₁-3⋅X₈-X₁₀-9 ]
n_l22___83 [2⋅X₉ ]
n_l24___2 [3⋅X₁₀+3-2⋅X₉ ]
n_l23___1 [2⋅X₆-X₁₀-9⋅X₁₁ ]
n_l24___51 [X₁₀+2⋅X₁₁-X₈-6 ]
n_l23___50 [2⋅X₆-X₈-X₁₀-10 ]
n_l24___58 [2⋅X₉-X₁₀-X₁₁-5 ]
n_l23___57 [2⋅X₉-X₁₀-X₁₁-5 ]
n_l24___65 [2⋅X₉+X₁₁-3⋅X₈-X₁₀-9 ]
n_l23___64 [2⋅X₉-X₁₀-X₁₁-6 ]
n_l24___81 [2⋅X₉-X₁₁ ]
n_l23___80 [2⋅X₆-X₁₁ ]
n_l24___9 [2⋅X₉-X₁₁ ]
n_l23___8 [2⋅X₆-X₁₁ ]
n_l13___77 [2⋅X₉-X₁₀-X₁₁-8 ]
n_l16___76 [2⋅X₉-X₁₀-X₁₁-8 ]
n_l30___78 [X₆+X₉-X₈-X₁₀-8 ]
n_l8___79 [X₆+X₉-X₈-X₁₀-8 ]
n_l8___82 [3⋅X₈-X₆-X₉-5 ]
l32 [X₉-X₁₀-X₁₁-5 ]

MPRF for transition t₆₆₆: n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

20⋅X₆⋅X₆+40⋅X₆+X₁₁ {O(n^2)}

MPRF:

l31 [-X₁₀-X₁₁ ]
l6 [-X₁₀-X₁₁ ]
l7 [-X₁₀-X₁₁ ]
l5 [-X₁₀-X₁₁ ]
l8 [-X₁₀-X₁₁ ]
n_l30___95 [-X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [X₆-X₁₀-X₁₁-4 ]
n_l12___74 [X₉-X₁₀-X₁₁-4 ]
n_l14___92 [X₆+X₉ ]
n_l12___91 [X₆-X₁₀ ]
n_l15___73 [X₆-X₈-X₁₀-4 ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₆-X₈-X₁₀-4 ]
n_l16___89 [X₉-X₁₀ ]
n_l16___93 [X₆-X₉ ]
n_l17___71 [X₆-X₈-X₁₀-4 ]
n_l17___88 [X₉-X₁₀ ]
n_l19___14 [X₆-X₁₀ ]
n_l19___56 [X₉-2⋅X₈-X₁₀-3 ]
n_l19___63 [X₉+X₁₁-3⋅X₈-X₁₀-7 ]
n_l19___7 [X₉-X₁₀-3 ]
n_l19___70 [X₆-X₈-X₁₀-4 ]
n_l19___87 [X₉-X₁₀ ]
n_l20___13 [X₆-X₁₀ ]
n_l18___12 [X₆-X₁₀ ]
n_l20___55 [X₉-2⋅X₈-X₁₀-3 ]
n_l18___54 [X₉-2⋅X₈-X₁₀-3 ]
n_l20___6 [X₉-X₁₀-3 ]
n_l18___5 [X₉-X₁₀-3⋅X₁₁ ]
n_l20___62 [X₆+X₈-X₁₀-X₁₁-3 ]
n_l18___61 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l20___69 [X₆-X₈-X₁₀-4 ]
n_l18___68 [X₆-X₈-X₁₀-4 ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₆-X₁₀ ]
n_l21___4 [X₉-X₁₀-3 ]
n_l21___53 [X₉-2⋅X₈-X₁₀-3 ]
n_l21___60 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l21___67 [X₆+X₈-X₁₀-X₁₁-3 ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₆-X₁₀ ]
n_l22___3 [X₉-X₁₀-X₁₁-2 ]
n_l22___52 [X₉-2⋅X₈-X₁₀-3 ]
n_l22___59 [X₆-X₁₀-X₁₁-2 ]
n_l22___66 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l22___83 [X₉-X₁₀ ]
n_l24___2 [X₉-X₁₀-X₁₁-2 ]
n_l23___1 [X₆-X₁₀-X₁₁-2 ]
n_l24___51 [X₉-2⋅X₈-X₁₀-3 ]
n_l23___50 [X₆-X₁₀-X₁₁-2 ]
n_l24___58 [X₉-X₁₀-X₁₁-2 ]
n_l23___57 [X₉-X₁₀-X₁₁-2 ]
n_l24___65 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l23___64 [X₆+X₈-X₁₀-X₁₁-3 ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆-X₁₀-X₁₁ ]
n_l24___9 [X₆-X₁₀ ]
n_l23___8 [X₆-X₁₀-X₁₁ ]
n_l13___77 [X₉-X₁₀-X₁₁-4 ]
n_l16___76 [X₆-2⋅X₈-X₁₀-3 ]
n_l30___78 [X₉-X₁₀-X₁₁-4 ]
n_l8___79 [X₉-X₈-X₁₀-2 ]
n_l8___82 [X₈-X₆ ]
l32 [-X₁₀-X₁₁ ]

MPRF for transition t₆₇₃: n_l18___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___53(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

5⋅X₆⋅X₆+15⋅X₆+X₁₁+11 {O(n^2)}

MPRF:

l31 [1-X₁₁ ]
l6 [X₆+1-X₉-X₁₁ ]
l7 [X₆+1-X₉-X₁₁ ]
l5 [1-X₁₁ ]
l8 [1-X₁₁ ]
n_l30___95 [1-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₉-2⋅X₈-X₁₀-3 ]
n_l12___74 [X₉-X₁₀-2⋅X₁₁-3 ]
n_l14___92 [X₉ ]
n_l12___91 [X₉ ]
n_l15___73 [X₉-2⋅X₈-X₁₀-3 ]
n_l15___90 [X₉ ]
n_l16___72 [X₉-X₁₀-2⋅X₁₁-3 ]
n_l16___89 [X₉ ]
n_l16___93 [1 ]
n_l17___71 [X₆-X₁₀-2⋅X₁₁-3 ]
n_l17___88 [X₉ ]
n_l19___14 [X₆ ]
n_l19___56 [X₉-X₈-X₁₀-2 ]
n_l19___63 [X₉-2⋅X₈-X₁₀-3 ]
n_l19___7 [1 ]
n_l19___70 [X₉-2⋅X₈-X₁₀-3 ]
n_l19___87 [X₆ ]
n_l20___13 [X₉ ]
n_l18___12 [X₆ ]
n_l20___55 [5⋅X₈+X₉+1-X₁₀-3⋅X₁₁ ]
n_l18___54 [5⋅X₈+X₉+1-X₁₀-3⋅X₁₁ ]
n_l20___6 [1 ]
n_l18___5 [3⋅X₁₁-2 ]
n_l20___62 [X₉-2⋅X₈-X₁₀-3 ]
n_l18___61 [X₉-2⋅X₈-X₁₀-3 ]
n_l20___69 [X₉-2⋅X₈-X₁₀-3 ]
n_l18___68 [X₉-2⋅X₈-X₁₀-3 ]
n_l20___86 [X₉ ]
n_l18___85 [X₉ ]
n_l21___11 [X₉ ]
n_l21___4 [3⋅X₁₁-2 ]
n_l21___53 [5⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l21___60 [X₆-X₁₀-X₁₁-1 ]
n_l21___67 [X₆-X₁₀-X₁₁-2 ]
n_l21___84 [X₉ ]
n_l22___10 [X₉ ]
n_l22___3 [X₆-X₁₀-3⋅X₁₁ ]
n_l22___52 [4⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l22___59 [X₉-X₁₀-X₁₁-2 ]
n_l22___66 [4⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l22___83 [X₉ ]
n_l24___2 [X₉-X₁₀-3 ]
n_l23___1 [X₆-X₁₀-3 ]
n_l24___51 [4⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l23___50 [X₆+6⋅X₈+1-X₁₀-4⋅X₁₁ ]
n_l24___58 [X₉-X₁₀-X₁₁-2 ]
n_l23___57 [X₆-X₁₀-X₁₁-2 ]
n_l24___65 [4⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l23___64 [4⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l24___81 [X₆-X₁₁ ]
n_l23___80 [X₆-X₁₁-2 ]
n_l24___9 [X₉ ]
n_l23___8 [X₆-X₁₁-2 ]
n_l13___77 [X₉-2⋅X₈-X₁₀-3 ]
n_l16___76 [X₆-X₁₀-X₁₁-2 ]
n_l30___78 [X₆-X₈-X₁₀-2 ]
n_l8___79 [X₉-X₈-X₁₀-2 ]
n_l8___82 [X₆+X₈+1-2⋅X₉ ]
l32 [1-X₁₁ ]

MPRF for transition t₆₇₄: n_l18___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___60(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

15⋅X₆⋅X₆+41⋅X₆+X₁₁+22 {O(n^2)}

MPRF:

l31 [X₆+2-X₁₀-X₁₁ ]
l6 [X₉+2-X₁₀-X₁₁ ]
l7 [X₆+2-X₁₀-X₁₁ ]
l5 [X₉+2-X₁₀-X₁₁ ]
l8 [X₉+2-X₁₀-X₁₁ ]
n_l30___95 [X₉+2-X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₆-X₁₀-X₁₁ ]
n_l12___74 [2⋅X₉-X₈-X₁₀ ]
n_l14___92 [2⋅X₆ ]
n_l12___91 [2⋅X₉ ]
n_l15___73 [2⋅X₉-X₈-X₁₀ ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [2⋅X₉-X₁₀-X₁₁ ]
n_l16___89 [2⋅X₆ ]
n_l16___93 [X₆+2 ]
n_l17___71 [2⋅X₉-X₈-X₁₀ ]
n_l17___88 [2⋅X₆ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l19___63 [2⋅X₆-X₈-X₁₀ ]
n_l19___7 [2⋅X₉-X₁₀-1 ]
n_l19___70 [2⋅X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l19___87 [2⋅X₆ ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l18___54 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l20___6 [2⋅X₉-X₁₀-1 ]
n_l18___5 [2⋅X₉-X₁₀-1 ]
n_l20___62 [2⋅X₉-X₈-X₁₀ ]
n_l18___61 [2⋅X₆-X₈-X₁₀ ]
n_l20___69 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l18___68 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l20___86 [2⋅X₉ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₆ ]
n_l21___4 [2⋅X₉-X₁₀-X₁₁ ]
n_l21___53 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l21___60 [2⋅X₆-X₈-X₁₀-1 ]
n_l21___67 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l21___84 [2⋅X₉ ]
n_l22___10 [2⋅X₆ ]
n_l22___3 [2⋅X₉-X₁₀-X₁₁ ]
n_l22___52 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l22___59 [2⋅X₉-X₁₀-X₁₁ ]
n_l22___66 [2⋅X₉+2-X₁₀-X₁₁ ]
n_l22___83 [2⋅X₆ ]
n_l24___2 [2⋅X₉-X₁₀-1 ]
n_l23___1 [2⋅X₆-X₁₀-X₁₁ ]
n_l24___51 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l23___50 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l24___58 [2⋅X₉-X₁₀-X₁₁ ]
n_l23___57 [2⋅X₉-X₁₀-X₁₁ ]
n_l24___65 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l23___64 [2⋅X₉-X₁₀-X₁₁ ]
n_l24___81 [2⋅X₆ ]
n_l23___80 [2⋅X₆-X₁₁ ]
n_l24___9 [2⋅X₉+2-2⋅X₁₁ ]
n_l23___8 [2⋅X₆-X₁₁ ]
n_l13___77 [2⋅X₆-X₁₀-X₁₁ ]
n_l16___76 [X₆+2⋅X₁₁+4-2⋅X₈ ]
n_l30___78 [2⋅X₆-X₁₀-X₁₁ ]
n_l8___79 [2⋅X₆-X₁₀-X₁₁ ]
n_l8___82 [X₈+2 ]
l32 [X₉+2-X₁₀-X₁₁ ]

MPRF for transition t₆₇₅: n_l18___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___67(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

120⋅X₆⋅X₆+60⋅X₆⋅X₈+120⋅X₈+316⋅X₆+X₁₁+153 {O(n^2)}

MPRF:

l31 [X₆-X₁₀-X₁₁-3 ]
l6 [X₆-X₁₀-X₁₁-3 ]
l7 [X₆-X₁₀-X₁₁-3 ]
l5 [X₆-X₁₀-X₁₁-3 ]
l8 [X₆-X₁₀-X₁₁-3 ]
n_l30___95 [3⋅X₆-2⋅X₉-X₁₀-X₁₁-3 ]
n_l13___94 [3⋅X₆-3⋅X₁₀-9 ]
n_l14___75 [3⋅X₉-X₈-3⋅X₁₀-9 ]
n_l12___74 [3⋅X₉-3⋅X₁₀-X₁₁-9 ]
n_l14___92 [3⋅X₆-3⋅X₁₀-9 ]
n_l12___91 [3⋅X₉-3⋅X₁₀-9 ]
n_l15___73 [3⋅X₆-X₈-3⋅X₁₀-9 ]
n_l15___90 [3⋅X₉-3⋅X₁₀-9 ]
n_l16___72 [3⋅X₆-X₈-3⋅X₁₀-9 ]
n_l16___89 [3⋅X₆-3⋅X₁₀-9 ]
n_l16___93 [0 ]
n_l17___71 [3⋅X₉-3⋅X₁₀-X₁₁-9 ]
n_l17___88 [3⋅X₆-3⋅X₁₀-10 ]
n_l19___14 [3⋅X₉-3⋅X₁₀-10 ]
n_l19___56 [3⋅X₆-2⋅X₈-3⋅X₁₀-8 ]
n_l19___63 [3⋅X₉+X₁₁-3⋅X₈-3⋅X₁₀-11 ]
n_l19___7 [0 ]
n_l19___70 [3⋅X₉+6⋅X₁₁-13⋅X₈-3⋅X₁₀-15 ]
n_l19___87 [3⋅X₆-3⋅X₁₀-9 ]
n_l20___13 [3⋅X₉-3⋅X₁₀-10 ]
n_l18___12 [3⋅X₆-3⋅X₁₀-5⋅X₁₁ ]
n_l20___55 [3⋅X₆-2⋅X₈-3⋅X₁₀-8 ]
n_l18___54 [3⋅X₉-2⋅X₈-3⋅X₁₀-8 ]
n_l20___6 [0 ]
n_l18___5 [0 ]
n_l20___62 [3⋅X₉+X₁₁-3⋅X₈-3⋅X₁₀-11 ]
n_l18___61 [3⋅X₉+X₁₁-3⋅X₈-3⋅X₁₀-11 ]
n_l20___69 [3⋅X₉+6⋅X₁₁-13⋅X₈-3⋅X₁₀-15 ]
n_l18___68 [3⋅X₉-X₈-3⋅X₁₀-9 ]
n_l20___86 [3⋅X₉-3⋅X₁₀-9⋅X₁₁ ]
n_l18___85 [3⋅X₆-3⋅X₁₀-9 ]
n_l21___11 [3⋅X₉-3⋅X₁₀-5⋅X₁₁ ]
n_l21___4 [0 ]
n_l21___53 [3⋅X₉-2⋅X₈-3⋅X₁₀-8 ]
n_l21___60 [3⋅X₆+X₁₁-3⋅X₈-3⋅X₁₀-11 ]
n_l21___67 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l21___84 [3⋅X₉-3⋅X₁₀-9⋅X₁₁ ]
n_l22___10 [3⋅X₉-3⋅X₁₀-10 ]
n_l22___3 [3⋅X₉-3⋅X₁₀-9 ]
n_l22___52 [3⋅X₉-2⋅X₈-3⋅X₁₀-8 ]
n_l22___59 [3⋅X₆+X₁₁-3⋅X₈-3⋅X₁₀-11 ]
n_l22___66 [3⋅X₉-3⋅X₁₀-X₁₁-8 ]
n_l22___83 [3⋅X₉-3⋅X₁₀-9 ]
n_l24___2 [3⋅X₉-3⋅X₁₀-9⋅X₁₁ ]
n_l23___1 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l24___51 [3⋅X₉-2⋅X₈-3⋅X₁₀-8 ]
n_l23___50 [3⋅X₆-3⋅X₁₀-X₁₁-7 ]
n_l24___58 [3⋅X₉+X₁₁-3⋅X₈-3⋅X₁₀-11 ]
n_l23___57 [3⋅X₉-X₈-3⋅X₁₀-9 ]
n_l24___65 [3⋅X₉-3⋅X₁₀-X₁₁-8 ]
n_l23___64 [3⋅X₉-3⋅X₁₀-X₁₁-8 ]
n_l24___81 [3⋅X₉-3⋅X₁₀-9⋅X₁₁ ]
n_l23___80 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l24___9 [3⋅X₉+2-3⋅X₁₀-6⋅X₁₁ ]
n_l23___8 [3⋅X₆-3⋅X₁₀-X₁₁-8 ]
n_l13___77 [3⋅X₆-X₈-3⋅X₁₀-9 ]
n_l16___76 [3⋅X₆-3⋅X₁₀-2⋅X₁₁-8 ]
n_l30___78 [3⋅X₆-X₈-3⋅X₁₀-9 ]
n_l8___79 [3⋅X₉-3⋅X₁₀-X₁₁-8 ]
n_l8___82 [3⋅X₆+X₁₁-2⋅X₉-X₁₀-4 ]
l32 [X₉-X₁₀-X₁₁-3 ]

MPRF for transition t₆₈₁: n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

20⋅X₆⋅X₈+50⋅X₆⋅X₆+110⋅X₆+40⋅X₈+X₁₁+25 {O(n^2)}

MPRF:

l31 [5-X₁₀-X₁₁ ]
l6 [5-X₁₀-X₁₁ ]
l7 [4-X₁₀-X₁₁ ]
l5 [4-X₁₀-X₁₁ ]
l8 [4-X₁₀-X₁₁ ]
n_l30___95 [4-X₁₀-X₁₁ ]
n_l13___94 [X₆-X₁₀ ]
n_l14___75 [X₆+1-X₁₀-X₁₁ ]
n_l12___74 [X₆+1-X₁₀-X₁₁ ]
n_l14___92 [X₉-X₁₀ ]
n_l12___91 [X₉-X₁₀ ]
n_l15___73 [X₉+1-X₈-X₁₀ ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₉+1-X₁₀-X₁₁ ]
n_l16___89 [X₉-X₁₀ ]
n_l16___93 [X₆-X₁₀ ]
n_l17___71 [X₉+1-X₁₀-X₁₁ ]
n_l17___88 [X₉-X₁₀-1 ]
n_l19___14 [X₆-X₁₀-1 ]
n_l19___56 [5 ]
n_l19___63 [X₆+1-X₈-X₁₀ ]
n_l19___7 [X₉-X₁₀ ]
n_l19___70 [X₉+1-X₈-X₁₀ ]
n_l19___87 [X₉-X₁₀ ]
n_l20___13 [X₉+X₁₁-X₁₀-3 ]
n_l18___12 [X₉-X₁₀-1 ]
n_l20___55 [4 ]
n_l18___54 [4 ]
n_l20___6 [2⋅X₁₀+9-2⋅X₆ ]
n_l18___5 [2⋅X₁₀+9-2⋅X₆ ]
n_l20___62 [X₉+1-X₈-X₁₀ ]
n_l18___61 [X₉+1-X₈-X₁₀ ]
n_l20___69 [X₉+1-X₈-X₁₀ ]
n_l18___68 [X₆+1-X₈-X₁₀ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₆-X₁₀ ]
n_l21___11 [X₆-X₁₀-1 ]
n_l21___4 [2⋅X₁₀+9-X₆-X₉ ]
n_l21___53 [4 ]
n_l21___60 [X₆+1-X₈-X₁₀ ]
n_l21___67 [X₆+1-X₈-X₁₀ ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₆-X₁₀-1 ]
n_l22___3 [3⋅X₁₁ ]
n_l22___52 [4 ]
n_l22___59 [X₆+1-X₈-X₁₀ ]
n_l22___66 [X₆+1-X₈-X₁₀ ]
n_l22___83 [X₉-X₁₀ ]
n_l24___2 [3 ]
n_l23___1 [2⋅X₆-2⋅X₁₀-X₁₁-2 ]
n_l24___51 [X₆+1-X₁₀-X₁₁ ]
n_l23___50 [X₉+1-X₁₀-X₁₁ ]
n_l24___58 [X₉+1-X₈-X₁₀ ]
n_l23___57 [X₉-X₈-X₁₀-2 ]
n_l24___65 [X₉+1-X₈-X₁₀ ]
n_l23___64 [X₆+1-X₈-X₁₀ ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆-X₁₀ ]
n_l24___9 [X₉+1-X₁₀-X₁₁ ]
n_l23___8 [X₆-X₁₀-1 ]
n_l13___77 [X₉+X₁₁+1-2⋅X₈-X₁₀ ]
n_l16___76 [5 ]
n_l30___78 [X₉+X₁₁+1-2⋅X₈-X₁₀ ]
n_l8___79 [X₉+1-X₁₀-X₁₁ ]
n_l8___82 [X₆+3-X₈ ]
l32 [4-X₁₀-X₁₁ ]

MPRF for transition t₆₈₂: n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

25⋅X₆⋅X₆+106⋅X₆+4⋅X₁₁+124 {O(n^2)}

MPRF:

l31 [X₉+11-3⋅X₁₀-4⋅X₁₁ ]
l6 [X₉+11-3⋅X₁₀-4⋅X₁₁ ]
l7 [X₉+11-3⋅X₁₀-4⋅X₁₁ ]
l5 [X₉+11-3⋅X₁₀-4⋅X₁₁ ]
l8 [X₆+11-3⋅X₁₀-4⋅X₁₁ ]
n_l30___95 [X₆+11-3⋅X₁₀-4⋅X₁₁ ]
n_l13___94 [4⋅X₆ ]
n_l14___75 [4⋅X₆-3⋅X₁₀-X₁₁-1 ]
n_l12___74 [4⋅X₉-X₈-3⋅X₁₀-1 ]
n_l14___92 [4⋅X₆ ]
n_l12___91 [4⋅X₉ ]
n_l15___73 [4⋅X₉-3⋅X₁₀-X₁₁-1 ]
n_l15___90 [4⋅X₉ ]
n_l16___72 [4⋅X₆-X₈-3⋅X₁₀-1 ]
n_l16___89 [4⋅X₉-1 ]
n_l16___93 [X₆+11 ]
n_l17___71 [4⋅X₆-3⋅X₁₀-X₁₁-1 ]
n_l17___88 [4⋅X₉ ]
n_l19___14 [4⋅X₉ ]
n_l19___56 [X₆+6⋅X₈+10-X₁₁ ]
n_l19___63 [X₈+4⋅X₉+1-3⋅X₁₀-X₁₁ ]
n_l19___7 [X₉+11 ]
n_l19___70 [4⋅X₆+X₈-3⋅X₁₀-X₁₁ ]
n_l19___87 [4⋅X₉-1 ]
n_l20___13 [4⋅X₉ ]
n_l18___12 [4⋅X₆ ]
n_l20___55 [X₆+6⋅X₈+10-X₁₁ ]
n_l18___54 [2⋅X₈+X₉+X₁₁+8 ]
n_l20___6 [X₆+11 ]
n_l18___5 [X₉+11 ]
n_l20___62 [X₈+4⋅X₉-3⋅X₁₀-X₁₁ ]
n_l18___61 [X₈+4⋅X₉-3⋅X₁₀-X₁₁ ]
n_l20___69 [4⋅X₆+X₈-3⋅X₁₀-X₁₁ ]
n_l18___68 [3⋅X₆+X₈+X₉-3⋅X₁₀-X₁₁ ]
n_l20___86 [4⋅X₉-1 ]
n_l18___85 [4⋅X₉-1 ]
n_l21___11 [4⋅X₆ ]
n_l21___4 [X₉+11 ]
n_l21___53 [2⋅X₈+X₉+X₁₁+8 ]
n_l21___60 [X₈+4⋅X₉-3⋅X₁₀-X₁₁ ]
n_l21___67 [X₈+4⋅X₉-3⋅X₁₀-X₁₁ ]
n_l21___84 [X₆+3⋅X₉-1 ]
n_l22___10 [4⋅X₆ ]
n_l22___3 [X₉+8-X₁₁ ]
n_l22___52 [2⋅X₈+X₉+X₁₁+8 ]
n_l22___59 [X₈+4⋅X₉-3⋅X₁₀-X₁₁ ]
n_l22___66 [4⋅X₆+1-3⋅X₁₀-X₁₁ ]
n_l22___83 [4⋅X₆-2 ]
n_l24___2 [X₉+8-X₁₁ ]
n_l23___1 [4⋅X₆-3⋅X₁₀-X₁₁-1 ]
n_l24___51 [2⋅X₈+X₉+X₁₁+8 ]
n_l23___50 [4⋅X₆+1-3⋅X₁₀-X₁₁ ]
n_l24___58 [4⋅X₆+2⋅X₈+1-3⋅X₁₀-2⋅X₁₁ ]
n_l23___57 [4⋅X₆-3⋅X₁₀-X₁₁-1 ]
n_l24___65 [4⋅X₉+1-3⋅X₁₀-X₁₁ ]
n_l23___64 [4⋅X₆+1-3⋅X₁₀-X₁₁ ]
n_l24___81 [4⋅X₆-X₁₁-1 ]
n_l23___80 [4⋅X₆-X₁₁-1 ]
n_l24___9 [4⋅X₉-X₁₁-1 ]
n_l23___8 [4⋅X₆-X₁₁-1 ]
n_l13___77 [4⋅X₆-X₈-3⋅X₁₀-1 ]
n_l16___76 [X₆+5⋅X₈+8 ]
n_l30___78 [4⋅X₆-X₈-3⋅X₁₀-1 ]
n_l8___79 [4⋅X₆-X₈-3⋅X₁₀-1 ]
n_l8___82 [X₈+X₁₁+10 ]
l32 [X₆+11-3⋅X₁₀-4⋅X₁₁ ]

MPRF for transition t₆₈₄: n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

30⋅X₆⋅X₆+115⋅X₆+X₁₁+115 {O(n^2)}

MPRF:

l31 [5-2⋅X₁₀-X₁₁ ]
l6 [5-2⋅X₁₀-X₁₁ ]
l7 [5-2⋅X₁₀-X₁₁ ]
l5 [5-2⋅X₁₀-X₁₁ ]
l8 [X₉+5-X₆-2⋅X₁₀-X₁₁ ]
n_l30___95 [5-2⋅X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₉-X₈-2⋅X₁₀-1 ]
n_l12___74 [X₈+2⋅X₉-2⋅X₁₀-2⋅X₁₁-1 ]
n_l14___92 [2⋅X₆ ]
n_l12___91 [2⋅X₉ ]
n_l15___73 [2⋅X₆+X₈-2⋅X₁₀-2⋅X₁₁-1 ]
n_l15___90 [2⋅X₉ ]
n_l16___72 [X₆+X₉-2⋅X₁₀-X₁₁-1 ]
n_l16___89 [2⋅X₆ ]
n_l16___93 [2⋅X₁₀+11-2⋅X₆ ]
n_l17___71 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-2 ]
n_l17___88 [2⋅X₆ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [X₆+2⋅X₁₁+1-4⋅X₈-X₁₀ ]
n_l19___63 [2⋅X₆-2⋅X₈-2⋅X₁₀-2 ]
n_l19___7 [X₉+2⋅X₁₀+11-3⋅X₆ ]
n_l19___70 [2⋅X₉-X₈-2⋅X₁₀-1 ]
n_l19___87 [2⋅X₉ ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₆ ]
n_l20___55 [X₉+2⋅X₁₁+1-4⋅X₈-X₁₀ ]
n_l18___54 [X₆+2⋅X₁₁+1-4⋅X₈-X₁₀ ]
n_l20___6 [2⋅X₁₀+2⋅X₁₁+9-X₆-X₉ ]
n_l18___5 [X₁₀+2⋅X₁₁+6-X₆ ]
n_l20___62 [2⋅X₆-2⋅X₁₀-X₁₁ ]
n_l18___61 [2⋅X₆-2⋅X₁₀-X₁₁ ]
n_l20___69 [2⋅X₉-X₈-2⋅X₁₀-2 ]
n_l18___68 [2⋅X₉-X₈-2⋅X₁₀-2 ]
n_l20___86 [2⋅X₉ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₆ ]
n_l21___4 [2⋅X₁₁+3 ]
n_l21___53 [X₉+2⋅X₁₁+1-4⋅X₈-X₁₀ ]
n_l21___60 [2⋅X₆-2⋅X₁₀-X₁₁ ]
n_l21___67 [2⋅X₆-X₈-2⋅X₁₀-2 ]
n_l21___84 [2⋅X₉ ]
n_l22___10 [2⋅X₆ ]
n_l22___3 [X₉+2⋅X₁₁-X₁₀ ]
n_l22___52 [X₉+2⋅X₁₁+1-4⋅X₈-X₁₀ ]
n_l22___59 [2⋅X₉-2⋅X₁₀-X₁₁ ]
n_l22___66 [2⋅X₉-X₈-2⋅X₁₀-2 ]
n_l22___83 [2⋅X₆ ]
n_l24___2 [X₉+2⋅X₁₁-X₁₀ ]
n_l23___1 [2⋅X₆-2⋅X₁₀-X₁₁ ]
n_l24___51 [X₉+2⋅X₁₁+1-4⋅X₈-X₁₀ ]
n_l23___50 [X₆+2-X₁₀ ]
n_l24___58 [2⋅X₉-2⋅X₁₀-X₁₁ ]
n_l23___57 [2⋅X₆-2⋅X₁₀-X₁₁ ]
n_l24___65 [2⋅X₉-2⋅X₁₀-X₁₁ ]
n_l23___64 [2⋅X₉-2⋅X₁₀-X₁₁ ]
n_l24___81 [2⋅X₉ ]
n_l23___80 [2⋅X₆-X₁₁ ]
n_l24___9 [2⋅X₆-X₁₁ ]
n_l23___8 [2⋅X₆-X₁₁ ]
n_l13___77 [2⋅X₆-2⋅X₁₀-X₁₁-1 ]
n_l16___76 [X₆+X₈+3-X₁₀-X₁₁ ]
n_l30___78 [2⋅X₆-2⋅X₁₀-X₁₁-1 ]
n_l8___79 [X₆+X₉-2⋅X₁₀-X₁₁ ]
n_l8___82 [X₆+X₁₁+4-X₈ ]
l32 [5-2⋅X₁₀-X₁₁ ]

MPRF for transition t₆₉₀: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___54(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

35⋅X₆⋅X₆+130⋅X₆+X₁₁+123 {O(n^2)}

MPRF:

l31 [3-X₁₀-X₁₁ ]
l6 [X₆+3-X₉-X₁₀-X₁₁ ]
l7 [3-X₁₀-X₁₁ ]
l5 [3-X₁₀-X₁₁ ]
l8 [3-X₁₀-X₁₁ ]
n_l30___95 [3-X₁₀-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₆+1-X₈-X₁₀ ]
n_l12___74 [X₉+1-X₁₀-X₁₁ ]
n_l14___92 [X₉ ]
n_l12___91 [X₆ ]
n_l15___73 [X₆+1-X₈-X₁₀ ]
n_l15___90 [X₉ ]
n_l16___72 [X₆+1-X₈-X₁₀ ]
n_l16___89 [X₆ ]
n_l16___93 [3⋅X₁₀+12-3⋅X₆ ]
n_l17___71 [X₆+1-X₁₀-X₁₁ ]
n_l17___88 [X₉-X₁₀ ]
n_l19___14 [X₆-X₁₀ ]
n_l19___56 [3⋅X₈+5-X₁₁ ]
n_l19___63 [X₉+1-X₈-X₁₀ ]
n_l19___7 [3⋅X₁₀+12-3⋅X₆ ]
n_l19___70 [X₆+1-X₈-X₁₀ ]
n_l19___87 [X₆ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₉-X₁₀ ]
n_l20___55 [3⋅X₁₁+1-5⋅X₈ ]
n_l18___54 [3⋅X₁₁-6⋅X₈ ]
n_l20___6 [3⋅X₁₀+12-3⋅X₆ ]
n_l18___5 [3⋅X₁₀+12-3⋅X₉ ]
n_l20___62 [X₆+1-X₈-X₁₀ ]
n_l18___61 [X₉+1-X₈-X₁₀ ]
n_l20___69 [X₉+1-X₈-X₁₀ ]
n_l18___68 [X₉+1-X₈-X₁₀ ]
n_l20___86 [X₉ ]
n_l18___85 [X₉ ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [X₉-X₁₀ ]
n_l21___53 [3⋅X₁₁-6⋅X₈ ]
n_l21___60 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l21___67 [X₉+3-X₁₀-X₁₁ ]
n_l21___84 [X₉ ]
n_l22___10 [X₉-X₁₀ ]
n_l22___3 [X₉-X₁₀ ]
n_l22___52 [3⋅X₁₁-6⋅X₈ ]
n_l22___59 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l22___66 [X₉+2⋅X₁₁-6⋅X₈-X₁₀ ]
n_l22___83 [X₉ ]
n_l24___2 [X₉-X₁₀ ]
n_l23___1 [X₆-X₁₀ ]
n_l24___51 [3⋅X₁₁-6⋅X₈ ]
n_l23___50 [X₆+1-X₁₀-X₁₁ ]
n_l24___58 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l23___57 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l24___65 [X₆+2⋅X₁₁-6⋅X₈-X₁₀ ]
n_l23___64 [X₉+2⋅X₁₁-6⋅X₈-X₁₀ ]
n_l24___81 [X₉+1-X₁₁ ]
n_l23___80 [X₆+1-X₁₁ ]
n_l24___9 [X₉-X₁₀ ]
n_l23___8 [X₆+1-X₁₀-X₁₁ ]
n_l13___77 [X₉+1-X₁₀-X₁₁ ]
n_l16___76 [2⋅X₈+4-X₁₁ ]
n_l30___78 [X₉+1-X₁₀-X₁₁ ]
n_l8___79 [X₉+1-X₈-X₁₀ ]
n_l8___82 [3 ]
l32 [3-X₁₀-X₁₁ ]

MPRF for transition t₆₉₂: n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___61(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

40⋅X₆⋅X₆+91⋅X₆+X₁₁+28 {O(n^2)}

MPRF:

l31 [X₉+5-2⋅X₁₀-X₁₁ ]
l6 [X₆+5-2⋅X₁₀-X₁₁ ]
l7 [X₆+5-2⋅X₁₀-X₁₁ ]
l5 [3⋅X₉+5-2⋅X₆-2⋅X₁₀-X₁₁ ]
l8 [3⋅X₉+5-2⋅X₆-2⋅X₁₀-X₁₁ ]
n_l30___95 [X₉+5-2⋅X₁₀-X₁₁ ]
n_l13___94 [3⋅X₆ ]
n_l14___75 [3⋅X₆-2⋅X₁₀-X₁₁ ]
n_l12___74 [3⋅X₉-2⋅X₁₀-X₁₁ ]
n_l14___92 [3⋅X₉ ]
n_l12___91 [3⋅X₆ ]
n_l15___73 [X₆+2⋅X₉-2⋅X₁₀-X₁₁ ]
n_l15___90 [3⋅X₉ ]
n_l16___72 [3⋅X₉-2⋅X₁₀-X₁₁ ]
n_l16___89 [3⋅X₆ ]
n_l16___93 [3⋅X₆+2-X₉-X₁₀ ]
n_l17___71 [3⋅X₆-2⋅X₁₀-X₁₁ ]
n_l17___88 [3⋅X₉ ]
n_l19___14 [3⋅X₉ ]
n_l19___56 [3⋅X₆+1-2⋅X₈-2⋅X₁₀ ]
n_l19___63 [3⋅X₆-X₈-2⋅X₁₀ ]
n_l19___7 [X₆+X₉+2-X₁₀ ]
n_l19___70 [3⋅X₆-X₈-2⋅X₁₀ ]
n_l19___87 [3⋅X₉ ]
n_l20___13 [3⋅X₉ ]
n_l18___12 [3⋅X₉ ]
n_l20___55 [3⋅X₆+1-2⋅X₈-2⋅X₁₀ ]
n_l18___54 [3⋅X₉+2-2⋅X₁₀-X₁₁ ]
n_l20___6 [X₉+5 ]
n_l18___5 [3⋅X₉-2⋅X₁₀-X₁₁ ]
n_l20___62 [X₈+3⋅X₉+2-2⋅X₁₀-X₁₁ ]
n_l18___61 [3⋅X₉+X₁₁-3⋅X₈-2⋅X₁₀-3 ]
n_l20___69 [3⋅X₉-X₈-2⋅X₁₀ ]
n_l18___68 [2⋅X₆+X₉-X₈-2⋅X₁₀ ]
n_l20___86 [3⋅X₉ ]
n_l18___85 [3⋅X₉ ]
n_l21___11 [3⋅X₉ ]
n_l21___4 [3⋅X₉-2⋅X₁₀-1 ]
n_l21___53 [3⋅X₉+2-2⋅X₁₀-X₁₁ ]
n_l21___60 [3⋅X₉+X₁₁-3⋅X₈-2⋅X₁₀-3 ]
n_l21___67 [3⋅X₉-X₈-2⋅X₁₀ ]
n_l21___84 [3⋅X₉ ]
n_l22___10 [3⋅X₆ ]
n_l22___3 [3⋅X₆-2⋅X₁₀-X₁₁ ]
n_l22___52 [3⋅X₉+2-2⋅X₁₀-X₁₁ ]
n_l22___59 [3⋅X₆+X₁₁-3⋅X₈-2⋅X₁₀-3 ]
n_l22___66 [3⋅X₉-X₈-2⋅X₁₀ ]
n_l22___83 [3⋅X₆ ]
n_l24___2 [3⋅X₉-2⋅X₁₀-X₁₁ ]
n_l23___1 [3⋅X₆-2⋅X₁₀-X₁₁ ]
n_l24___51 [3⋅X₉+2-2⋅X₁₀-X₁₁ ]
n_l23___50 [3⋅X₆-2⋅X₁₀-X₁₁ ]
n_l24___58 [3⋅X₉+X₁₁-3⋅X₈-2⋅X₁₀-3 ]
n_l23___57 [3⋅X₉-2⋅X₁₀-X₁₁ ]
n_l24___65 [3⋅X₉-X₈-2⋅X₁₀ ]
n_l23___64 [3⋅X₉-X₈-2⋅X₁₀ ]
n_l24___81 [3⋅X₆ ]
n_l23___80 [3⋅X₆-X₁₁ ]
n_l24___9 [3⋅X₆+2-2⋅X₁₁ ]
n_l23___8 [3⋅X₆-X₁₁ ]
n_l13___77 [3⋅X₆-2⋅X₁₀-X₁₁ ]
n_l16___76 [3⋅X₆+1-2⋅X₁₀-2⋅X₁₁ ]
n_l30___78 [3⋅X₆-X₈-2⋅X₁₀ ]
n_l8___79 [3⋅X₉-2⋅X₁₀-X₁₁ ]
n_l8___82 [3⋅X₈+5-2⋅X₆ ]
l32 [X₉+5-2⋅X₁₀-X₁₁ ]

MPRF for transition t₆₉₃: n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___68(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

55⋅X₆⋅X₆+171⋅X₆+X₁₁+128 {O(n^2)}

MPRF:

l31 [X₉+5-X₁₀-X₁₁ ]
l6 [X₉+5-X₁₀-X₁₁ ]
l7 [X₆+5-X₁₀-X₁₁ ]
l5 [2⋅X₉+5-X₆-X₁₀-X₁₁ ]
l8 [2⋅X₉+5-X₆-X₁₀-X₁₁ ]
n_l30___95 [X₉+5-X₁₀-X₁₁ ]
n_l13___94 [3⋅X₆ ]
n_l14___75 [2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l12___74 [2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l14___92 [4⋅X₉-X₆ ]
n_l12___91 [3⋅X₉ ]
n_l15___73 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l15___90 [2⋅X₉+1 ]
n_l16___72 [2⋅X₆+1-X₈-2⋅X₁₀ ]
n_l16___89 [2⋅X₉+1 ]
n_l16___93 [3⋅X₆+X₁₀+12-4⋅X₉ ]
n_l17___71 [2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l17___88 [2⋅X₆+1 ]
n_l19___14 [2⋅X₆+1 ]
n_l19___56 [2⋅X₉+2-2⋅X₈-2⋅X₁₀ ]
n_l19___63 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l19___7 [3⋅X₆-3⋅X₁₀ ]
n_l19___70 [2⋅X₆+3⋅X₈+3-2⋅X₁₀-2⋅X₁₁ ]
n_l19___87 [2⋅X₉+X₁₁ ]
n_l20___13 [2⋅X₉+3-X₁₁ ]
n_l18___12 [2⋅X₉+1 ]
n_l20___55 [2⋅X₉+2-2⋅X₈-2⋅X₁₀ ]
n_l18___54 [2⋅X₉+2-2⋅X₈-2⋅X₁₀ ]
n_l20___6 [3⋅X₆-3⋅X₁₀ ]
n_l18___5 [3⋅X₉-3⋅X₁₀ ]
n_l20___62 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l18___61 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l20___69 [2⋅X₆+2-2⋅X₈-2⋅X₁₀ ]
n_l18___68 [2⋅X₉+1-2⋅X₈-2⋅X₁₀ ]
n_l20___86 [2⋅X₉+1 ]
n_l18___85 [2⋅X₉+1 ]
n_l21___11 [2⋅X₉+1 ]
n_l21___4 [12-3⋅X₁₁ ]
n_l21___53 [2⋅X₉+2-2⋅X₈-2⋅X₁₀ ]
n_l21___60 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l21___67 [2⋅X₆+1-2⋅X₈-2⋅X₁₀ ]
n_l21___84 [2⋅X₉+1 ]
n_l22___10 [2⋅X₆+1 ]
n_l22___3 [2⋅X₉+3-2⋅X₁₀-3⋅X₁₁ ]
n_l22___52 [2⋅X₉+2-2⋅X₈-2⋅X₁₀ ]
n_l22___59 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l22___66 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l22___83 [2⋅X₉ ]
n_l24___2 [2⋅X₉-2⋅X₁₀ ]
n_l23___1 [2⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l24___51 [2⋅X₉+2-2⋅X₈-2⋅X₁₀ ]
n_l23___50 [2⋅X₆+3-2⋅X₁₀-X₁₁ ]
n_l24___58 [2⋅X₉-X₈-2⋅X₁₀-2 ]
n_l23___57 [2⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l24___65 [2⋅X₉-2⋅X₈-2⋅X₁₀ ]
n_l23___64 [2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l24___81 [2⋅X₉ ]
n_l23___80 [2⋅X₆+1-X₁₁ ]
n_l24___9 [2⋅X₆+3-2⋅X₁₁ ]
n_l23___8 [2⋅X₆+1-X₁₁ ]
n_l13___77 [2⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l16___76 [4⋅X₁₁+7-X₈ ]
n_l30___78 [2⋅X₆+1-X₈-2⋅X₁₀ ]
n_l8___79 [X₆+X₉+1-X₈-2⋅X₁₀ ]
n_l8___82 [X₉+5-X₁₀ ]
l32 [X₆+4-X₁₀-X₁₁ ]

MPRF for transition t₇₀₅: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

5⋅X₆⋅X₆+30⋅X₆+X₁₁+44 {O(n^2)}

MPRF:

l31 [4-X₁₀-X₁₁ ]
l6 [4-X₁₀-X₁₁ ]
l7 [4-X₁₀-X₁₁ ]
l5 [4-X₁₀-X₁₁ ]
l8 [X₆+4-X₉-X₁₀-X₁₁ ]
n_l30___95 [4-X₁₀-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l12___74 [X₉+1-2⋅X₈-X₁₀ ]
n_l14___92 [X₉ ]
n_l12___91 [X₉ ]
n_l15___73 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l15___90 [X₉ ]
n_l16___72 [X₉+1-2⋅X₈-X₁₀ ]
n_l16___89 [X₉-X₁₀ ]
n_l16___93 [4 ]
n_l17___71 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l17___88 [X₉ ]
n_l19___14 [X₉ ]
n_l19___56 [X₉-X₈-X₁₀ ]
n_l19___63 [X₉+1-2⋅X₈-X₁₀ ]
n_l19___7 [X₆+4-X₉ ]
n_l19___70 [X₉+1-2⋅X₈-X₁₀ ]
n_l19___87 [X₆-X₁₀ ]
n_l20___13 [X₉ ]
n_l18___12 [X₆ ]
n_l20___55 [X₉-X₈-X₁₀ ]
n_l18___54 [X₉-X₈-X₁₀ ]
n_l20___6 [X₉+1-X₁₀ ]
n_l18___5 [X₉+1-X₁₀ ]
n_l20___62 [X₉+1-2⋅X₈-X₁₀ ]
n_l18___61 [X₉+1-2⋅X₈-X₁₀ ]
n_l20___69 [X₉+2-X₁₀-X₁₁ ]
n_l18___68 [X₉+2-X₁₀-X₁₁ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₉ ]
n_l21___4 [X₉+1-X₁₀ ]
n_l21___53 [X₉-X₈-X₁₀ ]
n_l21___60 [X₉+1-2⋅X₈-X₁₀ ]
n_l21___67 [X₉+2-X₁₀-X₁₁ ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₉-X₁₀ ]
n_l22___3 [X₉+1-X₁₀ ]
n_l22___52 [X₉-X₈-X₁₀-1 ]
n_l22___59 [X₆+1-2⋅X₈-X₁₀ ]
n_l22___66 [X₉+1-X₁₀-X₁₁ ]
n_l22___83 [X₆-X₁₀ ]
n_l24___2 [X₉+1-X₁₀ ]
n_l23___1 [X₆+2-X₁₀-X₁₁ ]
n_l24___51 [X₆-X₈-X₁₀-1 ]
n_l23___50 [X₆-2⋅X₈-X₁₀ ]
n_l24___58 [X₉+3-X₁₀-X₁₁ ]
n_l23___57 [X₉+3-X₁₀-X₁₁ ]
n_l24___65 [X₉+1-X₁₀-X₁₁ ]
n_l23___64 [X₉-2⋅X₈-X₁₀ ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆+1-X₁₀-X₁₁ ]
n_l24___9 [X₉+1-X₁₀-X₁₁ ]
n_l23___8 [X₆+1-X₁₀-X₁₁ ]
n_l13___77 [X₆+1-X₁₀-2⋅X₁₁ ]
n_l16___76 [X₆-X₁₀-X₁₁ ]
n_l30___78 [X₉-X₈-X₁₀ ]
n_l8___79 [X₉+1-X₈-X₁₀ ]
n_l8___82 [X₉+4-X₈ ]
l32 [4-X₁₀-X₁₁ ]

MPRF for transition t₇₀₆: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆ {O(n)}

MPRF:

l31 [X₆-X₁₀ ]
l6 [X₆-X₁₀ ]
l7 [X₉-X₁₀ ]
l5 [X₆-X₁₀ ]
l8 [X₆-X₁₀ ]
n_l14___75 [X₉-X₁₀ ]
n_l12___74 [X₉-X₁₀ ]
n_l14___92 [X₉-X₁₀ ]
n_l12___91 [X₉-X₁₀ ]
n_l15___73 [X₉-X₁₀ ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₆-X₁₀ ]
n_l16___89 [X₆-X₁₀ ]
n_l17___71 [X₉-X₁₀ ]
n_l17___88 [X₉-X₁₀ ]
n_l19___14 [X₉-X₁₀ ]
n_l19___56 [X₆+3⋅X₁₁-4⋅X₈-X₉ ]
n_l19___63 [X₉-X₁₀ ]
n_l19___7 [3 ]
n_l19___70 [X₉-X₁₀ ]
n_l19___87 [X₆-X₁₀ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₆-X₁₀ ]
n_l20___55 [X₉+3⋅X₁₁-X₆-4⋅X₈ ]
n_l18___54 [X₁₁+2 ]
n_l20___6 [3⋅X₁₁ ]
n_l18___5 [3⋅X₁₁ ]
n_l20___62 [X₉-X₁₀ ]
n_l18___61 [X₆-X₁₀ ]
n_l20___69 [X₉-X₁₀ ]
n_l18___68 [X₆-X₁₀ ]
n_l20___86 [X₆-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₆-X₁₀ ]
n_l21___4 [3⋅X₁₁ ]
n_l21___53 [X₁₁+2 ]
n_l21___60 [X₉-X₁₀ ]
n_l21___67 [X₉-X₁₀ ]
n_l21___84 [X₆-X₁₀ ]
n_l22___10 [X₉-X₁₀ ]
n_l22___3 [X₉+3⋅X₁₁-X₁₀-3 ]
n_l22___52 [X₁₁+2 ]
n_l22___59 [X₉-X₁₀ ]
n_l22___66 [X₉-X₁₀ ]
n_l22___83 [X₆-X₁₀ ]
n_l24___2 [X₉-X₁₀ ]
n_l23___1 [X₆-X₁₀ ]
n_l24___51 [X₁₁+2 ]
n_l23___50 [X₁₁+2 ]
n_l24___58 [X₉-X₁₀ ]
n_l23___57 [X₆-X₁₀ ]
n_l24___65 [X₉-X₁₀ ]
n_l23___64 [X₆-X₁₀ ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆-X₁₀ ]
n_l24___9 [X₉-X₁₀ ]
n_l23___8 [X₆-X₁₀ ]
n_l13___77 [X₉-X₁₀ ]
n_l16___76 [2⋅X₈+3 ]
n_l13___94 [X₆-X₁₀ ]
n_l30___95 [X₆-X₁₀ ]
n_l16___93 [3 ]
n_l30___78 [X₆-X₁₀ ]
n_l8___79 [X₉-X₁₀ ]
n_l8___82 [X₆-X₁₀-1 ]
l32 [X₆-X₁₀-1 ]

MPRF for transition t₇₀₇: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

5⋅X₆⋅X₆+20⋅X₆+X₁₁+22 {O(n^2)}

MPRF:

l31 [2-X₁₁ ]
l6 [2-X₁₁ ]
l7 [2-X₁₁ ]
l5 [2-X₁₁ ]
l8 [X₉+2-X₆-X₁₁ ]
n_l30___95 [2-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₉-X₈-X₁₀ ]
n_l12___74 [X₉-X₁₀-X₁₁ ]
n_l14___92 [X₆ ]
n_l12___91 [X₉ ]
n_l15___73 [X₉-X₈-X₁₀ ]
n_l15___90 [X₉ ]
n_l16___72 [X₉-X₁₀-X₁₁ ]
n_l16___89 [X₆-X₁₀ ]
n_l16___93 [2 ]
n_l17___71 [X₉-X₁₀-X₁₁ ]
n_l17___88 [X₉-2 ]
n_l19___14 [X₉-X₁₁ ]
n_l19___56 [X₈+X₉-X₁₀-X₁₁-1 ]
n_l19___63 [X₆-X₈-X₁₀ ]
n_l19___7 [X₆+2-X₉ ]
n_l19___70 [X₉-X₈-X₁₀ ]
n_l19___87 [X₆-X₁₀ ]
n_l20___13 [X₆-2 ]
n_l18___12 [X₆-2 ]
n_l20___55 [X₆+X₈-X₁₀-X₁₁-1 ]
n_l18___54 [X₆+X₈-X₁₀-X₁₁-1 ]
n_l20___6 [X₉-X₁₀-1 ]
n_l18___5 [X₉-X₁₀-X₁₁ ]
n_l20___62 [X₆-X₈-X₁₀ ]
n_l18___61 [X₆-X₈-X₁₀ ]
n_l20___69 [X₉-X₈-X₁₀ ]
n_l18___68 [X₉-X₈-X₁₀ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₉-2 ]
n_l21___4 [X₉-X₁₀-1 ]
n_l21___53 [X₈+X₉-X₁₀-X₁₁-1 ]
n_l21___60 [X₉-X₈-X₁₀ ]
n_l21___67 [X₆-X₈-X₁₀ ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₆-X₁₀-X₁₁ ]
n_l22___3 [X₉-X₁₀-1 ]
n_l22___52 [X₉-X₁₀-X₁₁ ]
n_l22___59 [X₉+2-X₁₀-X₁₁ ]
n_l22___66 [X₆-X₈-X₁₀ ]
n_l22___83 [X₉-X₁₀ ]
n_l24___2 [X₉-X₁₀-1 ]
n_l23___1 [X₆-X₁₀-X₁₁ ]
n_l24___51 [X₉-X₁₀-X₁₁ ]
n_l23___50 [X₆-X₁₀-X₁₁ ]
n_l24___58 [X₉+2-X₁₀-X₁₁ ]
n_l23___57 [X₉-X₁₀-X₁₁ ]
n_l24___65 [X₉-X₈-X₁₀ ]
n_l23___64 [X₉-X₈-X₁₀ ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆-X₁₀-X₁₁ ]
n_l24___9 [X₆-X₁₀-X₁₁ ]
n_l23___8 [X₆-X₁₀-X₁₁ ]
n_l13___77 [X₆-X₁₀-X₁₁ ]
n_l16___76 [X₆+2⋅X₁₁-3⋅X₈-X₁₀-2 ]
n_l30___78 [X₆-X₈-X₁₀ ]
n_l8___79 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l8___82 [X₈+2-X₆ ]
l32 [2-X₁₁ ]

MPRF for transition t₇₀₈: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

X₆+3 {O(n)}

MPRF:

l31 [X₉-X₁₀ ]
l6 [X₉-X₁₀ ]
l7 [X₆-X₁₀ ]
l5 [X₆-X₁₀ ]
l8 [X₉-X₁₀ ]
n_l14___75 [X₉-X₁₀ ]
n_l12___74 [X₉-X₁₀ ]
n_l14___92 [X₉-X₁₀ ]
n_l12___91 [X₉-X₁₀ ]
n_l15___73 [X₉-X₁₀ ]
n_l15___90 [X₆-X₁₀ ]
n_l16___72 [X₉-X₁₀ ]
n_l16___89 [X₆-X₁₀ ]
n_l17___71 [X₉-X₁₀ ]
n_l17___88 [X₆-X₁₀ ]
n_l19___14 [X₆-X₁₀ ]
n_l19___56 [2⋅X₈+3 ]
n_l19___63 [X₆-X₁₀ ]
n_l19___7 [X₉-X₁₀ ]
n_l19___70 [X₉-X₁₀ ]
n_l19___87 [X₉-X₁₀ ]
n_l20___13 [X₆-X₁₀ ]
n_l18___12 [X₆-X₁₀ ]
n_l20___55 [X₆+2⋅X₈+1-X₁₀-X₁₁ ]
n_l18___54 [X₆-X₁₀ ]
n_l20___6 [X₉-X₁₀ ]
n_l18___5 [X₆-X₁₀ ]
n_l20___62 [X₆-X₁₀ ]
n_l18___61 [X₆-X₁₀ ]
n_l20___69 [X₉-X₁₀ ]
n_l18___68 [X₉-X₁₀ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [3 ]
n_l21___53 [X₉-X₁₀ ]
n_l21___60 [X₉-X₁₀ ]
n_l21___67 [X₆-X₁₀ ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₆-X₁₀ ]
n_l22___3 [3⋅X₁₁ ]
n_l22___52 [X₉-X₁₀ ]
n_l22___59 [X₉-X₁₀ ]
n_l22___66 [X₆-X₁₀ ]
n_l22___83 [X₉-X₁₀ ]
n_l24___2 [3⋅X₁₁ ]
n_l23___1 [X₆+3⋅X₁₁-X₉ ]
n_l24___51 [X₉-X₁₀ ]
n_l23___50 [X₆-X₁₀ ]
n_l24___58 [X₉-X₁₀ ]
n_l23___57 [X₆-X₁₀ ]
n_l24___65 [X₉-X₁₀ ]
n_l23___64 [X₉-X₁₀ ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆-X₁₀ ]
n_l24___9 [X₉-X₁₀ ]
n_l23___8 [X₆-X₁₀ ]
n_l13___77 [X₆-X₁₀ ]
n_l16___76 [2⋅X₁₁+3 ]
n_l13___94 [X₆-X₁₀ ]
n_l30___95 [X₆-X₁₀ ]
n_l16___93 [X₆-X₁₀ ]
n_l30___78 [X₆-X₁₀ ]
n_l8___79 [X₉-X₁₀ ]
n_l8___82 [X₉-X₁₀-1 ]
l32 [X₆-X₁₀-1 ]

MPRF for transition t₇₀₉: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

20⋅X₆⋅X₈+45⋅X₆⋅X₆+115⋅X₆+40⋅X₈+X₁₁+53 {O(n^2)}

MPRF:

l31 [-2⋅X₁₀-X₁₁-3 ]
l6 [-2⋅X₁₀-X₁₁-3 ]
l7 [-2⋅X₁₀-X₁₁-3 ]
l5 [-2⋅X₁₀-X₁₁-3 ]
l8 [-2⋅X₁₀-X₁₁-3 ]
n_l30___95 [-2⋅X₁₀-X₁₁-3 ]
n_l13___94 [2⋅X₆-X₁₀ ]
n_l14___75 [2⋅X₆-2⋅X₁₀-X₁₁-10 ]
n_l12___74 [2⋅X₉-X₈-2⋅X₁₀-10 ]
n_l14___92 [2⋅X₉-X₁₀ ]
n_l12___91 [2⋅X₉-X₁₀ ]
n_l15___73 [2⋅X₉-2⋅X₁₀-X₁₁-10 ]
n_l15___90 [2⋅X₉-X₁₀ ]
n_l16___72 [2⋅X₉-X₈-2⋅X₁₀-10 ]
n_l16___89 [2⋅X₉-X₁₀ ]
n_l16___93 [-3 ]
n_l17___71 [2⋅X₉-X₈-2⋅X₁₀-11 ]
n_l17___88 [2⋅X₉-X₁₀ ]
n_l19___14 [2⋅X₉-X₁₀ ]
n_l19___56 [2⋅X₈+X₉-X₁₀-X₁₁-5 ]
n_l19___63 [2⋅X₉-X₈-2⋅X₁₀-11 ]
n_l19___7 [X₉-X₁₀-6 ]
n_l19___70 [2⋅X₆-X₈-2⋅X₁₀-10 ]
n_l19___87 [2⋅X₉-X₁₀ ]
n_l20___13 [2⋅X₉-X₁₀ ]
n_l18___12 [2⋅X₉-X₁₀ ]
n_l20___55 [X₆-X₁₀-6 ]
n_l18___54 [X₉-X₁₀-6 ]
n_l20___6 [X₉-X₁₀-6 ]
n_l18___5 [X₉-X₁₀-6⋅X₁₁ ]
n_l20___62 [2⋅X₉-X₈-2⋅X₁₀-11 ]
n_l18___61 [2⋅X₆-X₈-2⋅X₁₀-11 ]
n_l20___69 [X₆+X₉-X₈-2⋅X₁₀-10 ]
n_l18___68 [2⋅X₆-X₈-2⋅X₁₀-10 ]
n_l20___86 [2⋅X₉-X₁₀ ]
n_l18___85 [2⋅X₆-X₁₀ ]
n_l21___11 [2⋅X₆-X₁₀ ]
n_l21___4 [X₉-X₁₀-6 ]
n_l21___53 [X₉-X₁₀-6 ]
n_l21___60 [2⋅X₆-2⋅X₁₀-X₁₁-8 ]
n_l21___67 [2⋅X₉-X₈-2⋅X₁₀-10 ]
n_l21___84 [2⋅X₉-X₁₀ ]
n_l22___10 [2⋅X₆-X₁₀ ]
n_l22___3 [X₉-X₁₀-2⋅X₁₁-4 ]
n_l22___52 [X₉-X₁₀-7 ]
n_l22___59 [2⋅X₉-2⋅X₁₀-X₁₁-9 ]
n_l22___66 [2⋅X₉-X₈-2⋅X₁₀-11 ]
n_l22___83 [2⋅X₉-X₁₀ ]
n_l24___2 [X₉-X₁₀-2⋅X₁₁-4 ]
n_l23___1 [2⋅X₆-2⋅X₁₀-X₁₁-9 ]
n_l24___51 [X₉-X₁₀-7 ]
n_l23___50 [2⋅X₆-2⋅X₁₀-X₁₁-9 ]
n_l24___58 [2⋅X₆-2⋅X₁₀-X₁₁-9 ]
n_l23___57 [2⋅X₉-2⋅X₁₀-X₁₁-9 ]
n_l24___65 [2⋅X₉-X₈-2⋅X₁₀-11 ]
n_l23___64 [2⋅X₆+X₈-2⋅X₁₀-X₁₁-10 ]
n_l24___81 [2⋅X₉-X₁₀ ]
n_l23___80 [2⋅X₆-X₁₀-X₁₁ ]
n_l24___9 [2⋅X₆+4-X₁₀-2⋅X₁₁ ]
n_l23___8 [2⋅X₆+2-X₁₀-X₁₁ ]
n_l13___77 [2⋅X₆-2⋅X₁₀-X₁₁-10 ]
n_l16___76 [X₆+3⋅X₁₁-3⋅X₈-X₁₀-6 ]
n_l30___78 [2⋅X₆-X₈-2⋅X₁₀-10 ]
n_l8___79 [X₆+X₈+X₉-2⋅X₁₀-2⋅X₁₁-9 ]
n_l8___82 [X₁₁-4 ]
l32 [-2⋅X₁₀-X₁₁-3 ]

MPRF for transition t₇₁₀: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₆+5 {O(n)}

MPRF:

l31 [X₉+2-X₁₀ ]
l6 [X₉+2-X₁₀ ]
l7 [X₉+2-X₁₀ ]
l5 [X₉+2-X₁₀ ]
l8 [X₆+2-X₁₀ ]
n_l14___75 [X₆+2-X₁₀ ]
n_l12___74 [X₉+2-X₁₀ ]
n_l14___92 [X₉+2-X₁₀ ]
n_l12___91 [2⋅X₉+2-X₆-X₁₀ ]
n_l15___73 [X₉+2-X₁₀ ]
n_l15___90 [2⋅X₆+2-X₉-X₁₀ ]
n_l16___72 [X₆+2-X₁₀ ]
n_l16___89 [X₆+2-X₁₀ ]
n_l17___71 [X₉+2-X₁₀ ]
n_l17___88 [X₉+2-X₁₀ ]
n_l19___14 [X₉+2-X₁₀ ]
n_l19___56 [X₆+2-X₁₀ ]
n_l19___63 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l19___7 [X₆+5⋅X₁₁-X₉ ]
n_l19___70 [X₆+X₁₁+1-2⋅X₈-X₁₀ ]
n_l19___87 [X₉+2⋅X₁₁-X₁₀ ]
n_l20___13 [X₉+2-X₁₀ ]
n_l18___12 [X₆+2-X₁₀ ]
n_l20___55 [X₁₁+4 ]
n_l18___54 [X₁₁+4 ]
n_l20___6 [2⋅X₆-2⋅X₁₀-1 ]
n_l18___5 [2⋅X₁₀+8⋅X₁₁+3-2⋅X₉ ]
n_l20___62 [X₆+X₁₁-2⋅X₈-X₁₀ ]
n_l18___61 [X₆+X₁₁-2⋅X₈-X₁₀ ]
n_l20___69 [X₆+X₁₁+1-2⋅X₈-X₁₀ ]
n_l18___68 [X₉+2-X₁₀ ]
n_l20___86 [X₉+2-X₁₀ ]
n_l18___85 [X₉+2⋅X₁₁-X₁₀ ]
n_l21___11 [X₉+X₁₁-X₁₀ ]
n_l21___4 [2⋅X₁₀+8⋅X₁₁+3-X₆-X₉ ]
n_l21___53 [X₉+X₁₁+4-X₆ ]
n_l21___60 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l21___67 [X₉+2-X₁₀ ]
n_l21___84 [X₆+2-X₁₀ ]
n_l22___10 [X₆+2-X₁₀ ]
n_l22___3 [X₆+X₁₀+8⋅X₁₁-2⋅X₉ ]
n_l22___52 [X₁₁+4 ]
n_l22___59 [X₆+X₁₁-2⋅X₈-X₁₀ ]
n_l22___66 [X₆+2⋅X₁₁-4⋅X₈-X₁₀ ]
n_l22___83 [X₉+2⋅X₁₁-X₁₀ ]
n_l24___2 [X₉+3⋅X₁₁-X₁₀-1 ]
n_l23___1 [X₉+2-X₁₀ ]
n_l24___51 [X₉+2-X₁₀ ]
n_l23___50 [X₆+2-X₁₀ ]
n_l24___58 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l23___57 [X₉+X₁₁-2⋅X₈-X₁₀ ]
n_l24___65 [X₉+2⋅X₁₁-4⋅X₈-X₁₀ ]
n_l23___64 [X₉+2⋅X₁₁-4⋅X₈-X₁₀ ]
n_l24___81 [X₉+2⋅X₁₁-X₁₀ ]
n_l23___80 [X₉+2-X₁₀ ]
n_l24___9 [X₉+X₁₁-X₁₀ ]
n_l23___8 [X₉+2-X₁₀ ]
n_l13___77 [X₆+2-X₁₀ ]
n_l16___76 [2⋅X₈+5 ]
n_l13___94 [X₆+2-X₁₀ ]
n_l30___95 [X₆+2-X₁₀ ]
n_l16___93 [X₆+2-X₁₀ ]
n_l30___78 [X₆+2-X₁₀ ]
n_l8___79 [X₆+2-X₁₀ ]
n_l8___82 [X₉+1-X₁₀ ]
l32 [X₆+1-X₁₀ ]

MPRF for transition t₇₁₈: n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

5⋅X₆⋅X₆+28⋅X₆+X₁₁+33 {O(n^2)}

MPRF:

l31 [X₉-2⋅X₆-X₁₀-X₁₁ ]
l6 [-X₆-X₁₀-X₁₁-1 ]
l7 [-X₆-X₁₀-X₁₁-1 ]
l5 [-X₆-X₁₀-X₁₁-1 ]
l8 [-X₉-X₁₀-X₁₁-1 ]
n_l30___95 [1-2⋅X₆-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₆-X₁₀-X₁₁-2 ]
n_l12___74 [X₉-X₈-X₁₀-2 ]
n_l14___92 [X₉ ]
n_l12___91 [X₉ ]
n_l15___73 [X₉-X₁₀-X₁₁-2 ]
n_l15___90 [X₉ ]
n_l16___72 [X₉-X₈-X₁₀-2 ]
n_l16___89 [X₉ ]
n_l16___93 [3 ]
n_l17___71 [X₉-X₈-X₁₀-2 ]
n_l17___88 [X₆ ]
n_l19___14 [X₆ ]
n_l19___56 [X₉-X₈-X₁₀-2 ]
n_l19___63 [X₉-X₈-X₁₀-2 ]
n_l19___7 [3 ]
n_l19___70 [X₉-X₈-X₁₀-2 ]
n_l19___87 [X₉ ]
n_l20___13 [X₆ ]
n_l18___12 [X₉ ]
n_l20___55 [X₉-X₈-X₁₀-2 ]
n_l18___54 [X₉-X₈-X₁₀-2 ]
n_l20___6 [X₆+3⋅X₁₁-X₉ ]
n_l18___5 [X₉+3⋅X₁₁-X₁₀-3 ]
n_l20___62 [X₆-X₈-X₁₀-2 ]
n_l18___61 [X₉-X₈-X₁₀-2 ]
n_l20___69 [X₉-X₈-X₁₀-2 ]
n_l18___68 [X₉-X₈-X₁₀-2 ]
n_l20___86 [X₆ ]
n_l18___85 [X₉ ]
n_l21___11 [X₉ ]
n_l21___4 [X₉-X₁₀ ]
n_l21___53 [X₆-X₈-X₁₀-2 ]
n_l21___60 [X₆-X₈-X₁₀-2 ]
n_l21___67 [X₉-X₈-X₁₀-2 ]
n_l21___84 [X₉ ]
n_l22___10 [X₉-X₁₁ ]
n_l22___3 [X₉-X₁₀ ]
n_l22___52 [2 ]
n_l22___59 [X₆+1-X₁₀-X₁₁ ]
n_l22___66 [X₉-X₈-X₁₀-2 ]
n_l22___83 [X₉ ]
n_l24___2 [X₉-X₁₀ ]
n_l23___1 [X₆-X₁₀ ]
n_l24___51 [1 ]
n_l23___50 [X₆-X₁₀-X₁₁-2 ]
n_l24___58 [X₉-X₁₀-X₁₁-2 ]
n_l23___57 [X₆-X₁₀-X₁₁-2 ]
n_l24___65 [X₉-X₈-X₁₀-2 ]
n_l23___64 [X₆-X₈-X₁₀-2 ]
n_l24___81 [X₆-X₁₁ ]
n_l23___80 [X₆-X₁₁ ]
n_l24___9 [X₉-X₁₁ ]
n_l23___8 [X₆-X₁₁ ]
n_l13___77 [X₆-X₈-X₁₀-2 ]
n_l16___76 [X₆-X₁₀-X₁₁-2 ]
n_l30___78 [X₆-X₈-X₁₀-2 ]
n_l8___79 [X₈+X₉-X₁₀-2⋅X₁₁-2 ]
n_l8___82 [X₁₀-X₈-X₁₁-1 ]
l32 [-X₆-X₁₀-X₁₁-1 ]

MPRF for transition t₇₁₉: n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

20⋅X₆⋅X₈+50⋅X₆⋅X₆+120⋅X₆+40⋅X₈+X₁₁+42 {O(n^2)}

MPRF:

l31 [-X₁₀-X₁₁-2 ]
l6 [-X₁₀-X₁₁-2 ]
l7 [-X₁₀-X₁₁-2 ]
l5 [-X₁₀-X₁₁-2 ]
l8 [X₉-X₆-X₁₀-X₁₁-2 ]
n_l30___95 [X₆-X₉-X₁₀-X₁₁-2 ]
n_l13___94 [X₆-X₁₀ ]
n_l14___75 [X₆-X₁₀-X₁₁-4 ]
n_l12___74 [X₉-X₈-X₁₀-4 ]
n_l14___92 [X₆-X₁₀ ]
n_l12___91 [X₉-X₁₀ ]
n_l15___73 [X₉-X₈-X₁₀-4 ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₉-X₈-X₁₀-4 ]
n_l16___89 [X₆-X₁₀ ]
n_l16___93 [X₆-X₉-2 ]
n_l17___71 [X₉-X₈-X₁₀-4 ]
n_l17___88 [X₆-X₁₀ ]
n_l19___14 [X₉-X₁₀ ]
n_l19___56 [X₈-1 ]
n_l19___63 [3⋅X₈+X₉-X₁₀-2⋅X₁₁ ]
n_l19___7 [X₆-X₁₀-5 ]
n_l19___70 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l19___87 [X₉-X₁₀ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₉-X₁₀ ]
n_l20___55 [X₁₁-X₈-2 ]
n_l18___54 [X₁₁-X₈-2 ]
n_l20___6 [X₉-X₁₀-5⋅X₁₁ ]
n_l18___5 [X₉-X₁₀-5⋅X₁₁ ]
n_l20___62 [X₆+3⋅X₈-X₁₀-2⋅X₁₁ ]
n_l18___61 [X₆+3⋅X₈-X₁₀-2⋅X₁₁ ]
n_l20___69 [3⋅X₈+X₉-X₁₀-2⋅X₁₁-2 ]
n_l18___68 [5⋅X₈+X₉-X₁₀-3⋅X₁₁-1 ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₆-X₁₀ ]
n_l21___4 [X₉-X₁₀-5 ]
n_l21___53 [X₁₁-X₈-2 ]
n_l21___60 [X₆+3⋅X₈-X₁₀-2⋅X₁₁ ]
n_l21___67 [X₈+X₉-X₁₀-X₁₁-3 ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₆-X₁₀ ]
n_l22___3 [X₉-X₁₀-2⋅X₁₁-3 ]
n_l22___52 [X₁₁-X₈-2 ]
n_l22___59 [X₉-X₈-X₁₀-4 ]
n_l22___66 [4⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l22___83 [X₆-X₁₀ ]
n_l24___2 [X₉-X₁₀-2⋅X₁₁-3 ]
n_l23___1 [X₆-X₉-X₁₁-1 ]
n_l24___51 [X₉-X₈-X₁₀-4 ]
n_l23___50 [X₆-X₈-X₁₀-4 ]
n_l24___58 [X₉-X₈-X₁₀-5 ]
n_l23___57 [X₉-X₈-X₁₀-5 ]
n_l24___65 [X₆+4⋅X₈-X₁₀-3⋅X₁₁ ]
n_l23___64 [4⋅X₈+X₉-X₁₀-3⋅X₁₁ ]
n_l24___81 [X₉-X₁₀-2⋅X₁₁-3 ]
n_l23___80 [X₆-X₁₀-X₁₁-4 ]
n_l24___9 [X₆-X₁₀ ]
n_l23___8 [X₆-X₁₀-X₁₁-4 ]
n_l13___77 [X₆-X₁₀-X₁₁-4 ]
n_l16___76 [X₆-X₁₀-X₁₁-4 ]
n_l30___78 [X₆-X₈-X₁₀-4 ]
n_l8___79 [X₉+X₁₁-2⋅X₈-X₁₀-4 ]
n_l8___82 [-2 ]
l32 [-X₁₀-X₁₁-2 ]

MPRF for transition t₇₂₀: n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

110⋅X₆⋅X₆+40⋅X₆⋅X₈+4⋅X₁₁+407⋅X₆+80⋅X₈+380 {O(n^2)}

MPRF:

l31 [2⋅X₆-2⋅X₁₀-4⋅X₁₁-10 ]
l6 [2⋅X₉-2⋅X₁₀-4⋅X₁₁-12 ]
l7 [2⋅X₆-2⋅X₁₀-4⋅X₁₁-12 ]
l5 [2⋅X₆-2⋅X₁₀-4⋅X₁₁-12 ]
l8 [2⋅X₆-2⋅X₁₀-4⋅X₁₁-12 ]
n_l30___95 [2⋅X₉-2⋅X₁₀-4⋅X₁₁-12 ]
n_l13___94 [4⋅X₆-2⋅X₁₀-18 ]
n_l14___75 [4⋅X₆-4⋅X₈-2⋅X₁₀-14 ]
n_l12___74 [4⋅X₉-2⋅X₁₀-4⋅X₁₁-14 ]
n_l14___92 [4⋅X₆-2⋅X₁₀-18 ]
n_l12___91 [4⋅X₉-2⋅X₁₀-18 ]
n_l15___73 [4⋅X₉-4⋅X₈-2⋅X₁₀-14 ]
n_l15___90 [4⋅X₆-2⋅X₁₀-18 ]
n_l16___72 [4⋅X₉-4⋅X₈-2⋅X₁₀-14 ]
n_l16___89 [4⋅X₆-2⋅X₁₀-18 ]
n_l16___93 [3⋅X₆-X₁₀-15 ]
n_l17___71 [4⋅X₉-4⋅X₈-2⋅X₁₀-20 ]
n_l17___88 [4⋅X₆-2⋅X₁₀-20 ]
n_l19___14 [4⋅X₉-2⋅X₁₀-10⋅X₁₁ ]
n_l19___56 [6⋅X₉-2⋅X₈-4⋅X₁₀-3⋅X₁₁-21 ]
n_l19___63 [4⋅X₉-4⋅X₈-2⋅X₁₀-20 ]
n_l19___7 [3⋅X₆-X₁₀-15 ]
n_l19___70 [24⋅X₈+4⋅X₉-2⋅X₁₀-14⋅X₁₁ ]
n_l19___87 [4⋅X₆-2⋅X₁₀-18⋅X₁₁ ]
n_l20___13 [4⋅X₉-2⋅X₁₀-20 ]
n_l18___12 [4⋅X₉-2⋅X₁₀-10⋅X₁₁ ]
n_l20___55 [6⋅X₉-2⋅X₈-4⋅X₁₀-3⋅X₁₁-21 ]
n_l18___54 [6⋅X₉-2⋅X₈-4⋅X₁₀-3⋅X₁₁-21 ]
n_l20___6 [3⋅X₉-X₁₀-15 ]
n_l18___5 [2⋅X₁₀-6⋅X₁₁ ]
n_l20___62 [4⋅X₉-4⋅X₈-2⋅X₁₀-20 ]
n_l18___61 [4⋅X₉-4⋅X₈-2⋅X₁₀-20 ]
n_l20___69 [24⋅X₈+4⋅X₉-2⋅X₁₀-14⋅X₁₁ ]
n_l18___68 [24⋅X₈+4⋅X₉-2⋅X₁₀-14⋅X₁₁ ]
n_l20___86 [4⋅X₉-2⋅X₁₀-18 ]
n_l18___85 [4⋅X₉-2⋅X₁₀-18⋅X₁₁ ]
n_l21___11 [4⋅X₉-2⋅X₁₀-10⋅X₁₁ ]
n_l21___4 [2⋅X₉-12⋅X₁₁ ]
n_l21___53 [6⋅X₉-2⋅X₈-4⋅X₁₀-3⋅X₁₁-21 ]
n_l21___60 [4⋅X₉-4⋅X₈-2⋅X₁₀-20 ]
n_l21___67 [3⋅X₆+24⋅X₈+X₉-2⋅X₁₀-14⋅X₁₁ ]
n_l21___84 [4⋅X₉-2⋅X₁₀-18⋅X₁₁ ]
n_l22___10 [4⋅X₆-2⋅X₁₀-4⋅X₁₁-14 ]
n_l22___3 [6⋅X₉-4⋅X₁₀-24⋅X₁₁ ]
n_l22___52 [6⋅X₆-2⋅X₈-4⋅X₁₀-3⋅X₁₁-21 ]
n_l22___59 [4⋅X₉-4⋅X₈-2⋅X₁₀-2⋅X₁₁-18 ]
n_l22___66 [4⋅X₉-2⋅X₁₀-2⋅X₁₁-12 ]
n_l22___83 [4⋅X₉-2⋅X₁₀-18⋅X₁₁ ]
n_l24___2 [6⋅X₉-4⋅X₁₀-24 ]
n_l23___1 [4⋅X₆-2⋅X₁₀-4⋅X₁₁-14 ]
n_l24___51 [6⋅X₉-2⋅X₈-4⋅X₁₀-3⋅X₁₁-21 ]
n_l23___50 [4⋅X₆+2⋅X₉-4⋅X₁₀-4⋅X₁₁-24 ]
n_l24___58 [4⋅X₆-4⋅X₈-2⋅X₁₀-2⋅X₁₁-18 ]
n_l23___57 [4⋅X₉-4⋅X₈-2⋅X₁₀-2⋅X₁₁-18 ]
n_l24___65 [4⋅X₉-2⋅X₁₀-4⋅X₁₁-14 ]
n_l23___64 [4⋅X₉-2⋅X₁₀-4⋅X₁₁-14 ]
n_l24___81 [4⋅X₉-2⋅X₁₀-18 ]
n_l23___80 [4⋅X₆-2⋅X₁₀-4⋅X₁₁-14 ]
n_l24___9 [6⋅X₆-2⋅X₉-2⋅X₁₀-4⋅X₁₁-14 ]
n_l23___8 [4⋅X₆-2⋅X₁₀-4⋅X₁₁-14 ]
n_l13___77 [4⋅X₆-4⋅X₈-2⋅X₁₀-14 ]
n_l16___76 [6⋅X₆-2⋅X₈-4⋅X₁₀-6⋅X₁₁-24 ]
n_l30___78 [4⋅X₆-2⋅X₁₀-4⋅X₁₁-14 ]
n_l8___79 [2⋅X₆+X₈+2⋅X₉-2⋅X₁₀-5⋅X₁₁-14 ]
n_l8___82 [2⋅X₉-12 ]
l32 [2⋅X₉-2⋅X₁₀-4⋅X₁₁-12 ]

MPRF for transition t₇₂₆: n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

20⋅X₆⋅X₆+45⋅X₆+X₁₁+13 {O(n^2)}

MPRF:

l31 [3-2⋅X₁₀-X₁₁ ]
l6 [3-2⋅X₁₀-X₁₁ ]
l7 [1-2⋅X₁₀-X₁₁ ]
l5 [1-2⋅X₁₀-X₁₁ ]
l8 [1-2⋅X₁₀-X₁₁ ]
n_l30___95 [1-2⋅X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [2⋅X₉-2⋅X₈-2⋅X₁₀-4 ]
n_l12___74 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-4 ]
n_l14___92 [2⋅X₉ ]
n_l12___91 [2⋅X₉ ]
n_l15___73 [2⋅X₉-2⋅X₈-2⋅X₁₀-4 ]
n_l15___90 [2⋅X₆ ]
n_l16___72 [2⋅X₉-2⋅X₈-2⋅X₁₀-4 ]
n_l16___89 [2⋅X₆ ]
n_l16___93 [X₉-X₁₀-1 ]
n_l17___71 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-4 ]
n_l17___88 [2⋅X₆ ]
n_l19___14 [2⋅X₉ ]
n_l19___56 [X₁₀+2⋅X₁₁+3-X₉ ]
n_l19___63 [2⋅X₉+X₁₁-4⋅X₈-2⋅X₁₀-6 ]
n_l19___7 [4⋅X₉-4⋅X₁₀-10 ]
n_l19___70 [2⋅X₉-2⋅X₈-2⋅X₁₀-4 ]
n_l19___87 [2⋅X₉ ]
n_l20___13 [2⋅X₉ ]
n_l18___12 [2⋅X₉ ]
n_l20___55 [X₁₀+2⋅X₁₁+3-X₉ ]
n_l18___54 [X₁₀+2⋅X₁₁+3-X₆ ]
n_l20___6 [X₉-X₁₀-1 ]
n_l18___5 [X₉-X₁₀-1 ]
n_l20___62 [2⋅X₉-2⋅X₁₀-X₁₁-2 ]
n_l18___61 [2⋅X₆-2⋅X₁₀-X₁₁-2 ]
n_l20___69 [2⋅X₉-2⋅X₈-2⋅X₁₀-4 ]
n_l18___68 [2⋅X₆-2⋅X₈-2⋅X₁₀-4 ]
n_l20___86 [2⋅X₆ ]
n_l18___85 [2⋅X₉ ]
n_l21___11 [2⋅X₆ ]
n_l21___4 [2⋅X₁₁ ]
n_l21___53 [X₁₀+2⋅X₁₁+3-X₉ ]
n_l21___60 [2⋅X₉-2⋅X₁₀-X₁₁-2 ]
n_l21___67 [2⋅X₆+X₁₁-4⋅X₈-2⋅X₁₀-5 ]
n_l21___84 [2⋅X₆ ]
n_l22___10 [2⋅X₆ ]
n_l22___3 [2⋅X₉+2⋅X₁₁-2⋅X₁₀-6 ]
n_l22___52 [X₁₀+2⋅X₁₁+3-X₆ ]
n_l22___59 [2⋅X₆-2⋅X₁₀-X₁₁-2 ]
n_l22___66 [2⋅X₆+X₁₁-4⋅X₈-2⋅X₁₀-5 ]
n_l22___83 [2⋅X₆-2⋅X₁₁-4 ]
n_l24___2 [2⋅X₉-2⋅X₁₀-4⋅X₁₁ ]
n_l23___1 [2⋅X₆-2⋅X₁₀-X₁₁-3 ]
n_l24___51 [X₁₁ ]
n_l23___50 [2⋅X₉-2⋅X₁₀-X₁₁-4 ]
n_l24___58 [2⋅X₉-2⋅X₁₀-X₁₁-2 ]
n_l23___57 [2⋅X₉-2⋅X₁₀-X₁₁-2 ]
n_l24___65 [2⋅X₆+X₁₁-4⋅X₈-2⋅X₁₀-5 ]
n_l23___64 [2⋅X₆-2⋅X₁₀-X₁₁-3 ]
n_l24___81 [2⋅X₉-2⋅X₁₁-4 ]
n_l23___80 [2⋅X₆-X₁₁-5 ]
n_l24___9 [2⋅X₉ ]
n_l23___8 [2⋅X₆-X₁₁-5 ]
n_l13___77 [2⋅X₉-2⋅X₈-2⋅X₁₀-4 ]
n_l16___76 [4⋅X₈+2-2⋅X₁₁ ]
n_l30___78 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-4 ]
n_l8___79 [2⋅X₉+X₁₁-2⋅X₈-2⋅X₁₀-5 ]
n_l8___82 [X₉+X₁₁+1-X₈ ]
l32 [1-2⋅X₁₀-X₁₁ ]

MPRF for transition t₇₂₇: n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

20⋅X₆⋅X₈+40⋅X₆⋅X₆+115⋅X₆+40⋅X₈+X₁₁+76 {O(n^2)}

MPRF:

l31 [6-X₁₀-X₁₁ ]
l6 [6-X₁₀-X₁₁ ]
l7 [6-X₁₀-X₁₁ ]
l5 [6-X₁₀-X₁₁ ]
l8 [6-X₁₀-X₁₁ ]
n_l30___95 [6-X₁₀-X₁₁ ]
n_l13___94 [X₆+1-X₁₀ ]
n_l14___75 [X₆+2-X₁₀-X₁₁ ]
n_l12___74 [2⋅X₈+X₉+2-X₁₀-3⋅X₁₁ ]
n_l14___92 [X₆+1-X₁₀ ]
n_l12___91 [X₉+1-X₁₀ ]
n_l15___73 [X₆+2⋅X₈+2-X₁₀-3⋅X₁₁ ]
n_l15___90 [X₆+1-X₁₀ ]
n_l16___72 [X₆-X₁₀-X₁₁ ]
n_l16___89 [X₆+1-X₁₀ ]
n_l16___93 [4 ]
n_l17___71 [X₆+2-X₁₀-X₁₁ ]
n_l17___88 [X₉-X₁₀ ]
n_l19___14 [X₉-X₁₀ ]
n_l19___56 [2⋅X₆-X₈-2⋅X₁₀-X₁₁ ]
n_l19___63 [X₆+3⋅X₈+6-X₁₀-2⋅X₁₁ ]
n_l19___7 [4⋅X₁₁ ]
n_l19___70 [X₆+X₈+1-X₁₀-X₁₁ ]
n_l19___87 [X₉+1-X₁₀ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₆-X₁₀ ]
n_l20___55 [X₉+2-X₈-X₁₀ ]
n_l18___54 [X₉+4-X₁₀-X₁₁ ]
n_l20___6 [4⋅X₁₁ ]
n_l18___5 [4⋅X₁₁ ]
n_l20___62 [3⋅X₈+X₉+6-X₁₀-2⋅X₁₁ ]
n_l18___61 [3⋅X₈+X₉+6-X₁₀-2⋅X₁₁ ]
n_l20___69 [X₆+X₁₁-3⋅X₈-X₁₀-1 ]
n_l18___68 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l20___86 [X₉+1-X₁₀ ]
n_l18___85 [X₉+1-X₁₀ ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [4⋅X₁₁ ]
n_l21___53 [X₉+4-X₁₀-X₁₁ ]
n_l21___60 [X₆+3⋅X₈+6-X₁₀-2⋅X₁₁ ]
n_l21___67 [X₆+X₁₁-3⋅X₈-X₁₀-1 ]
n_l21___84 [X₉+X₁₁-X₁₀ ]
n_l22___10 [X₆-X₁₀ ]
n_l22___3 [X₉+X₁₁-X₁₀ ]
n_l22___52 [X₆+4-X₁₀-X₁₁ ]
n_l22___59 [X₆+3⋅X₈+6-X₁₀-2⋅X₁₁ ]
n_l22___66 [X₆+X₁₁-3⋅X₈-X₁₀-1 ]
n_l22___83 [X₉+1-X₁₀ ]
n_l24___2 [X₉+1-X₁₀ ]
n_l23___1 [X₆+2-X₁₀-X₁₁ ]
n_l24___51 [X₉+4-X₁₀-X₁₁ ]
n_l23___50 [X₆+2-X₁₀-X₁₁ ]
n_l24___58 [X₆+3⋅X₈+6-X₁₀-2⋅X₁₁ ]
n_l23___57 [X₉+2-X₈-X₁₀ ]
n_l24___65 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l23___64 [X₉+X₁₁-3⋅X₈-X₁₀-1 ]
n_l24___81 [X₆+1-X₁₀ ]
n_l23___80 [X₆+2-X₁₀-X₁₁ ]
n_l24___9 [2⋅X₆+2-X₉-X₁₀-X₁₁ ]
n_l23___8 [X₆+2-X₁₀-X₁₁ ]
n_l13___77 [X₆+2-X₁₀-X₁₁ ]
n_l16___76 [X₆+X₁₁+2-2⋅X₈-X₁₀ ]
n_l30___78 [X₉+2-X₁₀-X₁₁ ]
n_l8___79 [2⋅X₆+2-X₈-X₉-X₁₀ ]
n_l8___82 [X₉+4-X₆ ]
l32 [5-X₁₀-X₁₁ ]

MPRF for transition t₇₂₈: n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

20⋅X₆⋅X₈+40⋅X₆⋅X₆+110⋅X₆+40⋅X₈+X₁₁+64 {O(n^2)}

MPRF:

l31 [4-X₁₁ ]
l6 [4-X₁₁ ]
l7 [4-X₁₁ ]
l5 [4-X₁₁ ]
l8 [4-X₁₁ ]
n_l30___95 [X₉+4-X₆-X₁₁ ]
n_l13___94 [X₆-X₁₀ ]
n_l14___75 [X₆-X₁₀-X₁₁ ]
n_l12___74 [X₉-X₁₀-X₁₁ ]
n_l14___92 [X₆-X₁₀ ]
n_l12___91 [X₆-X₁₀ ]
n_l15___73 [2⋅X₆-X₈-X₉-X₁₀ ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₆+1-2⋅X₈-X₁₀ ]
n_l16___89 [X₉-X₁₀ ]
n_l16___93 [4 ]
n_l17___71 [X₉-X₈-X₁₀ ]
n_l17___88 [X₉-X₁₀ ]
n_l19___14 [X₆-X₁₀ ]
n_l19___56 [X₆+2-X₁₀-X₁₁ ]
n_l19___63 [3⋅X₈+X₉+4-X₁₀-2⋅X₁₁ ]
n_l19___7 [X₆+4⋅X₁₁-X₉ ]
n_l19___70 [X₆+1-2⋅X₈-X₁₀ ]
n_l19___87 [X₉-X₁₀ ]
n_l20___13 [X₉-X₁₀ ]
n_l18___12 [X₉-X₁₀ ]
n_l20___55 [X₉+2-X₁₀-X₁₁ ]
n_l18___54 [X₆+2-X₁₀-X₁₁ ]
n_l20___6 [X₉+4⋅X₁₁-X₁₀-3 ]
n_l18___5 [X₉+X₁₁-X₁₀ ]
n_l20___62 [3⋅X₈+X₉+4-X₁₀-2⋅X₁₁ ]
n_l18___61 [X₉+X₁₁-3⋅X₈-X₁₀-2 ]
n_l20___69 [X₆+1-2⋅X₈-X₁₀ ]
n_l18___68 [X₆+1-2⋅X₈-X₁₀ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₆-X₁₀ ]
n_l21___11 [X₉-X₁₀ ]
n_l21___4 [X₉+1-X₁₀ ]
n_l21___53 [X₉+2-X₁₀-X₁₁ ]
n_l21___60 [X₉+X₁₁-3⋅X₈-X₁₀-2 ]
n_l21___67 [X₆+1-2⋅X₈-X₁₀ ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₉-X₁₀ ]
n_l22___3 [X₉+1-X₁₀-X₁₁ ]
n_l22___52 [X₉+1-X₁₀-X₁₁ ]
n_l22___59 [X₆+X₁₁-4⋅X₈-X₁₀-1 ]
n_l22___66 [X₆+1-2⋅X₈-X₁₀ ]
n_l22___83 [X₉+1-X₁₀-X₁₁ ]
n_l24___2 [X₉+1-X₁₀-X₁₁ ]
n_l23___1 [X₆+1-X₁₀-X₁₁ ]
n_l24___51 [X₉+1-X₁₀-X₁₁ ]
n_l23___50 [X₆+1-X₁₀-X₁₁ ]
n_l24___58 [X₆+3-X₁₀-X₁₁ ]
n_l23___57 [X₉+1-X₁₀-X₁₁ ]
n_l24___65 [X₆+1-2⋅X₈-X₁₀ ]
n_l23___64 [X₉+2-X₁₀-X₁₁ ]
n_l24___81 [X₉+1-X₁₀-X₁₁ ]
n_l23___80 [X₆+1-X₁₀-X₁₁ ]
n_l24___9 [X₆+2-X₁₀-X₁₁ ]
n_l23___8 [X₆+X₁₁-X₁₀-3 ]
n_l13___77 [X₆-X₈-X₁₀ ]
n_l16___76 [X₆+1-X₈-X₁₀-X₁₁ ]
n_l30___78 [X₆-X₁₀-X₁₁ ]
n_l8___79 [X₉+1-X₈-X₁₀ ]
n_l8___82 [4 ]
l32 [4-X₁₁ ]

MPRF for transition t₇₃₅: n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

20⋅X₆⋅X₆+45⋅X₆+X₁₁+15 {O(n^2)}

MPRF:

l31 [5-X₁₀-X₁₁ ]
l6 [4-X₁₀-X₁₁ ]
l7 [4-X₁₀-X₁₁ ]
l5 [4-X₁₀-X₁₁ ]
l8 [4-X₁₀-X₁₁ ]
n_l30___95 [4-X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆ ]
n_l14___75 [X₉-X₁₀-X₁₁ ]
n_l12___74 [X₉-X₈-X₁₀ ]
n_l14___92 [2⋅X₉ ]
n_l12___91 [X₉+1 ]
n_l15___73 [X₆-X₁₀-X₁₁ ]
n_l15___90 [X₉+1 ]
n_l16___72 [X₉+1-X₈-X₁₀-X₁₁ ]
n_l16___89 [X₉+1-X₁₀ ]
n_l16___93 [X₆+1-X₁₀ ]
n_l17___71 [X₆-X₈-X₁₀-1 ]
n_l17___88 [X₆ ]
n_l19___14 [X₉ ]
n_l19___56 [6 ]
n_l19___63 [X₉-X₈-X₁₀-1 ]
n_l19___7 [X₆+1-X₁₀ ]
n_l19___70 [X₉+1-2⋅X₈-X₁₀ ]
n_l19___87 [X₆+X₁₁-X₁₀ ]
n_l20___13 [X₉ ]
n_l18___12 [X₉ ]
n_l20___55 [6 ]
n_l18___54 [6 ]
n_l20___6 [2⋅X₆+X₁₁-2⋅X₁₀-3 ]
n_l18___5 [X₆+X₉-2⋅X₁₀-2 ]
n_l20___62 [X₉-X₈-X₁₀-1 ]
n_l18___61 [X₉-X₈-X₁₀-1 ]
n_l20___69 [X₉+1-2⋅X₈-X₁₀ ]
n_l18___68 [X₆+1-2⋅X₈-X₁₀ ]
n_l20___86 [X₉+1-X₁₀ ]
n_l18___85 [X₉+1-X₁₀ ]
n_l21___11 [X₉ ]
n_l21___4 [X₉+1-X₁₀ ]
n_l21___53 [6 ]
n_l21___60 [X₉-X₈-X₁₀-1 ]
n_l21___67 [X₉+1-2⋅X₈-X₁₀ ]
n_l21___84 [X₉+1-X₁₀ ]
n_l22___10 [X₉-X₁₀ ]
n_l22___3 [4 ]
n_l22___52 [6 ]
n_l22___59 [X₉+2-X₁₀-X₁₁ ]
n_l22___66 [X₉+2-X₁₀-X₁₁ ]
n_l22___83 [X₆+3-X₁₀-2⋅X₁₁ ]
n_l24___2 [X₉+1-X₁₀ ]
n_l23___1 [X₆+2-X₁₀-X₁₁ ]
n_l24___51 [6 ]
n_l23___50 [5 ]
n_l24___58 [X₉+2-X₁₀-X₁₁ ]
n_l23___57 [X₉+2-X₁₀-X₁₁ ]
n_l24___65 [X₉+2-X₁₀-X₁₁ ]
n_l23___64 [X₉+2-X₁₀-X₁₁ ]
n_l24___81 [X₉+3-X₁₀-2⋅X₁₁ ]
n_l23___80 [X₆+2-X₁₀-X₁₁ ]
n_l24___9 [X₉+4-X₁₀-2⋅X₁₁ ]
n_l23___8 [X₆+2-X₁₀-X₁₁ ]
n_l13___77 [X₈+X₉+2-X₁₀-2⋅X₁₁ ]
n_l16___76 [X₈+5 ]
n_l30___78 [X₈+X₉+2-X₁₀-2⋅X₁₁ ]
n_l8___79 [X₉+2-X₈-X₁₀ ]
n_l8___82 [4 ]
l32 [4-X₁₀-X₁₁ ]

MPRF for transition t₇₃₆: n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

110⋅X₆⋅X₆+40⋅X₆⋅X₈+2⋅X₁₁+266⋅X₆+80⋅X₈+97 {O(n^2)}

MPRF:

l31 [X₆-2⋅X₁₀-2⋅X₁₁-7 ]
l6 [X₉-2⋅X₁₀-2⋅X₁₁-7 ]
l7 [X₉-2⋅X₁₀-2⋅X₁₁-7 ]
l5 [X₆-2⋅X₁₀-2⋅X₁₁-7 ]
l8 [X₆-2⋅X₁₀-2⋅X₁₁-7 ]
n_l30___95 [3⋅X₆-2⋅X₉-2⋅X₁₀-2⋅X₁₁-7 ]
n_l13___94 [2⋅X₆+1-2⋅X₁₀ ]
n_l14___75 [2⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l12___74 [2⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l14___92 [2⋅X₆+1-2⋅X₁₀ ]
n_l12___91 [2⋅X₆+1-2⋅X₁₀ ]
n_l15___73 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-8 ]
n_l15___90 [2⋅X₉+1-2⋅X₁₀ ]
n_l16___72 [2⋅X₉-2⋅X₈-2⋅X₁₀-12 ]
n_l16___89 [2⋅X₉+1-2⋅X₁₀ ]
n_l16___93 [3⋅X₆-3⋅X₉-4 ]
n_l17___71 [2⋅X₆-2⋅X₈-2⋅X₁₀-8 ]
n_l17___88 [2⋅X₉-2⋅X₁₀-12 ]
n_l19___14 [2⋅X₉-2⋅X₁₀-6⋅X₁₁ ]
n_l19___56 [2⋅X₈-5 ]
n_l19___63 [2⋅X₉-2⋅X₈-2⋅X₁₀-8 ]
n_l19___7 [3⋅X₉-3⋅X₁₀-11⋅X₁₁-2 ]
n_l19___70 [2⋅X₉-2⋅X₈-2⋅X₁₀-12 ]
n_l19___87 [2⋅X₉+1-2⋅X₁₀ ]
n_l20___13 [2⋅X₉-2⋅X₁₀-12 ]
n_l18___12 [2⋅X₆-2⋅X₁₀-6⋅X₁₁ ]
n_l20___55 [X₁₁-6 ]
n_l18___54 [2⋅X₉-2⋅X₁₀-X₁₁-10 ]
n_l20___6 [3⋅X₉-3⋅X₁₀-13⋅X₁₁ ]
n_l18___5 [3⋅X₉-3⋅X₁₀-13⋅X₁₁ ]
n_l20___62 [2⋅X₉+X₁₁-4⋅X₈-2⋅X₁₀-10 ]
n_l18___61 [2⋅X₆+X₁₁-4⋅X₈-2⋅X₁₀-10 ]
n_l20___69 [2⋅X₉-2⋅X₈-2⋅X₁₀-12 ]
n_l18___68 [2⋅X₉-2⋅X₈-2⋅X₁₀-12 ]
n_l20___86 [2⋅X₉+1-2⋅X₁₀ ]
n_l18___85 [2⋅X₆+X₁₁-2⋅X₁₀ ]
n_l21___11 [2⋅X₆-2⋅X₁₀-12 ]
n_l21___4 [3⋅X₉-3⋅X₁₀-13 ]
n_l21___53 [2⋅X₉-2⋅X₁₀-X₁₁-10 ]
n_l21___60 [2⋅X₉+X₁₁-4⋅X₈-2⋅X₁₀-10 ]
n_l21___67 [2⋅X₉-2⋅X₈-2⋅X₁₀-12 ]
n_l21___84 [2⋅X₉+X₁₁-2⋅X₁₀ ]
n_l22___10 [2⋅X₆-2⋅X₁₀-6⋅X₁₁ ]
n_l22___3 [3⋅X₉-3⋅X₁₀-13 ]
n_l22___52 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-7 ]
n_l22___59 [2⋅X₉+X₁₁-4⋅X₈-2⋅X₁₀-10 ]
n_l22___66 [2⋅X₆-2⋅X₈-2⋅X₁₀-12 ]
n_l22___83 [2⋅X₆+1-2⋅X₁₀ ]
n_l24___2 [3⋅X₆-3⋅X₁₀-13 ]
n_l23___1 [3⋅X₆-3⋅X₁₀-2⋅X₁₁-11 ]
n_l24___51 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-8 ]
n_l23___50 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-8 ]
n_l24___58 [2⋅X₆+X₁₁-6⋅X₈-2⋅X₁₀-8 ]
n_l23___57 [2⋅X₆+X₁₁-6⋅X₈-2⋅X₁₀-14 ]
n_l24___65 [2⋅X₉-2⋅X₈-2⋅X₁₀-12 ]
n_l23___64 [2⋅X₉-2⋅X₈-2⋅X₁₀-12 ]
n_l24___81 [2⋅X₆+3-2⋅X₁₀-2⋅X₁₁ ]
n_l23___80 [2⋅X₆+3-2⋅X₁₀-2⋅X₁₁ ]
n_l24___9 [2⋅X₆-2⋅X₁₀-12 ]
n_l23___8 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-8 ]
n_l13___77 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-8 ]
n_l16___76 [5⋅X₈-3⋅X₁₁-5 ]
n_l30___78 [2⋅X₆-2⋅X₁₀-2⋅X₁₁-8 ]
n_l8___79 [2⋅X₉-2⋅X₁₀-2⋅X₁₁-8 ]
n_l8___82 [2⋅X₈-X₉-X₁₀-8 ]
l32 [X₆-2⋅X₁₀-2⋅X₁₁-8 ]

MPRF for transition t₇₃₇: n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

5⋅X₆⋅X₆+15⋅X₆+X₁₁+11 {O(n^2)}

MPRF:

l31 [-X₁₀-X₁₁-1 ]
l6 [-X₁₀-X₁₁-1 ]
l7 [-X₁₀-X₁₁-1 ]
l5 [-X₁₀-X₁₁-1 ]
l8 [-X₁₀-X₁₁-1 ]
n_l30___95 [-X₁₀-X₁₁-1 ]
n_l13___94 [X₆ ]
n_l14___75 [X₉-X₁₀-X₁₁-3 ]
n_l12___74 [X₉-X₈-X₁₀-3 ]
n_l14___92 [X₉ ]
n_l12___91 [X₉ ]
n_l15___73 [X₉-X₁₀-X₁₁-3 ]
n_l15___90 [X₉ ]
n_l16___72 [12⋅X₈+X₉-X₁₀-13⋅X₁₁-3 ]
n_l16___89 [X₆-X₁₀ ]
n_l16___93 [-1 ]
n_l17___71 [X₆-X₈-X₁₀-3 ]
n_l17___88 [X₆ ]
n_l19___14 [X₉ ]
n_l19___56 [X₆-2⋅X₈-X₁₀-2 ]
n_l19___63 [X₆+X₈-X₁₀-X₁₁-1 ]
n_l19___7 [-1 ]
n_l19___70 [X₉-X₈-X₁₀-3 ]
n_l19___87 [X₆-X₁₀ ]
n_l20___13 [X₉ ]
n_l18___12 [X₆ ]
n_l20___55 [X₆-2⋅X₈-X₁₀-2 ]
n_l18___54 [X₆-2⋅X₈-X₁₀-2 ]
n_l20___6 [-X₁₁ ]
n_l18___5 [-X₁₁ ]
n_l20___62 [X₆+X₈-X₁₀-X₁₁-1 ]
n_l18___61 [X₈+X₉-X₁₀-X₁₁-1 ]
n_l20___69 [X₉+7⋅X₁₁-15⋅X₈-X₁₀-10 ]
n_l18___68 [X₉+6⋅X₁₁-14⋅X₈-X₁₀-8 ]
n_l20___86 [X₆-X₁₀ ]
n_l18___85 [X₆-X₁₀ ]
n_l21___11 [X₆-X₁₀ ]
n_l21___4 [-X₁₁ ]
n_l21___53 [X₉-2⋅X₈-X₁₀-2 ]
n_l21___60 [X₈+X₉-X₁₀-X₁₁-1 ]
n_l21___67 [X₆+6⋅X₁₁-14⋅X₈-X₁₀-8 ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₆-X₁₀-X₁₁ ]
n_l22___3 [X₉-X₁₀-4⋅X₁₁ ]
n_l22___52 [X₉-2⋅X₈-X₁₀-2 ]
n_l22___59 [X₆-X₁₀-X₁₁-3 ]
n_l22___66 [X₆+6⋅X₁₁-14⋅X₈-X₁₀-9 ]
n_l22___83 [X₉-X₁₀ ]
n_l24___2 [X₉-X₁₀-4 ]
n_l23___1 [X₆-X₁₀-X₁₁-3 ]
n_l24___51 [X₉-2⋅X₈-X₁₀-2 ]
n_l23___50 [X₆-X₁₀-X₁₁-1 ]
n_l24___58 [X₉-X₁₀-X₁₁-3 ]
n_l23___57 [X₆-X₁₀-X₁₁-3 ]
n_l24___65 [X₉-X₁₀-X₁₁-2 ]
n_l23___64 [X₉-X₁₀-X₁₁-3 ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆-X₁₀-X₁₁ ]
n_l24___9 [X₆-X₁₀-X₁₁ ]
n_l23___8 [X₆-X₁₀-X₁₁ ]
n_l13___77 [X₆-X₁₀-X₁₁-3 ]
n_l16___76 [X₆-2⋅X₈-X₁₀-2 ]
n_l30___78 [X₆-X₁₀-X₁₁-3 ]
n_l8___79 [X₉+X₁₁-2⋅X₈-X₁₀-3 ]
n_l8___82 [-1 ]
l32 [-X₁₀-X₁₁-1 ]

MPRF for transition t₇₄₅: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

5⋅X₆⋅X₆+15⋅X₆+X₁₁+11 {O(n^2)}

MPRF:

l31 [1-X₁₀-X₁₁ ]
l6 [-X₁₀-X₁₁ ]
l7 [-X₁₀-X₁₁ ]
l5 [-X₁₀-X₁₁ ]
l8 [X₆-X₉-X₁₀-X₁₁ ]
n_l30___95 [-X₁₀-X₁₁ ]
n_l13___94 [X₆ ]
n_l14___75 [X₉-X₈-X₁₀-4 ]
n_l12___74 [X₉-X₁₀-X₁₁-4 ]
n_l14___92 [X₆ ]
n_l12___91 [X₆ ]
n_l15___73 [X₉-X₈-X₁₀-4 ]
n_l15___90 [X₉ ]
n_l16___72 [X₆-X₈-X₁₀-4 ]
n_l16___89 [X₉ ]
n_l16___93 [1 ]
n_l17___71 [X₆-X₈-X₁₀-4 ]
n_l17___88 [X₆ ]
n_l19___14 [X₆ ]
n_l19___56 [2⋅X₈+2-X₁₁ ]
n_l19___63 [X₆-X₈-X₁₀-4 ]
n_l19___7 [X₆+X₁₁-X₉ ]
n_l19___70 [X₆-2⋅X₈-X₁₀-3 ]
n_l19___87 [X₉ ]
n_l20___13 [X₉ ]
n_l18___12 [X₆ ]
n_l20___55 [2⋅X₈+2-X₁₁ ]
n_l18___54 [2⋅X₈+2-X₁₁ ]
n_l20___6 [X₉-X₁₀-2⋅X₁₁ ]
n_l18___5 [X₉-X₁₀-2 ]
n_l20___62 [X₆+X₈-X₁₀-X₁₁-2 ]
n_l18___61 [X₈+X₉-X₁₀-X₁₁-2 ]
n_l20___69 [X₉-X₁₀-X₁₁-2 ]
n_l18___68 [X₆-X₁₀-X₁₁-2 ]
n_l20___86 [X₆ ]
n_l18___85 [X₉ ]
n_l21___11 [X₆ ]
n_l21___4 [X₉-X₁₀-2⋅X₁₁ ]
n_l21___53 [X₆-X₁₀-X₁₁-1 ]
n_l21___60 [X₈+X₉-X₁₀-X₁₁-2 ]
n_l21___67 [X₉-X₁₀-X₁₁-2 ]
n_l21___84 [X₉ ]
n_l22___10 [X₆ ]
n_l22___3 [X₉-X₁₀-4 ]
n_l22___52 [X₆-X₁₀-X₁₁-1 ]
n_l22___59 [X₆+X₈-X₁₀-X₁₁-2 ]
n_l22___66 [X₉-X₁₀-X₁₁-2 ]
n_l22___83 [X₉ ]
n_l24___2 [X₉-X₁₀-X₁₁-3 ]
n_l23___1 [X₆-X₁₀-X₁₁-3 ]
n_l24___51 [X₉-X₁₀-X₁₁-3 ]
n_l23___50 [-1 ]
n_l24___58 [X₈+X₉-X₁₀-X₁₁-2 ]
n_l23___57 [X₈+X₉-X₁₀-X₁₁-2 ]
n_l24___65 [X₉-X₁₀-X₁₁-3 ]
n_l23___64 [X₆-X₁₀-X₁₁-3 ]
n_l24___81 [X₆ ]
n_l23___80 [X₆-X₁₁ ]
n_l24___9 [X₉ ]
n_l23___8 [X₆-X₁₁ ]
n_l13___77 [X₉-X₈-X₁₀-4 ]
n_l16___76 [2⋅X₈+1-2⋅X₁₁ ]
n_l30___78 [X₉-X₁₀-X₁₁-3 ]
n_l8___79 [X₉-X₁₀-X₁₁-3 ]
n_l8___82 [1 ]
l32 [-X₁₀-X₁₁ ]

MPRF for transition t₇₄₆: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

20⋅X₆⋅X₈+40⋅X₆⋅X₆+102⋅X₆+2⋅X₁₁+40⋅X₈+45 {O(n^2)}

MPRF:

l31 [X₆+2-X₉-X₁₀-2⋅X₁₁ ]
l6 [2-X₁₀-2⋅X₁₁ ]
l7 [2-X₁₀-2⋅X₁₁ ]
l5 [X₉+2-X₆-X₁₀-2⋅X₁₁ ]
l8 [X₉+2-X₆-X₁₀-2⋅X₁₁ ]
n_l30___95 [X₆+2-X₉-X₁₀-2⋅X₁₁ ]
n_l13___94 [X₆-X₁₀ ]
n_l14___75 [X₆+1-2⋅X₈-X₁₀ ]
n_l12___74 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l14___92 [X₉-X₁₀ ]
n_l12___91 [X₉-X₁₀ ]
n_l15___73 [X₉+1-2⋅X₈-X₁₀ ]
n_l15___90 [X₉-X₁₀ ]
n_l16___72 [X₉-X₁₀-2⋅X₁₁-2 ]
n_l16___89 [X₉-X₁₀ ]
n_l16___93 [2 ]
n_l17___71 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l17___88 [X₆-X₁₀-2 ]
n_l19___14 [X₉+2-X₁₀-2⋅X₁₁ ]
n_l19___56 [3 ]
n_l19___63 [2⋅X₈+X₉+5-X₁₀-2⋅X₁₁ ]
n_l19___7 [2⋅X₉+2-2⋅X₆ ]
n_l19___70 [X₉-2⋅X₈-X₁₀-2 ]
n_l19___87 [X₆-X₁₀ ]
n_l20___13 [X₉-X₁₀-2 ]
n_l18___12 [X₉+X₁₁-X₁₀-4 ]
n_l20___55 [3 ]
n_l18___54 [5⋅X₁₁-10⋅X₈-2 ]
n_l20___6 [2⋅X₁₀+8-2⋅X₉ ]
n_l18___5 [2⋅X₁₀+8-2⋅X₉ ]
n_l20___62 [X₆+2⋅X₈+5-X₁₀-2⋅X₁₁ ]
n_l18___61 [2⋅X₈+X₉+5-X₁₀-2⋅X₁₁ ]
n_l20___69 [X₆+2⋅X₈-X₁₀-2⋅X₁₁ ]
n_l18___68 [2⋅X₈+X₉-X₁₀-2⋅X₁₁ ]
n_l20___86 [X₉-X₁₀ ]
n_l18___85 [X₉-X₁₀ ]
n_l21___11 [X₉-X₁₀-2 ]
n_l21___4 [2⋅X₁₀+8-X₆-X₉ ]
n_l21___53 [5⋅X₁₁-10⋅X₈-2 ]
n_l21___60 [2⋅X₈+X₉+5-X₁₀-2⋅X₁₁ ]
n_l21___67 [2⋅X₈+X₉-X₁₀-2⋅X₁₁ ]
n_l21___84 [X₉-X₁₀ ]
n_l22___10 [X₉-X₁₀-3 ]
n_l22___3 [X₉-X₁₀-X₁₁ ]
n_l22___52 [5⋅X₁₁-10⋅X₈-2 ]
n_l22___59 [2⋅X₈+X₉+5-X₁₀-2⋅X₁₁ ]
n_l22___66 [X₆+1-X₁₀-2⋅X₁₁ ]
n_l22___83 [X₉-X₁₀ ]
n_l24___2 [X₆-X₁₀-1 ]
n_l23___1 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l24___51 [X₉+4⋅X₁₁-10⋅X₈-X₁₀-4 ]
n_l23___50 [X₉-2⋅X₈-X₁₀-X₁₁ ]
n_l24___58 [X₆+2⋅X₈+5-X₁₀-2⋅X₁₁ ]
n_l23___57 [X₉+7-X₁₀-2⋅X₁₁ ]
n_l24___65 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l23___64 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l24___81 [X₉-X₁₀ ]
n_l23___80 [X₆-X₁₀-1 ]
n_l24___9 [X₉-X₁₀-3 ]
n_l23___8 [X₆+1-X₁₀-2⋅X₁₁ ]
n_l13___77 [X₉+1-X₁₀-2⋅X₁₁ ]
n_l16___76 [3 ]
n_l30___78 [X₆+1-X₁₀-2⋅X₁₁ ]
n_l8___79 [X₉+X₁₁+1-3⋅X₈-X₁₀ ]
n_l8___82 [X₉+2-X₈ ]
l32 [X₉+2-X₆-X₁₀-2⋅X₁₁ ]

MPRF for transition t₇₅₂: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

40⋅X₆⋅X₈+90⋅X₆⋅X₆+245⋅X₆+80⋅X₈+X₁₁+138 {O(n^2)}

MPRF:

l31 [8-2⋅X₁₀-X₁₁ ]
l6 [8-2⋅X₁₀-X₁₁ ]
l7 [8-2⋅X₁₀-X₁₁ ]
l5 [8-2⋅X₁₀-X₁₁ ]
l8 [8-2⋅X₁₀-X₁₁ ]
n_l30___95 [8-2⋅X₁₀-X₁₁ ]
n_l13___94 [2⋅X₆+2-2⋅X₁₀ ]
n_l14___75 [2⋅X₆+1-2⋅X₁₀-X₁₁ ]
n_l12___74 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l14___92 [2⋅X₉+2-2⋅X₁₀ ]
n_l12___91 [2⋅X₉+2-2⋅X₁₀ ]
n_l15___73 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l15___90 [2⋅X₉+2-2⋅X₁₀ ]
n_l16___72 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l16___89 [2⋅X₆+2-2⋅X₁₀ ]
n_l16___93 [X₆+7-X₁₀ ]
n_l17___71 [2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l17___88 [2⋅X₉+2-2⋅X₁₀ ]
n_l19___14 [2⋅X₉+X₁₁-2⋅X₁₀ ]
n_l19___56 [2⋅X₁₁+5-X₈ ]
n_l19___63 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l19___7 [10 ]
n_l19___70 [2⋅X₉+X₁₁-3⋅X₈-2⋅X₁₀ ]
n_l19___87 [2⋅X₆+2-2⋅X₁₀ ]
n_l20___13 [2⋅X₆+2-2⋅X₁₀ ]
n_l18___12 [2⋅X₆+X₁₁-2⋅X₁₀ ]
n_l20___55 [2⋅X₆+1-X₈-2⋅X₁₀ ]
n_l18___54 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l20___6 [10 ]
n_l18___5 [10 ]
n_l20___62 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l18___61 [2⋅X₆+X₈+3-2⋅X₁₀-X₁₁ ]
n_l20___69 [2⋅X₉+X₁₁-3⋅X₈-2⋅X₁₀ ]
n_l18___68 [2⋅X₉+X₁₁-3⋅X₈-2⋅X₁₀ ]
n_l20___86 [2⋅X₉+2-2⋅X₁₀ ]
n_l18___85 [2⋅X₉+2-2⋅X₁₀ ]
n_l21___11 [2⋅X₉+2-2⋅X₁₀ ]
n_l21___4 [10⋅X₁₁ ]
n_l21___53 [2⋅X₉+1-X₈-2⋅X₁₀ ]
n_l21___60 [2⋅X₆+X₈+3-2⋅X₁₀-X₁₁ ]
n_l21___67 [2⋅X₆+X₁₁-3⋅X₈-2⋅X₁₀ ]
n_l21___84 [2⋅X₉+2-2⋅X₁₀ ]
n_l22___10 [2⋅X₆+X₁₁-2⋅X₁₀-2 ]
n_l22___3 [2⋅X₉+10⋅X₁₁-2⋅X₁₀-6 ]
n_l22___52 [2⋅X₉-X₈-2⋅X₁₀ ]
n_l22___59 [2⋅X₆+2⋅X₈+4-2⋅X₁₀-2⋅X₁₁ ]
n_l22___66 [2⋅X₆+X₁₁-3⋅X₈-2⋅X₁₀ ]
n_l22___83 [2⋅X₆+1-2⋅X₁₀ ]
n_l24___2 [2⋅X₉+5-2⋅X₁₀-4⋅X₁₁ ]
n_l23___1 [2⋅X₆+3⋅X₁₁-2⋅X₁₀-2 ]
n_l24___51 [2⋅X₉-X₈-2⋅X₁₀ ]
n_l23___50 [2⋅X₆+2-2⋅X₁₀-X₁₁ ]
n_l24___58 [2⋅X₆+2-2⋅X₁₀-X₁₁ ]
n_l23___57 [2⋅X₆+2-2⋅X₁₀-X₁₁ ]
n_l24___65 [X₆+X₉+1-X₈-2⋅X₁₀ ]
n_l23___64 [2⋅X₆+2-2⋅X₁₀-X₁₁ ]
n_l24___81 [2⋅X₉+5-2⋅X₁₀-4⋅X₁₁ ]
n_l23___80 [2⋅X₆+2-2⋅X₁₀-X₁₁ ]
n_l24___9 [2⋅X₆-2⋅X₁₀ ]
n_l23___8 [2⋅X₆+2-2⋅X₁₀-X₁₁ ]
n_l13___77 [2⋅X₆+1-X₈-2⋅X₁₀ ]
n_l16___76 [7⋅X₈+7-4⋅X₁₁ ]
n_l30___78 [2⋅X₉+1-2⋅X₁₀-X₁₁ ]
n_l8___79 [2⋅X₆+3⋅X₈+2-2⋅X₁₀-4⋅X₁₁ ]
n_l8___82 [10 ]
l32 [8-2⋅X₁₀-X₁₁ ]

MPRF for transition t₇₈₁: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

22⋅X₆+34 {O(n)}

MPRF:

l31 [12⋅X₆-10⋅X₉-2⋅X₁₀-4 ]
l6 [12⋅X₆-10⋅X₉-2⋅X₁₀-4 ]
l7 [12⋅X₆-10⋅X₉-2⋅X₁₀-4 ]
l5 [2⋅X₆-2⋅X₁₀-4 ]
l8 [2⋅X₆-2⋅X₁₀-4 ]
n_l14___75 [2⋅X₉-2⋅X₁₀-4 ]
n_l12___74 [2⋅X₉-2⋅X₁₀-4 ]
n_l14___92 [2⋅X₉-2⋅X₁₀-4 ]
n_l12___91 [2⋅X₉-2⋅X₁₀-4 ]
n_l15___73 [7⋅X₆-5⋅X₉-2⋅X₁₀-4 ]
n_l15___90 [X₆+X₉-2⋅X₁₀-4 ]
n_l16___72 [2⋅X₉-2⋅X₁₀-4 ]
n_l16___89 [2⋅X₉-2⋅X₁₀-4 ]
n_l17___71 [2⋅X₉-2⋅X₁₀-4 ]
n_l17___88 [2⋅X₆-2⋅X₁₀-4 ]
n_l19___14 [2⋅X₉-2⋅X₁₀-4 ]
n_l19___56 [4⋅X₈+2 ]
n_l19___63 [2⋅X₉-2⋅X₁₀-4 ]
n_l19___7 [X₉-X₁₀-1 ]
n_l19___70 [8⋅X₈+2⋅X₉-2⋅X₁₀-4⋅X₁₁ ]
n_l19___87 [2⋅X₉-2⋅X₁₀-4 ]
n_l20___13 [2⋅X₆-2⋅X₁₀-2⋅X₁₁ ]
n_l18___12 [2⋅X₉-2⋅X₁₀-2⋅X₁₁ ]
n_l20___55 [4⋅X₈+2 ]
n_l18___54 [4⋅X₈+2 ]
n_l20___6 [X₉-X₁₀-1 ]
n_l18___5 [X₉-X₁₀-X₁₁ ]
n_l20___62 [2⋅X₉-2⋅X₁₀-4 ]
n_l18___61 [2⋅X₉-2⋅X₁₀-4 ]
n_l20___69 [2⋅X₆+8⋅X₈-2⋅X₁₀-4⋅X₁₁ ]
n_l18___68 [2⋅X₆+8⋅X₈-2⋅X₁₀-4⋅X₁₁ ]
n_l20___86 [2⋅X₉-2⋅X₁₀-4⋅X₁₁ ]
n_l18___85 [2⋅X₉-2⋅X₁₀-4 ]
n_l21___11 [2⋅X₆-2⋅X₁₀-4 ]
n_l21___4 [X₉-X₁₀-1 ]
n_l21___53 [4⋅X₈+2 ]
n_l21___60 [2⋅X₆-2⋅X₁₀-4 ]
n_l21___67 [2⋅X₆+8⋅X₈-2⋅X₁₀-4⋅X₁₁ ]
n_l21___84 [3⋅X₉-X₆-2⋅X₁₀-4 ]
n_l22___10 [2⋅X₆+X₁₁-2⋅X₁₀-6 ]
n_l22___3 [X₉-X₁₀-1 ]
n_l22___52 [4⋅X₈+2 ]
n_l22___59 [2⋅X₆-2⋅X₁₀-4 ]
n_l22___66 [8⋅X₈+2⋅X₉-2⋅X₁₀-4⋅X₁₁ ]
n_l22___83 [2⋅X₆+4⋅X₁₁-2⋅X₁₀-8 ]
n_l24___2 [X₆-X₁₀-X₁₁ ]
n_l23___1 [2 ]
n_l24___51 [2⋅X₉-2⋅X₁₀-4 ]
n_l23___50 [2⋅X₆-2⋅X₁₀-4 ]
n_l24___58 [2⋅X₉-2⋅X₁₀-4 ]
n_l23___57 [2⋅X₉-2⋅X₁₀-4 ]
n_l24___65 [58⋅X₈+2⋅X₉+25-2⋅X₁₀-29⋅X₁₁ ]
n_l23___64 [12⋅X₆-10⋅X₉-2⋅X₁₀-4 ]
n_l24___81 [2⋅X₆+4⋅X₁₁-2⋅X₁₀-8 ]
n_l23___80 [2⋅X₉-2⋅X₁₀-4 ]
n_l24___9 [2⋅X₉+X₁₁-2⋅X₁₀-6 ]
n_l23___8 [2⋅X₉-2⋅X₁₀-4 ]
n_l13___77 [2⋅X₆-2⋅X₁₀-4 ]
n_l16___76 [4⋅X₁₁+2 ]
n_l13___94 [2⋅X₆-2⋅X₁₀-4 ]
n_l30___95 [2⋅X₆-2⋅X₁₀-4 ]
n_l16___93 [X₆+2-X₉ ]
n_l30___78 [2⋅X₆-2⋅X₁₀-4 ]
n_l8___79 [2⋅X₆-2⋅X₁₀-4 ]
n_l8___82 [2⋅X₈-2⋅X₁₀-4 ]
l32 [2⋅X₆-2⋅X₁₀-6 ]

MPRF for transition t₇₈₂: n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+5 {O(n)}

MPRF:

l31 [X₉-X₁₀-2 ]
l6 [X₉-X₁₀-2 ]
l7 [X₆-X₁₀-2 ]
l5 [X₉-X₁₀-2 ]
l8 [X₉-X₁₀-2 ]
n_l14___75 [X₉-X₁₀-2 ]
n_l12___74 [X₉-X₁₀-2 ]
n_l14___92 [X₉-X₁₀-2 ]
n_l12___91 [X₉-X₁₀-2 ]
n_l15___73 [2⋅X₉-X₆-X₁₀-2 ]
n_l15___90 [X₉-X₁₀-2 ]
n_l16___72 [X₆-X₁₀-2 ]
n_l16___89 [X₉-X₁₀-2 ]
n_l17___71 [X₉-X₁₀-2 ]
n_l17___88 [X₉-X₁₀-2 ]
n_l19___14 [X₆-X₁₀-X₁₁ ]
n_l19___56 [X₉-X₁₀-2 ]
n_l19___63 [X₉-X₁₀-2 ]
n_l19___7 [X₆+X₉-2⋅X₁₀-5 ]
n_l19___70 [4⋅X₈+X₉-X₁₀-2⋅X₁₁ ]
n_l19___87 [X₉-X₁₀-2 ]
n_l20___13 [X₉-X₁₀-2 ]
n_l18___12 [X₉-X₁₀-X₁₁ ]
n_l20___55 [X₉-X₁₀-2 ]
n_l18___54 [X₉-X₁₀-2 ]
n_l20___6 [1 ]
n_l18___5 [1 ]
n_l20___62 [X₉-X₁₀-2 ]
n_l18___61 [X₆-X₁₀-2 ]
n_l20___69 [X₉-X₁₀-2 ]
n_l18___68 [X₉-X₁₀-2 ]
n_l20___86 [X₆-X₁₀-2 ]
n_l18___85 [X₉+X₁₁-X₁₀-3 ]
n_l21___11 [X₆-X₁₀-X₁₁ ]
n_l21___4 [X₆+X₁₁-X₉ ]
n_l21___53 [X₉-X₁₀-2 ]
n_l21___60 [X₉-X₁₀-2 ]
n_l21___67 [X₆-X₁₀-2 ]
n_l21___84 [2⋅X₆+X₁₁-X₉-X₁₀-3 ]
n_l22___10 [X₉-X₁₀-2 ]
n_l22___3 [X₁₁ ]
n_l22___52 [X₉-X₁₀-2 ]
n_l22___59 [X₆-X₁₀-2 ]
n_l22___66 [X₆-X₁₀-2 ]
n_l22___83 [X₉+X₁₁-X₁₀-3 ]
n_l24___2 [X₁₁ ]
n_l23___1 [X₆-X₁₀-2 ]
n_l24___51 [X₉-X₁₀-2 ]
n_l23___50 [X₉-X₁₀-2 ]
n_l24___58 [X₉-X₁₀-2 ]
n_l23___57 [2⋅X₆-X₉-X₁₀-2 ]
n_l24___65 [X₉-X₁₀-2 ]
n_l23___64 [X₆-X₁₀-2 ]
n_l24___81 [X₉+X₁₁-X₁₀-3 ]
n_l23___80 [X₉-X₁₀-2 ]
n_l24___9 [X₆-X₁₀-X₁₁ ]
n_l23___8 [X₆-X₁₀-2 ]
n_l13___77 [X₆-X₁₀-2 ]
n_l16___76 [X₆-X₁₀-2 ]
n_l13___94 [X₆-X₁₀-2 ]
n_l30___95 [X₉-X₁₀-2 ]
n_l16___93 [1 ]
n_l30___78 [X₆-X₁₀-2 ]
n_l8___79 [X₉-X₁₀-2 ]
n_l8___82 [X₆-X₁₀-2 ]
l32 [X₆-X₁₀-3 ]

CFR: Improvement to new bound with the following program:

new bound:

1205⋅X₆⋅X₆+360⋅X₆⋅X₈+3628⋅X₆+41⋅X₁₁+728⋅X₈+2548 {O(n^2)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: Arg10_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l2, l25, l26, l27, l28, l29, l3, l31, l32, l33, l4, l5, l6, l7, l8, l9, n_l12___74, n_l12___91, n_l13___77, n_l13___94, n_l14___75, n_l14___92, n_l15___73, n_l15___90, n_l16___72, n_l16___76, n_l16___89, n_l16___93, n_l17___71, n_l17___88, n_l18___12, n_l18___5, n_l18___54, n_l18___61, n_l18___68, n_l18___85, n_l19___14, n_l19___56, n_l19___63, n_l19___7, n_l19___70, n_l19___87, n_l20___13, n_l20___55, n_l20___6, n_l20___62, n_l20___69, n_l20___86, n_l21___11, n_l21___4, n_l21___53, n_l21___60, n_l21___67, n_l21___84, n_l22___10, n_l22___3, n_l22___52, n_l22___59, n_l22___66, n_l22___83, n_l23___1, n_l23___50, n_l23___57, n_l23___64, n_l23___8, n_l23___80, n_l24___2, n_l24___51, n_l24___58, n_l24___65, n_l24___81, n_l24___9, n_l30___78, n_l30___95, n_l8___79, n_l8___82
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₁₀
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₇₅₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2+X₁₀ ≤ X₉ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₆₄₅: n_l12___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___73(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₄₆: n_l12___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___90(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₆₄₈: n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₄₉: n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₆₅₁: n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___74(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₅₂: n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___91(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₆₅₅: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₅₆: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₅₇: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₆₅₈: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₆₆₁: n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀+2⋅X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₆₂: n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 3+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₁₀+2⋅X₁₁+3 ∧ 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁
t₆₆₃: n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₆₄: n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₆₆₆: n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₆₇: n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₆₈: n_l18___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___11(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₇₂: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___4(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₇₃: n_l18___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___53(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₇₄: n_l18___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___60(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₇₅: n_l18___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___67(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₇₆: n_l18___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___84(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₇₇: n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₈₁: n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₈₂: n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₈₃: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₈₄: n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₈₅: n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₈₆: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___12(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₉₀: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___54(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₉₁: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___5(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₆₉₂: n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___61(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₉₃: n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___68(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₉₄: n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___85(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₆₉₅: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₆₉₆: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₀₃: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₀₄: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₀₅: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₀₆: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₀₇: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₀₈: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₀₉: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₁₀: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₁₁: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₁₂: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₁₃: n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₁₆: n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₁₈: n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₁₉: n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₂₀: n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₂₁: n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₂₂: n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₂₆: n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₂₇: n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₂₈: n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₂₉: n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₃₀: n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₃₂: n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₃₅: n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₃₆: n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₃₇: n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₃₈: n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₇₃₉: n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₇₄₅: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₄₆: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₄₇: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₇₄₈: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₇₈₁: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₅₂: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₇₈₂: n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

All Bounds

Timebounds

Overall timebound:1222⋅X₆⋅X₆+360⋅X₆⋅X₈+3718⋅X₆+41⋅X₁₁+728⋅X₈+2681 {O(n^2)}
t₀: 1 {O(1)}
t₃: X₆+2 {O(n)}
t₄: 1 {O(1)}
t₇: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₉: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₁₂: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₃: X₆+1 {O(n)}
t₁₄: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₈: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₆: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₅₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₆: X₆+1 {O(n)}
t₂₁: X₆+4 {O(n)}
t₂₂: 1 {O(1)}
t₅₂: 3⋅X₆+4⋅X₈+2 {O(n)}
t₂₀: X₆+2 {O(n)}
t₂₆: 5⋅X₆+10 {O(n)}
t₂₃: X₆+4 {O(n)}
t₂₅: X₆ {O(n)}
t₂₈: 3⋅X₆+4⋅X₈+2 {O(n)}
t₇₅₄: 5⋅X₆+10 {O(n)}
t₁₁: 3⋅X₆⋅X₆+13⋅X₆+14 {O(n^2)}
t₆₄₅: 15⋅X₆⋅X₆+37⋅X₆+14 {O(n^2)}
t₆₄₆: 5⋅X₆+10 {O(n)}
t₆₄₈: 20⋅X₆⋅X₈+40⋅X₆⋅X₆+100⋅X₆+40⋅X₈+X₁₁+42 {O(n^2)}
t₆₄₉: 5⋅X₆+10 {O(n)}
t₆₅₁: 110⋅X₆⋅X₆+40⋅X₆⋅X₈+241⋅X₆+80⋅X₈+X₁₁+49 {O(n^2)}
t₆₅₂: 5⋅X₆+10 {O(n)}
t₆₅₅: 15⋅X₆⋅X₆+2⋅X₁₁+30⋅X₆+3 {O(n^2)}
t₆₅₆: 10⋅X₆⋅X₆+2⋅X₁₁+76⋅X₆+119 {O(n^2)}
t₆₅₇: 5⋅X₆+10 {O(n)}
t₆₅₈: 5⋅X₆+10 {O(n)}
t₆₆₁: 15⋅X₆⋅X₆+75⋅X₆+X₁₁+101 {O(n^2)}
t₆₆₂: 15⋅X₆⋅X₆+41⋅X₆+X₁₁+28 {O(n^2)}
t₆₆₃: 5⋅X₆+10 {O(n)}
t₆₆₄: 5⋅X₆+10 {O(n)}
t₆₆₆: 20⋅X₆⋅X₆+40⋅X₆+X₁₁ {O(n^2)}
t₆₆₇: 5⋅X₆+10 {O(n)}
t₆₆₈: 5⋅X₆+10 {O(n)}
t₆₇₂: 5⋅X₆+10 {O(n)}
t₆₇₃: 5⋅X₆⋅X₆+15⋅X₆+X₁₁+11 {O(n^2)}
t₆₇₄: 15⋅X₆⋅X₆+41⋅X₆+X₁₁+22 {O(n^2)}
t₆₇₅: 120⋅X₆⋅X₆+60⋅X₆⋅X₈+120⋅X₈+316⋅X₆+X₁₁+153 {O(n^2)}
t₆₇₆: 5⋅X₆+10 {O(n)}
t₆₇₇: 5⋅X₆+10 {O(n)}
t₆₈₁: 20⋅X₆⋅X₈+50⋅X₆⋅X₆+110⋅X₆+40⋅X₈+X₁₁+25 {O(n^2)}
t₆₈₂: 25⋅X₆⋅X₆+106⋅X₆+4⋅X₁₁+124 {O(n^2)}
t₆₈₃: 5⋅X₆+10 {O(n)}
t₆₈₄: 30⋅X₆⋅X₆+115⋅X₆+X₁₁+115 {O(n^2)}
t₆₈₅: 5⋅X₆+10 {O(n)}
t₆₈₆: 5⋅X₆+10 {O(n)}
t₆₉₀: 35⋅X₆⋅X₆+130⋅X₆+X₁₁+123 {O(n^2)}
t₆₉₁: 5⋅X₆+10 {O(n)}
t₆₉₂: 40⋅X₆⋅X₆+91⋅X₆+X₁₁+28 {O(n^2)}
t₆₉₃: 55⋅X₆⋅X₆+171⋅X₆+X₁₁+128 {O(n^2)}
t₆₉₄: 5⋅X₆+10 {O(n)}
t₆₉₅: 5⋅X₆+10 {O(n)}
t₆₉₆: 5⋅X₆+10 {O(n)}
t₇₀₃: 5⋅X₆+10 {O(n)}
t₇₀₄: 5⋅X₆+10 {O(n)}
t₇₀₅: 5⋅X₆⋅X₆+30⋅X₆+X₁₁+44 {O(n^2)}
t₇₀₆: X₆ {O(n)}
t₇₀₇: 5⋅X₆⋅X₆+20⋅X₆+X₁₁+22 {O(n^2)}
t₇₀₈: X₆+3 {O(n)}
t₇₀₉: 20⋅X₆⋅X₈+45⋅X₆⋅X₆+115⋅X₆+40⋅X₈+X₁₁+53 {O(n^2)}
t₇₁₀: X₆+5 {O(n)}
t₇₁₁: 5⋅X₆+10 {O(n)}
t₇₁₂: 5⋅X₆+10 {O(n)}
t₇₁₃: 5⋅X₆+10 {O(n)}
t₇₁₆: 5⋅X₆+10 {O(n)}
t₇₁₈: 5⋅X₆⋅X₆+28⋅X₆+X₁₁+33 {O(n^2)}
t₇₁₉: 20⋅X₆⋅X₈+50⋅X₆⋅X₆+120⋅X₆+40⋅X₈+X₁₁+42 {O(n^2)}
t₇₂₀: 110⋅X₆⋅X₆+40⋅X₆⋅X₈+4⋅X₁₁+407⋅X₆+80⋅X₈+380 {O(n^2)}
t₇₂₁: 5⋅X₆+10 {O(n)}
t₇₂₂: 5⋅X₆+10 {O(n)}
t₇₂₆: 20⋅X₆⋅X₆+45⋅X₆+X₁₁+13 {O(n^2)}
t₇₂₇: 20⋅X₆⋅X₈+40⋅X₆⋅X₆+115⋅X₆+40⋅X₈+X₁₁+76 {O(n^2)}
t₇₂₈: 20⋅X₆⋅X₈+40⋅X₆⋅X₆+110⋅X₆+40⋅X₈+X₁₁+64 {O(n^2)}
t₇₂₉: 5⋅X₆+10 {O(n)}
t₇₃₀: 5⋅X₆+10 {O(n)}
t₇₃₂: 5⋅X₆+10 {O(n)}
t₇₃₅: 20⋅X₆⋅X₆+45⋅X₆+X₁₁+15 {O(n^2)}
t₇₃₆: 110⋅X₆⋅X₆+40⋅X₆⋅X₈+2⋅X₁₁+266⋅X₆+80⋅X₈+97 {O(n^2)}
t₇₃₇: 5⋅X₆⋅X₆+15⋅X₆+X₁₁+11 {O(n^2)}
t₇₃₈: 5⋅X₆+10 {O(n)}
t₇₃₉: 5⋅X₆+10 {O(n)}
t₇₄₅: 5⋅X₆⋅X₆+15⋅X₆+X₁₁+11 {O(n^2)}
t₇₄₆: 20⋅X₆⋅X₈+40⋅X₆⋅X₆+102⋅X₆+2⋅X₁₁+40⋅X₈+45 {O(n^2)}
t₇₄₇: 5⋅X₆+10 {O(n)}
t₇₄₈: 5⋅X₆+10 {O(n)}
t₇₅₂: 40⋅X₆⋅X₈+90⋅X₆⋅X₆+245⋅X₆+80⋅X₈+X₁₁+138 {O(n^2)}
t₇₈₁: 22⋅X₆+34 {O(n)}
t₇₈₂: X₆+5 {O(n)}

Costbounds

Overall costbound: 1222⋅X₆⋅X₆+360⋅X₆⋅X₈+3718⋅X₆+41⋅X₁₁+728⋅X₈+2681 {O(n^2)}
t₀: 1 {O(1)}
t₃: X₆+2 {O(n)}
t₄: 1 {O(1)}
t₇: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₉: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₁₂: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₃: X₆+1 {O(n)}
t₁₄: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₈: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₁₆: 2⋅X₆⋅X₆+10⋅X₆+14 {O(n^2)}
t₅₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: 2⋅X₆⋅X₆+11⋅X₆+17 {O(n^2)}
t₆: X₆+1 {O(n)}
t₂₁: X₆+4 {O(n)}
t₂₂: 1 {O(1)}
t₅₂: 3⋅X₆+4⋅X₈+2 {O(n)}
t₂₀: X₆+2 {O(n)}
t₂₆: 5⋅X₆+10 {O(n)}
t₂₃: X₆+4 {O(n)}
t₂₅: X₆ {O(n)}
t₂₈: 3⋅X₆+4⋅X₈+2 {O(n)}
t₇₅₄: 5⋅X₆+10 {O(n)}
t₁₁: 3⋅X₆⋅X₆+13⋅X₆+14 {O(n^2)}
t₆₄₅: 15⋅X₆⋅X₆+37⋅X₆+14 {O(n^2)}
t₆₄₆: 5⋅X₆+10 {O(n)}
t₆₄₈: 20⋅X₆⋅X₈+40⋅X₆⋅X₆+100⋅X₆+40⋅X₈+X₁₁+42 {O(n^2)}
t₆₄₉: 5⋅X₆+10 {O(n)}
t₆₅₁: 110⋅X₆⋅X₆+40⋅X₆⋅X₈+241⋅X₆+80⋅X₈+X₁₁+49 {O(n^2)}
t₆₅₂: 5⋅X₆+10 {O(n)}
t₆₅₅: 15⋅X₆⋅X₆+2⋅X₁₁+30⋅X₆+3 {O(n^2)}
t₆₅₆: 10⋅X₆⋅X₆+2⋅X₁₁+76⋅X₆+119 {O(n^2)}
t₆₅₇: 5⋅X₆+10 {O(n)}
t₆₅₈: 5⋅X₆+10 {O(n)}
t₆₆₁: 15⋅X₆⋅X₆+75⋅X₆+X₁₁+101 {O(n^2)}
t₆₆₂: 15⋅X₆⋅X₆+41⋅X₆+X₁₁+28 {O(n^2)}
t₆₆₃: 5⋅X₆+10 {O(n)}
t₆₆₄: 5⋅X₆+10 {O(n)}
t₆₆₆: 20⋅X₆⋅X₆+40⋅X₆+X₁₁ {O(n^2)}
t₆₆₇: 5⋅X₆+10 {O(n)}
t₆₆₈: 5⋅X₆+10 {O(n)}
t₆₇₂: 5⋅X₆+10 {O(n)}
t₆₇₃: 5⋅X₆⋅X₆+15⋅X₆+X₁₁+11 {O(n^2)}
t₆₇₄: 15⋅X₆⋅X₆+41⋅X₆+X₁₁+22 {O(n^2)}
t₆₇₅: 120⋅X₆⋅X₆+60⋅X₆⋅X₈+120⋅X₈+316⋅X₆+X₁₁+153 {O(n^2)}
t₆₇₆: 5⋅X₆+10 {O(n)}
t₆₇₇: 5⋅X₆+10 {O(n)}
t₆₈₁: 20⋅X₆⋅X₈+50⋅X₆⋅X₆+110⋅X₆+40⋅X₈+X₁₁+25 {O(n^2)}
t₆₈₂: 25⋅X₆⋅X₆+106⋅X₆+4⋅X₁₁+124 {O(n^2)}
t₆₈₃: 5⋅X₆+10 {O(n)}
t₆₈₄: 30⋅X₆⋅X₆+115⋅X₆+X₁₁+115 {O(n^2)}
t₆₈₅: 5⋅X₆+10 {O(n)}
t₆₈₆: 5⋅X₆+10 {O(n)}
t₆₉₀: 35⋅X₆⋅X₆+130⋅X₆+X₁₁+123 {O(n^2)}
t₆₉₁: 5⋅X₆+10 {O(n)}
t₆₉₂: 40⋅X₆⋅X₆+91⋅X₆+X₁₁+28 {O(n^2)}
t₆₉₃: 55⋅X₆⋅X₆+171⋅X₆+X₁₁+128 {O(n^2)}
t₆₉₄: 5⋅X₆+10 {O(n)}
t₆₉₅: 5⋅X₆+10 {O(n)}
t₆₉₆: 5⋅X₆+10 {O(n)}
t₇₀₃: 5⋅X₆+10 {O(n)}
t₇₀₄: 5⋅X₆+10 {O(n)}
t₇₀₅: 5⋅X₆⋅X₆+30⋅X₆+X₁₁+44 {O(n^2)}
t₇₀₆: X₆ {O(n)}
t₇₀₇: 5⋅X₆⋅X₆+20⋅X₆+X₁₁+22 {O(n^2)}
t₇₀₈: X₆+3 {O(n)}
t₇₀₉: 20⋅X₆⋅X₈+45⋅X₆⋅X₆+115⋅X₆+40⋅X₈+X₁₁+53 {O(n^2)}
t₇₁₀: X₆+5 {O(n)}
t₇₁₁: 5⋅X₆+10 {O(n)}
t₇₁₂: 5⋅X₆+10 {O(n)}
t₇₁₃: 5⋅X₆+10 {O(n)}
t₇₁₆: 5⋅X₆+10 {O(n)}
t₇₁₈: 5⋅X₆⋅X₆+28⋅X₆+X₁₁+33 {O(n^2)}
t₇₁₉: 20⋅X₆⋅X₈+50⋅X₆⋅X₆+120⋅X₆+40⋅X₈+X₁₁+42 {O(n^2)}
t₇₂₀: 110⋅X₆⋅X₆+40⋅X₆⋅X₈+4⋅X₁₁+407⋅X₆+80⋅X₈+380 {O(n^2)}
t₇₂₁: 5⋅X₆+10 {O(n)}
t₇₂₂: 5⋅X₆+10 {O(n)}
t₇₂₆: 20⋅X₆⋅X₆+45⋅X₆+X₁₁+13 {O(n^2)}
t₇₂₇: 20⋅X₆⋅X₈+40⋅X₆⋅X₆+115⋅X₆+40⋅X₈+X₁₁+76 {O(n^2)}
t₇₂₈: 20⋅X₆⋅X₈+40⋅X₆⋅X₆+110⋅X₆+40⋅X₈+X₁₁+64 {O(n^2)}
t₇₂₉: 5⋅X₆+10 {O(n)}
t₇₃₀: 5⋅X₆+10 {O(n)}
t₇₃₂: 5⋅X₆+10 {O(n)}
t₇₃₅: 20⋅X₆⋅X₆+45⋅X₆+X₁₁+15 {O(n^2)}
t₇₃₆: 110⋅X₆⋅X₆+40⋅X₆⋅X₈+2⋅X₁₁+266⋅X₆+80⋅X₈+97 {O(n^2)}
t₇₃₇: 5⋅X₆⋅X₆+15⋅X₆+X₁₁+11 {O(n^2)}
t₇₃₈: 5⋅X₆+10 {O(n)}
t₇₃₉: 5⋅X₆+10 {O(n)}
t₇₄₅: 5⋅X₆⋅X₆+15⋅X₆+X₁₁+11 {O(n^2)}
t₇₄₆: 20⋅X₆⋅X₈+40⋅X₆⋅X₆+102⋅X₆+2⋅X₁₁+40⋅X₈+45 {O(n^2)}
t₇₄₇: 5⋅X₆+10 {O(n)}
t₇₄₈: 5⋅X₆+10 {O(n)}
t₇₅₂: 40⋅X₆⋅X₈+90⋅X₆⋅X₆+245⋅X₆+80⋅X₈+X₁₁+138 {O(n^2)}
t₇₈₁: 22⋅X₆+34 {O(n)}
t₇₈₂: X₆+5 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₆+4 {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₆+3 {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₆+4 {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₆+3 {O(n)}
t₄, X₁₀: 0 {O(1)}
t₄, X₁₁: X₁₁ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₆+4 {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₆+3 {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₇, X₁₁: X₁₁ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₆+4 {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₆+3 {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₉, X₁₁: X₁₁ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₆+4 {O(n)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₆+3 {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₂, X₁₁: X₁₁ {O(n)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₁ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁₃, X₇: X₆+4 {O(n)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₆+3 {O(n)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₁₃, X₁₁: X₁₁ {O(n)}
t₁₄, X₀: X₀ {O(n)}
t₁₄, X₁: X₁ {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: X₆+4 {O(n)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₆+3 {O(n)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₄, X₁₁: X₁₁ {O(n)}
t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₇: X₆+4 {O(n)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₆+3 {O(n)}
t₁₈, X₁₀: X₁₀ {O(n)}
t₁₈, X₁₁: X₁₁ {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: X₁ {O(n)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₆: X₆ {O(n)}
t₁₆, X₇: X₆+4 {O(n)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₆+3 {O(n)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₁₆, X₁₁: X₁₁ {O(n)}
t₅₃, X₆: 2⋅X₆ {O(n)}
t₅₃, X₇: X₆+X₇+4 {O(n)}
t₅₃, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+140⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅312+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅345⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅8⋅X₁₁+6⋅X₆+X₈+6 {O(EXP)}
t₅₃, X₉: X₆+X₉+3 {O(n)}
t₅₃, X₁₀: 4⋅X₈+7⋅X₆+X₁₀+2 {O(n)}
t₅₃, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+2⋅X₁₁+12 {O(EXP)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: 1 {O(1)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₆+4 {O(n)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₆+3 {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₅, X₁₁: X₁₁ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: 0 {O(1)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₆+3 {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₆, X₁₁: X₁₁ {O(n)}
t₂₁, X₆: X₆ {O(n)}
t₂₁, X₇: X₆+4 {O(n)}
t₂₁, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+140⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅312+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅345⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅8⋅X₁₁+6⋅X₆+X₈+6 {O(EXP)}
t₂₁, X₉: X₆+3 {O(n)}
t₂₁, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₂₁, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₇: X₆+4 {O(n)}
t₂₂, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+140⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅312+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅345⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅8⋅X₁₁+6⋅X₆+6 {O(EXP)}
t₂₂, X₉: X₆+3 {O(n)}
t₂₂, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₂₂, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₅₂, X₆: X₆ {O(n)}
t₅₂, X₇: X₆+4 {O(n)}
t₅₂, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+140⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅312+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅345⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅8⋅X₁₁+6⋅X₆+6 {O(EXP)}
t₅₂, X₉: X₆+3 {O(n)}
t₅₂, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₅₂, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₂₀, X₀: X₀ {O(n)}
t₂₀, X₁: X₁ {O(n)}
t₂₀, X₂: X₂ {O(n)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₆: X₆ {O(n)}
t₂₀, X₇: X₆+4 {O(n)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₆+3 {O(n)}
t₂₀, X₁₀: X₁₀ {O(n)}
t₂₀, X₁₁: X₁₁ {O(n)}
t₂₆, X₆: X₆ {O(n)}
t₂₆, X₇: X₆+4 {O(n)}
t₂₆, X₈: 0 {O(1)}
t₂₆, X₉: X₆+3 {O(n)}
t₂₆, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₂₆, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₇: X₆+4 {O(n)}
t₂₃, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+140⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅312+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅345⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅8⋅X₁₁+6⋅X₆+X₈+6 {O(EXP)}
t₂₃, X₉: X₆+3 {O(n)}
t₂₃, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₂₃, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₂₅, X₆: X₆ {O(n)}
t₂₅, X₇: X₆+4 {O(n)}
t₂₅, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+140⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅312+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅345⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅8⋅X₁₁+6⋅X₆+X₈+6 {O(EXP)}
t₂₅, X₉: X₆+3 {O(n)}
t₂₅, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₂₅, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₂₈, X₆: X₆ {O(n)}
t₂₈, X₇: X₆+4 {O(n)}
t₂₈, X₈: 0 {O(1)}
t₂₈, X₉: X₆+3 {O(n)}
t₂₈, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₂₈, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₇₅₄, X₆: X₆ {O(n)}
t₇₅₄, X₇: X₆+4 {O(n)}
t₇₅₄, X₈: 0 {O(1)}
t₇₅₄, X₉: X₆ {O(n)}
t₇₅₄, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₅₄, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₆+4 {O(n)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₆+3 {O(n)}
t₁₁, X₁₀: X₁₀ {O(n)}
t₁₁, X₁₁: X₁₁ {O(n)}
t₆₄₅, X₆: X₆ {O(n)}
t₆₄₅, X₇: X₆+4 {O(n)}
t₆₄₅, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₄₅, X₉: X₆ {O(n)}
t₆₄₅, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₄₅, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+3 {O(EXP)}
t₆₄₆, X₆: X₆ {O(n)}
t₆₄₆, X₇: X₆+4 {O(n)}
t₆₄₆, X₈: 0 {O(1)}
t₆₄₆, X₉: X₆ {O(n)}
t₆₄₆, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₄₆, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₆₄₈, X₆: X₆ {O(n)}
t₆₄₈, X₇: X₆+4 {O(n)}
t₆₄₈, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₄₈, X₉: X₆ {O(n)}
t₆₄₈, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₄₈, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+3 {O(EXP)}
t₆₄₉, X₆: X₆ {O(n)}
t₆₄₉, X₇: X₆+4 {O(n)}
t₆₄₉, X₈: 0 {O(1)}
t₆₄₉, X₉: X₆ {O(n)}
t₆₄₉, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₄₉, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₆₅₁, X₆: X₆ {O(n)}
t₆₅₁, X₇: X₆+4 {O(n)}
t₆₅₁, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₅₁, X₉: X₆ {O(n)}
t₆₅₁, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₅₁, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+3 {O(EXP)}
t₆₅₂, X₆: X₆ {O(n)}
t₆₅₂, X₇: X₆+4 {O(n)}
t₆₅₂, X₈: 0 {O(1)}
t₆₅₂, X₉: X₆ {O(n)}
t₆₅₂, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₅₂, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₆₅₅, X₆: X₆ {O(n)}
t₆₅₅, X₇: X₆+4 {O(n)}
t₆₅₅, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₅₅, X₉: X₆ {O(n)}
t₆₅₅, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₅₅, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+3 {O(EXP)}
t₆₅₆, X₆: X₆ {O(n)}
t₆₅₆, X₇: X₆+4 {O(n)}
t₆₅₆, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₅₆, X₉: X₆ {O(n)}
t₆₅₆, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₅₆, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+3 {O(EXP)}
t₆₅₇, X₆: X₆ {O(n)}
t₆₅₇, X₇: X₆+4 {O(n)}
t₆₅₇, X₈: 0 {O(1)}
t₆₅₇, X₉: X₆ {O(n)}
t₆₅₇, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₅₇, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₆₅₈, X₆: X₆ {O(n)}
t₆₅₈, X₇: X₆+4 {O(n)}
t₆₅₈, X₈: 0 {O(1)}
t₆₅₈, X₉: X₆ {O(n)}
t₆₅₈, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₅₈, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₆₆₁, X₆: X₆ {O(n)}
t₆₆₁, X₇: X₆+4 {O(n)}
t₆₆₁, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₆₁, X₉: X₆ {O(n)}
t₆₆₁, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₆₁, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₆₂, X₆: X₆ {O(n)}
t₆₆₂, X₇: X₆+4 {O(n)}
t₆₆₂, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₆₂, X₉: X₆ {O(n)}
t₆₆₂, X₁₀: X₆ {O(n)}
t₆₆₂, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+2 {O(EXP)}
t₆₆₃, X₆: X₆ {O(n)}
t₆₆₃, X₇: X₆+4 {O(n)}
t₆₆₃, X₈: 0 {O(1)}
t₆₆₃, X₉: X₆ {O(n)}
t₆₆₃, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₆₃, X₁₁: 1 {O(1)}
t₆₆₄, X₆: X₆ {O(n)}
t₆₆₄, X₇: X₆+4 {O(n)}
t₆₆₄, X₈: 0 {O(1)}
t₆₆₄, X₉: X₆ {O(n)}
t₆₆₄, X₁₀: X₆ {O(n)}
t₆₆₄, X₁₁: 1 {O(1)}
t₆₆₆, X₆: X₆ {O(n)}
t₆₆₆, X₇: X₆+4 {O(n)}
t₆₆₆, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₆₆, X₉: X₆ {O(n)}
t₆₆₆, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₆₆, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₆₇, X₆: X₆ {O(n)}
t₆₆₇, X₇: X₆+4 {O(n)}
t₆₆₇, X₈: 0 {O(1)}
t₆₆₇, X₉: X₆ {O(n)}
t₆₆₇, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₆₇, X₁₁: 2 {O(1)}
t₆₆₈, X₆: X₆ {O(n)}
t₆₆₈, X₇: X₆+4 {O(n)}
t₆₆₈, X₈: 0 {O(1)}
t₆₆₈, X₉: X₆ {O(n)}
t₆₆₈, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₆₈, X₁₁: 2 {O(1)}
t₆₇₂, X₆: X₆ {O(n)}
t₆₇₂, X₇: X₆+4 {O(n)}
t₆₇₂, X₈: 0 {O(1)}
t₆₇₂, X₉: X₆ {O(n)}
t₆₇₂, X₁₀: X₆ {O(n)}
t₆₇₂, X₁₁: 1 {O(1)}
t₆₇₃, X₆: X₆ {O(n)}
t₆₇₃, X₇: X₆+4 {O(n)}
t₆₇₃, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₇₃, X₉: X₆ {O(n)}
t₆₇₃, X₁₀: X₆ {O(n)}
t₆₇₃, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+2 {O(EXP)}
t₆₇₄, X₆: X₆ {O(n)}
t₆₇₄, X₇: X₆+4 {O(n)}
t₆₇₄, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₇₄, X₉: X₆ {O(n)}
t₆₇₄, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₇₄, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₇₅, X₆: X₆ {O(n)}
t₆₇₅, X₇: X₆+4 {O(n)}
t₆₇₅, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₇₅, X₉: X₆ {O(n)}
t₆₇₅, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₇₅, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₇₆, X₆: X₆ {O(n)}
t₆₇₆, X₇: X₆+4 {O(n)}
t₆₇₆, X₈: 0 {O(1)}
t₆₇₆, X₉: X₆ {O(n)}
t₆₇₆, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₇₆, X₁₁: 1 {O(1)}
t₆₇₇, X₆: X₆ {O(n)}
t₆₇₇, X₇: X₆+4 {O(n)}
t₆₇₇, X₈: 0 {O(1)}
t₆₇₇, X₉: X₆ {O(n)}
t₆₇₇, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₇₇, X₁₁: 2 {O(1)}
t₆₈₁, X₆: X₆ {O(n)}
t₆₈₁, X₇: X₆+4 {O(n)}
t₆₈₁, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₈₁, X₉: X₆ {O(n)}
t₆₈₁, X₁₀: X₆ {O(n)}
t₆₈₁, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+2 {O(EXP)}
t₆₈₂, X₆: X₆ {O(n)}
t₆₈₂, X₇: X₆+4 {O(n)}
t₆₈₂, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₈₂, X₉: X₆ {O(n)}
t₆₈₂, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₈₂, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₈₃, X₆: X₆ {O(n)}
t₆₈₃, X₇: X₆+4 {O(n)}
t₆₈₃, X₈: 0 {O(1)}
t₆₈₃, X₉: X₆ {O(n)}
t₆₈₃, X₁₀: X₆ {O(n)}
t₆₈₃, X₁₁: 1 {O(1)}
t₆₈₄, X₆: X₆ {O(n)}
t₆₈₄, X₇: X₆+4 {O(n)}
t₆₈₄, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₈₄, X₉: X₆ {O(n)}
t₆₈₄, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₈₄, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₈₅, X₆: X₆ {O(n)}
t₆₈₅, X₇: X₆+4 {O(n)}
t₆₈₅, X₈: 0 {O(1)}
t₆₈₅, X₉: X₆ {O(n)}
t₆₈₅, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₈₅, X₁₁: 1 {O(1)}
t₆₈₆, X₆: X₆ {O(n)}
t₆₈₆, X₇: X₆+4 {O(n)}
t₆₈₆, X₈: 0 {O(1)}
t₆₈₆, X₉: X₆ {O(n)}
t₆₈₆, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₈₆, X₁₁: 2 {O(1)}
t₆₉₀, X₆: X₆ {O(n)}
t₆₉₀, X₇: X₆+4 {O(n)}
t₆₉₀, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₉₀, X₉: X₆ {O(n)}
t₆₉₀, X₁₀: X₆ {O(n)}
t₆₉₀, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+2 {O(EXP)}
t₆₉₁, X₆: X₆ {O(n)}
t₆₉₁, X₇: X₆+4 {O(n)}
t₆₉₁, X₈: 0 {O(1)}
t₆₉₁, X₉: X₆ {O(n)}
t₆₉₁, X₁₀: X₆ {O(n)}
t₆₉₁, X₁₁: 1 {O(1)}
t₆₉₂, X₆: X₆ {O(n)}
t₆₉₂, X₇: X₆+4 {O(n)}
t₆₉₂, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₉₂, X₉: X₆ {O(n)}
t₆₉₂, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₉₂, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₉₃, X₆: X₆ {O(n)}
t₆₉₃, X₇: X₆+4 {O(n)}
t₆₉₃, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₉₃, X₉: X₆ {O(n)}
t₆₉₃, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₉₃, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₆₉₄, X₆: X₆ {O(n)}
t₆₉₄, X₇: X₆+4 {O(n)}
t₆₉₄, X₈: 0 {O(1)}
t₆₉₄, X₉: X₆ {O(n)}
t₆₉₄, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₉₄, X₁₁: 1 {O(1)}
t₆₉₅, X₆: X₆ {O(n)}
t₆₉₅, X₇: X₆+4 {O(n)}
t₆₉₅, X₈: 0 {O(1)}
t₆₉₅, X₉: X₆ {O(n)}
t₆₉₅, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₉₅, X₁₁: 2 {O(1)}
t₆₉₆, X₆: X₆ {O(n)}
t₆₉₆, X₇: X₆+4 {O(n)}
t₆₉₆, X₈: X₆ {O(n)}
t₆₉₆, X₉: X₆ {O(n)}
t₆₉₆, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₆₉₆, X₁₁: 2 {O(1)}
t₇₀₃, X₆: X₆ {O(n)}
t₇₀₃, X₇: X₆+4 {O(n)}
t₇₀₃, X₈: 0 {O(1)}
t₇₀₃, X₉: X₆ {O(n)}
t₇₀₃, X₁₀: X₆ {O(n)}
t₇₀₃, X₁₁: 1 {O(1)}
t₇₀₄, X₆: X₆ {O(n)}
t₇₀₄, X₇: X₆+4 {O(n)}
t₇₀₄, X₈: X₆ {O(n)}
t₇₀₄, X₉: X₆ {O(n)}
t₇₀₄, X₁₀: X₆ {O(n)}
t₇₀₄, X₁₁: 1 {O(1)}
t₇₀₅, X₆: X₆ {O(n)}
t₇₀₅, X₇: X₆+4 {O(n)}
t₇₀₅, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₀₅, X₉: X₆ {O(n)}
t₇₀₅, X₁₀: X₆ {O(n)}
t₇₀₅, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+2 {O(EXP)}
t₇₀₆, X₆: X₆ {O(n)}
t₇₀₆, X₇: X₆+4 {O(n)}
t₇₀₆, X₈: X₆ {O(n)}
t₇₀₆, X₉: X₆ {O(n)}
t₇₀₆, X₁₀: X₆ {O(n)}
t₇₀₆, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+2 {O(EXP)}
t₇₀₇, X₆: X₆ {O(n)}
t₇₀₇, X₇: X₆+4 {O(n)}
t₇₀₇, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₀₇, X₉: X₆ {O(n)}
t₇₀₇, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₀₇, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₀₈, X₆: X₆ {O(n)}
t₇₀₈, X₇: X₆+4 {O(n)}
t₇₀₈, X₈: X₆ {O(n)}
t₇₀₈, X₉: X₆ {O(n)}
t₇₀₈, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₀₈, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₀₉, X₆: X₆ {O(n)}
t₇₀₉, X₇: X₆+4 {O(n)}
t₇₀₉, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₀₉, X₉: X₆ {O(n)}
t₇₀₉, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₀₉, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₁₀, X₆: X₆ {O(n)}
t₇₁₀, X₇: X₆+4 {O(n)}
t₇₁₀, X₈: X₆ {O(n)}
t₇₁₀, X₉: X₆ {O(n)}
t₇₁₀, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₁₀, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₁₁, X₆: X₆ {O(n)}
t₇₁₁, X₇: X₆+4 {O(n)}
t₇₁₁, X₈: 0 {O(1)}
t₇₁₁, X₉: X₆ {O(n)}
t₇₁₁, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₁₁, X₁₁: 1 {O(1)}
t₇₁₂, X₆: X₆ {O(n)}
t₇₁₂, X₇: X₆+4 {O(n)}
t₇₁₂, X₈: X₆ {O(n)}
t₇₁₂, X₉: X₆ {O(n)}
t₇₁₂, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₁₂, X₁₁: 1 {O(1)}
t₇₁₃, X₆: X₆ {O(n)}
t₇₁₃, X₇: X₆+4 {O(n)}
t₇₁₃, X₈: 0 {O(1)}
t₇₁₃, X₉: X₆ {O(n)}
t₇₁₃, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₁₃, X₁₁: 2 {O(1)}
t₇₁₆, X₆: X₆ {O(n)}
t₇₁₆, X₇: X₆+4 {O(n)}
t₇₁₆, X₈: 0 {O(1)}
t₇₁₆, X₉: X₆ {O(n)}
t₇₁₆, X₁₀: X₆ {O(n)}
t₇₁₆, X₁₁: 1 {O(1)}
t₇₁₈, X₆: X₆ {O(n)}
t₇₁₈, X₇: X₆+4 {O(n)}
t₇₁₈, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₁₈, X₉: X₆ {O(n)}
t₇₁₈, X₁₀: X₆ {O(n)}
t₇₁₈, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+2 {O(EXP)}
t₇₁₉, X₆: X₆ {O(n)}
t₇₁₉, X₇: X₆+4 {O(n)}
t₇₁₉, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₁₉, X₉: X₆ {O(n)}
t₇₁₉, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₁₉, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₂₀, X₆: X₆ {O(n)}
t₇₂₀, X₇: X₆+4 {O(n)}
t₇₂₀, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₂₀, X₉: X₆ {O(n)}
t₇₂₀, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₂₀, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₂₁, X₆: X₆ {O(n)}
t₇₂₁, X₇: X₆+4 {O(n)}
t₇₂₁, X₈: 0 {O(1)}
t₇₂₁, X₉: X₆ {O(n)}
t₇₂₁, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₂₁, X₁₁: 1 {O(1)}
t₇₂₂, X₆: X₆ {O(n)}
t₇₂₂, X₇: X₆+4 {O(n)}
t₇₂₂, X₈: 1 {O(1)}
t₇₂₂, X₉: X₆ {O(n)}
t₇₂₂, X₁₀: X₆ {O(n)}
t₇₂₂, X₁₁: 1 {O(1)}
t₇₂₆, X₆: X₆ {O(n)}
t₇₂₆, X₇: X₆+4 {O(n)}
t₇₂₆, X₈: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+2 {O(EXP)}
t₇₂₆, X₉: X₆ {O(n)}
t₇₂₆, X₁₀: X₆ {O(n)}
t₇₂₆, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+2 {O(EXP)}
t₇₂₇, X₆: X₆ {O(n)}
t₇₂₇, X₇: X₆+4 {O(n)}
t₇₂₇, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₂₇, X₉: X₆ {O(n)}
t₇₂₇, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₂₇, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₂₈, X₆: X₆ {O(n)}
t₇₂₈, X₇: X₆+4 {O(n)}
t₇₂₈, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₂₈, X₉: X₆ {O(n)}
t₇₂₈, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₂₈, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₂₉, X₆: X₆ {O(n)}
t₇₂₉, X₇: X₆+4 {O(n)}
t₇₂₉, X₈: 2 {O(1)}
t₇₂₉, X₉: X₆ {O(n)}
t₇₂₉, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₂₉, X₁₁: 2 {O(1)}
t₇₃₀, X₆: X₆ {O(n)}
t₇₃₀, X₇: X₆+4 {O(n)}
t₇₃₀, X₈: 1 {O(1)}
t₇₃₀, X₉: X₆ {O(n)}
t₇₃₀, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₃₀, X₁₁: 1 {O(1)}
t₇₃₂, X₆: X₆ {O(n)}
t₇₃₂, X₇: X₆+4 {O(n)}
t₇₃₂, X₈: 0 {O(1)}
t₇₃₂, X₉: X₆ {O(n)}
t₇₃₂, X₁₀: X₆ {O(n)}
t₇₃₂, X₁₁: 1 {O(1)}
t₇₃₅, X₆: X₆ {O(n)}
t₇₃₅, X₇: X₆+4 {O(n)}
t₇₃₅, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₃₅, X₉: X₆ {O(n)}
t₇₃₅, X₁₀: X₆ {O(n)}
t₇₃₅, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+2 {O(EXP)}
t₇₃₆, X₆: X₆ {O(n)}
t₇₃₆, X₇: X₆+4 {O(n)}
t₇₃₆, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₃₆, X₉: X₆ {O(n)}
t₇₃₆, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₃₆, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₃₇, X₆: X₆ {O(n)}
t₇₃₇, X₇: X₆+4 {O(n)}
t₇₃₇, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₃₇, X₉: X₆ {O(n)}
t₇₃₇, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₃₇, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₃₈, X₆: X₆ {O(n)}
t₇₃₈, X₇: X₆+4 {O(n)}
t₇₃₈, X₈: 0 {O(1)}
t₇₃₈, X₉: X₆ {O(n)}
t₇₃₈, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₃₈, X₁₁: 1 {O(1)}
t₇₃₉, X₆: X₆ {O(n)}
t₇₃₉, X₇: X₆+4 {O(n)}
t₇₃₉, X₈: 0 {O(1)}
t₇₃₉, X₉: X₆ {O(n)}
t₇₃₉, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₃₉, X₁₁: 2 {O(1)}
t₇₄₅, X₆: X₆ {O(n)}
t₇₄₅, X₇: X₆+4 {O(n)}
t₇₄₅, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₄₅, X₉: X₆ {O(n)}
t₇₄₅, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₄₅, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+3 {O(EXP)}
t₇₄₆, X₆: X₆ {O(n)}
t₇₄₆, X₇: X₆+4 {O(n)}
t₇₄₆, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₄₆, X₉: X₆ {O(n)}
t₇₄₆, X₁₀: X₆ {O(n)}
t₇₄₆, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+3 {O(EXP)}
t₇₄₇, X₆: X₆ {O(n)}
t₇₄₇, X₇: X₆+4 {O(n)}
t₇₄₇, X₈: 0 {O(1)}
t₇₄₇, X₉: X₆ {O(n)}
t₇₄₇, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₄₇, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₇₄₈, X₆: X₆ {O(n)}
t₇₄₈, X₇: X₆+4 {O(n)}
t₇₄₈, X₈: 0 {O(1)}
t₇₄₈, X₉: X₆ {O(n)}
t₇₄₈, X₁₀: X₆ {O(n)}
t₇₄₈, X₁₁: 16⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+280⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅624+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅690⋅X₆+X₁₁+12 {O(EXP)}
t₇₅₂, X₆: X₆ {O(n)}
t₇₅₂, X₇: X₆+4 {O(n)}
t₇₅₂, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅35⋅X₆⋅X₆ {O(EXP)}
t₇₅₂, X₉: 4⋅X₆ {O(n)}
t₇₅₂, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₅₂, X₁₁: 208⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+230⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅4⋅X₁₁+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅70⋅X₆⋅X₆+3 {O(EXP)}
t₇₈₁, X₆: X₆ {O(n)}
t₇₈₁, X₇: X₆+4 {O(n)}
t₇₈₁, X₈: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+140⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅312+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅345⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅8⋅X₁₁+6 {O(EXP)}
t₇₈₁, X₉: 6⋅X₆ {O(n)}
t₇₈₁, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₈₁, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+140⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅312+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅345⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅8⋅X₁₁+6 {O(EXP)}
t₇₈₂, X₆: X₆ {O(n)}
t₇₈₂, X₇: X₆+4 {O(n)}
t₇₈₂, X₈: 6⋅X₆ {O(n)}
t₇₈₂, X₉: 6⋅X₆ {O(n)}
t₇₈₂, X₁₀: 4⋅X₈+7⋅X₆+2 {O(n)}
t₇₈₂, X₁₁: 104⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)+115⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆+140⋅2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅X₆⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅312+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅345⋅X₆+2^(15⋅X₆⋅X₆+75⋅X₆+X₁₁+101)⋅2^(20⋅X₆⋅X₆+40⋅X₆+X₁₁)⋅8⋅X₁₁+6 {O(EXP)}