Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₃: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₀ < 0
t₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₀+X₁ < 0
t₂: l2(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₀ ∧ 0 ≤ X₀+X₁
t₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₁: l4(X₀, X₁, X₂, X₃, X₄) → l2(X₂, X₃, X₂, X₃, X₄)
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀+X₁+X₄, -X₄-1, X₂, X₃, X₄)
Found invariant 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₃: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₀ < 0
t₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₀+X₁ < 0
t₂: l2(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₀ ∧ 0 ≤ X₀+X₁
t₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₁: l4(X₀, X₁, X₂, X₃, X₄) → l2(X₂, X₃, X₂, X₃, X₄)
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀+X₁+X₄, -X₄-1, X₂, X₃, X₄) :|: 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
new bound:
X₂+X₃+1 {O(n)}
MPRF:
l5 [X₀+X₁ ]
l2 [X₀+X₁+1 ]
new bound:
X₂+X₃+1 {O(n)}
MPRF:
l5 [X₀+X₁+1 ]
l2 [X₀+X₁+1 ]
Overall timebound:2⋅X₂+2⋅X₃+7 {O(n)}
t₀: 1 {O(1)}
t₂: X₂+X₃+1 {O(n)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₆: 1 {O(1)}
t₁: 1 {O(1)}
t₅: X₂+X₃+1 {O(n)}
Overall costbound: 2⋅X₂+2⋅X₃+7 {O(n)}
t₀: 1 {O(1)}
t₂: X₂+X₃+1 {O(n)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₆: 1 {O(1)}
t₁: 1 {O(1)}
t₅: X₂+X₃+1 {O(n)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₂, X₀: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₃+X₃⋅X₃+2⋅X₂+3⋅X₃+4⋅X₄+2 {O(n^2)}
t₂, X₁: X₃+X₄+1 {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₃, X₀: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₃+X₃⋅X₃+3⋅X₂+3⋅X₃+4⋅X₄+2 {O(n^2)}
t₃, X₁: X₃+X₄+1 {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₃, X₄: 2⋅X₄ {O(n)}
t₄, X₀: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₃+X₃⋅X₃+3⋅X₂+3⋅X₃+4⋅X₄+2 {O(n^2)}
t₄, X₁: X₃+X₄+1 {O(n)}
t₄, X₂: 2⋅X₂ {O(n)}
t₄, X₃: 2⋅X₃ {O(n)}
t₄, X₄: 2⋅X₄ {O(n)}
t₆, X₀: 2⋅X₂⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₄+4⋅X₃⋅X₄+6⋅X₂+6⋅X₃+8⋅X₄+4 {O(n^2)}
t₆, X₁: 2⋅X₃+2⋅X₄+2 {O(n)}
t₆, X₂: 4⋅X₂ {O(n)}
t₆, X₃: 4⋅X₃ {O(n)}
t₆, X₄: 4⋅X₄ {O(n)}
t₁, X₀: X₂ {O(n)}
t₁, X₁: X₃ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₅, X₀: 2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₃+X₃⋅X₃+2⋅X₂+3⋅X₃+4⋅X₄+2 {O(n^2)}
t₅, X₁: X₄+1 {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}