Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ < X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(0, X₁, X₂, X₃, X₄, X₃)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ X₅
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, 0, X₂, X₃, X₄, X₅) :|: X₅ < X₂
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅)
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀+1, X₁, X₂, X₃, X₄, 0)
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₁
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₅
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁+1, X₂, X₃, X₄, X₅)
Preprocessing
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₀ for location l5
Found invariant X₄ ≤ X₀ ∧ 0 ≤ X₀ for location l8
Found invariant 0 ≤ X₀ for location l1
Found invariant X₄ ≤ X₀ ∧ 0 ≤ X₀ for location l4
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ < X₄ ∧ 0 ≤ X₀
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₀ ∧ 0 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(0, X₁, X₂, X₃, X₄, X₃)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₀
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, 0, X₂, X₃, X₄, X₅) :|: X₅ < X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₀
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₀ ∧ 0 ≤ X₀
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀+1, X₁, X₂, X₃, X₄, 0) :|: 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₀
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₁ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₅ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ < X₄ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l3 [X₄-X₀-1 ]
l1 [X₄-X₀ ]
l5 [X₄-X₀-1 ]
l7 [X₄-X₀-1 ]
l6 [X₄-X₀-1 ]
MPRF for transition t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, 0, X₂, X₃, X₄, X₅) :|: X₅ < X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l3 [X₄-X₀ ]
l1 [X₄-X₀ ]
l5 [X₄-X₀-1 ]
l7 [X₄-X₀-1 ]
l6 [X₄-X₀-1 ]
MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l3 [X₄-X₀ ]
l1 [X₄-X₀ ]
l5 [X₄-X₀-1 ]
l7 [X₄-X₀ ]
l6 [X₄-X₀ ]
MPRF for transition t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀+1, X₁, X₂, X₃, X₄, 0) :|: 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l3 [X₄-X₀ ]
l1 [X₄-X₀ ]
l5 [X₄-X₀ ]
l7 [X₄-X₀ ]
l6 [X₄-X₀ ]
MPRF for transition t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₁ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l3 [X₄-X₀ ]
l1 [X₄-X₀ ]
l5 [X₄-X₀-1 ]
l7 [X₄-X₀ ]
l6 [X₄-X₀ ]
MPRF for transition t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₅ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂⋅X₄+X₂ {O(n^2)}
MPRF:
l3 [X₂ ]
l5 [X₂ ]
l1 [X₂ ]
l7 [X₂-X₁-2 ]
l6 [X₂-X₁-1 ]
MPRF for transition t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂⋅X₄+X₂ {O(n^2)}
MPRF:
l3 [X₂ ]
l5 [X₂ ]
l1 [X₂ ]
l7 [X₅-X₁ ]
l6 [X₅-X₁ ]
Analysing control-flow refined program
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___2
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___3
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₀ for location l5
Found invariant X₄ ≤ X₀ ∧ 0 ≤ X₀ for location l8
Found invariant 0 ≤ X₀ for location l1
Found invariant X₄ ≤ X₀ ∧ 0 ≤ X₀ for location l4
Found invariant 1+X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___1
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₀ for location l3
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₇₄: l6(X₀, X₁, X₂, X₃, X₄, X₅) → n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₀ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₁ < X₅ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₇₆: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___2(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₁ < X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₁ ≤ X₅ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₇₃: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l7___1(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1+X₅ ≤ X₂ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₁ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₁ < X₅ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃⋅X₄+2⋅X₄ {O(n^2)}
MPRF:
l3 [0 ]
l1 [0 ]
l6 [0 ]
n_l7___3 [0 ]
l5 [0 ]
n_l7___1 [X₅-X₁ ]
n_l6___2 [X₅+1-X₁ ]
MPRF for transition t₈₀: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₁ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF:
l3 [X₄-X₀ ]
l1 [X₄-X₀ ]
l6 [X₄-X₀ ]
l5 [X₄-X₀-1 ]
n_l7___1 [X₄-X₀ ]
n_l7___3 [X₄-X₀ ]
n_l6___2 [X₄-X₀ ]
MPRF for transition t₇₅: n_l7___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___2(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₁ < X₅ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₁ ≤ X₅ ∧ 1+X₀ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂⋅X₄+X₃⋅X₄+X₂+X₄ {O(n^2)}
MPRF:
l3 [X₂ ]
l1 [X₂ ]
l6 [X₂ ]
n_l7___3 [X₂ ]
l5 [X₂ ]
n_l7___1 [X₂+X₅-X₁ ]
n_l6___2 [X₂+X₅-X₁ ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:2⋅X₂⋅X₄+2⋅X₂+5⋅X₄+4 {O(n^2)}
t₀: 1 {O(1)}
t₂: X₄ {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: X₄ {O(n)}
t₅: X₄ {O(n)}
t₁₀: 1 {O(1)}
t₉: X₄ {O(n)}
t₆: X₂⋅X₄+X₂ {O(n^2)}
t₇: X₄ {O(n)}
t₈: X₂⋅X₄+X₂ {O(n^2)}
Costbounds
Overall costbound: 2⋅X₂⋅X₄+2⋅X₂+5⋅X₄+4 {O(n^2)}
t₀: 1 {O(1)}
t₂: X₄ {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: X₄ {O(n)}
t₅: X₄ {O(n)}
t₁₀: 1 {O(1)}
t₉: X₄ {O(n)}
t₆: X₂⋅X₄+X₂ {O(n^2)}
t₇: X₄ {O(n)}
t₈: X₂⋅X₄+X₂ {O(n^2)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₂, X₀: X₄ {O(n)}
t₂, X₁: X₂⋅X₄+X₁+X₂ {O(n^2)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₃ {O(n)}
t₃, X₀: X₄ {O(n)}
t₃, X₁: X₂⋅X₄+2⋅X₁+X₂ {O(n^2)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₃, X₄: 2⋅X₄ {O(n)}
t₃, X₅: X₃ {O(n)}
t₁, X₀: 0 {O(1)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₃ {O(n)}
t₄, X₀: X₄ {O(n)}
t₄, X₁: 0 {O(1)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₃ {O(n)}
t₅, X₀: X₄ {O(n)}
t₅, X₁: X₂⋅X₄+X₁+X₂ {O(n^2)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₃ {O(n)}
t₁₀, X₀: X₄ {O(n)}
t₁₀, X₁: X₂⋅X₄+2⋅X₁+X₂ {O(n^2)}
t₁₀, X₂: 2⋅X₂ {O(n)}
t₁₀, X₃: 2⋅X₃ {O(n)}
t₁₀, X₄: 2⋅X₄ {O(n)}
t₁₀, X₅: X₃ {O(n)}
t₉, X₀: X₄ {O(n)}
t₉, X₁: X₂⋅X₄+X₁+X₂ {O(n^2)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: 0 {O(1)}
t₆, X₀: X₄ {O(n)}
t₆, X₁: X₂⋅X₄+X₂ {O(n^2)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₃ {O(n)}
t₇, X₀: X₄ {O(n)}
t₇, X₁: X₂⋅X₄+X₂ {O(n^2)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: 2⋅X₃ {O(n)}
t₈, X₀: X₄ {O(n)}
t₈, X₁: X₂⋅X₄+X₂ {O(n^2)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₃ {O(n)}