Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 0 < X₃
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₃ ≤ 0
t₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, 1, X₅, X₆, X₇)
t₃₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 1
t₂₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄
t₃₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ X₄ ≤ X₇
t₃₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 1
t₃₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₆
t₃₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ X₆ ≤ X₇
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 1
t₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₁
t₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₁ ∧ X₁ ≤ X₇
t₁₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 1
t₁₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₂
t₁₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₂ ∧ X₂ ≤ X₇
t₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄ ≤ X₇
t₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: X₇ < 2⋅X₄
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆, X₇)
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₇
t₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₇ < X₂
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 0 < X₀
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₀ ≤ 0
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄
t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆
t₂₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₄
t₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0
t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 1
t₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ 1 ≤ X₄
Preprocessing
Cut unsatisfiable transition t₈: l15→l11
Cut unsatisfiable transition t₁₈: l16→l11
Cut unsatisfiable transition t₄: l9→l11
Found invariant 1 ≤ X₄ for location l11
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l2
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l6
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l15
Found invariant X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l12
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₄ for location l17
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l7
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l5
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l13
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l8
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l1
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l16
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l4
Found invariant 1 ≤ X₄ for location l9
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l3
Found invariant 1 ≤ X₄ for location l14
Cut unsatisfiable transition t₂₈: l12→l11
Cut unsatisfiable transition t₇: l15→l11
Cut unsatisfiable transition t₁₇: l16→l11
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₃ ≤ 0 ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, 1, X₅, X₆, X₇)
t₃₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄
t₂₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 1 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₆ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₂ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₄
t₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: X₇ < 2⋅X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₄
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₇ < X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 0 < X₀ ∧ 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ 1 ≤ X₄
t₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄
Analysing control-flow refined program
Cut unsatisfiable transition t₃₇₂: n_l12___12→l11
Cut unsatisfiable transition t₃₇₃: n_l12___14→l11
Cut unsatisfiable transition t₃₇₄: n_l12___17→l11
Cut unsatisfiable transition t₃₇₅: n_l12___28→l11
Cut unsatisfiable transition t₃₇₆: n_l12___3→l11
Cut unsatisfiable transition t₃₇₇: n_l12___30→l11
Cut unsatisfiable transition t₃₇₈: n_l12___32→l11
Cut unsatisfiable transition t₃₇₉: n_l12___50→l11
Cut unsatisfiable transition t₃₉₄: n_l13___11→l11
Cut unsatisfiable transition t₄₀₂: n_l13___11→l11
Cut unsatisfiable transition t₃₉₅: n_l13___13→l11
Cut unsatisfiable transition t₄₀₃: n_l13___13→l11
Cut unsatisfiable transition t₃₉₆: n_l13___16→l11
Cut unsatisfiable transition t₄₀₄: n_l13___16→l11
Cut unsatisfiable transition t₃₉₇: n_l13___2→l11
Cut unsatisfiable transition t₄₀₅: n_l13___2→l11
Cut unsatisfiable transition t₃₉₈: n_l13___27→l11
Cut unsatisfiable transition t₄₀₆: n_l13___27→l11
Cut unsatisfiable transition t₃₉₉: n_l13___29→l11
Cut unsatisfiable transition t₄₀₇: n_l13___29→l11
Cut unsatisfiable transition t₄₀₀: n_l13___31→l11
Cut unsatisfiable transition t₄₀₈: n_l13___31→l11
Cut unsatisfiable transition t₄₀₁: n_l13___49→l11
Cut unsatisfiable transition t₄₀₉: n_l13___49→l11
Cut unsatisfiable transition t₃₈₃: n_l8___19→l11
Cut unsatisfiable transition t₃₈₅: n_l8___33→l11
Cut unsatisfiable transition t₃₈₆: n_l8___34→l11
Cut unsatisfiable transition t₃₈₇: n_l8___38→l11
Cut unsatisfiable transition t₃₈₉: n_l8___5→l11
Cut unsatisfiable transition t₃₉₀: n_l8___51→l11
Cut unsatisfiable transition t₃₉₁: n_l8___52→l11
Cut unsatisfiable transition t₃₉₂: n_l8___56→l11
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l4___58
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 5 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₆ ≤ 2+X₃ ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___52
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l2___62
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l6___37
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 2+X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₃+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___5
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l16___24
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l8___33
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l4___40
Found invariant X₇ ≤ 2 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 4 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 4 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ 1+X₃ ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l13___11
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₀+X₃ ≤ 0 ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l8___18
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l7___54
Found invariant 1 ≤ X₄ for location l14
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l16___39
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___19
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l1___42
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l13___29
Found invariant 2 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l4___59
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 2+X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₃+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l12___3
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l2___44
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ X₀+X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₀+X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l8___51
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l16___57
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l7___21
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l12___17
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l17___25
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ for location n_l17___65
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l7___7
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l5___53
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l4___41
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l5___35
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l5___20
Found invariant 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 3+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 6 ≤ X₁+X₅ ∧ 3+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l4___45
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l12___28
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l16___10
Found invariant X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 2 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 2 ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 4 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 3 ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ X₂ ≤ 2+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ 2+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 4 ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 3 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ 2+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l8___1
Found invariant X₇ ≤ 2 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 4 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 4 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ 1+X₃ ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l8___56
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 2+X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₃+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l13___2
Found invariant X₇ ≤ 1 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 2 ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 4 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 3 ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ X₂ ≤ 2+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l4___63
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l12___32
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l15___46
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l5___6
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l15___64
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l12___30
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ X₀+X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₀+X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l13___13
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l3___61
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l9___26
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l6___8
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l13___27
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l7___36
Found invariant 1 ≤ X₄ for location l11
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ X₀+X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₀+X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l12___14
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l13___16
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l13___31
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l1___60
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l3___43
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l8___38
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l6___55
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l6___22
Found invariant 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l8___23
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 1+X₆ ∧ X₆+X₇ ≤ 3 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₃+X₇ ≤ 2 ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₃+X₆ ≤ 1 ∧ 2+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 4 ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 3 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ 2+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l8___9
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 5 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₆ ≤ 2+X₃ ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l12___50
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___34
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l17___47
Found invariant 1+X₇ ≤ X₂ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 3+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 6 ≤ X₁+X₅ ∧ 3+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l8___15
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₃+X₆ ≤ 1 ∧ 2+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 4 ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 3 ∧ X₀+X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ 2+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₀+X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₀+X₃ ≤ 0 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l8___4
Found invariant 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l9___48
Found invariant X₄ ≤ 1 ∧ 1 ≤ X₄ for location l9
Found invariant X₇ ≤ 2 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 4 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 4 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ 1+X₃ ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ for location n_l12___12
Found invariant 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 5 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₆ ≤ 2+X₃ ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l13___49
MPRF for transition t₂₆₆: n_l12___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₇+26 {O(n)}
MPRF:
n_l13___16 [2⋅X₄+2⋅X₇+1-X₅-2⋅X₆ ]
n_l13___29 [X₆+2⋅X₇+1-2⋅X₂ ]
n_l13___31 [2⋅X₄+2⋅X₇+1-2⋅X₂ ]
n_l15___46 [X₅+2⋅X₇-2⋅X₄-1 ]
n_l2___44 [X₅+2⋅X₇-2⋅X₆-1 ]
n_l3___43 [X₅+2⋅X₇-2⋅X₆-2 ]
n_l1___42 [X₅+2⋅X₇-2⋅X₄-2 ]
n_l4___40 [2⋅X₇+2-2⋅X₄-X₆ ]
n_l16___24 [2⋅X₇-X₄-2⋅X₅ ]
n_l4___41 [2⋅X₇-2⋅X₆-1 ]
n_l16___39 [2⋅X₇-2⋅X₆-1 ]
n_l6___22 [2⋅X₇-X₁-X₄ ]
n_l6___37 [2⋅X₇-2⋅X₆-1 ]
n_l7___21 [2⋅X₇-X₄-2⋅X₆ ]
n_l5___20 [2⋅X₇-X₁-X₄ ]
n_l7___36 [2⋅X₇-2⋅X₄-1 ]
n_l5___35 [2⋅X₇-X₁-1 ]
n_l8___19 [3⋅X₂+2⋅X₇-X₁-X₄-3⋅X₆ ]
n_l12___17 [X₁+X₂+2⋅X₇+2-X₅-3⋅X₆ ]
n_l8___33 [2⋅X₆+2⋅X₇+1-X₁-2⋅X₂ ]
n_l12___30 [X₆+2⋅X₇+1-2⋅X₂ ]
n_l8___34 [2⋅X₄+2⋅X₇-2⋅X₅-1 ]
n_l12___32 [2⋅X₄+2⋅X₇-2⋅X₁-1 ]
n_l9___48 [X₅+2⋅X₇+1-2⋅X₂ ]
n_l17___47 [X₅+2⋅X₇-2⋅X₆-1 ]
MPRF for transition t₂₆₉: n_l12___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
3⋅X₇+9 {O(n)}
MPRF:
n_l13___16 [X₇-X₆ ]
n_l13___29 [X₇-X₂ ]
n_l13___31 [2⋅X₆+X₇-2⋅X₂-2⋅X₄-1 ]
n_l15___46 [X₇-X₆-1 ]
n_l2___44 [X₇-X₄-1 ]
n_l3___43 [X₄+X₇-2⋅X₆-1 ]
n_l1___42 [X₄+X₇-X₁-1 ]
n_l4___40 [X₄+X₇-X₁-1 ]
n_l16___24 [X₄+X₇-X₂-X₅ ]
n_l4___41 [3⋅X₄+X₇-X₁-X₂ ]
n_l16___39 [3⋅X₆+X₇+1-2⋅X₂ ]
n_l6___22 [X₇-X₂ ]
n_l6___37 [3⋅X₅+3⋅X₆+X₇+4-4⋅X₂-3⋅X₄ ]
n_l7___21 [X₇-X₂ ]
n_l5___20 [X₇-X₂ ]
n_l7___36 [X₂+X₇-X₁-X₅-1 ]
n_l5___35 [2⋅X₂+X₇-X₁-2⋅X₅-2 ]
n_l8___19 [X₇-X₂ ]
n_l12___17 [X₇-X₂ ]
n_l8___33 [X₂+X₅+X₇-3⋅X₆-1 ]
n_l12___30 [X₂+X₇-2⋅X₆-1 ]
n_l8___34 [2⋅X₆+X₇-4⋅X₄-X₅-2 ]
n_l12___32 [2⋅X₆+X₇-2⋅X₂-X₅ ]
n_l9___48 [X₇-X₁-1 ]
n_l17___47 [X₇-X₆-1 ]
MPRF for transition t₂₇₀: n_l12___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₇+10 {O(n)}
MPRF:
n_l13___16 [2⋅X₇-X₁ ]
n_l13___29 [2⋅X₇+2-2⋅X₂ ]
n_l13___31 [2⋅X₇+1-X₁-X₂ ]
n_l15___46 [2⋅X₇-X₁ ]
n_l2___44 [2⋅X₇-2⋅X₄ ]
n_l3___43 [2⋅X₆+2⋅X₇-X₁-2⋅X₄ ]
n_l1___42 [2⋅X₇-X₁ ]
n_l4___40 [2⋅X₇-X₁ ]
n_l16___24 [2⋅X₇-X₁ ]
n_l4___41 [2⋅X₄+2⋅X₇-X₁-2⋅X₆ ]
n_l16___39 [2⋅X₇-2⋅X₆ ]
n_l6___22 [2⋅X₅+2⋅X₇-X₁-2⋅X₄ ]
n_l6___37 [2⋅X₇-X₅ ]
n_l7___21 [2⋅X₆+2⋅X₇-X₁-2⋅X₄ ]
n_l5___20 [2⋅X₇-2⋅X₄ ]
n_l7___36 [2⋅X₇-X₁ ]
n_l5___35 [2⋅X₇-2⋅X₆ ]
n_l8___19 [2⋅X₇-2⋅X₅ ]
n_l12___17 [2⋅X₇-2⋅X₄ ]
n_l8___33 [2⋅X₇+2-2⋅X₂ ]
n_l12___30 [2⋅X₇+2-2⋅X₂ ]
n_l8___34 [X₂+2⋅X₇-X₁-X₆ ]
n_l12___32 [2⋅X₇-X₅ ]
n_l9___48 [2⋅X₇-2⋅X₅ ]
n_l17___47 [2⋅X₇-2⋅X₄ ]
MPRF for transition t₂₇₄: n_l13___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₇+11 {O(n)}
MPRF:
n_l13___16 [X₅+X₇+1-X₁ ]
n_l13___29 [X₇+1-X₆ ]
n_l13___31 [X₇+1-X₆ ]
n_l15___46 [X₁+X₇+1-3⋅X₄ ]
n_l2___44 [X₁+X₇+1-3⋅X₄ ]
n_l3___43 [2⋅X₆+X₇+1-3⋅X₄ ]
n_l1___42 [X₇+1-X₆ ]
n_l4___40 [X₇+1-X₅ ]
n_l16___24 [X₇+1-X₆ ]
n_l4___41 [X₇-X₄ ]
n_l16___39 [X₇-X₆ ]
n_l6___22 [X₇+1-X₆ ]
n_l6___37 [X₇-X₆ ]
n_l7___21 [X₇+1-X₆ ]
n_l5___20 [X₆+X₇+1-X₁ ]
n_l7___36 [X₂+X₇-X₁-X₄-1 ]
n_l5___35 [X₇+1-X₅ ]
n_l8___19 [2⋅X₅+X₇+1-X₁-X₄ ]
n_l12___17 [X₇+1-X₅ ]
n_l8___33 [2⋅X₄+X₇+1-X₁-X₅ ]
n_l12___30 [2⋅X₄+X₇+1-X₅-X₆ ]
n_l8___34 [2⋅X₄+X₇+1-X₂-X₅ ]
n_l12___32 [X₇+1-X₆ ]
n_l9___48 [X₇+1-X₄ ]
n_l17___47 [X₇+1-X₄ ]
MPRF for transition t₂₇₇: n_l13___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
6⋅X₇+21 {O(n)}
MPRF:
n_l13___16 [4⋅X₅+2⋅X₇+1-2⋅X₁-2⋅X₆ ]
n_l13___29 [2⋅X₇+2-2⋅X₂ ]
n_l13___31 [2⋅X₄+2⋅X₆+2⋅X₇+2-X₁-4⋅X₂ ]
n_l15___46 [2⋅X₇-2⋅X₄-1 ]
n_l2___44 [2⋅X₇-X₂ ]
n_l3___43 [2⋅X₇-X₂ ]
n_l1___42 [2⋅X₇-X₂ ]
n_l4___40 [2⋅X₇-2⋅X₆-1 ]
n_l16___24 [2⋅X₇-2⋅X₅-1 ]
n_l4___41 [2⋅X₄+2⋅X₆+2⋅X₇+3-X₁-3⋅X₂ ]
n_l16___39 [2⋅X₄+2⋅X₆+2⋅X₇+3-X₁-3⋅X₂ ]
n_l6___22 [4⋅X₄+2⋅X₇-2⋅X₁-4⋅X₆ ]
n_l6___37 [2⋅X₆+2⋅X₇+3-3⋅X₂ ]
n_l7___21 [2⋅X₇-4⋅X₆ ]
n_l5___20 [2⋅X₁+2⋅X₇-4⋅X₄-4⋅X₅ ]
n_l7___36 [X₅+2⋅X₇+3-3⋅X₂ ]
n_l5___35 [2⋅X₆+2⋅X₇+3-3⋅X₂ ]
n_l8___19 [2⋅X₇-4⋅X₄ ]
n_l12___17 [4⋅X₅+2⋅X₇+1-4⋅X₄-2⋅X₆ ]
n_l8___33 [2⋅X₄+X₆+2⋅X₇+3-3⋅X₂-X₅ ]
n_l12___30 [X₁+2⋅X₄+2⋅X₇+2-2⋅X₂-X₅-X₆ ]
n_l8___34 [X₅+2⋅X₇+3-3⋅X₂ ]
n_l12___32 [2⋅X₄+2⋅X₆+2⋅X₇+3-5⋅X₂ ]
n_l9___48 [2⋅X₇+1-2⋅X₂ ]
n_l17___47 [2⋅X₇-2⋅X₆-1 ]
MPRF for transition t₂₇₈: n_l13___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₇+10 {O(n)}
MPRF:
n_l13___16 [X₇-2⋅X₅ ]
n_l13___29 [X₇-X₂ ]
n_l13___31 [X₂+X₇-4⋅X₄-1 ]
n_l15___46 [X₇-2⋅X₆ ]
n_l2___44 [X₇-2⋅X₄ ]
n_l3___43 [X₇-X₁ ]
n_l1___42 [X₇-2⋅X₄ ]
n_l4___40 [X₇-2⋅X₆ ]
n_l16___24 [X₇-2⋅X₄ ]
n_l4___41 [X₇-X₅ ]
n_l16___39 [2⋅X₄+X₇-X₁-X₅ ]
n_l6___22 [X₇-X₁ ]
n_l6___37 [2⋅X₄+X₇+1-X₂-X₅ ]
n_l7___21 [X₇-X₁ ]
n_l5___20 [X₇-X₁ ]
n_l7___36 [X₁+X₇+1-X₂-X₅ ]
n_l5___35 [X₇+1-X₂ ]
n_l8___19 [X₇-X₁ ]
n_l12___17 [X₇-2⋅X₅ ]
n_l8___33 [X₇-X₂ ]
n_l12___30 [X₇-X₂ ]
n_l8___34 [2⋅X₁+X₇+1-2⋅X₅-X₆ ]
n_l12___32 [X₆+X₇-2⋅X₅-1 ]
n_l9___48 [X₇-2⋅X₅ ]
n_l17___47 [X₇-2⋅X₆ ]
MPRF for transition t₂₈₀: n_l15___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
9⋅X₇+61 {O(n)}
MPRF:
n_l13___16 [2⋅X₄+3⋅X₇-4⋅X₂-3 ]
n_l13___29 [2⋅X₅+3⋅X₇-6⋅X₆-1 ]
n_l13___31 [2⋅X₅+3⋅X₇-6⋅X₆-1 ]
n_l15___46 [2⋅X₅+3⋅X₇-6⋅X₆-1 ]
n_l2___44 [2⋅X₅+3⋅X₇-6⋅X₄-9 ]
n_l3___43 [2⋅X₅+3⋅X₇-6⋅X₄-9 ]
n_l1___42 [2⋅X₅+3⋅X₇-3⋅X₁-9 ]
n_l4___40 [3⋅X₇-6⋅X₆-7 ]
n_l16___24 [3⋅X₇-3⋅X₁-7 ]
n_l4___41 [6⋅X₆+3⋅X₇-8⋅X₄-3⋅X₅-1 ]
n_l16___39 [3⋅X₇-8⋅X₄-1 ]
n_l6___22 [6⋅X₅+3⋅X₇-3⋅X₁-6⋅X₆-7 ]
n_l6___37 [3⋅X₇-4⋅X₅-1 ]
n_l7___21 [3⋅X₇-6⋅X₆-7 ]
n_l5___20 [3⋅X₇-3⋅X₁-7 ]
n_l7___36 [3⋅X₇-4⋅X₅-1 ]
n_l5___35 [3⋅X₇-8⋅X₄-1 ]
n_l8___19 [2⋅X₄+3⋅X₇-4⋅X₂-3 ]
n_l12___17 [2⋅X₄+3⋅X₇-4⋅X₂-3 ]
n_l8___33 [3⋅X₇-4⋅X₁-1 ]
n_l12___30 [3⋅X₇-4⋅X₆-1 ]
n_l8___34 [3⋅X₇-4⋅X₁-7 ]
n_l12___32 [3⋅X₇-4⋅X₂-3 ]
n_l9___48 [2⋅X₅+3⋅X₇-6⋅X₆-1 ]
n_l17___47 [2⋅X₅+3⋅X₇-6⋅X₆-1 ]
MPRF for transition t₂₈₃: n_l16___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
6⋅X₇+9 {O(n)}
MPRF:
n_l13___16 [2⋅X₇-X₂ ]
n_l13___29 [2⋅X₇-X₂ ]
n_l13___31 [X₁+2⋅X₇-2⋅X₄-X₆ ]
n_l15___46 [2⋅X₇-X₄-1 ]
n_l2___44 [2⋅X₇+1-X₂ ]
n_l3___43 [2⋅X₄+2⋅X₇+1-X₁-X₂ ]
n_l1___42 [2⋅X₄+2⋅X₇+2-2⋅X₂ ]
n_l4___40 [2⋅X₄+2⋅X₇+2-2⋅X₂ ]
n_l16___24 [2⋅X₄+2⋅X₇+2-2⋅X₂ ]
n_l4___41 [X₁+2⋅X₄+2⋅X₇+1-2⋅X₂-X₅ ]
n_l16___39 [2⋅X₄+2⋅X₇-X₅-2⋅X₆-1 ]
n_l6___22 [X₁+2⋅X₇+1-2⋅X₂ ]
n_l6___37 [2⋅X₄+2⋅X₇-X₁-2⋅X₆-1 ]
n_l7___21 [2⋅X₇-X₂ ]
n_l5___20 [2⋅X₇-X₂ ]
n_l7___36 [2⋅X₇-X₂ ]
n_l5___35 [2⋅X₇-X₂ ]
n_l8___19 [2⋅X₇-X₆ ]
n_l12___17 [2⋅X₇-X₆ ]
n_l8___33 [2⋅X₇-X₂ ]
n_l12___30 [2⋅X₇-X₂ ]
n_l8___34 [2⋅X₇-X₆ ]
n_l12___32 [2⋅X₇-2⋅X₄-1 ]
n_l9___48 [2⋅X₇-X₂ ]
n_l17___47 [2⋅X₇-X₆-1 ]
MPRF for transition t₂₈₄: n_l16___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+13 {O(n)}
MPRF:
n_l13___16 [X₇+1-2⋅X₅ ]
n_l13___29 [X₇+1-2⋅X₅ ]
n_l13___31 [X₇+1-2⋅X₅ ]
n_l15___46 [X₇+1-X₁ ]
n_l2___44 [X₂+X₇-X₁-2⋅X₄ ]
n_l3___43 [X₂+X₇-2⋅X₄-2⋅X₆ ]
n_l1___42 [X₂+X₇-4⋅X₆ ]
n_l4___40 [X₇+1-2⋅X₆ ]
n_l16___24 [X₇+1-2⋅X₆ ]
n_l4___41 [X₂+X₇-4⋅X₆ ]
n_l16___39 [X₇+1-X₅ ]
n_l6___22 [X₇+1-2⋅X₅ ]
n_l6___37 [X₇-2⋅X₄-1 ]
n_l7___21 [X₇+1-2⋅X₄ ]
n_l5___20 [X₇+1-X₁ ]
n_l7___36 [X₁+X₇-X₂-2⋅X₆ ]
n_l5___35 [X₇-X₂ ]
n_l8___19 [X₇+1-2⋅X₄ ]
n_l12___17 [X₇+1-2⋅X₅ ]
n_l8___33 [X₇+3-2⋅X₂ ]
n_l12___30 [X₇+3-2⋅X₂ ]
n_l8___34 [X₇-2⋅X₄-1 ]
n_l12___32 [X₇+1-2⋅X₁ ]
n_l9___48 [X₇+1-2⋅X₅ ]
n_l17___47 [X₇+1-2⋅X₆ ]
MPRF for transition t₂₈₇: n_l17___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l15___46(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ 3 ≤ X₂ ∧ 2 ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₄ ∧ 2⋅X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+53 {O(n)}
MPRF:
n_l13___16 [X₇-4⋅X₄-1 ]
n_l13___29 [8⋅X₄+X₇+5-2⋅X₂-4⋅X₆ ]
n_l13___31 [2⋅X₁+X₇+7-4⋅X₂ ]
n_l15___46 [X₇+3-4⋅X₄ ]
n_l2___44 [X₇+3-4⋅X₄ ]
n_l3___43 [X₇+3-4⋅X₆ ]
n_l1___42 [X₇+3-4⋅X₄ ]
n_l4___40 [X₇+3-4⋅X₅ ]
n_l16___24 [X₇+3-4⋅X₆ ]
n_l4___41 [X₇+3-4⋅X₄ ]
n_l16___39 [X₇+3-4⋅X₆ ]
n_l6___22 [X₇+3-4⋅X₄ ]
n_l6___37 [X₇+3-2⋅X₅ ]
n_l7___21 [X₇+3-4⋅X₅ ]
n_l5___20 [X₇+3-4⋅X₅ ]
n_l7___36 [X₇+3-4⋅X₄ ]
n_l5___35 [X₇+3-2⋅X₅ ]
n_l8___19 [X₇+3-4⋅X₅ ]
n_l12___17 [X₇-4⋅X₄-1 ]
n_l8___33 [X₇+5-2⋅X₂ ]
n_l12___30 [X₇+5-2⋅X₂ ]
n_l8___34 [X₇+3-4⋅X₄ ]
n_l12___32 [2⋅X₆+X₇+5-4⋅X₂ ]
n_l9___48 [2⋅X₁+X₇+3-4⋅X₄ ]
n_l17___47 [2⋅X₁+X₇+3-4⋅X₄ ]
MPRF for transition t₂₉₁: n_l1___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___40(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+31 {O(n)}
MPRF:
n_l13___16 [X₇-X₂-2 ]
n_l13___29 [X₂+X₇-2⋅X₅-2 ]
n_l13___31 [X₇-X₂-2 ]
n_l15___46 [2⋅X₄+X₇+1-2⋅X₁ ]
n_l2___44 [X₂+X₇-2⋅X₁ ]
n_l3___43 [X₂+X₇-2⋅X₁ ]
n_l1___42 [X₇+1-2⋅X₆ ]
n_l4___40 [X₇-X₂-2 ]
n_l16___24 [X₇-X₂-2 ]
n_l4___41 [2⋅X₁+X₂+X₇-4⋅X₄-2⋅X₅-2 ]
n_l16___39 [2⋅X₁+X₂+X₇-2⋅X₅-4⋅X₆-2 ]
n_l6___22 [X₇-X₂-2 ]
n_l6___37 [X₂+X₇-2⋅X₅-2 ]
n_l7___21 [X₇-X₂-2 ]
n_l5___20 [X₇-X₂-2 ]
n_l7___36 [2⋅X₁+X₂+X₇-4⋅X₄-2⋅X₅-2 ]
n_l5___35 [X₂+X₇-4⋅X₄-2 ]
n_l8___19 [X₇-X₂-2 ]
n_l12___17 [X₇-X₆-2 ]
n_l8___33 [X₂+X₇-2⋅X₁-2 ]
n_l12___30 [X₂+X₇-4⋅X₄-2 ]
n_l8___34 [2⋅X₁+X₇-4⋅X₄-X₆-2 ]
n_l12___32 [X₇-X₆-2 ]
n_l9___48 [X₂+X₇-2⋅X₆-2 ]
n_l17___47 [X₇+1-2⋅X₄ ]
MPRF for transition t₂₉₂: n_l1___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___41(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 0 < X₃ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
6⋅X₇+15 {O(n)}
MPRF:
n_l13___16 [2⋅X₇-X₂-2 ]
n_l13___29 [2⋅X₇-X₂-2 ]
n_l13___31 [2⋅X₇-X₂-2 ]
n_l15___46 [2⋅X₇-2⋅X₆-1 ]
n_l2___44 [2⋅X₇-X₁-1 ]
n_l3___43 [2⋅X₆+2⋅X₇-X₁-2⋅X₄-1 ]
n_l1___42 [2⋅X₇-2⋅X₄-1 ]
n_l4___40 [2⋅X₇-X₂ ]
n_l16___24 [2⋅X₇-X₂ ]
n_l4___41 [2⋅X₇-2⋅X₄-3 ]
n_l16___39 [2⋅X₇-2⋅X₄-3 ]
n_l6___22 [2⋅X₇-X₂ ]
n_l6___37 [2⋅X₆+2⋅X₇-2⋅X₄-X₅-3 ]
n_l7___21 [2⋅X₇-X₂ ]
n_l5___20 [2⋅X₇-X₂ ]
n_l7___36 [2⋅X₇-X₁-3 ]
n_l5___35 [2⋅X₇-X₁-3 ]
n_l8___19 [2⋅X₇-X₂ ]
n_l12___17 [2⋅X₇-X₆-2 ]
n_l8___33 [2⋅X₇-X₁-3 ]
n_l12___30 [2⋅X₇-X₂-2 ]
n_l8___34 [2⋅X₇-2⋅X₄-3 ]
n_l12___32 [X₅+2⋅X₇-X₂-2⋅X₄-2 ]
n_l9___48 [2⋅X₇-X₂-2 ]
n_l17___47 [X₂+2⋅X₇-2⋅X₆-4 ]
MPRF for transition t₂₉₅: n_l2___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
6⋅X₇+9 {O(n)}
MPRF:
n_l13___16 [2⋅X₇-X₂ ]
n_l13___29 [2⋅X₇-X₂ ]
n_l13___31 [2⋅X₇-X₂ ]
n_l15___46 [2⋅X₇-X₆-1 ]
n_l2___44 [2⋅X₇-X₄-1 ]
n_l3___43 [X₆+2⋅X₇-X₂-X₄ ]
n_l1___42 [2⋅X₇-X₂ ]
n_l4___40 [2⋅X₇-X₂ ]
n_l16___24 [2⋅X₇-X₂ ]
n_l4___41 [2⋅X₇-X₂ ]
n_l16___39 [2⋅X₇-X₂ ]
n_l6___22 [2⋅X₇-X₂ ]
n_l6___37 [2⋅X₇-X₂ ]
n_l7___21 [2⋅X₇-X₂ ]
n_l5___20 [2⋅X₇-X₂ ]
n_l7___36 [2⋅X₇-X₂ ]
n_l5___35 [2⋅X₇-X₂ ]
n_l8___19 [2⋅X₇-X₆ ]
n_l12___17 [2⋅X₇-X₆ ]
n_l8___33 [2⋅X₇-X₂ ]
n_l12___30 [2⋅X₇-X₂ ]
n_l8___34 [2⋅X₇-X₆ ]
n_l12___32 [2⋅X₇-X₂ ]
n_l9___48 [2⋅X₇-X₂ ]
n_l17___47 [2⋅X₇-X₄-1 ]
MPRF for transition t₂₉₇: n_l3___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___42(X₀, X₁, X₂, NoDet0, Arg4_P, X₅, X₆, Arg7_P) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ X₁ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
6⋅X₇+15 {O(n)}
MPRF:
n_l13___16 [X₆+2⋅X₇-6⋅X₄-2 ]
n_l13___29 [2⋅X₇-2⋅X₅-1 ]
n_l13___31 [2⋅X₇-2⋅X₅-1 ]
n_l15___46 [X₁+2⋅X₇+1-6⋅X₄ ]
n_l2___44 [X₂+2⋅X₇-6⋅X₄ ]
n_l3___43 [X₂+2⋅X₇-3⋅X₁ ]
n_l1___42 [X₂+2⋅X₇-6⋅X₄-2 ]
n_l4___40 [X₂+2⋅X₇-6⋅X₄-2 ]
n_l16___24 [X₂+2⋅X₇-6⋅X₆-2 ]
n_l4___41 [X₂+2⋅X₇-6⋅X₆-2 ]
n_l16___39 [X₂+3⋅X₅+2⋅X₇-3⋅X₁-6⋅X₄-2 ]
n_l6___22 [X₂+2⋅X₇-6⋅X₅-2 ]
n_l6___37 [3⋅X₅+2⋅X₇+1-2⋅X₂-6⋅X₄ ]
n_l7___21 [X₂+2⋅X₇-6⋅X₅-2 ]
n_l5___20 [X₂+2⋅X₇-6⋅X₅-2 ]
n_l7___36 [3⋅X₅+2⋅X₇+1-2⋅X₂-6⋅X₆ ]
n_l5___35 [2⋅X₇+1-2⋅X₂ ]
n_l8___19 [X₆+2⋅X₇-6⋅X₅-2 ]
n_l12___17 [X₂+2⋅X₇-6⋅X₅-2 ]
n_l8___33 [2⋅X₇-4⋅X₄-1 ]
n_l12___30 [2⋅X₁+2⋅X₇-4⋅X₄-2⋅X₅-1 ]
n_l8___34 [2⋅X₁+2⋅X₇+1-4⋅X₄-2⋅X₆ ]
n_l12___32 [2⋅X₂+2⋅X₇-4⋅X₄-2⋅X₆-1 ]
n_l9___48 [2⋅X₇-2⋅X₁-1 ]
n_l17___47 [2⋅X₇+1-4⋅X₆ ]
MPRF for transition t₂₉₉: n_l4___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
6⋅X₇+19 {O(n)}
MPRF:
n_l13___16 [2⋅X₇-2⋅X₆-1 ]
n_l13___29 [2⋅X₇+1-2⋅X₂ ]
n_l13___31 [2⋅X₇-2⋅X₅-3 ]
n_l15___46 [2⋅X₇+1-X₁-2⋅X₆ ]
n_l2___44 [X₄+2⋅X₇+1-X₁-3⋅X₆ ]
n_l3___43 [X₄+2⋅X₇+1-X₁-3⋅X₆ ]
n_l1___42 [X₄+2⋅X₇+1-5⋅X₆ ]
n_l4___40 [2⋅X₇+1-4⋅X₅ ]
n_l16___24 [4⋅X₄+2⋅X₇-2⋅X₁-4⋅X₆-3 ]
n_l4___41 [2⋅X₇-2⋅X₅-1 ]
n_l16___39 [2⋅X₇+1-2⋅X₂ ]
n_l6___22 [2⋅X₇-2⋅X₁-3 ]
n_l6___37 [2⋅X₇+1-2⋅X₂ ]
n_l7___21 [2⋅X₇-2⋅X₂-1 ]
n_l5___20 [2⋅X₇-2⋅X₂-1 ]
n_l7___36 [2⋅X₇+1-2⋅X₂ ]
n_l5___35 [2⋅X₇+1-2⋅X₂ ]
n_l8___19 [2⋅X₇-2⋅X₂-1 ]
n_l12___17 [2⋅X₇-2⋅X₂-1 ]
n_l8___33 [2⋅X₇+1-2⋅X₂ ]
n_l12___30 [2⋅X₇+1-2⋅X₂ ]
n_l8___34 [2⋅X₅+2⋅X₇-2⋅X₂-4⋅X₄-1 ]
n_l12___32 [2⋅X₆+2⋅X₇-2⋅X₂-4⋅X₄-3 ]
n_l9___48 [2⋅X₇-2⋅X₆-1 ]
n_l17___47 [2⋅X₇-2⋅X₆-1 ]
MPRF for transition t₃₀₁: n_l4___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+13 {O(n)}
MPRF:
n_l13___16 [X₇+1-2⋅X₅ ]
n_l13___29 [X₇+1-2⋅X₅ ]
n_l13___31 [X₇+3-2⋅X₂ ]
n_l15___46 [X₇+2-X₂ ]
n_l2___44 [2⋅X₄+X₇+2-X₁-X₂ ]
n_l3___43 [2⋅X₆+X₇+2-X₁-X₂ ]
n_l1___42 [X₇+1-X₁ ]
n_l4___40 [X₇+2-X₂ ]
n_l16___24 [X₇+2-X₂ ]
n_l4___41 [X₇+1-X₁ ]
n_l16___39 [X₇-X₂ ]
n_l6___22 [2⋅X₄+X₇+1-X₁-2⋅X₆ ]
n_l6___37 [X₇-X₂ ]
n_l7___21 [X₇+1-2⋅X₆ ]
n_l5___20 [X₇+1-X₁ ]
n_l7___36 [X₇-X₂ ]
n_l5___35 [X₇-X₂ ]
n_l8___19 [X₇+1-2⋅X₄ ]
n_l12___17 [X₇+1-2⋅X₄ ]
n_l8___33 [X₇-X₂ ]
n_l12___30 [X₇+1-2⋅X₆ ]
n_l8___34 [X₇+3-2⋅X₂ ]
n_l12___32 [X₇+3-2⋅X₆ ]
n_l9___48 [X₇+1-2⋅X₅ ]
n_l17___47 [X₇+1-2⋅X₄ ]
MPRF for transition t₃₁₀: n_l5___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___19(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 < X₀ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
12⋅X₇+37 {O(n)}
MPRF:
n_l13___16 [4⋅X₇-2⋅X₆-7 ]
n_l13___29 [4⋅X₇-2⋅X₂-5 ]
n_l13___31 [4⋅X₇-X₆-10 ]
n_l15___46 [X₁+4⋅X₇-X₂-2⋅X₆-6 ]
n_l2___44 [X₁+4⋅X₇-X₂-2⋅X₄-6 ]
n_l3___43 [4⋅X₇-X₂-6 ]
n_l1___42 [4⋅X₇-X₂-6 ]
n_l4___40 [4⋅X₇-X₂-6 ]
n_l16___24 [2⋅X₆+4⋅X₇-3⋅X₂-4 ]
n_l4___41 [4⋅X₇-X₂-8 ]
n_l16___39 [4⋅X₇-X₂-8 ]
n_l6___22 [2⋅X₅+4⋅X₇-3⋅X₂-4 ]
n_l6___37 [4⋅X₇-X₂-8 ]
n_l7___21 [2⋅X₆+4⋅X₇-3⋅X₂-4 ]
n_l5___20 [4⋅X₇-2⋅X₂-5 ]
n_l7___36 [4⋅X₇-X₂-8 ]
n_l5___35 [4⋅X₇-2⋅X₄-9 ]
n_l8___19 [4⋅X₇-2⋅X₂-7 ]
n_l12___17 [4⋅X₇-2⋅X₂-7 ]
n_l8___33 [9⋅X₆+4⋅X₇-9⋅X₂-2⋅X₄ ]
n_l12___30 [4⋅X₇-2⋅X₂-5 ]
n_l8___34 [4⋅X₇-X₂-8 ]
n_l12___32 [4⋅X₇-X₆-10 ]
n_l9___48 [4⋅X₇-2⋅X₄-7 ]
n_l17___47 [4⋅X₇-2⋅X₆-7 ]
MPRF for transition t₃₁₁: n_l5___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___33(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
6⋅X₇+24 {O(n)}
MPRF:
n_l13___16 [4⋅X₆+2⋅X₇-2⋅X₂-8⋅X₄-2 ]
n_l13___29 [4⋅X₆+2⋅X₇+2-4⋅X₁-2⋅X₂ ]
n_l13___31 [2⋅X₅+2⋅X₇-8⋅X₄ ]
n_l15___46 [2⋅X₇-X₁ ]
n_l2___44 [2⋅X₂+2⋅X₇-X₁-4⋅X₄-2 ]
n_l3___43 [2⋅X₂+2⋅X₇-3⋅X₁-2 ]
n_l1___42 [2⋅X₂+2⋅X₇-6⋅X₄-2 ]
n_l4___40 [2⋅X₁+2⋅X₂+2⋅X₇-6⋅X₅-4⋅X₆-2 ]
n_l16___24 [2⋅X₂+2⋅X₇-8⋅X₄-2 ]
n_l4___41 [2⋅X₂+2⋅X₅+2⋅X₇-10⋅X₄-2 ]
n_l16___39 [2⋅X₂+4⋅X₆+2⋅X₇-10⋅X₄-2 ]
n_l6___22 [2⋅X₂+2⋅X₇-4⋅X₁-2 ]
n_l6___37 [2⋅X₅+4⋅X₆+2⋅X₇-10⋅X₄ ]
n_l7___21 [2⋅X₂+8⋅X₆+2⋅X₇-8⋅X₄-8⋅X₅-2 ]
n_l5___20 [2⋅X₂+2⋅X₇-4⋅X₁-2 ]
n_l7___36 [2⋅X₁+4⋅X₆+2⋅X₇-10⋅X₄ ]
n_l5___35 [2⋅X₂+2⋅X₇-8⋅X₄ ]
n_l8___19 [2⋅X₂+8⋅X₅+2⋅X₇-4⋅X₁-8⋅X₄-2 ]
n_l12___17 [8⋅X₅+4⋅X₆+2⋅X₇-4⋅X₁-2⋅X₂-8⋅X₄-2 ]
n_l8___33 [2⋅X₂+2⋅X₇-4⋅X₁-2 ]
n_l12___30 [2⋅X₂+2⋅X₇-4⋅X₅-2 ]
n_l8___34 [2⋅X₆+2⋅X₇-8⋅X₄ ]
n_l12___32 [2⋅X₁+2⋅X₇-8⋅X₄ ]
n_l9___48 [2⋅X₇+2-2⋅X₂ ]
n_l17___47 [2⋅X₇-2⋅X₆ ]
MPRF for transition t₃₁₂: n_l5___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___34(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 < X₀ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+19 {O(n)}
MPRF:
n_l13___16 [X₁+X₇-X₂-X₄ ]
n_l13___29 [X₁+X₇+1-X₂-X₅ ]
n_l13___31 [X₇-X₂ ]
n_l15___46 [X₇-X₄-1 ]
n_l2___44 [4⋅X₂+X₇-X₄-8⋅X₆-5 ]
n_l3___43 [4⋅X₂+X₇-9⋅X₄-5 ]
n_l1___42 [4⋅X₂+X₇-9⋅X₆-5 ]
n_l4___40 [4⋅X₂+X₆+X₇-10⋅X₅-5 ]
n_l16___24 [4⋅X₂+X₄+X₇-10⋅X₅-5 ]
n_l4___41 [2⋅X₆+X₇+2-2⋅X₂ ]
n_l16___39 [X₁+X₇+2-2⋅X₂ ]
n_l6___22 [4⋅X₂+X₆+X₇-5⋅X₁-5 ]
n_l6___37 [2⋅X₄+X₇+2-2⋅X₂ ]
n_l7___21 [X₅+X₇-X₂ ]
n_l5___20 [X₄+X₇-X₂ ]
n_l7___36 [2⋅X₄+2⋅X₆+X₇+2-2⋅X₂-X₅ ]
n_l5___35 [2⋅X₆+X₇+2-2⋅X₂ ]
n_l8___19 [X₄+X₇-X₆ ]
n_l12___17 [X₄+X₇-X₆ ]
n_l8___33 [X₅+X₇+2-2⋅X₂ ]
n_l12___30 [X₇+1-X₂ ]
n_l8___34 [X₅+X₇+1-2⋅X₂ ]
n_l12___32 [X₇-X₆ ]
n_l9___48 [X₁+X₇-X₄-X₅ ]
n_l17___47 [X₇-X₆-1 ]
MPRF for transition t₃₁₇: n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+14 {O(n)}
MPRF:
n_l13___16 [X₇-X₆-2 ]
n_l13___29 [X₇-X₅ ]
n_l13___31 [X₇-X₅ ]
n_l15___46 [X₇+1-X₂ ]
n_l2___44 [X₇+1-X₂ ]
n_l3___43 [X₇+1-X₂ ]
n_l1___42 [X₇+1-X₂ ]
n_l4___40 [2⋅X₆+X₇+1-X₁-X₂ ]
n_l16___24 [2⋅X₄+2⋅X₆+X₇+1-X₁-X₂-2⋅X₅ ]
n_l4___41 [X₇+1-X₂ ]
n_l16___39 [X₇+1-X₂ ]
n_l6___22 [X₇+1-X₂ ]
n_l6___37 [X₇+1-X₂ ]
n_l7___21 [X₇-X₂-2 ]
n_l5___20 [X₇-X₂-2 ]
n_l7___36 [X₇+1-X₂ ]
n_l5___35 [X₇-2⋅X₆ ]
n_l8___19 [X₇-X₂-2 ]
n_l12___17 [X₇-X₆-2 ]
n_l8___33 [X₇-2⋅X₄ ]
n_l12___30 [X₇-X₁ ]
n_l8___34 [X₇-X₅ ]
n_l12___32 [X₇-X₅ ]
n_l9___48 [X₇-X₆-2 ]
n_l17___47 [X₇-2⋅X₆ ]
MPRF for transition t₃₁₈: n_l6___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+8 {O(n)}
MPRF:
n_l13___16 [X₇-X₄-1 ]
n_l13___29 [X₇-X₅-1 ]
n_l13___31 [X₇-X₅-1 ]
n_l15___46 [X₂+X₇-3⋅X₄-2 ]
n_l2___44 [X₆+X₇-X₂ ]
n_l3___43 [X₆+X₇-X₂ ]
n_l1___42 [3⋅X₆+X₇-X₁-X₂ ]
n_l4___40 [X₄+X₇-X₁-1 ]
n_l16___24 [X₇-X₅-1 ]
n_l4___41 [X₆+X₇-X₂ ]
n_l16___39 [X₆+X₇-X₂ ]
n_l6___22 [X₇-X₆-1 ]
n_l6___37 [X₆+X₇-X₂ ]
n_l7___21 [X₆+X₇-2⋅X₅-1 ]
n_l5___20 [X₆+X₇-X₁-1 ]
n_l7___36 [2⋅X₄+X₇-X₁-X₂ ]
n_l5___35 [X₇-X₂ ]
n_l8___19 [X₇-X₄-1 ]
n_l12___17 [X₇-X₄-1 ]
n_l8___33 [X₇-X₂ ]
n_l12___30 [X₇-X₂ ]
n_l8___34 [X₇-X₂ ]
n_l12___32 [X₇-X₂ ]
n_l9___48 [X₇-X₅-1 ]
n_l17___47 [X₇-X₆-1 ]
MPRF for transition t₃₂₁: n_l7___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___20(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, X₆, Arg7_P) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ Arg5_P ≤ X₁ ∧ X₂ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
6⋅X₇+16 {O(n)}
MPRF:
n_l13___16 [2⋅X₄+2⋅X₇+1-X₂-2⋅X₆ ]
n_l13___29 [2⋅X₇-4⋅X₄ ]
n_l13___31 [2⋅X₇-2⋅X₂ ]
n_l15___46 [2⋅X₇-2⋅X₆-1 ]
n_l2___44 [2⋅X₇-2⋅X₄-1 ]
n_l3___43 [2⋅X₇-2⋅X₄-1 ]
n_l1___42 [2⋅X₇-2⋅X₄-1 ]
n_l4___40 [2⋅X₇-X₂ ]
n_l16___24 [2⋅X₅+2⋅X₇-2⋅X₁-X₂ ]
n_l4___41 [2⋅X₇-X₁-2 ]
n_l16___39 [2⋅X₇-2⋅X₆-2 ]
n_l6___22 [2⋅X₅+2⋅X₇+2-3⋅X₂ ]
n_l6___37 [2⋅X₇-X₅-2 ]
n_l7___21 [2⋅X₄+2⋅X₇+2-3⋅X₂ ]
n_l5___20 [2⋅X₅+2⋅X₇+1-3⋅X₂ ]
n_l7___36 [2⋅X₄+2⋅X₇-X₅-2⋅X₆-2 ]
n_l5___35 [2⋅X₄+2⋅X₇-2⋅X₁-2 ]
n_l8___19 [2⋅X₄+2⋅X₇+1-3⋅X₆ ]
n_l12___17 [2⋅X₄+2⋅X₇+1-X₂-2⋅X₆ ]
n_l8___33 [2⋅X₇-X₂-1 ]
n_l12___30 [2⋅X₆+2⋅X₇+2-2⋅X₂-2⋅X₅ ]
n_l8___34 [2⋅X₇-2⋅X₂ ]
n_l12___32 [2⋅X₇-2⋅X₆ ]
n_l9___48 [2⋅X₇-2⋅X₆ ]
n_l17___47 [2⋅X₇-2⋅X₄-1 ]
MPRF for transition t₃₂₂: n_l7___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___35(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, X₆, Arg7_P) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ Arg5_P ≤ X₁ ∧ X₂ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₇+8 {O(n)}
MPRF:
n_l13___16 [X₇-X₅-1 ]
n_l13___29 [X₇-X₆-1 ]
n_l13___31 [X₇-X₆ ]
n_l15___46 [X₁+X₇-3⋅X₆-1 ]
n_l2___44 [X₁+X₇-3⋅X₄-1 ]
n_l3___43 [X₁+X₇-3⋅X₄-1 ]
n_l1___42 [X₁+X₇-3⋅X₆-1 ]
n_l4___40 [X₁+X₇-X₂-X₄ ]
n_l16___24 [2⋅X₆+X₇-X₂-X₄ ]
n_l4___41 [X₇-X₄-1 ]
n_l16___39 [2⋅X₆+X₇-3⋅X₄-1 ]
n_l6___22 [X₂+X₇-X₁-X₆-2 ]
n_l6___37 [2⋅X₆+X₇-3⋅X₄-1 ]
n_l7___21 [X₁+X₇-X₂-X₅ ]
n_l5___20 [X₇-X₆-1 ]
n_l7___36 [X₇+1-X₂ ]
n_l5___35 [X₇-X₂ ]
n_l8___19 [X₇-X₄-1 ]
n_l12___17 [X₇-X₄-1 ]
n_l8___33 [X₇-X₂ ]
n_l12___30 [X₇-X₂ ]
n_l8___34 [X₇-X₂ ]
n_l12___32 [X₇-X₆ ]
n_l9___48 [X₇-X₅-1 ]
n_l17___47 [X₇-X₆-1 ]
MPRF for transition t₃₂₅: n_l8___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₇+22 {O(n)}
MPRF:
n_l13___16 [2⋅X₅+2⋅X₇-2⋅X₂ ]
n_l13___29 [2⋅X₇-X₆ ]
n_l13___31 [2⋅X₁+2⋅X₇-2⋅X₄-2⋅X₆ ]
n_l15___46 [2⋅X₇+2-2⋅X₆ ]
n_l2___44 [2⋅X₇+3-X₂ ]
n_l3___43 [2⋅X₇+3-X₂ ]
n_l1___42 [2⋅X₇+3-X₂ ]
n_l4___40 [2⋅X₇+3-X₂ ]
n_l16___24 [2⋅X₇+3-X₂ ]
n_l4___41 [2⋅X₇+3-X₂ ]
n_l16___39 [2⋅X₇+1-X₂ ]
n_l6___22 [2⋅X₇+3-X₂ ]
n_l6___37 [2⋅X₇+1-X₂ ]
n_l7___21 [2⋅X₇+3-X₂ ]
n_l5___20 [2⋅X₁+2⋅X₇+1-2⋅X₂-2⋅X₆ ]
n_l7___36 [2⋅X₇+1-X₂ ]
n_l5___35 [2⋅X₇-2⋅X₄ ]
n_l8___19 [2⋅X₄+2⋅X₇+1-2⋅X₂ ]
n_l12___17 [X₁+2⋅X₇-2⋅X₆ ]
n_l8___33 [2⋅X₇-X₅ ]
n_l12___30 [2⋅X₇-X₆ ]
n_l8___34 [2⋅X₅+2⋅X₇-X₁-2⋅X₆ ]
n_l12___32 [2⋅X₅+2⋅X₇-2⋅X₂-2⋅X₄ ]
n_l9___48 [X₁+2⋅X₇-2⋅X₄ ]
n_l17___47 [2⋅X₇+2-2⋅X₄ ]
MPRF for transition t₃₂₆: n_l8___33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
6⋅X₇+23 {O(n)}
MPRF:
n_l13___16 [X₅+2⋅X₇+2-X₁-2⋅X₂ ]
n_l13___29 [X₆+2⋅X₇-3⋅X₁ ]
n_l13___31 [2⋅X₇-X₁-X₅ ]
n_l15___46 [4⋅X₄+2⋅X₇+1-4⋅X₁ ]
n_l2___44 [2⋅X₂+2⋅X₇-4⋅X₁-1 ]
n_l3___43 [2⋅X₂+8⋅X₆+2⋅X₇-4⋅X₁-8⋅X₄-1 ]
n_l1___42 [2⋅X₂+2⋅X₇-8⋅X₄-1 ]
n_l4___40 [8⋅X₆+2⋅X₇+1-2⋅X₂-8⋅X₄ ]
n_l16___24 [8⋅X₅+2⋅X₇+1-2⋅X₂-8⋅X₄ ]
n_l4___41 [X₅+2⋅X₇+4-3⋅X₂ ]
n_l16___39 [2⋅X₄+2⋅X₇+4-3⋅X₂ ]
n_l6___22 [8⋅X₆+2⋅X₇+1-4⋅X₁-2⋅X₂ ]
n_l6___37 [X₅+2⋅X₇+4-3⋅X₂ ]
n_l7___21 [8⋅X₆+2⋅X₇+1-4⋅X₁-2⋅X₂ ]
n_l5___20 [8⋅X₆+2⋅X₇+1-4⋅X₁-2⋅X₂ ]
n_l7___36 [X₅+2⋅X₆+2⋅X₇+4-3⋅X₂-2⋅X₄ ]
n_l5___35 [2⋅X₇+1-2⋅X₄-X₅ ]
n_l8___19 [8⋅X₅+2⋅X₇+1-4⋅X₁-2⋅X₆ ]
n_l12___17 [2⋅X₇+1-2⋅X₆ ]
n_l8___33 [2⋅X₇+1-2⋅X₅ ]
n_l12___30 [2⋅X₇-2⋅X₅ ]
n_l8___34 [2⋅X₇-X₁-X₅ ]
n_l12___32 [2⋅X₇-X₁-X₅ ]
n_l9___48 [X₅+2⋅X₇-3⋅X₁ ]
n_l17___47 [2⋅X₇+1-4⋅X₆ ]
MPRF for transition t₃₂₇: n_l8___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₇+37 {O(n)}
MPRF:
n_l13___16 [X₂+2⋅X₇-4⋅X₄-4 ]
n_l13___29 [2⋅X₇-2⋅X₅-3 ]
n_l13___31 [2⋅X₇-2⋅X₆ ]
n_l15___46 [2⋅X₇-X₂-2 ]
n_l2___44 [2⋅X₄+2⋅X₇-2⋅X₂-1 ]
n_l3___43 [2⋅X₄+2⋅X₆+2⋅X₇-X₁-2⋅X₂-1 ]
n_l1___42 [4⋅X₆+2⋅X₇-X₁-2⋅X₂-1 ]
n_l4___40 [4⋅X₄+2⋅X₇-X₁-2⋅X₂-1 ]
n_l16___24 [4⋅X₄+2⋅X₇-2⋅X₂-2⋅X₆-1 ]
n_l4___41 [X₅+2⋅X₇-2⋅X₂-1 ]
n_l16___39 [X₅+2⋅X₇-2⋅X₂-1 ]
n_l6___22 [2⋅X₇-2⋅X₅-3 ]
n_l6___37 [2⋅X₇-X₂-2 ]
n_l7___21 [2⋅X₇-2⋅X₅-3 ]
n_l5___20 [2⋅X₇-2⋅X₄-3 ]
n_l7___36 [2⋅X₇-X₁-X₂ ]
n_l5___35 [2⋅X₇+1-2⋅X₂ ]
n_l8___19 [2⋅X₇-2⋅X₄-3 ]
n_l12___17 [2⋅X₇-2⋅X₄-3 ]
n_l8___33 [2⋅X₇-2⋅X₂-1 ]
n_l12___30 [2⋅X₇-2⋅X₁-3 ]
n_l8___34 [2⋅X₇+1-2⋅X₆ ]
n_l12___32 [2⋅X₇-2⋅X₂ ]
n_l9___48 [X₂+2⋅X₇-X₁-2⋅X₅-4 ]
n_l17___47 [2⋅X₇-2⋅X₄-3 ]
MPRF for transition t₃₃₄: n_l9___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ 0 < X₇ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ 0 < X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
6⋅X₇+22 {O(n)}
MPRF:
n_l13___16 [2⋅X₇+2-2⋅X₆ ]
n_l13___29 [4⋅X₄+2⋅X₇+2-2⋅X₁-2⋅X₆ ]
n_l13___31 [2⋅X₇+2-2⋅X₆ ]
n_l15___46 [2⋅X₇-2⋅X₆ ]
n_l2___44 [2⋅X₇-2⋅X₆ ]
n_l3___43 [2⋅X₇-X₁ ]
n_l1___42 [2⋅X₇-2⋅X₄ ]
n_l4___40 [2⋅X₁+2⋅X₇+2-2⋅X₂-2⋅X₅ ]
n_l16___24 [2⋅X₇+2-2⋅X₂ ]
n_l4___41 [2⋅X₇+2-4⋅X₆ ]
n_l16___39 [2⋅X₇+2-4⋅X₄ ]
n_l6___22 [2⋅X₇+2-2⋅X₂ ]
n_l6___37 [2⋅X₇+2-4⋅X₆ ]
n_l7___21 [2⋅X₇+2-2⋅X₂ ]
n_l5___20 [2⋅X₇+2-2⋅X₂ ]
n_l7___36 [2⋅X₅+2⋅X₇+4-2⋅X₂-4⋅X₆ ]
n_l5___35 [2⋅X₇+4-2⋅X₂ ]
n_l8___19 [2⋅X₇+2-2⋅X₆ ]
n_l12___17 [2⋅X₇+2-2⋅X₆ ]
n_l8___33 [4⋅X₄+2⋅X₇+4-2⋅X₂-2⋅X₅ ]
n_l12___30 [4⋅X₄+2⋅X₇+4-2⋅X₂-2⋅X₆ ]
n_l8___34 [2⋅X₇+2-2⋅X₆ ]
n_l12___32 [2⋅X₇+2-2⋅X₆ ]
n_l9___48 [2⋅X₇+2-2⋅X₄ ]
n_l17___47 [2⋅X₇-2⋅X₄ ]
CFR: Improvement to new bound with the following program:
new bound:
138⋅X₇+555 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: Arg4_P, Arg5_P, Arg7_P, NoDet0
Locations: l0, l10, l11, l14, l9, n_l12___12, n_l12___14, n_l12___17, n_l12___28, n_l12___3, n_l12___30, n_l12___32, n_l12___50, n_l13___11, n_l13___13, n_l13___16, n_l13___2, n_l13___27, n_l13___29, n_l13___31, n_l13___49, n_l15___46, n_l15___64, n_l16___10, n_l16___24, n_l16___39, n_l16___57, n_l17___25, n_l17___47, n_l17___65, n_l1___42, n_l1___60, n_l2___44, n_l2___62, n_l3___43, n_l3___61, n_l4___40, n_l4___41, n_l4___45, n_l4___58, n_l4___59, n_l4___63, n_l5___20, n_l5___35, n_l5___53, n_l5___6, n_l6___22, n_l6___37, n_l6___55, n_l6___8, n_l7___21, n_l7___36, n_l7___54, n_l7___7, n_l8___1, n_l8___15, n_l8___18, n_l8___19, n_l8___23, n_l8___33, n_l8___34, n_l8___38, n_l8___4, n_l8___5, n_l8___51, n_l8___52, n_l8___56, n_l8___9, n_l9___26, n_l9___48
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, 1, X₅, X₆, X₇)
t₃₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ 1 ≤ X₄
t₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ 1 ≤ X₄ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₃₃₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 0 < X₇ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂₆₄: n_l12___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ X₇ < 3 ∧ 2 ≤ X₇ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₇ ≤ 2 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 4 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 4 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ 1+X₃ ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₂₆₅: n_l12___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 0 < X₃ ∧ X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ X₀+X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₀+X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₂₆₆: n_l12___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₆₇: n_l12___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₁ ∧ X₇ < 1+X₁ ∧ X₁ ≤ X₇ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₂₆₈: n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ 0 < X₀ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₆ ≤ 3 ∧ 3 ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 2+X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₃+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₆₉: n_l12___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₂₇₀: n_l12___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₇₁: n_l12___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ 0 < X₀ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₆ ≤ 3 ∧ 3 ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 5 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₆ ≤ 2+X₃ ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₇₂: n_l13___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___26(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 0 < X₃ ∧ X₇ < 3 ∧ 2 ≤ X₇ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₇ ≤ 2 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 4 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 4 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ 1+X₃ ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₂₇₃: n_l13___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 0 < X₃ ∧ X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ X₀+X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₀+X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₂₇₄: n_l13___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₇₅: n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ 0 < X₀ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₆ ≤ 3 ∧ 3 ≤ X₆ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 2+X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₃+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₇₆: n_l13___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___26(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₁ ∧ X₇ < 1+X₁ ∧ X₁ ≤ X₇ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₂₇₇: n_l13___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₂₇₈: n_l13___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₇₉: n_l13___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___48(X₀, X₁, X₂, X₃, X₆, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ 0 < X₀ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₆ ≤ 3 ∧ 3 ≤ X₆ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 5 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₆ ≤ 2+X₃ ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₈₀: n_l15___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₈₁: n_l15___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₂₈₂: n_l16___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₂₈₃: n_l16___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₂₈₄: n_l16___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₂₈₅: n_l16___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₂₈₆: n_l17___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___45(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: 1 ≤ X₆ ∧ X₇ < 2⋅X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₁ ∧ 3 ≤ X₂ ∧ 2 ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₇ < 2⋅X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₂₈₇: n_l17___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l15___46(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ 3 ≤ X₂ ∧ 2 ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₄ ∧ 2⋅X₄ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₂₈₈: n_l17___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___45(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ 3 ≤ X₂ ∧ 2 ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₇ < 2⋅X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₂₈₉: n_l17___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l15___64(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2⋅X₄ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂₉₀: n_l17___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___63(X₀, 2⋅X₄, 2⋅X₄+1, X₃, X₄, X₄, X₆, X₇) :|: 0 < X₇ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₇ < 2⋅X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂₉₁: n_l1___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___40(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₉₂: n_l1___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___41(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 0 < X₃ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₉₃: n_l1___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___58(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: 2 ≤ X₇ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₂₉₄: n_l1___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___59(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: 2 ≤ X₇ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 0 < X₃ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₂₉₅: n_l2___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₉₆: n_l2___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₂₉₇: n_l3___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___42(X₀, X₁, X₂, NoDet0, Arg4_P, X₅, X₆, Arg7_P) :|: 2⋅X₆ ≤ X₇ ∧ 1 ≤ X₆ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ X₁ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ 5 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂₉₈: n_l3___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___60(X₀, X₁, X₂, NoDet0, Arg4_P, X₅, X₆, Arg7_P) :|: 2 ≤ X₇ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₂₉₉: n_l4___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₀₀: n_l4___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___23(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₃ ≤ 0 ∧ X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ X₇ < X₂ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₀₁: n_l4___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₀₂: n_l4___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___38(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ X₇ < X₂ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₃₀₃: n_l4___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___15(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₇ < 2⋅X₆ ∧ 1 ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₂ ≤ 2⋅X₆+1 ∧ 1+2⋅X₆ ≤ X₂ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₇ < X₂ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 3+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 6 ≤ X₁+X₅ ∧ 3+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₃₀₄: n_l4___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 2 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₀₅: n_l4___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₃ ≤ 0 ∧ 2 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₇ < X₂ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₀₆: n_l4___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₀₇: n_l4___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___56(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 2 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₇ < X₂ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₀₈: n_l4___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___1(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₇ < 2 ∧ 1 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₇ < X₂ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₅ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 2 ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 4 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 3 ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ X₂ ≤ 2+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₀₉: n_l5___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___18(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₃₁₀: n_l5___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___19(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 < X₀ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₃₁₁: n_l5___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___33(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₃₁₂: n_l5___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___34(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 < X₀ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₃₁₃: n_l5___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___51(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₁₄: n_l5___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___52(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 < X₀ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₁₅: n_l5___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₁₆: n_l5___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 < X₀ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₁₇: n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₃₁₈: n_l6___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₃₁₉: n_l6___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₂₀: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₂₁: n_l7___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___20(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, X₆, Arg7_P) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ Arg5_P ≤ X₁ ∧ X₂ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₃₂₂: n_l7___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___35(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, X₆, Arg7_P) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ 2⋅X₆ ∧ 2⋅X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ Arg5_P ≤ X₁ ∧ X₂ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₃₂₃: n_l7___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___53(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, X₆, Arg7_P) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ Arg5_P ≤ X₁ ∧ X₂ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₂₄: n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___6(NoDet0, X₁, X₂, X₃, Arg4_P, Arg5_P, X₆, Arg7_P) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ Arg5_P ≤ X₁ ∧ X₂ ≤ Arg7_P ∧ 2+Arg4_P ≤ X₂ ∧ 1+Arg4_P ≤ X₁ ∧ 1 ≤ Arg4_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 3 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₈₀: n_l8___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 2 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 2 ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 4 ∧ 1+X₇ ≤ X₁ ∧ X₁+X₇ ≤ 3 ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ X₂ ≤ 2+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ 2+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 4 ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 3 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ 2+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₈₁: n_l8___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ 1+X₇ ≤ X₂ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 7 ≤ X₂+X₆ ∧ 6 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 3+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 6 ≤ X₁+X₅ ∧ 3+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₃₈₂: n_l8___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₀+X₃ ≤ 0 ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₃₂₅: n_l8___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ 2⋅X₅ ∧ 2⋅X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₈₄: n_l8___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₃₂₆: n_l8___33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₃₂₇: n_l8___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₇ ∧ 0 < X₃ ∧ 2 ≤ X₁ ∧ 0 < X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁+1 ≤ X₆ ∧ X₆ ≤ 1+X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₂₈: n_l8___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₁ ∧ X₇ < 1+X₁ ∧ X₁ ≤ X₇ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₁ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₃₈₈: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₃+X₆ ≤ 1 ∧ 2+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 4 ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 3 ∧ X₀+X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ 2+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₀+X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₀+X₃ ≤ 0 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₃₂₉: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 3 ≤ X₇ ∧ 0 < X₀ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅ ∧ X₆ ≤ 3 ∧ 3 ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 2+X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₃+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₃₀: n_l8___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 3 ≤ X₇ ∧ 0 < X₃ ∧ X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3+X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ X₀+X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₀+X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₀+X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₀+X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₀+X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₃₃₁: n_l8___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 3 ≤ X₇ ∧ 0 < X₃ ∧ 0 < X₀ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₆ ≤ 3 ∧ 3 ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ 3 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₆ ≤ 3 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 5 ∧ X₆ ≤ 2+X₄ ∧ X₄+X₆ ≤ 4 ∧ X₆ ≤ 2+X₃ ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ 1+X₁ ∧ X₁+X₆ ≤ 5 ∧ X₆ ≤ 2+X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ X₅ ≤ 1+X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 2+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₃₂: n_l8___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ X₇ < 3 ∧ 2 ≤ X₇ ∧ X₅ ≤ 2 ∧ 2 ≤ X₅ ∧ X₂ ≤ 3 ∧ 3 ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₆ ≤ 2 ∧ 2 ≤ X₆ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ < X₆ ∧ X₇ ≤ 2 ∧ X₇ ≤ X₆ ∧ X₆+X₇ ≤ 4 ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 4 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₇ ≤ 1+X₃ ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 4 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 3 ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 5 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 4 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ 2 ∧ X₅ ≤ 1+X₄ ∧ X₄+X₅ ≤ 3 ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 5 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 4 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₉₃: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₅ ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ X₇ ≤ 2 ∧ X₇ ≤ 1+X₆ ∧ X₆+X₇ ≤ 3 ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 3 ∧ X₃+X₇ ≤ 2 ∧ 1+X₇ ≤ X₂ ∧ X₂+X₇ ≤ 5 ∧ X₇ ≤ X₁ ∧ X₁+X₇ ≤ 4 ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₃+X₆ ≤ 1 ∧ 2+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 4 ∧ 1+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 3 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ 2+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 2 ∧ X₃+X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 4 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 3 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₃+X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 3 ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 3 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ ≤ 2 ∧ 2 ≤ X₁
t₃₃₃: n_l9___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ 0 < X₇ ∧ X₇ < 1+2⋅X₄ ∧ X₇ < 2⋅X₄ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ 0 < X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
t₃₃₄: n_l9___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ 0 < X₇ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ 0 < X₇ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₁
All Bounds
Timebounds
Overall timebound:138⋅X₇+610 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃: 1 {O(1)}
t₃₃₅: 1 {O(1)}
t₂₆₄: 1 {O(1)}
t₂₆₅: 1 {O(1)}
t₂₆₆: 6⋅X₇+26 {O(n)}
t₂₆₇: 1 {O(1)}
t₂₆₈: 1 {O(1)}
t₂₆₉: 3⋅X₇+9 {O(n)}
t₂₇₀: 6⋅X₇+10 {O(n)}
t₂₇₁: 1 {O(1)}
t₂₇₂: 1 {O(1)}
t₂₇₃: 1 {O(1)}
t₂₇₄: 3⋅X₇+11 {O(n)}
t₂₇₅: 1 {O(1)}
t₂₇₆: 1 {O(1)}
t₂₇₇: 6⋅X₇+21 {O(n)}
t₂₇₈: 3⋅X₇+10 {O(n)}
t₂₇₉: 1 {O(1)}
t₂₈₀: 9⋅X₇+61 {O(n)}
t₂₈₁: 1 {O(1)}
t₂₈₂: 1 {O(1)}
t₂₈₃: 6⋅X₇+9 {O(n)}
t₂₈₄: 3⋅X₇+13 {O(n)}
t₂₈₅: 1 {O(1)}
t₂₈₆: 1 {O(1)}
t₂₈₇: 3⋅X₇+53 {O(n)}
t₂₈₈: 1 {O(1)}
t₂₈₉: 1 {O(1)}
t₂₉₀: 1 {O(1)}
t₂₉₁: 3⋅X₇+31 {O(n)}
t₂₉₂: 6⋅X₇+15 {O(n)}
t₂₉₃: 1 {O(1)}
t₂₉₄: 1 {O(1)}
t₂₉₅: 6⋅X₇+9 {O(n)}
t₂₉₆: 1 {O(1)}
t₂₉₇: 6⋅X₇+15 {O(n)}
t₂₉₈: 1 {O(1)}
t₂₉₉: 6⋅X₇+19 {O(n)}
t₃₀₀: 1 {O(1)}
t₃₀₁: 3⋅X₇+13 {O(n)}
t₃₀₂: 1 {O(1)}
t₃₀₃: 1 {O(1)}
t₃₀₄: 1 {O(1)}
t₃₀₅: 1 {O(1)}
t₃₀₆: 1 {O(1)}
t₃₀₇: 1 {O(1)}
t₃₀₈: 1 {O(1)}
t₃₀₉: 1 {O(1)}
t₃₁₀: 12⋅X₇+37 {O(n)}
t₃₁₁: 6⋅X₇+24 {O(n)}
t₃₁₂: 3⋅X₇+19 {O(n)}
t₃₁₃: 1 {O(1)}
t₃₁₄: 1 {O(1)}
t₃₁₅: 1 {O(1)}
t₃₁₆: 1 {O(1)}
t₃₁₇: 3⋅X₇+14 {O(n)}
t₃₁₈: 3⋅X₇+8 {O(n)}
t₃₁₉: 1 {O(1)}
t₃₂₀: 1 {O(1)}
t₃₂₁: 6⋅X₇+16 {O(n)}
t₃₂₂: 3⋅X₇+8 {O(n)}
t₃₂₃: 1 {O(1)}
t₃₂₄: 1 {O(1)}
t₃₈₀: 1 {O(1)}
t₃₈₁: 1 {O(1)}
t₃₈₂: 1 {O(1)}
t₃₂₅: 6⋅X₇+22 {O(n)}
t₃₈₄: 1 {O(1)}
t₃₂₆: 6⋅X₇+23 {O(n)}
t₃₂₇: 6⋅X₇+37 {O(n)}
t₃₂₈: 1 {O(1)}
t₃₈₈: 1 {O(1)}
t₃₂₉: 1 {O(1)}
t₃₃₀: 1 {O(1)}
t₃₃₁: 1 {O(1)}
t₃₃₂: 1 {O(1)}
t₃₉₃: 1 {O(1)}
t₃₃₃: 1 {O(1)}
t₃₃₄: 6⋅X₇+22 {O(n)}
Costbounds
Overall costbound: 138⋅X₇+610 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃: 1 {O(1)}
t₃₃₅: 1 {O(1)}
t₂₆₄: 1 {O(1)}
t₂₆₅: 1 {O(1)}
t₂₆₆: 6⋅X₇+26 {O(n)}
t₂₆₇: 1 {O(1)}
t₂₆₈: 1 {O(1)}
t₂₆₉: 3⋅X₇+9 {O(n)}
t₂₇₀: 6⋅X₇+10 {O(n)}
t₂₇₁: 1 {O(1)}
t₂₇₂: 1 {O(1)}
t₂₇₃: 1 {O(1)}
t₂₇₄: 3⋅X₇+11 {O(n)}
t₂₇₅: 1 {O(1)}
t₂₇₆: 1 {O(1)}
t₂₇₇: 6⋅X₇+21 {O(n)}
t₂₇₈: 3⋅X₇+10 {O(n)}
t₂₇₉: 1 {O(1)}
t₂₈₀: 9⋅X₇+61 {O(n)}
t₂₈₁: 1 {O(1)}
t₂₈₂: 1 {O(1)}
t₂₈₃: 6⋅X₇+9 {O(n)}
t₂₈₄: 3⋅X₇+13 {O(n)}
t₂₈₅: 1 {O(1)}
t₂₈₆: 1 {O(1)}
t₂₈₇: 3⋅X₇+53 {O(n)}
t₂₈₈: 1 {O(1)}
t₂₈₉: 1 {O(1)}
t₂₉₀: 1 {O(1)}
t₂₉₁: 3⋅X₇+31 {O(n)}
t₂₉₂: 6⋅X₇+15 {O(n)}
t₂₉₃: 1 {O(1)}
t₂₉₄: 1 {O(1)}
t₂₉₅: 6⋅X₇+9 {O(n)}
t₂₉₆: 1 {O(1)}
t₂₉₇: 6⋅X₇+15 {O(n)}
t₂₉₈: 1 {O(1)}
t₂₉₉: 6⋅X₇+19 {O(n)}
t₃₀₀: 1 {O(1)}
t₃₀₁: 3⋅X₇+13 {O(n)}
t₃₀₂: 1 {O(1)}
t₃₀₃: 1 {O(1)}
t₃₀₄: 1 {O(1)}
t₃₀₅: 1 {O(1)}
t₃₀₆: 1 {O(1)}
t₃₀₇: 1 {O(1)}
t₃₀₈: 1 {O(1)}
t₃₀₉: 1 {O(1)}
t₃₁₀: 12⋅X₇+37 {O(n)}
t₃₁₁: 6⋅X₇+24 {O(n)}
t₃₁₂: 3⋅X₇+19 {O(n)}
t₃₁₃: 1 {O(1)}
t₃₁₄: 1 {O(1)}
t₃₁₅: 1 {O(1)}
t₃₁₆: 1 {O(1)}
t₃₁₇: 3⋅X₇+14 {O(n)}
t₃₁₈: 3⋅X₇+8 {O(n)}
t₃₁₉: 1 {O(1)}
t₃₂₀: 1 {O(1)}
t₃₂₁: 6⋅X₇+16 {O(n)}
t₃₂₂: 3⋅X₇+8 {O(n)}
t₃₂₃: 1 {O(1)}
t₃₂₄: 1 {O(1)}
t₃₈₀: 1 {O(1)}
t₃₈₁: 1 {O(1)}
t₃₈₂: 1 {O(1)}
t₃₂₅: 6⋅X₇+22 {O(n)}
t₃₈₄: 1 {O(1)}
t₃₂₆: 6⋅X₇+23 {O(n)}
t₃₂₇: 6⋅X₇+37 {O(n)}
t₃₂₈: 1 {O(1)}
t₃₈₈: 1 {O(1)}
t₃₂₉: 1 {O(1)}
t₃₃₀: 1 {O(1)}
t₃₃₁: 1 {O(1)}
t₃₃₂: 1 {O(1)}
t₃₉₃: 1 {O(1)}
t₃₃₃: 1 {O(1)}
t₃₃₄: 6⋅X₇+22 {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: 1 {O(1)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₃₄, X₁: 12⋅2^(3⋅X₇+53)⋅X₇+2^(3⋅X₇+53)⋅354+2^(3⋅X₇+53)⋅6⋅X₇+X₁+12 {O(EXP)}
t₃₄, X₂: 12⋅2^(3⋅X₇+53)⋅X₇+2^(3⋅X₇+53)⋅372+2^(3⋅X₇+53)⋅6⋅X₇+X₂+17 {O(EXP)}
t₃₄, X₄: 24⋅2^(3⋅X₇+53)⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+2^(3⋅X₇+53)⋅608+30 {O(EXP)}
t₃₄, X₅: 24⋅2^(3⋅X₇+53)⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+2^(3⋅X₇+53)⋅608+X₅+29 {O(EXP)}
t₃₄, X₆: 24⋅2^(3⋅X₇+53)⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+2^(3⋅X₇+53)⋅608+X₆+29 {O(EXP)}
t₃₄, X₇: 7⋅X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: 1 {O(1)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃₃₅, X₀: X₀ {O(n)}
t₃₃₅, X₁: X₁ {O(n)}
t₃₃₅, X₂: X₂ {O(n)}
t₃₃₅, X₃: X₃ {O(n)}
t₃₃₅, X₄: 1 {O(1)}
t₃₃₅, X₅: X₅ {O(n)}
t₃₃₅, X₆: X₆ {O(n)}
t₃₃₅, X₇: X₇ {O(n)}
t₂₆₄, X₀: X₀ {O(n)}
t₂₆₄, X₁: 2 {O(1)}
t₂₆₄, X₂: 3 {O(1)}
t₂₆₄, X₄: 1 {O(1)}
t₂₆₄, X₅: 2 {O(1)}
t₂₆₄, X₆: 2 {O(1)}
t₂₆₄, X₇: 2 {O(1)}
t₂₆₅, X₁: 2 {O(1)}
t₂₆₅, X₂: 3 {O(1)}
t₂₆₅, X₄: 1 {O(1)}
t₂₆₅, X₅: 2 {O(1)}
t₂₆₅, X₆: 2 {O(1)}
t₂₆₅, X₇: X₇ {O(n)}
t₂₆₆, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₆₆, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₆₆, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₆₆, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₆₆, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₆₆, X₇: 3⋅X₇ {O(n)}
t₂₆₇, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₆₇, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₆₇, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₆₇, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₆₇, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₆₇, X₇: 3⋅X₇ {O(n)}
t₂₆₈, X₁: 2 {O(1)}
t₂₆₈, X₂: 3 {O(1)}
t₂₆₈, X₄: 1 {O(1)}
t₂₆₈, X₅: 1 {O(1)}
t₂₆₈, X₆: 3 {O(1)}
t₂₆₈, X₇: X₇ {O(n)}
t₂₆₉, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₆₉, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₆₉, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₆₉, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₆₉, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₆₉, X₇: 3⋅X₇ {O(n)}
t₂₇₀, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₀, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₇₀, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₇₀, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₀, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₇₀, X₇: 3⋅X₇ {O(n)}
t₂₇₁, X₁: 2 {O(1)}
t₂₇₁, X₂: 3 {O(1)}
t₂₇₁, X₄: 1 {O(1)}
t₂₇₁, X₅: 2 {O(1)}
t₂₇₁, X₆: 3 {O(1)}
t₂₇₁, X₇: X₇ {O(n)}
t₂₇₂, X₀: X₀ {O(n)}
t₂₇₂, X₁: 2 {O(1)}
t₂₇₂, X₂: 3 {O(1)}
t₂₇₂, X₄: 2 {O(1)}
t₂₇₂, X₅: 2 {O(1)}
t₂₇₂, X₆: 2 {O(1)}
t₂₇₂, X₇: 2 {O(1)}
t₂₇₃, X₁: 2 {O(1)}
t₂₇₃, X₂: 3 {O(1)}
t₂₇₃, X₄: 2 {O(1)}
t₂₇₃, X₅: 2 {O(1)}
t₂₇₃, X₆: 2 {O(1)}
t₂₇₃, X₇: X₇ {O(n)}
t₂₇₄, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₄, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₇₄, X₄: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₇₄, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₇₄, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₇₄, X₇: 3⋅X₇ {O(n)}
t₂₇₅, X₁: 2 {O(1)}
t₂₇₅, X₂: 3 {O(1)}
t₂₇₅, X₄: 3 {O(1)}
t₂₇₅, X₅: 1 {O(1)}
t₂₇₅, X₆: 3 {O(1)}
t₂₇₅, X₇: X₇ {O(n)}
t₂₇₆, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₆, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₇₆, X₄: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₆, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₆, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₆, X₇: 3⋅X₇ {O(n)}
t₂₇₇, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₇, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₇₇, X₄: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₇, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₇, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₇, X₇: 3⋅X₇ {O(n)}
t₂₇₈, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₈, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₇₈, X₄: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₇₈, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₇₈, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₇₈, X₇: 3⋅X₇ {O(n)}
t₂₇₉, X₁: 2 {O(1)}
t₂₇₉, X₂: 3 {O(1)}
t₂₇₉, X₄: 3 {O(1)}
t₂₇₉, X₅: 2 {O(1)}
t₂₇₉, X₆: 3 {O(1)}
t₂₇₉, X₇: X₇ {O(n)}
t₂₈₀, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₈₀, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₈₀, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₈₀, X₅: 12⋅2^(3⋅X₇+53)⋅X₇+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅301+13 {O(EXP)}
t₂₈₀, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₈₀, X₇: 3⋅X₇ {O(n)}
t₂₈₁, X₀: X₀ {O(n)}
t₂₈₁, X₁: 2 {O(1)}
t₂₈₁, X₂: 3 {O(1)}
t₂₈₁, X₃: X₃ {O(n)}
t₂₈₁, X₄: 1 {O(1)}
t₂₈₁, X₅: X₅ {O(n)}
t₂₈₁, X₆: X₆ {O(n)}
t₂₈₁, X₇: X₇ {O(n)}
t₂₈₂, X₀: X₀ {O(n)}
t₂₈₂, X₁: 2 {O(1)}
t₂₈₂, X₂: 3 {O(1)}
t₂₈₂, X₄: 1 {O(1)}
t₂₈₂, X₅: 1 {O(1)}
t₂₈₂, X₆: X₆ {O(n)}
t₂₈₂, X₇: X₇ {O(n)}
t₂₈₃, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₈₃, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₈₃, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₈₃, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₈₃, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₈₃, X₇: 3⋅X₇ {O(n)}
t₂₈₄, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₈₄, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₈₄, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₈₄, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₈₄, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₈₄, X₇: 3⋅X₇ {O(n)}
t₂₈₅, X₀: X₀ {O(n)}
t₂₈₅, X₁: 2 {O(1)}
t₂₈₅, X₂: 3 {O(1)}
t₂₈₅, X₄: 1 {O(1)}
t₂₈₅, X₅: 2 {O(1)}
t₂₈₅, X₆: X₆ {O(n)}
t₂₈₅, X₇: X₇ {O(n)}
t₂₈₆, X₁: 118⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅6⋅X₇+4 {O(EXP)}
t₂₈₆, X₂: 124⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅6⋅X₇+6 {O(EXP)}
t₂₈₆, X₄: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59+2 {O(EXP)}
t₂₈₆, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59+2 {O(EXP)}
t₂₈₆, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59+2 {O(EXP)}
t₂₈₆, X₇: 3⋅X₇+2 {O(n)}
t₂₈₇, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₈₇, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₈₇, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₈₇, X₅: 12⋅2^(3⋅X₇+53)⋅X₇+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅301+13 {O(EXP)}
t₂₈₇, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₈₇, X₇: 3⋅X₇ {O(n)}
t₂₈₈, X₁: 118⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅6⋅X₇+2 {O(EXP)}
t₂₈₈, X₂: 124⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅6⋅X₇+2 {O(EXP)}
t₂₈₈, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₈₈, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₈₈, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₈₈, X₇: 3⋅X₇ {O(n)}
t₂₈₉, X₀: X₀ {O(n)}
t₂₈₉, X₁: 2 {O(1)}
t₂₈₉, X₂: 3 {O(1)}
t₂₈₉, X₃: X₃ {O(n)}
t₂₈₉, X₄: 1 {O(1)}
t₂₈₉, X₅: X₅ {O(n)}
t₂₈₉, X₆: X₆ {O(n)}
t₂₈₉, X₇: X₇ {O(n)}
t₂₉₀, X₀: X₀ {O(n)}
t₂₉₀, X₁: 2 {O(1)}
t₂₉₀, X₂: 3 {O(1)}
t₂₉₀, X₃: X₃ {O(n)}
t₂₉₀, X₄: 1 {O(1)}
t₂₉₀, X₅: 1 {O(1)}
t₂₉₀, X₆: X₆ {O(n)}
t₂₉₀, X₇: 1 {O(1)}
t₂₉₁, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₉₁, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₉₁, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₉₁, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₉₁, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₉₁, X₇: 3⋅X₇ {O(n)}
t₂₉₂, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₉₂, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₉₂, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₉₂, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₉₂, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₉₂, X₇: 3⋅X₇ {O(n)}
t₂₉₃, X₀: X₀ {O(n)}
t₂₉₃, X₁: 2 {O(1)}
t₂₉₃, X₂: 3 {O(1)}
t₂₉₃, X₄: 1 {O(1)}
t₂₉₃, X₅: 1 {O(1)}
t₂₉₃, X₆: X₆ {O(n)}
t₂₉₃, X₇: X₇ {O(n)}
t₂₉₄, X₀: X₀ {O(n)}
t₂₉₄, X₁: 2 {O(1)}
t₂₉₄, X₂: 3 {O(1)}
t₂₉₄, X₄: 1 {O(1)}
t₂₉₄, X₅: 2 {O(1)}
t₂₉₄, X₆: X₆ {O(n)}
t₂₉₄, X₇: X₇ {O(n)}
t₂₉₅, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₉₅, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₉₅, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₉₅, X₅: 12⋅2^(3⋅X₇+53)⋅X₇+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅301+13 {O(EXP)}
t₂₉₅, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₉₅, X₇: 3⋅X₇ {O(n)}
t₂₉₆, X₀: X₀ {O(n)}
t₂₉₆, X₁: 2 {O(1)}
t₂₉₆, X₂: 3 {O(1)}
t₂₉₆, X₃: X₃ {O(n)}
t₂₉₆, X₄: 1 {O(1)}
t₂₉₆, X₅: X₅ {O(n)}
t₂₉₆, X₆: X₆ {O(n)}
t₂₉₆, X₇: X₇ {O(n)}
t₂₉₇, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₉₇, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₉₇, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₉₇, X₅: 12⋅2^(3⋅X₇+53)⋅X₇+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅301+13 {O(EXP)}
t₂₉₇, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₉₇, X₇: 3⋅X₇ {O(n)}
t₂₉₈, X₀: X₀ {O(n)}
t₂₉₈, X₁: 2 {O(1)}
t₂₉₈, X₂: 3 {O(1)}
t₂₉₈, X₄: 1 {O(1)}
t₂₉₈, X₅: X₅ {O(n)}
t₂₉₈, X₆: X₆ {O(n)}
t₂₉₈, X₇: X₇ {O(n)}
t₂₉₉, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₂₉₉, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₂₉₉, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₉₉, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₉₉, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₂₉₉, X₇: 3⋅X₇ {O(n)}
t₃₀₀, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₀₀, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₀₀, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₀₀, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₀₀, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₀₀, X₇: 3⋅X₇ {O(n)}
t₃₀₁, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₀₁, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₀₁, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₀₁, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₀₁, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₀₁, X₇: 3⋅X₇ {O(n)}
t₃₀₂, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₀₂, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₀₂, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₀₂, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₀₂, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₀₂, X₇: 3⋅X₇ {O(n)}
t₃₀₃, X₁: 12⋅2^(3⋅X₇+53)⋅X₇+236⋅2^(3⋅X₇+53)+6 {O(EXP)}
t₃₀₃, X₂: 12⋅2^(3⋅X₇+53)⋅X₇+248⋅2^(3⋅X₇+53)+8 {O(EXP)}
t₃₀₃, X₄: 12⋅2^(3⋅X₇+53)⋅X₇+242⋅2^(3⋅X₇+53)+10 {O(EXP)}
t₃₀₃, X₅: 12⋅2^(3⋅X₇+53)⋅X₇+242⋅2^(3⋅X₇+53)+10 {O(EXP)}
t₃₀₃, X₆: 12⋅2^(3⋅X₇+53)⋅X₇+242⋅2^(3⋅X₇+53)+10 {O(EXP)}
t₃₀₃, X₇: 6⋅X₇+2 {O(n)}
t₃₀₄, X₀: X₀ {O(n)}
t₃₀₄, X₁: 2 {O(1)}
t₃₀₄, X₂: 3 {O(1)}
t₃₀₄, X₄: 1 {O(1)}
t₃₀₄, X₅: 1 {O(1)}
t₃₀₄, X₆: X₆ {O(n)}
t₃₀₄, X₇: X₇ {O(n)}
t₃₀₅, X₀: X₀ {O(n)}
t₃₀₅, X₁: 2 {O(1)}
t₃₀₅, X₂: 3 {O(1)}
t₃₀₅, X₄: 1 {O(1)}
t₃₀₅, X₅: 1 {O(1)}
t₃₀₅, X₆: 1 {O(1)}
t₃₀₅, X₇: 2 {O(1)}
t₃₀₆, X₀: X₀ {O(n)}
t₃₀₆, X₁: 2 {O(1)}
t₃₀₆, X₂: 3 {O(1)}
t₃₀₆, X₄: 1 {O(1)}
t₃₀₆, X₅: 2 {O(1)}
t₃₀₆, X₆: X₆ {O(n)}
t₃₀₆, X₇: X₇ {O(n)}
t₃₀₇, X₀: X₀ {O(n)}
t₃₀₇, X₁: 2 {O(1)}
t₃₀₇, X₂: 3 {O(1)}
t₃₀₇, X₄: 1 {O(1)}
t₃₀₇, X₅: 2 {O(1)}
t₃₀₇, X₆: 2 {O(1)}
t₃₀₇, X₇: 2 {O(1)}
t₃₀₈, X₀: X₀ {O(n)}
t₃₀₈, X₁: 2 {O(1)}
t₃₀₈, X₂: 3 {O(1)}
t₃₀₈, X₃: X₃ {O(n)}
t₃₀₈, X₄: 1 {O(1)}
t₃₀₈, X₅: 1 {O(1)}
t₃₀₈, X₆: 1 {O(1)}
t₃₀₈, X₇: 1 {O(1)}
t₃₀₉, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₀₉, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₀₉, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₀₉, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₀₉, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₀₉, X₇: 3⋅X₇ {O(n)}
t₃₁₀, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₁₀, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₁₀, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₁₀, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₁₀, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₁₀, X₇: 3⋅X₇ {O(n)}
t₃₁₁, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₁₁, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₁₁, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₁₁, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₁₁, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₁₁, X₇: 3⋅X₇ {O(n)}
t₃₁₂, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₁₂, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₁₂, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₁₂, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₁₂, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₁₂, X₇: 3⋅X₇ {O(n)}
t₃₁₃, X₁: 2 {O(1)}
t₃₁₃, X₂: 3 {O(1)}
t₃₁₃, X₄: 1 {O(1)}
t₃₁₃, X₅: 2 {O(1)}
t₃₁₃, X₆: 2 {O(1)}
t₃₁₃, X₇: X₇ {O(n)}
t₃₁₄, X₁: 2 {O(1)}
t₃₁₄, X₂: 3 {O(1)}
t₃₁₄, X₄: 1 {O(1)}
t₃₁₄, X₅: 2 {O(1)}
t₃₁₄, X₆: 3 {O(1)}
t₃₁₄, X₇: X₇ {O(n)}
t₃₁₅, X₁: 2 {O(1)}
t₃₁₅, X₂: 3 {O(1)}
t₃₁₅, X₄: 1 {O(1)}
t₃₁₅, X₅: 1 {O(1)}
t₃₁₅, X₆: 1 {O(1)}
t₃₁₅, X₇: X₇ {O(n)}
t₃₁₆, X₁: 2 {O(1)}
t₃₁₆, X₂: 3 {O(1)}
t₃₁₆, X₄: 1 {O(1)}
t₃₁₆, X₅: 1 {O(1)}
t₃₁₆, X₆: 3 {O(1)}
t₃₁₆, X₇: X₇ {O(n)}
t₃₁₇, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₁₇, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₁₇, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₁₇, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₁₇, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₁₇, X₇: 3⋅X₇ {O(n)}
t₃₁₈, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₁₈, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₁₈, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₁₈, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₁₈, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₁₈, X₇: 3⋅X₇ {O(n)}
t₃₁₉, X₀: X₀ {O(n)}
t₃₁₉, X₁: 2 {O(1)}
t₃₁₉, X₂: 3 {O(1)}
t₃₁₉, X₄: 1 {O(1)}
t₃₁₉, X₅: 2 {O(1)}
t₃₁₉, X₆: X₆ {O(n)}
t₃₁₉, X₇: X₇ {O(n)}
t₃₂₀, X₀: X₀ {O(n)}
t₃₂₀, X₁: 2 {O(1)}
t₃₂₀, X₂: 3 {O(1)}
t₃₂₀, X₄: 1 {O(1)}
t₃₂₀, X₅: 1 {O(1)}
t₃₂₀, X₆: X₆ {O(n)}
t₃₂₀, X₇: X₇ {O(n)}
t₃₂₁, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₂₁, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₂₁, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₂₁, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₂₁, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₂₁, X₇: 3⋅X₇ {O(n)}
t₃₂₂, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₂₂, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₂₂, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₂₂, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₂₂, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₂₂, X₇: 3⋅X₇ {O(n)}
t₃₂₃, X₁: 2 {O(1)}
t₃₂₃, X₂: 3 {O(1)}
t₃₂₃, X₄: 1 {O(1)}
t₃₂₃, X₅: 2 {O(1)}
t₃₂₃, X₆: X₆ {O(n)}
t₃₂₃, X₇: X₇ {O(n)}
t₃₂₄, X₁: 2 {O(1)}
t₃₂₄, X₂: 3 {O(1)}
t₃₂₄, X₄: 1 {O(1)}
t₃₂₄, X₅: 1 {O(1)}
t₃₂₄, X₆: X₆ {O(n)}
t₃₂₄, X₇: X₇ {O(n)}
t₃₈₀, X₀: X₀ {O(n)}
t₃₈₀, X₁: 2 {O(1)}
t₃₈₀, X₂: 3 {O(1)}
t₃₈₀, X₃: X₃ {O(n)}
t₃₈₀, X₄: 1 {O(1)}
t₃₈₀, X₅: 1 {O(1)}
t₃₈₀, X₆: 1 {O(1)}
t₃₈₀, X₇: 1 {O(1)}
t₃₈₁, X₁: 12⋅2^(3⋅X₇+53)⋅X₇+236⋅2^(3⋅X₇+53)+6 {O(EXP)}
t₃₈₁, X₂: 12⋅2^(3⋅X₇+53)⋅X₇+248⋅2^(3⋅X₇+53)+8 {O(EXP)}
t₃₈₁, X₄: 12⋅2^(3⋅X₇+53)⋅X₇+242⋅2^(3⋅X₇+53)+10 {O(EXP)}
t₃₈₁, X₅: 12⋅2^(3⋅X₇+53)⋅X₇+242⋅2^(3⋅X₇+53)+10 {O(EXP)}
t₃₈₁, X₆: 12⋅2^(3⋅X₇+53)⋅X₇+242⋅2^(3⋅X₇+53)+10 {O(EXP)}
t₃₈₁, X₇: 6⋅X₇+2 {O(n)}
t₃₈₂, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₈₂, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₈₂, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₈₂, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₈₂, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₈₂, X₇: 3⋅X₇ {O(n)}
t₃₂₅, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₂₅, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₂₅, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₂₅, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₂₅, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₂₅, X₇: 3⋅X₇ {O(n)}
t₃₈₄, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₈₄, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₈₄, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₈₄, X₅: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₈₄, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₈₄, X₇: 3⋅X₇ {O(n)}
t₃₂₆, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₂₆, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₂₆, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₂₆, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₂₆, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₂₆, X₇: 3⋅X₇ {O(n)}
t₃₂₇, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₂₇, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₂₇, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₂₇, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₂₇, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₂₇, X₇: 3⋅X₇ {O(n)}
t₃₂₈, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₂₈, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₂₈, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₂₈, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₂₈, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₂₈, X₇: 3⋅X₇ {O(n)}
t₃₈₈, X₁: 2 {O(1)}
t₃₈₈, X₂: 3 {O(1)}
t₃₈₈, X₄: 1 {O(1)}
t₃₈₈, X₅: 1 {O(1)}
t₃₈₈, X₆: 1 {O(1)}
t₃₈₈, X₇: X₇ {O(n)}
t₃₂₉, X₁: 2 {O(1)}
t₃₂₉, X₂: 3 {O(1)}
t₃₂₉, X₄: 1 {O(1)}
t₃₂₉, X₅: 1 {O(1)}
t₃₂₉, X₆: 3 {O(1)}
t₃₂₉, X₇: X₇ {O(n)}
t₃₃₀, X₁: 2 {O(1)}
t₃₃₀, X₂: 3 {O(1)}
t₃₃₀, X₄: 1 {O(1)}
t₃₃₀, X₅: 2 {O(1)}
t₃₃₀, X₆: 2 {O(1)}
t₃₃₀, X₇: X₇ {O(n)}
t₃₃₁, X₁: 2 {O(1)}
t₃₃₁, X₂: 3 {O(1)}
t₃₃₁, X₄: 1 {O(1)}
t₃₃₁, X₅: 2 {O(1)}
t₃₃₁, X₆: 3 {O(1)}
t₃₃₁, X₇: X₇ {O(n)}
t₃₃₂, X₀: X₀ {O(n)}
t₃₃₂, X₁: 2 {O(1)}
t₃₃₂, X₂: 3 {O(1)}
t₃₃₂, X₄: 1 {O(1)}
t₃₃₂, X₅: 2 {O(1)}
t₃₃₂, X₆: 2 {O(1)}
t₃₃₂, X₇: 2 {O(1)}
t₃₉₃, X₀: X₀ {O(n)}
t₃₉₃, X₁: 2 {O(1)}
t₃₉₃, X₂: 3 {O(1)}
t₃₉₃, X₄: 1 {O(1)}
t₃₉₃, X₅: 1 {O(1)}
t₃₉₃, X₆: 1 {O(1)}
t₃₉₃, X₇: 2 {O(1)}
t₃₃₃, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59+2 {O(EXP)}
t₃₃₃, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62+3 {O(EXP)}
t₃₃₃, X₄: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59+2 {O(EXP)}
t₃₃₃, X₅: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59+2 {O(EXP)}
t₃₃₃, X₆: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59+2 {O(EXP)}
t₃₃₃, X₇: 3⋅X₇+2 {O(n)}
t₃₃₄, X₁: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅59 {O(EXP)}
t₃₃₄, X₂: 2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅62 {O(EXP)}
t₃₃₄, X₄: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₃₄, X₅: 12⋅2^(3⋅X₇+53)⋅X₇+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅301+13 {O(EXP)}
t₃₃₄, X₆: 183⋅2^(3⋅X₇+53)+2^(3⋅X₇+53)⋅3⋅X₇+2^(3⋅X₇+53)⋅6⋅X₇+8 {O(EXP)}
t₃₃₄, X₇: 3⋅X₇ {O(n)}