Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: X₀ < X₁
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: X₁ ≤ X₀
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆)
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, nondef.1, X₅, X₆)
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ < 0
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ 0 < X₂
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ X₂ < 0
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ 0 < X₂
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₃, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₃, X₃, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₄, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ < 0
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₄, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 < X₂
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₃, X₄, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 0 < X₁
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0
t₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)

Preprocessing

Cut unsatisfiable transition t₁₃: l5→l6

Cut unsatisfiable transition t₁₄: l5→l6

Cut unsatisfiable transition t₁₆: l5→l6

Cut unsatisfiable transition t₁₇: l5→l6

Cut unsatisfiable transition t₁₈: l5→l6

Cut unsatisfiable transition t₁₉: l5→l6

Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, nondef.1, X₅, X₆) :|: 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ < 0 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ 0 < X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₃, X₄, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 0 < X₁
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0
t₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)

Analysing control-flow refined program

Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___19

Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___6

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___1

Found invariant X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___16

Found invariant X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___18

Found invariant X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ for location l6

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___17

Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___11

Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___4

Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___3

Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___9

Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___2

Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l6___14

Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___5

Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___8

Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___12

Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___20

Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___21

Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___7

Found invariant 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___13

Found invariant 3 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 3 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3+X₃ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___10

Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁ for location n_l6___15

MPRF for transition t₁₂₁: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___10(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ < X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₅+3⋅X₆+16 {O(n)}

MPRF:

n_l3___12 [X₁+3 ]
n_l1___11 [X₁+3 ]
n_l3___5 [X₃+2 ]
n_l1___4 [X₃+2 ]
n_l4___10 [X₀+X₁+1-X₄ ]
n_l4___2 [X₁+2 ]
n_l4___3 [X₃+3 ]
n_l4___9 [3⋅X₁-2⋅X₃ ]
n_l5___7 [X₁+2 ]
n_l5___8 [2⋅X₀+1-X₃ ]
n_l6___14 [X₃+2 ]
n_l2___6 [X₀+2 ]
n_l6___15 [X₃+3 ]
n_l2___13 [X₁+3 ]

MPRF for transition t₁₂₂: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___9(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₆ {O(n)}

MPRF:

n_l3___12 [X₁ ]
n_l1___11 [X₁ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₀+X₁-X₄ ]
n_l4___2 [X₄-1 ]
n_l4___3 [X₀ ]
n_l4___9 [X₁-1 ]
n_l5___7 [X₁-1 ]
n_l5___8 [X₀ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₁ ]
n_l2___13 [X₃ ]

MPRF for transition t₁₂₅: n_l1___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___2(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₅+3⋅X₆ {O(n)}

MPRF:

n_l3___12 [X₁ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₀ ]
n_l4___10 [X₁ ]
n_l4___2 [X₀-1 ]
n_l4___3 [X₃+1 ]
n_l4___9 [X₃ ]
n_l5___7 [X₃ ]
n_l5___8 [X₀ ]
n_l6___14 [X₃ ]
n_l2___6 [X₀ ]
n_l6___15 [X₃ ]
n_l2___13 [X₁ ]

MPRF for transition t₁₂₆: n_l1___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___3(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ < X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₆+4⋅X₅ {O(n)}

MPRF:

n_l3___12 [X₁ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₀ ]
n_l4___10 [X₁ ]
n_l4___2 [X₀-1 ]
n_l4___3 [X₀-1 ]
n_l4___9 [X₁ ]
n_l5___7 [X₁-1 ]
n_l5___8 [X₃ ]
n_l6___14 [X₀ ]
n_l2___6 [X₀ ]
n_l6___15 [X₃ ]
n_l2___13 [X₁ ]

MPRF for transition t₁₂₇: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₆+4⋅X₅ {O(n)}

MPRF:

n_l3___12 [X₁-1 ]
n_l1___11 [X₁-1 ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₀ ]
n_l4___2 [X₀ ]
n_l4___3 [X₀ ]
n_l4___9 [X₃ ]
n_l5___7 [X₃ ]
n_l5___8 [X₀ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₃ ]
n_l2___13 [X₃ ]

MPRF for transition t₁₂₉: n_l2___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₅+3⋅X₆ {O(n)}

MPRF:

n_l3___12 [X₁ ]
n_l1___11 [X₁ ]
n_l3___5 [X₀-1 ]
n_l1___4 [X₃-1 ]
n_l4___10 [X₃ ]
n_l4___2 [X₀-1 ]
n_l4___3 [X₀-1 ]
n_l4___9 [X₁ ]
n_l5___7 [X₁-1 ]
n_l5___8 [X₃ ]
n_l6___14 [X₃ ]
n_l2___6 [X₃ ]
n_l6___15 [X₃ ]
n_l2___13 [X₃ ]

MPRF for transition t₁₃₀: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___11(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₆ {O(n)}

MPRF:

n_l3___12 [X₁ ]
n_l1___11 [X₃-1 ]
n_l3___5 [X₃ ]
n_l1___4 [X₃ ]
n_l4___10 [X₀ ]
n_l4___2 [X₀+X₁-X₄ ]
n_l4___3 [X₀ ]
n_l4___9 [X₁-1 ]
n_l5___7 [X₁-1 ]
n_l5___8 [X₀ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₁ ]
n_l2___13 [X₁ ]

MPRF for transition t₁₃₂: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___4(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

5⋅X₆+X₅ {O(n)}

MPRF:

n_l3___12 [X₃ ]
n_l1___11 [X₃ ]
n_l3___5 [X₃ ]
n_l1___4 [X₀-1 ]
n_l4___10 [X₃ ]
n_l4___2 [X₀-1 ]
n_l4___3 [X₃ ]
n_l4___9 [X₁ ]
n_l5___7 [X₁-1 ]
n_l5___8 [X₃ ]
n_l6___14 [X₃ ]
n_l2___6 [X₃ ]
n_l6___15 [X₁ ]
n_l2___13 [X₃ ]

MPRF for transition t₁₃₃: n_l4___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___8(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 3 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 3 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3+X₃ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

5⋅X₆+X₅ {O(n)}

MPRF:

n_l3___12 [X₁ ]
n_l1___11 [X₁ ]
n_l3___5 [X₃ ]
n_l1___4 [X₃ ]
n_l4___10 [X₁ ]
n_l4___2 [X₀ ]
n_l4___3 [X₀ ]
n_l4___9 [X₃ ]
n_l5___7 [2⋅X₁-X₃-2 ]
n_l5___8 [X₃ ]
n_l6___14 [X₃ ]
n_l2___6 [X₀ ]
n_l6___15 [X₁ ]
n_l2___13 [X₁ ]

MPRF for transition t₁₃₆: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___7(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₆ {O(n)}

MPRF:

n_l3___12 [X₁ ]
n_l1___11 [X₁ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₁ ]
n_l4___2 [X₃+1 ]
n_l4___3 [X₀ ]
n_l4___9 [X₁ ]
n_l5___7 [X₁-1 ]
n_l5___8 [X₃ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₁ ]
n_l2___13 [X₃ ]

MPRF for transition t₁₃₇: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___8(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: 1+X₃ < X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₆+4⋅X₅ {O(n)}

MPRF:

n_l3___12 [X₃ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₁+X₄-X₃-1 ]
n_l4___2 [X₁ ]
n_l4___3 [X₃+1 ]
n_l4___9 [X₁ ]
n_l5___7 [X₁ ]
n_l5___8 [X₀-1 ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₃ ]
n_l2___13 [X₁ ]

MPRF for transition t₁₃₈: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___7(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₆ {O(n)}

MPRF:

n_l3___12 [X₃ ]
n_l1___11 [X₃ ]
n_l3___5 [X₃ ]
n_l1___4 [X₀-1 ]
n_l4___10 [X₁ ]
n_l4___2 [X₁-1 ]
n_l4___3 [X₀-1 ]
n_l4___9 [X₁ ]
n_l5___7 [X₃ ]
n_l5___8 [X₃ ]
n_l6___14 [X₀ ]
n_l2___6 [X₃ ]
n_l6___15 [X₁ ]
n_l2___13 [X₃ ]

MPRF for transition t₁₄₅: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₃, X₄, 0, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₆+6 {O(n)}

MPRF:

n_l3___12 [X₁+1 ]
n_l1___11 [X₃+1 ]
n_l3___5 [X₀+1 ]
n_l1___4 [X₀+1 ]
n_l4___10 [X₀+X₁-X₃ ]
n_l4___2 [X₀+X₃+2-X₄ ]
n_l4___3 [X₀ ]
n_l4___9 [2⋅X₀+X₃+2-2⋅X₄ ]
n_l5___7 [X₃+2 ]
n_l5___8 [X₀ ]
n_l6___14 [X₀+1 ]
n_l2___6 [X₃+1 ]
n_l6___15 [X₁+1 ]
n_l2___13 [X₃+1 ]

MPRF for transition t₁₄₆: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < 0 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₅+3⋅X₆ {O(n)}

MPRF:

n_l3___12 [X₀+X₁-X₄ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₀+X₁-X₄ ]
n_l4___2 [X₀ ]
n_l4___3 [X₀ ]
n_l4___9 [X₁ ]
n_l5___7 [X₃+1 ]
n_l5___8 [X₀ ]
n_l6___14 [X₃ ]
n_l2___6 [X₀ ]
n_l6___15 [X₃ ]
n_l2___13 [X₀+X₁-X₄ ]

MPRF for transition t₁₄₇: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₅+6⋅X₆ {O(n)}

MPRF:

n_l3___12 [X₁ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₁+X₄-X₃-1 ]
n_l4___2 [X₀+X₄-X₃-1 ]
n_l4___3 [X₀ ]
n_l4___9 [X₁ ]
n_l5___7 [X₁ ]
n_l5___8 [X₀ ]
n_l6___14 [2⋅X₃-X₀ ]
n_l2___6 [X₀ ]
n_l6___15 [X₁ ]
n_l2___13 [X₁ ]

MPRF for transition t₁₄₈: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₃, X₄, 0, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₆+8⋅X₅+2 {O(n)}

MPRF:

n_l3___12 [2⋅X₃ ]
n_l1___11 [2⋅X₁ ]
n_l3___5 [2⋅X₀+2⋅X₁-2⋅X₄ ]
n_l1___4 [2⋅X₁+2⋅X₃-2⋅X₄ ]
n_l4___10 [2⋅X₁+2⋅X₄-2⋅X₃-2 ]
n_l4___2 [2⋅X₀+2⋅X₁-2⋅X₄ ]
n_l4___3 [2⋅X₀ ]
n_l4___9 [2⋅X₁ ]
n_l5___7 [2⋅X₁ ]
n_l5___8 [2⋅X₀ ]
n_l6___14 [2⋅X₀+1 ]
n_l2___6 [2⋅X₁+2⋅X₃-2⋅X₄ ]
n_l6___15 [2⋅X₃ ]
n_l2___13 [2⋅X₁ ]

MPRF for transition t₁₄₉: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < 0 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

14⋅X₆+6⋅X₅+2 {O(n)}

MPRF:

n_l3___12 [X₁+X₆ ]
n_l1___11 [X₁+X₆ ]
n_l3___5 [X₃+X₆ ]
n_l1___4 [X₀+X₄+X₆-X₁ ]
n_l4___10 [X₀+X₁+X₆-X₄ ]
n_l4___2 [X₀+X₄+X₆-X₃-1 ]
n_l4___3 [2⋅X₁+X₃+X₆+1-2⋅X₄ ]
n_l4___9 [X₁+X₆ ]
n_l5___7 [2⋅X₁+X₆-X₃-1 ]
n_l5___8 [X₃+X₆+1 ]
n_l6___14 [X₀+X₆+1 ]
n_l2___6 [X₃+X₆ ]
n_l6___15 [2⋅X₃+X₆-X₁ ]
n_l2___13 [X₃+X₆ ]

MPRF for transition t₁₅₀: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₅+4⋅X₆+2 {O(n)}

MPRF:

n_l3___12 [X₃ ]
n_l1___11 [X₃ ]
n_l3___5 [X₀+1 ]
n_l1___4 [X₃+1 ]
n_l4___10 [X₀+X₁-X₄ ]
n_l4___2 [X₀ ]
n_l4___3 [X₃+X₄+2-X₁ ]
n_l4___9 [X₃+1 ]
n_l5___7 [X₃+1 ]
n_l5___8 [X₃+2 ]
n_l6___14 [X₀+1 ]
n_l2___6 [X₃+1 ]
n_l6___15 [X₁ ]
n_l2___13 [X₁ ]

MPRF for transition t₁₅₁: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ of depth 1:

new bound:

3⋅X₅+3⋅X₆+2 {O(n)}

MPRF:

n_l3___12 [X₁ ]
n_l1___11 [X₃ ]
n_l3___5 [X₃ ]
n_l1___4 [X₃ ]
n_l4___10 [X₀ ]
n_l4___2 [X₀ ]
n_l4___3 [X₃+1 ]
n_l4___9 [X₁ ]
n_l5___7 [X₃+1 ]
n_l5___8 [X₃+1 ]
n_l6___14 [X₃+1 ]
n_l2___6 [X₀ ]
n_l6___15 [X₃ ]
n_l2___13 [X₁ ]

MPRF for transition t₁₅₂: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 0 < X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁ of depth 1:

new bound:

2⋅X₆+4⋅X₅+4 {O(n)}

MPRF:

n_l3___12 [X₃ ]
n_l1___11 [X₁ ]
n_l3___5 [X₀ ]
n_l1___4 [X₃ ]
n_l4___10 [X₁ ]
n_l4___2 [X₁ ]
n_l4___3 [X₃+1 ]
n_l4___9 [X₁ ]
n_l5___7 [X₁ ]
n_l5___8 [X₃+1 ]
n_l6___14 [X₀ ]
n_l2___6 [X₀ ]
n_l6___15 [X₃+1 ]
n_l2___13 [X₃ ]

CFR: Improvement to new bound with the following program:

new bound:

63⋅X₅+81⋅X₆+34 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: Arg3_P, NoDet0
Locations: l0, l6, l7, l8, l9, n_l1___11, n_l1___19, n_l1___4, n_l2___13, n_l2___21, n_l2___6, n_l3___12, n_l3___20, n_l3___5, n_l4___10, n_l4___17, n_l4___18, n_l4___2, n_l4___3, n_l4___9, n_l5___1, n_l5___16, n_l5___7, n_l5___8, n_l6___14, n_l6___15
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₁₅₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ 0 < X₀ ∧ 0 < X₁ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂₁: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___10(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ < X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₂: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___9(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₃: n_l1___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___17(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₄: n_l1___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___18(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ < X₁ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₅: n_l1___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___2(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₆: n_l1___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___3(X₀, X₁, X₂, X₀-1, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ < X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₇: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₈: n_l2___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₉: n_l2___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₀: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___11(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₁: n_l3___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___19(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₂: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___4(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₃: n_l4___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___8(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 3 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 3 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3+X₃ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₃₄: n_l4___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___1(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₃+1 ≤ X₆ ∧ X₆ ≤ 1+X₃ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₅: n_l4___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___16(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₃₆: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___7(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₇: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___8(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: 1+X₃ < X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₃₈: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___7(X₀, X₁, X₂, Arg3_P, NoDet0, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+Arg3_P ≤ X₁ ∧ 1+Arg3_P ≤ X₀ ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₉: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₃, X₄, 0, X₃, X₄, X₅, X₆) :|: 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₃+1 ≤ X₆ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₀: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₃+1 ≤ X₆ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₁: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₃+1 ≤ X₆ ∧ X₆ ≤ 1+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₂: n_l5___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₃, X₄, 0, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₄₃: n_l5___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < 0 ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₄₄: n_l5___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₄₅: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₃, X₄, 0, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₆: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < 0 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₇: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₄₈: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₃, X₄, 0, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₄₉: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ < 0 ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₅₀: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₄, X₃, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₇₂: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₇₄: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₇₆: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₇₈: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₈₀: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₈₂: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₅₁: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₁₇₃: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
t₁₇₅: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
t₁₇₇: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
t₁₇₉: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
t₁₈₁: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
t₁₈₃: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁
t₁₅₂: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 0 < X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₁

All Bounds

Timebounds

Overall timebound:63⋅X₅+81⋅X₆+64 {O(n)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₅₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂₁: 1 {O(1)}
t₁₂₁: 3⋅X₅+3⋅X₆+16 {O(n)}
t₁₂₂: 2⋅X₅+4⋅X₆ {O(n)}
t₁₂₃: 1 {O(1)}
t₁₂₄: 1 {O(1)}
t₁₂₅: 3⋅X₅+3⋅X₆ {O(n)}
t₁₂₆: 2⋅X₆+4⋅X₅ {O(n)}
t₁₂₇: 2⋅X₆+4⋅X₅ {O(n)}
t₁₂₈: 1 {O(1)}
t₁₂₉: 3⋅X₅+3⋅X₆ {O(n)}
t₁₃₀: 2⋅X₅+4⋅X₆ {O(n)}
t₁₃₁: 1 {O(1)}
t₁₃₂: 5⋅X₆+X₅ {O(n)}
t₁₃₃: 5⋅X₆+X₅ {O(n)}
t₁₃₄: 1 {O(1)}
t₁₃₅: 1 {O(1)}
t₁₃₆: 2⋅X₅+4⋅X₆ {O(n)}
t₁₃₇: 2⋅X₆+4⋅X₅ {O(n)}
t₁₃₈: 2⋅X₅+4⋅X₆ {O(n)}
t₁₃₉: 1 {O(1)}
t₁₄₀: 1 {O(1)}
t₁₄₁: 1 {O(1)}
t₁₄₂: 1 {O(1)}
t₁₄₃: 1 {O(1)}
t₁₄₄: 1 {O(1)}
t₁₄₅: 2⋅X₅+4⋅X₆+6 {O(n)}
t₁₄₆: 3⋅X₅+3⋅X₆ {O(n)}
t₁₄₇: 4⋅X₅+6⋅X₆ {O(n)}
t₁₄₈: 4⋅X₆+8⋅X₅+2 {O(n)}
t₁₄₉: 14⋅X₆+6⋅X₅+2 {O(n)}
t₁₅₀: 2⋅X₅+4⋅X₆+2 {O(n)}
t₁₅₁: 3⋅X₅+3⋅X₆+2 {O(n)}
t₁₇₂: 1 {O(1)}
t₁₇₄: 1 {O(1)}
t₁₇₆: 1 {O(1)}
t₁₇₈: 1 {O(1)}
t₁₈₀: 1 {O(1)}
t₁₈₂: 1 {O(1)}
t₁₅₂: 2⋅X₆+4⋅X₅+4 {O(n)}
t₁₇₃: 1 {O(1)}
t₁₇₅: 1 {O(1)}
t₁₇₇: 1 {O(1)}
t₁₇₉: 1 {O(1)}
t₁₈₁: 1 {O(1)}
t₁₈₃: 1 {O(1)}

Costbounds

Overall costbound: 63⋅X₅+81⋅X₆+64 {O(n)}
t₀: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₁₅₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂₁: 1 {O(1)}
t₁₂₁: 3⋅X₅+3⋅X₆+16 {O(n)}
t₁₂₂: 2⋅X₅+4⋅X₆ {O(n)}
t₁₂₃: 1 {O(1)}
t₁₂₄: 1 {O(1)}
t₁₂₅: 3⋅X₅+3⋅X₆ {O(n)}
t₁₂₆: 2⋅X₆+4⋅X₅ {O(n)}
t₁₂₇: 2⋅X₆+4⋅X₅ {O(n)}
t₁₂₈: 1 {O(1)}
t₁₂₉: 3⋅X₅+3⋅X₆ {O(n)}
t₁₃₀: 2⋅X₅+4⋅X₆ {O(n)}
t₁₃₁: 1 {O(1)}
t₁₃₂: 5⋅X₆+X₅ {O(n)}
t₁₃₃: 5⋅X₆+X₅ {O(n)}
t₁₃₄: 1 {O(1)}
t₁₃₅: 1 {O(1)}
t₁₃₆: 2⋅X₅+4⋅X₆ {O(n)}
t₁₃₇: 2⋅X₆+4⋅X₅ {O(n)}
t₁₃₈: 2⋅X₅+4⋅X₆ {O(n)}
t₁₃₉: 1 {O(1)}
t₁₄₀: 1 {O(1)}
t₁₄₁: 1 {O(1)}
t₁₄₂: 1 {O(1)}
t₁₄₃: 1 {O(1)}
t₁₄₄: 1 {O(1)}
t₁₄₅: 2⋅X₅+4⋅X₆+6 {O(n)}
t₁₄₆: 3⋅X₅+3⋅X₆ {O(n)}
t₁₄₇: 4⋅X₅+6⋅X₆ {O(n)}
t₁₄₈: 4⋅X₆+8⋅X₅+2 {O(n)}
t₁₄₉: 14⋅X₆+6⋅X₅+2 {O(n)}
t₁₅₀: 2⋅X₅+4⋅X₆+2 {O(n)}
t₁₅₁: 3⋅X₅+3⋅X₆+2 {O(n)}
t₁₇₂: 1 {O(1)}
t₁₇₄: 1 {O(1)}
t₁₇₆: 1 {O(1)}
t₁₇₈: 1 {O(1)}
t₁₈₀: 1 {O(1)}
t₁₈₂: 1 {O(1)}
t₁₅₂: 2⋅X₆+4⋅X₅+4 {O(n)}
t₁₇₃: 1 {O(1)}
t₁₇₅: 1 {O(1)}
t₁₇₇: 1 {O(1)}
t₁₇₉: 1 {O(1)}
t₁₈₁: 1 {O(1)}
t₁₈₃: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₃, X₀: X₅ {O(n)}
t₃, X₁: X₆ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₄, X₀: X₅ {O(n)}
t₄, X₁: X₆ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₁₅₃, X₀: X₅ {O(n)}
t₁₅₃, X₁: X₆ {O(n)}
t₁₅₃, X₂: X₂ {O(n)}
t₁₅₃, X₃: X₃ {O(n)}
t₁₅₃, X₄: X₄ {O(n)}
t₁₅₃, X₅: X₅ {O(n)}
t₁₅₃, X₆: X₆ {O(n)}
t₁, X₀: X₅ {O(n)}
t₁, X₁: X₆ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂₁, X₅: 8⋅X₅ {O(n)}
t₂₁, X₆: 8⋅X₆ {O(n)}
t₁₂₁, X₅: 6⋅X₅ {O(n)}
t₁₂₁, X₆: 6⋅X₆ {O(n)}
t₁₂₂, X₅: 6⋅X₅ {O(n)}
t₁₂₂, X₆: 6⋅X₆ {O(n)}
t₁₂₃, X₀: X₅ {O(n)}
t₁₂₃, X₁: X₆ {O(n)}
t₁₂₃, X₃: X₆ {O(n)}
t₁₂₃, X₄: X₄ {O(n)}
t₁₂₃, X₅: X₅ {O(n)}
t₁₂₃, X₆: X₆ {O(n)}
t₁₂₄, X₀: X₅ {O(n)}
t₁₂₄, X₁: X₆ {O(n)}
t₁₂₄, X₃: X₅ {O(n)}
t₁₂₄, X₄: X₄ {O(n)}
t₁₂₄, X₅: X₅ {O(n)}
t₁₂₄, X₆: X₆ {O(n)}
t₁₂₅, X₅: 6⋅X₅ {O(n)}
t₁₂₅, X₆: 6⋅X₆ {O(n)}
t₁₂₆, X₅: 6⋅X₅ {O(n)}
t₁₂₆, X₆: 6⋅X₆ {O(n)}
t₁₂₇, X₅: 6⋅X₅ {O(n)}
t₁₂₇, X₆: 6⋅X₆ {O(n)}
t₁₂₈, X₀: X₅ {O(n)}
t₁₂₈, X₁: X₆ {O(n)}
t₁₂₈, X₂: X₂ {O(n)}
t₁₂₈, X₃: X₃ {O(n)}
t₁₂₈, X₄: X₄ {O(n)}
t₁₂₈, X₅: X₅ {O(n)}
t₁₂₈, X₆: X₆ {O(n)}
t₁₂₉, X₂: 0 {O(1)}
t₁₂₉, X₅: 6⋅X₅ {O(n)}
t₁₂₉, X₆: 6⋅X₆ {O(n)}
t₁₃₀, X₅: 6⋅X₅ {O(n)}
t₁₃₀, X₆: 6⋅X₆ {O(n)}
t₁₃₁, X₀: X₅ {O(n)}
t₁₃₁, X₁: X₆ {O(n)}
t₁₃₁, X₃: X₃ {O(n)}
t₁₃₁, X₄: X₄ {O(n)}
t₁₃₁, X₅: X₅ {O(n)}
t₁₃₁, X₆: X₆ {O(n)}
t₁₃₂, X₅: 6⋅X₅ {O(n)}
t₁₃₂, X₆: 6⋅X₆ {O(n)}
t₁₃₃, X₅: 6⋅X₅ {O(n)}
t₁₃₃, X₆: 6⋅X₆ {O(n)}
t₁₃₄, X₀: X₅ {O(n)}
t₁₃₄, X₁: X₆ {O(n)}
t₁₃₄, X₃: X₆ {O(n)}
t₁₃₄, X₅: X₅ {O(n)}
t₁₃₄, X₆: X₆ {O(n)}
t₁₃₅, X₀: X₅ {O(n)}
t₁₃₅, X₁: X₆ {O(n)}
t₁₃₅, X₃: X₅ {O(n)}
t₁₃₅, X₅: X₅ {O(n)}
t₁₃₅, X₆: X₆ {O(n)}
t₁₃₆, X₅: 6⋅X₅ {O(n)}
t₁₃₆, X₆: 6⋅X₆ {O(n)}
t₁₃₇, X₅: 6⋅X₅ {O(n)}
t₁₃₇, X₆: 6⋅X₆ {O(n)}
t₁₃₈, X₅: 6⋅X₅ {O(n)}
t₁₃₈, X₆: 6⋅X₆ {O(n)}
t₁₃₉, X₀: X₅ {O(n)}
t₁₃₉, X₂: 0 {O(1)}
t₁₃₉, X₃: X₆ {O(n)}
t₁₃₉, X₅: X₅ {O(n)}
t₁₃₉, X₆: X₆ {O(n)}
t₁₄₀, X₁: X₆ {O(n)}
t₁₄₀, X₃: X₆ {O(n)}
t₁₄₀, X₅: X₅ {O(n)}
t₁₄₀, X₆: X₆ {O(n)}
t₁₄₁, X₁: X₆ {O(n)}
t₁₄₁, X₃: X₆ {O(n)}
t₁₄₁, X₅: X₅ {O(n)}
t₁₄₁, X₆: X₆ {O(n)}
t₁₄₂, X₀: X₅ {O(n)}
t₁₄₂, X₂: 0 {O(1)}
t₁₄₂, X₃: X₅ {O(n)}
t₁₄₂, X₅: X₅ {O(n)}
t₁₄₂, X₆: X₆ {O(n)}
t₁₄₃, X₁: X₆ {O(n)}
t₁₄₃, X₃: X₅ {O(n)}
t₁₄₃, X₅: X₅ {O(n)}
t₁₄₃, X₆: X₆ {O(n)}
t₁₄₄, X₁: X₆ {O(n)}
t₁₄₄, X₃: X₅ {O(n)}
t₁₄₄, X₅: X₅ {O(n)}
t₁₄₄, X₆: X₆ {O(n)}
t₁₄₅, X₂: 0 {O(1)}
t₁₄₅, X₅: 6⋅X₅ {O(n)}
t₁₄₅, X₆: 6⋅X₆ {O(n)}
t₁₄₆, X₅: 6⋅X₅ {O(n)}
t₁₄₆, X₆: 6⋅X₆ {O(n)}
t₁₄₇, X₅: 6⋅X₅ {O(n)}
t₁₄₇, X₆: 6⋅X₆ {O(n)}
t₁₄₈, X₂: 0 {O(1)}
t₁₄₈, X₅: 6⋅X₅ {O(n)}
t₁₄₈, X₆: 6⋅X₆ {O(n)}
t₁₄₉, X₅: 6⋅X₅ {O(n)}
t₁₄₉, X₆: 6⋅X₆ {O(n)}
t₁₅₀, X₅: 6⋅X₅ {O(n)}
t₁₅₀, X₆: 6⋅X₆ {O(n)}
t₁₅₁, X₂: 0 {O(1)}
t₁₅₁, X₅: 6⋅X₅ {O(n)}
t₁₅₁, X₆: 6⋅X₆ {O(n)}
t₁₇₂, X₀: 0 {O(1)}
t₁₇₂, X₂: 0 {O(1)}
t₁₇₂, X₃: 0 {O(1)}
t₁₇₂, X₅: 14⋅X₅ {O(n)}
t₁₇₂, X₆: 14⋅X₆ {O(n)}
t₁₇₄, X₂: 0 {O(1)}
t₁₇₄, X₅: 14⋅X₅ {O(n)}
t₁₇₄, X₆: 14⋅X₆ {O(n)}
t₁₇₆, X₀: 0 {O(1)}
t₁₇₆, X₂: 0 {O(1)}
t₁₇₆, X₃: 0 {O(1)}
t₁₇₆, X₅: 14⋅X₅ {O(n)}
t₁₇₆, X₆: 14⋅X₆ {O(n)}
t₁₇₈, X₂: 0 {O(1)}
t₁₇₈, X₅: 14⋅X₅ {O(n)}
t₁₇₈, X₆: 14⋅X₆ {O(n)}
t₁₈₀, X₀: 0 {O(1)}
t₁₈₀, X₂: 0 {O(1)}
t₁₈₀, X₃: 0 {O(1)}
t₁₈₀, X₅: 14⋅X₅ {O(n)}
t₁₈₀, X₆: 14⋅X₆ {O(n)}
t₁₈₂, X₂: 0 {O(1)}
t₁₈₂, X₅: 14⋅X₅ {O(n)}
t₁₈₂, X₆: 14⋅X₆ {O(n)}
t₁₅₂, X₅: 6⋅X₅ {O(n)}
t₁₅₂, X₆: 6⋅X₆ {O(n)}
t₁₇₃, X₅: 28⋅X₅ {O(n)}
t₁₇₃, X₆: 28⋅X₆ {O(n)}
t₁₇₅, X₁: 0 {O(1)}
t₁₇₅, X₃: 0 {O(1)}
t₁₇₅, X₅: 28⋅X₅ {O(n)}
t₁₇₅, X₆: 28⋅X₆ {O(n)}
t₁₇₇, X₅: 28⋅X₅ {O(n)}
t₁₇₇, X₆: 28⋅X₆ {O(n)}
t₁₇₉, X₁: 0 {O(1)}
t₁₇₉, X₃: 0 {O(1)}
t₁₇₉, X₅: 28⋅X₅ {O(n)}
t₁₇₉, X₆: 28⋅X₆ {O(n)}
t₁₈₁, X₅: 28⋅X₅ {O(n)}
t₁₈₁, X₆: 28⋅X₆ {O(n)}
t₁₈₃, X₁: 0 {O(1)}
t₁₈₃, X₃: 0 {O(1)}
t₁₈₃, X₅: 28⋅X₅ {O(n)}
t₁₈₃, X₆: 28⋅X₆ {O(n)}