Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇)
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇)
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < 0
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 0
t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₃ ∧ 0 ≤ X₅
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₂, X₄, 0, X₆, X₇)
t₂₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁
t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆)
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: X₀ ≤ 0
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇)
Preprocessing
Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l11
Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l2
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l6
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l7
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l5
Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l13
Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l8
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l1
Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10
Found invariant 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l4
Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l9
Found invariant 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l3
Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₂, X₄, 0, X₆, X₇)
t₂₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆) :|: 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
MPRF for transition t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF:
l11 [X₃+1 ]
l10 [X₃+1 ]
l4 [X₃ ]
l3 [X₃+1 ]
l1 [X₄+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₃+1 ]
l8 [X₃+1 ]
l9 [X₃+1 ]
l2 [X₃+1 ]
MPRF for transition t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF:
l11 [X₃+1 ]
l10 [X₃+1 ]
l4 [X₃ ]
l3 [X₃+1 ]
l1 [X₄+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₃+1 ]
l8 [X₃+1 ]
l9 [X₃+1 ]
l2 [X₃+1 ]
MPRF for transition t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆) :|: 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF:
l11 [X₃+1 ]
l10 [X₃+1 ]
l4 [X₃+1 ]
l3 [X₃+1 ]
l1 [X₄+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₃+1 ]
l8 [X₃+1 ]
l9 [X₃+1 ]
l2 [X₃+1 ]
MPRF for transition t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF:
l11 [X₃+1 ]
l10 [X₃ ]
l4 [X₃ ]
l3 [X₃ ]
l1 [X₄+1 ]
l6 [X₃+1 ]
l7 [X₃+1 ]
l5 [X₃+1 ]
l8 [X₃ ]
l9 [X₃ ]
l2 [X₃ ]
MPRF for transition t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+7⋅X₂+6 {O(n^2)}
MPRF:
l11 [2⋅X₂+3 ]
l10 [X₂+X₃+2-X₆ ]
l4 [X₂+X₃+2-X₆ ]
l3 [X₂+X₃+2-X₆ ]
l1 [2⋅X₂+3 ]
l6 [2⋅X₂+3 ]
l7 [2⋅X₂+3 ]
l5 [2⋅X₂+3 ]
l8 [X₂+X₃+2-X₆ ]
l9 [X₂+X₃+2-X₆ ]
l2 [X₂+X₃+2-X₆ ]
MPRF for transition t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+5⋅X₂+2 {O(n^2)}
MPRF:
l11 [2⋅X₂+1 ]
l10 [X₂+X₃-X₆ ]
l4 [X₂+X₃+1-X₆ ]
l3 [X₂+X₃+1-X₆ ]
l1 [2⋅X₂+1 ]
l6 [2⋅X₂+1 ]
l7 [2⋅X₂+1 ]
l5 [2⋅X₂+1 ]
l8 [X₂+X₃+1-X₆ ]
l9 [X₂+X₃+1-X₆ ]
l2 [X₂+X₃+1-X₆ ]
MPRF for transition t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
7⋅X₂⋅X₂+22⋅X₂+12 {O(n^2)}
MPRF:
l11 [3⋅X₂+2⋅X₃+2 ]
l10 [3⋅X₂+2⋅X₃+1-X₆ ]
l4 [3⋅X₂+2⋅X₃+1-X₆ ]
l3 [3⋅X₂+2⋅X₃+2-X₆ ]
l1 [3⋅X₂+2⋅X₄+2 ]
l6 [3⋅X₂+2⋅X₃+2 ]
l7 [3⋅X₂+2⋅X₃+2 ]
l5 [3⋅X₂+2⋅X₃+2 ]
l8 [3⋅X₂+2⋅X₃+1-X₆ ]
l9 [3⋅X₂+2⋅X₃+1-X₆ ]
l2 [3⋅X₂+2⋅X₃+1-X₆ ]
MPRF for transition t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
5⋅X₂⋅X₂+17⋅X₂+10 {O(n^2)}
MPRF:
l11 [X₂+2⋅X₃+1 ]
l10 [X₂+2⋅X₃-X₆ ]
l4 [X₂+2⋅X₃-X₆ ]
l3 [X₂+2⋅X₃+1-X₆ ]
l1 [X₂+2⋅X₄+1 ]
l6 [X₂+2⋅X₃+1 ]
l7 [X₂+2⋅X₃+1 ]
l5 [X₂+2⋅X₃+1 ]
l8 [X₂+2⋅X₃+1-X₆ ]
l9 [X₂+2⋅X₃-X₆ ]
l2 [X₂+2⋅X₃-X₆ ]
MPRF for transition t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₂⋅X₂+21⋅X₂+14 {O(n^2)}
MPRF:
l11 [2⋅X₂+2⋅X₃+3 ]
l10 [2⋅X₂+2⋅X₃+1-X₆ ]
l4 [2⋅X₂+2⋅X₃+1-X₆ ]
l3 [2⋅X₂+2⋅X₃+2-X₆ ]
l1 [2⋅X₂+2⋅X₄+3 ]
l6 [2⋅X₂+2⋅X₃+3 ]
l7 [2⋅X₂+2⋅X₃+3 ]
l5 [2⋅X₂+2⋅X₃+3 ]
l8 [2⋅X₂+2⋅X₃+2-X₆ ]
l9 [2⋅X₂+2⋅X₃+2-X₆ ]
l2 [2⋅X₂+2⋅X₃+1-X₆ ]
MPRF for transition t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
12⋅X₂⋅X₂⋅X₂⋅X₂+84⋅X₂⋅X₂⋅X₂+229⋅X₂⋅X₂+287⋅X₂+127 {O(n^4)}
MPRF:
l11 [X₅+1 ]
l10 [X₆+2 ]
l2 [X₆+2 ]
l4 [X₆+1 ]
l3 [X₆+1 ]
l1 [X₇+1 ]
l6 [X₅+1 ]
l7 [X₅+1 ]
l5 [X₅+1 ]
l8 [X₆+1 ]
l9 [X₆+1 ]
MPRF for transition t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ of depth 1:
new bound:
12⋅X₂⋅X₂⋅X₂⋅X₂+84⋅X₂⋅X₂⋅X₂+223⋅X₂⋅X₂+266⋅X₂+113 {O(n^4)}
MPRF:
l11 [X₅+1 ]
l10 [X₆+1 ]
l2 [X₆+1 ]
l4 [X₆ ]
l3 [X₆ ]
l1 [X₇ ]
l6 [X₅ ]
l7 [X₅ ]
l5 [X₅ ]
l8 [X₆ ]
l9 [X₆ ]
MPRF for transition t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
12⋅X₂⋅X₂⋅X₂⋅X₂+84⋅X₂⋅X₂⋅X₂+223⋅X₂⋅X₂+266⋅X₂+113 {O(n^4)}
MPRF:
l11 [X₅+1 ]
l10 [X₆+1 ]
l2 [X₆+1 ]
l4 [X₆ ]
l3 [X₆ ]
l1 [X₇ ]
l6 [X₅+1 ]
l7 [X₅+1 ]
l5 [X₅+1 ]
l8 [X₆ ]
l9 [X₆ ]
MPRF for transition t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
12⋅X₂⋅X₂⋅X₂⋅X₂+84⋅X₂⋅X₂⋅X₂+223⋅X₂⋅X₂+266⋅X₂+113 {O(n^4)}
MPRF:
l11 [X₅+1 ]
l10 [X₆+1 ]
l2 [X₆+1 ]
l4 [X₆ ]
l3 [X₆ ]
l1 [X₇ ]
l6 [X₅+1 ]
l7 [X₅ ]
l5 [X₅ ]
l8 [X₆ ]
l9 [X₆ ]
MPRF for transition t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
12⋅X₂⋅X₂⋅X₂⋅X₂+84⋅X₂⋅X₂⋅X₂+223⋅X₂⋅X₂+266⋅X₂+113 {O(n^4)}
MPRF:
l11 [X₅+1 ]
l10 [X₆+1 ]
l2 [X₆+1 ]
l4 [X₆ ]
l3 [X₆ ]
l1 [X₇ ]
l6 [X₅+1 ]
l7 [X₅+1 ]
l5 [X₅ ]
l8 [X₆ ]
l9 [X₆ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₄: l11→l13
Cut unsatisfiable transition t₁₆₂: n_l11___7→l13
Found invariant X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ for location l11
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location n_l6___3
Found invariant X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 for location n_l6___6
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location n_l5___1
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l2___7
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l5___9
Found invariant X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___1
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ 2+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 2+X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l11___12
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___6
Found invariant X₆ ≤ 1+X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l9___3
Found invariant X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 for location n_l1___8
Found invariant X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l2___2
Found invariant X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location n_l5___4
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 for location n_l11___7
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l6___11
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location n_l7___2
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l8___9
Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l13
Found invariant X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___4
Found invariant X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l1
Found invariant 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l4
Found invariant X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 for location n_l7___5
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l9___8
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l3
Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l14
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___12(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₅ ∧ X₃ ≤ 1+X₄ ∧ X₅ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ 1+X₄ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ 1 ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₃₆: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ 2+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 2+X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₄₄: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₄₇: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___9(NoDet0, X₁, Arg2_P, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ Arg5_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₄₃: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₆₀: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
MPRF for transition t₁₈₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF:
l1 [X₄+1 ]
n_l11___12 [X₃+1 ]
n_l11___7 [X₄+1 ]
n_l10___1 [X₃ ]
n_l10___6 [X₃ ]
n_l3___5 [X₃ ]
l4 [X₃ ]
n_l1___8 [X₄+1 ]
l3 [X₃+1 ]
n_l6___11 [X₄+X₅+2-X₇ ]
n_l6___6 [X₄+1 ]
n_l7___10 [X₃+X₅+2-X₆ ]
n_l5___9 [X₄+1 ]
n_l7___5 [X₄+1 ]
n_l5___4 [X₄+X₇-X₅ ]
n_l8___4 [X₃ ]
n_l8___9 [X₃ ]
n_l9___3 [X₃ ]
n_l2___2 [X₃ ]
n_l9___8 [X₃ ]
n_l2___7 [X₃ ]
MPRF for transition t₁₈₄: n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
MPRF:
l1 [0 ]
n_l11___12 [0 ]
n_l11___7 [X₂ ]
n_l10___1 [X₂+1-X₆ ]
n_l10___6 [X₂ ]
n_l3___5 [X₂+1-X₆ ]
l4 [0 ]
n_l1___8 [X₂ ]
n_l5___9 [X₂ ]
l3 [X₂ ]
n_l6___11 [0 ]
n_l7___10 [0 ]
n_l6___6 [X₂ ]
n_l7___5 [X₂ ]
n_l5___4 [X₂ ]
n_l8___4 [X₂+1-X₆ ]
n_l8___9 [X₂ ]
n_l9___3 [X₂+1-X₆ ]
n_l2___2 [X₂+1-X₆ ]
n_l9___8 [X₂ ]
n_l2___7 [X₂ ]
MPRF for transition t₁₈₅: n_l10___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF:
l1 [X₃ ]
n_l11___12 [X₄+1 ]
n_l11___7 [X₄+X₇-X₅ ]
n_l10___1 [X₃ ]
n_l10___6 [X₃+1 ]
n_l3___5 [X₃ ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃+1 ]
n_l6___11 [X₃+1 ]
n_l6___6 [X₃+X₇-X₅ ]
n_l7___10 [X₃+1 ]
n_l5___9 [X₄+X₆+1-X₇ ]
n_l7___5 [X₄+1 ]
n_l5___4 [X₄+1 ]
n_l8___4 [X₃ ]
n_l8___9 [X₃+1 ]
n_l9___3 [X₃ ]
n_l2___2 [X₃ ]
n_l9___8 [X₃+1 ]
n_l2___7 [X₃+1 ]
MPRF for transition t₁₃₈: n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 of depth 1:
new bound:
2⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+35⋅X₂+16 {O(n^3)}
MPRF:
l1 [X₂+X₃+X₇-X₆-1 ]
n_l11___12 [X₂+X₄+X₇-X₆ ]
n_l11___7 [X₂+X₃+X₇+1 ]
n_l10___1 [X₂+X₃-1 ]
n_l10___6 [X₂+X₃-1 ]
n_l3___5 [X₂+X₃-1 ]
l4 [X₂+X₃-1 ]
n_l1___8 [X₂+X₃+X₇+1 ]
n_l5___9 [X₂+X₄+X₇ ]
l3 [X₂+X₃ ]
n_l6___11 [X₂+X₄+X₅+1-X₆ ]
n_l7___10 [X₂+X₃+X₅+1-X₆ ]
n_l6___6 [X₂+X₄+X₇ ]
n_l7___5 [X₂+X₃+X₇ ]
n_l5___4 [X₂+X₄+X₇ ]
n_l8___4 [X₂+X₃-1 ]
n_l8___9 [X₂+X₃ ]
n_l9___3 [X₂+X₃-1 ]
n_l2___2 [X₂+X₃-1 ]
n_l9___8 [X₂+X₃ ]
n_l2___7 [X₂+X₃-1 ]
MPRF for transition t₁₄₀: n_l1___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___7(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₅ ∧ X₃ ≤ 1+X₄ ∧ X₅ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 of depth 1:
new bound:
2⋅X₂⋅X₂⋅X₂+9⋅X₂⋅X₂+14⋅X₂+9 {O(n^3)}
MPRF:
l1 [1-X₀ ]
n_l11___12 [1-X₀ ]
n_l11___7 [X₇ ]
n_l10___1 [0 ]
n_l10___6 [0 ]
n_l3___5 [0 ]
l4 [1-X₀ ]
n_l1___8 [X₅+1 ]
n_l5___9 [X₇ ]
l3 [X₅+1 ]
n_l6___11 [1-X₀ ]
n_l7___10 [1-X₀ ]
n_l6___6 [X₇ ]
n_l7___5 [X₅+1 ]
n_l5___4 [X₅+1 ]
n_l8___4 [0 ]
n_l8___9 [X₅+1 ]
n_l9___3 [0 ]
n_l2___2 [0 ]
n_l9___8 [0 ]
n_l2___7 [0 ]
MPRF for transition t₁₈₆: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 0 < X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
MPRF:
l1 [X₂-1 ]
n_l11___12 [X₂-1 ]
n_l11___7 [2⋅X₂ ]
n_l10___1 [2⋅X₂-X₆ ]
n_l10___6 [2⋅X₂ ]
n_l3___5 [2⋅X₂+1-X₆ ]
l4 [X₂-1 ]
n_l1___8 [2⋅X₂ ]
n_l5___9 [2⋅X₂ ]
l3 [2⋅X₂ ]
n_l6___11 [X₂-1 ]
n_l7___10 [X₂-1 ]
n_l6___6 [2⋅X₂ ]
n_l7___5 [2⋅X₂ ]
n_l5___4 [2⋅X₂ ]
n_l8___4 [2⋅X₂+1-X₆ ]
n_l8___9 [2⋅X₂ ]
n_l9___3 [2⋅X₂+1-X₆ ]
n_l2___2 [2⋅X₂+1-X₆ ]
n_l9___8 [2⋅X₂ ]
n_l2___7 [2⋅X₂ ]
MPRF for transition t₂₀₁: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF:
l1 [X₄+1 ]
n_l11___12 [X₃+1 ]
n_l11___7 [X₄+1 ]
n_l10___1 [X₃+1 ]
n_l10___6 [X₃+1 ]
n_l3___5 [X₃+1 ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃+1 ]
n_l6___11 [X₄+1 ]
n_l6___6 [X₃+1 ]
n_l7___10 [X₃+1 ]
n_l5___9 [X₄+X₇+1-X₆ ]
n_l7___5 [X₃+1 ]
n_l5___4 [X₄+1 ]
n_l8___4 [X₃+1 ]
n_l8___9 [X₃+1 ]
n_l9___3 [X₃+1 ]
n_l2___2 [X₃+1 ]
n_l9___8 [X₃+1 ]
n_l2___7 [X₃+1 ]
MPRF for transition t₁₈₇: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 0 < X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF:
l1 [X₄+1 ]
n_l11___12 [X₄+1 ]
n_l11___7 [X₄+1 ]
n_l10___1 [X₃ ]
n_l10___6 [X₃ ]
n_l3___5 [X₃ ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃+1 ]
n_l6___11 [X₃+X₅+2-X₆ ]
n_l6___6 [X₄+1 ]
n_l7___10 [X₄+X₅+2-X₆ ]
n_l5___9 [X₄+X₇+1-X₆ ]
n_l7___5 [X₃+1 ]
n_l5___4 [X₄+X₇-X₅ ]
n_l8___4 [X₃ ]
n_l8___9 [X₃+1 ]
n_l9___3 [X₃ ]
n_l2___2 [X₃ ]
n_l9___8 [X₃+X₆+1-X₅ ]
n_l2___7 [X₃+1 ]
MPRF for transition t₂₀₂: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF:
l1 [X₄+X₆+1-X₇ ]
n_l11___12 [X₃+X₆+1-X₇ ]
n_l11___7 [X₃+X₇-X₅ ]
n_l10___1 [X₃ ]
n_l10___6 [X₃ ]
n_l3___5 [X₃ ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃+1 ]
n_l6___11 [X₃+X₅+2-X₇ ]
n_l6___6 [X₄+X₇-X₅ ]
n_l7___10 [X₄+X₅+2-X₆ ]
n_l5___9 [X₄+X₇+1-X₆ ]
n_l7___5 [X₃+X₇-X₅ ]
n_l5___4 [X₄+X₇-X₅ ]
n_l8___4 [X₃ ]
n_l8___9 [X₃+1 ]
n_l9___3 [X₃ ]
n_l2___2 [X₃ ]
n_l9___8 [X₃+1 ]
n_l2___7 [X₃+X₅+1-X₆ ]
MPRF for transition t₁₈₉: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
6⋅X₂⋅X₂⋅X₂+29⋅X₂⋅X₂+46⋅X₂+21 {O(n^3)}
MPRF:
l1 [0 ]
n_l11___12 [0 ]
n_l11___7 [X₂ ]
n_l10___1 [X₂-X₆ ]
n_l10___6 [X₂ ]
n_l3___5 [X₂+1-X₆ ]
l4 [0 ]
n_l1___8 [X₂ ]
n_l5___9 [X₂+X₆-X₇ ]
l3 [X₂ ]
n_l6___11 [0 ]
n_l7___10 [0 ]
n_l6___6 [X₂ ]
n_l7___5 [X₂ ]
n_l5___4 [X₂ ]
n_l8___4 [X₂-X₆ ]
n_l8___9 [X₂ ]
n_l9___3 [X₂-X₆ ]
n_l2___2 [X₂-X₆ ]
n_l9___8 [X₂ ]
n_l2___7 [X₂ ]
MPRF for transition t₂₀₃: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF:
l1 [X₃ ]
n_l11___12 [X₃+X₇-X₅ ]
n_l11___7 [X₄+X₇-X₅ ]
n_l10___1 [X₃+1 ]
n_l10___6 [X₃+1 ]
n_l3___5 [X₃+1 ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃+1 ]
n_l6___11 [X₃+1 ]
n_l6___6 [X₃+X₇-X₅ ]
n_l7___10 [X₃+1 ]
n_l5___9 [X₄+X₇+1-X₆ ]
n_l7___5 [X₄+X₇-X₅ ]
n_l5___4 [X₄+X₇-X₅ ]
n_l8___4 [X₃+1 ]
n_l8___9 [X₃+1 ]
n_l9___3 [X₃+1 ]
n_l2___2 [X₃+1 ]
n_l9___8 [X₃+1 ]
n_l2___7 [X₃+1 ]
MPRF for transition t₁₄₂: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
4⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+28⋅X₂+15 {O(n^3)}
MPRF:
l1 [X₇-X₀-X₂ ]
n_l11___12 [X₆-X₀-X₂ ]
n_l11___7 [X₇ ]
n_l10___1 [1-X₀ ]
n_l10___6 [1-X₀ ]
n_l3___5 [1-X₀ ]
l4 [X₆-X₀-X₂ ]
n_l1___8 [X₇ ]
n_l5___9 [X₆ ]
l3 [X₅+1 ]
n_l6___11 [2⋅X₅+2-X₀-X₂-X₆ ]
n_l7___10 [2⋅X₅+2-X₀-X₂-X₇ ]
n_l6___6 [X₇ ]
n_l7___5 [X₇ ]
n_l5___4 [X₇ ]
n_l8___4 [1-X₀ ]
n_l8___9 [X₅+1 ]
n_l9___3 [1-X₀ ]
n_l2___2 [1-X₀ ]
n_l9___8 [X₅ ]
n_l2___7 [1-X₀ ]
MPRF for transition t₁₅₉: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
2⋅X₂+1 {O(n)}
MPRF:
l1 [X₄+1 ]
n_l11___12 [X₃+1 ]
n_l11___7 [X₃+1 ]
n_l10___1 [X₃ ]
n_l10___6 [X₃ ]
n_l3___5 [X₃ ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃ ]
n_l6___11 [X₃+X₆+1-X₇ ]
n_l6___6 [X₄+1 ]
n_l7___10 [X₄+X₆-X₅ ]
n_l5___9 [X₄+1 ]
n_l7___5 [X₃+1 ]
n_l5___4 [X₄+1 ]
n_l8___4 [X₃ ]
n_l8___9 [X₃ ]
n_l9___3 [X₃ ]
n_l2___2 [X₃ ]
n_l9___8 [X₃ ]
n_l2___7 [X₃ ]
MPRF for transition t₁₄₆: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 of depth 1:
new bound:
4⋅X₂⋅X₂⋅X₂+20⋅X₂⋅X₂+32⋅X₂+14 {O(n^3)}
MPRF:
l1 [X₇-1 ]
n_l11___12 [X₇-1 ]
n_l11___7 [X₂+X₇ ]
n_l10___1 [X₂ ]
n_l10___6 [X₂ ]
n_l3___5 [X₂ ]
l4 [X₆-1 ]
n_l1___8 [X₂+X₇ ]
n_l5___9 [X₂+X₆ ]
l3 [X₂+X₅ ]
n_l6___11 [X₅ ]
n_l7___10 [X₅ ]
n_l6___6 [X₂+X₇ ]
n_l7___5 [X₂+X₇-1 ]
n_l5___4 [X₂+X₅ ]
n_l8___4 [X₂ ]
n_l8___9 [X₂+X₅ ]
n_l9___3 [X₂ ]
n_l2___2 [X₂ ]
n_l9___8 [X₂+X₅ ]
n_l2___7 [X₂+X₆ ]
MPRF for transition t₁₄₉: n_l7___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___4(NoDet0, X₁, Arg2_P, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ Arg5_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 of depth 1:
new bound:
4⋅X₂⋅X₂⋅X₂+20⋅X₂⋅X₂+32⋅X₂+16 {O(n^3)}
MPRF:
l1 [X₆ ]
n_l11___12 [X₆ ]
n_l11___7 [X₂+X₇+1 ]
n_l10___1 [X₂+1 ]
n_l10___6 [X₂+1 ]
n_l3___5 [X₂+1 ]
l4 [X₆ ]
n_l1___8 [X₂+X₅+1 ]
n_l5___9 [X₂+X₆ ]
l3 [X₂+X₅+1 ]
n_l6___11 [X₅+1 ]
n_l7___10 [X₅+1 ]
n_l6___6 [X₂+X₇+1 ]
n_l7___5 [X₂+X₇+1 ]
n_l5___4 [X₂+X₅+1 ]
n_l8___4 [X₂+1 ]
n_l8___9 [X₂+X₅+1 ]
n_l9___3 [X₂+1 ]
n_l2___2 [X₂+1 ]
n_l9___8 [X₂+1 ]
n_l2___7 [X₂+1 ]
MPRF for transition t₁₉₀: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
MPRF:
l1 [X₂-X₆ ]
n_l11___12 [X₂-X₇ ]
n_l11___7 [X₂ ]
n_l10___1 [X₂-X₆ ]
n_l10___6 [X₂ ]
n_l3___5 [X₂+1-X₆ ]
l4 [X₂-X₆ ]
n_l1___8 [X₂ ]
n_l5___9 [X₂ ]
l3 [X₂ ]
n_l6___11 [X₂-X₇ ]
n_l7___10 [X₂-X₆ ]
n_l6___6 [X₂ ]
n_l7___5 [X₂ ]
n_l5___4 [X₂ ]
n_l8___4 [X₂+1-X₆ ]
n_l8___9 [X₂ ]
n_l9___3 [X₂-X₆ ]
n_l2___2 [X₂-X₆ ]
n_l9___8 [X₂ ]
n_l2___7 [X₂ ]
MPRF for transition t₁₉₁: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+4 {O(n)}
MPRF:
l1 [X₄+2 ]
n_l11___12 [X₄+X₅+3-X₇ ]
n_l11___7 [X₃+2 ]
n_l10___1 [X₃+1 ]
n_l10___6 [X₃+1 ]
n_l3___5 [X₃+1 ]
l4 [X₃+1 ]
n_l1___8 [X₃+2 ]
l3 [X₃+2 ]
n_l6___11 [X₃+X₅+3-X₇ ]
n_l6___6 [X₄+2 ]
n_l7___10 [X₃+X₅+X₆+3-2⋅X₇ ]
n_l5___9 [X₄+X₆+2-X₇ ]
n_l7___5 [X₃+2 ]
n_l5___4 [X₄+2 ]
n_l8___4 [X₃+1 ]
n_l8___9 [X₃+2 ]
n_l9___3 [X₃+1 ]
n_l2___2 [X₃+1 ]
n_l9___8 [X₃+1 ]
n_l2___7 [X₃+1 ]
MPRF for transition t₁₉₂: n_l9___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___2(X₀, NoDet0, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg5_P ∧ Arg6_P ≤ X₂ ∧ Arg5_P ≤ Arg6_P ∧ 1 ≤ X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
MPRF:
l1 [X₂-1 ]
n_l11___12 [X₂-1 ]
n_l11___7 [2⋅X₂ ]
n_l10___1 [2⋅X₂-X₆-1 ]
n_l10___6 [2⋅X₂ ]
n_l3___5 [2⋅X₂-X₆ ]
l4 [X₂-1 ]
n_l1___8 [2⋅X₂ ]
n_l5___9 [2⋅X₂ ]
l3 [2⋅X₂ ]
n_l6___11 [X₂-1 ]
n_l7___10 [X₂+X₅-X₇ ]
n_l6___6 [2⋅X₂ ]
n_l7___5 [2⋅X₂ ]
n_l5___4 [2⋅X₂ ]
n_l8___4 [2⋅X₂-X₆ ]
n_l8___9 [2⋅X₂ ]
n_l9___3 [2⋅X₂-X₆ ]
n_l2___2 [2⋅X₂-X₆-1 ]
n_l9___8 [2⋅X₂ ]
n_l2___7 [2⋅X₂ ]
MPRF for transition t₁₉₃: n_l9___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___7(X₀, NoDet0, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg5_P ∧ Arg6_P ≤ X₂ ∧ Arg5_P ≤ Arg6_P ∧ 1 ≤ X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF:
l1 [X₄+1 ]
n_l11___12 [X₄+X₅+2-X₇ ]
n_l11___7 [X₃+1 ]
n_l10___1 [X₃ ]
n_l10___6 [X₃ ]
n_l3___5 [X₃ ]
l4 [X₃ ]
n_l1___8 [X₃+1 ]
l3 [X₃+1 ]
n_l6___11 [X₄+X₅+2-X₆ ]
n_l6___6 [X₄+1 ]
n_l7___10 [X₃+X₅+2-X₇ ]
n_l5___9 [X₄+X₆+1-X₇ ]
n_l7___5 [X₃+1 ]
n_l5___4 [X₄+1 ]
n_l8___4 [X₃ ]
n_l8___9 [X₃+1 ]
n_l9___3 [X₃ ]
n_l2___2 [X₃ ]
n_l9___8 [X₃+1 ]
n_l2___7 [X₃+X₆-X₅ ]
knowledge_propagation leads to new time bound 2⋅X₂⋅X₂+6⋅X₂+2 {O(n^2)} for transition t₁₈₉: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
CFR: Improvement to new bound with the following program:
new bound:
16⋅X₂⋅X₂⋅X₂+99⋅X₂⋅X₂+197⋅X₂+99 {O(n^3)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: Arg2_P, Arg3_P, Arg5_P, Arg6_P, NoDet0
Locations: l0, l1, l11, l12, l13, l14, l3, l4, n_l10___1, n_l10___6, n_l11___12, n_l11___7, n_l1___8, n_l2___2, n_l2___7, n_l3___5, n_l5___1, n_l5___4, n_l5___9, n_l6___11, n_l6___3, n_l6___6, n_l7___10, n_l7___2, n_l7___5, n_l8___4, n_l8___9, n_l9___3, n_l9___8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___12(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₅ ∧ X₃ ≤ 1+X₄ ∧ X₅ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ 1+X₄ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ 1 ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₁₃₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₂, X₄, 0, X₆, X₇)
t₂₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₈₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆) :|: 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₈₄: n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₈₅: n_l10___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₆₁: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ 2+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 2+X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₆₃: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ 2+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 2+X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₃₆: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ 2+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 2+X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₆₄: n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0
t₁₃₈: n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0
t₁₄₀: n_l1___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___7(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₅ ∧ X₃ ≤ 1+X₄ ∧ X₅ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0
t₂₀₁: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₈₆: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 0 < X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂₀₂: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₈₇: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l10___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ 0 < X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂₀₃: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₈₉: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₅₈: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₄₁: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₅₉: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₁₄₂: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₁₆₀: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₄₃: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₀ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₄₄: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₅: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₄₆: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0
t₁₄₇: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___9(NoDet0, X₁, Arg2_P, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ Arg5_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄₈: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___1(NoDet0, X₁, Arg2_P, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ Arg5_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₄₉: n_l7___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___4(NoDet0, X₁, Arg2_P, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ Arg5_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0
t₁₉₀: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₉₁: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l9___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₉₂: n_l9___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___2(X₀, NoDet0, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg5_P ∧ Arg6_P ≤ X₂ ∧ Arg5_P ≤ Arg6_P ∧ 1 ≤ X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₉₃: n_l9___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___7(X₀, NoDet0, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ Arg5_P ∧ Arg6_P ≤ X₂ ∧ Arg5_P ≤ Arg6_P ∧ 1 ≤ X₀ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
All Bounds
Timebounds
Overall timebound:16⋅X₂⋅X₂⋅X₂+99⋅X₂⋅X₂+197⋅X₂+111 {O(n^3)}
t₀: 1 {O(1)}
t₁₃₉: X₂+1 {O(n)}
t₃: 1 {O(1)}
t₁₃₇: 1 {O(1)}
t₁: 1 {O(1)}
t₂₀: 1 {O(1)}
t₁₁: X₂+1 {O(n)}
t₁₈₈: 2⋅X₂+2 {O(n)}
t₁₈: X₂+1 {O(n)}
t₁₈₄: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
t₁₈₅: 2⋅X₂+2 {O(n)}
t₁₃₆: X₂+1 {O(n)}
t₁₆₁: 1 {O(1)}
t₁₆₃: 1 {O(1)}
t₁₃₈: 2⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+35⋅X₂+16 {O(n^3)}
t₁₆₄: 1 {O(1)}
t₁₄₀: 2⋅X₂⋅X₂⋅X₂+9⋅X₂⋅X₂+14⋅X₂+9 {O(n^3)}
t₁₈₆: 4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
t₂₀₁: 2⋅X₂+2 {O(n)}
t₁₈₇: 2⋅X₂+2 {O(n)}
t₂₀₂: 2⋅X₂+2 {O(n)}
t₁₈₉: 2⋅X₂⋅X₂+6⋅X₂+2 {O(n^2)}
t₂₀₃: 2⋅X₂+2 {O(n)}
t₁₄₁: 1 {O(1)}
t₁₅₈: 1 {O(1)}
t₁₄₂: 4⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+28⋅X₂+15 {O(n^3)}
t₁₅₉: 2⋅X₂+1 {O(n)}
t₁₄₃: X₂+1 {O(n)}
t₁₆₀: X₂+1 {O(n)}
t₁₄₄: X₂+1 {O(n)}
t₁₄₅: 1 {O(1)}
t₁₄₆: 4⋅X₂⋅X₂⋅X₂+20⋅X₂⋅X₂+32⋅X₂+14 {O(n^3)}
t₁₄₇: X₂+1 {O(n)}
t₁₄₈: 1 {O(1)}
t₁₄₉: 4⋅X₂⋅X₂⋅X₂+20⋅X₂⋅X₂+32⋅X₂+16 {O(n^3)}
t₁₉₀: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
t₁₉₁: 2⋅X₂+4 {O(n)}
t₁₉₂: 4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
t₁₉₃: 2⋅X₂+2 {O(n)}
Costbounds
Overall costbound: 16⋅X₂⋅X₂⋅X₂+99⋅X₂⋅X₂+197⋅X₂+111 {O(n^3)}
t₀: 1 {O(1)}
t₁₃₉: X₂+1 {O(n)}
t₃: 1 {O(1)}
t₁₃₇: 1 {O(1)}
t₁: 1 {O(1)}
t₂₀: 1 {O(1)}
t₁₁: X₂+1 {O(n)}
t₁₈₈: 2⋅X₂+2 {O(n)}
t₁₈: X₂+1 {O(n)}
t₁₈₄: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
t₁₈₅: 2⋅X₂+2 {O(n)}
t₁₃₆: X₂+1 {O(n)}
t₁₆₁: 1 {O(1)}
t₁₆₃: 1 {O(1)}
t₁₃₈: 2⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+35⋅X₂+16 {O(n^3)}
t₁₆₄: 1 {O(1)}
t₁₄₀: 2⋅X₂⋅X₂⋅X₂+9⋅X₂⋅X₂+14⋅X₂+9 {O(n^3)}
t₁₈₆: 4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
t₂₀₁: 2⋅X₂+2 {O(n)}
t₁₈₇: 2⋅X₂+2 {O(n)}
t₂₀₂: 2⋅X₂+2 {O(n)}
t₁₈₉: 2⋅X₂⋅X₂+6⋅X₂+2 {O(n^2)}
t₂₀₃: 2⋅X₂+2 {O(n)}
t₁₄₁: 1 {O(1)}
t₁₅₈: 1 {O(1)}
t₁₄₂: 4⋅X₂⋅X₂⋅X₂+18⋅X₂⋅X₂+28⋅X₂+15 {O(n^3)}
t₁₅₉: 2⋅X₂+1 {O(n)}
t₁₄₃: X₂+1 {O(n)}
t₁₆₀: X₂+1 {O(n)}
t₁₄₄: X₂+1 {O(n)}
t₁₄₅: 1 {O(1)}
t₁₄₆: 4⋅X₂⋅X₂⋅X₂+20⋅X₂⋅X₂+32⋅X₂+14 {O(n^3)}
t₁₄₇: X₂+1 {O(n)}
t₁₄₈: 1 {O(1)}
t₁₄₉: 4⋅X₂⋅X₂⋅X₂+20⋅X₂⋅X₂+32⋅X₂+16 {O(n^3)}
t₁₉₀: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
t₁₉₁: 2⋅X₂+4 {O(n)}
t₁₉₂: 4⋅X₂⋅X₂+8⋅X₂ {O(n^2)}
t₁₉₃: 2⋅X₂+2 {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁₃₉, X₂: 2⋅X₂ {O(n)}
t₁₃₉, X₃: 2⋅X₂+1 {O(n)}
t₁₃₉, X₄: 7⋅X₂+8 {O(n)}
t₁₃₉, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₃₉, X₆: 8⋅X₂⋅X₂+24⋅X₂+12 {O(n^2)}
t₁₃₉, X₇: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₂ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: 0 {O(1)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₁₃₇, X₀: X₀ {O(n)}
t₁₃₇, X₁: X₁ {O(n)}
t₁₃₇, X₂: X₂ {O(n)}
t₁₃₇, X₃: X₂ {O(n)}
t₁₃₇, X₄: X₄ {O(n)}
t₁₃₇, X₅: 0 {O(1)}
t₁₃₇, X₆: X₆ {O(n)}
t₁₃₇, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₂ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: 0 {O(1)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂₀, X₂: 7⋅X₂ {O(n)}
t₂₀, X₃: 5⋅X₂+3 {O(n)}
t₂₀, X₄: 6⋅X₂+X₄+10 {O(n)}
t₂₀, X₅: 2⋅X₂⋅X₂+6⋅X₂+5 {O(n^2)}
t₂₀, X₆: 8⋅X₂⋅X₂+2⋅X₆+28⋅X₂+28 {O(n^2)}
t₂₀, X₇: 2⋅X₂⋅X₂+6⋅X₂+X₇+3 {O(n^2)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₂+1 {O(n)}
t₁₁, X₄: 12⋅X₂+10 {O(n)}
t₁₁, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₁, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₁, X₇: 6⋅X₂⋅X₂+18⋅X₂+9 {O(n^2)}
t₁₈₈, X₂: 2⋅X₂ {O(n)}
t₁₈₈, X₃: 2⋅X₂+1 {O(n)}
t₁₈₈, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₈₈, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₈₈, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₈₈, X₇: 6⋅X₂⋅X₂+18⋅X₂+X₇+9 {O(n^2)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: X₂+1 {O(n)}
t₁₈, X₄: 7⋅X₂+8 {O(n)}
t₁₈, X₅: 6⋅X₂⋅X₂+21⋅X₂+21 {O(n^2)}
t₁₈, X₆: 8⋅X₂⋅X₂+24⋅X₂+12 {O(n^2)}
t₁₈, X₇: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₈₄, X₂: 2⋅X₂ {O(n)}
t₁₈₄, X₃: 2⋅X₂+1 {O(n)}
t₁₈₄, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₈₄, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₈₄, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₈₄, X₇: 6⋅X₂⋅X₂+18⋅X₂+X₇+9 {O(n^2)}
t₁₈₅, X₂: 2⋅X₂ {O(n)}
t₁₈₅, X₃: 2⋅X₂+1 {O(n)}
t₁₈₅, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₈₅, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₈₅, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₈₅, X₇: 6⋅X₂⋅X₂+18⋅X₂+X₇+9 {O(n^2)}
t₁₃₆, X₂: 2⋅X₂ {O(n)}
t₁₃₆, X₃: 2⋅X₂+1 {O(n)}
t₁₃₆, X₄: 7⋅X₂+8 {O(n)}
t₁₃₆, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₃₆, X₆: 8⋅X₂⋅X₂+24⋅X₂+12 {O(n^2)}
t₁₃₆, X₇: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₆₁, X₂: 2⋅X₂ {O(n)}
t₁₆₁, X₃: 1 {O(1)}
t₁₆₁, X₄: 1 {O(1)}
t₁₆₁, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₆₁, X₆: 8⋅X₂⋅X₂+24⋅X₂+12 {O(n^2)}
t₁₆₁, X₇: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₆₃, X₂: 2⋅X₂ {O(n)}
t₁₆₃, X₃: 2⋅X₂+1 {O(n)}
t₁₆₃, X₄: 7⋅X₂+8 {O(n)}
t₁₆₃, X₅: 1 {O(1)}
t₁₆₃, X₆: 0 {O(1)}
t₁₆₃, X₇: 0 {O(1)}
t₁₃₈, X₂: 2⋅X₂ {O(n)}
t₁₃₈, X₃: 2⋅X₂+1 {O(n)}
t₁₃₈, X₄: 5⋅X₂+2 {O(n)}
t₁₃₈, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₃₈, X₆: 8⋅X₂⋅X₂+24⋅X₂+X₆+12 {O(n^2)}
t₁₃₈, X₇: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₆₄, X₂: 2⋅X₂ {O(n)}
t₁₆₄, X₃: 2⋅X₂+1 {O(n)}
t₁₆₄, X₄: 5⋅X₂+2 {O(n)}
t₁₆₄, X₅: 1 {O(1)}
t₁₆₄, X₆: 8⋅X₂⋅X₂+24⋅X₂+X₆+12 {O(n^2)}
t₁₆₄, X₇: 0 {O(1)}
t₁₄₀, X₂: 2⋅X₂ {O(n)}
t₁₄₀, X₃: 2⋅X₂+1 {O(n)}
t₁₄₀, X₄: 5⋅X₂+2 {O(n)}
t₁₄₀, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₄₀, X₆: 8⋅X₂⋅X₂+24⋅X₂+X₆+12 {O(n^2)}
t₁₄₀, X₇: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₈₆, X₂: 2⋅X₂ {O(n)}
t₁₈₆, X₃: 2⋅X₂+1 {O(n)}
t₁₈₆, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₈₆, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₈₆, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₈₆, X₇: 6⋅X₂⋅X₂+18⋅X₂+X₇+9 {O(n^2)}
t₂₀₁, X₂: 2⋅X₂ {O(n)}
t₂₀₁, X₃: 2⋅X₂+1 {O(n)}
t₂₀₁, X₄: 12⋅X₂+X₄+10 {O(n)}
t₂₀₁, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₂₀₁, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₂₀₁, X₇: 6⋅X₂⋅X₂+18⋅X₂+X₇+9 {O(n^2)}
t₁₈₇, X₂: 2⋅X₂ {O(n)}
t₁₈₇, X₃: 2⋅X₂+1 {O(n)}
t₁₈₇, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₈₇, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₈₇, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₈₇, X₇: 6⋅X₂⋅X₂+18⋅X₂+X₇+9 {O(n^2)}
t₂₀₂, X₂: 2⋅X₂ {O(n)}
t₂₀₂, X₃: 2⋅X₂+1 {O(n)}
t₂₀₂, X₄: 12⋅X₂+X₄+10 {O(n)}
t₂₀₂, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₂₀₂, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₂₀₂, X₇: 6⋅X₂⋅X₂+18⋅X₂+X₇+9 {O(n^2)}
t₁₈₉, X₂: 2⋅X₂ {O(n)}
t₁₈₉, X₃: 2⋅X₂+1 {O(n)}
t₁₈₉, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₈₉, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₈₉, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₈₉, X₇: 6⋅X₂⋅X₂+18⋅X₂+X₇+9 {O(n^2)}
t₂₀₃, X₂: 2⋅X₂ {O(n)}
t₂₀₃, X₃: 2⋅X₂+1 {O(n)}
t₂₀₃, X₄: 2⋅X₄+24⋅X₂+20 {O(n)}
t₂₀₃, X₅: 8⋅X₂⋅X₂+24⋅X₂+12 {O(n^2)}
t₂₀₃, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₂₀₃, X₇: 12⋅X₂⋅X₂+2⋅X₇+36⋅X₂+18 {O(n^2)}
t₁₄₁, X₁: X₁ {O(n)}
t₁₄₁, X₂: X₂ {O(n)}
t₁₄₁, X₃: X₂ {O(n)}
t₁₄₁, X₄: X₂ {O(n)}
t₁₄₁, X₅: 0 {O(1)}
t₁₄₁, X₆: X₆ {O(n)}
t₁₄₁, X₇: 0 {O(1)}
t₁₅₈, X₁: X₁ {O(n)}
t₁₅₈, X₂: X₂ {O(n)}
t₁₅₈, X₃: X₂ {O(n)}
t₁₅₈, X₄: X₄ {O(n)}
t₁₅₈, X₅: 0 {O(1)}
t₁₅₈, X₆: 0 {O(1)}
t₁₅₈, X₇: X₇ {O(n)}
t₁₄₂, X₂: 2⋅X₂ {O(n)}
t₁₄₂, X₃: 2⋅X₂+1 {O(n)}
t₁₄₂, X₄: 2⋅X₂+1 {O(n)}
t₁₄₂, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₄₂, X₆: 8⋅X₂⋅X₂+24⋅X₂+X₆+12 {O(n^2)}
t₁₄₂, X₇: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₅₉, X₂: 2⋅X₂ {O(n)}
t₁₅₉, X₃: 2⋅X₂+1 {O(n)}
t₁₅₉, X₄: 5⋅X₂+2 {O(n)}
t₁₅₉, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₅₉, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₅₉, X₇: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₄₃, X₂: 2⋅X₂ {O(n)}
t₁₄₃, X₃: 2⋅X₂+1 {O(n)}
t₁₄₃, X₄: 2⋅X₂+1 {O(n)}
t₁₄₃, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₄₃, X₆: 8⋅X₂⋅X₂+24⋅X₂+12 {O(n^2)}
t₁₄₃, X₇: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₆₀, X₂: 2⋅X₂ {O(n)}
t₁₆₀, X₃: 2⋅X₂+1 {O(n)}
t₁₆₀, X₄: 7⋅X₂+8 {O(n)}
t₁₆₀, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₆₀, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₆₀, X₇: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₄₄, X₂: 2⋅X₂ {O(n)}
t₁₄₄, X₃: 2⋅X₂+1 {O(n)}
t₁₄₄, X₄: 7⋅X₂+8 {O(n)}
t₁₄₄, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₄₄, X₆: 8⋅X₂⋅X₂+24⋅X₂+12 {O(n^2)}
t₁₄₄, X₇: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₄₅, X₀: X₀ {O(n)}
t₁₄₅, X₁: X₁ {O(n)}
t₁₄₅, X₂: X₂ {O(n)}
t₁₄₅, X₃: X₂ {O(n)}
t₁₄₅, X₄: X₄ {O(n)}
t₁₄₅, X₅: 0 {O(1)}
t₁₄₅, X₆: X₆ {O(n)}
t₁₄₅, X₇: X₇ {O(n)}
t₁₄₆, X₂: 2⋅X₂ {O(n)}
t₁₄₆, X₃: 2⋅X₂+1 {O(n)}
t₁₄₆, X₄: 5⋅X₂+2 {O(n)}
t₁₄₆, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₄₆, X₆: 8⋅X₂⋅X₂+24⋅X₂+X₆+12 {O(n^2)}
t₁₄₆, X₇: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₄₇, X₂: 2⋅X₂ {O(n)}
t₁₄₇, X₃: 2⋅X₂+1 {O(n)}
t₁₄₇, X₄: 7⋅X₂+8 {O(n)}
t₁₄₇, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₄₇, X₆: 8⋅X₂⋅X₂+24⋅X₂+12 {O(n^2)}
t₁₄₇, X₇: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₄₈, X₁: X₁ {O(n)}
t₁₄₈, X₂: X₂ {O(n)}
t₁₄₈, X₃: X₂ {O(n)}
t₁₄₈, X₄: X₄ {O(n)}
t₁₄₈, X₅: 0 {O(1)}
t₁₄₈, X₆: X₆ {O(n)}
t₁₄₈, X₇: X₇ {O(n)}
t₁₄₉, X₂: 2⋅X₂ {O(n)}
t₁₄₉, X₃: 2⋅X₂+1 {O(n)}
t₁₄₉, X₄: 5⋅X₂+2 {O(n)}
t₁₄₉, X₅: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₄₉, X₆: 8⋅X₂⋅X₂+24⋅X₂+X₆+12 {O(n^2)}
t₁₄₉, X₇: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₉₀, X₂: 2⋅X₂ {O(n)}
t₁₉₀, X₃: 2⋅X₂+1 {O(n)}
t₁₉₀, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₉₀, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₉₀, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₉₀, X₇: 6⋅X₂⋅X₂+18⋅X₂+X₇+9 {O(n^2)}
t₁₉₁, X₂: 2⋅X₂ {O(n)}
t₁₉₁, X₃: 2⋅X₂+1 {O(n)}
t₁₉₁, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₉₁, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₉₁, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₉₁, X₇: 6⋅X₂⋅X₂+18⋅X₂+X₇+9 {O(n^2)}
t₁₉₂, X₂: 2⋅X₂ {O(n)}
t₁₉₂, X₃: 2⋅X₂+1 {O(n)}
t₁₉₂, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₉₂, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₉₂, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₉₂, X₇: 6⋅X₂⋅X₂+18⋅X₂+X₇+9 {O(n^2)}
t₁₉₃, X₂: 2⋅X₂ {O(n)}
t₁₉₃, X₃: 2⋅X₂+1 {O(n)}
t₁₉₃, X₄: 12⋅X₂+X₄+10 {O(n)}
t₁₉₃, X₅: 4⋅X₂⋅X₂+12⋅X₂+6 {O(n^2)}
t₁₉₃, X₆: 2⋅X₂⋅X₂+6⋅X₂+3 {O(n^2)}
t₁₉₃, X₇: 6⋅X₂⋅X₂+18⋅X₂+X₇+9 {O(n^2)}