Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₂) :|: X₄ ≤ X₁
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₄
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₀, X₅)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₃ < X₅
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₃
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅)
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅)
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1)

Preprocessing

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l6

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l7

Found invariant 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l5

Found invariant X₀ ≤ X₄ for location l1

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l4

Found invariant X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₂) :|: X₄ ≤ X₁ ∧ X₀ ≤ X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₄ ∧ X₀ ≤ X₄
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₀, X₅)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₃ < X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁

MPRF for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₂) :|: X₄ ≤ X₁ ∧ X₀ ≤ X₄ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF:

l5 [X₁-X₄ ]
l1 [X₁+1-X₄ ]
l6 [X₁-X₄ ]
l3 [X₁-X₄ ]

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₃ < X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF:

l5 [X₁-X₄ ]
l1 [X₁+1-X₄ ]
l6 [X₁+1-X₄ ]
l3 [X₁+1-X₄ ]

MPRF for transition t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF:

l5 [X₁+1-X₄ ]
l1 [X₁+1-X₄ ]
l6 [X₁+1-X₄ ]
l3 [X₁+1-X₄ ]

MPRF for transition t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}

MPRF:

l1 [X₃+1-X₂ ]
l5 [X₃-X₅ ]
l6 [X₃-X₅ ]
l3 [X₃+1-X₅ ]

MPRF for transition t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}

MPRF:

l1 [X₃+1-X₂ ]
l5 [X₃-X₅ ]
l6 [X₃+1-X₅ ]
l3 [X₃+1-X₅ ]

Analysing control-flow refined program

Found invariant X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l6___3

Found invariant X₅ ≤ X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l6___1

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l7

Found invariant 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l5

Found invariant X₅ ≤ 1+X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l3___2

Found invariant X₀ ≤ X₄ for location l1

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l4

Found invariant X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l3

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₆₁: l3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₆₃: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅+1) :|: X₂ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁

MPRF for transition t₆₀: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₂ ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

3⋅X₀⋅X₃+3⋅X₁⋅X₃+4⋅X₀⋅X₂+4⋅X₁⋅X₂+3⋅X₀+3⋅X₁+5⋅X₃+6⋅X₂+4 {O(n^2)}

MPRF:

l3 [2⋅X₃+1-2⋅X₅ ]
n_l6___3 [2⋅X₃+1-2⋅X₅ ]
l1 [2⋅X₃+1-2⋅X₂ ]
l5 [2⋅X₃+1-2⋅X₂ ]
n_l6___1 [3⋅X₃+1-2⋅X₂-X₅ ]
n_l3___2 [3⋅X₃+2-2⋅X₂-X₅ ]

MPRF for transition t₆₇: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₃ < X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₅ ≤ 1+X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF:

l3 [X₁+1-X₄ ]
l1 [X₁+1-X₄ ]
l5 [X₁-X₄ ]
n_l6___1 [X₁+1-X₄ ]
n_l6___3 [X₁+1-X₄ ]
n_l3___2 [X₁+1-X₄ ]

MPRF for transition t₆₂: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅+1) :|: X₅ ≤ X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₀+2⋅X₀⋅X₂+2⋅X₁⋅X₁+2⋅X₁⋅X₂+4⋅X₀⋅X₁+X₀⋅X₃+X₁⋅X₃+2⋅X₂+6⋅X₀+6⋅X₁+X₃+4 {O(n^2)}

MPRF:

l3 [X₁+1-X₄ ]
n_l6___3 [X₁+1-X₄ ]
l1 [X₁+1-X₄ ]
l5 [X₁-X₄ ]
n_l6___1 [X₁+X₃+1-X₄-X₅ ]
n_l3___2 [X₁+X₃+1-X₄-X₅ ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₁⋅X₂+2⋅X₁⋅X₃+4⋅X₂+4⋅X₃+5⋅X₀+5⋅X₁+11 {O(n^2)}
t₀: 1 {O(1)}
t₂: X₀+X₁+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}
t₅: X₀+X₁+1 {O(n)}
t₈: 1 {O(1)}
t₇: X₀+X₁+1 {O(n)}
t₆: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}

Costbounds

Overall costbound: 2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₁⋅X₂+2⋅X₁⋅X₃+4⋅X₂+4⋅X₃+5⋅X₀+5⋅X₁+11 {O(n^2)}
t₀: 1 {O(1)}
t₂: X₀+X₁+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}
t₅: X₀+X₁+1 {O(n)}
t₈: 1 {O(1)}
t₇: X₀+X₁+1 {O(n)}
t₆: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂, X₅: 2⋅X₂ {O(n)}
t₃, X₀: 2⋅X₀ {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₃, X₄: 3⋅X₀+X₁+1 {O(n)}
t₃, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+6⋅X₂+X₀+X₁+X₅+2 {O(n^2)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₀ {O(n)}
t₁, X₅: X₅ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: 2⋅X₀+X₁+1 {O(n)}
t₄, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+4⋅X₂+X₀+X₁+2 {O(n^2)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 2⋅X₀+X₁+1 {O(n)}
t₅, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+6⋅X₂+X₀+X₁+2 {O(n^2)}
t₈, X₀: 2⋅X₀ {O(n)}
t₈, X₁: 2⋅X₁ {O(n)}
t₈, X₂: 2⋅X₂ {O(n)}
t₈, X₃: 2⋅X₃ {O(n)}
t₈, X₄: 3⋅X₀+X₁+1 {O(n)}
t₈, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+6⋅X₂+X₀+X₁+X₅+2 {O(n^2)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: 2⋅X₀+X₁+1 {O(n)}
t₇, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+6⋅X₂+X₀+X₁+2 {O(n^2)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: 2⋅X₀+X₁+1 {O(n)}
t₆, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+4⋅X₂+X₀+X₁+2 {O(n^2)}