Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁₀ ≤ X₀
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, X₀, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ < X₁₀
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁₀ < 0
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₉ < 0
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < 0
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₉ ≤ X₁
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ < X₉
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₃+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₃, X₃, X₁+1, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₄, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ ≤ X₂
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₂ < X₅
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
Preprocessing
Eliminate variables {X₆,X₇,X₈} that do not contribute to the problem
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7
Found invariant X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l1
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₃₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀)
t₃₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₁₀ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₃₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l4(X₀, 0, X₂, X₀, X₄, X₅, X₉, X₁₀) :|: X₀ < X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₃₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀)
t₃₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l1(0, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: 0 ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅
t₃₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₁₀ < 0
t₃₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₉ < 0
t₃₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₅ < 0
t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₁ < X₉ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l1(X₃+1, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l7(X₀, X₁, X₃, X₃, X₁+1, X₅, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l4(X₀, X₄, X₂, X₂, X₄, X₅, X₉, X₁₀) :|: X₅ ≤ X₂ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₂ < X₅ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l7(X₀, X₁, X₂+1, X₃, X₄, X₅, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₃₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l4(X₀, 0, X₂, X₀, X₄, X₅, X₉, X₁₀) :|: X₀ < X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₀ {O(n)}
MPRF:
l5 [X₁₀-X₃-1 ]
l1 [X₁₀-X₀ ]
l6 [X₁₀-X₃-1 ]
l4 [X₁₀-X₃-1 ]
l8 [X₁₀-X₂-1 ]
l7 [X₁₀-X₂-1 ]
MPRF for transition t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₀ {O(n)}
MPRF:
l5 [X₁₀-X₃-1 ]
l1 [X₁₀-X₀ ]
l6 [X₁₀-X₀ ]
l4 [X₁₀-X₀ ]
l8 [X₁₀-X₀ ]
l7 [X₁₀-X₀ ]
MPRF for transition t₄₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l1(X₃+1, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₀ {O(n)}
MPRF:
l5 [X₁₀-X₀ ]
l1 [X₁₀-X₀ ]
l6 [X₁₀-X₀ ]
l4 [X₁₀-X₀ ]
l8 [X₁₀-X₀ ]
l7 [X₁₀-X₀ ]
MPRF for transition t₄₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₂ < X₅ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₀+X₅ {O(n)}
MPRF:
l5 [X₅+X₁₀-X₃ ]
l1 [X₅+X₁₀-X₀ ]
l6 [X₅+X₁₀-X₃ ]
l4 [X₅+X₁₀-X₃ ]
l8 [X₅+X₁₀-X₂-1 ]
l7 [X₅+X₁₀-X₂ ]
MPRF for transition t₄₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l7(X₀, X₁, X₂+1, X₃, X₄, X₅, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF:
l5 [X₅-X₃ ]
l1 [X₅-X₀ ]
l6 [X₅-X₃ ]
l4 [X₅-X₃ ]
l8 [X₅-X₂ ]
l7 [X₅-X₂ ]
MPRF for transition t₃₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₁ < X₉ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₀⋅X₉+X₉ {O(n^2)}
MPRF:
l1 [X₉ ]
l5 [X₉-X₁ ]
l6 [X₉-X₁-1 ]
l4 [X₉-X₁ ]
l8 [X₉-X₁-1 ]
l7 [X₉-X₁-1 ]
MPRF for transition t₄₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l7(X₀, X₁, X₃, X₃, X₁+1, X₅, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₀⋅X₉+X₉ {O(n^2)}
MPRF:
l1 [X₉ ]
l5 [0 ]
l6 [X₉-X₁ ]
l4 [X₉-X₁ ]
l8 [X₉-X₄ ]
l7 [X₉-X₄ ]
MPRF for transition t₄₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l4(X₀, X₄, X₂, X₂, X₄, X₅, X₉, X₁₀) :|: X₅ ≤ X₂ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₀⋅X₉+X₉ {O(n^2)}
MPRF:
l1 [X₉ ]
l5 [X₉-X₁ ]
l6 [X₉-X₁ ]
l4 [X₉-X₁ ]
l8 [X₉+1-X₄ ]
l7 [X₉+1-X₄ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₁₁₆: n_l7___1→l8
Found invariant 2 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 3 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___2
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___5
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l4___3
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7
Found invariant X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₁₀+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁₀+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l1
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
Found invariant 2 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 4 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___1
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁₀ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___4
knowledge_propagation leads to new time bound X₁₀ {O(n)} for transition t₁₀₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → n_l6___5(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₀ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ < X₉ ∧ X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₅ {O(n)} for transition t₁₀₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → n_l4___3(X₀, X₁+1, X₂, X₂, X₁+1, X₅, X₉, X₁₀) :|: 1+X₀ ≤ X₁₀ ∧ X₄ ≤ X₉ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁₀ ∧ 1+X₁ ≤ X₉ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₁₀ {O(n)} for transition t₁₀₆: n_l6___5(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → n_l7___4(X₀, X₁, X₃, X₃, X₁+1, X₅, X₉, X₁₀) :|: 1+X₀ ≤ X₁₀ ∧ X₁ < X₉ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₁ ≤ X₉ ∧ X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₁₀ {O(n)} for transition t₁₀₈: n_l7___4(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → n_l4___3(X₀, X₁+1, X₂, X₂, X₁+1, X₅, X₉, X₁₀) :|: 1+X₀ ≤ X₁₀ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁₀ ∧ 1+X₁ ≤ X₉ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁₀ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₁₀ {O(n)} for transition t₁₁₇: n_l7___4(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₂ < X₅ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁₀ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1+X₁ ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₁₀₃: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₅ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁₀ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₂ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ < X₉ ∧ X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
4⋅X₁₀⋅X₉+2⋅X₁₀+X₉ {O(n^2)}
MPRF:
l4 [X₉ ]
l1 [X₉ ]
l8 [2⋅X₉ ]
l7 [2⋅X₉ ]
l5 [X₉ ]
n_l6___2 [2⋅X₉-X₁ ]
n_l6___5 [X₉ ]
n_l7___4 [X₉ ]
n_l7___1 [2⋅X₉-X₁ ]
n_l4___3 [2⋅X₉+1-X₄ ]
MPRF for transition t₁₁₅: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) :|: X₉ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 1 ≤ X₀+X₉ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₀ {O(n)}
MPRF:
l4 [X₁₀-X₃ ]
l1 [X₁₀-X₀ ]
l7 [X₁₀-X₀ ]
l5 [X₁₀-X₀-1 ]
n_l6___2 [X₁₀-X₀ ]
n_l6___5 [X₁₀-X₀ ]
n_l7___1 [X₁₀-X₀ ]
n_l4___3 [X₄+X₁₀-X₀-X₁ ]
n_l7___4 [X₁₀-X₂ ]
l8 [X₁₀-X₃ ]
MPRF for transition t₁₀₅: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → n_l7___1(X₀, X₁, X₃, X₃, X₁+1, X₅, X₉, X₁₀) :|: X₅ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀ ∧ X₁ < X₉ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₁ ≤ X₉ ∧ X₀ ≤ X₃ ∧ 1+X₀ ≤ X₁₀ ∧ 2 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 3 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁₀⋅X₉+X₁₀ {O(n^2)}
MPRF:
l4 [0 ]
l1 [0 ]
l8 [X₉ ]
l7 [X₉ ]
l5 [0 ]
n_l6___2 [X₉-X₄ ]
n_l6___5 [0 ]
n_l7___4 [0 ]
n_l7___1 [X₉-X₁-1 ]
n_l4___3 [X₉-X₁ ]
MPRF for transition t₁₀₇: n_l7___1(X₀, X₁, X₂, X₃, X₄, X₅, X₉, X₁₀) → n_l4___3(X₀, X₁+1, X₂, X₂, X₁+1, X₅, X₉, X₁₀) :|: X₅ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀ ∧ 1+X₁ ≤ X₉ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁₀ ∧ 1+X₁ ≤ X₉ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 4 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁₀⋅X₉+X₁₀ {O(n^2)}
MPRF:
l4 [0 ]
l1 [0 ]
l8 [X₉ ]
l7 [X₉ ]
l5 [0 ]
n_l6___2 [X₉-X₁ ]
n_l6___5 [0 ]
n_l7___4 [0 ]
n_l7___1 [X₉+1-X₄ ]
n_l4___3 [X₉-X₄ ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:3⋅X₁₀⋅X₉+2⋅X₅+3⋅X₉+4⋅X₁₀+7 {O(n^2)}
t₃₀: 1 {O(1)}
t₃₁: X₁₀ {O(n)}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 1 {O(1)}
t₃₇: 1 {O(1)}
t₃₈: X₁₀⋅X₉+X₉ {O(n^2)}
t₃₉: X₁₀ {O(n)}
t₄₀: X₁₀ {O(n)}
t₄₁: X₁₀⋅X₉+X₉ {O(n^2)}
t₄₂: X₁₀+X₅ {O(n)}
t₄₃: X₁₀⋅X₉+X₉ {O(n^2)}
t₄₄: X₅ {O(n)}
Costbounds
Overall costbound: 3⋅X₁₀⋅X₉+2⋅X₅+3⋅X₉+4⋅X₁₀+7 {O(n^2)}
t₃₀: 1 {O(1)}
t₃₁: X₁₀ {O(n)}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 1 {O(1)}
t₃₇: 1 {O(1)}
t₃₈: X₁₀⋅X₉+X₉ {O(n^2)}
t₃₉: X₁₀ {O(n)}
t₄₀: X₁₀ {O(n)}
t₄₁: X₁₀⋅X₉+X₉ {O(n^2)}
t₄₂: X₁₀+X₅ {O(n)}
t₄₃: X₁₀⋅X₉+X₉ {O(n^2)}
t₄₄: X₅ {O(n)}
Sizebounds
t₃₀, X₀: X₀ {O(n)}
t₃₀, X₁: X₁ {O(n)}
t₃₀, X₂: X₂ {O(n)}
t₃₀, X₃: X₃ {O(n)}
t₃₀, X₄: X₄ {O(n)}
t₃₀, X₅: X₅ {O(n)}
t₃₀, X₉: X₉ {O(n)}
t₃₀, X₁₀: X₁₀ {O(n)}
t₃₁, X₀: X₁₀+X₅ {O(n)}
t₃₁, X₁: 0 {O(1)}
t₃₁, X₂: 2⋅X₁₀+2⋅X₅+X₂ {O(n)}
t₃₁, X₃: X₁₀+X₅ {O(n)}
t₃₁, X₄: 2⋅X₁₀⋅X₉+2⋅X₉+X₄+2 {O(n^2)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₉: X₉ {O(n)}
t₃₁, X₁₀: X₁₀ {O(n)}
t₃₂, X₀: X₁₀+X₅ {O(n)}
t₃₂, X₁: X₁₀⋅X₉+X₁+X₉ {O(n^2)}
t₃₂, X₂: 2⋅X₁₀+2⋅X₂+2⋅X₅ {O(n)}
t₃₂, X₃: X₁₀+X₃+X₅ {O(n)}
t₃₂, X₄: 2⋅X₁₀⋅X₉+2⋅X₄+2⋅X₉+2 {O(n^2)}
t₃₂, X₅: 2⋅X₅ {O(n)}
t₃₂, X₉: 2⋅X₉ {O(n)}
t₃₂, X₁₀: 2⋅X₁₀ {O(n)}
t₃₃, X₀: 3⋅X₀+X₁₀+X₅ {O(n)}
t₃₃, X₁: X₁₀⋅X₉+4⋅X₁+X₉ {O(n^2)}
t₃₃, X₂: 2⋅X₁₀+2⋅X₅+5⋅X₂ {O(n)}
t₃₃, X₃: 4⋅X₃+X₁₀+X₅ {O(n)}
t₃₃, X₄: 2⋅X₁₀⋅X₉+2⋅X₉+5⋅X₄+2 {O(n^2)}
t₃₃, X₅: 5⋅X₅ {O(n)}
t₃₃, X₉: 5⋅X₉ {O(n)}
t₃₃, X₁₀: 5⋅X₁₀ {O(n)}
t₃₄, X₀: 0 {O(1)}
t₃₄, X₁: X₁ {O(n)}
t₃₄, X₂: X₂ {O(n)}
t₃₄, X₃: X₃ {O(n)}
t₃₄, X₄: X₄ {O(n)}
t₃₄, X₅: X₅ {O(n)}
t₃₄, X₉: X₉ {O(n)}
t₃₄, X₁₀: X₁₀ {O(n)}
t₃₅, X₀: X₀ {O(n)}
t₃₅, X₁: X₁ {O(n)}
t₃₅, X₂: X₂ {O(n)}
t₃₅, X₃: X₃ {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₅, X₅: X₅ {O(n)}
t₃₅, X₉: X₉ {O(n)}
t₃₅, X₁₀: X₁₀ {O(n)}
t₃₆, X₀: X₀ {O(n)}
t₃₆, X₁: X₁ {O(n)}
t₃₆, X₂: X₂ {O(n)}
t₃₆, X₃: X₃ {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₅: X₅ {O(n)}
t₃₆, X₉: X₉ {O(n)}
t₃₆, X₁₀: X₁₀ {O(n)}
t₃₇, X₀: X₀ {O(n)}
t₃₇, X₁: X₁ {O(n)}
t₃₇, X₂: X₂ {O(n)}
t₃₇, X₃: X₃ {O(n)}
t₃₇, X₄: X₄ {O(n)}
t₃₇, X₅: X₅ {O(n)}
t₃₇, X₉: X₉ {O(n)}
t₃₇, X₁₀: X₁₀ {O(n)}
t₃₈, X₀: X₁₀+X₅ {O(n)}
t₃₈, X₁: X₁₀⋅X₉+X₉ {O(n^2)}
t₃₈, X₂: 4⋅X₁₀+4⋅X₅+X₂ {O(n)}
t₃₈, X₃: X₁₀+X₅ {O(n)}
t₃₈, X₄: 4⋅X₁₀⋅X₉+4⋅X₉+X₄+4 {O(n^2)}
t₃₈, X₅: X₅ {O(n)}
t₃₈, X₉: X₉ {O(n)}
t₃₈, X₁₀: X₁₀ {O(n)}
t₃₉, X₀: 2⋅X₁₀+2⋅X₅ {O(n)}
t₃₉, X₁: X₁₀⋅X₉+X₉ {O(n^2)}
t₃₉, X₂: 2⋅X₁₀+2⋅X₅+X₂ {O(n)}
t₃₉, X₃: X₁₀+X₅ {O(n)}
t₃₉, X₄: 2⋅X₁₀⋅X₉+2⋅X₉+X₄+2 {O(n^2)}
t₃₉, X₅: X₅ {O(n)}
t₃₉, X₉: X₉ {O(n)}
t₃₉, X₁₀: X₁₀ {O(n)}
t₄₀, X₀: X₁₀+X₅ {O(n)}
t₄₀, X₁: X₁₀⋅X₉+X₉ {O(n^2)}
t₄₀, X₂: 2⋅X₁₀+2⋅X₅+X₂ {O(n)}
t₄₀, X₃: X₁₀+X₅ {O(n)}
t₄₀, X₄: 2⋅X₁₀⋅X₉+2⋅X₉+X₄+2 {O(n^2)}
t₄₀, X₅: X₅ {O(n)}
t₄₀, X₉: X₉ {O(n)}
t₄₀, X₁₀: X₁₀ {O(n)}
t₄₁, X₀: X₁₀+X₅ {O(n)}
t₄₁, X₁: X₁₀⋅X₉+X₉ {O(n^2)}
t₄₁, X₂: X₁₀+X₅ {O(n)}
t₄₁, X₃: X₁₀+X₅ {O(n)}
t₄₁, X₄: X₁₀⋅X₉+X₉+1 {O(n^2)}
t₄₁, X₅: X₅ {O(n)}
t₄₁, X₉: X₉ {O(n)}
t₄₁, X₁₀: X₁₀ {O(n)}
t₄₂, X₀: X₁₀+X₅ {O(n)}
t₄₂, X₁: X₁₀⋅X₉+X₉ {O(n^2)}
t₄₂, X₂: X₁₀+X₅ {O(n)}
t₄₂, X₃: X₁₀+X₅ {O(n)}
t₄₂, X₄: X₁₀⋅X₉+X₉+1 {O(n^2)}
t₄₂, X₅: X₅ {O(n)}
t₄₂, X₉: X₉ {O(n)}
t₄₂, X₁₀: X₁₀ {O(n)}
t₄₃, X₀: X₁₀+X₅ {O(n)}
t₄₃, X₁: X₁₀⋅X₉+X₉ {O(n^2)}
t₄₃, X₂: 2⋅X₁₀+2⋅X₅ {O(n)}
t₄₃, X₃: X₁₀+X₅ {O(n)}
t₄₃, X₄: 2⋅X₁₀⋅X₉+2⋅X₉+2 {O(n^2)}
t₄₃, X₅: X₅ {O(n)}
t₄₃, X₉: X₉ {O(n)}
t₄₃, X₁₀: X₁₀ {O(n)}
t₄₄, X₀: X₁₀+X₅ {O(n)}
t₄₄, X₁: X₁₀⋅X₉+X₉ {O(n^2)}
t₄₄, X₂: X₁₀+X₅ {O(n)}
t₄₄, X₃: X₁₀+X₅ {O(n)}
t₄₄, X₄: X₁₀⋅X₉+X₉+1 {O(n^2)}
t₄₄, X₅: X₅ {O(n)}
t₄₄, X₉: X₉ {O(n)}
t₄₄, X₁₀: X₁₀ {O(n)}