Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ < 0
t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₇
t₄₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₈ < 0
t₄₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₈
t₄₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, nondef.1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < 0
t₃₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₀
t₃₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(nondef.2, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 0, X₁₃, X₁₄) :|: X₁₄ < X₉+X₁₃
t₃: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉+X₁₃ ≤ X₁₄
t₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₉)
t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ < 0
t₂₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₁
t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ ≤ 1+X₁₀
t₄₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀+1 < X₄
t₄₇: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁+1, X₁₂, X₁₃, X₁₄)
t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, nondef.3, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₄₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₂: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ < X₅
t₂₃: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₁₁
t₅: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₆ ≤ X₁₂
t₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ < X₆
t₄₈: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, X₁₃, X₁₄)
t₄₉: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄+1)
t₅₀: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₇: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ < 0
t₈: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₂
t₃₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, -1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < 0
t₃₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, -1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁
t₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, X₁₃, X₁₄)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, -1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < 0
t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, -1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₃
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ ≤ 0 ∧ 0 ≤ X₃

Preprocessing

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ for location l11

Found invariant X₉ ≤ X₁₄ for location l25

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ for location l27

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l2

Found invariant X₉ ≤ X₁₄ ∧ X₆ ≤ X₁₂ ∧ 0 ≤ X₁₂ for location l24

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ for location l6

Found invariant X₉ ≤ X₁₄ for location l15

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l19

Found invariant X₉ ≤ X₁₄ for location l26

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ for location l12

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₅ ≤ X₁₁ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l23

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l17

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ for location l7

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 2 ≤ X₄+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 2+X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 3 ≤ X₄ ∧ 3 ≤ X₁₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 2+X₁₀ ≤ X₄ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀ for location l20

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l21

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ for location l5

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ for location l13

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ X₁₂ for location l22

Found invariant X₉ ≤ X₁₄ ∧ X₈ ≤ 1 ∧ X₈ ≤ X₆ ∧ X₈ ≤ 1+X₁₂ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ for location l8

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l1

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ for location l10

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀ for location l18

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ for location l4

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ for location l9

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l3

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l14

Cut unsatisfiable transition t₂₅: l17→l14

Cut unsatisfiable transition t₇: l27→l7

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₇ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₈ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₈ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, nondef.1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₃₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₃₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(nondef.2, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₃₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 0, X₁₃, X₁₄) :|: X₁₄ < X₉+X₁₃ ∧ X₉ ≤ X₁₄
t₃: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉+X₁₃ ≤ X₁₄ ∧ X₉ ≤ X₁₄
t₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₉)
t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₂₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ ≤ 1+X₁₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀
t₄₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀+1 < X₄ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀
t₄₇: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁+1, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, nondef.3, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 2 ≤ X₄+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 2+X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 3 ≤ X₄ ∧ 3 ≤ X₁₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 2+X₁₀ ≤ X₄ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀
t₂₂: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ < X₅ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₂₃: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₁₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₅: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₆ ≤ X₁₂ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ X₁₂
t₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ < X₆ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ X₁₂
t₄₈: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₅ ≤ X₁₁ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₉: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄+1) :|: X₉ ≤ X₁₄ ∧ X₆ ≤ X₁₂ ∧ 0 ≤ X₁₂
t₅₀: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄
t₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₈: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₃₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, -1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₃₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, -1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0 ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ X₈ ≤ 1 ∧ X₈ ≤ X₆ ∧ X₈ ≤ 1+X₁₂ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, -1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < 0 ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, -1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₃ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂

MPRF for transition t₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 0, X₁₃, X₁₄) :|: X₁₄ < X₉+X₁₃ ∧ X₉ ≤ X₁₄ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF:

l13 [X₉+X₁₃-X₁₄ ]
l11 [X₉+X₁₃-X₁₄ ]
l12 [X₉+X₁₃-X₁₄ ]
l14 [X₉+X₁₃-X₁₄ ]
l19 [X₉+X₁₃-X₁₄ ]
l2 [X₉+X₁₃-X₁₄ ]
l20 [X₉+X₁₃-X₁₄ ]
l18 [X₉+X₁₃-X₁₄ ]
l17 [X₉+X₁₃-X₁₄ ]
l23 [X₉+X₁₃-X₁₄ ]
l22 [X₉+X₁₃-X₁₄ ]
l24 [X₉+X₁₃-X₁₄ ]
l15 [X₉+X₁₃+1-X₁₄ ]
l27 [X₉+X₁₃-X₁₄ ]
l3 [X₉+X₁₃-X₁₄ ]
l1 [X₉+X₁₃-X₁₄ ]
l5 [X₉+X₁₃-X₁₄ ]
l6 [X₉+X₁₃-X₁₄ ]
l4 [X₉+X₁₃-X₁₄ ]
l7 [X₉+X₁₃-X₁₄ ]
l10 [X₉+X₁₃-X₁₄ ]
l21 [X₉+X₁₃-X₁₄ ]
l9 [X₉+X₁₃-X₁₄ ]
l8 [X₉+X₁₃-X₁₄ ]

MPRF for transition t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, nondef.1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

MPRF:

l13 [X₆-X₁₂ ]
l11 [X₆-X₁₂ ]
l12 [X₆-X₁₂ ]
l14 [X₆-X₁₂ ]
l19 [X₆-X₁₂ ]
l2 [X₆-X₁₂ ]
l20 [X₆-X₁₂ ]
l18 [X₆-X₁₂ ]
l17 [X₆-X₁₂ ]
l23 [X₆-X₁₂ ]
l22 [X₆+1-X₁₂ ]
l24 [X₆-X₁₂ ]
l15 [X₆-X₁₂ ]
l27 [X₆+1-X₁₂ ]
l3 [X₆-X₁₂ ]
l1 [X₆-X₁₂ ]
l5 [X₆+1 ]
l6 [X₆+1 ]
l4 [X₆+1 ]
l7 [X₆+1-X₁₂ ]
l10 [X₆+1-X₁₂ ]
l21 [X₆-X₁₂ ]
l9 [X₆-X₁₂ ]
l8 [X₆-X₁₂ ]

MPRF for transition t₂₃: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₁₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

MPRF:

l13 [X₆+1-X₁₂ ]
l11 [X₆+1-X₁₂ ]
l12 [X₆+1-X₁₂ ]
l14 [X₆+1-X₁₂ ]
l19 [X₆+1-X₁₂ ]
l2 [X₆+1-X₁₂ ]
l20 [X₆+1-X₁₂ ]
l18 [X₆+1-X₁₂ ]
l17 [X₆+1-X₁₂ ]
l23 [X₆-X₁₂ ]
l22 [X₆+1-X₁₂ ]
l24 [X₆-X₁₂ ]
l15 [X₆-X₁₂ ]
l27 [X₆+1-X₁₂ ]
l3 [X₆+1-X₁₂ ]
l1 [X₆+1-X₁₂ ]
l5 [X₆+1 ]
l6 [X₆+1 ]
l4 [X₆+1 ]
l7 [X₆+1-X₁₂ ]
l10 [X₆+1-X₁₂ ]
l21 [X₆+1-X₁₂ ]
l9 [X₆+1-X₁₂ ]
l8 [X₆+1-X₁₂ ]

MPRF for transition t₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ < X₆ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₁₃+4⋅X₉+X₆+2 {O(n^2)}

MPRF:

l13 [X₆+1-X₁₂ ]
l11 [X₆+1-X₁₂ ]
l12 [X₆+1-X₁₂ ]
l14 [X₆+1-X₁₂ ]
l19 [X₆+1-X₁₂ ]
l2 [X₆+1-X₁₂ ]
l20 [X₆+1-X₁₂ ]
l18 [X₆+1-X₁₂ ]
l17 [X₆+1-X₁₂ ]
l23 [X₆+1-X₁₂ ]
l22 [X₆+2-X₁₂ ]
l24 [X₆-X₁₂ ]
l15 [X₆-X₁₂ ]
l27 [X₆+1-X₁₂ ]
l3 [X₆+1-X₁₂ ]
l1 [X₆+1-X₁₂ ]
l5 [X₆+1 ]
l6 [X₆+1 ]
l4 [X₆+1 ]
l7 [X₆+1-X₁₂ ]
l10 [X₆+1-X₁₂ ]
l21 [X₆+1-X₁₂ ]
l9 [X₆+1-X₁₂ ]
l8 [X₆+1-X₁₂ ]

MPRF for transition t₅: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₆ ≤ X₁₂ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₁₃+4⋅X₉+2 {O(n)}

MPRF:

l13 [2 ]
l11 [2 ]
l12 [2 ]
l14 [2 ]
l19 [2 ]
l2 [2 ]
l20 [2 ]
l18 [2 ]
l17 [2 ]
l23 [2 ]
l22 [2 ]
l24 [1 ]
l15 [0 ]
l27 [2 ]
l3 [2 ]
l1 [2 ]
l5 [2 ]
l6 [2 ]
l4 [2 ]
l7 [2 ]
l10 [2 ]
l21 [2 ]
l9 [2 ]
l8 [2 ]

MPRF for transition t₄₈: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₅ ≤ X₁₁ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

MPRF:

l13 [X₆+1-X₁₂ ]
l11 [X₆+1-X₁₂ ]
l12 [X₆+1-X₁₂ ]
l14 [X₆+1-X₁₂ ]
l19 [X₆+1-X₁₂ ]
l2 [X₆+1-X₁₂ ]
l20 [X₆+1-X₁₂ ]
l18 [X₆+1-X₁₂ ]
l17 [X₆+1-X₁₂ ]
l23 [X₆+1-X₁₂ ]
l22 [X₆+1-X₁₂ ]
l24 [X₆-X₁₂ ]
l15 [X₆-X₁₂ ]
l27 [X₆+1-X₁₂ ]
l3 [X₆+1-X₁₂ ]
l1 [X₆+1-X₁₂ ]
l5 [X₆+1 ]
l6 [X₆+1 ]
l4 [X₆+1 ]
l7 [X₆+1-X₁₂ ]
l10 [X₆+1-X₁₂ ]
l21 [X₆+1-X₁₂ ]
l9 [X₆+1-X₁₂ ]
l8 [X₆+1-X₁₂ ]

MPRF for transition t₄₉: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄+1) :|: X₉ ≤ X₁₄ ∧ X₆ ≤ X₁₂ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF:

l13 [1 ]
l11 [1 ]
l12 [1 ]
l14 [1 ]
l19 [1 ]
l2 [1 ]
l20 [1 ]
l18 [1 ]
l17 [1 ]
l23 [1 ]
l22 [1 ]
l24 [1 ]
l15 [0 ]
l27 [1 ]
l3 [1 ]
l1 [1 ]
l5 [1 ]
l6 [1 ]
l4 [1 ]
l7 [1 ]
l10 [1 ]
l21 [1 ]
l9 [1 ]
l8 [1 ]

MPRF for transition t₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

MPRF:

l13 [X₆-X₁₂ ]
l11 [X₆-X₁₂ ]
l12 [X₆-X₁₂ ]
l14 [X₆-X₁₂ ]
l19 [X₆-X₁₂ ]
l2 [X₆-X₁₂ ]
l20 [X₆-X₁₂ ]
l18 [X₆-X₁₂ ]
l17 [X₆-X₁₂ ]
l23 [X₆-X₁₂ ]
l22 [X₆+1-X₁₂ ]
l24 [X₆-X₁₂ ]
l15 [X₆-X₁₂ ]
l27 [X₆+1-X₁₂ ]
l3 [X₆-X₁₂ ]
l1 [X₆-X₁₂ ]
l5 [X₆ ]
l6 [X₆ ]
l4 [X₆ ]
l7 [X₆-X₁₂ ]
l10 [X₆-X₁₂ ]
l21 [X₆-X₁₂ ]
l9 [X₆-X₁₂ ]
l8 [X₆-X₁₂ ]

MPRF for transition t₈: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₁₃+4⋅X₉+X₆+2 {O(n^2)}

MPRF:

l13 [X₆+1-X₁₂ ]
l11 [X₆+1-X₁₂ ]
l12 [X₆+1-X₁₂ ]
l14 [X₆+1-X₁₂ ]
l19 [X₆+1-X₁₂ ]
l2 [X₆+1-X₁₂ ]
l20 [X₆+1-X₁₂ ]
l18 [X₆+1-X₁₂ ]
l17 [X₆+1-X₁₂ ]
l23 [X₆+1-X₁₂ ]
l22 [X₆+2-X₁₂ ]
l24 [X₆-X₁₂ ]
l15 [X₆-X₁₂ ]
l27 [X₆+2-X₁₂ ]
l3 [X₆+1-X₁₂ ]
l1 [X₆+1-X₁₂ ]
l5 [X₆+2 ]
l6 [X₆+2 ]
l4 [X₆+1 ]
l7 [X₆+1-X₁₂ ]
l10 [X₆+1-X₁₂ ]
l21 [X₆+1-X₁₂ ]
l9 [X₆+1-X₁₂ ]
l8 [X₆+1-X₁₂ ]

MPRF for transition t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0 ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF:

l13 [-X₁₂ ]
l11 [-X₁₂ ]
l12 [-X₁₂ ]
l14 [-X₁₂ ]
l19 [-X₁₂ ]
l2 [-X₁₂ ]
l20 [-X₁₂ ]
l18 [-X₁₂ ]
l17 [-X₁₂ ]
l23 [-X₁₂ ]
l22 [1-X₁₂ ]
l24 [-X₁₂ ]
l15 [-X₁₂ ]
l27 [1-X₁₂ ]
l3 [-X₁₂ ]
l1 [-X₁₂ ]
l5 [1 ]
l6 [1 ]
l4 [1 ]
l7 [-X₁₂ ]
l10 [-X₁₂ ]
l21 [-X₁₂ ]
l9 [-X₁₂ ]
l8 [-X₁₂ ]

MPRF for transition t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF:

l13 [-X₁₂ ]
l11 [-X₁₂ ]
l12 [-X₁₂ ]
l14 [-X₁₂ ]
l19 [-X₁₂ ]
l2 [-X₁₂ ]
l20 [-X₁₂ ]
l18 [-X₁₂ ]
l17 [-X₁₂ ]
l23 [-X₁₂ ]
l22 [1-X₁₂ ]
l24 [-X₁₂ ]
l15 [-X₁₂ ]
l27 [1-X₁₂ ]
l3 [-X₁₂ ]
l1 [-X₁₂ ]
l5 [1 ]
l6 [1 ]
l4 [1 ]
l7 [-X₁₂ ]
l10 [-X₁₂ ]
l21 [-X₁₂ ]
l9 [-X₁₂ ]
l8 [-X₁₂ ]

MPRF for transition t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF:

l13 [-X₁₂ ]
l11 [-X₁₂ ]
l12 [-X₁₂ ]
l14 [-X₁₂ ]
l19 [-X₁₂ ]
l2 [-X₁₂ ]
l20 [-X₁₂ ]
l18 [-X₁₂ ]
l17 [-X₁₂ ]
l23 [-X₁₂ ]
l22 [1-X₁₂ ]
l24 [-X₁₂ ]
l15 [-X₁₂ ]
l27 [1-X₁₂ ]
l3 [-X₁₂ ]
l1 [-X₁₂ ]
l5 [1 ]
l6 [1 ]
l4 [1 ]
l7 [-X₁₂ ]
l10 [-X₁₂ ]
l21 [-X₁₂ ]
l9 [-X₁₂ ]
l8 [-X₁₂ ]

MPRF for transition t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF:

l13 [-X₁₂ ]
l11 [-X₁₂ ]
l12 [-X₁₂ ]
l14 [-X₁₂ ]
l19 [-X₁₂ ]
l2 [-X₁₂ ]
l20 [-X₁₂ ]
l18 [-X₁₂ ]
l17 [-X₁₂ ]
l23 [-X₁₂ ]
l22 [1-X₁₂ ]
l24 [-X₁₂ ]
l15 [-X₁₂ ]
l27 [1-X₁₂ ]
l3 [-X₁₂ ]
l1 [-X₁₂ ]
l5 [1 ]
l6 [0 ]
l4 [0 ]
l7 [-X₁₂ ]
l10 [-X₁₂ ]
l21 [-X₁₂ ]
l9 [-X₁₂ ]
l8 [-X₁₂ ]

MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF:

l13 [-X₁₂ ]
l11 [-X₁₂ ]
l12 [-X₁₂ ]
l14 [-X₁₂ ]
l19 [-X₁₂ ]
l2 [-X₁₂ ]
l20 [-X₁₂ ]
l18 [-X₁₂ ]
l17 [-X₁₂ ]
l23 [-X₁₂ ]
l22 [1-X₁₂ ]
l24 [-X₁₂ ]
l15 [-X₁₂ ]
l27 [1-X₁₂ ]
l3 [-X₁₂ ]
l1 [-X₁₂ ]
l5 [1 ]
l6 [1 ]
l4 [0 ]
l7 [-X₁₂ ]
l10 [-X₁₂ ]
l21 [-X₁₂ ]
l9 [-X₁₂ ]
l8 [-X₁₂ ]

MPRF for transition t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}

MPRF:

l13 [2⋅X₆-X₁₂ ]
l11 [2⋅X₆-X₁₂ ]
l12 [2⋅X₆-X₁₂ ]
l14 [2⋅X₆-X₁₂ ]
l19 [2⋅X₆-X₁₂ ]
l2 [2⋅X₆-X₁₂ ]
l20 [2⋅X₆-X₁₂ ]
l18 [2⋅X₆-X₁₂ ]
l17 [2⋅X₆-X₁₂ ]
l23 [2⋅X₆-X₁₂ ]
l22 [2⋅X₆+1-X₁₂ ]
l24 [2⋅X₆-X₁₂ ]
l15 [2⋅X₆-X₁₂ ]
l27 [2⋅X₆+1-X₁₂ ]
l3 [2⋅X₆-X₁₂ ]
l1 [2⋅X₆-X₁₂ ]
l5 [2⋅X₆+1 ]
l6 [2⋅X₆+1 ]
l4 [2⋅X₆+1 ]
l7 [2⋅X₆+1-X₁₂ ]
l10 [2⋅X₆-X₁₂ ]
l21 [2⋅X₆-X₁₂ ]
l9 [2⋅X₆-X₁₂ ]
l8 [2⋅X₆-X₁₂ ]

MPRF for transition t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ X₈ ≤ 1 ∧ X₈ ≤ X₆ ∧ X₈ ≤ 1+X₁₂ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

MPRF:

l13 [X₆-X₁₂ ]
l11 [X₆-X₁₂ ]
l12 [X₆-X₁₂ ]
l14 [X₆-X₁₂ ]
l19 [X₆-X₁₂ ]
l2 [X₆-X₁₂ ]
l20 [X₆-X₁₂ ]
l18 [X₆-X₁₂ ]
l17 [X₆-X₁₂ ]
l23 [X₆-X₁₂ ]
l22 [X₆+1-X₁₂ ]
l24 [X₆-X₁₂ ]
l15 [X₆-X₁₂ ]
l27 [X₆+1-X₁₂ ]
l3 [X₆-X₁₂ ]
l1 [X₆-X₁₂ ]
l5 [X₆+1 ]
l6 [X₆+1 ]
l4 [X₆+1 ]
l7 [X₆+1-X₁₂ ]
l10 [X₆+1-X₁₂ ]
l21 [X₆-X₁₂ ]
l9 [X₆+1-X₁₂ ]
l8 [X₆+1-X₁₂ ]

MPRF for transition t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, -1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < 0 ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}

MPRF:

l13 [2⋅X₆+X₈-2⋅X₁₂ ]
l11 [2⋅X₆+X₈-2⋅X₁₂ ]
l12 [2⋅X₆+X₈-2⋅X₁₂ ]
l14 [2⋅X₆+X₈-2⋅X₁₂ ]
l19 [2⋅X₆+X₈-2⋅X₁₂ ]
l2 [2⋅X₆+X₈-2⋅X₁₂ ]
l20 [2⋅X₆+X₈-2⋅X₁₂ ]
l18 [2⋅X₆+X₈-2⋅X₁₂ ]
l17 [2⋅X₆+X₈-2⋅X₁₂ ]
l23 [2⋅X₆+X₈-2⋅X₁₂ ]
l22 [2⋅X₆+1-2⋅X₁₂ ]
l24 [2⋅X₆-2⋅X₁₂ ]
l15 [2⋅X₆-2⋅X₁₂ ]
l27 [2⋅X₆+1-2⋅X₁₂ ]
l3 [2⋅X₆+X₈-2⋅X₁₂ ]
l1 [2⋅X₆+X₈-2⋅X₁₂ ]
l5 [2⋅X₆+1 ]
l6 [2⋅X₆+1 ]
l4 [2⋅X₆+1 ]
l7 [2⋅X₆+1-2⋅X₁₂ ]
l10 [2⋅X₆+1-2⋅X₁₂ ]
l21 [2⋅X₆+X₈-2⋅X₁₂ ]
l9 [2⋅X₆+1-2⋅X₁₂ ]
l8 [2⋅X₆+X₈-2⋅X₁₂ ]

MPRF for transition t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, -1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₃ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}

MPRF:

l13 [2⋅X₆+X₈-2⋅X₁₂ ]
l11 [2⋅X₆+X₈-2⋅X₁₂ ]
l12 [2⋅X₆+X₈-2⋅X₁₂ ]
l14 [2⋅X₆+X₈-2⋅X₁₂ ]
l19 [2⋅X₆+X₈-2⋅X₁₂ ]
l2 [2⋅X₆+X₈-2⋅X₁₂ ]
l20 [2⋅X₆+X₈-2⋅X₁₂ ]
l18 [2⋅X₆+X₈-2⋅X₁₂ ]
l17 [2⋅X₆+X₈-2⋅X₁₂ ]
l23 [2⋅X₆-2⋅X₁₂-1 ]
l22 [2⋅X₆+1-2⋅X₁₂ ]
l24 [2⋅X₆-2⋅X₁₂ ]
l15 [2⋅X₆-2⋅X₁₂ ]
l27 [2⋅X₆+1-2⋅X₁₂ ]
l3 [2⋅X₆+X₈-2⋅X₁₂ ]
l1 [2⋅X₆+X₈-2⋅X₁₂ ]
l5 [2⋅X₆+1 ]
l6 [2⋅X₆+1 ]
l4 [2⋅X₆+1 ]
l7 [2⋅X₆+1-2⋅X₁₂ ]
l10 [2⋅X₆+1-2⋅X₁₂ ]
l21 [2⋅X₆+X₈-2⋅X₁₂ ]
l9 [2⋅X₆+1-2⋅X₁₂ ]
l8 [2⋅X₆+X₈-2⋅X₁₂ ]

MPRF for transition t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

MPRF:

l13 [X₆-X₁₂ ]
l11 [X₆-X₁₂ ]
l12 [X₆-X₁₂ ]
l14 [X₆-X₁₂ ]
l19 [X₆-X₁₂ ]
l2 [X₆-X₁₂ ]
l20 [X₆-X₁₂ ]
l18 [X₆-X₁₂ ]
l17 [X₆-X₁₂ ]
l23 [X₆-X₁₂ ]
l22 [X₆+1-X₁₂ ]
l24 [X₆-X₁₂ ]
l15 [X₆-X₁₂ ]
l27 [X₆+1-X₁₂ ]
l3 [X₆-X₁₂ ]
l1 [X₆-X₁₂ ]
l5 [X₆+1 ]
l6 [X₆+1 ]
l4 [X₆+1 ]
l7 [X₆+1-X₁₂ ]
l10 [X₆+1-X₁₂ ]
l21 [X₆-X₁₂ ]
l9 [X₆+1-X₁₂ ]
l8 [X₆-X₁₂ ]

MPRF for transition t₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}

MPRF:

l13 [X₅ ]
l11 [X₅ ]
l12 [X₅ ]
l14 [X₅-X₁₁ ]
l19 [X₅-X₁₁-1 ]
l2 [X₅-X₁₁ ]
l20 [X₅-X₁₁-1 ]
l18 [X₅-X₁₁-1 ]
l17 [X₅-X₁₁ ]
l21 [X₅-X₁₁ ]
l23 [X₅-X₁₁ ]
l22 [X₅-X₁₁ ]
l24 [X₅-X₁₁ ]
l15 [X₅-X₁₁ ]
l27 [X₅-X₁₁ ]
l3 [X₅-X₁₁ ]
l1 [X₅-X₁₁ ]
l5 [X₅-X₁₁ ]
l6 [X₅-X₁₁ ]
l4 [X₅-X₁₁ ]
l7 [X₅-X₁₁ ]
l10 [X₅-X₁₁ ]
l9 [X₅-X₁₁ ]
l8 [X₅-X₁₁ ]

MPRF for transition t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₇ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

4⋅X₁₃⋅X₅⋅X₆+8⋅X₅⋅X₆⋅X₉+4⋅X₁₃⋅X₅+4⋅X₅⋅X₆+8⋅X₅⋅X₉+2⋅X₁₁+8⋅X₅ {O(n^3)}

MPRF:

l13 [4⋅X₅ ]
l11 [4⋅X₅ ]
l12 [4⋅X₅ ]
l14 [4⋅X₅-2⋅X₁₁ ]
l19 [4⋅X₅-X₇-2⋅X₁₁-1 ]
l2 [4⋅X₅-2⋅X₁₁ ]
l20 [4⋅X₅-X₇-2⋅X₁₁-1 ]
l18 [4⋅X₅-X₇-2⋅X₁₁-1 ]
l17 [4⋅X₅-2⋅X₁₁ ]
l21 [4⋅X₅-2⋅X₁₁ ]
l23 [4⋅X₅-2⋅X₁₁ ]
l22 [4⋅X₅-2⋅X₁₁ ]
l24 [4⋅X₅-2⋅X₁₁ ]
l15 [4⋅X₅-2⋅X₁₁ ]
l27 [4⋅X₅-2⋅X₁₁ ]
l3 [4⋅X₅-2⋅X₁₁ ]
l1 [4⋅X₅-2⋅X₁₁ ]
l5 [4⋅X₅-2⋅X₁₁ ]
l6 [4⋅X₅-2⋅X₁₁ ]
l4 [4⋅X₅-2⋅X₁₁ ]
l7 [4⋅X₅-2⋅X₁₁ ]
l10 [4⋅X₅-2⋅X₁₁ ]
l9 [4⋅X₅-2⋅X₁₁ ]
l8 [4⋅X₅-2⋅X₁₁ ]

MPRF for transition t₄₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₈ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₁₃⋅X₅+2⋅X₅⋅X₆+2⋅X₆⋅X₉+4⋅X₅⋅X₉+X₁₃⋅X₆+2⋅X₁₁+2⋅X₉+4⋅X₅+X₁₃+X₆+2 {O(n^3)}

MPRF:

l13 [2⋅X₅-1 ]
l11 [2⋅X₅-1 ]
l12 [2⋅X₅-1 ]
l14 [2⋅X₅-2⋅X₁₁-1 ]
l19 [2⋅X₅-2⋅X₁₁-3 ]
l2 [2⋅X₅-2⋅X₁₁-1 ]
l20 [2⋅X₅-2⋅X₁₁-3 ]
l18 [2⋅X₅-2⋅X₁₁-3 ]
l17 [2⋅X₅-2⋅X₁₁-1 ]
l21 [2⋅X₅-2⋅X₁₁-1 ]
l23 [2⋅X₅-2⋅X₁₁-1 ]
l22 [2⋅X₅-2⋅X₁₁-1 ]
l24 [2⋅X₅-2⋅X₁₁-1 ]
l15 [2⋅X₅-2⋅X₁₁-1 ]
l27 [2⋅X₅-2⋅X₁₁-1 ]
l3 [2⋅X₅-2⋅X₁₁-1 ]
l1 [2⋅X₅-2⋅X₁₁-1 ]
l5 [2⋅X₅-2⋅X₁₁-1 ]
l6 [2⋅X₅-2⋅X₁₁-1 ]
l4 [2⋅X₅-2⋅X₁₁-1 ]
l7 [2⋅X₅-2⋅X₁₁-1 ]
l10 [2⋅X₅-2⋅X₁₁-1 ]
l9 [2⋅X₅-2⋅X₁₁-1 ]
l8 [2⋅X₅-X₆-2⋅X₁₁ ]

MPRF for transition t₄₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₈ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}

MPRF:

l13 [X₅ ]
l11 [X₅ ]
l12 [X₅ ]
l14 [X₅-X₁₁ ]
l19 [X₅-X₁₁-1 ]
l2 [X₅-X₁₁ ]
l20 [X₅-X₁₁-1 ]
l18 [X₅-X₁₁-1 ]
l17 [X₅-X₁₁ ]
l21 [X₅-X₁₁ ]
l23 [X₅-X₁₁ ]
l22 [X₅-X₁₁ ]
l24 [X₅-X₁₁ ]
l15 [X₅-X₁₁ ]
l27 [X₅-X₁₁ ]
l3 [X₅-X₁₁ ]
l1 [X₅-X₁₁ ]
l5 [X₅-X₁₁ ]
l6 [X₅-X₁₁ ]
l4 [X₅-X₁₁ ]
l7 [X₅-X₁₁ ]
l10 [X₅-X₁₁ ]
l9 [X₅-X₁₁ ]
l8 [X₅-X₁₁ ]

MPRF for transition t₄₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}

MPRF:

l13 [X₅ ]
l11 [X₅ ]
l12 [X₅ ]
l14 [X₅-X₁₁ ]
l19 [X₅-X₁₁-1 ]
l2 [X₅-X₁₁ ]
l20 [X₅-X₁₁ ]
l18 [X₅-X₁₁ ]
l17 [X₅-X₁₁ ]
l21 [X₅-X₁₁ ]
l23 [X₅-X₁₁ ]
l22 [X₅-X₁₁ ]
l24 [X₅-X₁₁ ]
l15 [X₅-X₁₁ ]
l27 [X₅-X₁₁ ]
l3 [X₅-X₁₁ ]
l1 [X₅-X₁₁ ]
l5 [X₅-X₁₁ ]
l6 [X₅-X₁₁ ]
l4 [X₅-X₁₁ ]
l7 [X₅-X₁₁ ]
l10 [X₅-X₁₁ ]
l9 [X₅-X₁₁ ]
l8 [X₅-X₁₁ ]

MPRF for transition t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}

MPRF:

l13 [1 ]
l11 [1 ]
l12 [1 ]
l14 [-X₁₁ ]
l19 [-X₁₁ ]
l2 [-X₁₁ ]
l20 [-X₁₁ ]
l18 [-X₁₁ ]
l17 [1-X₁₁ ]
l21 [1-X₁₁ ]
l23 [-X₁₁ ]
l22 [-X₁₁ ]
l24 [-X₁₁ ]
l15 [-X₁₁ ]
l27 [-X₁₁ ]
l3 [-X₁₁ ]
l1 [-X₁₁ ]
l5 [-X₁₁ ]
l6 [-X₁₁ ]
l4 [-X₁₁ ]
l7 [-X₁₁ ]
l10 [-X₁₁ ]
l9 [-X₁₁ ]
l8 [-X₁₁ ]

MPRF for transition t₃₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}

MPRF:

l13 [1 ]
l11 [1 ]
l12 [1 ]
l14 [-X₁₁ ]
l19 [-X₁₁ ]
l2 [-X₁₁ ]
l20 [-X₁₁ ]
l18 [-X₁₁ ]
l17 [1-X₁₁ ]
l21 [1-X₁₁ ]
l23 [-X₁₁ ]
l22 [-X₁₁ ]
l24 [-X₁₁ ]
l15 [-X₁₁ ]
l27 [-X₁₁ ]
l3 [-X₁₁ ]
l1 [-X₁₁ ]
l5 [-X₁₁ ]
l6 [-X₁₁ ]
l4 [-X₁₁ ]
l7 [-X₁₁ ]
l10 [-X₁₁ ]
l9 [-X₁₁ ]
l8 [-X₁₁ ]

MPRF for transition t₃₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}

MPRF:

l13 [1 ]
l11 [1 ]
l12 [1 ]
l14 [-X₁₁ ]
l19 [-X₁₁ ]
l2 [-X₁₁ ]
l20 [-X₁₁ ]
l18 [-X₁₁ ]
l17 [1-X₁₁ ]
l21 [1-X₁₁ ]
l23 [-X₁₁ ]
l22 [-X₁₁ ]
l24 [-X₁₁ ]
l15 [-X₁₁ ]
l27 [-X₁₁ ]
l3 [-X₁₁ ]
l1 [-X₁₁ ]
l5 [-X₁₁ ]
l6 [-X₁₁ ]
l4 [-X₁₁ ]
l7 [-X₁₁ ]
l10 [-X₁₁ ]
l9 [-X₁₁ ]
l8 [-X₁₁ ]

MPRF for transition t₂₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}

MPRF:

l13 [0 ]
l11 [0 ]
l12 [1 ]
l14 [-X₁₁ ]
l19 [-X₁₁ ]
l2 [-X₁₁ ]
l20 [-X₁₁ ]
l18 [-X₁₁ ]
l17 [1-X₁₁ ]
l21 [1-X₁₁ ]
l23 [-X₁₁ ]
l22 [-X₁₁ ]
l24 [-X₁₁ ]
l15 [-X₁₁ ]
l27 [-X₁₁ ]
l3 [-X₁₁ ]
l1 [-X₁₁ ]
l5 [-X₁₁ ]
l6 [-X₁₁ ]
l4 [-X₁₁ ]
l7 [-X₁₁ ]
l10 [-X₁₁ ]
l9 [-X₁₁ ]
l8 [-X₁₁ ]

MPRF for transition t₂₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(nondef.2, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}

MPRF:

l13 [1 ]
l11 [0 ]
l12 [1 ]
l14 [-X₁₁ ]
l19 [-X₁₁ ]
l2 [-X₁₁ ]
l20 [-X₁₁ ]
l18 [-X₁₁ ]
l17 [1-X₁₁ ]
l21 [1-X₁₁ ]
l23 [-X₁₁ ]
l22 [-X₁₁ ]
l24 [-X₁₁ ]
l15 [-X₁₁ ]
l27 [-X₁₁ ]
l3 [-X₁₁ ]
l1 [-X₁₁ ]
l5 [-X₁₁ ]
l6 [-X₁₁ ]
l4 [-X₁₁ ]
l7 [-X₁₁ ]
l10 [-X₁₁ ]
l9 [-X₁₁ ]
l8 [-X₁₁ ]

MPRF for transition t₃₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}

MPRF:

l13 [X₅ ]
l11 [X₅ ]
l12 [X₅ ]
l14 [X₅-X₁₁ ]
l19 [X₅-X₁₁-1 ]
l2 [X₅-X₁₁-1 ]
l20 [X₅-X₁₁-1 ]
l18 [X₅-X₁₁-1 ]
l17 [X₅-X₁₁ ]
l21 [X₅-X₁₁ ]
l23 [X₅-X₁₁ ]
l22 [X₅-X₁₁ ]
l24 [X₅-X₁₁ ]
l15 [X₅-X₁₁ ]
l27 [X₅-X₁₁ ]
l3 [X₅-X₁₁-1 ]
l1 [X₅-X₁₁-1 ]
l5 [X₅-X₁₁ ]
l6 [X₅-X₁₁ ]
l4 [X₅-X₁₁ ]
l7 [X₅-X₁₁ ]
l10 [X₅-X₁₁ ]
l9 [X₅-X₁₁ ]
l8 [X₅-X₁₁ ]

MPRF for transition t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}

MPRF:

l13 [0 ]
l11 [0 ]
l12 [0 ]
l14 [-X₁₁ ]
l19 [-X₁₁ ]
l2 [-X₁₁ ]
l20 [-X₁₁ ]
l18 [-X₁₁ ]
l17 [1-X₁₁ ]
l21 [1-X₁₁ ]
l23 [-X₁₁ ]
l22 [-X₁₁ ]
l24 [-X₁₁ ]
l15 [-X₁₁ ]
l27 [-X₁₁ ]
l3 [-X₁₁ ]
l1 [-X₁₁ ]
l5 [-X₁₁ ]
l6 [-X₁₁ ]
l4 [-X₁₁ ]
l7 [-X₁₁ ]
l10 [-X₁₁ ]
l9 [-X₁₁ ]
l8 [-X₁₁ ]

MPRF for transition t₂₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}

MPRF:

l13 [X₅-1 ]
l11 [X₅-1 ]
l12 [X₅ ]
l14 [X₅-X₁₁-1 ]
l19 [X₅-X₁₁-1 ]
l2 [X₅-X₁₁-1 ]
l20 [X₅-X₁₁-1 ]
l18 [X₅-X₁₁-1 ]
l17 [X₅-X₁₁ ]
l21 [X₅-X₁₁ ]
l23 [X₅-X₁₁ ]
l22 [X₅-X₁₁ ]
l24 [X₅-X₁₁ ]
l15 [X₅-X₁₁ ]
l27 [X₅-X₁₁ ]
l3 [X₅-X₁₁-1 ]
l1 [X₅-X₁₁-1 ]
l5 [X₅-X₁₁ ]
l6 [X₅-X₁₁ ]
l4 [X₅-X₁₁ ]
l7 [X₅-X₁₁ ]
l10 [X₅-X₁₁ ]
l9 [X₅-X₁₁ ]
l8 [X₅-X₁₁ ]

MPRF for transition t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ ≤ 1+X₁₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}

MPRF:

l13 [X₅ ]
l11 [X₅ ]
l12 [X₅ ]
l14 [X₅-X₁₁ ]
l19 [X₅-X₁₁-1 ]
l2 [X₅-X₁₁ ]
l20 [X₅-X₁₁ ]
l18 [X₅-X₁₁ ]
l17 [X₅-X₁₁ ]
l21 [X₅-X₁₁ ]
l23 [X₅-X₁₁ ]
l22 [X₅-X₁₁ ]
l24 [X₅-X₁₁ ]
l15 [X₅-X₁₁ ]
l27 [X₅-X₁₁ ]
l3 [X₅-X₁₁ ]
l1 [X₅-X₁₁ ]
l5 [X₅-X₁₁ ]
l6 [X₅-X₁₁ ]
l4 [X₅-X₁₁ ]
l7 [X₅-X₁₁ ]
l10 [X₅-X₁₁ ]
l9 [X₅-X₁₁ ]
l8 [X₅-X₁₁ ]

MPRF for transition t₄₇: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁+1, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}

MPRF:

l13 [X₅+2⋅X₆ ]
l11 [X₅+2⋅X₆ ]
l12 [X₅+2⋅X₆ ]
l14 [X₅+2⋅X₆-X₁₁ ]
l19 [X₅+2⋅X₆-X₁₁ ]
l2 [X₅+2⋅X₆-X₁₁ ]
l20 [X₅+2⋅X₆-X₁₁ ]
l18 [X₅+2⋅X₆-X₁₁ ]
l17 [X₅+2⋅X₆-X₁₁ ]
l21 [X₅+2⋅X₆-X₁₁ ]
l23 [X₅+2⋅X₆-X₁₁ ]
l22 [X₅-X₁₁ ]
l24 [X₅-X₁₁ ]
l15 [X₅-X₁₁ ]
l27 [X₅-X₁₁ ]
l3 [X₅+2⋅X₆-X₁₁ ]
l1 [X₅+2⋅X₆-X₁₁ ]
l5 [X₅-X₁₁ ]
l6 [X₅-X₁₁ ]
l4 [X₅-X₁₁ ]
l7 [X₅-X₁₁ ]
l10 [X₅-X₁₁ ]
l9 [X₅-X₁₁ ]
l8 [X₅-X₁₁ ]

MPRF for transition t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, nondef.3, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}

MPRF:

l13 [X₅ ]
l11 [X₅ ]
l12 [X₅ ]
l14 [X₅-X₁₁ ]
l19 [X₅-X₁₁-1 ]
l2 [X₅-X₁₁ ]
l20 [X₅-X₁₁-1 ]
l18 [X₅-X₁₁-1 ]
l17 [X₅-X₁₁ ]
l21 [X₅-X₁₁ ]
l23 [X₅-X₁₁ ]
l22 [X₅-X₁₁ ]
l24 [X₅-X₁₁ ]
l15 [X₅-X₁₁ ]
l27 [X₅-X₁₁ ]
l3 [X₅-X₁₁-1 ]
l1 [X₅-X₁₁-1 ]
l5 [X₅-X₁₁ ]
l6 [X₅-X₁₁ ]
l4 [X₅-X₁₁ ]
l7 [X₅-X₁₁ ]
l10 [X₅-X₁₁ ]
l9 [X₅-X₁₁ ]
l8 [X₅-X₁₁ ]

MPRF for transition t₂₂: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ < X₅ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₉+X₁₃⋅X₅+X₁₃⋅X₆+X₅⋅X₆+2⋅X₅+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^3)}

MPRF:

l13 [X₅ ]
l11 [X₅ ]
l12 [X₅ ]
l14 [X₅-X₁₁ ]
l19 [X₅-X₁₁ ]
l2 [X₅-X₁₁ ]
l20 [X₅-X₁₁ ]
l18 [X₅-X₁₁ ]
l17 [X₅-X₁₁ ]
l21 [X₅+1-X₁₁ ]
l23 [X₅-X₁₁ ]
l22 [X₅-X₁₁ ]
l24 [X₅-X₁₁ ]
l15 [X₅-X₁₁ ]
l27 [X₅-X₁₁ ]
l3 [X₅-X₁₁ ]
l1 [X₅-X₁₁ ]
l5 [X₅-X₁₁ ]
l6 [X₅-X₁₁ ]
l4 [X₅-X₁₁ ]
l7 [X₅-X₁₁ ]
l10 [X₅-X₁₁ ]
l9 [X₅-X₁₁ ]
l8 [X₅-X₁₁ ]

MPRF for transition t₃₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, -1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}

MPRF:

l13 [X₅ ]
l11 [X₅ ]
l12 [X₅ ]
l14 [X₅-X₁₁ ]
l19 [X₅-X₁₁-1 ]
l2 [X₅-X₁₁ ]
l20 [X₅-X₁₁-1 ]
l18 [X₅-X₁₁-1 ]
l17 [X₅-X₁₁ ]
l21 [X₅-X₁₁ ]
l23 [X₅-X₁₁ ]
l22 [X₅-X₁₁ ]
l24 [X₅-X₁₁ ]
l15 [X₅-X₁₁ ]
l27 [X₅-X₁₁ ]
l3 [X₅-X₁₁ ]
l1 [X₅-X₁₁-1 ]
l5 [X₅-X₁₁ ]
l6 [X₅-X₁₁ ]
l4 [X₅-X₁₁ ]
l7 [X₅-X₁₁ ]
l10 [X₅-X₁₁ ]
l9 [X₅-X₁₁ ]
l8 [X₅-X₁₁ ]

MPRF for transition t₃₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, -1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₉+X₁₃⋅X₅+X₁₃⋅X₆+X₅⋅X₆+2⋅X₅+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^3)}

MPRF:

l13 [X₅+1 ]
l11 [X₅+1 ]
l12 [X₅+1 ]
l14 [X₅+1-X₁₁ ]
l19 [X₅-X₁₁ ]
l2 [X₅+1-X₁₁ ]
l20 [X₅-X₁₁ ]
l18 [X₅-X₁₁ ]
l17 [X₅+1-X₁₁ ]
l21 [X₅+1-X₁₁ ]
l23 [X₅-X₁₁ ]
l22 [X₅-X₁₁ ]
l24 [X₅-X₁₁ ]
l15 [X₅-X₁₁ ]
l27 [X₅-X₁₁ ]
l3 [X₅+1-X₁₁ ]
l1 [X₅-X₁₁ ]
l5 [X₅-X₁₁ ]
l6 [X₅-X₁₁ ]
l4 [X₅-X₁₁ ]
l7 [X₅-X₁₁ ]
l10 [X₅-X₁₁ ]
l9 [X₅-X₁₁ ]
l8 [X₅-X₁₁ ]

MPRF for transition t₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₉+X₁₃⋅X₅+X₁₃⋅X₆+X₅⋅X₆+2⋅X₅+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^3)}

MPRF:

l13 [X₅+1 ]
l11 [X₅+1 ]
l12 [X₅+1 ]
l14 [X₅+1-X₁₁ ]
l19 [X₅-X₁₁ ]
l2 [X₅+1-X₁₁ ]
l20 [X₅-X₁₁ ]
l18 [X₅-X₁₁ ]
l17 [X₅+1-X₁₁ ]
l21 [X₅+1-X₁₁ ]
l23 [X₅-X₁₁ ]
l22 [X₅-X₁₁ ]
l24 [X₅-X₁₁ ]
l15 [X₅-X₁₁ ]
l27 [X₅-X₁₁ ]
l3 [X₅+1-X₁₁ ]
l1 [X₅-X₁₁ ]
l5 [X₅-X₁₁ ]
l6 [X₅-X₁₁ ]
l4 [X₅-X₁₁ ]
l7 [X₅-X₁₁ ]
l10 [X₅-X₁₁ ]
l9 [X₅-X₁₁ ]
l8 [X₅-X₁₁ ]

knowledge_propagation leads to new time bound 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₁₁+2⋅X₁₃+2⋅X₆+4⋅X₉+2 {O(n^2)} for transition t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₇ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁

MPRF for transition t₄₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀+1 < X₄ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀ of depth 1:

new bound:

2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₄ {O(n^4)}

MPRF:

l13 [X₄ ]
l11 [X₄ ]
l12 [X₄ ]
l14 [X₄ ]
l19 [X₄ ]
l2 [X₄ ]
l20 [X₄-X₁₀-2 ]
l18 [X₄-X₁₀-1 ]
l17 [X₄ ]
l23 [X₄ ]
l22 [X₄ ]
l24 [X₄ ]
l15 [X₄ ]
l27 [X₄ ]
l3 [X₄ ]
l1 [X₄ ]
l5 [X₄ ]
l6 [X₄ ]
l4 [X₄ ]
l7 [X₄ ]
l10 [X₄ ]
l21 [X₄ ]
l9 [X₄ ]
l8 [X₄ ]

MPRF for transition t₄₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 2 ≤ X₄+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 2+X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 3 ≤ X₄ ∧ 3 ≤ X₁₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 2+X₁₀ ≤ X₄ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀ of depth 1:

new bound:

2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₄ {O(n^4)}

MPRF:

l13 [X₄ ]
l11 [X₄ ]
l12 [X₄ ]
l14 [X₄ ]
l19 [X₄ ]
l2 [X₄ ]
l20 [X₄-X₁₀-1 ]
l18 [X₄-X₁₀-1 ]
l17 [X₄ ]
l23 [X₄ ]
l22 [X₄ ]
l24 [X₄ ]
l15 [X₄ ]
l27 [X₄ ]
l3 [X₄ ]
l1 [X₄ ]
l5 [X₄ ]
l6 [X₄ ]
l4 [X₄ ]
l7 [X₄ ]
l10 [X₄ ]
l21 [X₄ ]
l9 [X₄ ]
l8 [X₄ ]

All Bounds

Timebounds

Overall timebound:2⋅X₁₃⋅X₄⋅X₅⋅X₆+4⋅X₄⋅X₅⋅X₆⋅X₉+14⋅X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₄⋅X₅+2⋅X₁₃⋅X₆⋅X₆+2⋅X₄⋅X₅⋅X₆+28⋅X₅⋅X₆⋅X₉+4⋅X₄⋅X₅⋅X₉+4⋅X₆⋅X₆⋅X₉+14⋅X₁₃⋅X₅+14⋅X₅⋅X₆+2⋅X₁₁⋅X₄+2⋅X₆⋅X₆+28⋅X₁₃⋅X₆+28⋅X₅⋅X₉+4⋅X₄⋅X₅+56⋅X₆⋅X₉+2⋅X₄+22⋅X₁₁+28⋅X₅+28⋅X₆+34⋅X₁₃+68⋅X₉+39 {O(n^4)}
t₀: 1 {O(1)}
t₃₉: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₄₀: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₁₁+2⋅X₁₃+2⋅X₆+4⋅X₉+2 {O(n^2)}
t₄₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₁₃⋅X₅+2⋅X₅⋅X₆+2⋅X₆⋅X₉+4⋅X₅⋅X₉+X₁₃⋅X₆+2⋅X₁₁+2⋅X₉+4⋅X₅+X₁₃+X₆+2 {O(n^3)}
t₄₂: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₄₃: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₁₇: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₃₀: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}
t₃₁: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}
t₃₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}
t₂₇: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}
t₂₉: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}
t₃₃: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₂: 2⋅X₉+X₁₃+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂₄: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}
t₂₆: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₄₄: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₄ {O(n^4)}
t₄₅: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₄₇: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₃₅: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₄₆: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₄ {O(n^4)}
t₂₂: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₉+X₁₃⋅X₅+X₁₃⋅X₆+X₅⋅X₆+2⋅X₅+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^3)}
t₂₃: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₁₃+4⋅X₉+X₆+2 {O(n^2)}
t₅: 2⋅X₁₃+4⋅X₉+2 {O(n)}
t₄₈: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄₉: 2⋅X₉+X₁₃+1 {O(n)}
t₅₀: 1 {O(1)}
t₆: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₈: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₁₃+4⋅X₉+X₆+2 {O(n^2)}
t₃₆: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₃₇: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₉+X₁₃⋅X₅+X₁₃⋅X₆+X₅⋅X₆+2⋅X₅+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^3)}
t₃₈: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₉+X₁₃⋅X₅+X₁₃⋅X₆+X₅⋅X₆+2⋅X₅+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^3)}
t₁₂: 2⋅X₉+X₁₃+1 {O(n)}
t₁₃: 2⋅X₉+X₁₃+1 {O(n)}
t₁₄: 2⋅X₉+X₁₃+1 {O(n)}
t₉: 2⋅X₉+X₁₃+1 {O(n)}
t₁₁: 2⋅X₉+X₁₃+1 {O(n)}
t₁₅: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}
t₂₁: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₁₈: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}
t₁₉: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}
t₂₀: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

Costbounds

Overall costbound: 2⋅X₁₃⋅X₄⋅X₅⋅X₆+4⋅X₄⋅X₅⋅X₆⋅X₉+14⋅X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₄⋅X₅+2⋅X₁₃⋅X₆⋅X₆+2⋅X₄⋅X₅⋅X₆+28⋅X₅⋅X₆⋅X₉+4⋅X₄⋅X₅⋅X₉+4⋅X₆⋅X₆⋅X₉+14⋅X₁₃⋅X₅+14⋅X₅⋅X₆+2⋅X₁₁⋅X₄+2⋅X₆⋅X₆+28⋅X₁₃⋅X₆+28⋅X₅⋅X₉+4⋅X₄⋅X₅+56⋅X₆⋅X₉+2⋅X₄+22⋅X₁₁+28⋅X₅+28⋅X₆+34⋅X₁₃+68⋅X₉+39 {O(n^4)}
t₀: 1 {O(1)}
t₃₉: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₄₀: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₁₁+2⋅X₁₃+2⋅X₆+4⋅X₉+2 {O(n^2)}
t₄₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₁₃⋅X₅+2⋅X₅⋅X₆+2⋅X₆⋅X₉+4⋅X₅⋅X₉+X₁₃⋅X₆+2⋅X₁₁+2⋅X₉+4⋅X₅+X₁₃+X₆+2 {O(n^3)}
t₄₂: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₄₃: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₁₇: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₃₀: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}
t₃₁: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}
t₃₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}
t₂₇: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}
t₂₉: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}
t₃₃: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₂: 2⋅X₉+X₁₃+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂₄: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^2)}
t₂₆: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₄₄: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₄ {O(n^4)}
t₄₅: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₄₇: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₃₅: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₄₆: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₄ {O(n^4)}
t₂₂: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₉+X₁₃⋅X₅+X₁₃⋅X₆+X₅⋅X₆+2⋅X₅+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^3)}
t₂₃: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₁₃+4⋅X₉+X₆+2 {O(n^2)}
t₅: 2⋅X₁₃+4⋅X₉+2 {O(n)}
t₄₈: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄₉: 2⋅X₉+X₁₃+1 {O(n)}
t₅₀: 1 {O(1)}
t₆: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₈: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₁₃+4⋅X₉+X₆+2 {O(n^2)}
t₃₆: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₃₇: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₉+X₁₃⋅X₅+X₁₃⋅X₆+X₅⋅X₆+2⋅X₅+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^3)}
t₃₈: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₉+X₁₃⋅X₅+X₁₃⋅X₆+X₅⋅X₆+2⋅X₅+2⋅X₉+X₁₁+X₁₃+X₆+1 {O(n^3)}
t₁₂: 2⋅X₉+X₁₃+1 {O(n)}
t₁₃: 2⋅X₉+X₁₃+1 {O(n)}
t₁₄: 2⋅X₉+X₁₃+1 {O(n)}
t₉: 2⋅X₉+X₁₃+1 {O(n)}
t₁₁: 2⋅X₉+X₁₃+1 {O(n)}
t₁₅: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}
t₂₁: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₁₈: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}
t₁₉: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}
t₂₀: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₀, X₁₂: X₁₂ {O(n)}
t₀, X₁₃: X₁₃ {O(n)}
t₀, X₁₄: X₁₄ {O(n)}
t₃₉, X₄: X₄ {O(n)}
t₃₉, X₅: X₅ {O(n)}
t₃₉, X₆: X₆ {O(n)}
t₃₉, X₇: 1 {O(1)}
t₃₉, X₈: 3 {O(1)}
t₃₉, X₉: X₉ {O(n)}
t₃₉, X₁₀: 1 {O(1)}
t₃₉, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₃₉, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₃₉, X₁₃: X₁₃ {O(n)}
t₃₉, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₀, X₄: X₄ {O(n)}
t₄₀, X₅: X₅ {O(n)}
t₄₀, X₆: X₆ {O(n)}
t₄₀, X₇: 1 {O(1)}
t₄₀, X₈: 3 {O(1)}
t₄₀, X₉: X₉ {O(n)}
t₄₀, X₁₀: 1 {O(1)}
t₄₀, X₁₁: 0 {O(1)}
t₄₀, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄₀, X₁₃: X₁₃ {O(n)}
t₄₀, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₁, X₄: X₄ {O(n)}
t₄₁, X₅: X₅ {O(n)}
t₄₁, X₆: X₆ {O(n)}
t₄₁, X₇: 1 {O(1)}
t₄₁, X₈: 1 {O(1)}
t₄₁, X₉: X₉ {O(n)}
t₄₁, X₁₀: 1 {O(1)}
t₄₁, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₄₁, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄₁, X₁₃: X₁₃ {O(n)}
t₄₁, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₂, X₄: X₄ {O(n)}
t₄₂, X₅: X₅ {O(n)}
t₄₂, X₆: X₆ {O(n)}
t₄₂, X₇: 1 {O(1)}
t₄₂, X₈: 3 {O(1)}
t₄₂, X₉: X₉ {O(n)}
t₄₂, X₁₀: 1 {O(1)}
t₄₂, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₄₂, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄₂, X₁₃: X₁₃ {O(n)}
t₄₂, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₃, X₁: 0 {O(1)}
t₄₃, X₄: X₄ {O(n)}
t₄₃, X₅: X₅ {O(n)}
t₄₃, X₆: X₆ {O(n)}
t₄₃, X₇: 0 {O(1)}
t₄₃, X₈: 0 {O(1)}
t₄₃, X₉: X₉ {O(n)}
t₄₃, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₄₃, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₄₃, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄₃, X₁₃: X₁₃ {O(n)}
t₄₃, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₅ {O(n)}
t₁₇, X₆: X₆ {O(n)}
t₁₇, X₇: X₇+8 {O(n)}
t₁₇, X₈: 2⋅X₈+16 {O(n)}
t₁₇, X₉: X₉ {O(n)}
t₁₇, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₁₇, X₁₁: 16⋅X₆⋅X₆⋅X₉+4⋅X₁₃⋅X₅⋅X₆+8⋅X₁₃⋅X₆⋅X₆+8⋅X₅⋅X₆⋅X₉+16⋅X₆⋅X₉+4⋅X₁₃⋅X₅+4⋅X₅⋅X₆+8⋅X₁₃⋅X₆+8⋅X₅⋅X₉+8⋅X₆⋅X₆+6⋅X₁₁+8⋅X₅+8⋅X₆ {O(n^3)}
t₁₇, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₁₇, X₁₃: X₁₃ {O(n)}
t₁₇, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₀, X₄: X₄ {O(n)}
t₃₀, X₅: X₅ {O(n)}
t₃₀, X₆: X₆ {O(n)}
t₃₀, X₇: 1 {O(1)}
t₃₀, X₈: 3 {O(1)}
t₃₀, X₉: X₉ {O(n)}
t₃₀, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₃₀, X₁₁: 0 {O(1)}
t₃₀, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₃₀, X₁₃: X₁₃ {O(n)}
t₃₀, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₁, X₄: X₄ {O(n)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: 1 {O(1)}
t₃₁, X₈: 3 {O(1)}
t₃₁, X₉: X₉ {O(n)}
t₃₁, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₃₁, X₁₁: 0 {O(1)}
t₃₁, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₃₁, X₁₃: X₁₃ {O(n)}
t₃₁, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₂, X₀: 0 {O(1)}
t₃₂, X₄: X₄ {O(n)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: X₆ {O(n)}
t₃₂, X₇: X₇+16 {O(n)}
t₃₂, X₈: 3 {O(1)}
t₃₂, X₉: X₉ {O(n)}
t₃₂, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₃₂, X₁₁: 0 {O(1)}
t₃₂, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₃₂, X₁₃: X₁₃ {O(n)}
t₃₂, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₅: X₅ {O(n)}
t₂₇, X₆: X₆ {O(n)}
t₂₇, X₇: X₇+16 {O(n)}
t₂₇, X₈: 3 {O(1)}
t₂₇, X₉: X₉ {O(n)}
t₂₇, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₂₇, X₁₁: 0 {O(1)}
t₂₇, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₂₇, X₁₃: X₁₃ {O(n)}
t₂₇, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₅: X₅ {O(n)}
t₂₉, X₆: X₆ {O(n)}
t₂₉, X₇: X₇+16 {O(n)}
t₂₉, X₈: 3 {O(1)}
t₂₉, X₉: X₉ {O(n)}
t₂₉, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₂₉, X₁₁: 0 {O(1)}
t₂₉, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₂₉, X₁₃: X₁₃ {O(n)}
t₂₉, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₅: X₅ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₃, X₇: 2⋅X₇+32 {O(n)}
t₃₃, X₈: 3 {O(1)}
t₃₃, X₉: X₉ {O(n)}
t₃₃, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₃₃, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₃₃, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₃₃, X₁₃: X₁₃ {O(n)}
t₃₃, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇+8 {O(n)}
t₂, X₈: X₈+4 {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₂, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₁₁+2⋅X₅+2⋅X₆ {O(n^3)}
t₂, X₁₂: 0 {O(1)}
t₂, X₁₃: X₁₃ {O(n)}
t₂, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃, X₄: 2⋅X₄ {O(n)}
t₃, X₅: 2⋅X₅ {O(n)}
t₃, X₆: 2⋅X₆ {O(n)}
t₃, X₇: 2⋅X₇+8 {O(n)}
t₃, X₈: 2⋅X₈+4 {O(n)}
t₃, X₉: 2⋅X₉ {O(n)}
t₃, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+2⋅X₁₀+X₄+8 {O(n^4)}
t₃, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+3⋅X₁₁ {O(n^3)}
t₃, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₂+X₁₃+X₆+1 {O(n^2)}
t₃, X₁₃: 2⋅X₁₃ {O(n)}
t₃, X₁₄: 4⋅X₉+X₁₃+1 {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₁, X₁₂: X₁₂ {O(n)}
t₁, X₁₃: X₁₃ {O(n)}
t₁, X₁₄: X₉ {O(n)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: X₅ {O(n)}
t₂₄, X₆: X₆ {O(n)}
t₂₄, X₇: X₇+16 {O(n)}
t₂₄, X₈: 3 {O(1)}
t₂₄, X₉: X₉ {O(n)}
t₂₄, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₂₄, X₁₁: 0 {O(1)}
t₂₄, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₂₄, X₁₃: X₁₃ {O(n)}
t₂₄, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₆, X₄: X₄ {O(n)}
t₂₆, X₅: X₅ {O(n)}
t₂₆, X₆: X₆ {O(n)}
t₂₆, X₇: X₇+16 {O(n)}
t₂₆, X₈: 3 {O(1)}
t₂₆, X₉: X₉ {O(n)}
t₂₆, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₂₆, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₂₆, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₂₆, X₁₃: X₁₃ {O(n)}
t₂₆, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₄, X₄: X₄ {O(n)}
t₄₄, X₅: X₅ {O(n)}
t₄₄, X₆: X₆ {O(n)}
t₄₄, X₇: 4 {O(1)}
t₄₄, X₈: 3 {O(1)}
t₄₄, X₉: X₉ {O(n)}
t₄₄, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₄+4 {O(n^4)}
t₄₄, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₄₄, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄₄, X₁₃: X₁₃ {O(n)}
t₄₄, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₅, X₄: X₄ {O(n)}
t₄₅, X₅: X₅ {O(n)}
t₄₅, X₆: X₆ {O(n)}
t₄₅, X₇: 8 {O(1)}
t₄₅, X₈: 3 {O(1)}
t₄₅, X₉: X₉ {O(n)}
t₄₅, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₄+8 {O(n^4)}
t₄₅, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₄₅, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄₅, X₁₃: X₁₃ {O(n)}
t₄₅, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₇, X₄: X₄ {O(n)}
t₄₇, X₅: X₅ {O(n)}
t₄₇, X₆: X₆ {O(n)}
t₄₇, X₇: 8 {O(1)}
t₄₇, X₈: 3 {O(1)}
t₄₇, X₉: X₉ {O(n)}
t₄₇, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₄₇, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₄₇, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄₇, X₁₃: X₁₃ {O(n)}
t₄₇, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₅, X₅: X₅ {O(n)}
t₃₅, X₆: X₆ {O(n)}
t₃₅, X₇: 2⋅X₇+32 {O(n)}
t₃₅, X₈: 3 {O(1)}
t₃₅, X₉: X₉ {O(n)}
t₃₅, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₃₅, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₃₅, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₃₅, X₁₃: X₁₃ {O(n)}
t₃₅, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₆, X₄: X₄ {O(n)}
t₄₆, X₅: X₅ {O(n)}
t₄₆, X₆: X₆ {O(n)}
t₄₆, X₇: 4 {O(1)}
t₄₆, X₈: 3 {O(1)}
t₄₆, X₉: X₉ {O(n)}
t₄₆, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₄+4 {O(n^4)}
t₄₆, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₄₆, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄₆, X₁₃: X₁₃ {O(n)}
t₄₆, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₇: X₇+16 {O(n)}
t₂₂, X₈: 3 {O(1)}
t₂₂, X₉: X₉ {O(n)}
t₂₂, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₂₂, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₂₂, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₂₂, X₁₃: X₁₃ {O(n)}
t₂₂, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₇: X₇+8 {O(n)}
t₂₃, X₈: 4 {O(1)}
t₂₃, X₉: X₉ {O(n)}
t₂₃, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₂₃, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₂₃, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₂₃, X₁₃: X₁₃ {O(n)}
t₂₃, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇+8 {O(n)}
t₄, X₈: X₈+8 {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₄, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₁₃⋅X₆⋅X₆+4⋅X₅⋅X₆⋅X₉+8⋅X₆⋅X₆⋅X₉+2⋅X₁₃⋅X₅+2⋅X₅⋅X₆+4⋅X₁₃⋅X₆+4⋅X₅⋅X₉+4⋅X₆⋅X₆+8⋅X₆⋅X₉+3⋅X₁₁+4⋅X₅+4⋅X₆ {O(n^3)}
t₄, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄, X₁₃: X₁₃ {O(n)}
t₄, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇+8 {O(n)}
t₅, X₈: X₈+4 {O(n)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₅, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₁₁+2⋅X₅+2⋅X₆ {O(n^3)}
t₅, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₅, X₁₃: X₁₃ {O(n)}
t₅, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₈, X₄: X₄ {O(n)}
t₄₈, X₅: X₅ {O(n)}
t₄₈, X₆: X₆ {O(n)}
t₄₈, X₇: X₇+8 {O(n)}
t₄₈, X₈: 4 {O(1)}
t₄₈, X₉: X₉ {O(n)}
t₄₈, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₄₈, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₄₈, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄₈, X₁₃: X₁₃ {O(n)}
t₄₈, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₉, X₄: X₄ {O(n)}
t₄₉, X₅: X₅ {O(n)}
t₄₉, X₆: X₆ {O(n)}
t₄₉, X₇: X₇+8 {O(n)}
t₄₉, X₈: X₈+4 {O(n)}
t₄₉, X₉: X₉ {O(n)}
t₄₉, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₄₉, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₁₁+2⋅X₅+2⋅X₆ {O(n^3)}
t₄₉, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₄₉, X₁₃: X₁₃ {O(n)}
t₄₉, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₅₀, X₄: 2⋅X₄ {O(n)}
t₅₀, X₅: 2⋅X₅ {O(n)}
t₅₀, X₆: 2⋅X₆ {O(n)}
t₅₀, X₇: 2⋅X₇+8 {O(n)}
t₅₀, X₈: 2⋅X₈+4 {O(n)}
t₅₀, X₉: 2⋅X₉ {O(n)}
t₅₀, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+2⋅X₁₀+X₄+8 {O(n^4)}
t₅₀, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+3⋅X₁₁ {O(n^3)}
t₅₀, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₂+X₁₃+X₆+1 {O(n^2)}
t₅₀, X₁₃: 2⋅X₁₃ {O(n)}
t₅₀, X₁₄: 4⋅X₉+X₁₃+1 {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇+8 {O(n)}
t₆, X₈: X₈+8 {O(n)}
t₆, X₉: X₉ {O(n)}
t₆, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₆, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₁₃⋅X₆⋅X₆+4⋅X₅⋅X₆⋅X₉+8⋅X₆⋅X₆⋅X₉+2⋅X₁₃⋅X₅+2⋅X₅⋅X₆+4⋅X₁₃⋅X₆+4⋅X₅⋅X₉+4⋅X₆⋅X₆+8⋅X₆⋅X₉+3⋅X₁₁+4⋅X₅+4⋅X₆ {O(n^3)}
t₆, X₁₂: 0 {O(1)}
t₆, X₁₃: X₁₃ {O(n)}
t₆, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇+8 {O(n)}
t₈, X₈: X₈+8 {O(n)}
t₈, X₉: X₉ {O(n)}
t₈, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₈, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₁₃⋅X₆⋅X₆+4⋅X₅⋅X₆⋅X₉+8⋅X₆⋅X₆⋅X₉+2⋅X₁₃⋅X₅+2⋅X₅⋅X₆+4⋅X₁₃⋅X₆+4⋅X₅⋅X₉+4⋅X₆⋅X₆+8⋅X₆⋅X₉+3⋅X₁₁+4⋅X₅+4⋅X₆ {O(n^3)}
t₈, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₈, X₁₃: X₁₃ {O(n)}
t₈, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₅: X₅ {O(n)}
t₃₆, X₆: X₆ {O(n)}
t₃₆, X₇: 1 {O(1)}
t₃₆, X₈: 3 {O(1)}
t₃₆, X₉: X₉ {O(n)}
t₃₆, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₃₆, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₃₆, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₃₆, X₁₃: X₁₃ {O(n)}
t₃₆, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₇, X₄: X₄ {O(n)}
t₃₇, X₅: X₅ {O(n)}
t₃₇, X₆: X₆ {O(n)}
t₃₇, X₇: 1 {O(1)}
t₃₇, X₈: 3 {O(1)}
t₃₇, X₉: X₉ {O(n)}
t₃₇, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₃₇, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₃₇, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₃₇, X₁₃: X₁₃ {O(n)}
t₃₇, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₈, X₁: 0 {O(1)}
t₃₈, X₄: X₄ {O(n)}
t₃₈, X₅: X₅ {O(n)}
t₃₈, X₆: X₆ {O(n)}
t₃₈, X₇: 0 {O(1)}
t₃₈, X₈: 3 {O(1)}
t₃₈, X₉: X₉ {O(n)}
t₃₈, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₃₈, X₁₁: 2⋅X₁₃⋅X₆⋅X₆+2⋅X₅⋅X₆⋅X₉+4⋅X₆⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₁₃⋅X₆+2⋅X₅⋅X₉+2⋅X₆⋅X₆+4⋅X₆⋅X₉+X₁₃⋅X₅+X₅⋅X₆+2⋅X₅+2⋅X₆+X₁₁ {O(n^3)}
t₃₈, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₃₈, X₁₃: X₁₃ {O(n)}
t₃₈, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₅ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₇+8 {O(n)}
t₁₂, X₈: 1 {O(1)}
t₁₂, X₉: X₉ {O(n)}
t₁₂, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₁₂, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₁₃⋅X₆⋅X₆+4⋅X₅⋅X₆⋅X₉+8⋅X₆⋅X₆⋅X₉+2⋅X₁₃⋅X₅+2⋅X₅⋅X₆+4⋅X₁₃⋅X₆+4⋅X₅⋅X₉+4⋅X₆⋅X₆+8⋅X₆⋅X₉+3⋅X₁₁+4⋅X₅+4⋅X₆ {O(n^3)}
t₁₂, X₁₂: 0 {O(1)}
t₁₂, X₁₃: X₁₃ {O(n)}
t₁₂, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁₃, X₇: X₇+8 {O(n)}
t₁₃, X₈: 1 {O(1)}
t₁₃, X₉: X₉ {O(n)}
t₁₃, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₁₃, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₁₃⋅X₆⋅X₆+4⋅X₅⋅X₆⋅X₉+8⋅X₆⋅X₆⋅X₉+2⋅X₁₃⋅X₅+2⋅X₅⋅X₆+4⋅X₁₃⋅X₆+4⋅X₅⋅X₉+4⋅X₆⋅X₆+8⋅X₆⋅X₉+3⋅X₁₁+4⋅X₅+4⋅X₆ {O(n^3)}
t₁₃, X₁₂: 0 {O(1)}
t₁₃, X₁₃: X₁₃ {O(n)}
t₁₃, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₄, X₂: 0 {O(1)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: X₇+8 {O(n)}
t₁₄, X₈: X₈+8 {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₄, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₁₄, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₁₃⋅X₆⋅X₆+4⋅X₅⋅X₆⋅X₉+8⋅X₆⋅X₆⋅X₉+2⋅X₁₃⋅X₅+2⋅X₅⋅X₆+4⋅X₁₃⋅X₆+4⋅X₅⋅X₉+4⋅X₆⋅X₆+8⋅X₆⋅X₉+3⋅X₁₁+4⋅X₅+4⋅X₆ {O(n^3)}
t₁₄, X₁₂: 0 {O(1)}
t₁₄, X₁₃: X₁₃ {O(n)}
t₁₄, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇+8 {O(n)}
t₉, X₈: X₈+8 {O(n)}
t₉, X₉: X₉ {O(n)}
t₉, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₉, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₁₃⋅X₆⋅X₆+4⋅X₅⋅X₆⋅X₉+8⋅X₆⋅X₆⋅X₉+2⋅X₁₃⋅X₅+2⋅X₅⋅X₆+4⋅X₁₃⋅X₆+4⋅X₅⋅X₉+4⋅X₆⋅X₆+8⋅X₆⋅X₉+3⋅X₁₁+4⋅X₅+4⋅X₆ {O(n^3)}
t₉, X₁₂: 0 {O(1)}
t₉, X₁₃: X₁₃ {O(n)}
t₉, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₇+8 {O(n)}
t₁₁, X₈: X₈+8 {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₁, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₁₁, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₁₃⋅X₆⋅X₆+4⋅X₅⋅X₆⋅X₉+8⋅X₆⋅X₆⋅X₉+2⋅X₁₃⋅X₅+2⋅X₅⋅X₆+4⋅X₁₃⋅X₆+4⋅X₅⋅X₉+4⋅X₆⋅X₆+8⋅X₆⋅X₉+3⋅X₁₁+4⋅X₅+4⋅X₆ {O(n^3)}
t₁₁, X₁₂: 0 {O(1)}
t₁₁, X₁₃: X₁₃ {O(n)}
t₁₁, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: X₅ {O(n)}
t₁₅, X₆: X₆ {O(n)}
t₁₅, X₇: X₇+8 {O(n)}
t₁₅, X₈: 2⋅X₈+16 {O(n)}
t₁₅, X₉: X₉ {O(n)}
t₁₅, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₁₅, X₁₁: 16⋅X₆⋅X₆⋅X₉+4⋅X₁₃⋅X₅⋅X₆+8⋅X₁₃⋅X₆⋅X₆+8⋅X₅⋅X₆⋅X₉+16⋅X₆⋅X₉+4⋅X₁₃⋅X₅+4⋅X₅⋅X₆+8⋅X₁₃⋅X₆+8⋅X₅⋅X₉+8⋅X₆⋅X₆+6⋅X₁₁+8⋅X₅+8⋅X₆ {O(n^3)}
t₁₅, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₁₅, X₁₃: X₁₃ {O(n)}
t₁₅, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: X₅ {O(n)}
t₂₁, X₆: X₆ {O(n)}
t₂₁, X₇: X₇+8 {O(n)}
t₂₁, X₈: 1 {O(1)}
t₂₁, X₉: X₉ {O(n)}
t₂₁, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₂₁, X₁₁: 0 {O(1)}
t₂₁, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₂₁, X₁₃: X₁₃ {O(n)}
t₂₁, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: X₅ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₇: X₇+8 {O(n)}
t₁₈, X₈: 1 {O(1)}
t₁₈, X₉: X₉ {O(n)}
t₁₈, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₁₈, X₁₁: 16⋅X₆⋅X₆⋅X₉+4⋅X₁₃⋅X₅⋅X₆+8⋅X₁₃⋅X₆⋅X₆+8⋅X₅⋅X₆⋅X₉+16⋅X₆⋅X₉+4⋅X₁₃⋅X₅+4⋅X₅⋅X₆+8⋅X₁₃⋅X₆+8⋅X₅⋅X₉+8⋅X₆⋅X₆+6⋅X₁₁+8⋅X₅+8⋅X₆ {O(n^3)}
t₁₈, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₁₈, X₁₃: X₁₃ {O(n)}
t₁₈, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: X₅ {O(n)}
t₁₉, X₆: X₆ {O(n)}
t₁₉, X₇: X₇+8 {O(n)}
t₁₉, X₈: 1 {O(1)}
t₁₉, X₉: X₉ {O(n)}
t₁₉, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₁₉, X₁₁: 16⋅X₆⋅X₆⋅X₉+4⋅X₁₃⋅X₅⋅X₆+8⋅X₁₃⋅X₆⋅X₆+8⋅X₅⋅X₆⋅X₉+16⋅X₆⋅X₉+4⋅X₁₃⋅X₅+4⋅X₅⋅X₆+8⋅X₁₃⋅X₆+8⋅X₅⋅X₉+8⋅X₆⋅X₆+6⋅X₁₁+8⋅X₅+8⋅X₆ {O(n^3)}
t₁₉, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₁₉, X₁₃: X₁₃ {O(n)}
t₁₉, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₀, X₃: 0 {O(1)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: X₅ {O(n)}
t₂₀, X₆: X₆ {O(n)}
t₂₀, X₇: X₇+8 {O(n)}
t₂₀, X₈: 0 {O(1)}
t₂₀, X₉: X₉ {O(n)}
t₂₀, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₉+X₁₃⋅X₄⋅X₅+X₄⋅X₅⋅X₆+2⋅X₄⋅X₅+X₁₁⋅X₄+X₁₀+X₄+8 {O(n^4)}
t₂₀, X₁₁: 16⋅X₆⋅X₆⋅X₉+4⋅X₁₃⋅X₅⋅X₆+8⋅X₁₃⋅X₆⋅X₆+8⋅X₅⋅X₆⋅X₉+16⋅X₆⋅X₉+4⋅X₁₃⋅X₅+4⋅X₅⋅X₆+8⋅X₁₃⋅X₆+8⋅X₅⋅X₉+8⋅X₆⋅X₆+6⋅X₁₁+8⋅X₅+8⋅X₆ {O(n^3)}
t₂₀, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₂₀, X₁₃: X₁₃ {O(n)}
t₂₀, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}