Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆)
t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₁ ≤ X₄
t₃₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₃
t₃₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁
t₃₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁
t₂₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀
t₂₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₃
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₁ ≤ X₄
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ < 0
t₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ 0 < X₂
t₁₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ X₂ < 0
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ 0 < X₂
t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ < 0
t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 < X₂
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆)
t₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
Preprocessing
Cut unsatisfiable transition t₁₈: l7→l3
Cut unsatisfiable transition t₁₉: l7→l3
Cut unsatisfiable transition t₂₁: l7→l3
Cut unsatisfiable transition t₂₂: l7→l3
Cut unsatisfiable transition t₂₃: l7→l3
Cut unsatisfiable transition t₂₄: l7→l3
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l11
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l2
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l6
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l12
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location l7
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l5
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l13
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location l8
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location l1
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l10
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l4
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₂₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₂₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₂₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ < 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ 0 < X₂ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
MPRF for transition t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ of depth 1:
new bound:
X₃+X₄+X₅+X₆+1 {O(n)}
MPRF:
l10 [X₃+X₄-X₀-X₁ ]
l11 [X₃+X₄+1-X₀-X₁ ]
l4 [X₃+X₄+1-X₀-X₁ ]
l5 [X₃+X₄+1-X₀-X₁ ]
l1 [X₃+X₄+1-X₀-X₁ ]
l6 [X₃+X₄+1-X₀-X₁ ]
l2 [X₃+X₄+1-X₀-X₁ ]
l3 [X₃+X₄+1-X₀-X₁ ]
l8 [X₃+X₄-X₀-X₁ ]
l7 [X₃+X₄-X₀-X₁ ]
MPRF for transition t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ of depth 1:
new bound:
X₃+X₅+1 {O(n)}
MPRF:
l10 [X₃+1-X₀ ]
l11 [X₃+1-X₀ ]
l4 [X₃+1-X₀ ]
l5 [X₃+1-X₀ ]
l1 [X₃+1-X₀ ]
l6 [X₃+1-X₀ ]
l2 [X₃+1-X₀ ]
l3 [X₃+1-X₀ ]
l8 [X₃+1-X₀ ]
l7 [X₃+1-X₀ ]
MPRF for transition t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ of depth 1:
new bound:
X₄+X₆+1 {O(n)}
MPRF:
l10 [X₄+1-X₁ ]
l11 [X₄+1-X₁ ]
l4 [X₄+1-X₁ ]
l5 [X₄+1-X₁ ]
l1 [X₄+1-X₁ ]
l6 [X₄+1-X₁ ]
l2 [X₄+1-X₁ ]
l3 [X₄+1-X₁ ]
l8 [X₄+1-X₁ ]
l7 [X₄+1-X₁ ]
MPRF for transition t₂₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ of depth 1:
new bound:
X₃+X₅+1 {O(n)}
MPRF:
l10 [X₃-X₀ ]
l11 [X₃+1-X₀ ]
l4 [X₃+1-X₀ ]
l5 [X₃+1-X₀ ]
l1 [X₃+1-X₀ ]
l6 [X₃+1-X₀ ]
l2 [X₃+1-X₀ ]
l3 [X₃+1-X₀ ]
l8 [X₃+1-X₀ ]
l7 [X₃+1-X₀ ]
MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ of depth 1:
new bound:
X₃+X₄+X₅+X₆+1 {O(n)}
MPRF:
l10 [X₃+X₄-X₀-X₁ ]
l11 [X₃+X₄+1-X₀-X₁ ]
l4 [X₃+X₄+1-X₀-X₁ ]
l5 [X₃+X₄+1-X₀-X₁ ]
l1 [X₃+X₄-X₀-X₁ ]
l6 [X₃+X₄+1-X₀-X₁ ]
l2 [X₃+X₄+1-X₀-X₁ ]
l3 [X₃+X₄+1-X₀-X₁ ]
l8 [X₃+X₄-X₀-X₁ ]
l7 [X₃+X₄-X₀-X₁ ]
MPRF for transition t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ < 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ of depth 1:
new bound:
X₄+X₆+1 {O(n)}
MPRF:
l10 [X₄+1-X₁ ]
l11 [X₄+1-X₁ ]
l4 [X₄+1-X₁ ]
l5 [X₄+1-X₁ ]
l1 [X₄+1-X₁ ]
l6 [X₄+1-X₁ ]
l2 [X₄+1-X₁ ]
l3 [X₄+1-X₁ ]
l8 [X₄+1-X₁ ]
l7 [X₄+1-X₁ ]
MPRF for transition t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ 0 < X₂ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ of depth 1:
new bound:
X₄+X₆+1 {O(n)}
MPRF:
l10 [X₄+1-X₁ ]
l11 [X₄+1-X₁ ]
l4 [X₄+1-X₁ ]
l5 [X₄+1-X₁ ]
l1 [X₄+1-X₁ ]
l6 [X₄+1-X₁ ]
l2 [X₄+1-X₁ ]
l3 [X₄+1-X₁ ]
l8 [X₄+1-X₁ ]
l7 [X₄+1-X₁ ]
MPRF for transition t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ of depth 1:
new bound:
X₃+X₅+1 {O(n)}
MPRF:
l10 [X₃-X₀ ]
l11 [X₃+1-X₀ ]
l4 [X₃+1-X₀ ]
l5 [X₃+1-X₀ ]
l1 [X₃+1-X₀ ]
l6 [X₃+1-X₀ ]
l2 [X₃+1-X₀ ]
l3 [X₃+1-X₀ ]
l8 [X₃+1-X₀ ]
l7 [X₃+1-X₀ ]
MPRF for transition t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ of depth 1:
new bound:
X₃+X₄+X₅+X₆+1 {O(n)}
MPRF:
l10 [X₃+X₄+1-X₀-X₁ ]
l11 [X₃+X₄+1-X₀-X₁ ]
l4 [X₃+X₄+1-X₀-X₁ ]
l5 [X₃+X₄+1-X₀-X₁ ]
l1 [X₃+X₄+1-X₀-X₁ ]
l6 [X₃+X₄+1-X₀-X₁ ]
l2 [X₃+X₄+1-X₀-X₁ ]
l3 [X₃+X₄+1-X₀-X₁ ]
l8 [X₃+X₄+1-X₀-X₁ ]
l7 [X₃+X₄-X₀-X₁ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₄₁₅: n_l2___14→l10
Cut unsatisfiable transition t₄₁₆: n_l2___18→l10
Cut unsatisfiable transition t₄₁₉: n_l2___31→l10
Cut unsatisfiable transition t₄₂₀: n_l2___34→l10
Cut unsatisfiable transition t₄₂₁: n_l2___38→l10
Cut unsatisfiable transition t₄₂₂: n_l2___47→l10
Cut unsatisfiable transition t₄₂₃: n_l2___8→l10
Cut unsatisfiable transition t₄₃₈: n_l5___10→l12
Cut unsatisfiable transition t₄₃₉: n_l5___20→l12
Cut unsatisfiable transition t₄₅₀: n_l5___20→l12
Cut unsatisfiable transition t₄₄₀: n_l5___21→l12
Cut unsatisfiable transition t₄₅₁: n_l5___21→l12
Cut unsatisfiable transition t₄₄₁: n_l5___3→l12
Cut unsatisfiable transition t₄₄₂: n_l5___30→l12
Cut unsatisfiable transition t₄₄₃: n_l5___33→l12
Cut unsatisfiable transition t₄₄₄: n_l5___4→l12
Cut unsatisfiable transition t₄₄₅: n_l5___40→l12
Cut unsatisfiable transition t₄₅₆: n_l5___40→l12
Cut unsatisfiable transition t₄₄₆: n_l5___41→l12
Cut unsatisfiable transition t₄₄₇: n_l5___49→l12
Cut unsatisfiable transition t₄₅₈: n_l5___49→l12
Cut unsatisfiable transition t₄₄₈: n_l5___50→l12
Cut unsatisfiable transition t₄₂₅: n_l6___15→l1
Cut unsatisfiable transition t₄₆₁: n_l6___15→l1
Cut unsatisfiable transition t₄₂₆: n_l6___19→l1
Cut unsatisfiable transition t₄₆₂: n_l6___19→l1
Cut unsatisfiable transition t₄₂₇: n_l6___2→l1
Cut unsatisfiable transition t₄₆₃: n_l6___2→l1
Cut unsatisfiable transition t₄₂₉: n_l6___25→l1
Cut unsatisfiable transition t₄₆₅: n_l6___25→l1
Cut unsatisfiable transition t₄₃₁: n_l6___29→l1
Cut unsatisfiable transition t₄₆₇: n_l6___29→l1
Cut unsatisfiable transition t₄₃₂: n_l6___32→l1
Cut unsatisfiable transition t₄₆₈: n_l6___32→l1
Cut unsatisfiable transition t₄₃₃: n_l6___35→l1
Cut unsatisfiable transition t₄₆₉: n_l6___35→l1
Cut unsatisfiable transition t₄₃₄: n_l6___39→l1
Cut unsatisfiable transition t₄₇₀: n_l6___39→l1
Cut unsatisfiable transition t₄₃₅: n_l6___48→l1
Cut unsatisfiable transition t₄₇₁: n_l6___48→l1
Cut unsatisfiable transition t₄₃₇: n_l6___9→l1
Cut unsatisfiable transition t₄₇₃: n_l6___9→l1
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l11___17
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___20
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l2___31
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l2___47
Found invariant 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l11___36
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l2___14
Found invariant 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l2___34
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ for location n_l4___43
Found invariant X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ for location n_l5___30
Found invariant X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ for location n_l5___50
Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l2___38
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l3___6
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l6___19
Found invariant X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l2___1
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l4___13
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ for location l12
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l5___4
Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l6___39
Found invariant 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l5___40
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l6___48
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location l1
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l10
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l4___27
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ for location l3
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ for location n_l5___41
Found invariant X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀ for location n_l4___53
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l5___3
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l6___9
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l11___45
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l5___49
Found invariant X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l6___2
Found invariant X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l6___29
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l2___24
Found invariant X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l2___28
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l4___23
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location n_l6___25
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l11___46
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ for location n_l4___12
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location n_l6___51
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l11___16
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l2___18
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ for location n_l3___44
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l5___10
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l6___22
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location n_l6___26
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l6___32
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ for location n_l4___42
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l4___5
Found invariant X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ for location n_l4___52
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___21
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location l7
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l11___7
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location n_l6___11
Found invariant X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ for location l13
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ for location l8
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ for location n_l2___8
Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l11___37
Found invariant X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ for location n_l5___33
Found invariant 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l6___15
Found invariant 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ for location n_l6___35
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₃₂₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₃₃₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound X₃+X₅+1 {O(n)} for transition t₃₃₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₃₃₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₃₃₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₃₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₃₄₂: n_l4___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 1+X₃ ∧ 1+X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₃₄₆: n_l4___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₅₂: n_l4___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₄₂₄: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₄₆₀: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₃₆₄: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ 1+X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound X₃+X₅+1 {O(n)} for transition t₄₂₈: n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
knowledge_propagation leads to new time bound X₃+X₅+1 {O(n)} for transition t₄₆₄: n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₃₆₅: n_l6___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₄₃₀: n_l6___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₄₆₆: n_l6___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₃₆₆: n_l6___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₃₆: n_l6___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₇₂: n_l6___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)} for transition t₄₁₄: n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)} for transition t₄₁₇: n_l2___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₄₁₈: n_l2___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
MPRF for transition t₃₀₉: n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+20 {O(n)}
MPRF:
n_l11___36 [X₄+1-X₁ ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄+1-X₁ ]
n_l4___43 [X₄+1-X₁ ]
n_l5___40 [X₄+1-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄+1-X₁ ]
n_l2___34 [X₄+1-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₃₁₀: n_l11___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+20 {O(n)}
MPRF:
n_l11___36 [X₄-X₁ ]
n_l11___37 [X₄+1-X₁ ]
n_l3___44 [X₄+1-X₁ ]
n_l4___43 [X₄+1-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₃₂₀: n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+16 {O(n)}
MPRF:
n_l11___36 [X₄-X₁-1 ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄-X₁ ]
n_l4___43 [X₄-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁ ]
n_l6___39 [X₄-X₁ ]
n_l2___38 [X₄-X₁ ]
MPRF for transition t₃₂₁: n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+16 {O(n)}
MPRF:
n_l11___36 [X₄-X₁-1 ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄-X₁ ]
n_l4___43 [X₄-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁ ]
n_l6___39 [X₄-X₁ ]
n_l2___38 [X₄-X₁ ]
MPRF for transition t₃₂₂: n_l2___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+20 {O(n)}
MPRF:
n_l11___36 [X₄-X₁ ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄+1-X₁ ]
n_l4___43 [X₄+1-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₃₂₃: n_l2___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+20 {O(n)}
MPRF:
n_l11___36 [X₄-X₁ ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄+1-X₁ ]
n_l4___43 [X₄+1-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₃₂₈: n_l3___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+24 {O(n)}
MPRF:
n_l11___36 [X₄+1-X₁ ]
n_l11___37 [X₄+1-X₁ ]
n_l3___44 [X₄+2-X₁ ]
n_l4___43 [X₄+1-X₁ ]
n_l5___40 [X₄+1-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄+1-X₁ ]
n_l2___34 [X₄+1-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₃₄₈: n_l4___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+24 {O(n)}
MPRF:
n_l11___36 [X₄+1-X₁ ]
n_l11___37 [X₄+1-X₁ ]
n_l3___44 [X₄+2-X₁ ]
n_l4___43 [X₄+2-X₁ ]
n_l5___40 [X₄+1-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄+1-X₁ ]
n_l2___34 [X₄+1-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₃₄₉: n_l4___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+24 {O(n)}
MPRF:
n_l11___36 [X₄+1-X₁ ]
n_l11___37 [X₄+1-X₁ ]
n_l3___44 [X₄+2-X₁ ]
n_l4___43 [X₄+2-X₁ ]
n_l5___40 [X₄+1-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄+1-X₁ ]
n_l2___34 [X₄+1-X₁ ]
n_l6___39 [X₄+1-X₁ ]
n_l2___38 [X₄+1-X₁ ]
MPRF for transition t₃₅₈: n_l5___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+16 {O(n)}
MPRF:
n_l11___36 [X₄-X₁-1 ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄-X₁ ]
n_l4___43 [X₄-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄-X₁ ]
n_l6___35 [X₄-X₁-1 ]
n_l2___34 [X₄-X₁-1 ]
n_l6___39 [X₄-X₁ ]
n_l2___38 [X₄-X₁ ]
MPRF for transition t₃₅₉: n_l5___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+20 {O(n)}
MPRF:
n_l11___36 [X₄-X₁ ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄+1-X₁ ]
n_l4___43 [X₄+1-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄+1-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁ ]
n_l6___39 [X₄-X₁ ]
n_l2___38 [X₄-X₁ ]
MPRF for transition t₃₆₈: n_l6___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
24⋅X₄+24⋅X₆+16 {O(n)}
MPRF:
n_l11___36 [X₄-X₁-1 ]
n_l11___37 [X₄-X₁ ]
n_l3___44 [X₄-X₁ ]
n_l4___43 [X₄-X₁ ]
n_l5___40 [X₄-X₁ ]
n_l5___41 [X₄-X₁ ]
n_l6___35 [X₄-X₁ ]
n_l2___34 [X₄-X₁-1 ]
n_l6___39 [X₄-X₁ ]
n_l2___38 [X₄-X₁ ]
MPRF for transition t₃₆₉: n_l6___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ of depth 1:
new bound:
40⋅X₄+40⋅X₆+16 {O(n)}
MPRF:
n_l11___36 [2⋅X₄-X₁-X₆-1 ]
n_l11___37 [2⋅X₄-X₁-X₆-1 ]
n_l3___44 [2⋅X₄-X₁-X₆ ]
n_l4___43 [2⋅X₄-X₁-X₆ ]
n_l5___40 [2⋅X₄-X₁-X₆ ]
n_l5___41 [2⋅X₄-X₁-X₆ ]
n_l6___35 [2⋅X₄-X₁-X₆ ]
n_l2___34 [2⋅X₄-X₁-X₆ ]
n_l6___39 [2⋅X₄-X₁-X₆ ]
n_l2___38 [2⋅X₄-X₁-X₆-1 ]
CFR: Improvement to new bound with the following program:
new bound:
21⋅X₃+21⋅X₅+360⋅X₄+360⋅X₆+317 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l12, l13, l3, l7, l8, l9, n_l11___16, n_l11___17, n_l11___36, n_l11___37, n_l11___45, n_l11___46, n_l11___7, n_l2___1, n_l2___14, n_l2___18, n_l2___24, n_l2___28, n_l2___31, n_l2___34, n_l2___38, n_l2___47, n_l2___8, n_l3___44, n_l3___6, n_l4___12, n_l4___13, n_l4___23, n_l4___27, n_l4___42, n_l4___43, n_l4___5, n_l4___52, n_l4___53, n_l5___10, n_l5___20, n_l5___21, n_l5___3, n_l5___30, n_l5___33, n_l5___4, n_l5___40, n_l5___41, n_l5___49, n_l5___50, n_l6___11, n_l6___15, n_l6___19, n_l6___2, n_l6___22, n_l6___25, n_l6___26, n_l6___29, n_l6___32, n_l6___35, n_l6___39, n_l6___48, n_l6___51, n_l6___9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₃₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀
t₃₂₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₃₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₃₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₃₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₃₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₃₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₃₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₃₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₃₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₃₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0 ∧ X₂ < 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ 0 < X₂ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₅, X₆, X₂, X₃, X₄, X₅, X₆)
t₃₀₇: n_l11___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₀₈: n_l11___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₀₉: n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₁₀: n_l11___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₁₁: n_l11___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ < X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₁₂: n_l11___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___44(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₁₃: n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___6(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₄₁₄: n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₃₁₄: n_l2___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₁₅: n_l2___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₁₆: n_l2___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₁₇: n_l2___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₄₁₇: n_l2___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₄₁₈: n_l2___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₃₁₈: n_l2___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ < X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₁₉: n_l2___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ < X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₂₀: n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₂₁: n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₂₂: n_l2___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___36(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₂₃: n_l2___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___37(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₂₄: n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___45(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₂₅: n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___46(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₂₆: n_l2___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₃₂₇: n_l3___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₃₂₈: n_l3___44(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₃₃₉: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₄ ≤ X₁ ∧ X₄ < X₁ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₃₄₀: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₄ ≤ X₁ ∧ X₄ < X₁ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₃₄₁: n_l4___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 1+X₃ ∧ 1+X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃
t₃₄₂: n_l4___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 1+X₃ ∧ 1+X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1+X₃
t₃₄₃: n_l4___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₃₄₄: n_l4___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₄₅: n_l4___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₄₆: n_l4___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₃₄₇: n_l4___42(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___33(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ X₄ < X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₃₄₈: n_l4___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₃₄₉: n_l4___43(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 1+X₄ ∧ X₅ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₃₅₀: n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₃ < X₀ ∧ X₁ ≤ X₄+1 ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₃₅₁: n_l4___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁
t₃₅₂: n_l4___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁
t₃₅₃: n_l4___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀
t₃₅₄: n_l4___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀
t₄₄₉: n_l5___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₃₅₅: n_l5___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₃₅₆: n_l5___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₅₇: n_l5___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₄₅₂: n_l5___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₄₅₃: n_l5___30(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀
t₄₅₄: n_l5___33(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₄₅₅: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
t₃₅₈: n_l5___40(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₄₅₇: n_l5___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₃₅₉: n_l5___41(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀
t₃₆₀: n_l5___49(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄ ∧ X₃ < X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₄₅₉: n_l5___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀
t₃₆₁: n_l5___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₀
t₄₂₄: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₄₆₀: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₃₆₂: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ < X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₆₃: n_l6___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₆₄: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ 1+X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₄₂₈: n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₄₆₄: n_l6___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₆₅: n_l6___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₄₃₀: n_l6___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₄₆₆: n_l6___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₃₆₆: n_l6___29(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___28(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₄ < X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₁ ∧ X₄ < X₁ ∧ X₆ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₃₆₇: n_l6___32(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___31(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₀ ∧ X₁ < X₄ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₆₈: n_l6___35(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___34(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ < X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₆₉: n_l6___39(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___38(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₃₇₀: n_l6___48(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___47(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₄ ∧ X₃ < X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1+X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀
t₄₃₆: n_l6___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₄₇₂: n_l6___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₃
t₃₇₁: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ X₆ ≤ X₁ ∧ X₃ < X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₃ < X₀ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃
All Bounds
Timebounds
Overall timebound:21⋅X₃+21⋅X₅+360⋅X₄+360⋅X₆+366 {O(n)}
t₀: 1 {O(1)}
t₁₄: X₃+X₄+X₅+X₆+1 {O(n)}
t₂₉: X₃+X₅+1 {O(n)}
t₃₃: 1 {O(1)}
t₃₂₉: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₃₃₀: 1 {O(1)}
t₃₃₁: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₃₃₂: 1 {O(1)}
t₃₃₃: X₃+X₅+1 {O(n)}
t₃₃₄: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₃₃₅: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₃₃₆: 1 {O(1)}
t₃₃₇: 1 {O(1)}
t₃₃₈: 1 {O(1)}
t₁₇: X₄+X₆+1 {O(n)}
t₂₀: X₄+X₆+1 {O(n)}
t₂₅: X₃+X₅+1 {O(n)}
t₁₆: X₃+X₄+X₅+X₆+1 {O(n)}
t₁: 1 {O(1)}
t₃₀₇: 1 {O(1)}
t₃₀₈: 1 {O(1)}
t₃₀₉: 24⋅X₄+24⋅X₆+20 {O(n)}
t₃₁₀: 24⋅X₄+24⋅X₆+20 {O(n)}
t₃₁₁: 1 {O(1)}
t₃₁₂: 1 {O(1)}
t₃₁₃: 1 {O(1)}
t₄₁₄: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₃₁₄: 1 {O(1)}
t₃₁₅: 1 {O(1)}
t₃₁₆: 1 {O(1)}
t₃₁₇: 1 {O(1)}
t₄₁₇: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₄₁₈: 1 {O(1)}
t₃₁₈: 1 {O(1)}
t₃₁₉: 1 {O(1)}
t₃₂₀: 24⋅X₄+24⋅X₆+16 {O(n)}
t₃₂₁: 24⋅X₄+24⋅X₆+16 {O(n)}
t₃₂₂: 24⋅X₄+24⋅X₆+20 {O(n)}
t₃₂₃: 24⋅X₄+24⋅X₆+20 {O(n)}
t₃₂₄: 1 {O(1)}
t₃₂₅: 1 {O(1)}
t₃₂₆: 1 {O(1)}
t₃₂₇: 1 {O(1)}
t₃₂₈: 24⋅X₄+24⋅X₆+24 {O(n)}
t₃₃₉: 1 {O(1)}
t₃₄₀: 1 {O(1)}
t₃₄₁: 1 {O(1)}
t₃₄₂: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₃₄₃: 1 {O(1)}
t₃₄₄: 1 {O(1)}
t₃₄₅: 1 {O(1)}
t₃₄₆: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₃₄₇: 1 {O(1)}
t₃₄₈: 24⋅X₄+24⋅X₆+24 {O(n)}
t₃₄₉: 24⋅X₄+24⋅X₆+24 {O(n)}
t₃₅₀: 1 {O(1)}
t₃₅₁: 1 {O(1)}
t₃₅₂: 1 {O(1)}
t₃₅₃: 1 {O(1)}
t₃₅₄: 1 {O(1)}
t₃₅₅: 1 {O(1)}
t₄₄₉: 1 {O(1)}
t₃₅₆: 1 {O(1)}
t₃₅₇: 1 {O(1)}
t₄₅₂: 1 {O(1)}
t₄₅₃: 1 {O(1)}
t₄₅₄: 1 {O(1)}
t₄₅₅: 1 {O(1)}
t₃₅₈: 24⋅X₄+24⋅X₆+16 {O(n)}
t₃₅₉: 24⋅X₄+24⋅X₆+20 {O(n)}
t₄₅₇: 1 {O(1)}
t₃₆₀: 1 {O(1)}
t₃₆₁: 1 {O(1)}
t₄₅₉: 1 {O(1)}
t₄₂₄: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₄₆₀: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₃₆₂: 1 {O(1)}
t₃₆₃: 1 {O(1)}
t₃₆₄: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₄₂₈: X₃+X₅+1 {O(n)}
t₄₆₄: X₃+X₅+1 {O(n)}
t₃₆₅: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₄₃₀: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₄₆₆: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₃₆₆: 1 {O(1)}
t₃₆₇: 1 {O(1)}
t₃₆₈: 24⋅X₄+24⋅X₆+16 {O(n)}
t₃₆₉: 40⋅X₄+40⋅X₆+16 {O(n)}
t₃₇₀: 1 {O(1)}
t₄₃₆: 1 {O(1)}
t₄₇₂: 1 {O(1)}
t₃₇₁: 1 {O(1)}
Costbounds
Overall costbound: 21⋅X₃+21⋅X₅+360⋅X₄+360⋅X₆+366 {O(n)}
t₀: 1 {O(1)}
t₁₄: X₃+X₄+X₅+X₆+1 {O(n)}
t₂₉: X₃+X₅+1 {O(n)}
t₃₃: 1 {O(1)}
t₃₂₉: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₃₃₀: 1 {O(1)}
t₃₃₁: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₃₃₂: 1 {O(1)}
t₃₃₃: X₃+X₅+1 {O(n)}
t₃₃₄: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₃₃₅: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₃₃₆: 1 {O(1)}
t₃₃₇: 1 {O(1)}
t₃₃₈: 1 {O(1)}
t₁₇: X₄+X₆+1 {O(n)}
t₂₀: X₄+X₆+1 {O(n)}
t₂₅: X₃+X₅+1 {O(n)}
t₁₆: X₃+X₄+X₅+X₆+1 {O(n)}
t₁: 1 {O(1)}
t₃₀₇: 1 {O(1)}
t₃₀₈: 1 {O(1)}
t₃₀₉: 24⋅X₄+24⋅X₆+20 {O(n)}
t₃₁₀: 24⋅X₄+24⋅X₆+20 {O(n)}
t₃₁₁: 1 {O(1)}
t₃₁₂: 1 {O(1)}
t₃₁₃: 1 {O(1)}
t₄₁₄: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₃₁₄: 1 {O(1)}
t₃₁₅: 1 {O(1)}
t₃₁₆: 1 {O(1)}
t₃₁₇: 1 {O(1)}
t₄₁₇: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₄₁₈: 1 {O(1)}
t₃₁₈: 1 {O(1)}
t₃₁₉: 1 {O(1)}
t₃₂₀: 24⋅X₄+24⋅X₆+16 {O(n)}
t₃₂₁: 24⋅X₄+24⋅X₆+16 {O(n)}
t₃₂₂: 24⋅X₄+24⋅X₆+20 {O(n)}
t₃₂₃: 24⋅X₄+24⋅X₆+20 {O(n)}
t₃₂₄: 1 {O(1)}
t₃₂₅: 1 {O(1)}
t₃₂₆: 1 {O(1)}
t₃₂₇: 1 {O(1)}
t₃₂₈: 24⋅X₄+24⋅X₆+24 {O(n)}
t₃₃₉: 1 {O(1)}
t₃₄₀: 1 {O(1)}
t₃₄₁: 1 {O(1)}
t₃₄₂: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₃₄₃: 1 {O(1)}
t₃₄₄: 1 {O(1)}
t₃₄₅: 1 {O(1)}
t₃₄₆: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₃₄₇: 1 {O(1)}
t₃₄₈: 24⋅X₄+24⋅X₆+24 {O(n)}
t₃₄₉: 24⋅X₄+24⋅X₆+24 {O(n)}
t₃₅₀: 1 {O(1)}
t₃₅₁: 1 {O(1)}
t₃₅₂: 1 {O(1)}
t₃₅₃: 1 {O(1)}
t₃₅₄: 1 {O(1)}
t₃₅₅: 1 {O(1)}
t₄₄₉: 1 {O(1)}
t₃₅₆: 1 {O(1)}
t₃₅₇: 1 {O(1)}
t₄₅₂: 1 {O(1)}
t₄₅₃: 1 {O(1)}
t₄₅₄: 1 {O(1)}
t₄₅₅: 1 {O(1)}
t₃₅₈: 24⋅X₄+24⋅X₆+16 {O(n)}
t₃₅₉: 24⋅X₄+24⋅X₆+20 {O(n)}
t₄₅₇: 1 {O(1)}
t₃₆₀: 1 {O(1)}
t₃₆₁: 1 {O(1)}
t₄₅₉: 1 {O(1)}
t₄₂₄: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₄₆₀: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₃₆₂: 1 {O(1)}
t₃₆₃: 1 {O(1)}
t₃₆₄: 2⋅X₄+2⋅X₆+X₃+X₅+3 {O(n)}
t₄₂₈: X₃+X₅+1 {O(n)}
t₄₆₄: X₃+X₅+1 {O(n)}
t₃₆₅: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₄₃₀: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₄₆₆: 2⋅X₄+2⋅X₆+X₃+X₅+4 {O(n)}
t₃₆₆: 1 {O(1)}
t₃₆₇: 1 {O(1)}
t₃₆₈: 24⋅X₄+24⋅X₆+16 {O(n)}
t₃₆₉: 40⋅X₄+40⋅X₆+16 {O(n)}
t₃₇₀: 1 {O(1)}
t₄₃₆: 1 {O(1)}
t₄₇₂: 1 {O(1)}
t₃₇₁: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁₄, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₄, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₄, X₃: 3⋅X₃ {O(n)}
t₁₄, X₄: 3⋅X₄ {O(n)}
t₁₄, X₅: 3⋅X₅ {O(n)}
t₁₄, X₆: 3⋅X₆ {O(n)}
t₂₉, X₀: 2⋅X₃+5⋅X₅+2 {O(n)}
t₂₉, X₁: 3⋅X₄+6⋅X₆+3 {O(n)}
t₂₉, X₃: 3⋅X₃ {O(n)}
t₂₉, X₄: 3⋅X₄ {O(n)}
t₂₉, X₅: 3⋅X₅ {O(n)}
t₂₉, X₆: 3⋅X₆ {O(n)}
t₃₃, X₀: 10⋅X₅+4⋅X₃+4 {O(n)}
t₃₃, X₁: 12⋅X₆+6⋅X₄+6 {O(n)}
t₃₃, X₃: 6⋅X₃ {O(n)}
t₃₃, X₄: 6⋅X₄ {O(n)}
t₃₃, X₅: 6⋅X₅ {O(n)}
t₃₃, X₆: 6⋅X₆ {O(n)}
t₃₂₉, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₃₂₉, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₃₂₉, X₃: 14⋅X₃ {O(n)}
t₃₂₉, X₄: 14⋅X₄ {O(n)}
t₃₂₉, X₅: 14⋅X₅ {O(n)}
t₃₂₉, X₆: 14⋅X₆ {O(n)}
t₃₃₀, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₃₃₀, X₁: 11⋅X₆+5⋅X₄+5 {O(n)}
t₃₃₀, X₃: 6⋅X₃ {O(n)}
t₃₃₀, X₄: 6⋅X₄ {O(n)}
t₃₃₀, X₅: 6⋅X₅ {O(n)}
t₃₃₀, X₆: 6⋅X₆ {O(n)}
t₃₃₁, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₃₁, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₃₁, X₃: 3⋅X₃ {O(n)}
t₃₃₁, X₄: 3⋅X₄ {O(n)}
t₃₃₁, X₅: 3⋅X₅ {O(n)}
t₃₃₁, X₆: 3⋅X₆ {O(n)}
t₃₃₂, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₃₂, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₃₂, X₂: 0 {O(1)}
t₃₃₂, X₃: 3⋅X₃ {O(n)}
t₃₃₂, X₄: 3⋅X₄ {O(n)}
t₃₃₂, X₅: 3⋅X₅ {O(n)}
t₃₃₂, X₆: 3⋅X₆ {O(n)}
t₃₃₃, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₃₃, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₃₃, X₂: 0 {O(1)}
t₃₃₃, X₃: 3⋅X₃ {O(n)}
t₃₃₃, X₄: 3⋅X₄ {O(n)}
t₃₃₃, X₅: 3⋅X₅ {O(n)}
t₃₃₃, X₆: 3⋅X₆ {O(n)}
t₃₃₄, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₃₃₄, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₃₃₄, X₃: 14⋅X₃ {O(n)}
t₃₃₄, X₄: 14⋅X₄ {O(n)}
t₃₃₄, X₅: 14⋅X₅ {O(n)}
t₃₃₄, X₆: 14⋅X₆ {O(n)}
t₃₃₅, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₃₅, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₃₅, X₃: 3⋅X₃ {O(n)}
t₃₃₅, X₄: 3⋅X₄ {O(n)}
t₃₃₅, X₅: 3⋅X₅ {O(n)}
t₃₃₅, X₆: 3⋅X₆ {O(n)}
t₃₃₆, X₀: X₅ {O(n)}
t₃₃₆, X₁: X₆ {O(n)}
t₃₃₆, X₂: X₂ {O(n)}
t₃₃₆, X₃: X₃ {O(n)}
t₃₃₆, X₄: X₄ {O(n)}
t₃₃₆, X₅: X₅ {O(n)}
t₃₃₆, X₆: X₆ {O(n)}
t₃₃₇, X₀: X₅ {O(n)}
t₃₃₇, X₁: X₆ {O(n)}
t₃₃₇, X₂: X₂ {O(n)}
t₃₃₇, X₃: X₃ {O(n)}
t₃₃₇, X₄: X₄ {O(n)}
t₃₃₇, X₅: X₅ {O(n)}
t₃₃₇, X₆: X₆ {O(n)}
t₃₃₈, X₀: X₅ {O(n)}
t₃₃₈, X₁: X₆ {O(n)}
t₃₃₈, X₂: X₂ {O(n)}
t₃₃₈, X₃: X₃ {O(n)}
t₃₃₈, X₄: X₄ {O(n)}
t₃₃₈, X₅: X₅ {O(n)}
t₃₃₈, X₆: X₆ {O(n)}
t₁₇, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₇, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₇, X₃: 3⋅X₃ {O(n)}
t₁₇, X₄: 3⋅X₄ {O(n)}
t₁₇, X₅: 3⋅X₅ {O(n)}
t₁₇, X₆: 3⋅X₆ {O(n)}
t₂₀, X₀: 4⋅X₅+X₃+1 {O(n)}
t₂₀, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₂₀, X₃: 3⋅X₃ {O(n)}
t₂₀, X₄: 3⋅X₄ {O(n)}
t₂₀, X₅: 3⋅X₅ {O(n)}
t₂₀, X₆: 3⋅X₆ {O(n)}
t₂₅, X₀: 4⋅X₅+X₃+1 {O(n)}
t₂₅, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₂₅, X₂: 0 {O(1)}
t₂₅, X₃: 3⋅X₃ {O(n)}
t₂₅, X₄: 3⋅X₄ {O(n)}
t₂₅, X₅: 3⋅X₅ {O(n)}
t₂₅, X₆: 3⋅X₆ {O(n)}
t₁₆, X₀: 4⋅X₅+X₃+1 {O(n)}
t₁₆, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₁₆, X₃: 3⋅X₃ {O(n)}
t₁₆, X₄: 3⋅X₄ {O(n)}
t₁₆, X₅: 3⋅X₅ {O(n)}
t₁₆, X₆: 3⋅X₆ {O(n)}
t₁, X₀: X₅ {O(n)}
t₁, X₁: X₆ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₃₀₇, X₀: 12⋅X₅+3⋅X₃+3 {O(n)}
t₃₀₇, X₁: 15⋅X₆+6⋅X₄+9 {O(n)}
t₃₀₇, X₂: 0 {O(1)}
t₃₀₇, X₃: 9⋅X₃ {O(n)}
t₃₀₇, X₄: 9⋅X₄ {O(n)}
t₃₀₇, X₅: 9⋅X₅ {O(n)}
t₃₀₇, X₆: 9⋅X₆ {O(n)}
t₃₀₈, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₀₈, X₁: 2⋅X₄+5⋅X₆+3 {O(n)}
t₃₀₈, X₂: 0 {O(1)}
t₃₀₈, X₃: 3⋅X₃ {O(n)}
t₃₀₈, X₄: 3⋅X₄ {O(n)}
t₃₀₈, X₅: 3⋅X₅ {O(n)}
t₃₀₈, X₆: 3⋅X₆ {O(n)}
t₃₀₉, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₀₉, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₀₉, X₂: 4⋅X₂ {O(n)}
t₃₀₉, X₃: 16⋅X₃ {O(n)}
t₃₀₉, X₄: 16⋅X₄ {O(n)}
t₃₀₉, X₅: 16⋅X₅ {O(n)}
t₃₀₉, X₆: 16⋅X₆ {O(n)}
t₃₁₀, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₁₀, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₁₀, X₂: 4⋅X₂ {O(n)}
t₃₁₀, X₃: 16⋅X₃ {O(n)}
t₃₁₀, X₄: 16⋅X₄ {O(n)}
t₃₁₀, X₅: 16⋅X₅ {O(n)}
t₃₁₀, X₆: 16⋅X₆ {O(n)}
t₃₁₁, X₀: 3⋅X₅ {O(n)}
t₃₁₁, X₁: 3⋅X₆+3 {O(n)}
t₃₁₁, X₂: 3⋅X₂ {O(n)}
t₃₁₁, X₃: 3⋅X₃ {O(n)}
t₃₁₁, X₄: 3⋅X₄ {O(n)}
t₃₁₁, X₅: 3⋅X₅ {O(n)}
t₃₁₁, X₆: 3⋅X₆ {O(n)}
t₃₁₂, X₀: X₅ {O(n)}
t₃₁₂, X₁: X₆+1 {O(n)}
t₃₁₂, X₂: X₂ {O(n)}
t₃₁₂, X₃: X₃ {O(n)}
t₃₁₂, X₄: X₄ {O(n)}
t₃₁₂, X₅: X₅ {O(n)}
t₃₁₂, X₆: X₆ {O(n)}
t₃₁₃, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₃₁₃, X₁: 11⋅X₆+5⋅X₄+6 {O(n)}
t₃₁₃, X₃: 6⋅X₃ {O(n)}
t₃₁₃, X₄: 6⋅X₄ {O(n)}
t₃₁₃, X₅: 6⋅X₅ {O(n)}
t₃₁₃, X₆: 6⋅X₆ {O(n)}
t₄₁₄, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₄₁₄, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₄₁₄, X₃: 14⋅X₃ {O(n)}
t₄₁₄, X₄: 14⋅X₄ {O(n)}
t₄₁₄, X₅: 14⋅X₅ {O(n)}
t₄₁₄, X₆: 14⋅X₆ {O(n)}
t₃₁₄, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₁₄, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₁₄, X₂: 0 {O(1)}
t₃₁₄, X₃: 3⋅X₃ {O(n)}
t₃₁₄, X₄: 3⋅X₄ {O(n)}
t₃₁₄, X₅: 3⋅X₅ {O(n)}
t₃₁₄, X₆: 3⋅X₆ {O(n)}
t₃₁₅, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₁₅, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₁₅, X₂: 0 {O(1)}
t₃₁₅, X₃: 3⋅X₃ {O(n)}
t₃₁₅, X₄: 3⋅X₄ {O(n)}
t₃₁₅, X₅: 3⋅X₅ {O(n)}
t₃₁₅, X₆: 3⋅X₆ {O(n)}
t₃₁₆, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₁₆, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₁₆, X₂: 0 {O(1)}
t₃₁₆, X₃: 3⋅X₃ {O(n)}
t₃₁₆, X₄: 3⋅X₄ {O(n)}
t₃₁₆, X₅: 3⋅X₅ {O(n)}
t₃₁₆, X₆: 3⋅X₆ {O(n)}
t₃₁₇, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₁₇, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₁₇, X₂: 0 {O(1)}
t₃₁₇, X₃: 3⋅X₃ {O(n)}
t₃₁₇, X₄: 3⋅X₄ {O(n)}
t₃₁₇, X₅: 3⋅X₅ {O(n)}
t₃₁₇, X₆: 3⋅X₆ {O(n)}
t₄₁₇, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₄₁₇, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₄₁₇, X₃: 14⋅X₃ {O(n)}
t₄₁₇, X₄: 14⋅X₄ {O(n)}
t₄₁₇, X₅: 14⋅X₅ {O(n)}
t₄₁₇, X₆: 14⋅X₆ {O(n)}
t₄₁₈, X₀: X₅ {O(n)}
t₄₁₈, X₁: X₆ {O(n)}
t₄₁₈, X₂: X₂ {O(n)}
t₄₁₈, X₃: X₃ {O(n)}
t₄₁₈, X₄: X₄ {O(n)}
t₄₁₈, X₅: X₅ {O(n)}
t₄₁₈, X₆: X₆ {O(n)}
t₃₁₈, X₀: X₅ {O(n)}
t₃₁₈, X₁: X₆ {O(n)}
t₃₁₈, X₂: X₂ {O(n)}
t₃₁₈, X₃: X₃ {O(n)}
t₃₁₈, X₄: X₄ {O(n)}
t₃₁₈, X₅: X₅ {O(n)}
t₃₁₈, X₆: X₆ {O(n)}
t₃₁₉, X₀: X₅ {O(n)}
t₃₁₉, X₁: X₆ {O(n)}
t₃₁₉, X₂: X₂ {O(n)}
t₃₁₉, X₃: X₃ {O(n)}
t₃₁₉, X₄: X₄ {O(n)}
t₃₁₉, X₅: X₅ {O(n)}
t₃₁₉, X₆: X₆ {O(n)}
t₃₂₀, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₂₀, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₂₀, X₂: 4⋅X₂ {O(n)}
t₃₂₀, X₃: 16⋅X₃ {O(n)}
t₃₂₀, X₄: 16⋅X₄ {O(n)}
t₃₂₀, X₅: 16⋅X₅ {O(n)}
t₃₂₀, X₆: 16⋅X₆ {O(n)}
t₃₂₁, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₂₁, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₂₁, X₂: 4⋅X₂ {O(n)}
t₃₂₁, X₃: 16⋅X₃ {O(n)}
t₃₂₁, X₄: 16⋅X₄ {O(n)}
t₃₂₁, X₅: 16⋅X₅ {O(n)}
t₃₂₁, X₆: 16⋅X₆ {O(n)}
t₃₂₂, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₂₂, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₂₂, X₂: 4⋅X₂ {O(n)}
t₃₂₂, X₃: 16⋅X₃ {O(n)}
t₃₂₂, X₄: 16⋅X₄ {O(n)}
t₃₂₂, X₅: 16⋅X₅ {O(n)}
t₃₂₂, X₆: 16⋅X₆ {O(n)}
t₃₂₃, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₂₃, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₂₃, X₂: 4⋅X₂ {O(n)}
t₃₂₃, X₃: 16⋅X₃ {O(n)}
t₃₂₃, X₄: 16⋅X₄ {O(n)}
t₃₂₃, X₅: 16⋅X₅ {O(n)}
t₃₂₃, X₆: 16⋅X₆ {O(n)}
t₃₂₄, X₀: X₅ {O(n)}
t₃₂₄, X₁: X₆ {O(n)}
t₃₂₄, X₂: X₂ {O(n)}
t₃₂₄, X₃: X₃ {O(n)}
t₃₂₄, X₄: X₄ {O(n)}
t₃₂₄, X₅: X₅ {O(n)}
t₃₂₄, X₆: X₆ {O(n)}
t₃₂₅, X₀: X₅ {O(n)}
t₃₂₅, X₁: X₆ {O(n)}
t₃₂₅, X₂: X₂ {O(n)}
t₃₂₅, X₃: X₃ {O(n)}
t₃₂₅, X₄: X₄ {O(n)}
t₃₂₅, X₅: X₅ {O(n)}
t₃₂₅, X₆: X₆ {O(n)}
t₃₂₆, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₃₂₆, X₁: 11⋅X₆+5⋅X₄+5 {O(n)}
t₃₂₆, X₃: 6⋅X₃ {O(n)}
t₃₂₆, X₄: 6⋅X₄ {O(n)}
t₃₂₆, X₅: 6⋅X₅ {O(n)}
t₃₂₆, X₆: 6⋅X₆ {O(n)}
t₃₂₇, X₀: 25⋅X₅+5⋅X₃+5 {O(n)}
t₃₂₇, X₁: 58⋅X₄+78⋅X₆+60 {O(n)}
t₃₂₇, X₂: 5⋅X₂ {O(n)}
t₃₂₇, X₃: 20⋅X₃ {O(n)}
t₃₂₇, X₄: 20⋅X₄ {O(n)}
t₃₂₇, X₅: 20⋅X₅ {O(n)}
t₃₂₇, X₆: 20⋅X₆ {O(n)}
t₃₂₈, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₂₈, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₂₈, X₂: 4⋅X₂ {O(n)}
t₃₂₈, X₃: 16⋅X₃ {O(n)}
t₃₂₈, X₄: 16⋅X₄ {O(n)}
t₃₂₈, X₅: 16⋅X₅ {O(n)}
t₃₂₈, X₆: 16⋅X₆ {O(n)}
t₃₃₉, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₃₃₉, X₁: 11⋅X₆+5⋅X₄+6 {O(n)}
t₃₃₉, X₃: 6⋅X₃ {O(n)}
t₃₃₉, X₄: 6⋅X₄ {O(n)}
t₃₃₉, X₅: 6⋅X₅ {O(n)}
t₃₃₉, X₆: 6⋅X₆ {O(n)}
t₃₄₀, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₃₄₀, X₁: 11⋅X₆+5⋅X₄+6 {O(n)}
t₃₄₀, X₃: 6⋅X₃ {O(n)}
t₃₄₀, X₄: 6⋅X₄ {O(n)}
t₃₄₀, X₅: 6⋅X₅ {O(n)}
t₃₄₀, X₆: 6⋅X₆ {O(n)}
t₃₄₁, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₃₄₁, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₃₄₁, X₃: 14⋅X₃ {O(n)}
t₃₄₁, X₄: 14⋅X₄ {O(n)}
t₃₄₁, X₅: 14⋅X₅ {O(n)}
t₃₄₁, X₆: 14⋅X₆ {O(n)}
t₃₄₂, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₃₄₂, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₃₄₂, X₃: 14⋅X₃ {O(n)}
t₃₄₂, X₄: 14⋅X₄ {O(n)}
t₃₄₂, X₅: 14⋅X₅ {O(n)}
t₃₄₂, X₆: 14⋅X₆ {O(n)}
t₃₄₃, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₃₄₃, X₁: 11⋅X₆+5⋅X₄+5 {O(n)}
t₃₄₃, X₃: 6⋅X₃ {O(n)}
t₃₄₃, X₄: 6⋅X₄ {O(n)}
t₃₄₃, X₅: 6⋅X₅ {O(n)}
t₃₄₃, X₆: 6⋅X₆ {O(n)}
t₃₄₄, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₄₄, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₄₄, X₂: 0 {O(1)}
t₃₄₄, X₃: 3⋅X₃ {O(n)}
t₃₄₄, X₄: 3⋅X₄ {O(n)}
t₃₄₄, X₅: 3⋅X₅ {O(n)}
t₃₄₄, X₆: 3⋅X₆ {O(n)}
t₃₄₅, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₄₅, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₄₅, X₂: 0 {O(1)}
t₃₄₅, X₃: 3⋅X₃ {O(n)}
t₃₄₅, X₄: 3⋅X₄ {O(n)}
t₃₄₅, X₅: 3⋅X₅ {O(n)}
t₃₄₅, X₆: 3⋅X₆ {O(n)}
t₃₄₆, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₃₄₆, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₃₄₆, X₃: 14⋅X₃ {O(n)}
t₃₄₆, X₄: 14⋅X₄ {O(n)}
t₃₄₆, X₅: 14⋅X₅ {O(n)}
t₃₄₆, X₆: 14⋅X₆ {O(n)}
t₃₄₇, X₀: 25⋅X₅+5⋅X₃+5 {O(n)}
t₃₄₇, X₁: 58⋅X₄+78⋅X₆+60 {O(n)}
t₃₄₇, X₂: 5⋅X₂ {O(n)}
t₃₄₇, X₃: 20⋅X₃ {O(n)}
t₃₄₇, X₄: 20⋅X₄ {O(n)}
t₃₄₇, X₅: 20⋅X₅ {O(n)}
t₃₄₇, X₆: 20⋅X₆ {O(n)}
t₃₄₈, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₄₈, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₄₈, X₂: 4⋅X₂ {O(n)}
t₃₄₈, X₃: 16⋅X₃ {O(n)}
t₃₄₈, X₄: 16⋅X₄ {O(n)}
t₃₄₈, X₅: 16⋅X₅ {O(n)}
t₃₄₈, X₆: 16⋅X₆ {O(n)}
t₃₄₉, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₄₉, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₄₉, X₂: 4⋅X₂ {O(n)}
t₃₄₉, X₃: 16⋅X₃ {O(n)}
t₃₄₉, X₄: 16⋅X₄ {O(n)}
t₃₄₉, X₅: 16⋅X₅ {O(n)}
t₃₄₉, X₆: 16⋅X₆ {O(n)}
t₃₅₀, X₀: 18⋅X₅+6⋅X₃+6 {O(n)}
t₃₅₀, X₁: 10⋅X₄+22⋅X₆+12 {O(n)}
t₃₅₀, X₃: 12⋅X₃ {O(n)}
t₃₅₀, X₄: 12⋅X₄ {O(n)}
t₃₅₀, X₅: 12⋅X₅ {O(n)}
t₃₅₀, X₆: 12⋅X₆ {O(n)}
t₃₅₁, X₀: X₅ {O(n)}
t₃₅₁, X₁: X₆ {O(n)}
t₃₅₁, X₂: X₂ {O(n)}
t₃₅₁, X₃: X₃ {O(n)}
t₃₅₁, X₄: X₄ {O(n)}
t₃₅₁, X₅: X₅ {O(n)}
t₃₅₁, X₆: X₆ {O(n)}
t₃₅₂, X₀: X₅ {O(n)}
t₃₅₂, X₁: X₆ {O(n)}
t₃₅₂, X₂: X₂ {O(n)}
t₃₅₂, X₃: X₃ {O(n)}
t₃₅₂, X₄: X₄ {O(n)}
t₃₅₂, X₅: X₅ {O(n)}
t₃₅₂, X₆: X₆ {O(n)}
t₃₅₃, X₀: X₅ {O(n)}
t₃₅₃, X₁: X₆ {O(n)}
t₃₅₃, X₂: X₂ {O(n)}
t₃₅₃, X₃: X₃ {O(n)}
t₃₅₃, X₄: X₄ {O(n)}
t₃₅₃, X₅: X₅ {O(n)}
t₃₅₃, X₆: X₆ {O(n)}
t₃₅₄, X₀: X₅ {O(n)}
t₃₅₄, X₁: X₆ {O(n)}
t₃₅₄, X₂: X₂ {O(n)}
t₃₅₄, X₃: X₃ {O(n)}
t₃₅₄, X₄: X₄ {O(n)}
t₃₅₄, X₅: X₅ {O(n)}
t₃₅₄, X₆: X₆ {O(n)}
t₃₅₅, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₃₅₅, X₁: 11⋅X₆+5⋅X₄+5 {O(n)}
t₃₅₅, X₃: 6⋅X₃ {O(n)}
t₃₅₅, X₄: 6⋅X₄ {O(n)}
t₃₅₅, X₅: 6⋅X₅ {O(n)}
t₃₅₅, X₆: 6⋅X₆ {O(n)}
t₄₄₉, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₄₄₉, X₁: 11⋅X₆+5⋅X₄+5 {O(n)}
t₄₄₉, X₃: 6⋅X₃ {O(n)}
t₄₄₉, X₄: 6⋅X₄ {O(n)}
t₄₄₉, X₅: 6⋅X₅ {O(n)}
t₄₄₉, X₆: 6⋅X₆ {O(n)}
t₃₅₆, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₅₆, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₅₆, X₂: 0 {O(1)}
t₃₅₆, X₃: 3⋅X₃ {O(n)}
t₃₅₆, X₄: 3⋅X₄ {O(n)}
t₃₅₆, X₅: 3⋅X₅ {O(n)}
t₃₅₆, X₆: 3⋅X₆ {O(n)}
t₃₅₇, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₅₇, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₅₇, X₂: 0 {O(1)}
t₃₅₇, X₃: 3⋅X₃ {O(n)}
t₃₅₇, X₄: 3⋅X₄ {O(n)}
t₃₅₇, X₅: 3⋅X₅ {O(n)}
t₃₅₇, X₆: 3⋅X₆ {O(n)}
t₄₅₂, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₄₅₂, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₄₅₂, X₃: 14⋅X₃ {O(n)}
t₄₅₂, X₄: 14⋅X₄ {O(n)}
t₄₅₂, X₅: 14⋅X₅ {O(n)}
t₄₅₂, X₆: 14⋅X₆ {O(n)}
t₄₅₃, X₀: X₅ {O(n)}
t₄₅₃, X₁: X₆ {O(n)}
t₄₅₃, X₂: X₂ {O(n)}
t₄₅₃, X₃: X₃ {O(n)}
t₄₅₃, X₄: X₄ {O(n)}
t₄₅₃, X₅: X₅ {O(n)}
t₄₅₃, X₆: X₆ {O(n)}
t₄₅₄, X₀: 25⋅X₅+5⋅X₃+5 {O(n)}
t₄₅₄, X₁: 58⋅X₄+78⋅X₆+60 {O(n)}
t₄₅₄, X₂: 5⋅X₂ {O(n)}
t₄₅₄, X₃: 20⋅X₃ {O(n)}
t₄₅₄, X₄: 20⋅X₄ {O(n)}
t₄₅₄, X₅: 20⋅X₅ {O(n)}
t₄₅₄, X₆: 20⋅X₆ {O(n)}
t₄₅₅, X₀: 18⋅X₅+6⋅X₃+6 {O(n)}
t₄₅₅, X₁: 10⋅X₄+22⋅X₆+12 {O(n)}
t₄₅₅, X₃: 12⋅X₃ {O(n)}
t₄₅₅, X₄: 12⋅X₄ {O(n)}
t₄₅₅, X₅: 12⋅X₅ {O(n)}
t₄₅₅, X₆: 12⋅X₆ {O(n)}
t₃₅₈, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₅₈, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₅₈, X₂: 4⋅X₂ {O(n)}
t₃₅₈, X₃: 16⋅X₃ {O(n)}
t₃₅₈, X₄: 16⋅X₄ {O(n)}
t₃₅₈, X₅: 16⋅X₅ {O(n)}
t₃₅₈, X₆: 16⋅X₆ {O(n)}
t₃₅₉, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₅₉, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₅₉, X₂: 4⋅X₂ {O(n)}
t₃₅₉, X₃: 16⋅X₃ {O(n)}
t₃₅₉, X₄: 16⋅X₄ {O(n)}
t₃₅₉, X₅: 16⋅X₅ {O(n)}
t₃₅₉, X₆: 16⋅X₆ {O(n)}
t₄₅₇, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₄₅₇, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₄₅₇, X₂: 4⋅X₂ {O(n)}
t₄₅₇, X₃: 16⋅X₃ {O(n)}
t₄₅₇, X₄: 16⋅X₄ {O(n)}
t₄₅₇, X₅: 16⋅X₅ {O(n)}
t₄₅₇, X₆: 16⋅X₆ {O(n)}
t₃₆₀, X₀: X₅ {O(n)}
t₃₆₀, X₁: X₆ {O(n)}
t₃₆₀, X₂: X₂ {O(n)}
t₃₆₀, X₃: X₃ {O(n)}
t₃₆₀, X₄: X₄ {O(n)}
t₃₆₀, X₅: X₅ {O(n)}
t₃₆₀, X₆: X₆ {O(n)}
t₃₆₁, X₀: X₅ {O(n)}
t₃₆₁, X₁: X₆ {O(n)}
t₃₆₁, X₂: X₂ {O(n)}
t₃₆₁, X₃: X₃ {O(n)}
t₃₆₁, X₄: X₄ {O(n)}
t₃₆₁, X₅: X₅ {O(n)}
t₃₆₁, X₆: X₆ {O(n)}
t₄₅₉, X₀: X₅ {O(n)}
t₄₅₉, X₁: X₆ {O(n)}
t₄₅₉, X₂: X₂ {O(n)}
t₄₅₉, X₃: X₃ {O(n)}
t₄₅₉, X₄: X₄ {O(n)}
t₄₅₉, X₅: X₅ {O(n)}
t₄₅₉, X₆: X₆ {O(n)}
t₄₂₄, X₀: 4⋅X₅+X₃+1 {O(n)}
t₄₂₄, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₄₂₄, X₃: 3⋅X₃ {O(n)}
t₄₂₄, X₄: 3⋅X₄ {O(n)}
t₄₂₄, X₅: 3⋅X₅ {O(n)}
t₄₂₄, X₆: 3⋅X₆ {O(n)}
t₄₆₀, X₀: 4⋅X₅+X₃+1 {O(n)}
t₄₆₀, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₄₆₀, X₃: 3⋅X₃ {O(n)}
t₄₆₀, X₄: 3⋅X₄ {O(n)}
t₄₆₀, X₅: 3⋅X₅ {O(n)}
t₄₆₀, X₆: 3⋅X₆ {O(n)}
t₃₆₂, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₆₂, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₆₂, X₂: 0 {O(1)}
t₃₆₂, X₃: 3⋅X₃ {O(n)}
t₃₆₂, X₄: 3⋅X₄ {O(n)}
t₃₆₂, X₅: 3⋅X₅ {O(n)}
t₃₆₂, X₆: 3⋅X₆ {O(n)}
t₃₆₃, X₀: 4⋅X₅+X₃+1 {O(n)}
t₃₆₃, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₃₆₃, X₂: 0 {O(1)}
t₃₆₃, X₃: 3⋅X₃ {O(n)}
t₃₆₃, X₄: 3⋅X₄ {O(n)}
t₃₆₃, X₅: 3⋅X₅ {O(n)}
t₃₆₃, X₆: 3⋅X₆ {O(n)}
t₃₆₄, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₃₆₄, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₃₆₄, X₃: 14⋅X₃ {O(n)}
t₃₆₄, X₄: 14⋅X₄ {O(n)}
t₃₆₄, X₅: 14⋅X₅ {O(n)}
t₃₆₄, X₆: 14⋅X₆ {O(n)}
t₄₂₈, X₀: 4⋅X₅+X₃+1 {O(n)}
t₄₂₈, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₄₂₈, X₂: 0 {O(1)}
t₄₂₈, X₃: 3⋅X₃ {O(n)}
t₄₂₈, X₄: 3⋅X₄ {O(n)}
t₄₂₈, X₅: 3⋅X₅ {O(n)}
t₄₂₈, X₆: 3⋅X₆ {O(n)}
t₄₆₄, X₀: 4⋅X₅+X₃+1 {O(n)}
t₄₆₄, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₄₆₄, X₂: 0 {O(1)}
t₄₆₄, X₃: 3⋅X₃ {O(n)}
t₄₆₄, X₄: 3⋅X₄ {O(n)}
t₄₆₄, X₅: 3⋅X₅ {O(n)}
t₄₆₄, X₆: 3⋅X₆ {O(n)}
t₃₆₅, X₀: 19⋅X₅+5⋅X₃+5 {O(n)}
t₃₆₅, X₁: 22⋅X₆+8⋅X₄+8 {O(n)}
t₃₆₅, X₃: 14⋅X₃ {O(n)}
t₃₆₅, X₄: 14⋅X₄ {O(n)}
t₃₆₅, X₅: 14⋅X₅ {O(n)}
t₃₆₅, X₆: 14⋅X₆ {O(n)}
t₄₃₀, X₀: 4⋅X₅+X₃+1 {O(n)}
t₄₃₀, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₄₃₀, X₃: 3⋅X₃ {O(n)}
t₄₃₀, X₄: 3⋅X₄ {O(n)}
t₄₃₀, X₅: 3⋅X₅ {O(n)}
t₄₃₀, X₆: 3⋅X₆ {O(n)}
t₄₆₆, X₀: 4⋅X₅+X₃+1 {O(n)}
t₄₆₆, X₁: 2⋅X₄+5⋅X₆+2 {O(n)}
t₄₆₆, X₃: 3⋅X₃ {O(n)}
t₄₆₆, X₄: 3⋅X₄ {O(n)}
t₄₆₆, X₅: 3⋅X₅ {O(n)}
t₄₆₆, X₆: 3⋅X₆ {O(n)}
t₃₆₆, X₀: X₅ {O(n)}
t₃₆₆, X₁: X₆ {O(n)}
t₃₆₆, X₂: X₂ {O(n)}
t₃₆₆, X₃: X₃ {O(n)}
t₃₆₆, X₄: X₄ {O(n)}
t₃₆₆, X₅: X₅ {O(n)}
t₃₆₆, X₆: X₆ {O(n)}
t₃₆₇, X₀: X₅ {O(n)}
t₃₆₇, X₁: X₆ {O(n)}
t₃₆₇, X₂: X₂ {O(n)}
t₃₆₇, X₃: X₃ {O(n)}
t₃₆₇, X₄: X₄ {O(n)}
t₃₆₇, X₅: X₅ {O(n)}
t₃₆₇, X₆: X₆ {O(n)}
t₃₆₈, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₆₈, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₆₈, X₂: 4⋅X₂ {O(n)}
t₃₆₈, X₃: 16⋅X₃ {O(n)}
t₃₆₈, X₄: 16⋅X₄ {O(n)}
t₃₆₈, X₅: 16⋅X₅ {O(n)}
t₃₆₈, X₆: 16⋅X₆ {O(n)}
t₃₆₉, X₀: 20⋅X₅+4⋅X₃+4 {O(n)}
t₃₆₉, X₁: 56⋅X₄+72⋅X₆+56 {O(n)}
t₃₆₉, X₂: 4⋅X₂ {O(n)}
t₃₆₉, X₃: 16⋅X₃ {O(n)}
t₃₆₉, X₄: 16⋅X₄ {O(n)}
t₃₆₉, X₅: 16⋅X₅ {O(n)}
t₃₆₉, X₆: 16⋅X₆ {O(n)}
t₃₇₀, X₀: X₅ {O(n)}
t₃₇₀, X₁: X₆ {O(n)}
t₃₇₀, X₂: X₂ {O(n)}
t₃₇₀, X₃: X₃ {O(n)}
t₃₇₀, X₄: X₄ {O(n)}
t₃₇₀, X₅: X₅ {O(n)}
t₃₇₀, X₆: X₆ {O(n)}
t₄₃₆, X₀: X₅ {O(n)}
t₄₃₆, X₁: X₆ {O(n)}
t₄₃₆, X₂: X₂ {O(n)}
t₄₃₆, X₃: X₃ {O(n)}
t₄₃₆, X₄: X₄ {O(n)}
t₄₃₆, X₅: X₅ {O(n)}
t₄₃₆, X₆: X₆ {O(n)}
t₄₇₂, X₀: X₅ {O(n)}
t₄₇₂, X₁: X₆ {O(n)}
t₄₇₂, X₂: X₂ {O(n)}
t₄₇₂, X₃: X₃ {O(n)}
t₄₇₂, X₄: X₄ {O(n)}
t₄₇₂, X₅: X₅ {O(n)}
t₄₇₂, X₆: X₆ {O(n)}
t₃₇₁, X₀: 3⋅X₃+9⋅X₅+3 {O(n)}
t₃₇₁, X₁: 11⋅X₆+5⋅X₄+5 {O(n)}
t₃₇₁, X₃: 6⋅X₃ {O(n)}
t₃₇₁, X₄: 6⋅X₄ {O(n)}
t₃₇₁, X₅: 6⋅X₅ {O(n)}
t₃₇₁, X₆: 6⋅X₆ {O(n)}