Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₀ < 0
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: 0 < X₀
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₃) :|: X₂ < 0
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₃) :|: 0 < X₂
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, nondef.2, X₃, X₄, X₅, X₆, X₇)
t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄
t₂₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₄ ≤ X₇
t₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₃
t₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₆
t₁: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, 0, X₄, X₅, X₆, X₇)
t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1)
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₄
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₅+1, X₄, X₅, X₆, X₇)
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 0
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇)
Preprocessing
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l11
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ for location l2
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l6
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l12
Found invariant X₆ ≤ X₃ ∧ 0 ≤ X₃ for location l17
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l7
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₃ for location l5
Found invariant X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l13
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l8
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ for location l1
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l10
Found invariant X₆ ≤ X₃ ∧ 0 ≤ X₃ for location l16
Found invariant 1+X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l18
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l4
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ for location l9
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ for location l3
Found invariant 0 ≤ X₃ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₀ < 0 ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: 0 < X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₃) :|: X₂ < 0 ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₃) :|: 0 < X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, nondef.2, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₃ ∧ 0 ≤ X₃
t₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₆ ∧ 0 ≤ X₃
t₁: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, 0, X₄, X₅, X₆, X₇)
t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₃ ∧ 0 ≤ X₃
t₂₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: 1+X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₅+1, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₃
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 0 ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
MPRF for transition t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₀ < 0 ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₃-1 ]
l11 [X₆-X₃-1 ]
l18 [X₆-X₄-1 ]
l13 [X₆-X₄-1 ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅-1 ]
l14 [X₆-X₃ ]
l10 [X₆-X₃-1 ]
l7 [X₆-X₃-1 ]
l8 [X₆-X₃-1 ]
l6 [X₆-X₃-1 ]
l9 [X₆-X₃-1 ]
l4 [X₆-X₃-1 ]
MPRF for transition t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: 0 < X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₃-1 ]
l11 [X₆-X₃-1 ]
l18 [X₆-X₃-1 ]
l13 [X₆-X₃-1 ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₃-1 ]
l14 [X₆-X₃ ]
l10 [X₆-X₃-1 ]
l7 [X₆-X₃-1 ]
l8 [X₆-X₃-1 ]
l6 [X₆-X₃-1 ]
l9 [X₆-X₃-1 ]
l4 [X₆-X₃-1 ]
MPRF for transition t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₄ ]
l11 [X₆-X₄ ]
l18 [X₆-X₄ ]
l13 [X₆-X₄ ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅-1 ]
l14 [X₆-X₃ ]
l10 [X₆-X₄ ]
l7 [X₆-X₄ ]
l8 [X₆-X₄ ]
l6 [X₆-X₄ ]
l9 [X₆-X₄ ]
l4 [X₆-X₄ ]
MPRF for transition t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₃-1 ]
l11 [X₆-X₃-1 ]
l18 [X₆-X₄-1 ]
l13 [X₆-X₄-1 ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅-1 ]
l14 [X₆-X₃ ]
l10 [X₆-X₃ ]
l7 [X₆-X₃ ]
l8 [X₆-X₃ ]
l6 [X₆-X₃ ]
l9 [X₆-X₃ ]
l4 [X₆-X₃ ]
MPRF for transition t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₃) :|: X₂ < 0 ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₃ ]
l11 [X₆-X₃ ]
l18 [X₆-X₄-1 ]
l13 [X₆-X₄-1 ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅-1 ]
l14 [X₆-X₃ ]
l10 [X₆-X₃ ]
l7 [X₆-X₃ ]
l8 [X₆-X₃ ]
l6 [X₆-X₃ ]
l9 [X₆-X₃ ]
l4 [X₆-X₃ ]
MPRF for transition t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₃) :|: 0 < X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆+1 {O(n)}
MPRF:
l12 [X₆+1-X₃ ]
l11 [X₆+1-X₃ ]
l18 [X₆-X₄ ]
l13 [X₆-X₄ ]
l2 [X₆+1-X₃ ]
l3 [X₆+1-X₃ ]
l1 [X₆+1-X₃ ]
l5 [X₆-X₅ ]
l14 [X₆+1-X₃ ]
l10 [X₆+1-X₃ ]
l7 [X₆+1-X₃ ]
l8 [X₆+1-X₃ ]
l6 [X₆+1-X₃ ]
l9 [X₆+1-X₃ ]
l4 [X₆+1-X₃ ]
MPRF for transition t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₃ ]
l11 [X₆-X₃ ]
l18 [X₆-X₃ ]
l13 [X₆-X₃ ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅-1 ]
l14 [X₆-X₃ ]
l10 [X₆-X₃ ]
l7 [X₆-X₃ ]
l8 [X₆-X₃ ]
l6 [X₆-X₃ ]
l9 [X₆-X₃ ]
l4 [X₆-X₃ ]
MPRF for transition t₂₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, nondef.2, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆+1 {O(n)}
MPRF:
l12 [X₆+1-X₃ ]
l11 [X₆-X₃ ]
l18 [X₆-X₃ ]
l13 [X₆-X₃ ]
l2 [X₆+1-X₃ ]
l3 [X₆+1-X₃ ]
l1 [X₆+1-X₃ ]
l5 [X₆-X₅ ]
l14 [X₆+1-X₃ ]
l10 [X₆+1-X₃ ]
l7 [X₆+1-X₃ ]
l8 [X₆+1-X₃ ]
l6 [X₆+1-X₃ ]
l9 [X₆+1-X₃ ]
l4 [X₆+1-X₃ ]
MPRF for transition t₂₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₃ ]
l11 [X₆-X₃ ]
l18 [X₆-X₃ ]
l13 [X₆-X₃ ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₃-1 ]
l14 [X₆-X₃ ]
l10 [X₆-X₃ ]
l7 [X₆-X₃ ]
l8 [X₆-X₃ ]
l6 [X₆-X₃ ]
l9 [X₆-X₃ ]
l4 [X₆-X₃ ]
MPRF for transition t₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₆ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆+1 {O(n)}
MPRF:
l12 [X₆-X₃ ]
l11 [X₆-X₃ ]
l18 [X₆-X₄ ]
l13 [X₆-X₄ ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅ ]
l14 [X₆+1-X₃ ]
l10 [X₆-X₃ ]
l7 [X₆-X₃ ]
l8 [X₆-X₃ ]
l6 [X₆-X₃ ]
l9 [X₆-X₃ ]
l4 [X₆-X₃ ]
MPRF for transition t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆+1 {O(n)}
MPRF:
l12 [X₆-X₄ ]
l11 [X₆-X₄ ]
l18 [X₆-X₄ ]
l13 [X₆-X₄ ]
l2 [X₆+1-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅ ]
l14 [X₆+1-X₃ ]
l10 [X₆-X₄ ]
l7 [X₆-X₄ ]
l8 [X₆-X₄ ]
l6 [X₆-X₄ ]
l9 [X₆-X₄ ]
l4 [X₆-X₄ ]
MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆+1 {O(n)}
MPRF:
l12 [X₆-X₄ ]
l11 [X₆-X₄ ]
l18 [X₆-X₄ ]
l13 [X₆-X₄ ]
l2 [X₆+1-X₃ ]
l3 [X₆+1-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅ ]
l14 [X₆+1-X₃ ]
l10 [X₆-X₄ ]
l7 [X₆-X₃ ]
l8 [X₆-X₃ ]
l6 [X₆-X₃ ]
l9 [X₆-X₃ ]
l4 [X₆-X₃ ]
MPRF for transition t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
2⋅X₆+1 {O(n)}
MPRF:
l12 [2⋅X₆-X₃-X₄-1 ]
l11 [2⋅X₆-X₃-X₄-1 ]
l18 [2⋅X₆-X₃-X₄-1 ]
l13 [2⋅X₆-X₃-X₄-1 ]
l2 [2⋅X₆+1-2⋅X₃ ]
l3 [2⋅X₆+1-2⋅X₃ ]
l1 [2⋅X₆+1-2⋅X₃ ]
l5 [2⋅X₆-2⋅X₅-1 ]
l14 [2⋅X₆+1-2⋅X₃ ]
l10 [2⋅X₆-X₃-X₄-1 ]
l7 [2⋅X₆-X₃-X₄ ]
l8 [2⋅X₆-X₃-X₄ ]
l6 [2⋅X₆-X₃-X₄ ]
l9 [2⋅X₆-X₃-X₄ ]
l4 [2⋅X₆+1-X₃-X₄ ]
MPRF for transition t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆+1 {O(n)}
MPRF:
l12 [X₆-X₃ ]
l11 [X₆-X₃ ]
l18 [X₆-X₄ ]
l13 [X₆-X₄ ]
l2 [X₆+1-X₃ ]
l3 [X₆+1-X₃ ]
l1 [X₆+1-X₃ ]
l5 [X₆-X₅ ]
l14 [X₆+1-X₃ ]
l10 [X₆-X₃ ]
l7 [X₆+1-X₃ ]
l8 [X₆+1-X₃ ]
l6 [X₆+1-X₃ ]
l9 [X₆+1-X₃ ]
l4 [X₆+1-X₃ ]
MPRF for transition t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₅+1, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₃ ]
l11 [X₆-X₃ ]
l18 [X₆-X₃ ]
l13 [X₆-X₃ ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₃ ]
l14 [X₆-X₃ ]
l10 [X₆-X₃ ]
l7 [X₆-X₃ ]
l8 [X₆-X₃ ]
l6 [X₆-X₃ ]
l9 [X₆-X₃ ]
l4 [X₆-X₃ ]
MPRF for transition t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 0 ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₄-1 ]
l11 [X₆-X₄-1 ]
l18 [X₆-X₄-1 ]
l13 [X₆-X₄-1 ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅-1 ]
l14 [X₆-X₃ ]
l10 [X₆-X₄-1 ]
l7 [X₆-X₃ ]
l8 [X₆-X₃ ]
l6 [X₆-X₃ ]
l9 [X₆-X₃ ]
l4 [X₆-X₃ ]
MPRF for transition t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₄-1 ]
l11 [X₆-X₄-1 ]
l18 [X₆-X₄-1 ]
l13 [X₆-X₄-1 ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅-1 ]
l14 [X₆-X₃ ]
l10 [X₆-X₄-1 ]
l7 [X₆-X₄ ]
l8 [X₆-X₄ ]
l6 [X₆-X₄ ]
l9 [X₆-X₄ ]
l4 [X₆-X₄ ]
MPRF for transition t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆+1 {O(n)}
MPRF:
l12 [X₆-X₄ ]
l11 [X₆-X₄ ]
l18 [X₆-X₄ ]
l13 [X₆-X₄ ]
l2 [X₆+1-X₃ ]
l3 [X₆+1-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅ ]
l14 [X₆+1-X₃ ]
l10 [X₆-X₄ ]
l7 [X₆-X₄ ]
l8 [X₆-X₄ ]
l6 [X₆-X₄ ]
l9 [X₆-X₄-1 ]
l4 [X₆-X₄ ]
MPRF for transition t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆+1 {O(n)}
MPRF:
l12 [X₆-X₄ ]
l11 [X₆-X₄ ]
l18 [X₆-X₄ ]
l13 [X₆-X₄ ]
l2 [X₆+1-X₃ ]
l3 [X₆+1-X₃ ]
l1 [X₆+1-X₃ ]
l5 [X₆-X₅ ]
l14 [X₆+1-X₃ ]
l10 [X₆-X₄ ]
l7 [X₆+1-X₄ ]
l8 [X₆-X₄ ]
l6 [X₆-X₄ ]
l9 [X₆-X₄ ]
l4 [X₆+1-X₄ ]
MPRF for transition t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₄-1 ]
l11 [X₆-X₄-1 ]
l18 [X₆-X₄-1 ]
l13 [X₆-X₄-1 ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅-1 ]
l14 [X₆-X₃ ]
l10 [X₆-X₄-1 ]
l7 [X₆-X₄ ]
l8 [X₆-X₄ ]
l6 [X₆-X₄-1 ]
l9 [X₆-X₄-1 ]
l4 [X₆-X₄ ]
MPRF for transition t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₄ ]
l11 [X₆-X₄ ]
l18 [X₆-X₄ ]
l13 [X₆-X₄ ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l5 [X₆-X₅ ]
l14 [X₆-X₃ ]
l10 [X₆-X₄ ]
l7 [X₆-X₄ ]
l8 [X₆-X₄ ]
l6 [X₆-X₄ ]
l9 [X₆-X₄ ]
l4 [X₆-X₄ ]
MPRF for transition t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
6⋅X₆⋅X₆+X₆+1 {O(n^2)}
MPRF:
l12 [X₄+1-X₃ ]
l11 [X₄+1-X₃ ]
l18 [X₄-X₇ ]
l13 [X₄+1-X₇ ]
l2 [1 ]
l3 [1 ]
l1 [1 ]
l4 [X₄+1-X₃ ]
l5 [1 ]
l14 [1 ]
l10 [X₄+1-X₃ ]
l9 [X₄+1-X₃ ]
l7 [X₄+1-X₃ ]
l8 [X₄+1-X₃ ]
l6 [X₄+1-X₃ ]
MPRF for transition t₂₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: 1+X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
7⋅X₆⋅X₆+X₆ {O(n^2)}
MPRF:
l12 [X₄+X₆-X₃ ]
l11 [X₄+X₆-X₃ ]
l18 [X₄+X₆-X₇ ]
l13 [X₄+X₆-X₇ ]
l2 [X₆ ]
l3 [X₆ ]
l1 [X₆ ]
l4 [X₄+X₆-X₃ ]
l5 [X₆ ]
l14 [X₆ ]
l10 [X₄+X₆-X₃ ]
l9 [X₄+X₆-X₃ ]
l7 [X₄+X₆-X₃ ]
l8 [X₄+X₆-X₃ ]
l6 [X₄+X₆-X₃ ]
Analysing control-flow refined program
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l11
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ for location l2
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l6
Found invariant X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ for location n_l13___2
Found invariant 1+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 0 ≤ X₃ for location n_l18___1
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l12
Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ for location n_l18___3
Found invariant X₆ ≤ X₃ ∧ 0 ≤ X₃ for location l17
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l7
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₃ for location l5
Found invariant 1+X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l13
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l8
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ for location l1
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l10
Found invariant X₆ ≤ X₃ ∧ 0 ≤ X₃ for location l16
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l4
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ for location l9
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ for location l3
Found invariant 0 ≤ X₃ for location l14
knowledge_propagation leads to new time bound 2⋅X₆+1 {O(n)} for transition t₁₈₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₃ ∧ X₇ < X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
knowledge_propagation leads to new time bound 2⋅X₆+1 {O(n)} for transition t₁₈₇: n_l18___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: 1+X₃ ≤ X₆ ∧ X₇ < X₄ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₃ ∧ 1+X₇ ≤ X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃
MPRF for transition t₁₈₄: n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₇ ∧ X₇ ≤ X₄ ∧ 1+X₃ ≤ X₆ ∧ X₇ < X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
52⋅X₆⋅X₆+30⋅X₆+2 {O(n^2)}
MPRF:
l12 [0 ]
l11 [0 ]
l13 [0 ]
n_l18___3 [0 ]
l2 [0 ]
l3 [0 ]
l1 [0 ]
l14 [0 ]
l10 [0 ]
l7 [0 ]
l8 [0 ]
l6 [0 ]
l9 [0 ]
l4 [0 ]
l5 [0 ]
n_l18___1 [X₄-X₇ ]
n_l13___2 [X₄+1-X₇ ]
MPRF for transition t₁₉₁: n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₆ {O(n)}
MPRF:
l12 [X₆-X₃ ]
l11 [X₆-X₃ ]
l13 [X₆-X₃ ]
l2 [X₆-X₃ ]
l3 [X₆-X₃ ]
l1 [X₆-X₃ ]
l14 [X₆-X₃ ]
l10 [X₆-X₃ ]
l7 [X₆-X₃ ]
l8 [X₆-X₃ ]
l6 [X₆-X₃ ]
l9 [X₆-X₃ ]
l4 [X₆-X₃ ]
l5 [X₆-X₅-1 ]
n_l18___1 [X₆-X₃ ]
n_l18___3 [X₆-X₇ ]
n_l13___2 [X₆-X₃ ]
MPRF for transition t₁₈₆: n_l18___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: 1+X₃ ≤ X₆ ∧ X₇ < X₄ ∧ 1+X₃ ≤ X₇ ∧ 0 ≤ X₃ ∧ 1+X₇ ≤ X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ 1+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
52⋅X₆⋅X₆+28⋅X₆+1 {O(n^2)}
MPRF:
l12 [0 ]
l11 [0 ]
l13 [0 ]
n_l18___3 [0 ]
l2 [0 ]
l3 [0 ]
l1 [0 ]
l14 [0 ]
l10 [0 ]
l7 [0 ]
l8 [0 ]
l6 [0 ]
l9 [0 ]
l4 [0 ]
l5 [0 ]
n_l18___1 [X₄-X₇ ]
n_l13___2 [X₄-X₇ ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:13⋅X₆⋅X₆+24⋅X₆+14 {O(n^2)}
t₀: 1 {O(1)}
t₇: X₆ {O(n)}
t₈: X₆ {O(n)}
t₉: X₆ {O(n)}
t₁₉: X₆ {O(n)}
t₂₂: X₆ {O(n)}
t₂₃: X₆+1 {O(n)}
t₂₄: X₆ {O(n)}
t₂₁: X₆+1 {O(n)}
t₂₅: 6⋅X₆⋅X₆+X₆+1 {O(n^2)}
t₂₆: X₆ {O(n)}
t₂: X₆+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂₉: 1 {O(1)}
t₂₇: 7⋅X₆⋅X₆+X₆ {O(n^2)}
t₄: X₆+1 {O(n)}
t₆: X₆+1 {O(n)}
t₁₀: 2⋅X₆+1 {O(n)}
t₁₁: X₆+1 {O(n)}
t₂₈: X₆ {O(n)}
t₁₅: X₆ {O(n)}
t₁₆: X₆ {O(n)}
t₁₇: X₆+1 {O(n)}
t₁₂: X₆+1 {O(n)}
t₁₄: X₆ {O(n)}
t₁₈: X₆ {O(n)}
Costbounds
Overall costbound: 13⋅X₆⋅X₆+24⋅X₆+14 {O(n^2)}
t₀: 1 {O(1)}
t₇: X₆ {O(n)}
t₈: X₆ {O(n)}
t₉: X₆ {O(n)}
t₁₉: X₆ {O(n)}
t₂₂: X₆ {O(n)}
t₂₃: X₆+1 {O(n)}
t₂₄: X₆ {O(n)}
t₂₁: X₆+1 {O(n)}
t₂₅: 6⋅X₆⋅X₆+X₆+1 {O(n^2)}
t₂₆: X₆ {O(n)}
t₂: X₆+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₂₉: 1 {O(1)}
t₂₇: 7⋅X₆⋅X₆+X₆ {O(n^2)}
t₄: X₆+1 {O(n)}
t₆: X₆+1 {O(n)}
t₁₀: 2⋅X₆+1 {O(n)}
t₁₁: X₆+1 {O(n)}
t₂₈: X₆ {O(n)}
t₁₅: X₆ {O(n)}
t₁₆: X₆ {O(n)}
t₁₇: X₆+1 {O(n)}
t₁₂: X₆+1 {O(n)}
t₁₄: X₆ {O(n)}
t₁₈: X₆ {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₇, X₃: 2⋅X₆ {O(n)}
t₇, X₄: 2⋅X₆ {O(n)}
t₇, X₅: 6⋅X₆+X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₈, X₃: 2⋅X₆ {O(n)}
t₈, X₄: 2⋅X₆ {O(n)}
t₈, X₅: 6⋅X₆+X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₉, X₀: 0 {O(1)}
t₉, X₃: 2⋅X₆ {O(n)}
t₉, X₄: 8⋅X₆+X₄ {O(n)}
t₉, X₅: 2⋅X₆ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₉, X₃: 12⋅X₆ {O(n)}
t₁₉, X₄: 2⋅X₆ {O(n)}
t₁₉, X₅: 36⋅X₆+6⋅X₅ {O(n)}
t₁₉, X₆: X₆ {O(n)}
t₁₉, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₂₂, X₃: 12⋅X₆ {O(n)}
t₂₂, X₄: 2⋅X₆ {O(n)}
t₂₂, X₅: 36⋅X₆+6⋅X₅ {O(n)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₇: 12⋅X₆ {O(n)}
t₂₃, X₃: 12⋅X₆ {O(n)}
t₂₃, X₄: 2⋅X₆ {O(n)}
t₂₃, X₅: 36⋅X₆+6⋅X₅ {O(n)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₇: 12⋅X₆ {O(n)}
t₂₄, X₂: 0 {O(1)}
t₂₄, X₃: 12⋅X₆ {O(n)}
t₂₄, X₄: 2⋅X₆ {O(n)}
t₂₄, X₅: 2⋅X₆ {O(n)}
t₂₄, X₆: X₆ {O(n)}
t₂₄, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₂₁, X₃: 12⋅X₆ {O(n)}
t₂₁, X₄: 2⋅X₆ {O(n)}
t₂₁, X₅: 36⋅X₆+6⋅X₅ {O(n)}
t₂₁, X₆: X₆ {O(n)}
t₂₁, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₂₅, X₃: 24⋅X₆ {O(n)}
t₂₅, X₄: 2⋅X₆ {O(n)}
t₂₅, X₅: 12⋅X₅+72⋅X₆ {O(n)}
t₂₅, X₆: X₆ {O(n)}
t₂₅, X₇: 7⋅X₆⋅X₆+25⋅X₆ {O(n^2)}
t₂₆, X₃: 48⋅X₆ {O(n)}
t₂₆, X₄: 6⋅X₆ {O(n)}
t₂₆, X₅: 2⋅X₆ {O(n)}
t₂₆, X₆: X₆ {O(n)}
t₂₆, X₇: 7⋅X₆⋅X₆+49⋅X₆ {O(n^2)}
t₂, X₃: 2⋅X₆ {O(n)}
t₂, X₄: 8⋅X₆+X₄ {O(n)}
t₂, X₅: 6⋅X₆+X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₃, X₃: 2⋅X₆ {O(n)}
t₃, X₄: 2⋅X₄+8⋅X₆ {O(n)}
t₃, X₅: 6⋅X₆+X₅ {O(n)}
t₃, X₆: 2⋅X₆ {O(n)}
t₃, X₇: 7⋅X₆⋅X₆+2⋅X₇+49⋅X₆ {O(n^2)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: 0 {O(1)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂₉, X₃: 2⋅X₆ {O(n)}
t₂₉, X₄: 2⋅X₄+8⋅X₆ {O(n)}
t₂₉, X₅: 6⋅X₆+X₅ {O(n)}
t₂₉, X₆: 2⋅X₆ {O(n)}
t₂₉, X₇: 7⋅X₆⋅X₆+2⋅X₇+49⋅X₆ {O(n^2)}
t₂₇, X₃: 24⋅X₆ {O(n)}
t₂₇, X₄: 2⋅X₆ {O(n)}
t₂₇, X₅: 12⋅X₅+72⋅X₆ {O(n)}
t₂₇, X₆: X₆ {O(n)}
t₂₇, X₇: 7⋅X₆⋅X₆+25⋅X₆ {O(n^2)}
t₄, X₃: 2⋅X₆ {O(n)}
t₄, X₄: 8⋅X₆+X₄ {O(n)}
t₄, X₅: 6⋅X₆+X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₆, X₃: 2⋅X₆ {O(n)}
t₆, X₄: 8⋅X₆+X₄ {O(n)}
t₆, X₅: 6⋅X₆+X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₀, X₃: 4⋅X₆ {O(n)}
t₁₀, X₄: 2⋅X₆ {O(n)}
t₁₀, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₀, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₁, X₁: 0 {O(1)}
t₁₁, X₃: 4⋅X₆ {O(n)}
t₁₁, X₄: 2⋅X₆ {O(n)}
t₁₁, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₂₈, X₃: 2⋅X₆ {O(n)}
t₂₈, X₄: 8⋅X₆+X₄ {O(n)}
t₂₈, X₅: 6⋅X₆ {O(n)}
t₂₈, X₆: X₆ {O(n)}
t₂₈, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₅, X₃: 4⋅X₆ {O(n)}
t₁₅, X₄: 2⋅X₆ {O(n)}
t₁₅, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₅, X₆: X₆ {O(n)}
t₁₅, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₆, X₃: 4⋅X₆ {O(n)}
t₁₆, X₄: 2⋅X₆ {O(n)}
t₁₆, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₆, X₆: X₆ {O(n)}
t₁₆, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₇, X₁: 0 {O(1)}
t₁₇, X₃: 4⋅X₆ {O(n)}
t₁₇, X₄: 2⋅X₆ {O(n)}
t₁₇, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₇, X₆: X₆ {O(n)}
t₁₇, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₂, X₃: 4⋅X₆ {O(n)}
t₁₂, X₄: 2⋅X₆ {O(n)}
t₁₂, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₄, X₃: 4⋅X₆ {O(n)}
t₁₄, X₄: 2⋅X₆ {O(n)}
t₁₄, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₈, X₁: 0 {O(1)}
t₁₈, X₃: 4⋅X₆ {O(n)}
t₁₈, X₄: 2⋅X₆ {O(n)}
t₁₈, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₇: 7⋅X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}