Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₂: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₀
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0
t₁₃: l10(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₀ ∧ X₁ < 0
t₁₄: l10(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0
t₁₅: l10(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l1(X₃, X₃, X₂, X₃, X₄)
t₅: l3(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₀ < X₁
t₄: l3(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀
t₂₂: l4(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₈: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₂+1, X₁+1, X₂, X₃, X₄) :|: 3+X₁ < X₂ ∧ 3+X₁ < X₂
t₉: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁+1, X₂, X₃, X₄) :|: 3+X₁ < X₂ ∧ X₂ ≤ X₁+3
t₁₀: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₂+1, X₁+2, X₂, X₃, X₄) :|: X₂ ≤ X₁+3 ∧ 3+X₁ < X₂
t₁₁: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁+2, X₂, X₃, X₄) :|: X₂ ≤ X₁+3 ∧ X₂ ≤ X₁+3
t₁₂: l6(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁-1, X₂, X₃, X₄)
t₁₆: l7(X₀, X₁, X₂, X₃, X₄) → l1(X₀-1, X₁+1, X₂, X₃, X₄) :|: X₁+1 < 0 ∧ X₁+1 < 0
t₁₇: l7(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁+1, X₂, X₃, X₄) :|: X₁+1 < 0 ∧ 0 ≤ 1+X₁
t₁₈: l7(X₀, X₁, X₂, X₃, X₄) → l1(X₀-1, X₁, X₂, X₃, X₄) :|: 0 ≤ 1+X₁ ∧ X₁+1 < 0
t₁₉: l7(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₁
t₂₀: l8(X₀, X₁, X₂, X₃, X₄) → l1(X₀+1, X₁-1, X₂, X₃, X₄) :|: X₀+1 < 2⋅X₁
t₂₁: l8(X₀, X₁, X₂, X₃, X₄) → l1(X₀+1, X₁+1, X₂, X₃, X₄) :|: 2⋅X₁ ≤ X₀+1
t₆: l9(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₀+1, X₃, X₄) :|: X₁ < 5
t₇: l9(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₀+1, X₃, X₄) :|: 5 ≤ X₁
Preprocessing
Cut unsatisfiable transition t₁₃: l10→l7
Cut unsatisfiable transition t₉: l5→l1
Cut unsatisfiable transition t₁₀: l5→l1
Cut unsatisfiable transition t₁₇: l7→l1
Cut unsatisfiable transition t₁₈: l7→l1
Cut unreachable locations [l7] from the program graph
Eliminate variables {X₄} that do not contribute to the problem
Found invariant X₃ ≤ 0 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 1 ∧ X₀ ≤ 0 for location l11
Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location l6
Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l5
Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8
Found invariant X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ for location l1
Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l10
Found invariant X₃ ≤ 0 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 1 ∧ X₀ ≤ 0 for location l4
Found invariant X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l9
Found invariant X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 1 ≤ X₀ for location l3
Cut unsatisfiable transition t₄₉: l10→l8
Cut unsatisfiable transition t₅₉: l8→l1
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l8, l9
Transitions:
t₄₆: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₄₇: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 0 < X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀
t₄₈: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀
t₅₀: l10(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅₁: l2(X₀, X₁, X₂, X₃) → l1(X₃, X₃, X₂, X₃)
t₅₃: l3(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 1 ≤ X₀
t₅₂: l3(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 1 ≤ X₀
t₅₄: l4(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₃ ≤ 0 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 1 ∧ X₀ ≤ 0
t₅₅: l5(X₀, X₁, X₂, X₃) → l1(X₂+1, X₁+1, X₂, X₃) :|: 3+X₁ < X₂ ∧ 3+X₁ < X₂ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₅₆: l5(X₀, X₁, X₂, X₃) → l1(X₂, X₁+2, X₂, X₃) :|: X₂ ≤ X₁+3 ∧ X₂ ≤ X₁+3 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₅₇: l6(X₀, X₁, X₂, X₃) → l1(X₂, X₁-1, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ 5 ≤ X₀
t₅₈: l8(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁-1, X₂, X₃) :|: X₀+1 < 2⋅X₁ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆₀: l9(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₀+1, X₃) :|: X₁ < 5 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₆₁: l9(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₀+1, X₃) :|: 5 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
MPRF for transition t₅₆: l5(X₀, X₁, X₂, X₃) → l1(X₂, X₁+2, X₂, X₃) :|: X₂ ≤ X₁+3 ∧ X₂ ≤ X₁+3 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+7 {O(n)}
MPRF:
l3 [7-X₀ ]
l10 [6-X₀ ]
l8 [6-X₀ ]
l1 [7-X₀ ]
l5 [7-X₀ ]
l9 [7-X₀ ]
l6 [7-X₂ ]
MPRF for transition t₅₀: l10(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
15⋅X₃+91 {O(n)}
MPRF:
l3 [X₁-X₀ ]
l10 [1 ]
l8 [-1 ]
l1 [X₁-X₀ ]
l5 [X₁-X₂ ]
l9 [X₁-X₀ ]
l6 [X₀+X₁-2⋅X₂ ]
MPRF for transition t₅₃: l3(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
15⋅X₃+91 {O(n)}
MPRF:
l3 [X₁-X₀ ]
l10 [X₁-X₀-2 ]
l8 [X₁-X₀-2 ]
l1 [X₁-X₀ ]
l5 [X₁+1-X₂ ]
l9 [X₁-X₀ ]
l6 [X₁-X₂-1 ]
MPRF for transition t₅₈: l8(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁-1, X₂, X₃) :|: X₀+1 < 2⋅X₁ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
15⋅X₃+91 {O(n)}
MPRF:
l3 [X₁-X₀ ]
l10 [X₁-X₀ ]
l8 [X₁-X₀ ]
l1 [X₁-X₀ ]
l5 [X₁+1-X₂ ]
l9 [X₁-X₀ ]
l6 [X₁-X₂ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₂₀₈: n_l3___1→l10
Cut unsatisfiable transition t₂₀₉: n_l3___10→l10
Cut unsatisfiable transition t₂₁₀: n_l3___14→l10
Cut unsatisfiable transition t₂₁₁: n_l3___18→l10
Cut unsatisfiable transition t₂₁₂: n_l3___22→l10
Cut unsatisfiable transition t₂₁₃: n_l3___28→l10
Cut unsatisfiable transition t₂₁₅: n_l3___38→l10
Cut unsatisfiable transition t₂₁₆: n_l3___6→l10
Found invariant 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 2+X₁ ∧ X₂ ≤ 1+X₀ ∧ 7 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 13 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 6 ≤ X₀ for location n_l6___3
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___38
Found invariant X₃ ≤ 3 ∧ 4+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 7 ∧ 3+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 7 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 13 ∧ 7 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 13 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 10 ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 6 ∧ 6 ≤ X₀ for location n_l5___26
Found invariant X₃ ≤ 4 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 11 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 9 ∧ 3+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 11 ∧ X₂ ≤ 7 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 14 ∧ 6 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 5 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 7 ∧ 6 ≤ X₀ for location n_l9___27
Found invariant X₃ ≤ 5 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 13 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 11 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 12 ∧ X₂ ≤ 8 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 14 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 15 ∧ 8 ≤ X₂ ∧ 14 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 15 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 13 ∧ 6 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 7 ∧ 7 ≤ X₀ for location n_l6___12
Found invariant X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location n_l3___6
Found invariant X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 6 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 3 ≤ X₀ for location n_l9___32
Found invariant X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 8 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 6 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 10 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 11 ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ for location n_l5___4
Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 7 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 7 ≤ X₀ for location n_l9___17
Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 7 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 15 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 5 ∧ 3+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 8 ≤ X₀ for location n_l9___21
Found invariant X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 5 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 10 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ for location n_l3___33
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ 1+X₁ for location l1
Found invariant X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 5 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 10 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ for location l10
Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 0 for location l4
Found invariant X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 8 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 8 ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 5 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 9 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 9 ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 1 ≤ X₀ for location n_l5___36
Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 11 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 9 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 11 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 2+X₁ ∧ X₂ ≤ X₀ ∧ 6 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ 6 ≤ X₀ for location n_l3___10
Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 7 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 7 ≤ X₀ for location n_l3___18
Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 0 for location l11
Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 7 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 7 ≤ X₀ for location n_l1___19
Found invariant X₃ ≤ 4 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 11 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 7 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 13 ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 5 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 5 ≤ X₀ for location n_l6___30
Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 8 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ 4+X₁ ≤ X₂ ∧ 15 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ 3+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 7 ≤ X₀ for location n_l5___16
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l9___37
Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 11 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 9 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 11 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 2+X₁ ∧ X₂ ≤ X₀ ∧ 6 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ 6 ≤ X₀ for location n_l9___9
Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 11 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 9 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 11 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 2+X₁ ∧ X₂ ≤ X₀ ∧ 6 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ 6 ≤ X₀ for location n_l1___11
Found invariant X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 5 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 10 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ for location n_l1___34
Found invariant X₃ ≤ 4 ∧ 4+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 12 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 9 ∧ 3+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 11 ∧ X₂ ≤ 8 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 15 ∧ 8 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 15 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 5 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 5 ≤ X₁ ∧ 12 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 7 ∧ 7 ≤ X₀ for location n_l6___25
Found invariant 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 8 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 17 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 5 ∧ 4+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 14 ≤ X₀+X₁ ∧ 9 ≤ X₀ for location n_l1___24
Found invariant X₃ ≤ 4 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 11 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 9 ∧ 3+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 11 ∧ X₂ ≤ 7 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 14 ∧ 6 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 5 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 7 ∧ 6 ≤ X₀ for location n_l1___29
Found invariant X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 6 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 3 ≤ X₀ for location n_l1___2
Found invariant X₃ ≤ 5 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 12 ∧ X₃ ≤ 1+X₁ ∧ X₁+X₃ ≤ 9 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 11 ∧ 5 ≤ X₃ ∧ 12 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 9 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 11 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 7 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 13 ∧ 7 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 13 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 10 ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 6 ∧ 6 ≤ X₀ for location n_l5___8
Found invariant X₃ ≤ 5 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 12 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 11 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 12 ∧ X₂ ≤ 7 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 14 ∧ 7 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 13 ∧ 6 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 7 ∧ 7 ≤ X₀ for location n_l3___14
Found invariant X₃ ≤ 5 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 12 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 11 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 12 ∧ X₂ ≤ 7 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 14 ∧ 7 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 13 ∧ 6 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 7 ∧ 7 ≤ X₀ for location n_l1___23
Found invariant X₃ ≤ 4 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 11 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 9 ∧ 3+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 11 ∧ X₂ ≤ 7 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 14 ∧ 6 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 5 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 7 ∧ 6 ≤ X₀ for location n_l3___28
Found invariant X₃ ≤ 2 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 7 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ X₂ ≤ 5 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 9 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 9 ∧ 4 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 7 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 3 ≤ X₀ for location n_l5___31
Found invariant X₃ ≤ 5 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 12 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 11 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 12 ∧ X₂ ≤ 7 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 14 ∧ 7 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 13 ∧ 6 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 7 ∧ 7 ≤ X₀ for location n_l9___13
Found invariant X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 5 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 10 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ for location l8
Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 7 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 15 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 5 ∧ 3+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 8 ≤ X₀ for location n_l3___22
Found invariant 2+X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 6 ≤ X₃ ∧ 14 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 11 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 13 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 3+X₁ ∧ X₂ ≤ 1+X₀ ∧ 8 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 15 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 12 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ 7 ≤ X₀ for location n_l6___7
Found invariant X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 6 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 3 ≤ X₀ for location n_l3___1
Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 9 ≤ X₂ ∧ 14 ≤ X₁+X₂ ∧ 4+X₁ ≤ X₂ ∧ 17 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 5 ∧ 3+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 8 ≤ X₀ for location n_l6___20
Found invariant X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location n_l9___5
Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 9 ≤ X₂ ∧ 14 ≤ X₁+X₂ ∧ 4+X₁ ≤ X₂ ∧ 17 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 8 ≤ X₀ for location n_l6___15
Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 11 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 10 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 5 ≤ X₀ for location n_l6___35
Cut unsatisfiable transition t₁₆₃: n_l3___33→n_l9___32
Cut unsatisfiable transition t₁₆₈: n_l5___26→n_l1___24
knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₁₅₅: l1(X₀, X₁, X₂, X₃) → n_l3___6(X₀, X₁, X₂, X₃) :|: 0 < X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 0 < X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ 1+X₁
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₅₆: l1(X₀, X₁, X₂, X₃) → n_l3___38(X₀, X₁, X₂, X₃) :|: X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 < X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ 1+X₁
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₆₄: n_l3___38(X₀, X₁, X₂, X₃) → n_l9___37(X₀, X₁, X₂, X₃) :|: 0 < X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₁₆₅: n_l3___6(X₀, X₁, X₂, X₃) → n_l9___5(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₈₉: n_l9___37(X₀, X₁, X₂, X₃) → n_l5___36(X₀, X₁, X₀+1, X₃) :|: 1 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₁ < 5 ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₁₉₁: n_l9___5(X₀, X₁, X₂, X₃) → n_l5___4(X₀, X₁, X₀+1, X₃) :|: 1+X₃ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₁ < 5 ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₇₀: n_l5___36(X₀, X₁, X₂, X₃) → n_l1___34(X₀+1, X₁+2, X₀+1, X₃) :|: X₃ < 5 ∧ 1 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₃+1 ∧ 1+X₃ ≤ X₂ ∧ X₀ ≤ 2+X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₁ ≤ 4 ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 8 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 8 ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 5 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 9 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 9 ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₁₇₁: n_l5___4(X₀, X₁, X₂, X₃) → n_l1___2(X₀+1, X₁+2, X₀+1, X₃) :|: X₂ < 7 ∧ 3 ≤ X₂ ∧ 2+X₃ ≤ X₂ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₁+2 ≤ X₂ ∧ X₂ ≤ 2+X₁ ∧ X₀ ≤ 2+X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₁ ≤ 4 ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 8 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 6 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 10 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 11 ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₁₅₀: n_l1___2(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: 0 < X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ 2+X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 2 ≤ X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 6 ∧ X₂ ≤ 1+X₁ ∧ 0 < X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 6 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₁₅₇: n_l3___1(X₀, X₁, X₂, X₃) → n_l9___32(X₀, X₁, X₂, X₃) :|: 2 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₂ ≤ 1+X₁ ∧ 1+X₃ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 6 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₁₈₇: n_l9___32(X₀, X₁, X₂, X₃) → n_l5___31(X₀, X₁, X₀+1, X₃) :|: 2 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₂ ≤ 1+X₁ ∧ 1+X₃ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₁ < 5 ∧ X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 6 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₁₆₉: n_l5___31(X₀, X₁, X₂, X₃) → n_l1___34(X₀+1, X₁+2, X₀+1, X₃) :|: 3 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ X₁ < 5 ∧ X₂ ≤ 2+X₁ ∧ 2+X₃ ≤ X₂ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀ ≤ 2+X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₁ ≤ 4 ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₃ ≤ 2 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 7 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ X₂ ≤ 5 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 9 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 9 ∧ 4 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 7 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound 15⋅X₃+92 {O(n)} for transition t₁₅₄: n_l1___34(X₀, X₁, X₂, X₃) → n_l3___33(X₀, X₁, X₂, X₃) :|: 0 < X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 2+X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 2 ≤ X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 6 ∧ X₂ ≤ 1+X₁ ∧ 0 < X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 5 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 10 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 15⋅X₃+92 {O(n)} for transition t₂₁₄: n_l3___33(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 5 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 10 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀
MPRF for transition t₁₇₄: n_l6___15(X₀, X₁, X₂, X₃) → n_l1___19(X₀+1, X₁-1, X₀+1, X₃) :|: 1+X₃ ≤ X₀ ∧ 2+X₁ < X₀ ∧ 5 ≤ X₁ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 5 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 9 ≤ X₂ ∧ 14 ≤ X₁+X₂ ∧ 4+X₁ ≤ X₂ ∧ 17 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 8 ≤ X₀ of depth 1:
new bound:
X₃+31 {O(n)}
MPRF:
n_l3___18 [X₁-4 ]
n_l3___22 [0 ]
n_l1___24 [0 ]
n_l1___19 [X₁-4 ]
n_l5___16 [0 ]
n_l9___17 [X₁-4 ]
n_l6___15 [X₁-4 ]
n_l9___21 [X₁-5 ]
n_l6___20 [X₁-5 ]
MPRF for transition t₁₈₃: n_l9___17(X₀, X₁, X₂, X₃) → n_l6___15(X₀, X₁, X₀+1, X₃) :|: 1+X₃ ≤ X₀ ∧ 2+X₁ < X₀ ∧ 4 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 7 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 7 ≤ X₀ of depth 1:
new bound:
X₃+27 {O(n)}
MPRF:
n_l3___18 [X₁-3 ]
n_l3___22 [X₀-X₂ ]
n_l1___24 [X₀-X₂ ]
n_l1___19 [X₁-3 ]
n_l5___16 [5-X₁ ]
n_l9___17 [X₁-3 ]
n_l6___15 [X₁-4 ]
n_l9___21 [X₁+4⋅X₂-4⋅X₀ ]
n_l6___20 [X₁-4 ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₄₆: 1 {O(1)}
t₄₇: inf {Infinity}
t₄₈: 1 {O(1)}
t₅₀: 15⋅X₃+91 {O(n)}
t₅₁: 1 {O(1)}
t₅₂: inf {Infinity}
t₅₃: 15⋅X₃+91 {O(n)}
t₅₄: 1 {O(1)}
t₅₅: inf {Infinity}
t₅₆: X₃+7 {O(n)}
t₅₇: inf {Infinity}
t₅₈: 15⋅X₃+91 {O(n)}
t₆₀: inf {Infinity}
t₆₁: inf {Infinity}
Costbounds
Overall costbound: inf {Infinity}
t₄₆: 1 {O(1)}
t₄₇: inf {Infinity}
t₄₈: 1 {O(1)}
t₅₀: 15⋅X₃+91 {O(n)}
t₅₁: 1 {O(1)}
t₅₂: inf {Infinity}
t₅₃: 15⋅X₃+91 {O(n)}
t₅₄: 1 {O(1)}
t₅₅: inf {Infinity}
t₅₆: X₃+7 {O(n)}
t₅₇: inf {Infinity}
t₅₈: 15⋅X₃+91 {O(n)}
t₆₀: inf {Infinity}
t₆₁: inf {Infinity}
Sizebounds
t₄₆, X₀: X₀ {O(n)}
t₄₆, X₁: X₁ {O(n)}
t₄₆, X₂: X₂ {O(n)}
t₄₆, X₃: X₃ {O(n)}
t₄₇, X₃: X₃ {O(n)}
t₄₈, X₀: X₃ {O(n)}
t₄₈, X₁: X₃ {O(n)}
t₄₈, X₂: X₂ {O(n)}
t₄₈, X₃: X₃ {O(n)}
t₅₀, X₃: X₃ {O(n)}
t₅₁, X₀: X₃ {O(n)}
t₅₁, X₁: X₃ {O(n)}
t₅₁, X₂: X₂ {O(n)}
t₅₁, X₃: X₃ {O(n)}
t₅₂, X₃: X₃ {O(n)}
t₅₃, X₃: X₃ {O(n)}
t₅₄, X₀: X₃ {O(n)}
t₅₄, X₁: X₃ {O(n)}
t₅₄, X₂: X₂ {O(n)}
t₅₄, X₃: X₃ {O(n)}
t₅₅, X₃: X₃ {O(n)}
t₅₆, X₀: 7 {O(1)}
t₅₆, X₁: 6 {O(1)}
t₅₆, X₂: 7 {O(1)}
t₅₆, X₃: X₃ {O(n)}
t₅₇, X₃: X₃ {O(n)}
t₅₈, X₃: X₃ {O(n)}
t₆₀, X₃: X₃ {O(n)}
t₆₁, X₃: X₃ {O(n)}