Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₂: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₂
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₂ ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, 0, X₄)
t₄: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₃+1, X₁, X₂, X₃, 0)
t₈: l4(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₆: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₀, X₄) :|: X₁ ≤ X₄
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ < X₁
t₇: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1)

Preprocessing

Found invariant 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 0 ≤ X₃ ∧ X₂ ≤ X₃ for location l7

Found invariant 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l5

Found invariant 0 ≤ X₃ for location l1

Found invariant 0 ≤ X₃ ∧ X₂ ≤ X₃ for location l4

Found invariant 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₂: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₂ ∧ 0 ≤ X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₂ ≤ X₃ ∧ 0 ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, 0, X₄)
t₄: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₃+1, X₁, X₂, X₃, 0) :|: 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₈: l4(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₃ ∧ X₂ ≤ X₃
t₆: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₀, X₄) :|: X₁ ≤ X₄ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ < X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀
t₇: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1) :|: 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₂: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₂ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l3 [X₂-X₃-1 ]
l1 [X₂-X₃ ]
l6 [X₂-X₀ ]
l5 [X₂-X₀ ]

MPRF for transition t₄: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₃+1, X₁, X₂, X₃, 0) :|: 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l3 [X₂-X₃ ]
l1 [X₂-X₃ ]
l6 [X₂-X₃-1 ]
l5 [X₂-X₃-1 ]

MPRF for transition t₆: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₀, X₄) :|: X₁ ≤ X₄ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l3 [X₂-X₃ ]
l1 [X₂-X₃ ]
l6 [X₂-X₃ ]
l5 [X₂-X₃ ]

MPRF for transition t₅: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ < X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₂+X₁ {O(n^2)}

MPRF:

l1 [X₁ ]
l3 [X₁ ]
l6 [X₁-X₄-1 ]
l5 [X₁-X₄ ]

MPRF for transition t₇: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1) :|: 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₂+X₁ {O(n^2)}

MPRF:

l1 [X₁ ]
l3 [X₁ ]
l6 [X₁-X₄ ]
l5 [X₁-X₄ ]

Analysing control-flow refined program

Found invariant X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___3

Found invariant 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___1

Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___2

Found invariant 0 ≤ X₃ ∧ X₂ ≤ X₃ for location l7

Found invariant X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l5

Found invariant 0 ≤ X₃ for location l1

Found invariant 0 ≤ X₃ ∧ X₂ ≤ X₃ for location l4

Found invariant 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l3

knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₆₁: l5(X₀, X₁, X₂, X₃, X₄) → n_l6___3(X₀, X₁, X₂, X₀-1, X₄) :|: X₀ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₀ ≤ 1+X₃ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ X₄ < X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₆₃: n_l6___3(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, X₁, X₂, X₀-1, X₄+1) :|: 1+X₃ ≤ X₂ ∧ 0 < X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₆₀: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l6___1(X₀, X₁, X₂, X₀-1, X₄) :|: X₀ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₄ < X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₂+2⋅X₂ {O(n^2)}

MPRF:

l3 [0 ]
l5 [0 ]
n_l6___3 [0 ]
l1 [0 ]
n_l6___1 [X₁-X₄ ]
n_l5___2 [X₁+1-X₄ ]

MPRF for transition t₆₇: n_l5___2(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₀, X₄) :|: X₁ ≤ X₄ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF:

l3 [X₂-X₃ ]
l5 [X₂-X₃ ]
l1 [X₂-X₃ ]
n_l6___1 [X₂+1-X₀ ]
n_l6___3 [X₂-X₃ ]
n_l5___2 [X₂+1-X₀ ]

MPRF for transition t₆₂: n_l6___1(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, X₁, X₂, X₀-1, X₄+1) :|: X₀ ≤ X₂ ∧ X₄ < X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₃+1 ∧ 1+X₃ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁⋅X₂+3⋅X₂+X₁+2 {O(n^2)}

MPRF:

l3 [X₁-2 ]
l5 [X₁-2 ]
n_l6___3 [X₁-2⋅X₂ ]
l1 [X₁-2 ]
n_l6___1 [2⋅X₁-X₄-2 ]
n_l5___2 [2⋅X₁-X₄-2 ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:2⋅X₁⋅X₂+2⋅X₁+3⋅X₂+4 {O(n^2)}
t₀: 1 {O(1)}
t₂: X₂ {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: X₂ {O(n)}
t₈: 1 {O(1)}
t₅: X₁⋅X₂+X₁ {O(n^2)}
t₆: X₂ {O(n)}
t₇: X₁⋅X₂+X₁ {O(n^2)}

Costbounds

Overall costbound: 2⋅X₁⋅X₂+2⋅X₁+3⋅X₂+4 {O(n^2)}
t₀: 1 {O(1)}
t₂: X₂ {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: X₂ {O(n)}
t₈: 1 {O(1)}
t₅: X₁⋅X₂+X₁ {O(n^2)}
t₆: X₂ {O(n)}
t₇: X₁⋅X₂+X₁ {O(n^2)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₂, X₀: 2⋅X₂+X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₂ {O(n)}
t₂, X₄: X₁⋅X₂+X₁+X₄ {O(n^2)}
t₃, X₀: 2⋅X₂+X₀ {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: X₂ {O(n)}
t₃, X₄: X₁⋅X₂+X₁+X₄ {O(n^2)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: 0 {O(1)}
t₁, X₄: X₄ {O(n)}
t₄, X₀: X₂ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₂ {O(n)}
t₄, X₄: 0 {O(1)}
t₈, X₀: 2⋅X₂+X₀ {O(n)}
t₈, X₁: 2⋅X₁ {O(n)}
t₈, X₂: 2⋅X₂ {O(n)}
t₈, X₃: X₂ {O(n)}
t₈, X₄: X₁⋅X₂+X₁+X₄ {O(n^2)}
t₅, X₀: X₂ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₂ {O(n)}
t₅, X₄: X₁⋅X₂+X₁ {O(n^2)}
t₆, X₀: 2⋅X₂ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₂ {O(n)}
t₆, X₄: X₁⋅X₂+X₁ {O(n^2)}
t₇, X₀: X₂ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₂ {O(n)}
t₇, X₄: X₁⋅X₂+X₁ {O(n^2)}