Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l3(X₀, 0, X₂) :|: X₀ ≤ X₂
t₃: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₂ < X₀
t₁: l2(X₀, X₁, X₂) → l1(0, X₁, X₂)
t₅: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ < X₁
t₄: l3(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₁ ≤ X₂
t₈: l4(X₀, X₁, X₂) → l7(X₀, X₁, X₂)
t₇: l5(X₀, X₁, X₂) → l1(X₀+2, X₁, X₂)
t₆: l6(X₀, X₁, X₂) → l3(X₀, X₁+2, X₂)
Preprocessing
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location l7
Found invariant 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₀ for location l1
Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location l4
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l3(X₀, 0, X₂) :|: X₀ ≤ X₂ ∧ 0 ≤ X₀
t₃: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₂ < X₀ ∧ 0 ≤ X₀
t₁: l2(X₀, X₁, X₂) → l1(0, X₁, X₂)
t₅: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄: l3(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₈: l4(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: 1+X₂ ≤ X₀ ∧ 0 ≤ X₀
t₇: l5(X₀, X₁, X₂) → l1(X₀+2, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆: l6(X₀, X₁, X₂) → l3(X₀, X₁+2, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₂: l1(X₀, X₁, X₂) → l3(X₀, 0, X₂) :|: X₀ ≤ X₂ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF:
l5 [X₂-X₀-1 ]
l1 [X₂+1-X₀ ]
l6 [X₂-X₀-1 ]
l3 [X₂-X₀-1 ]
MPRF for transition t₅: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF:
l5 [X₂-X₀-1 ]
l1 [X₂+1-X₀ ]
l6 [X₂+1-X₀ ]
l3 [X₂+1-X₀ ]
MPRF for transition t₇: l5(X₀, X₁, X₂) → l1(X₀+2, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF:
l5 [X₂+1-X₀ ]
l1 [X₂+1-X₀ ]
l6 [X₂+1-X₀ ]
l3 [X₂+1-X₀ ]
MPRF for transition t₄: l3(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂⋅X₂+3⋅X₂+2 {O(n^2)}
MPRF:
l1 [X₂+1 ]
l5 [-1 ]
l6 [X₂-X₁ ]
l3 [X₂+1-X₁ ]
MPRF for transition t₆: l6(X₀, X₁, X₂) → l3(X₀, X₁+2, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂⋅X₂+3⋅X₂+2 {O(n^2)}
MPRF:
l1 [X₂+1 ]
l5 [X₂-X₁ ]
l6 [X₂+1-X₁ ]
l3 [X₂+1-X₁ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₅: l3→l5
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___3
Found invariant 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___1
Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location l7
Found invariant 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l3___2
Found invariant 0 ≤ X₀ for location l1
Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location l4
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l3
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₆₁: l3(X₀, X₁, X₂) → n_l6___3(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₆₃: n_l6___3(X₀, X₁, X₂) → n_l3___2(X₀, X₁+2, X₂) :|: X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₆₀: n_l3___2(X₀, X₁, X₂) → n_l6___1(X₀, X₁, X₂) :|: X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂⋅X₂+6⋅X₂+6 {O(n^2)}
MPRF:
l3 [1 ]
n_l6___3 [1 ]
l1 [1 ]
l5 [X₂+3-X₁ ]
n_l6___1 [X₂+1-X₁ ]
n_l3___2 [X₂+3-X₁ ]
MPRF for transition t₆₇: n_l3___2(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 2+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF:
l3 [X₂+1-X₀ ]
l1 [X₂+1-X₀ ]
l5 [X₂-X₀-1 ]
n_l6___1 [X₂+1-X₀ ]
n_l6___3 [X₂+1-X₀ ]
n_l3___2 [X₂+1-X₀ ]
MPRF for transition t₆₂: n_l6___1(X₀, X₁, X₂) → n_l3___2(X₀, X₁+2, X₂) :|: X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+8⋅X₂+6 {O(n^2)}
MPRF:
l3 [X₂+1 ]
n_l6___3 [X₂+1 ]
l1 [X₂+1 ]
l5 [2⋅X₂+3-X₁ ]
n_l6___1 [2⋅X₂+3-X₁ ]
n_l3___2 [2⋅X₂+3-X₁ ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:2⋅X₂⋅X₂+9⋅X₂+11 {O(n^2)}
t₀: 1 {O(1)}
t₂: X₂+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: X₂⋅X₂+3⋅X₂+2 {O(n^2)}
t₅: X₂+1 {O(n)}
t₈: 1 {O(1)}
t₇: X₂+1 {O(n)}
t₆: X₂⋅X₂+3⋅X₂+2 {O(n^2)}
Costbounds
Overall costbound: 2⋅X₂⋅X₂+9⋅X₂+11 {O(n^2)}
t₀: 1 {O(1)}
t₂: X₂+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: X₂⋅X₂+3⋅X₂+2 {O(n^2)}
t₅: X₂+1 {O(n)}
t₈: 1 {O(1)}
t₇: X₂+1 {O(n)}
t₆: X₂⋅X₂+3⋅X₂+2 {O(n^2)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₂, X₀: 2⋅X₂+2 {O(n)}
t₂, X₁: 0 {O(1)}
t₂, X₂: X₂ {O(n)}
t₃, X₀: 2⋅X₂+2 {O(n)}
t₃, X₁: 2⋅X₂⋅X₂+6⋅X₂+X₁+4 {O(n^2)}
t₃, X₂: 2⋅X₂ {O(n)}
t₁, X₀: 0 {O(1)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₄, X₀: 2⋅X₂+2 {O(n)}
t₄, X₁: 2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}
t₄, X₂: X₂ {O(n)}
t₅, X₀: 2⋅X₂+2 {O(n)}
t₅, X₁: 2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}
t₅, X₂: X₂ {O(n)}
t₈, X₀: 2⋅X₂+2 {O(n)}
t₈, X₁: 2⋅X₂⋅X₂+6⋅X₂+X₁+4 {O(n^2)}
t₈, X₂: 2⋅X₂ {O(n)}
t₇, X₀: 2⋅X₂+2 {O(n)}
t₇, X₁: 2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}
t₇, X₂: X₂ {O(n)}
t₆, X₀: 2⋅X₂+2 {O(n)}
t₆, X₁: 2⋅X₂⋅X₂+6⋅X₂+4 {O(n^2)}
t₆, X₂: X₂ {O(n)}