Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < 0
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₆, X₂, X₃, X₄, X₅, X₆)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₁, X₀, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₁, X₀, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₁, X₀, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 0 < X₁ ∧ X₀ < X₁
t₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 0 < X₁ ∧ X₁ < X₀
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₁, X₂, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₁
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₂
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂-X₁, X₃, X₄, X₅, X₆)

Preprocessing

Eliminate variables {X₃,X₅} that do not contribute to the problem

Found invariant X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6

Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l7

Found invariant X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l4

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₄, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₂₉: l0(X₀, X₁, X₂, X₄, X₆) → l2(X₀, X₁, X₂, X₄, X₆)
t₃₀: l1(X₀, X₁, X₂, X₄, X₆) → l3(X₀, X₁, X₂, X₄, X₆) :|: X₁ < 0
t₃₁: l1(X₀, X₁, X₂, X₄, X₆) → l3(X₀, X₁, X₂, X₄, X₆) :|: 0 < X₁
t₃₂: l1(X₀, X₁, X₂, X₄, X₆) → l4(X₀, X₁, X₂, X₄, X₆) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₃₃: l2(X₀, X₁, X₂, X₄, X₆) → l1(X₄, X₆, X₂, X₄, X₆)
t₃₄: l3(X₀, X₁, X₂, X₄, X₆) → l1(X₁, X₀, X₂, X₄, X₆) :|: X₀ ≤ 0
t₃₅: l3(X₀, X₁, X₂, X₄, X₆) → l1(X₁, X₀, X₂, X₄, X₆) :|: X₁ ≤ 0
t₃₆: l3(X₀, X₁, X₂, X₄, X₆) → l1(X₁, X₀, X₂, X₄, X₆) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀
t₃₇: l3(X₀, X₁, X₂, X₄, X₆) → l5(X₀, X₁, X₀, X₄, X₆) :|: 0 < X₀ ∧ 0 < X₁ ∧ X₀ < X₁
t₃₈: l3(X₀, X₁, X₂, X₄, X₆) → l5(X₀, X₁, X₀, X₄, X₆) :|: 0 < X₀ ∧ 0 < X₁ ∧ X₁ < X₀
t₃₉: l4(X₀, X₁, X₂, X₄, X₆) → l7(X₀, X₁, X₂, X₄, X₆) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₄₁: l5(X₀, X₁, X₂, X₄, X₆) → l1(X₁, X₂, X₂, X₄, X₆) :|: X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₀: l5(X₀, X₁, X₂, X₄, X₆) → l6(X₀, X₁, X₂, X₄, X₆) :|: X₁ < X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₂: l6(X₀, X₁, X₂, X₄, X₆) → l5(X₀, X₁, X₂-X₁, X₄, X₆) :|: X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀

MPRF for transition t₄₀: l5(X₀, X₁, X₂, X₄, X₆) → l6(X₀, X₁, X₂, X₄, X₆) :|: X₁ < X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₄+2⋅X₆+3 {O(n)}

MPRF:

l3 [2⋅X₀+2⋅X₁-3 ]
l1 [2⋅X₀+2⋅X₁-3 ]
l6 [X₀+2⋅X₁+X₂-4 ]
l5 [X₀+2⋅X₁+X₂-3 ]

MPRF for transition t₄₂: l6(X₀, X₁, X₂, X₄, X₆) → l5(X₀, X₁, X₂-X₁, X₄, X₆) :|: X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₄+X₆+2 {O(n)}

MPRF:

l3 [X₀+X₁-2 ]
l1 [X₀+X₁-2 ]
l6 [X₂-1 ]
l5 [X₁+X₂-2 ]

Analysing control-flow refined program

Cut unsatisfiable transition t₂₀₈: n_l1___12→l4

Cut unsatisfiable transition t₂₂₄: n_l1___12→l4

Cut unsatisfiable transition t₂₁₀: n_l1___15→l4

Cut unsatisfiable transition t₂₂₆: n_l1___15→l4

Cut unsatisfiable transition t₂₁₁: n_l1___17→l4

Cut unsatisfiable transition t₂₂₇: n_l1___17→l4

Cut unsatisfiable transition t₂₁₂: n_l1___20→l4

Cut unsatisfiable transition t₂₂₈: n_l1___20→l4

Cut unsatisfiable transition t₂₁₃: n_l1___21→l4

Cut unsatisfiable transition t₂₂₉: n_l1___21→l4

Cut unsatisfiable transition t₂₁₄: n_l1___23→l4

Cut unsatisfiable transition t₂₃₀: n_l1___23→l4

Cut unsatisfiable transition t₂₁₇: n_l1___3→l4

Cut unsatisfiable transition t₂₃₃: n_l1___3→l4

Cut unsatisfiable transition t₂₁₈: n_l1___5→l4

Cut unsatisfiable transition t₂₃₄: n_l1___5→l4

Cut unsatisfiable transition t₂₁₉: n_l1___8→l4

Cut unsatisfiable transition t₂₃₅: n_l1___8→l4

Cut unsatisfiable transition t₂₂₁: n_l5___11→l6

Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___12

Found invariant 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___4

Found invariant 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6

Found invariant X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___11

Found invariant 1+X₆ ≤ 0 ∧ X₆ ≤ X₁ ∧ 2+X₁+X₆ ≤ 0 ∧ X₁ ≤ X₆ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ 1+X₁ ≤ 0 for location n_l3___27

Found invariant X₆ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l1___17

Found invariant 1+X₆ ≤ 0 ∧ 2+X₄+X₆ ≤ 0 ∧ 2+X₁+X₆ ≤ 0 ∧ 2+X₀+X₆ ≤ 0 ∧ 1+X₄ ≤ 0 ∧ 2+X₁+X₄ ≤ 0 ∧ 2+X₀+X₄ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l1___20

Found invariant 1+X₆ ≤ 0 ∧ X₆ ≤ X₀ ∧ 2+X₀+X₆ ≤ 0 ∧ X₀ ≤ X₆ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₀ ≤ 0 for location n_l1___24

Found invariant 1+X₆ ≤ 0 ∧ 2+X₄+X₆ ≤ 0 ∧ 2+X₁+X₆ ≤ 0 ∧ 2+X₀+X₆ ≤ 0 ∧ 1+X₄ ≤ 0 ∧ 2+X₁+X₄ ≤ 0 ∧ 2+X₀+X₄ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___19

Found invariant 1+X₆ ≤ 0 ∧ 2+X₄+X₆ ≤ 0 ∧ 2+X₁+X₆ ≤ 0 ∧ 2+X₀+X₆ ≤ 0 ∧ 1+X₄ ≤ 0 ∧ 2+X₁+X₄ ≤ 0 ∧ 2+X₀+X₄ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location n_l1___21

Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l5___10

Found invariant 2 ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l5___2

Found invariant X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l1___13

Found invariant 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l5___6

Found invariant 1+X₆ ≤ 0 ∧ 1+X₄+X₆ ≤ 0 ∧ 1+X₁+X₆ ≤ 0 ∧ X₆ ≤ X₀ ∧ 2+X₀+X₆ ≤ 0 ∧ X₀ ≤ X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 0 ∧ 1+X₀+X₄ ≤ 0 ∧ X₁ ≤ X₄ ∧ X₁ ≤ 0 ∧ 1+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location n_l1___25

Found invariant X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___8

Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l7

Found invariant 1+X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ 2+X₄+X₆ ≤ 0 ∧ X₆ ≤ X₁ ∧ 2+X₁+X₆ ≤ 0 ∧ X₆ ≤ X₀ ∧ 2+X₀+X₆ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 1+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ 2+X₁+X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ 2+X₀+X₄ ≤ 0 ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___14

Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ for location n_l3___26

Found invariant 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5

Found invariant X₆ ≤ X₁ ∧ X₀ ≤ X₆ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l1___15

Found invariant 1+X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ 2+X₄+X₆ ≤ 0 ∧ X₆ ≤ X₁ ∧ 2+X₁+X₆ ≤ 0 ∧ X₆ ≤ X₀ ∧ 2+X₀+X₆ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₁ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 1+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ 2+X₁+X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ 2+X₀+X₄ ≤ 0 ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l1___23

Found invariant 1+X₆ ≤ 0 ∧ 2+X₄+X₆ ≤ 0 ∧ 2+X₁+X₆ ≤ 0 ∧ 2+X₀+X₆ ≤ 0 ∧ 1+X₄ ≤ 0 ∧ 2+X₁+X₄ ≤ 0 ∧ 2+X₀+X₄ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location n_l3___22

Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___9

Found invariant 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___5

Found invariant 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___1

Found invariant X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ for location l1

Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l4

Found invariant X₆ ≤ X₀ ∧ X₁ ≤ X₆ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1+X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l3___16

Found invariant X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l3___7

Found invariant X₆ ≤ X₁ ∧ X₀ ≤ X₆ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___18

knowledge_propagation leads to new time bound X₄+X₆+2 {O(n)} for transition t₁₈₁: l5(X₀, X₁, X₂, X₄, X₆) → n_l1___5(X₁, X₂, X₂, X₄, X₆) :|: X₁+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound X₄+X₆+2 {O(n)} for transition t₁₅₅: n_l1___5(X₀, X₁, X₂, X₄, X₆) → n_l3___4(X₀, X₁, X₂, X₄, X₆) :|: 2 ≤ X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 0 < X₁ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₀+X₂ ∧ 0 < X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₄+X₆+2 {O(n)} for transition t₁₇₇: n_l3___4(X₀, X₁, X₂, X₄, X₆) → n_l5___2(X₀, X₁, X₀, X₄, X₆) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₁ < X₀ ∧ 0 < X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₄+X₆+2 {O(n)} for transition t₂₂₂: n_l5___2(X₀, X₁, X₂, X₄, X₆) → l6(X₀, X₁, X₂, X₄, X₆) :|: X₁ < X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₂₉: 1 {O(1)}
t₃₀: inf {Infinity}
t₃₁: inf {Infinity}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: inf {Infinity}
t₃₅: inf {Infinity}
t₃₆: inf {Infinity}
t₃₇: inf {Infinity}
t₃₈: inf {Infinity}
t₃₉: 1 {O(1)}
t₄₀: 2⋅X₄+2⋅X₆+3 {O(n)}
t₄₁: inf {Infinity}
t₄₂: X₄+X₆+2 {O(n)}

Costbounds

Overall costbound: inf {Infinity}
t₂₉: 1 {O(1)}
t₃₀: inf {Infinity}
t₃₁: inf {Infinity}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: inf {Infinity}
t₃₅: inf {Infinity}
t₃₆: inf {Infinity}
t₃₇: inf {Infinity}
t₃₈: inf {Infinity}
t₃₉: 1 {O(1)}
t₄₀: 2⋅X₄+2⋅X₆+3 {O(n)}
t₄₁: inf {Infinity}
t₄₂: X₄+X₆+2 {O(n)}

Sizebounds

t₂₉, X₀: X₀ {O(n)}
t₂₉, X₁: X₁ {O(n)}
t₂₉, X₂: X₂ {O(n)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₆: X₆ {O(n)}
t₃₀, X₀: 2⋅X₄+2⋅X₆ {O(n)}
t₃₀, X₁: 2⋅X₄+2⋅X₆ {O(n)}
t₃₀, X₂: 2⋅X₂+8⋅X₄+8⋅X₆ {O(n)}
t₃₀, X₄: 2⋅X₄ {O(n)}
t₃₀, X₆: 2⋅X₆ {O(n)}
t₃₁, X₀: 2⋅X₄+2⋅X₆ {O(n)}
t₃₁, X₁: 2⋅X₄+2⋅X₆ {O(n)}
t₃₁, X₂: 2⋅X₂+8⋅X₄+8⋅X₆ {O(n)}
t₃₁, X₄: 2⋅X₄ {O(n)}
t₃₁, X₆: 2⋅X₆ {O(n)}
t₃₂, X₀: 8⋅X₆+9⋅X₄ {O(n)}
t₃₂, X₁: 0 {O(1)}
t₃₂, X₂: 28⋅X₄+28⋅X₆+7⋅X₂ {O(n)}
t₃₂, X₄: 9⋅X₄ {O(n)}
t₃₂, X₆: 9⋅X₆ {O(n)}
t₃₃, X₀: X₄ {O(n)}
t₃₃, X₁: X₆ {O(n)}
t₃₃, X₂: X₂ {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₄, X₀: 2⋅X₄+2⋅X₆ {O(n)}
t₃₄, X₁: 2⋅X₄+2⋅X₆ {O(n)}
t₃₄, X₂: 2⋅X₂+8⋅X₄+8⋅X₆ {O(n)}
t₃₄, X₄: 2⋅X₄ {O(n)}
t₃₄, X₆: 2⋅X₆ {O(n)}
t₃₅, X₀: 2⋅X₄+2⋅X₆ {O(n)}
t₃₅, X₁: 2⋅X₄+2⋅X₆ {O(n)}
t₃₅, X₂: 2⋅X₂+8⋅X₄+8⋅X₆ {O(n)}
t₃₅, X₄: 2⋅X₄ {O(n)}
t₃₅, X₆: 2⋅X₆ {O(n)}
t₃₆, X₀: 2⋅X₄+2⋅X₆ {O(n)}
t₃₆, X₁: 2⋅X₄+2⋅X₆ {O(n)}
t₃₆, X₂: 2⋅X₂+8⋅X₄+8⋅X₆ {O(n)}
t₃₆, X₄: 2⋅X₄ {O(n)}
t₃₆, X₆: 2⋅X₆ {O(n)}
t₃₇, X₀: 2⋅X₄+2⋅X₆ {O(n)}
t₃₇, X₁: 2⋅X₄+2⋅X₆ {O(n)}
t₃₇, X₂: 2⋅X₄+2⋅X₆ {O(n)}
t₃₇, X₄: 2⋅X₄ {O(n)}
t₃₇, X₆: 2⋅X₆ {O(n)}
t₃₈, X₀: 2⋅X₄+2⋅X₆ {O(n)}
t₃₈, X₁: 2⋅X₄+2⋅X₆ {O(n)}
t₃₈, X₂: 2⋅X₄+2⋅X₆ {O(n)}
t₃₈, X₄: 2⋅X₄ {O(n)}
t₃₈, X₆: 2⋅X₆ {O(n)}
t₃₉, X₀: 8⋅X₆+9⋅X₄ {O(n)}
t₃₉, X₁: 0 {O(1)}
t₃₉, X₂: 28⋅X₄+28⋅X₆+7⋅X₂ {O(n)}
t₃₉, X₄: 9⋅X₄ {O(n)}
t₃₉, X₆: 9⋅X₆ {O(n)}
t₄₀, X₀: 2⋅X₄+2⋅X₆ {O(n)}
t₄₀, X₁: 2⋅X₄+2⋅X₆ {O(n)}
t₄₀, X₂: 2⋅X₄+2⋅X₆ {O(n)}
t₄₀, X₄: 2⋅X₄ {O(n)}
t₄₀, X₆: 2⋅X₆ {O(n)}
t₄₁, X₀: 2⋅X₄+2⋅X₆ {O(n)}
t₄₁, X₁: 2⋅X₄+2⋅X₆ {O(n)}
t₄₁, X₂: 4⋅X₄+4⋅X₆ {O(n)}
t₄₁, X₄: 2⋅X₄ {O(n)}
t₄₁, X₆: 2⋅X₆ {O(n)}
t₄₂, X₀: 2⋅X₄+2⋅X₆ {O(n)}
t₄₂, X₁: 2⋅X₄+2⋅X₆ {O(n)}
t₄₂, X₂: 2⋅X₄+2⋅X₆ {O(n)}
t₄₂, X₄: 2⋅X₄ {O(n)}
t₄₂, X₆: 2⋅X₆ {O(n)}