Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₀, X₅, X₆) :|: X₃ ≤ X₅
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₃
t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₀)
t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, 0, X₆) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ nondef.0 ≤ 0 ∧ 0 ≤ nondef.0 ∧ 0 < nondef.0
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef.0 ∧ 2⋅nondef.0 ≤ X₄ ∧ X₄ < 2⋅nondef.0+2 ∧ 0 < nondef.0
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, 0, X₆) :|: X₄ < 0 ∧ nondef.0 ≤ 0 ∧ X₄ ≤ 2⋅nondef.0 ∧ 2⋅nondef.0 < X₄+2 ∧ 0 < nondef.0
t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ nondef.0 ≤ 0 ∧ 0 ≤ nondef.0 ∧ nondef.0 ≤ 0
t₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef.0 ∧ 2⋅nondef.0 ≤ X₄ ∧ X₄ < 2⋅nondef.0+2 ∧ nondef.0 ≤ 0
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < 0 ∧ nondef.0 ≤ 0 ∧ X₄ ≤ 2⋅nondef.0 ∧ 2⋅nondef.0 < X₄+2 ∧ nondef.0 ≤ 0
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₃, X₅, X₆)
t₂₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₂
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₁
t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < X₀
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆
t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆)
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅)
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆)
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, nondef.2, X₃, X₄, X₅, X₆)
Preprocessing
Cut unsatisfiable transition t₂: l11→l1
Cut unsatisfiable transition t₄: l11→l1
Found invariant X₄ ≤ X₃ for location l11
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l2
Found invariant 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l6
Found invariant 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l7
Found invariant 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l5
Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l13
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l8
Found invariant X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l1
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location l10
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l4
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l9
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l3
Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₀, X₅, X₆) :|: X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₃ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₀) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef.0 ∧ 2⋅nondef.0 ≤ X₄ ∧ X₄ < 2⋅nondef.0+2 ∧ 0 < nondef.0 ∧ X₄ ≤ X₃
t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ nondef.0 ≤ 0 ∧ 0 ≤ nondef.0 ∧ nondef.0 ≤ 0 ∧ X₄ ≤ X₃
t₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef.0 ∧ 2⋅nondef.0 ≤ X₄ ∧ X₄ < 2⋅nondef.0+2 ∧ nondef.0 ≤ 0 ∧ X₄ ≤ X₃
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < 0 ∧ nondef.0 ≤ 0 ∧ X₄ ≤ 2⋅nondef.0 ∧ 2⋅nondef.0 < X₄+2 ∧ nondef.0 ≤ 0 ∧ X₄ ≤ X₃
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₃, X₅, X₆)
t₂₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ X₄ ≤ X₃
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₂ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₁ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < X₀ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, nondef.2, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
MPRF for transition t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₀, X₅, X₆) :|: X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l11 [X₄-1 ]
l10 [X₀ ]
l4 [X₀ ]
l1 [X₀ ]
l3 [X₀ ]
l6 [X₀ ]
l7 [X₀ ]
l5 [X₀ ]
l8 [X₀ ]
l9 [X₀ ]
l2 [X₀ ]
MPRF for transition t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef.0 ∧ 2⋅nondef.0 ≤ X₄ ∧ X₄ < 2⋅nondef.0+2 ∧ 0 < nondef.0 ∧ X₄ ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF:
l11 [X₄+1 ]
l10 [2⋅X₀ ]
l4 [2⋅X₀ ]
l1 [2⋅X₀ ]
l3 [2⋅X₀ ]
l6 [2⋅X₀ ]
l7 [2⋅X₀ ]
l5 [2⋅X₀ ]
l8 [2⋅X₀ ]
l9 [2⋅X₀ ]
l2 [2⋅X₀ ]
MPRF for transition t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₃ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+2⋅X₃+1 {O(n^2)}
MPRF:
l11 [0 ]
l10 [X₃-X₅ ]
l4 [X₃-X₅ ]
l1 [X₃+1-X₅ ]
l3 [X₃-X₅ ]
l6 [X₃-X₅ ]
l7 [X₃-X₅ ]
l5 [X₃-X₅ ]
l8 [X₃-X₅ ]
l9 [X₃-X₅ ]
l2 [X₃-X₅ ]
MPRF for transition t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₁ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF:
l11 [0 ]
l10 [X₃-X₅ ]
l4 [X₃-X₅-1 ]
l1 [X₃-X₅ ]
l3 [X₃-X₅ ]
l6 [X₃-X₅ ]
l7 [X₃-X₅ ]
l5 [X₃-X₅ ]
l8 [X₃-X₅ ]
l9 [X₃-X₅ ]
l2 [X₃-X₅ ]
MPRF for transition t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < X₀ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF:
l11 [0 ]
l10 [X₃-X₅ ]
l4 [X₃-X₅-1 ]
l1 [X₃-X₅ ]
l3 [X₃-X₅ ]
l6 [X₃-X₅ ]
l7 [X₃-X₅ ]
l5 [X₃-X₅ ]
l8 [X₃-X₅ ]
l9 [X₃-X₅ ]
l2 [X₃-X₅ ]
MPRF for transition t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF:
l11 [0 ]
l10 [X₃-X₅ ]
l4 [X₃-X₅ ]
l1 [X₃-X₅ ]
l3 [X₃-X₅ ]
l6 [X₃-X₅ ]
l7 [X₃-X₅ ]
l5 [X₃-X₅ ]
l8 [X₃-X₅ ]
l9 [X₃-X₅ ]
l2 [X₃-X₅ ]
MPRF for transition t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+2⋅X₃+1 {O(n^2)}
MPRF:
l11 [0 ]
l10 [X₃-X₅ ]
l4 [X₃-X₅ ]
l1 [X₃+1-X₅ ]
l3 [X₃-X₅ ]
l6 [X₃+1-X₅ ]
l7 [X₃+1-X₅ ]
l5 [X₃+1-X₅ ]
l8 [X₃-X₅ ]
l9 [X₃-X₅ ]
l2 [X₃-X₅ ]
MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+2⋅X₃+1 {O(n^2)}
MPRF:
l11 [0 ]
l10 [X₃-X₅ ]
l4 [X₃-X₅ ]
l1 [X₃+1-X₅ ]
l3 [X₃-X₅ ]
l6 [X₃+1-X₅ ]
l7 [X₃-X₅ ]
l5 [X₃-X₅ ]
l8 [X₃-X₅ ]
l9 [X₃-X₅ ]
l2 [X₃-X₅ ]
MPRF for transition t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF:
l11 [0 ]
l10 [X₃-X₅-1 ]
l4 [X₃-X₅-1 ]
l1 [X₃-X₅ ]
l3 [X₃-X₅-1 ]
l6 [X₃-X₅ ]
l7 [X₃-X₅ ]
l5 [X₃-X₅-1 ]
l8 [X₃-X₅-1 ]
l9 [X₃-X₅-1 ]
l2 [X₃-X₅-1 ]
MPRF for transition t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₀) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃⋅X₃⋅X₃+2⋅X₃⋅X₃⋅X₃+X₃⋅X₃+X₃+2 {O(n^4)}
MPRF:
l11 [-X₃-2 ]
l10 [X₆+1-X₀ ]
l4 [X₆ ]
l1 [-X₃-2 ]
l5 [X₅ ]
l3 [X₆ ]
l6 [-X₃-2 ]
l7 [-X₃-2 ]
l8 [X₆ ]
l9 [X₆ ]
l2 [X₆ ]
MPRF for transition t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₂ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃⋅X₃⋅X₃+5⋅X₃⋅X₃⋅X₃+3⋅X₃⋅X₃+X₃ {O(n^4)}
MPRF:
l11 [X₃ ]
l10 [X₃+X₅+X₆-1 ]
l4 [X₃ ]
l1 [X₃ ]
l5 [X₃+2⋅X₅ ]
l3 [X₃+X₅+X₆ ]
l6 [X₃ ]
l7 [X₃ ]
l8 [X₃+X₅+X₆ ]
l9 [X₃+X₅+X₆ ]
l2 [X₃+X₅+X₆ ]
MPRF for transition t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₃⋅X₃⋅X₃⋅X₃+10⋅X₃⋅X₃⋅X₃+8⋅X₃⋅X₃+2⋅X₃ {O(n^4)}
MPRF:
l11 [0 ]
l10 [2⋅X₄+2⋅X₅+2⋅X₆+2-2⋅X₀ ]
l4 [2⋅X₀+2⋅X₅+2⋅X₆ ]
l1 [2⋅X₅ ]
l5 [2⋅X₃+4⋅X₅+2 ]
l3 [2⋅X₄+2⋅X₅+2⋅X₆+2 ]
l6 [2⋅X₅ ]
l7 [2⋅X₅ ]
l8 [2⋅X₄+2⋅X₅+2⋅X₆ ]
l9 [2⋅X₄+2⋅X₅+2⋅X₆ ]
l2 [2⋅X₄+2⋅X₅+2⋅X₆ ]
MPRF for transition t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₃⋅X₃⋅X₃⋅X₃+6⋅X₃⋅X₃⋅X₃+6⋅X₃⋅X₃+3⋅X₃ {O(n^4)}
MPRF:
l11 [0 ]
l10 [2⋅X₅+X₆+2 ]
l4 [X₅+1 ]
l1 [X₅ ]
l5 [3⋅X₅+3 ]
l3 [2⋅X₅+X₆+3 ]
l6 [X₅ ]
l7 [X₅ ]
l8 [2⋅X₅+X₆+3 ]
l9 [2⋅X₅+X₆+2 ]
l2 [2⋅X₅+X₆+2 ]
MPRF for transition t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, nondef.2, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₃⋅X₃⋅X₃⋅X₃+8⋅X₃⋅X₃⋅X₃+5⋅X₃⋅X₃+X₃ {O(n^4)}
MPRF:
l11 [-X₃ ]
l10 [X₃+X₅+2⋅X₆-3⋅X₀ ]
l4 [X₃+X₅+X₆-2⋅X₀ ]
l1 [-X₃ ]
l5 [2⋅X₃+3⋅X₅ ]
l3 [X₃+X₅+2⋅X₆-X₀ ]
l6 [-X₃ ]
l7 [-X₃ ]
l8 [X₃+X₅+2⋅X₆-X₀ ]
l9 [X₃+X₅+2⋅X₆+2-3⋅X₀ ]
l2 [X₃+X₅+2⋅X₆-3⋅X₀ ]
Analysing control-flow refined program
Cut unsatisfiable transition t₉: l1→l11
Found invariant X₄ ≤ X₃ for location l11
Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___24
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l2___15
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l8___17
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l1___22
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l1___9
Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l9___4
Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l10___2
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l4___23
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 5 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l6___21
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l7___26
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l9___16
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___13
Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l5___6
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l7___20
Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l2___3
Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l3___12
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l6___27
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l10___14
Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___1
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l5___25
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l5___19
Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l13
Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l6___8
Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l7___7
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l1
Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l8___10
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l4___11
Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l14
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___18
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₆₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₅ ∧ X₀ ≤ X₄ ∧ X₅ < X₃ ∧ X₄ ≤ X₃ ∧ X₅ < X₀ ∧ X₅ < X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₈₈: n_l6___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₅ < X₀ ∧ 2 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1+X₅ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₉₁: n_l7___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___25(X₀, NoDet0, X₂, X₃, Arg4_P, Arg5_P, X₆) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₅ < X₀ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₄ ∧ 0 ≤ Arg5_P ∧ 1 ≤ X₀ ∧ 1+Arg5_P ≤ X₃ ∧ X₀ ≤ Arg4_P ∧ 2 ≤ Arg4_P ∧ Arg4_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₈₅: n_l5___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___24(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₅ < X₀ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₁₇₈: n_l3___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₀ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₃+X₆ ∧ 0 ≤ X₅+X₆ ∧ X₆ ≤ X₅ ∧ X₆ < X₀ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1+X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₄ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₃+X₆ ∧ 1+X₅ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ < X₀ ∧ 2 ≤ X₄ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ X₄ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
MPRF for transition t₁₆₅: n_l10___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₀) :|: X₀ ≤ X₄ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ X₀ ≤ X₆ ∧ X₁ < X₂ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 2 ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
MPRF:
l1 [X₃ ]
l11 [X₃ ]
n_l10___14 [2⋅X₃-X₆ ]
n_l10___2 [2⋅X₃-X₅-1 ]
n_l3___12 [2⋅X₃-X₅-1 ]
n_l4___1 [2⋅X₃-X₅-1 ]
n_l4___11 [2⋅X₃-X₅-1 ]
n_l4___13 [2⋅X₃-X₆ ]
n_l1___9 [2⋅X₃-X₅ ]
n_l4___23 [2⋅X₃-1 ]
n_l1___22 [2⋅X₃-1 ]
n_l3___18 [2⋅X₃-1 ]
n_l5___25 [2⋅X₃ ]
n_l3___24 [2⋅X₃ ]
n_l3___5 [2⋅X₃-X₆ ]
n_l6___21 [2⋅X₃-1 ]
n_l6___27 [X₃ ]
n_l7___26 [X₃ ]
n_l6___8 [2⋅X₃-X₅ ]
n_l7___20 [2⋅X₃-1 ]
n_l5___19 [2⋅X₃-1 ]
n_l7___7 [2⋅X₃-X₅ ]
n_l5___6 [2⋅X₃-X₅ ]
n_l8___10 [2⋅X₃-X₅-1 ]
n_l8___17 [2⋅X₃-X₆ ]
n_l9___16 [2⋅X₃-X₅ ]
n_l2___15 [2⋅X₃-X₅ ]
n_l9___4 [2⋅X₃-X₅-1 ]
n_l2___3 [2⋅X₃-X₅-1 ]
MPRF for transition t₁₆₇: n_l1___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 1+X₆ ≤ X₅ ∧ X₅ < X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃ {O(n)}
MPRF:
l1 [2⋅X₀ ]
l11 [X₄ ]
n_l10___14 [X₀ ]
n_l10___2 [X₀ ]
n_l3___12 [X₀ ]
n_l4___1 [X₀ ]
n_l4___11 [X₀ ]
n_l4___13 [X₀ ]
n_l1___9 [X₀ ]
n_l4___23 [2⋅X₀-X₆ ]
n_l1___22 [2⋅X₀-X₆ ]
n_l3___18 [2⋅X₀-X₅ ]
n_l3___24 [2⋅X₀-X₆ ]
n_l3___5 [X₀+X₆-X₅ ]
n_l6___21 [2⋅X₀-X₆-1 ]
n_l6___27 [2⋅X₀ ]
n_l6___8 [X₀ ]
n_l7___20 [2⋅X₀+X₆+1-2⋅X₅ ]
n_l5___19 [2⋅X₀+X₆+1-2⋅X₅ ]
n_l7___26 [2⋅X₀ ]
n_l5___25 [2⋅X₀ ]
n_l7___7 [X₀ ]
n_l5___6 [X₀ ]
n_l8___10 [X₀ ]
n_l8___17 [X₀+X₆-X₅ ]
n_l9___16 [X₀+X₆-X₅ ]
n_l2___15 [X₀ ]
n_l9___4 [X₀ ]
n_l2___3 [X₀ ]
MPRF for transition t₂₁₃: n_l1___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₀, X₅, X₆) :|: X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₃ {O(n)}
MPRF:
l1 [X₀+X₄+1-2⋅X₃ ]
l11 [2⋅X₄-2⋅X₃ ]
n_l10___14 [2⋅X₀-2⋅X₃ ]
n_l10___2 [2⋅X₀-2⋅X₃ ]
n_l3___12 [2⋅X₀-2⋅X₃ ]
n_l4___1 [2⋅X₀-2⋅X₃ ]
n_l4___11 [2⋅X₀-2⋅X₃ ]
n_l4___13 [2⋅X₀-2⋅X₃ ]
n_l1___9 [2⋅X₀-2⋅X₃ ]
n_l4___23 [2⋅X₀+1-2⋅X₃ ]
n_l1___22 [2⋅X₀+1-2⋅X₃ ]
n_l3___18 [2⋅X₀+1-2⋅X₃ ]
n_l3___24 [2⋅X₀+1-2⋅X₃ ]
n_l3___5 [2⋅X₀-2⋅X₃ ]
n_l6___21 [2⋅X₀+1-2⋅X₃ ]
n_l6___27 [X₀+X₄+1-2⋅X₃ ]
n_l6___8 [2⋅X₀-2⋅X₃ ]
n_l7___20 [2⋅X₀+1-2⋅X₃ ]
n_l5___19 [2⋅X₀+1-2⋅X₃ ]
n_l7___26 [X₀+X₄+1-2⋅X₃ ]
n_l5___25 [2⋅X₀+1-2⋅X₃ ]
n_l7___7 [2⋅X₀-2⋅X₃ ]
n_l5___6 [2⋅X₀-2⋅X₃ ]
n_l8___10 [2⋅X₀-2⋅X₃ ]
n_l8___17 [2⋅X₀-2⋅X₃ ]
n_l9___16 [2⋅X₀-2⋅X₃ ]
n_l2___15 [2⋅X₀-2⋅X₃ ]
n_l9___4 [2⋅X₀-2⋅X₃ ]
n_l2___3 [2⋅X₀-2⋅X₃ ]
MPRF for transition t₁₆₉: n_l1___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅+X₆ ∧ 1+X₆ ≤ X₅ ∧ X₅ < X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+X₃+1 {O(n^2)}
MPRF:
l1 [0 ]
l11 [1 ]
n_l10___14 [X₃-X₅ ]
n_l10___2 [X₃-X₅ ]
n_l3___12 [X₃-X₅ ]
n_l4___1 [X₃-X₅ ]
n_l4___11 [X₃-X₅ ]
n_l4___13 [X₃-X₅ ]
n_l1___9 [X₃+1-X₅ ]
n_l4___23 [X₃ ]
n_l1___22 [X₃ ]
n_l3___18 [X₃ ]
n_l5___25 [X₃ ]
n_l3___24 [X₃ ]
n_l3___5 [X₃-X₆ ]
n_l6___21 [X₃ ]
n_l6___27 [0 ]
n_l7___26 [0 ]
n_l6___8 [X₃-X₅ ]
n_l7___20 [X₃ ]
n_l5___19 [X₃ ]
n_l7___7 [X₃-X₅ ]
n_l5___6 [X₃-X₅ ]
n_l8___10 [X₃-X₅ ]
n_l8___17 [X₃-X₅ ]
n_l9___16 [X₃-X₅ ]
n_l2___15 [X₃-X₅ ]
n_l9___4 [X₃-X₅ ]
n_l2___3 [X₃-X₅ ]
MPRF for transition t₂₁₄: n_l1___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₀, X₅, X₆) :|: X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃ {O(n)}
MPRF:
l1 [2⋅X₀ ]
l11 [X₄ ]
n_l10___14 [X₀+1 ]
n_l10___2 [X₀+1 ]
n_l3___12 [X₀+1 ]
n_l4___1 [X₀+1 ]
n_l4___11 [X₀+1 ]
n_l4___13 [X₀+1 ]
n_l1___9 [X₀+1 ]
n_l4___23 [X₀+1 ]
n_l1___22 [X₀+1 ]
n_l3___18 [X₀+1 ]
n_l3___24 [2⋅X₀ ]
n_l3___5 [X₀+1 ]
n_l6___21 [X₀+1 ]
n_l6___27 [2⋅X₀ ]
n_l6___8 [X₀+1 ]
n_l7___20 [X₀+1 ]
n_l5___19 [X₀+1 ]
n_l7___26 [2⋅X₀ ]
n_l5___25 [2⋅X₀ ]
n_l7___7 [X₀+1 ]
n_l5___6 [X₀+1 ]
n_l8___10 [X₀+1 ]
n_l8___17 [X₀+1 ]
n_l9___16 [X₀+1 ]
n_l2___15 [X₀+1 ]
n_l9___4 [X₀+1 ]
n_l2___3 [X₀+1 ]
All Bounds
Timebounds
Overall timebound:13⋅X₃⋅X₃⋅X₃⋅X₃+31⋅X₃⋅X₃⋅X₃+30⋅X₃⋅X₃+20⋅X₃+13 {O(n^4)}
t₀: 1 {O(1)}
t₈: X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₉: X₃+1 {O(n)}
t₂₁: X₃⋅X₃⋅X₃⋅X₃+2⋅X₃⋅X₃⋅X₃+X₃⋅X₃+X₃+2 {O(n^4)}
t₃: X₃+1 {O(n)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₁: 1 {O(1)}
t₂₃: 1 {O(1)}
t₁₉: 2⋅X₃⋅X₃⋅X₃⋅X₃+5⋅X₃⋅X₃⋅X₃+3⋅X₃⋅X₃+X₃ {O(n^4)}
t₂₀: X₃⋅X₃+X₃ {O(n^2)}
t₁₄: 4⋅X₃⋅X₃⋅X₃⋅X₃+10⋅X₃⋅X₃⋅X₃+8⋅X₃⋅X₃+2⋅X₃ {O(n^4)}
t₁₅: X₃⋅X₃+X₃ {O(n^2)}
t₂₂: X₃⋅X₃+X₃ {O(n^2)}
t₁₃: X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₀: X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₂: X₃⋅X₃+X₃ {O(n^2)}
t₁₆: 3⋅X₃⋅X₃⋅X₃⋅X₃+6⋅X₃⋅X₃⋅X₃+6⋅X₃⋅X₃+3⋅X₃ {O(n^4)}
t₁₈: 3⋅X₃⋅X₃⋅X₃⋅X₃+8⋅X₃⋅X₃⋅X₃+5⋅X₃⋅X₃+X₃ {O(n^4)}
Costbounds
Overall costbound: 13⋅X₃⋅X₃⋅X₃⋅X₃+31⋅X₃⋅X₃⋅X₃+30⋅X₃⋅X₃+20⋅X₃+13 {O(n^4)}
t₀: 1 {O(1)}
t₈: X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₉: X₃+1 {O(n)}
t₂₁: X₃⋅X₃⋅X₃⋅X₃+2⋅X₃⋅X₃⋅X₃+X₃⋅X₃+X₃+2 {O(n^4)}
t₃: X₃+1 {O(n)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₁: 1 {O(1)}
t₂₃: 1 {O(1)}
t₁₉: 2⋅X₃⋅X₃⋅X₃⋅X₃+5⋅X₃⋅X₃⋅X₃+3⋅X₃⋅X₃+X₃ {O(n^4)}
t₂₀: X₃⋅X₃+X₃ {O(n^2)}
t₁₄: 4⋅X₃⋅X₃⋅X₃⋅X₃+10⋅X₃⋅X₃⋅X₃+8⋅X₃⋅X₃+2⋅X₃ {O(n^4)}
t₁₅: X₃⋅X₃+X₃ {O(n^2)}
t₂₂: X₃⋅X₃+X₃ {O(n^2)}
t₁₃: X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₀: X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₁₂: X₃⋅X₃+X₃ {O(n^2)}
t₁₆: 3⋅X₃⋅X₃⋅X₃⋅X₃+6⋅X₃⋅X₃⋅X₃+6⋅X₃⋅X₃+3⋅X₃ {O(n^4)}
t₁₈: 3⋅X₃⋅X₃⋅X₃⋅X₃+8⋅X₃⋅X₃⋅X₃+5⋅X₃⋅X₃+X₃ {O(n^4)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₈, X₆: 6⋅X₃⋅X₃+6⋅X₃+X₆ {O(n^2)}
t₉, X₃: X₃ {O(n)}
t₉, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₉, X₆: 3⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₂₁, X₃: X₃ {O(n)}
t₂₁, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₂₁, X₆: X₃⋅X₃+X₃ {O(n^2)}
t₃, X₃: X₃ {O(n)}
t₃, X₅: 0 {O(1)}
t₃, X₆: 3⋅X₃⋅X₃+3⋅X₃+X₆ {O(n^2)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 0 {O(1)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₆, X₃: 2⋅X₃ {O(n)}
t₆, X₄: 1 {O(1)}
t₆, X₅: X₃⋅X₃+X₃+X₅ {O(n^2)}
t₆, X₆: 3⋅X₃⋅X₃+3⋅X₃+X₆ {O(n^2)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₃ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₃ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂₃, X₃: 4⋅X₃ {O(n)}
t₂₃, X₄: X₃+1 {O(n)}
t₂₃, X₅: X₃⋅X₃+3⋅X₅+X₃ {O(n^2)}
t₂₃, X₆: 3⋅X₃⋅X₃+3⋅X₃+3⋅X₆ {O(n^2)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₁₉, X₆: X₃⋅X₃+X₃ {O(n^2)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₂₀, X₆: X₃⋅X₃+X₃ {O(n^2)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₁₄, X₆: X₃⋅X₃+X₃ {O(n^2)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₁₅, X₆: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₂, X₃: X₃ {O(n)}
t₂₂, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₂₂, X₆: 3⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₁₃, X₆: X₃⋅X₃+X₃ {O(n^2)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₁₀, X₆: 6⋅X₃⋅X₃+6⋅X₃+X₆ {O(n^2)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₁₂, X₆: 6⋅X₃⋅X₃+6⋅X₃+X₆ {O(n^2)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₁₆, X₆: X₃⋅X₃+X₃ {O(n^2)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₅: X₃⋅X₃+X₃ {O(n^2)}
t₁₈, X₆: X₃⋅X₃+X₃ {O(n^2)}