Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < 0
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < 0
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₁
t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₄, X₆, X₂, X₃, X₄, X₅, X₆)
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₁, X₀, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: X₀ < X₁
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: X₁ < X₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₁, X₂, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₁
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₂
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂-X₁, X₃, X₄, X₅, X₆)
Cut unsatisfiable transition t₂: l2→l5
Eliminate variables {X₃,X₅} that do not contribute to the problem
Found invariant X₁ ≤ X₆ for location l2
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 1 ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant X₁ ≤ X₆ for location l1
Found invariant X₁ ≤ X₆ for location l3
Start: l0
Program_Vars: X₀, X₁, X₂, X₄, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₃₀: l0(X₀, X₁, X₂, X₄, X₆) → l4(X₀, X₁, X₂, X₄, X₆)
t₃₂: l2(X₀, X₁, X₂, X₄, X₆) → l3(X₀, X₁, X₂, X₄, X₆) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ X₆
t₃₃: l2(X₀, X₁, X₂, X₄, X₆) → l3(X₀, X₁, X₂, X₄, X₆) :|: X₀ < 0 ∧ X₁ ≤ X₆
t₃₄: l2(X₀, X₁, X₂, X₄, X₆) → l3(X₀, X₁, X₂, X₄, X₆) :|: X₁ < 0 ∧ X₁ ≤ X₆
t₃₁: l2(X₀, X₁, X₂, X₄, X₆) → l5(X₀, X₁, X₂, X₄, X₆) :|: 0 < X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₆
t₃₅: l3(X₀, X₁, X₂, X₄, X₆) → l1(X₀, X₁, X₂, X₄, X₆) :|: X₁ ≤ X₆
t₃₆: l4(X₀, X₁, X₂, X₄, X₆) → l2(X₄, X₆, X₂, X₄, X₆)
t₃₇: l5(X₀, X₁, X₂, X₄, X₆) → l2(X₁, X₀, X₂, X₄, X₆) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₈: l5(X₀, X₁, X₂, X₄, X₆) → l6(X₀, X₁, X₀, X₄, X₆) :|: X₀ < X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₉: l5(X₀, X₁, X₂, X₄, X₆) → l6(X₀, X₁, X₀, X₄, X₆) :|: X₁ < X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₁: l6(X₀, X₁, X₂, X₄, X₆) → l2(X₁, X₂, X₂, X₄, X₆) :|: X₂ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₀: l6(X₀, X₁, X₂, X₄, X₆) → l7(X₀, X₁, X₂, X₄, X₆) :|: X₁ < X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₂: l7(X₀, X₁, X₂, X₄, X₆) → l6(X₀, X₁, X₂-X₁, X₄, X₆) :|: 1 ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
new bound:
2⋅X₄+2⋅X₆ {O(n)}
MPRF:
l5 [2⋅X₀+2⋅X₁ ]
l2 [2⋅X₀+2⋅X₁ ]
l7 [X₀+2⋅X₁+X₂-1 ]
l6 [X₀+2⋅X₁+X₂ ]
new bound:
X₄+X₆+2 {O(n)}
MPRF:
l5 [X₀+X₁-2 ]
l2 [X₀+X₁-2 ]
l7 [X₂-1 ]
l6 [X₁+X₂-2 ]
new bound:
2⋅X₄⋅X₄+2⋅X₆⋅X₆+4⋅X₄⋅X₆+X₆ {O(n^2)}
MPRF:
l5 [X₁ ]
l2 [X₁ ]
l7 [X₀ ]
l6 [X₀ ]
new bound:
4⋅X₄⋅X₆+4⋅X₆⋅X₆+3⋅X₆+X₄+1 {O(n^2)}
MPRF:
l5 [X₁+2⋅X₆-X₀-1 ]
l2 [X₁+2⋅X₆-X₀-1 ]
l7 [2⋅X₆ ]
l6 [2⋅X₆ ]
new bound:
4⋅X₄⋅X₆+4⋅X₆⋅X₆+3⋅X₆+X₄+2 {O(n^2)}
MPRF:
l2 [1 ]
l5 [1 ]
l7 [2⋅X₁-2⋅X₆ ]
l6 [2⋅X₁-2⋅X₆ ]
Cut unsatisfiable transition t₁₃₉: n_l2___11→l3
Cut unsatisfiable transition t₁₄₃: n_l2___11→l3
Cut unsatisfiable transition t₁₄₀: n_l2___2→l3
Cut unsatisfiable transition t₁₄₄: n_l2___2→l3
Cut unsatisfiable transition t₁₄₁: n_l2___4→l3
Cut unsatisfiable transition t₁₄₅: n_l2___4→l3
Cut unsatisfiable transition t₁₄₆: n_l2___7→l3
Cut unsatisfiable transition t₁₄₇: n_l6___10→l7
Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l6___9
Found invariant X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ for location l2
Found invariant 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___1
Found invariant X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___7
Found invariant 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l6___5
Found invariant 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6
Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l6___10
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___11
Found invariant X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l5___6
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___8
Found invariant 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___2
Found invariant 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___12
Found invariant X₁ ≤ X₆ ∧ X₄ ≤ X₀ for location l1
Found invariant X₁ ≤ X₆ ∧ X₄ ≤ X₀ for location l3
Found invariant 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___4
Found invariant 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___3
knowledge_propagation leads to new time bound X₄+X₆+2 {O(n)} for transition t₁₂₃: l6(X₀, X₁, X₂, X₄, X₆) → n_l2___4(X₁, X₂, X₂, X₄, X₆) :|: X₁ ≤ X₆ ∧ X₁+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₀+X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound X₄+X₆+2 {O(n)} for transition t₁₁₂: n_l2___4(X₀, X₁, X₂, X₄, X₆) → n_l5___3(X₀, X₁, X₂, X₄, X₆) :|: X₀ ≤ X₆ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₆ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 < X₁ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₄+X₆+2 {O(n)} for transition t₁₁₉: n_l5___3(X₀, X₁, X₂, X₄, X₆) → n_l6___5(X₀, X₁, X₀, X₄, X₆) :|: X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ ∧ X₁ < X₀ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₄+X₆+3 {O(n)} for transition t₁₄₈: n_l6___5(X₀, X₁, X₂, X₄, X₆) → l7(X₀, X₁, X₂, X₄, X₆) :|: X₁ < X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
Overall timebound:inf {Infinity}
t₃₀: 1 {O(1)}
t₃₁: inf {Infinity}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 1 {O(1)}
t₃₇: inf {Infinity}
t₃₈: 2⋅X₄⋅X₄+2⋅X₆⋅X₆+4⋅X₄⋅X₆+X₆ {O(n^2)}
t₃₉: 4⋅X₄⋅X₆+4⋅X₆⋅X₆+3⋅X₆+X₄+2 {O(n^2)}
t₄₀: 2⋅X₄+2⋅X₆ {O(n)}
t₄₁: 4⋅X₄⋅X₆+4⋅X₆⋅X₆+3⋅X₆+X₄+1 {O(n^2)}
t₄₂: X₄+X₆+2 {O(n)}
Overall costbound: inf {Infinity}
t₃₀: 1 {O(1)}
t₃₁: inf {Infinity}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 1 {O(1)}
t₃₇: inf {Infinity}
t₃₈: 2⋅X₄⋅X₄+2⋅X₆⋅X₆+4⋅X₄⋅X₆+X₆ {O(n^2)}
t₃₉: 4⋅X₄⋅X₆+4⋅X₆⋅X₆+3⋅X₆+X₄+2 {O(n^2)}
t₄₀: 2⋅X₄+2⋅X₆ {O(n)}
t₄₁: 4⋅X₄⋅X₆+4⋅X₆⋅X₆+3⋅X₆+X₄+1 {O(n^2)}
t₄₂: X₄+X₆+2 {O(n)}
t₃₀, X₀: X₀ {O(n)}
t₃₀, X₁: X₁ {O(n)}
t₃₀, X₂: X₂ {O(n)}
t₃₀, X₄: X₄ {O(n)}
t₃₀, X₆: X₆ {O(n)}
t₃₁, X₀: X₄+X₆ {O(n)}
t₃₁, X₁: X₄+X₆ {O(n)}
t₃₁, X₂: 2⋅X₄+2⋅X₆+X₂ {O(n)}
t₃₁, X₄: X₄ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₂, X₀: 2⋅X₄+X₆ {O(n)}
t₃₂, X₁: 0 {O(1)}
t₃₂, X₂: 2⋅X₄+2⋅X₆+X₂ {O(n)}
t₃₂, X₄: 2⋅X₄ {O(n)}
t₃₂, X₆: 2⋅X₆ {O(n)}
t₃₃, X₀: X₄ {O(n)}
t₃₃, X₁: X₆ {O(n)}
t₃₃, X₂: X₂ {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₄, X₀: 2⋅X₄+X₆ {O(n)}
t₃₄, X₁: 2⋅X₆+X₄ {O(n)}
t₃₄, X₂: 2⋅X₄+2⋅X₆+X₂ {O(n)}
t₃₄, X₄: 2⋅X₄ {O(n)}
t₃₄, X₆: 2⋅X₆ {O(n)}
t₃₅, X₀: 2⋅X₆+5⋅X₄ {O(n)}
t₃₅, X₁: 3⋅X₆+X₄ {O(n)}
t₃₅, X₂: 3⋅X₂+4⋅X₄+4⋅X₆ {O(n)}
t₃₅, X₄: 5⋅X₄ {O(n)}
t₃₅, X₆: 5⋅X₆ {O(n)}
t₃₆, X₀: X₄ {O(n)}
t₃₆, X₁: X₆ {O(n)}
t₃₆, X₂: X₂ {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₆: X₆ {O(n)}
t₃₇, X₀: X₄+X₆ {O(n)}
t₃₇, X₁: X₄+X₆ {O(n)}
t₃₇, X₂: 2⋅X₄+2⋅X₆+X₂ {O(n)}
t₃₇, X₄: X₄ {O(n)}
t₃₇, X₆: X₆ {O(n)}
t₃₈, X₀: X₄+X₆ {O(n)}
t₃₈, X₁: X₄+X₆ {O(n)}
t₃₈, X₂: X₄+X₆ {O(n)}
t₃₈, X₄: X₄ {O(n)}
t₃₈, X₆: X₆ {O(n)}
t₃₉, X₀: X₄+X₆ {O(n)}
t₃₉, X₁: X₄+X₆ {O(n)}
t₃₉, X₂: X₄+X₆ {O(n)}
t₃₉, X₄: X₄ {O(n)}
t₃₉, X₆: X₆ {O(n)}
t₄₀, X₀: X₄+X₆ {O(n)}
t₄₀, X₁: X₄+X₆ {O(n)}
t₄₀, X₂: X₄+X₆ {O(n)}
t₄₀, X₄: X₄ {O(n)}
t₄₀, X₆: X₆ {O(n)}
t₄₁, X₀: X₄+X₆ {O(n)}
t₄₁, X₁: X₄+X₆ {O(n)}
t₄₁, X₂: 2⋅X₄+2⋅X₆ {O(n)}
t₄₁, X₄: X₄ {O(n)}
t₄₁, X₆: X₆ {O(n)}
t₄₂, X₀: X₄+X₆ {O(n)}
t₄₂, X₁: X₄+X₆ {O(n)}
t₄₂, X₂: X₄+X₆ {O(n)}
t₄₂, X₄: X₄ {O(n)}
t₄₂, X₆: X₆ {O(n)}