Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ < 0
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₆
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₁, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀
t₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ ≤ 0
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₉, X₁₀, X₈, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 2 ≤ X₃
t₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ < 2
t₂₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₂₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀-1, 0, X₄, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₅, nondef.0, X₇, X₈, X₉, X₁₀)
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 64 ≤ X₅
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < 64
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃+1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ < 0
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₇
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ ≤ 0 ∧ 0 ≤ X₇
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.1, X₈, X₉, X₁₀)
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀)

Preprocessing

Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l6

Found invariant X₀ ≤ X₉ ∧ X₀ ≤ 0 for location l15

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ for location l12

Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l5

Found invariant X₀ ≤ X₉ ∧ X₀ ≤ 0 for location l13

Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l8

Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l1

Found invariant X₀ ≤ X₉ for location l10

Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 63 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 63+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l9

Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l3

Found invariant 1 ≤ X₉ ∧ 3 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 2 ≤ X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ < 0 ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₆ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₁, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀ ∧ X₀ ≤ X₉
t₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ ≤ 0 ∧ X₀ ≤ X₉
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₉, X₁₀, X₈, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 2 ≤ X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀
t₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ < 2 ∧ 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀
t₂₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ ≤ X₉ ∧ X₀ ≤ 0
t₂₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀-1, 0, X₄, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 3 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 2 ≤ X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₅, nondef.0, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 64 ≤ X₅ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < 64 ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃+1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ < 0 ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₇ ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.1, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 63 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 63+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

MPRF for transition t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₁, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀ ∧ X₀ ≤ X₉ of depth 1:

new bound:

X₉+1 {O(n)}

MPRF:

l14 [X₀ ]
l10 [X₀+1 ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀ ]
l12 [X₀ ]
l5 [X₀ ]
l7 [X₀ ]
l8 [X₀ ]
l6 [X₀ ]
l9 [X₀ ]
l4 [X₀ ]

MPRF for transition t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 2 ≤ X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₉ {O(n)}

MPRF:

l14 [X₀-1 ]
l10 [X₀ ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀ ]
l12 [X₀ ]
l5 [X₀ ]
l7 [X₀ ]
l8 [X₀ ]
l6 [X₀ ]
l9 [X₀ ]
l4 [X₀ ]

MPRF for transition t₂₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀-1, 0, X₄, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 3 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 2 ≤ X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₉ {O(n)}

MPRF:

l14 [X₀ ]
l10 [X₀ ]
l2 [X₀ ]
l3 [X₀ ]
l1 [X₀ ]
l12 [X₀ ]
l5 [X₀ ]
l7 [X₀ ]
l8 [X₀ ]
l6 [X₀ ]
l9 [X₀ ]
l4 [X₀ ]

MPRF for transition t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ < 0 ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}

MPRF:

l10 [X₉+1-X₁ ]
l14 [X₉-X₃ ]
l2 [X₉+1-X₃ ]
l3 [X₉+1-X₃ ]
l1 [X₉+1-X₃ ]
l12 [X₉+1-X₃ ]
l5 [X₉-X₃ ]
l7 [X₉-X₃ ]
l8 [X₉-X₃ ]
l6 [X₉-X₃ ]
l9 [X₉-X₃ ]
l4 [X₉-X₃ ]

MPRF for transition t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₆ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}

MPRF:

l10 [X₉+1-X₁ ]
l14 [X₉-X₃ ]
l2 [X₉+1-X₃ ]
l3 [X₉+1-X₃ ]
l1 [X₉+1-X₃ ]
l12 [X₉+1-X₃ ]
l5 [X₉-X₃ ]
l7 [X₉-X₃ ]
l8 [X₉-X₃ ]
l6 [X₉-X₃ ]
l9 [X₉-X₃ ]
l4 [X₉-X₃ ]

MPRF for transition t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₉+X₁₀+2 {O(n)}

MPRF:

l10 [2-X₁ ]
l14 [-X₃ ]
l2 [2-X₃ ]
l3 [2-X₃ ]
l1 [2-X₃ ]
l12 [2-X₃ ]
l5 [1-X₃ ]
l7 [1-X₃ ]
l8 [1-X₃ ]
l6 [1-X₃ ]
l9 [1-X₃ ]
l4 [1-X₃ ]

MPRF for transition t₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ < 2 ∧ 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}

MPRF:

l10 [X₉+1-X₁ ]
l14 [X₉-X₃ ]
l2 [X₉-X₃ ]
l3 [X₉-X₃ ]
l1 [X₉-X₃ ]
l12 [X₉+1-X₃ ]
l5 [X₉-X₃ ]
l7 [X₉-X₃ ]
l8 [X₉-X₃ ]
l6 [X₉-X₃ ]
l9 [X₉-X₃ ]
l4 [X₉-X₃ ]

MPRF for transition t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₉+X₁₀+2 {O(n)}

MPRF:

l10 [2-X₁ ]
l14 [-X₃ ]
l2 [2-X₃ ]
l3 [1-X₃ ]
l1 [1-X₃ ]
l12 [2-X₃ ]
l5 [1-X₃ ]
l7 [1-X₃ ]
l8 [1-X₃ ]
l6 [1-X₃ ]
l9 [1-X₃ ]
l4 [1-X₃ ]

MPRF for transition t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₅, nondef.0, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}

MPRF:

l10 [X₉+1-X₁ ]
l14 [X₉-X₃ ]
l2 [X₉+1-X₃ ]
l3 [X₉+1-X₃ ]
l1 [X₉-X₃ ]
l12 [X₉+1-X₃ ]
l5 [X₉-X₃ ]
l7 [X₉-X₃ ]
l8 [X₉-X₃ ]
l6 [X₉-X₃ ]
l9 [X₉-X₃ ]
l4 [X₉-X₃ ]

MPRF for transition t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 64 ≤ X₅ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}

MPRF:

l10 [X₉+1-X₁ ]
l14 [X₉-X₃ ]
l2 [X₉+1-X₃ ]
l3 [X₉+1-X₃ ]
l1 [X₉+1-X₃ ]
l12 [X₉+1-X₃ ]
l5 [X₉-X₃ ]
l7 [X₉+1-X₃ ]
l8 [X₉+1-X₃ ]
l6 [X₉+1-X₃ ]
l9 [X₉+1-X₃ ]
l4 [X₉+1-X₃ ]

MPRF for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃+1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₉⋅X₉+2⋅X₉+X₁₀ {O(n^2)}

MPRF:

l10 [2⋅X₀-X₁ ]
l14 [2⋅X₀-X₃ ]
l2 [2⋅X₀-X₃ ]
l3 [2⋅X₀-X₃ ]
l1 [2⋅X₀-X₃ ]
l12 [2⋅X₀-X₃ ]
l5 [2⋅X₀-X₃ ]
l7 [2⋅X₀-X₃ ]
l8 [2⋅X₀-X₃ ]
l6 [2⋅X₀-X₃ ]
l9 [2⋅X₀-X₃ ]
l4 [2⋅X₀-X₃ ]

MPRF for transition t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ < 0 ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₉+X₁₀+2 {O(n)}

MPRF:

l10 [2-X₁ ]
l14 [-X₃ ]
l2 [2-X₃ ]
l3 [2-X₃ ]
l1 [2-X₃ ]
l12 [2-X₃ ]
l5 [1-X₃ ]
l7 [2-X₃ ]
l8 [2-X₃ ]
l6 [2-X₃ ]
l9 [2-X₃ ]
l4 [2-X₃ ]

MPRF for transition t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₇ ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₉+X₁₀+2 {O(n)}

MPRF:

l10 [2-X₁ ]
l14 [-X₃ ]
l2 [2-X₃ ]
l3 [2-X₃ ]
l1 [2-X₃ ]
l12 [2-X₃ ]
l5 [1-X₃ ]
l7 [2-X₃ ]
l8 [2-X₃ ]
l6 [2-X₃ ]
l9 [2-X₃ ]
l4 [2-X₃ ]

knowledge_propagation leads to new time bound 2⋅X₉+X₁₀+2 {O(n)} for transition t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₅, nondef.0, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₉+X₁₀+2 {O(n)} for transition t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ < 0 ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₉+X₁₀+2 {O(n)} for transition t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₆ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

MPRF for transition t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < 64 ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}

MPRF:

l5 [-X₄ ]
l12 [64⋅X₉-X₄ ]
l14 [64⋅X₉-X₄ ]
l10 [64⋅X₉-X₂ ]
l2 [64⋅X₉-X₄ ]
l3 [64⋅X₉-X₄ ]
l1 [64-X₄ ]
l7 [63-X₅ ]
l8 [63-X₅ ]
l6 [63-X₅ ]
l9 [63-X₅ ]
l4 [64-X₅ ]

MPRF for transition t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}

MPRF:

l5 [-X₄ ]
l12 [64⋅X₉-X₄ ]
l14 [64⋅X₉-X₄ ]
l10 [64⋅X₉-X₂ ]
l2 [64⋅X₀-X₄ ]
l3 [64⋅X₀-X₄ ]
l1 [64-X₄ ]
l7 [64-X₅ ]
l8 [64-X₅ ]
l6 [64-X₅ ]
l9 [63-X₅ ]
l4 [64-X₅ ]

MPRF for transition t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}

MPRF:

l5 [-X₄ ]
l12 [64⋅X₉-X₄ ]
l14 [64⋅X₉-X₄ ]
l10 [64⋅X₉-X₂ ]
l2 [64⋅X₉-X₄ ]
l3 [64⋅X₉-X₄ ]
l1 [64-X₄ ]
l7 [64-X₅ ]
l8 [63-X₅ ]
l6 [63-X₅ ]
l9 [63-X₅ ]
l4 [64-X₅ ]

MPRF for transition t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.1, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}

MPRF:

l5 [-X₄ ]
l12 [64⋅X₉-X₄ ]
l14 [64⋅X₉-X₄ ]
l10 [64⋅X₉-X₂ ]
l2 [64⋅X₉-X₄ ]
l3 [64⋅X₉-X₄ ]
l1 [64-X₄ ]
l7 [64-X₅ ]
l8 [64-X₅ ]
l6 [63-X₅ ]
l9 [63-X₅ ]
l4 [64-X₅ ]

MPRF for transition t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 63 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 63+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}

MPRF:

l5 [-X₄ ]
l12 [64⋅X₉-X₄ ]
l14 [64⋅X₉-X₄ ]
l10 [64⋅X₉-X₂ ]
l2 [64⋅X₉-X₄ ]
l3 [64⋅X₉-X₄ ]
l1 [64-X₄ ]
l7 [64-X₅ ]
l8 [64-X₅ ]
l6 [64-X₅ ]
l9 [64-X₅ ]
l4 [64-X₅ ]

Analysing control-flow refined program

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 1 ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 1+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l2___15

Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 61+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 125 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ 1+X₄ ≤ X₅ ∧ X₄ ≤ 62 ∧ X₃+X₄ ≤ 63 ∧ X₁+X₄ ≤ 63 ∧ X₄ ≤ 61+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l6___2

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 63+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 64 ∧ X₄+X₇ ≤ 63 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 64+X₇ ∧ X₄ ≤ 63+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 64 ∧ X₄+X₅ ≤ 127 ∧ X₃+X₅ ≤ 65 ∧ X₁+X₅ ≤ 65 ∧ X₅ ≤ 63+X₀ ∧ 1+X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l4___6

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 0 ∧ X₃+X₆ ≤ 1 ∧ X₁+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 1 ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 1+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___11

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 61+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 62 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 62+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 125 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ 1+X₄ ≤ X₅ ∧ X₄ ≤ 62 ∧ X₃+X₄ ≤ 63 ∧ X₁+X₄ ≤ 63 ∧ X₄ ≤ 61+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l8___3

Found invariant X₀ ≤ X₉ ∧ X₀ ≤ 0 for location l15

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 65 ≤ X₅+X₉ ∧ X₅ ≤ 63+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ 64+X₇ ≤ X₅ ∧ X₅+X₇ ≤ 64 ∧ X₄+X₇ ≤ 63 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 64 ≤ X₅+X₇ ∧ X₅ ≤ 64+X₇ ∧ X₄ ≤ 63+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 64 ∧ X₄+X₅ ≤ 127 ∧ X₃+X₅ ≤ 65 ∧ X₁+X₅ ≤ 65 ∧ X₅ ≤ 63+X₀ ∧ 64 ≤ X₅ ∧ 1+X₄ ≤ X₅ ∧ 63+X₃ ≤ X₅ ∧ 63+X₁ ≤ X₅ ∧ 65 ≤ X₀+X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___5

Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₂ ≤ 62+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 126 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 126 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₂+X₃ ≤ 64 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 63 ∧ X₁+X₂ ≤ 64 ∧ X₂ ≤ 62+X₀ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l7___17

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 63 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 63+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l9___7

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 61+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 62 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 62+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 125 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ 1+X₄ ≤ X₅ ∧ X₄ ≤ 62 ∧ X₃+X₄ ≤ 63 ∧ X₁+X₄ ≤ 63 ∧ X₄ ≤ 61+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l9___1

Found invariant 1 ≤ X₉ ∧ 65 ≤ X₅+X₉ ∧ 65 ≤ X₄+X₉ ∧ X₃ ≤ X₉ ∧ 65 ≤ X₂+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 64 ≤ X₅ ∧ 128 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 63+X₃ ≤ X₅ ∧ 128 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 63+X₁ ≤ X₅ ∧ 65 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 64 ≤ X₄ ∧ 63+X₃ ≤ X₄ ∧ 128 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 63+X₁ ≤ X₄ ∧ 65 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ 63+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ 64 ≤ X₂ ∧ 63+X₁ ≤ X₂ ∧ 65 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___18

Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l1___21

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₃+X₅ ≤ 1 ∧ X₁+X₅ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 1 ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 1+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l4___12

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 1 ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 1+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l1___13

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ for location l12

Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l2___23

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₃+X₅ ≤ 1 ∧ X₁+X₅ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 1 ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 1+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l7___10

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 1 ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 1+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l3___14

Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l8___9

Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ 1+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 2 ∧ X₁+X₄ ≤ 1 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 2+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 2 ∧ X₁+X₃ ≤ 3 ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l12___16

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ 0 ∧ X₃+X₆ ≤ 1 ∧ X₁+X₆ ≤ 1 ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___19

Found invariant X₀ ≤ X₉ ∧ X₀ ≤ 0 for location l13

Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l3___22

Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l6___8

Found invariant X₀ ≤ X₉ for location l10

Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l4___20

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 61+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 62 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 62+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 125 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ 1+X₄ ≤ X₅ ∧ X₄ ≤ 62 ∧ X₃+X₄ ≤ 63 ∧ X₁+X₄ ≤ 63 ∧ X₄ ≤ 61+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l7___4

Found invariant 1 ≤ X₉ ∧ 3 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 2 ≤ X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l14

knowledge_propagation leads to new time bound X₉+1 {O(n)} for transition t₁₈₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l2___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₃ < 2 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₉+1 {O(n)} for transition t₁₉₄: n_l2___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l3___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ < 2 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₉+1 {O(n)} for transition t₁₉₆: n_l3___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l1___21(X₀, X₁, X₂, Arg3_P, X₄, X₅, NoDet0, X₇, X₈, Arg9_P, X₁₀) :|: X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ Arg3_P ≤ 1 ∧ X₁ ≤ Arg3_P ∧ X₀ ≤ Arg9_P ∧ 1 ≤ X₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₉+1 {O(n)} for transition t₁₉₀: n_l1___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l4___20(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₆ < 0 ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₉+1 {O(n)} for transition t₁₉₁: n_l1___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l4___20(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 0 < X₆ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₉+1 {O(n)} for transition t₁₉₂: n_l1___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l5___19(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀) :|: X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₉+2 {O(n)} for transition t₁₉₈: n_l4___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l5___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 64 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₉+2 {O(n)} for transition t₁₉₉: n_l4___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l7___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₅ ∧ X₅ < 64 ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₉+2 {O(n)} for transition t₂₀₃: n_l5___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l12___16(X₀, X₁, X₂, X₃+1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₀ ≤ X₉ ∧ 64 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ 65 ≤ X₅+X₉ ∧ 65 ≤ X₄+X₉ ∧ X₃ ≤ X₉ ∧ 65 ≤ X₂+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 64 ≤ X₅ ∧ 128 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 63+X₃ ≤ X₅ ∧ 128 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 63+X₁ ≤ X₅ ∧ 65 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 64 ≤ X₄ ∧ 63+X₃ ≤ X₄ ∧ 128 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 63+X₁ ≤ X₄ ∧ 65 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ 63+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ 64 ≤ X₂ ∧ 63+X₁ ≤ X₂ ∧ 65 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₉+1 {O(n)} for transition t₂₀₄: n_l5___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l12___16(X₀, X₁, X₂, X₃+1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ 0 ∧ X₃+X₆ ≤ 1 ∧ X₁+X₆ ≤ 1 ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₉+2 {O(n)} for transition t₂₁₁: n_l7___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₅ < 64 ∧ X₄ ≤ X₅ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ 63 ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₂ ≤ 62+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 126 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 126 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₂+X₃ ≤ 64 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 63 ∧ X₁+X₂ ≤ 64 ∧ X₂ ≤ 62+X₀ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:640⋅X₉⋅X₉⋅X₉+320⋅X₁₀⋅X₉+644⋅X₉⋅X₉+10⋅X₁₀+343⋅X₉+5⋅X₈+21 {O(n^3)}
t₀: 1 {O(1)}
t₉: 2⋅X₉+X₁₀+2 {O(n)}
t₁₀: 2⋅X₉+X₁₀+2 {O(n)}
t₁₁: 2⋅X₉+X₁₀+2 {O(n)}
t₂: X₉+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
t₅: X₉ {O(n)}
t₂₃: 1 {O(1)}
t₂₂: X₉ {O(n)}
t₆: 2⋅X₉+X₁₀+2 {O(n)}
t₈: 2⋅X₉+X₁₀+2 {O(n)}
t₁₂: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₁₃: X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
t₂₁: 2⋅X₉⋅X₉+2⋅X₉+X₁₀ {O(n^2)}
t₁₇: 2⋅X₉+X₁₀+2 {O(n)}
t₁₈: 2⋅X₉+X₁₀+2 {O(n)}
t₁₉: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₁₄: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₁₆: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₂₀: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}

Costbounds

Overall costbound: 640⋅X₉⋅X₉⋅X₉+320⋅X₁₀⋅X₉+644⋅X₉⋅X₉+10⋅X₁₀+343⋅X₉+5⋅X₈+21 {O(n^3)}
t₀: 1 {O(1)}
t₉: 2⋅X₉+X₁₀+2 {O(n)}
t₁₀: 2⋅X₉+X₁₀+2 {O(n)}
t₁₁: 2⋅X₉+X₁₀+2 {O(n)}
t₂: X₉+1 {O(n)}
t₃: 1 {O(1)}
t₁: 1 {O(1)}
t₄: X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
t₅: X₉ {O(n)}
t₂₃: 1 {O(1)}
t₂₂: X₉ {O(n)}
t₆: 2⋅X₉+X₁₀+2 {O(n)}
t₈: 2⋅X₉+X₁₀+2 {O(n)}
t₁₂: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₁₃: X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
t₂₁: 2⋅X₉⋅X₉+2⋅X₉+X₁₀ {O(n^2)}
t₁₇: 2⋅X₉+X₁₀+2 {O(n)}
t₁₈: 2⋅X₉+X₁₀+2 {O(n)}
t₁₉: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₁₄: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₁₆: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₂₀: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₉, X₀: X₉ {O(n)}
t₉, X₁: X₁₀ {O(n)}
t₉, X₂: 2⋅X₈ {O(n)}
t₉, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₉, X₄: X₈ {O(n)}
t₉, X₅: X₈ {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₁₀, X₀: X₉ {O(n)}
t₁₀, X₁: X₁₀ {O(n)}
t₁₀, X₂: 2⋅X₈ {O(n)}
t₁₀, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₁₀, X₄: X₈ {O(n)}
t₁₀, X₅: X₈ {O(n)}
t₁₀, X₈: X₈ {O(n)}
t₁₀, X₉: X₉ {O(n)}
t₁₀, X₁₀: X₁₀ {O(n)}
t₁₁, X₀: X₉ {O(n)}
t₁₁, X₁: X₁₀ {O(n)}
t₁₁, X₂: 2⋅X₈ {O(n)}
t₁₁, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₁₁, X₄: X₈ {O(n)}
t₁₁, X₅: 384⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+384⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₁₁, X₆: 0 {O(1)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₁, X₁₀: X₁₀ {O(n)}
t₂, X₀: X₉ {O(n)}
t₂, X₁: X₁₀ {O(n)}
t₂, X₂: 2⋅X₈ {O(n)}
t₂, X₃: X₁₀ {O(n)}
t₂, X₄: X₈ {O(n)}
t₂, X₅: 384⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+384⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₃, X₀: 2⋅X₉ {O(n)}
t₃, X₁: X₁₀ {O(n)}
t₃, X₂: 2⋅X₈ {O(n)}
t₃, X₃: 2⋅X₉⋅X₉+2⋅X₉+3⋅X₁₀+X₃ {O(n^2)}
t₃, X₄: X₄+X₈ {O(n)}
t₃, X₅: 384⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+384⋅X₉⋅X₉+11⋅X₈+192⋅X₉+2⋅X₅ {O(n^3)}
t₃, X₈: 2⋅X₈ {O(n)}
t₃, X₉: 2⋅X₉ {O(n)}
t₃, X₁₀: 2⋅X₁₀ {O(n)}
t₁, X₀: X₉ {O(n)}
t₁, X₁: X₁₀ {O(n)}
t₁, X₂: X₈ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₄, X₀: X₉ {O(n)}
t₄, X₁: X₁₀ {O(n)}
t₄, X₂: 2⋅X₈ {O(n)}
t₄, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₄, X₄: X₈ {O(n)}
t₄, X₅: 384⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+384⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: X₁₀ {O(n)}
t₅, X₀: X₉ {O(n)}
t₅, X₁: 2⋅X₁₀ {O(n)}
t₅, X₂: 4⋅X₈ {O(n)}
t₅, X₃: 2⋅X₉⋅X₉+2⋅X₉+3⋅X₁₀ {O(n^2)}
t₅, X₄: X₈ {O(n)}
t₅, X₅: 384⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+384⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₂₃, X₀: 2⋅X₉ {O(n)}
t₂₃, X₁: X₁₀ {O(n)}
t₂₃, X₂: 2⋅X₈ {O(n)}
t₂₃, X₃: 2⋅X₉⋅X₉+2⋅X₉+3⋅X₁₀+X₃ {O(n^2)}
t₂₃, X₄: X₄+X₈ {O(n)}
t₂₃, X₅: 384⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+384⋅X₉⋅X₉+11⋅X₈+192⋅X₉+2⋅X₅ {O(n^3)}
t₂₃, X₈: 2⋅X₈ {O(n)}
t₂₃, X₉: 2⋅X₉ {O(n)}
t₂₃, X₁₀: 2⋅X₁₀ {O(n)}
t₂₂, X₀: X₉ {O(n)}
t₂₂, X₁: 0 {O(1)}
t₂₂, X₂: X₈ {O(n)}
t₂₂, X₃: 2⋅X₉⋅X₉+2⋅X₉+3⋅X₁₀ {O(n^2)}
t₂₂, X₄: X₈ {O(n)}
t₂₂, X₅: 384⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+384⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₂₂, X₈: X₈ {O(n)}
t₂₂, X₉: X₉ {O(n)}
t₂₂, X₁₀: X₁₀ {O(n)}
t₆, X₀: X₉ {O(n)}
t₆, X₁: X₁₀ {O(n)}
t₆, X₂: 2⋅X₈ {O(n)}
t₆, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₆, X₄: X₈ {O(n)}
t₆, X₅: 384⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+384⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₈, X₀: X₉ {O(n)}
t₈, X₁: X₁₀ {O(n)}
t₈, X₂: 2⋅X₈ {O(n)}
t₈, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₈, X₄: X₈ {O(n)}
t₈, X₅: 384⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+384⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₈, X₈: X₈ {O(n)}
t₈, X₉: X₉ {O(n)}
t₈, X₁₀: X₁₀ {O(n)}
t₁₂, X₀: X₉ {O(n)}
t₁₂, X₁: X₁₀ {O(n)}
t₁₂, X₂: 2⋅X₈ {O(n)}
t₁₂, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₁₂, X₄: 2⋅X₈ {O(n)}
t₁₂, X₅: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₉ {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₃, X₀: X₉ {O(n)}
t₁₃, X₁: X₁₀ {O(n)}
t₁₃, X₂: 2⋅X₈ {O(n)}
t₁₃, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₁₃, X₄: 4⋅X₈ {O(n)}
t₁₃, X₅: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+5⋅X₈+64⋅X₉ {O(n^3)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₉ {O(n)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₂₁, X₀: X₉ {O(n)}
t₂₁, X₁: X₁₀ {O(n)}
t₂₁, X₂: 2⋅X₈ {O(n)}
t₂₁, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₂₁, X₄: 0 {O(1)}
t₂₁, X₅: 384⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+384⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₂₁, X₈: X₈ {O(n)}
t₂₁, X₉: X₉ {O(n)}
t₂₁, X₁₀: X₁₀ {O(n)}
t₁₇, X₀: X₉ {O(n)}
t₁₇, X₁: X₁₀ {O(n)}
t₁₇, X₂: 2⋅X₈ {O(n)}
t₁₇, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₁₇, X₄: 2⋅X₈ {O(n)}
t₁₇, X₅: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₁₇, X₈: X₈ {O(n)}
t₁₇, X₉: X₉ {O(n)}
t₁₇, X₁₀: X₁₀ {O(n)}
t₁₈, X₀: X₉ {O(n)}
t₁₈, X₁: X₁₀ {O(n)}
t₁₈, X₂: 2⋅X₈ {O(n)}
t₁₈, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₁₈, X₄: 2⋅X₈ {O(n)}
t₁₈, X₅: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₉ {O(n)}
t₁₈, X₁₀: X₁₀ {O(n)}
t₁₉, X₀: X₉ {O(n)}
t₁₉, X₁: X₁₀ {O(n)}
t₁₉, X₂: 2⋅X₈ {O(n)}
t₁₉, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₁₉, X₄: 2⋅X₈ {O(n)}
t₁₉, X₅: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₁₉, X₇: 0 {O(1)}
t₁₉, X₈: X₈ {O(n)}
t₁₉, X₉: X₉ {O(n)}
t₁₉, X₁₀: X₁₀ {O(n)}
t₁₄, X₀: X₉ {O(n)}
t₁₄, X₁: X₁₀ {O(n)}
t₁₄, X₂: 2⋅X₈ {O(n)}
t₁₄, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₁₄, X₄: 2⋅X₈ {O(n)}
t₁₄, X₅: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₆, X₀: X₉ {O(n)}
t₁₆, X₁: X₁₀ {O(n)}
t₁₆, X₂: 2⋅X₈ {O(n)}
t₁₆, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₁₆, X₄: 2⋅X₈ {O(n)}
t₁₆, X₅: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₉ {O(n)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₂₀, X₀: X₉ {O(n)}
t₂₀, X₁: X₁₀ {O(n)}
t₂₀, X₂: 2⋅X₈ {O(n)}
t₂₀, X₃: 2⋅X₉⋅X₉+2⋅X₁₀+2⋅X₉ {O(n^2)}
t₂₀, X₄: 2⋅X₈ {O(n)}
t₂₀, X₅: 128⋅X₉⋅X₉⋅X₉+128⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₂₀, X₇: 0 {O(1)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₉ {O(n)}
t₂₀, X₁₀: X₁₀ {O(n)}