Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₁₃: l2(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁₁: l2(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 0
t₁₂: l2(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₁
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 0
t₃: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₂
t₁: l3(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂ < X₃
t₇: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₂ ∧ X₂ ≤ X₀
t₅: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₀ < X₂
t₆: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₂ < X₀
t₁₆: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₈: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₁₀: l7(X₀, X₁, X₂, X₃, X₄) → l2(X₀, nondef.0, X₂, X₃, X₄)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₃
t₁₅: l8(X₀, X₁, X₂, X₃, X₄) → l4(0, X₁, X₂, X₃, X₄) :|: X₃ < X₀
t₄: l9(X₀, X₁, X₂, X₃, X₄) → l4(X₂+1, X₁, X₂, X₃, X₄)

Preprocessing

Eliminate variables {X₄} that do not contribute to the problem

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ for location l2

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ for location l6

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ for location l7

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ for location l8

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ for location l4

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ for location l9

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: nondef.0
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₃₅: l0(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₃₈: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂
t₃₆: l2(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₁ < 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂
t₃₇: l2(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 < X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂
t₄₀: l3(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₂ < 0
t₄₁: l3(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂
t₃₉: l3(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ X₂ < X₃
t₄₄: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂
t₄₂: l4(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₀ < X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂
t₄₃: l4(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₂ < X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂
t₄₅: l5(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₄₆: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂
t₄₇: l7(X₀, X₁, X₂, X₃) → l2(X₀, nondef.0, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂
t₄₈: l8(X₀, X₁, X₂, X₃) → l4(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂
t₄₉: l8(X₀, X₁, X₂, X₃) → l4(0, X₁, X₂, X₃) :|: X₃ < X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂
t₅₀: l9(X₀, X₁, X₂, X₃) → l4(X₂+1, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂

Analysing control-flow refined program

Cut unsatisfiable transition t₄₄: l4→l5

Cut unsatisfiable transition t₁₃₈: n_l4___11→n_l6___9

Cut unsatisfiable transition t₁₈₂: n_l4___23→l5

Cut unreachable locations [n_l2___3; n_l6___9; n_l7___4; n_l8___1; n_l8___2] from the program graph

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 2 ≤ X₀ for location n_l8___19

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location n_l2___20

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location n_l2___7

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l2___14

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l4___17

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l7___15

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l8___13

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location n_l4___23

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l6___16

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location n_l6___10

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___5

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l8___6

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ for location n_l6___28

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l8___12

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location n_l6___22

Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location n_l7___8

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ for location n_l7___27

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l8___18

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l8___25

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location n_l7___21

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ for location n_l2___26

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ for location l9

Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___24

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location n_l4___11

MPRF for transition t₁₂₉: n_l2___20(X₀, X₁, X₂, X₃) → n_l8___18(X₀, X₁, X₂, X₃) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 < X₁ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₂+2⋅X₃+10 {O(n)}

MPRF:

n_l6___22 [X₃+3-X₀ ]
n_l7___21 [X₃+3-X₀ ]
n_l2___20 [X₃+3-X₀ ]
n_l8___18 [X₃+2-X₀ ]
n_l8___19 [X₃+2-X₀ ]
n_l4___23 [X₃+3-X₀ ]

MPRF for transition t₁₃₀: n_l2___20(X₀, X₁, X₂, X₃) → n_l8___19(X₀, X₁, X₂, X₃) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ < 0 ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₂+2⋅X₃+8 {O(n)}

MPRF:

n_l6___22 [X₃+2-X₀ ]
n_l7___21 [X₃+2-X₀ ]
n_l2___20 [X₃+2-X₀ ]
n_l8___18 [X₃+1-X₀ ]
n_l8___19 [X₃+1-X₀ ]
n_l4___23 [X₃+2-X₀ ]

MPRF for transition t₁₄₀: n_l4___23(X₀, X₁, X₂, X₃) → n_l6___22(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ < X₀ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₂+2⋅X₃+8 {O(n)}

MPRF:

n_l6___22 [X₃+1-X₀ ]
n_l7___21 [X₃+1-X₀ ]
n_l2___20 [X₃+1-X₀ ]
n_l8___18 [X₃+1-X₀ ]
n_l8___19 [X₃+1-X₀ ]
n_l4___23 [X₃+2-X₀ ]

MPRF for transition t₁₄₄: n_l6___22(X₀, X₁, X₂, X₃) → n_l7___21(X₀, X₁, X₂, X₃) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₂+4⋅X₃+6 {O(n)}

MPRF:

n_l6___22 [2⋅X₃+1-X₀ ]
n_l7___21 [2⋅X₃-X₀ ]
n_l2___20 [2⋅X₃-X₀ ]
n_l8___18 [2⋅X₃-X₀ ]
n_l8___19 [2⋅X₃-X₀ ]
n_l4___23 [2⋅X₃+1-X₀ ]

MPRF for transition t₁₄₈: n_l7___21(X₀, X₁, X₂, X₃) → n_l2___20(X₀, NoDet0, Arg2_P, Arg3_P) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ 1+Arg3_P ∧ 1+Arg2_P ≤ Arg3_P ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₂+2⋅X₃+8 {O(n)}

MPRF:

n_l6___22 [X₃+2-X₀ ]
n_l7___21 [X₃+2-X₀ ]
n_l2___20 [X₃+1-X₀ ]
n_l8___18 [X₃+1-X₀ ]
n_l8___19 [X₃+1-X₀ ]
n_l4___23 [X₃+2-X₀ ]

MPRF for transition t₁₅₆: n_l8___18(X₀, X₁, X₂, X₃) → n_l4___23(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 < X₁ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₂+4⋅X₃+4 {O(n)}

MPRF:

n_l6___22 [2⋅X₃-X₀ ]
n_l7___21 [2⋅X₃-X₀ ]
n_l2___20 [2⋅X₃-X₀ ]
n_l8___18 [2⋅X₃-X₀ ]
n_l8___19 [2⋅X₃-X₀ ]
n_l4___23 [2⋅X₃-X₀ ]

MPRF for transition t₁₅₈: n_l8___19(X₀, X₁, X₂, X₃) → n_l4___23(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₂+2⋅X₃+6 {O(n)}

MPRF:

n_l6___22 [X₃+1-X₀ ]
n_l7___21 [X₃+1-X₀ ]
n_l2___20 [X₃+1-X₀ ]
n_l8___18 [X₃-X₀ ]
n_l8___19 [X₃+1-X₀ ]
n_l4___23 [X₃+1-X₀ ]

MPRF for transition t₁₃₅: n_l2___7(X₀, X₁, X₂, X₃) → n_l8___5(X₀, X₁, X₂, X₃) :|: X₀ < X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 < X₁ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₃+2 {O(n)}

MPRF:

n_l6___10 [X₃-X₀ ]
n_l7___8 [X₃-X₀ ]
n_l2___7 [X₃-X₀ ]
n_l8___5 [X₃-X₀-1 ]
n_l8___6 [X₃-X₀ ]
n_l4___11 [X₃-X₀ ]

MPRF for transition t₁₃₆: n_l2___7(X₀, X₁, X₂, X₃) → n_l8___6(X₀, X₁, X₂, X₃) :|: X₀ < X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ < 0 ∧ X₀ ≤ 1+X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₂+4 {O(n)}

MPRF:

n_l6___10 [X₂+1-X₀ ]
n_l7___8 [X₂+1-X₀ ]
n_l2___7 [X₂+1-X₀ ]
n_l8___5 [X₂+1-X₀ ]
n_l8___6 [X₂-X₀ ]
n_l4___11 [X₂+1-X₀ ]

MPRF for transition t₁₃₇: n_l4___11(X₀, X₁, X₂, X₃) → n_l6___10(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ < X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₂+4 {O(n)}

MPRF:

n_l6___10 [X₂-X₀ ]
n_l7___8 [X₂-X₀ ]
n_l2___7 [X₂-X₀ ]
n_l8___5 [X₂-X₀ ]
n_l8___6 [X₂-X₀ ]
n_l4___11 [X₂+1-X₀ ]

MPRF for transition t₁₄₂: n_l6___10(X₀, X₁, X₂, X₃) → n_l7___8(X₀, X₁, X₂, X₃) :|: X₀ < X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₂+4 {O(n)}

MPRF:

n_l6___10 [X₂+1-X₀ ]
n_l7___8 [X₂-X₀ ]
n_l2___7 [X₂-X₀ ]
n_l8___5 [X₂-X₀ ]
n_l8___6 [X₂-X₀ ]
n_l4___11 [X₂+1-X₀ ]

MPRF for transition t₁₅₁: n_l7___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, NoDet0, Arg2_P, Arg3_P) :|: X₀ < X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ 1+Arg3_P ∧ 1+Arg2_P ≤ Arg3_P ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₃+4 {O(n)}

MPRF:

n_l6___10 [X₃+1-X₀ ]
n_l7___8 [X₃+1-X₀ ]
n_l2___7 [X₃-X₀ ]
n_l8___5 [X₃-X₀ ]
n_l8___6 [X₃-X₀ ]
n_l4___11 [X₃+1-X₀ ]

MPRF for transition t₁₆₂: n_l8___5(X₀, X₁, X₂, X₃) → n_l4___11(X₀+1, X₁, X₂, X₃) :|: X₀ < X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 < X₁ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₂+2 {O(n)}

MPRF:

n_l6___10 [X₂-X₀ ]
n_l7___8 [X₂-X₀ ]
n_l2___7 [X₂-X₀ ]
n_l8___5 [X₂-X₀ ]
n_l8___6 [X₂-X₀ ]
n_l4___11 [X₂-X₀ ]

MPRF for transition t₁₆₃: n_l8___6(X₀, X₁, X₂, X₃) → n_l4___11(X₀+1, X₁, X₂, X₃) :|: X₀ < X₂ ∧ X₁ < 0 ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

16⋅X₃+2 {O(n)}

MPRF:

n_l6___10 [2⋅X₃-X₀ ]
n_l7___8 [2⋅X₃-X₀ ]
n_l2___7 [2⋅X₃-X₀ ]
n_l8___5 [2⋅X₃-X₀ ]
n_l8___6 [2⋅X₃-X₀ ]
n_l4___11 [2⋅X₃-X₀ ]

CFR: Improvement to new bound with the following program:

new bound:

46⋅X₂+50⋅X₃+72 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: Arg2_P, Arg3_P, NoDet0
Locations: l0, l1, l3, l4, l5, l9, n_l2___14, n_l2___20, n_l2___26, n_l2___7, n_l4___11, n_l4___17, n_l4___23, n_l6___10, n_l6___16, n_l6___22, n_l6___28, n_l7___15, n_l7___21, n_l7___27, n_l7___8, n_l8___12, n_l8___13, n_l8___18, n_l8___19, n_l8___24, n_l8___25, n_l8___5, n_l8___6
Transitions:
t₃₅: l0(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₄₀: l3(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₂ < 0
t₄₁: l3(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂
t₃₉: l3(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ X₂ < X₃
t₁₄₁: l4(X₀, X₁, X₂, X₃) → n_l6___28(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₂ < X₀ ∧ X₀ ≤ 1+X₃ ∧ X₀ ≤ 1+X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀
t₄₅: l5(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₅₀: l9(X₀, X₁, X₂, X₃) → l4(X₂+1, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁₈₃: n_l2___14(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₂₇: n_l2___14(X₀, X₁, X₂, X₃) → n_l8___12(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 < X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 < X₁ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₂₈: n_l2___14(X₀, X₁, X₂, X₃) → n_l8___13(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 < X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ < 0 ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₈₄: n_l2___20(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₂₉: n_l2___20(X₀, X₁, X₂, X₃) → n_l8___18(X₀, X₁, X₂, X₃) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 < X₁ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₃₀: n_l2___20(X₀, X₁, X₂, X₃) → n_l8___19(X₀, X₁, X₂, X₃) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ < 0 ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₈₅: n_l2___26(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀
t₁₃₁: n_l2___26(X₀, X₁, X₂, X₃) → n_l8___24(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 < X₁ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀
t₁₃₂: n_l2___26(X₀, X₁, X₂, X₃) → n_l8___25(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ < 0 ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀
t₁₈₇: n_l2___7(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₃₅: n_l2___7(X₀, X₁, X₂, X₃) → n_l8___5(X₀, X₁, X₂, X₃) :|: X₀ < X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 < X₁ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₃₆: n_l2___7(X₀, X₁, X₂, X₃) → n_l8___6(X₀, X₁, X₂, X₃) :|: X₀ < X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ < 0 ∧ X₀ ≤ 1+X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₈₀: n_l4___11(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₃₇: n_l4___11(X₀, X₁, X₂, X₃) → n_l6___10(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ < X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₈₁: n_l4___17(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₃₉: n_l4___17(X₀, X₁, X₂, X₃) → n_l6___16(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ X₀ < X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₄₀: n_l4___23(X₀, X₁, X₂, X₃) → n_l6___22(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ < X₀ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ < X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₄₂: n_l6___10(X₀, X₁, X₂, X₃) → n_l7___8(X₀, X₁, X₂, X₃) :|: X₀ < X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₄₃: n_l6___16(X₀, X₁, X₂, X₃) → n_l7___15(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 < X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₄₄: n_l6___22(X₀, X₁, X₂, X₃) → n_l7___21(X₀, X₁, X₂, X₃) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₄₅: n_l6___28(X₀, X₁, X₂, X₃) → n_l7___27(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀
t₁₄₇: n_l7___15(X₀, X₁, X₂, X₃) → n_l2___14(X₀, NoDet0, Arg2_P, Arg3_P) :|: 1+X₂ ≤ X₃ ∧ 0 < X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ 1+Arg3_P ∧ 1+Arg2_P ≤ Arg3_P ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₄₈: n_l7___21(X₀, X₁, X₂, X₃) → n_l2___20(X₀, NoDet0, Arg2_P, Arg3_P) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ 1+Arg3_P ∧ 1+Arg2_P ≤ Arg3_P ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₄₉: n_l7___27(X₀, X₁, X₂, X₃) → n_l2___26(X₀, NoDet0, Arg2_P, Arg3_P) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+Arg3_P ∧ 1+Arg2_P ≤ Arg3_P ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀
t₁₅₁: n_l7___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, NoDet0, Arg2_P, Arg3_P) :|: X₀ < X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ 1+Arg3_P ∧ 1+Arg2_P ≤ Arg3_P ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₅₃: n_l8___12(X₀, X₁, X₂, X₃) → n_l4___11(X₀+1, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 < X₂ ∧ 0 < X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₅₄: n_l8___13(X₀, X₁, X₂, X₃) → n_l4___11(X₀+1, X₁, X₂, X₃) :|: X₁ < 0 ∧ 1+X₂ ≤ X₃ ∧ 0 < X₂ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₅₅: n_l8___18(X₀, X₁, X₂, X₃) → n_l4___17(0, X₁, X₂, X₃) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 < X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ X₃ < X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₅₆: n_l8___18(X₀, X₁, X₂, X₃) → n_l4___23(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 < X₁ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₅₇: n_l8___19(X₀, X₁, X₂, X₃) → n_l4___17(0, X₁, X₂, X₃) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ X₃ < X₀ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 2 ≤ X₀
t₁₅₈: n_l8___19(X₀, X₁, X₂, X₃) → n_l4___23(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ < 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 2 ≤ X₀
t₁₆₀: n_l8___24(X₀, X₁, X₂, X₃) → n_l4___23(X₀+1, X₁, X₂, X₃) :|: 1+X₂ ≤ X₃ ∧ 0 < X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₆₁: n_l8___25(X₀, X₁, X₂, X₃) → n_l4___23(X₀+1, X₁, X₂, X₃) :|: X₁ < 0 ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₆₂: n_l8___5(X₀, X₁, X₂, X₃) → n_l4___11(X₀+1, X₁, X₂, X₃) :|: X₀ < X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 < X₁ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₆₃: n_l8___6(X₀, X₁, X₂, X₃) → n_l4___11(X₀+1, X₁, X₂, X₃) :|: X₀ < X₂ ∧ X₁ < 0 ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:46⋅X₂+50⋅X₃+100 {O(n)}
t₃₅: 1 {O(1)}
t₃₉: 1 {O(1)}
t₄₀: 1 {O(1)}
t₄₁: 1 {O(1)}
t₁₄₁: 1 {O(1)}
t₄₅: 1 {O(1)}
t₅₀: 1 {O(1)}
t₁₂₇: 1 {O(1)}
t₁₂₈: 1 {O(1)}
t₁₈₃: 1 {O(1)}
t₁₂₉: 2⋅X₂+2⋅X₃+10 {O(n)}
t₁₃₀: 2⋅X₂+2⋅X₃+8 {O(n)}
t₁₈₄: 1 {O(1)}
t₁₃₁: 1 {O(1)}
t₁₃₂: 1 {O(1)}
t₁₈₅: 1 {O(1)}
t₁₃₅: 8⋅X₃+2 {O(n)}
t₁₃₆: 8⋅X₂+4 {O(n)}
t₁₈₇: 1 {O(1)}
t₁₃₇: 8⋅X₂+4 {O(n)}
t₁₈₀: 1 {O(1)}
t₁₃₉: 1 {O(1)}
t₁₈₁: 1 {O(1)}
t₁₄₀: 2⋅X₂+2⋅X₃+8 {O(n)}
t₁₄₂: 8⋅X₂+4 {O(n)}
t₁₄₃: 1 {O(1)}
t₁₄₄: 2⋅X₂+4⋅X₃+6 {O(n)}
t₁₄₅: 1 {O(1)}
t₁₄₇: 1 {O(1)}
t₁₄₈: 2⋅X₂+2⋅X₃+8 {O(n)}
t₁₄₉: 1 {O(1)}
t₁₅₁: 8⋅X₃+4 {O(n)}
t₁₅₃: 1 {O(1)}
t₁₅₄: 1 {O(1)}
t₁₅₅: 1 {O(1)}
t₁₅₆: 2⋅X₂+4⋅X₃+4 {O(n)}
t₁₅₇: 1 {O(1)}
t₁₅₈: 2⋅X₂+2⋅X₃+6 {O(n)}
t₁₆₀: 1 {O(1)}
t₁₆₁: 1 {O(1)}
t₁₆₂: 8⋅X₂+2 {O(n)}
t₁₆₃: 16⋅X₃+2 {O(n)}

Costbounds

Overall costbound: 46⋅X₂+50⋅X₃+100 {O(n)}
t₃₅: 1 {O(1)}
t₃₉: 1 {O(1)}
t₄₀: 1 {O(1)}
t₄₁: 1 {O(1)}
t₁₄₁: 1 {O(1)}
t₄₅: 1 {O(1)}
t₅₀: 1 {O(1)}
t₁₂₇: 1 {O(1)}
t₁₂₈: 1 {O(1)}
t₁₈₃: 1 {O(1)}
t₁₂₉: 2⋅X₂+2⋅X₃+10 {O(n)}
t₁₃₀: 2⋅X₂+2⋅X₃+8 {O(n)}
t₁₈₄: 1 {O(1)}
t₁₃₁: 1 {O(1)}
t₁₃₂: 1 {O(1)}
t₁₈₅: 1 {O(1)}
t₁₃₅: 8⋅X₃+2 {O(n)}
t₁₃₆: 8⋅X₂+4 {O(n)}
t₁₈₇: 1 {O(1)}
t₁₃₇: 8⋅X₂+4 {O(n)}
t₁₈₀: 1 {O(1)}
t₁₃₉: 1 {O(1)}
t₁₈₁: 1 {O(1)}
t₁₄₀: 2⋅X₂+2⋅X₃+8 {O(n)}
t₁₄₂: 8⋅X₂+4 {O(n)}
t₁₄₃: 1 {O(1)}
t₁₄₄: 2⋅X₂+4⋅X₃+6 {O(n)}
t₁₄₅: 1 {O(1)}
t₁₄₇: 1 {O(1)}
t₁₄₈: 2⋅X₂+2⋅X₃+8 {O(n)}
t₁₄₉: 1 {O(1)}
t₁₅₁: 8⋅X₃+4 {O(n)}
t₁₅₃: 1 {O(1)}
t₁₅₄: 1 {O(1)}
t₁₅₅: 1 {O(1)}
t₁₅₆: 2⋅X₂+4⋅X₃+4 {O(n)}
t₁₅₇: 1 {O(1)}
t₁₅₈: 2⋅X₂+2⋅X₃+6 {O(n)}
t₁₆₀: 1 {O(1)}
t₁₆₁: 1 {O(1)}
t₁₆₂: 8⋅X₂+2 {O(n)}
t₁₆₃: 16⋅X₃+2 {O(n)}

Sizebounds

t₃₅, X₀: X₀ {O(n)}
t₃₅, X₁: X₁ {O(n)}
t₃₅, X₂: X₂ {O(n)}
t₃₅, X₃: X₃ {O(n)}
t₃₉, X₀: X₀ {O(n)}
t₃₉, X₁: X₁ {O(n)}
t₃₉, X₂: X₂ {O(n)}
t₃₉, X₃: X₃ {O(n)}
t₄₀, X₀: X₀ {O(n)}
t₄₀, X₁: X₁ {O(n)}
t₄₀, X₂: X₂ {O(n)}
t₄₀, X₃: X₃ {O(n)}
t₄₁, X₀: X₀ {O(n)}
t₄₁, X₁: X₁ {O(n)}
t₄₁, X₂: X₂ {O(n)}
t₄₁, X₃: X₃ {O(n)}
t₁₄₁, X₀: X₂+1 {O(n)}
t₁₄₁, X₁: X₁ {O(n)}
t₁₄₁, X₂: X₂ {O(n)}
t₁₄₁, X₃: X₃ {O(n)}
t₄₅, X₀: 2⋅X₀+31⋅X₂+54⋅X₃+35 {O(n)}
t₄₅, X₂: 5⋅X₂ {O(n)}
t₄₅, X₃: 5⋅X₃ {O(n)}
t₅₀, X₀: X₂+1 {O(n)}
t₅₀, X₁: X₁ {O(n)}
t₅₀, X₂: X₂ {O(n)}
t₅₀, X₃: X₃ {O(n)}
t₁₂₇, X₀: 0 {O(1)}
t₁₂₇, X₂: 4⋅X₂ {O(n)}
t₁₂₇, X₃: 4⋅X₃ {O(n)}
t₁₂₈, X₀: 0 {O(1)}
t₁₂₈, X₂: 4⋅X₂ {O(n)}
t₁₂₈, X₃: 4⋅X₃ {O(n)}
t₁₈₃, X₀: 0 {O(1)}
t₁₈₃, X₁: 0 {O(1)}
t₁₈₃, X₂: 4⋅X₂ {O(n)}
t₁₈₃, X₃: 4⋅X₃ {O(n)}
t₁₂₉, X₀: 6⋅X₂+6⋅X₃+14 {O(n)}
t₁₂₉, X₂: 2⋅X₂ {O(n)}
t₁₂₉, X₃: 2⋅X₃ {O(n)}
t₁₃₀, X₀: 6⋅X₂+6⋅X₃+14 {O(n)}
t₁₃₀, X₂: 2⋅X₂ {O(n)}
t₁₃₀, X₃: 2⋅X₃ {O(n)}
t₁₈₄, X₀: 6⋅X₂+6⋅X₃+14 {O(n)}
t₁₈₄, X₁: 0 {O(1)}
t₁₈₄, X₂: 2⋅X₂ {O(n)}
t₁₈₄, X₃: 2⋅X₃ {O(n)}
t₁₃₁, X₀: X₂+1 {O(n)}
t₁₃₁, X₂: X₂ {O(n)}
t₁₃₁, X₃: X₃ {O(n)}
t₁₃₂, X₀: X₂+1 {O(n)}
t₁₃₂, X₂: X₂ {O(n)}
t₁₃₂, X₃: X₃ {O(n)}
t₁₈₅, X₀: X₂+1 {O(n)}
t₁₈₅, X₁: 0 {O(1)}
t₁₈₅, X₂: X₂ {O(n)}
t₁₈₅, X₃: X₃ {O(n)}
t₁₃₅, X₀: 16⋅X₃+8⋅X₂+6 {O(n)}
t₁₃₅, X₂: 8⋅X₂ {O(n)}
t₁₃₅, X₃: 8⋅X₃ {O(n)}
t₁₃₆, X₀: 16⋅X₃+8⋅X₂+6 {O(n)}
t₁₃₆, X₂: 8⋅X₂ {O(n)}
t₁₃₆, X₃: 8⋅X₃ {O(n)}
t₁₈₇, X₀: 16⋅X₃+8⋅X₂+6 {O(n)}
t₁₈₇, X₁: 0 {O(1)}
t₁₈₇, X₂: 8⋅X₂ {O(n)}
t₁₈₇, X₃: 8⋅X₃ {O(n)}
t₁₃₇, X₀: 16⋅X₃+8⋅X₂+6 {O(n)}
t₁₃₇, X₂: 8⋅X₂ {O(n)}
t₁₃₇, X₃: 8⋅X₃ {O(n)}
t₁₈₀, X₀: 16⋅X₂+32⋅X₃+14 {O(n)}
t₁₈₀, X₂: 24⋅X₂ {O(n)}
t₁₈₀, X₃: 24⋅X₃ {O(n)}
t₁₃₉, X₀: 0 {O(1)}
t₁₃₉, X₂: 4⋅X₂ {O(n)}
t₁₃₉, X₃: 4⋅X₃ {O(n)}
t₁₈₁, X₀: 0 {O(1)}
t₁₈₁, X₂: 0 {O(1)}
t₁₈₁, X₃: 4⋅X₃ {O(n)}
t₁₄₀, X₀: 6⋅X₂+6⋅X₃+14 {O(n)}
t₁₄₀, X₂: 2⋅X₂ {O(n)}
t₁₄₀, X₃: 2⋅X₃ {O(n)}
t₁₄₂, X₀: 16⋅X₃+8⋅X₂+6 {O(n)}
t₁₄₂, X₂: 8⋅X₂ {O(n)}
t₁₄₂, X₃: 8⋅X₃ {O(n)}
t₁₄₃, X₀: 0 {O(1)}
t₁₄₃, X₂: 4⋅X₂ {O(n)}
t₁₄₃, X₃: 4⋅X₃ {O(n)}
t₁₄₄, X₀: 6⋅X₂+6⋅X₃+14 {O(n)}
t₁₄₄, X₂: 2⋅X₂ {O(n)}
t₁₄₄, X₃: 2⋅X₃ {O(n)}
t₁₄₅, X₀: X₂+1 {O(n)}
t₁₄₅, X₁: X₁ {O(n)}
t₁₄₅, X₂: X₂ {O(n)}
t₁₄₅, X₃: X₃ {O(n)}
t₁₄₇, X₀: 0 {O(1)}
t₁₄₇, X₂: 4⋅X₂ {O(n)}
t₁₄₇, X₃: 4⋅X₃ {O(n)}
t₁₄₈, X₀: 6⋅X₂+6⋅X₃+14 {O(n)}
t₁₄₈, X₂: 2⋅X₂ {O(n)}
t₁₄₈, X₃: 2⋅X₃ {O(n)}
t₁₄₉, X₀: X₂+1 {O(n)}
t₁₄₉, X₂: X₂ {O(n)}
t₁₄₉, X₃: X₃ {O(n)}
t₁₅₁, X₀: 16⋅X₃+8⋅X₂+6 {O(n)}
t₁₅₁, X₂: 8⋅X₂ {O(n)}
t₁₅₁, X₃: 8⋅X₃ {O(n)}
t₁₅₃, X₀: 1 {O(1)}
t₁₅₃, X₂: 4⋅X₂ {O(n)}
t₁₅₃, X₃: 4⋅X₃ {O(n)}
t₁₅₄, X₀: 1 {O(1)}
t₁₅₄, X₂: 4⋅X₂ {O(n)}
t₁₅₄, X₃: 4⋅X₃ {O(n)}
t₁₅₅, X₀: 0 {O(1)}
t₁₅₅, X₂: 2⋅X₂ {O(n)}
t₁₅₅, X₃: 2⋅X₃ {O(n)}
t₁₅₆, X₀: 6⋅X₂+6⋅X₃+14 {O(n)}
t₁₅₆, X₂: 2⋅X₂ {O(n)}
t₁₅₆, X₃: 2⋅X₃ {O(n)}
t₁₅₇, X₀: 0 {O(1)}
t₁₅₇, X₂: 2⋅X₂ {O(n)}
t₁₅₇, X₃: 2⋅X₃ {O(n)}
t₁₅₈, X₀: 6⋅X₂+6⋅X₃+14 {O(n)}
t₁₅₈, X₂: 2⋅X₂ {O(n)}
t₁₅₈, X₃: 2⋅X₃ {O(n)}
t₁₆₀, X₀: X₂+2 {O(n)}
t₁₆₀, X₂: X₂ {O(n)}
t₁₆₀, X₃: X₃ {O(n)}
t₁₆₁, X₀: X₂+2 {O(n)}
t₁₆₁, X₂: X₂ {O(n)}
t₁₆₁, X₃: X₃ {O(n)}
t₁₆₂, X₀: 16⋅X₃+8⋅X₂+6 {O(n)}
t₁₆₂, X₂: 8⋅X₂ {O(n)}
t₁₆₂, X₃: 8⋅X₃ {O(n)}
t₁₆₃, X₀: 16⋅X₃+8⋅X₂+6 {O(n)}
t₁₆₃, X₂: 8⋅X₂ {O(n)}
t₁₆₃, X₃: 8⋅X₃ {O(n)}