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Abstract. To (dis)prove termination of C programs, AProVE uses sym-
bolic execution to transform the program’s LLVM code into an integer
transition system (ITS). These ITSs are analyzed by our backend tools
KoAT (for termination) and LoAT (for non-termination) which we in-
tegrated into our novel framework to replace previously used external
backend tools. In this way, we benefit from the recent improvements in
the backend tools KoAT and LoAT. The transformation steps in AProVE
and the tools in the backend produce sub-proofs which are then com-
bined automatically in order to generate a complete termination proof.
If non-termination is proved, then a witness for a non-terminating path
in the original C program is returned.

1 Verification Approach and Software Architecture

AProVE (KoAT + LoAT) is a framework combining our three tools AProVE,
KoAT, and LoAT to prove or disprove termination of C programs automatically.
To this end, the C program is compiled into the intermediate representation of the
LLVM framework [26] by the Clang compiler [1]. Afterwards, the LLVM program
is processed by AProVE and transformed into a symbolic execution graph (SEG,
see [22, 24, 34] for more details). Finally, the SEG is either analyzed directly by
AProVE (see [22, 23, 34] for more details on the internal (non-)termination proofs
in AProVE) or transformed into integer transition systems (ITSs). These ITSs
are analyzed by our tools KoAT [7, 19, 27–30] (for termination) and LoAT [13–
16] (for non-termination). In case of non-termination, the proofs by AProVE and
LoAT are transformed into non-termination proofs for the original C program.

Earlier versions of AProVE that participated in SV-COMP until 2022 used
the external tool T2 [6] for proving termination of ITSs (and both T2 and LoAT
for proving non-termination). In contrast, instead of T2, our new version uses
our own ITS analyzer KoAT in the backend which allows us to benefit from the
numerous recent improvements that we developed for KoAT. A bird’s-eye view
of our approach is sketched in Fig. 1.

Termination Analysis by KoAT: In the following, we briefly describe how our
tool KoAT proves termination of ITSs which result from the transformation of
C programs. LoAT can be used to disprove termination and infer lower run-
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Fig. 1. AProVE (KoAT + LoAT) Framework for Proving and Disproving Termination

time bounds for ITSs, and its integration in order to prove non-termination
of C programs was described in [23]. In contrast, KoAT is a tool to automati-
cally prove termination and infer upper complexity bounds for ITSs based on
a modular analysis of separate program parts [7, 30]. To prove termination of
sub-programs, it uses multiphase-linear ranking functions (MΦRFs) [5, 19]. In
contrast to classical ranking functions, MΦRFs can also represent bounds on
programs with multiple “phases” of executions.

Moreover, we embedded a technique [20] to analyze termination of so-called
triangular weakly non-linear loops (twn-loops) in our tool KoAT [27, 30]. In
particular, this approach also allows us to analyze programs with non-linear
arithmetic. An example for a terminating twn-loop, which may result from a
sub-program within a larger C program, is:

while (x2−x21 > 0 ∧ x1 > 0) do (x1, x2, x3)← (4 ·x1, 9 ·x2−8 ·x33, x3) (1)

This loop does not admit a MΦRF over R (see [21]). The guard of such twn-
loops are propositional formulas over (possibly non-linear) polynomial inequa-
tions. The update is triangular, i.e., we can order the variables such that the
update of any xi does not depend on the variables x1, . . . , xi−1 with smaller
indices. So the restriction to triangular updates prohibits “cyclic dependencies”
of variables (e.g., where the new values of x1 and x2 both depend on the old
values of x1 and x2). For example, a loop whose body consists of the assign-
ment (x1, x2) ← (x1 + x22, x2 + 1) is triangular, whereas a loop with the body
(x1, x2)← (x1+x

2
2, x1+1) is not triangular. From a practical point of view, the

restriction to triangular loops seems quite natural. For example, in [14], 1511
polynomial loops were extracted from the Termination Problems Data Base
[35], the benchmark collection which is used at the annual Termination and
Complexity Competition [18], and only 26 of them were non-triangular. Further-
more, the update of a twn-loop is weakly non-linear, i.e., no variable xi has a
non-linear occurrence in its own update. So for example, a loop with the body
(x1, x2)← (x1 + x22, x2 + 1) is weakly non-linear, whereas a loop with the body
(x1, x2)← (x1 ·x2, x2+1) is not. With triangularity and weak non-linearity, one
can compute a closed form which corresponds to applying the loop’s update n
times. For example, the closed forms of (1) are x1 · 4n, (x2 − x33) · 9n + x33, and
x3 for x1, x2, and x3, respectively.
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Using these closed forms, termination can be reduced to a formula over Z [20]
(whose satisfiability is decidable for linear arithmetic and where SMT solvers of-
ten also prove (un)satisfiability in the non-linear case). The idea of the reduction
is to consider each atom of the loop guard individually, instantiate the variables
in the atoms by their closed forms, and order the summands of the resulting
expressions w.r.t. their growth rate in n. For example, for the atom x2 − x21 > 0
of (1), we obtain α1 · 16n + α2 · 9n + α3 > 0 where α1 = −x21, α2 = x2 − x33,
and α3 = x33. If the initial values of the variables satisfy α1 > 0, then the ad-
dend α1 · 16n would dominate all other addends at some point and the atom
x2 − x21 > 0 would hold for all large enough n, assuming that there are no over-
flows. (However, in our example α1 = −x21 > 0 is unsatisfiable.) Otherwise, if
α1 = −x21 = 0, then the second addend α2 · 9n is the fastest growing summand.
Applying this idea to all addends subsequently, i.e., checking if the first polyno-
mials α1, . . . , αj−1 are 0 and αj is positive, we can reduce non-termination to an
existential first-order (FO) problem. For our example, we obtain the reduction
red(x2 − x21 > 0) = α1 > 0 ∨ (α1 = 0 ∧ α2 > 0) ∨ (α1 = 0 ∧ α2 = 0 ∧ α3 > 0) for
the atom x2 − x21 > 0. Similarly, we have red(x1 > 0) = (x1 > 0) for the second
atom of the loop guard. Replacing the atoms of the guard by their reduction
results in the overall FO problem ψ = red(x2 − x21 > 0)∧ red(x1 > 0). Thus, (1)
is non-terminating over Z iff ψ is satisfiable over Z. In our example, the formula
ψ is unsatisfiable since red(x2 − x21 > 0) is only satisfiable if x1 = 0. However,
this violates red(x1 > 0). Thus, the twn-loop (1) is terminating.

KoAT’s novel approach of analyzing some sub-programs with ranking func-
tions and other sub-programs with our technique for twn-loops increases the
power of automated termination analysis substantially, in particular also for
programs containing non-linear arithmetic. Nevertheless, there still exist pro-
grams whose termination is difficult to analyze and where it would help to gain
“more information” on the values of variables in order to determine the infeasi-
bility of certain paths in the program. For example, one could transform a loop
whose body contains an if-else-instruction where either always the if-branch or
the else-branch are executed into two separate single-path loops. This transfor-
mation explicitly removes infeasible paths which contain both branches. Thus,
the idea is to transform an ITS P into a new ITS P ′ which is “easier” to analyze.
Of course, we ensure that the runtime of P ′ is at least the runtime of P. Then
it is sound to prove termination for P ′ instead of P. Such transformations can
be performed by control-flow refinement via partial evaluation [10], which we
integrated into KoAT’s approach [19, 29].

2 Discussion of Strengths and Weaknesses

An underlying design concept of AProVE (KoAT + LoAT) is its modular struc-
ture. It allows us to use different backends and techniques to analyze programs
and benefit from their individual strengths. Hence, our new framework can make
use of recent progress in software verification tools. Furthermore, both AProVE
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and our backend tools KoAT and LoAT are modular themselves (see, e.g., KoAT’s
modular analysis of sub-programs in Sect. 1).

One of AProVE’s main weaknesses was that it essentially relied on variants of
(linear) ranking functions for termination proofs. However, this problem has now
been solved by integrating our tool KoAT into AProVE. Besides ranking func-
tions, KoAT also uses a technique for termination analysis of twn-loops which al-
lows us to analyze programs with non-linear arithmetic on which the other sound
tools participating in the termination category of SV-COMP fail. For example,
the C program which just instantiates all variables non-deterministically and
consists of the loop (1) and even its following linear, simplified variant from [21]

while (x1 < x2 ∧ x1 > 0) do (x1, x2)← (3 · x1, 2 · x2)

can both not be shown terminating by Ultimate Automizer [9] and 2LS [33],
which were the two most powerful sound1 tools at the termination category of
last year’s SV-COMP. In contrast, AProVE proves their termination using the
implementation of our termination technique for twn-loops in KoAT.

Concerning the proofs of non-termination, currently AProVE (KoAT + LoAT)
uses a version of LoAT which disproves termination using the loop acceleration
technique of [15]. In [16], a new version of LoAT was developed that is based on
an acceleration driven clause learning calculus which improves LoAT’s power for
non-termination proofs substantially. We plan to integrate this new version in
our AProVE (KoAT + LoAT) framework in the future, using a new format to ease
the automated handling of LoAT’s non-termination proofs. Moreover, as KoAT
and LoAT can also analyze complexity of programs, it would be interesting to
extend AProVE (KoAT + LoAT) to complexity analysis as well.

3 Setup and Configuration

AProVE (KoAT + LoAT) is developed in the “Programming Languages and Veri-
fication” group at RWTH Aachen University. A list of present and past contrib-
utors can be accessed on the website [2]. In SV-COMP 2025, AProVE (KoAT +
LoAT) only participates in the category “Termination”. All files from the submit-
ted archive [31] must be extracted into one folder. AProVE is implemented in Java
and needs a Java 17 Runtime Environment. To analyze the resulting ITSs in the
backend, the tools KoAT [19, 27–30] and LoAT [13–16] are used. Furthermore,
it applies the satisfiability checkers Z3 [8], Yices [11], and MiniSAT [12], see [17].
Our archive contains all these tools. Using the wrapper script aprove.py in
the BenchExec repository, AProVE (KoAT + LoAT) can be invoked, e.g., on the
benchmarks defined in aprove.xml in the SV-COMP repository. The most re-
cent version of our tool for SV-COMP 2025 can be downloaded at [31]. Moreover,
C programs for all examples from the paper are available at [31] and [32].

1 The tool PROTON [25] (which won the termination category last year) outputs
termination for both these loops, but also for the non-terminating variants of these
loops where the guard x1 > 0 is missing. In contrast, both Ultimate Automizer and
2LS prove non-termination of these variants.
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Data Availability Statement. Our tools are available at their respective websites

(for AProVE [2], KoAT [3], and LoAT [4]). The version of AProVE (KoAT + LoAT) used

for SV-COMP 2025 is archived at Zenodo [31].

References

[1] Clang: https://clang.llvm.org.
[2] AProVE Website: https://aprove.informatik.rwth-aachen.de/.
[3] KoAT Website: https://koat.verify.rwth-aachen.de/.
[4] LoAT Website: https://loat-developers.github.io/LoAT/.
[5] A. M. Ben-Amram and S. Genaim. “On Multiphase-Linear Ranking Func-

tions”. In: Proc. CAV ’17. LNCS 10427. 2017, pp. 601–620. doi: 10.1007/
978-3-319-63390-9 32.

[6] M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman. “T2:
Temporal Property Verification”. In: Proc. TACAS ’16. LNCS 9636. 2016,
pp. 387–393. doi: 10.1007/978-3-662-49674-9 22.

[7] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. “Analyzing
Runtime and Size Complexity of Integer Programs”. In: ACM Transactions
on Programming Languages and Systems 38 (2016), pp. 1–50. doi: 10 .
1145/2866575.

[8] L. de Moura and N. Bjørner. “Z3: An Efficient SMT Solver”. In: Proc.
TACAS. LNCS 4963. 2008, pp. 337–340. doi: 10.1007/978-3-540-78800-
3 24.

[9] D. Dietsch, M. Bentele, M. Ebbinghaus, M. Heizmann, D. Klumpp, A.
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