
AProVE (KoAT + LoAT)
(Competition Contribution)

Nils Lommen⋆ and Jürgen Giesl

RWTH Aachen University, Aachen, Germany
{lommen,giesl}@cs.rwth-aachen.de

Abstract. To (dis)prove termination of C programs, AProVE uses sym-
bolic execution to transform the program’s LLVM code into an integer
transition system (ITS). These ITSs are analyzed by our backend tools
KoAT (for termination) and LoAT (for non-termination) which we in-
tegrated into our novel framework to replace previously used external
backend tools. In this way, we benefit from the recent improvements in
the backend tools KoAT and LoAT. The transformation steps in AProVE
and the tools in the backend produce sub-proofs which are then com-
bined automatically in order to generate a complete termination proof.
If non-termination is proved, then a witness for a non-terminating path
in the original C program is returned.

1 Verification Approach and Software Architecture

AProVE (KoAT + LoAT) is a framework combining our three tools AProVE,
KoAT, and LoAT to prove or disprove termination of C programs automatically.
To this end, the C program is compiled into the intermediate representation of the
LLVM framework [26] by the Clang compiler [1]. Afterwards, the LLVM program
is processed by AProVE and transformed into a symbolic execution graph (SEG,
see [22, 24, 34] for more details). Finally, the SEG is either analyzed directly by
AProVE (see [22, 23, 34] for more details on the internal (non-)termination proofs
in AProVE) or transformed into integer transition systems (ITSs). These ITSs
are analyzed by our tools KoAT [7, 19, 27–30] (for termination) and LoAT [13–
16] (for non-termination). In case of non-termination, the proofs by AProVE and
LoAT are transformed into non-termination proofs for the original C program.

Earlier versions of AProVE that participated in SV-COMP until 2022 used
the external tool T2 [6] for proving termination of ITSs (and both T2 and LoAT
for proving non-termination). In contrast, instead of T2, our new version uses
our own ITS analyzer KoAT in the backend which allows us to benefit from the
numerous recent improvements that we developed for KoAT. A bird’s-eye view
of our approach is sketched in Fig. 1.

Termination Analysis by KoAT: In the following, we briefly describe how our
tool KoAT proves termination of ITSs which result from the transformation of
C programs. LoAT can be used to disprove termination and infer lower run-

⋆ Jury member representing AProVE (KoAT + LoAT) at SV-COMP 2025

http://orcid.org/0000-0003-3187-9217
http://orcid.org/0000-0003-0283-8520


2 N. Lommen and J. Giesl

C
Program

LLVM
Program

Symbolic
Execution
Graph

ITS

(Non-)
Termination
by AProVE

YES

Path
in C

Program

Path
in LLVM
Program

Concrete
Execution

Path in SEG

NO + Proof

KoAT

LoAT

Fig. 1. AProVE (KoAT + LoAT) Framework for Proving and Disproving Termination

time bounds for ITSs, and its integration in order to prove non-termination
of C programs was described in [23]. In contrast, KoAT is a tool to automati-
cally prove termination and infer upper complexity bounds for ITSs based on
a modular analysis of separate program parts [7, 30]. To prove termination of
sub-programs, it uses multiphase-linear ranking functions (MΦRFs) [5, 19]. In
contrast to classical ranking functions, MΦRFs can also represent bounds on
programs with multiple “phases” of executions.

Moreover, we embedded a technique [20] to analyze termination of so-called
triangular weakly non-linear loops (twn-loops) in our tool KoAT [27, 30]. In
particular, this approach also allows us to analyze programs with non-linear
arithmetic. An example for a terminating twn-loop, which may result from a
sub-program within a larger C program, is:

while (x2−x21 > 0 ∧ x1 > 0) do (x1, x2, x3)← (4 ·x1, 9 ·x2−8 ·x33, x3) (1)

This loop does not admit a MΦRF over R (see [21]). The guard of such twn-
loops are propositional formulas over (possibly non-linear) polynomial inequa-
tions. The update is triangular, i.e., we can order the variables such that the
update of any xi does not depend on the variables x1, . . . , xi−1 with smaller
indices. So the restriction to triangular updates prohibits “cyclic dependencies”
of variables (e.g., where the new values of x1 and x2 both depend on the old
values of x1 and x2). For example, a loop whose body consists of the assign-
ment (x1, x2) ← (x1 + x22, x2 + 1) is triangular, whereas a loop with the body
(x1, x2)← (x1+x

2
2, x1+1) is not triangular. From a practical point of view, the

restriction to triangular loops seems quite natural. For example, in [14], 1511
polynomial loops were extracted from the Termination Problems Data Base
[35], the benchmark collection which is used at the annual Termination and
Complexity Competition [18], and only 26 of them were non-triangular. Further-
more, the update of a twn-loop is weakly non-linear, i.e., no variable xi has a
non-linear occurrence in its own update. So for example, a loop with the body
(x1, x2)← (x1 + x22, x2 + 1) is weakly non-linear, whereas a loop with the body
(x1, x2)← (x1 ·x2, x2+1) is not. With triangularity and weak non-linearity, one
can compute a closed form which corresponds to applying the loop’s update n
times. For example, the closed forms of (1) are x1 · 4n, (x2 − x33) · 9n + x33, and
x3 for x1, x2, and x3, respectively.



AProVE (KoAT + LoAT) 3

Using these closed forms, termination can be reduced to a formula over Z [20]
(whose satisfiability is decidable for linear arithmetic and where SMT solvers of-
ten also prove (un)satisfiability in the non-linear case). The idea of the reduction
is to consider each atom of the loop guard individually, instantiate the variables
in the atoms by their closed forms, and order the summands of the resulting
expressions w.r.t. their growth rate in n. For example, for the atom x2 − x21 > 0
of (1), we obtain α1 · 16n + α2 · 9n + α3 > 0 where α1 = −x21, α2 = x2 − x33,
and α3 = x33. If the initial values of the variables satisfy α1 > 0, then the ad-
dend α1 · 16n would dominate all other addends at some point and the atom
x2 − x21 > 0 would hold for all large enough n, assuming that there are no over-
flows. (However, in our example α1 = −x21 > 0 is unsatisfiable.) Otherwise, if
α1 = −x21 = 0, then the second addend α2 · 9n is the fastest growing summand.
Applying this idea to all addends subsequently, i.e., checking if the first polyno-
mials α1, . . . , αj−1 are 0 and αj is positive, we can reduce non-termination to an
existential first-order (FO) problem. For our example, we obtain the reduction
red(x2 − x21 > 0) = α1 > 0 ∨ (α1 = 0 ∧ α2 > 0) ∨ (α1 = 0 ∧ α2 = 0 ∧ α3 > 0) for
the atom x2 − x21 > 0. Similarly, we have red(x1 > 0) = (x1 > 0) for the second
atom of the loop guard. Replacing the atoms of the guard by their reduction
results in the overall FO problem ψ = red(x2 − x21 > 0)∧ red(x1 > 0). Thus, (1)
is non-terminating over Z iff ψ is satisfiable over Z. In our example, the formula
ψ is unsatisfiable since red(x2 − x21 > 0) is only satisfiable if x1 = 0. However,
this violates red(x1 > 0). Thus, the twn-loop (1) is terminating.

KoAT’s novel approach of analyzing some sub-programs with ranking func-
tions and other sub-programs with our technique for twn-loops increases the
power of automated termination analysis substantially, in particular also for
programs containing non-linear arithmetic. Nevertheless, there still exist pro-
grams whose termination is difficult to analyze and where it would help to gain
“more information” on the values of variables in order to determine the infeasi-
bility of certain paths in the program. For example, one could transform a loop
whose body contains an if-else-instruction where either always the if-branch or
the else-branch are executed into two separate single-path loops. This transfor-
mation explicitly removes infeasible paths which contain both branches. Thus,
the idea is to transform an ITS P into a new ITS P ′ which is “easier” to analyze.
Of course, we ensure that the runtime of P ′ is at least the runtime of P. Then
it is sound to prove termination for P ′ instead of P. Such transformations can
be performed by control-flow refinement via partial evaluation [10], which we
integrated into KoAT’s approach [19, 29].

2 Discussion of Strengths and Weaknesses

An underlying design concept of AProVE (KoAT + LoAT) is its modular struc-
ture. It allows us to use different backends and techniques to analyze programs
and benefit from their individual strengths. Hence, our new framework can make
use of recent progress in software verification tools. Furthermore, both AProVE



4 N. Lommen and J. Giesl

and our backend tools KoAT and LoAT are modular themselves (see, e.g., KoAT’s
modular analysis of sub-programs in Sect. 1).

One of AProVE’s main weaknesses was that it essentially relied on variants of
(linear) ranking functions for termination proofs. However, this problem has now
been solved by integrating our tool KoAT into AProVE. Besides ranking func-
tions, KoAT also uses a technique for termination analysis of twn-loops which al-
lows us to analyze programs with non-linear arithmetic on which the other sound
tools participating in the termination category of SV-COMP fail. For example,
the C program which just instantiates all variables non-deterministically and
consists of the loop (1) and even its following linear, simplified variant from [21]

while (x1 < x2 ∧ x1 > 0) do (x1, x2)← (3 · x1, 2 · x2)

can both not be shown terminating by Ultimate Automizer [9] and 2LS [33],
which were the two most powerful sound1 tools at the termination category of
last year’s SV-COMP. In contrast, AProVE proves their termination using the
implementation of our termination technique for twn-loops in KoAT.

Concerning the proofs of non-termination, currently AProVE (KoAT + LoAT)
uses a version of LoAT which disproves termination using the loop acceleration
technique of [15]. In [16], a new version of LoAT was developed that is based on
an acceleration driven clause learning calculus which improves LoAT’s power for
non-termination proofs substantially. We plan to integrate this new version in
our AProVE (KoAT + LoAT) framework in the future, using a new format to ease
the automated handling of LoAT’s non-termination proofs. Moreover, as KoAT
and LoAT can also analyze complexity of programs, it would be interesting to
extend AProVE (KoAT + LoAT) to complexity analysis as well.

3 Setup and Configuration

AProVE (KoAT + LoAT) is developed in the “Programming Languages and Veri-
fication” group at RWTH Aachen University. A list of present and past contrib-
utors can be accessed on the website [2]. In SV-COMP 2025, AProVE (KoAT +
LoAT) only participates in the category “Termination”. All files from the submit-
ted archive [31] must be extracted into one folder. AProVE is implemented in Java
and needs a Java 17 Runtime Environment. To analyze the resulting ITSs in the
backend, the tools KoAT [19, 27–30] and LoAT [13–16] are used. Furthermore,
it applies the satisfiability checkers Z3 [8], Yices [11], and MiniSAT [12], see [17].
Our archive contains all these tools. Using the wrapper script aprove.py in
the BenchExec repository, AProVE (KoAT + LoAT) can be invoked, e.g., on the
benchmarks defined in aprove.xml in the SV-COMP repository. The most re-
cent version of our tool for SV-COMP 2025 can be downloaded at [31]. Moreover,
C programs for all examples from the paper are available at [31] and [32].

1 The tool PROTON [25] (which won the termination category last year) outputs
termination for both these loops, but also for the non-terminating variants of these
loops where the guard x1 > 0 is missing. In contrast, both Ultimate Automizer and
2LS prove non-termination of these variants.



AProVE (KoAT + LoAT) 5

Data Availability Statement. Our tools are available at their respective websites

(for AProVE [2], KoAT [3], and LoAT [4]). The version of AProVE (KoAT + LoAT) used

for SV-COMP 2025 is archived at Zenodo [31].

References

[1] Clang: https://clang.llvm.org.
[2] AProVE Website: https://aprove.informatik.rwth-aachen.de/.
[3] KoAT Website: https://koat.verify.rwth-aachen.de/.
[4] LoAT Website: https://loat-developers.github.io/LoAT/.
[5] A. M. Ben-Amram and S. Genaim. “On Multiphase-Linear Ranking Func-

tions”. In: Proc. CAV ’17. LNCS 10427. 2017, pp. 601–620. doi: 10.1007/
978-3-319-63390-9 32.

[6] M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman. “T2:
Temporal Property Verification”. In: Proc. TACAS ’16. LNCS 9636. 2016,
pp. 387–393. doi: 10.1007/978-3-662-49674-9 22.

[7] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. “Analyzing
Runtime and Size Complexity of Integer Programs”. In: ACM Transactions
on Programming Languages and Systems 38 (2016), pp. 1–50. doi: 10 .
1145/2866575.

[8] L. de Moura and N. Bjørner. “Z3: An Efficient SMT Solver”. In: Proc.
TACAS. LNCS 4963. 2008, pp. 337–340. doi: 10.1007/978-3-540-78800-
3 24.

[9] D. Dietsch, M. Bentele, M. Ebbinghaus, M. Heizmann, D. Klumpp, A.
Podelski, and F. Schüssele. Ultimate Automizer SV-COMP 2025. Zenodo.
2024. doi: 10.5281/zenodo.14209043.

[10] J. J. Doménech, J. P. Gallagher, and S. Genaim. “Control-Flow Refine-
ment by Partial Evaluation, and its Application to Termination and Cost
Analysis”. In: Theory and Practice of Logic Programming 19.5-6 (2019),
pp. 990–1005. doi: 10.1017/S1471068419000310.

[11] B. Dutertre and L. de Moura. System Description: Yices 1.0. https://yices.
csl.sri.com/papers/yices-smtcomp06.pdf. 2006.

[12] N. Eén and N. Sörensson. “An Extensible SAT-solver”. In: Proc. SAT ’03.
LNCS 2919. 2003, pp. 502–518. doi: 10.1007/978-3-540-24605-3 37.

[13] F. Frohn and J. Giesl. “Proving Non-Termination via Loop Acceleration”.
In: Proc. FMCAD ’19. 2019, pp. 221–230. doi: 10.23919/FMCAD.2019.
8894271.

[14] F. Frohn and C. Fuhs. “A Calculus for Modular Loop Acceleration and
Non-Termination Proofs”. In: International Journal on Software Tools for
Technology Transfer 24.5 (2022), pp. 691–715. doi: 10.1007/S10009-022-
00670-2.

[15] F. Frohn and J. Giesl. “Proving Non-Termination and Lower Runtime
Bounds with LoAT (System Description)”. In: Proc. IJCAR ’22. LNCS
13385. 2022, pp. 712–722. doi: 10.1007/978-3-031-10769-6 41.

https://clang.llvm.org
https://aprove.informatik.rwth-aachen.de/
https://koat.verify.rwth-aachen.de/
https://loat-developers.github.io/LoAT/
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1145/2866575
https://doi.org/10.1145/2866575
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.5281/zenodo.14209043
https://doi.org/10.1017/S1471068419000310
https://yices.csl.sri.com/papers/yices-smtcomp06.pdf
https://yices.csl.sri.com/papers/yices-smtcomp06.pdf
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.23919/FMCAD.2019.8894271
https://doi.org/10.23919/FMCAD.2019.8894271
https://doi.org/10.1007/S10009-022-00670-2
https://doi.org/10.1007/S10009-022-00670-2
https://doi.org/10.1007/978-3-031-10769-6_41


6 N. Lommen and J. Giesl

[16] F. Frohn and J. Giesl. “Proving Non-Termination by Acceleration Driven
Clause Learning (Short Paper)”. In: Proc. CADE ’23. LNCS 14132. 2023,
pp. 220–233. doi: 10.1007/978-3-031-38499-8 13.

[17] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and
H. Zankl. “SAT Solving for Termination Analysis with Polynomial In-
terpretations”. In: Proc. SAT ’07. LNCS 4501. 2007, pp. 340–354. doi:
10.1007/978-3-540-72788-0 33.

[18] J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, and A. Yamada. “The
Termination and Complexity Competition”. In: Proc. TACAS ’19. LNCS
11429. 2019, pp. 156–166. doi: 10.1007/978-3-030-17502-3 10.

[19] J. Giesl, N. Lommen, M. Hark, and F. Meyer. “Improving Automatic
Complexity Analysis of Integer Programs”. In: The Logic of Software. A
Tasting Menu of Formal Methods. LNCS 13360. 2022, pp. 193–228. doi:
10.1007/978-3-031-08166-8 10.

[20] M. Hark, F. Frohn, and J. Giesl. “Termination of Triangular Polynomial
Loops”. In: Formal Methods in System Design (2023). doi: 10 . 1007 /
s10703-023-00440-z.

[21] M. Heizmann and J. Leike. “Ranking Templates for Linear Loops”. In:
Logical Methods in Computer Science 11.1 (2015). doi: 10.2168/LMCS-
11(1:16)2015.

[22] J. Hensel, J. Giesl, F. Frohn, and T. Ströder. “Termination and Complexity
Analysis for Programs with Bitvector Arithmetic by Symbolic Execution”.
In: Journal of Logical and Algebraic Methods in Programming 97 (2018),
pp. 105–130. url: https://doi.org/10.1016/j.jlamp.2018.02.004.

[23] J. Hensel, C. Mensendiek, and J. Giesl. “AProVE: Non-Termination Wit-
nesses for C Programs”. In: Proc. TACAS ’22. LNCS 14132. 2022, pp. 403–
407. doi: 10.1007/978-3-030-99527-0 21.

[24] J. Hensel and J. Giesl. “Proving Termination of C Programs with Lists”.
In: Proc. CADE ’23. LNCS 14132. 2023, pp. 266–285. doi: 10.1007/978-
3-031-38499-8 16.

[25] H. Karmarkar, M. Kumar, R. Metta, and D. Mukhopadhyay. PROTON
SV-COMP 2025. Zenodo. 2024. doi: 10.5281/zenodo.14209458.

[26] C. Lattner and V. Adve. “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation”. In: Proc. CGO ’04. 2004, pp. 75–88.
url: https://doi.org/10.1109/CGO.2004.1281665.

[27] N. Lommen, F. Meyer, and J. Giesl. “Automatic Complexity Analysis
of Integer Programs via Triangular Weakly Non-Linear Loops”. In: Proc.
IJCAR ’22. LNCS 13385. 2022, pp. 734–754. doi: 10.1007/978- 3- 031-
10769-6 43.

[28] N. Lommen and J. Giesl. “Targeting Completeness: Using Closed Forms
for Size Bounds of Integer Programs”. In: Proc. FroCoS ’23. LNCS 14279.
2023, pp. 3–22. doi: 10.1007/978-3-031-43369-6 1.

[29] N. Lommen, É. Meyer, and J. Giesl. “Control-Flow Refinement for Com-
plexity Analysis of Probabilistic Programs in KoAT (Short Paper)”. In:
Proc. IJCAR ’24. 2024, pp. 233–243. doi: 10.1007/978-3-031-63498-7 14.

https://doi.org/10.1007/978-3-031-38499-8_13
https://doi.org/10.1007/978-3-540-72788-0_33
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-031-08166-8_10
https://doi.org/10.1007/s10703-023-00440-z
https://doi.org/10.1007/s10703-023-00440-z
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.1016/j.jlamp.2018.02.004
https://doi.org/10.1007/978-3-030-99527-0_21
https://doi.org/10.1007/978-3-031-38499-8_16
https://doi.org/10.1007/978-3-031-38499-8_16
https://doi.org/10.5281/zenodo.14209458
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-031-10769-6_43
https://doi.org/10.1007/978-3-031-10769-6_43
https://doi.org/10.1007/978-3-031-43369-6_1
https://doi.org/10.1007/978-3-031-63498-7_14


AProVE (KoAT + LoAT) 7

[30] N. Lommen, É. Meyer, and J. Giesl. “Targeting Completeness: Automated
Complexity Analysis of Integer Programs”. In: CoRR abs/2412.01832 (2024).
doi: 10.48550/arXiv.2412.01832.

[31] N. Lommen and J. Giesl. AProVE (KoAT + LoAT) Download. Zenodo.
2024. doi: 10.5281/zenodo.13937818.

[32] N. Lommen and J. Giesl. AProVE (KoAT + LoAT) Website. 2025. url:
https://koat.verify.rwth-aachen.de/svcomp25.

[33] V. Maĺık, F. Nečas, P. Schrammel, and T. Vojnar. 2LS. Zenodo. 2023. doi:
10.5281/zenodo.10184626.

[34] T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel, P.
Schneider-Kamp, and C. Aschermann. “Automatically Proving Termina-
tion and Memory Safety for Programs with Pointer Arithmetic”. In: Jour-
nal of Automated Reasoning 58.1 (2017), pp. 33–65. url: https://doi.org/
10.1007/s10817-016-9389-x.

[35] TPDB (Termination Problems Data Base). url: https : //github . com/
TermCOMP/TPDB.

https://doi.org/10.48550/arXiv.2412.01832
https://doi.org/10.5281/zenodo.13937818
https://koat.verify.rwth-aachen.de/svcomp25
https://doi.org/10.5281/zenodo.10184626
https://doi.org/10.1007/s10817-016-9389-x
https://doi.org/10.1007/s10817-016-9389-x
https://github.com/TermCOMP/TPDB
https://github.com/TermCOMP/TPDB

	AProVE (KoAT + LoAT)

