Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₀, 0, 0)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄-1, X₁+X₂, X₆+(X₄)²) :|: 0 < X₄
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₁, X₄, X₅, X₆)
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆) :|: 0 < X₅
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₃, X₀, X₃, X₄, X₅, X₆)
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1) :|: 0 < X₆

Preprocessing

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l2

Found invariant 0 ≤ X₆ ∧ X₄ ≤ X₀ for location l1

Found invariant 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₀, 0, 0)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄-1, X₁+X₂, X₆+(X₄)²) :|: 0 < X₄ ∧ 0 ≤ X₆ ∧ X₄ ≤ X₀
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₁, X₄, X₅, X₆) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆) :|: 0 < X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₃, X₀, X₃, X₄, X₅, X₆) :|: 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1) :|: 0 < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀

MPRF for transition t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄-1, X₁+X₂, X₆+Temp_Int₂₂₄) :|: 0 < X₄ ∧ 0 < Temp_Int₂₂₄ ∧ X₄ ≤ Temp_Int₂₂₄ ∧ 0 ≤ X₆ ∧ X₄ ≤ X₀ of depth 1:

new bound:

X₀ {O(n)}

MPRF for transition t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₁, X₄, X₅, X₆) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀ {O(n)}

TWN: t₂: l2→l3

cycle: [t₂: l2→l3; t₃: l3→l2]
loop: (0 < X₅,(X₅) -> (X₅-1)
order: [X₅]
closed-form:
X₅: X₅ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 0 < X₅ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}

TWN - Lifting for t₂: l2→l3 of 2⋅X₅+4 {O(n)}

relevant size-bounds w.r.t. t₁:
X₅: 2⋅X₁+2⋅X₂+X₀+X₃ {O(n)}
Runtime-bound of t₁: X₀ {O(n)}
Results in: 2⋅X₀⋅X₀+2⋅X₀⋅X₃+4⋅X₀⋅X₁+4⋅X₀⋅X₂+4⋅X₀ {O(n^2)}

TWN: t₃: l3→l2

TWN - Lifting for t₃: l3→l2 of 2⋅X₅+4 {O(n)}

relevant size-bounds w.r.t. t₁:
X₅: 2⋅X₁+2⋅X₂+X₀+X₃ {O(n)}
Runtime-bound of t₁: X₀ {O(n)}
Results in: 2⋅X₀⋅X₀+2⋅X₀⋅X₃+4⋅X₀⋅X₁+4⋅X₀⋅X₂+4⋅X₀ {O(n^2)}

Chain transitions t₄: l2→l1 and t₁: l1→l2 to t₅₀: l2→l2

Chain transitions t₀: l0→l1 and t₁: l1→l2 to t₅₁: l0→l2

Chain transitions t₂: l2→l3 and t₃: l3→l2 to t₅₂: l2→l2

Analysing control-flow refined program

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l2

Found invariant 0 ≤ X₆ ∧ X₄ ≤ X₀ for location l1

Found invariant 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l3

MPRF for transition t₅₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{2}> l2(X₀, X₁, X₂, X₁, X₄-1, X₁+X₂, X₆+Temp_Int₄₇₁) :|: 0 < X₄ ∧ 0 < Temp_Int₄₇₁ ∧ X₄ ≤ Temp_Int₄₇₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 0 ≤ X₆ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

TWN: t₅₂: l2→l2

cycle: [t₅₂: l2→l2]
loop: (0 < X₅,(X₅) -> (X₅-1)
order: [X₅]
closed-form:
X₅: X₅ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 0 < X₅ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 < X₅,(X₅) -> (X₅-1)
order: [X₅]
closed-form:
X₅: X₅ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 0 < X₅ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}

TWN - Lifting for t₅₂: l2→l2 of 2⋅X₅+4 {O(n)}

relevant size-bounds w.r.t. t₅₀:
X₅: 2⋅X₂+2⋅X₃+3⋅X₁+6⋅X₀ {O(n)}
Runtime-bound of t₅₀: X₀+1 {O(n)}
Results in: 12⋅X₀⋅X₀+4⋅X₀⋅X₂+4⋅X₀⋅X₃+6⋅X₀⋅X₁+16⋅X₀+4⋅X₂+4⋅X₃+6⋅X₁+4 {O(n^2)}

TWN - Lifting for t₅₂: l2→l2 of 2⋅X₅+4 {O(n)}

relevant size-bounds w.r.t. t₅₁:
X₅: X₁+X₂ {O(n)}
Runtime-bound of t₅₁: 1 {O(1)}
Results in: 2⋅X₁+2⋅X₂+4 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location n_l3___3

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location n_l2___2

Found invariant 0 ≤ X₆ ∧ X₄ ≤ X₀ for location l1

Found invariant 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location n_l3___1

knowledge_propagation leads to new time bound X₀ {O(n)} for transition t₁₀₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆) :|: 0 < X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₀ {O(n)} for transition t₁₁₀: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___2(X₀, X₃, X₀, X₃, X₄, X₅, X₆) :|: 0 < 1+X₅ ∧ 1+X₄ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀

MPRF for transition t₁₀₇: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___1(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆) :|: X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 < X₅ ∧ 1+X₄ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₁+2⋅X₀⋅X₂+X₀⋅X₀+X₀⋅X₃+X₀ {O(n^2)}

MPRF for transition t₁₀₉: n_l3___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___2(X₀, X₃, X₀, X₃, X₄, X₅, X₆) :|: 0 < 1+X₅ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₁+2⋅X₀⋅X₂+X₀⋅X₀+X₀⋅X₃ {O(n^2)}

MPRF for transition t₁₁₅: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₁, X₄, X₅, X₆) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀ {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l2

Found invariant 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location n_l4___2

Found invariant 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location n_l4___1

Found invariant 0 ≤ X₆ ∧ X₄ ≤ X₀ for location l1

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l3

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₁: X₀ {O(n)}
t₂: 2⋅X₀⋅X₀+2⋅X₀⋅X₃+4⋅X₀⋅X₁+4⋅X₀⋅X₂+4⋅X₀ {O(n^2)}
t₃: 2⋅X₀⋅X₀+2⋅X₀⋅X₃+4⋅X₀⋅X₁+4⋅X₀⋅X₂+4⋅X₀ {O(n^2)}
t₄: X₀ {O(n)}
t₅: 1 {O(1)}
t₆: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₁: X₀ {O(n)}
t₂: 2⋅X₀⋅X₀+2⋅X₀⋅X₃+4⋅X₀⋅X₁+4⋅X₀⋅X₂+4⋅X₀ {O(n^2)}
t₃: 2⋅X₀⋅X₀+2⋅X₀⋅X₃+4⋅X₀⋅X₁+4⋅X₀⋅X₂+4⋅X₀ {O(n^2)}
t₄: X₀ {O(n)}
t₅: 1 {O(1)}
t₆: inf {Infinity}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₀ {O(n)}
t₀, X₅: 0 {O(1)}
t₀, X₆: 0 {O(1)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁+X₃ {O(n)}
t₁, X₂: X₀+X₂ {O(n)}
t₁, X₃: X₁+X₃ {O(n)}
t₁, X₄: X₀ {O(n)}
t₁, X₅: 2⋅X₁+2⋅X₂+X₀+X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: 2⋅X₁+2⋅X₃ {O(n)}
t₂, X₂: 2⋅X₀+X₂ {O(n)}
t₂, X₃: X₁+X₃ {O(n)}
t₂, X₄: X₀ {O(n)}
t₂, X₅: 2⋅X₁+2⋅X₂+X₀+X₃ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁+X₃ {O(n)}
t₃, X₂: X₀ {O(n)}
t₃, X₃: X₁+X₃ {O(n)}
t₃, X₄: X₀ {O(n)}
t₃, X₅: 2⋅X₁+2⋅X₂+X₀+X₃ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁+X₃ {O(n)}
t₄, X₂: X₀+X₂ {O(n)}
t₄, X₃: X₁+X₃ {O(n)}
t₄, X₄: X₀ {O(n)}
t₄, X₅: 2⋅X₀+2⋅X₃+4⋅X₁+4⋅X₂ {O(n)}
t₅, X₀: 2⋅X₀ {O(n)}
t₅, X₁: 2⋅X₁+2⋅X₃ {O(n)}
t₅, X₂: 2⋅X₀+X₂ {O(n)}
t₅, X₃: 2⋅X₁+2⋅X₃ {O(n)}
t₅, X₄: 2⋅X₀ {O(n)}
t₅, X₅: 2⋅X₀+2⋅X₃+4⋅X₁+4⋅X₂ {O(n)}
t₆, X₀: 2⋅X₀ {O(n)}
t₆, X₁: 2⋅X₁+2⋅X₃ {O(n)}
t₆, X₂: 2⋅X₀+X₂ {O(n)}
t₆, X₃: 2⋅X₁+2⋅X₃ {O(n)}
t₆, X₄: 2⋅X₀ {O(n)}
t₆, X₅: 2⋅X₀+2⋅X₃+4⋅X₁+4⋅X₂ {O(n)}