Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₀, 0)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄-1, X₁+X₂) :|: 0 < X₄
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₁+X₂, X₄, X₅)
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅-1) :|: 0 < X₅
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅)
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₃, X₀, X₃, X₄, X₅)
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₀, X₃, X₃, X₄, X₅)
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃-1, X₄, X₅) :|: 0 < X₃
t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₀+X₁+X₂, X₃, X₄, X₅)
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₀, X₁, X₃, X₄, X₅)

Preprocessing

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l2

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l6

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l5

Found invariant X₄ ≤ X₀ for location l1

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l4

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₀, 0)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄-1, X₁+X₂) :|: 0 < X₄ ∧ X₄ ≤ X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₁+X₂, X₄, X₅) :|: 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅-1) :|: 0 < X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₃, X₀, X₃, X₄, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₀, X₃, X₃, X₄, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃-1, X₄, X₅) :|: 0 < X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₀+X₁+X₂, X₃, X₄, X₅) :|: 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₀, X₁, X₃, X₄, X₅) :|: 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀

MPRF for transition t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄-1, X₁+X₂) :|: 0 < X₄ ∧ X₄ ≤ X₀ of depth 1:

new bound:

X₀ {O(n)}

MPRF for transition t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₁+X₂, X₄, X₅) :|: 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀ {O(n)}

MPRF for transition t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅-1) :|: 0 < X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₀+X₁+X₂+1 {O(EXP)}

MPRF for transition t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₃, X₀, X₃, X₄, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₁+X₂ {O(EXP)}

MPRF for transition t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₀, X₃, X₃, X₄, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₁+X₂ {O(EXP)}

MPRF for transition t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₁+X₂ {O(EXP)}

Chain transitions t₆: l2→l1 and t₁: l1→l2 to t₈₉: l2→l2

Chain transitions t₀: l0→l1 and t₁: l1→l2 to t₉₀: l0→l2

Chain transitions t₂: l2→l3 and t₄: l3→l5 to t₉₁: l2→l5

Chain transitions t₂: l2→l3 and t₃: l3→l5 to t₉₂: l2→l5

Chain transitions t₉₂: l2→l5 and t₅: l5→l2 to t₉₃: l2→l2

Chain transitions t₉₁: l2→l5 and t₅: l5→l2 to t₉₄: l2→l2

Analysing control-flow refined program

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l2

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l6

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l5

Found invariant X₄ ≤ X₀ for location l1

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l4

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l3

MPRF for transition t₈₉: l2(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l2(X₀, X₁, X₂, X₁+X₂, X₄-1, X₁+X₂) :|: 0 < X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₉₃: l2(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l2(X₀, X₃, X₀, X₃, X₄, X₅-1) :|: 0 < X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

32⋅4^(X₀+1)⋅X₀+32⋅4^(X₀+1)⋅X₀⋅X₀+4⋅4^(X₀+1)⋅X₀⋅X₁+4⋅4^(X₀+1)⋅X₀⋅X₂+4⋅4^(X₀+1)⋅X₀⋅X₃+4⋅4^(X₀+1)⋅X₁+4⋅4^(X₀+1)⋅X₂+4⋅4^(X₀+1)⋅X₃+8⋅X₀⋅X₀+X₀⋅X₁+X₀⋅X₂+2⋅X₁+2⋅X₂+8⋅X₀ {O(EXP)}

MPRF for transition t₉₄: l2(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l2(X₀, X₀, X₃, X₃, X₄, X₅-1) :|: 0 < X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

32⋅4^(X₀+1)⋅X₀+32⋅4^(X₀+1)⋅X₀⋅X₀+4⋅4^(X₀+1)⋅X₀⋅X₁+4⋅4^(X₀+1)⋅X₀⋅X₂+4⋅4^(X₀+1)⋅X₀⋅X₃+4⋅4^(X₀+1)⋅X₁+4⋅4^(X₀+1)⋅X₂+4⋅4^(X₀+1)⋅X₃+8⋅X₀⋅X₀+X₀⋅X₁+X₀⋅X₂+2⋅X₁+2⋅X₂+8⋅X₀ {O(EXP)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l2

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location n_l3___4

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l6

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location n_l2___1

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___2

Found invariant X₄ ≤ X₀ for location l1

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l4

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location n_l5___3

knowledge_propagation leads to new time bound X₀ {O(n)} for transition t₁₇₄: l2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___4(X₀, X₁, X₂, X₃, X₄, X₅-1) :|: 0 < X₅ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀

MPRF for transition t₁₇₃: n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___4(X₀, X₁, X₂, X₃, X₄, X₅-1) :|: 0 ≤ X₅ ∧ 0 < X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₀⋅X₁+X₀⋅X₂+X₀ {O(EXP)}

MPRF for transition t₁₇₅: n_l3___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l5___2(X₀, X₀, X₃, X₃, X₄, X₅) :|: 0 < 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₀⋅X₁+X₀⋅X₂+X₀ {O(EXP)}

MPRF for transition t₁₇₆: n_l3___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l5___3(X₀, X₃, X₀, X₃, X₄, X₅) :|: 0 < 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₀⋅X₁+X₀⋅X₂+X₀ {O(EXP)}

MPRF for transition t₁₇₇: n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₀⋅X₁+X₀⋅X₂+X₀ {O(EXP)}

MPRF for transition t₁₇₈: n_l5___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₀⋅X₁+X₀⋅X₂+X₀ {O(EXP)}

MPRF for transition t₁₈₆: n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₁+X₂, X₄, X₅) :|: 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀+1 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Chain transitions t₁₀: l6→l4 and t₈: l4→l6 to t₂₇₁: l6→l6

Chain transitions t₉: l6→l4 and t₈: l4→l6 to t₂₇₂: l6→l6

Chain transitions t₇: l2→l4 and t₈: l4→l6 to t₂₇₃: l2→l6

Analysing control-flow refined program

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l2

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l6

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l5

Found invariant X₄ ≤ X₀ for location l1

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l4

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l3

MPRF for transition t₂₇₁: l6(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l6(X₀, X₀, X₁, X₃-1, X₄, X₅) :|: 0 < X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+1 {O(EXP)}

MPRF for transition t₂₇₂: l6(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l6(X₀, X₁, X₀+X₁+X₂, X₃-1, X₄, X₅) :|: 0 < X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+1 {O(EXP)}

Analysing control-flow refined program

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l2

Found invariant 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___1

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l6___4

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l4___3

Found invariant 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___2

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l5

Found invariant X₄ ≤ X₀ for location l1

Found invariant 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l4

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ for location l3

MPRF for transition t₃₃₉: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___4(X₀, X₁, X₂, X₃-1, X₄, X₅) :|: 0 ≤ X₃ ∧ 0 < X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+1 {O(EXP)}

MPRF for transition t₃₄₄: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___3(X₀, X₁, X₀+X₁+X₂, X₃, X₄, X₅) :|: 0 < 1+X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+1 {O(EXP)}

MPRF for transition t₃₃₈: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___1(X₀, X₁, X₂, X₃-1, X₄, X₅) :|: 0 ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 < X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀+1 {O(EXP)}

MPRF for transition t₃₄₁: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___2(X₀, X₁, X₀+X₁+X₂, X₃, X₄, X₅) :|: 0 < 1+X₃ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀ {O(EXP)}

MPRF for transition t₃₄₂: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___2(X₀, X₀, X₁, X₃, X₄, X₅) :|: 0 < 1+X₃ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀ {O(EXP)}

CFR: Improvement to new bound with the following program:

new bound:

Infinite

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, n_l4___2, n_l4___3, n_l6___1, n_l6___4
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₀, 0)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄-1, X₁+X₂) :|: 0 < X₄ ∧ X₄ ≤ X₀ ∧ X₄ ≤ X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₁+X₂, X₄, X₅) :|: 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅-1) :|: 0 < X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₃, X₀, X₃, X₄, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₀, X₃, X₃, X₄, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₃₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___4(X₀, X₁, X₂, X₃-1, X₄, X₅) :|: 0 < X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₃₃₈: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___1(X₀, X₁, X₂, X₃-1, X₄, X₅) :|: 0 ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 < X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₃₃₉: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___4(X₀, X₁, X₂, X₃-1, X₄, X₅) :|: 0 ≤ X₃ ∧ 0 < X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₃₄₁: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___2(X₀, X₁, X₀+X₁+X₂, X₃, X₄, X₅) :|: 0 < 1+X₃ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₃₄₂: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___2(X₀, X₀, X₁, X₃, X₄, X₅) :|: 0 < 1+X₃ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₃₄₃: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___2(X₀, X₀, X₁, X₃, X₄, X₅) :|: 0 < 1+X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₃₄₄: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___3(X₀, X₁, X₀+X₁+X₂, X₃, X₄, X₅) :|: 0 < 1+X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀

CFR: Improvement to new bound with the following program:

new bound:

16⋅4^(X₀)⋅X₁+16⋅4^(X₀)⋅X₂+16⋅4^(X₀)⋅X₃+32⋅4^(X₀)⋅X₀+3 {O(EXP)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, n_l4___2, n_l4___3, n_l6___1, n_l6___4
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₀, 0)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄-1, X₁+X₂) :|: 0 < X₄ ∧ X₄ ≤ X₀ ∧ X₄ ≤ X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₁+X₂, X₄, X₅) :|: 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅-1) :|: 0 < X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₃, X₀, X₃, X₄, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₀, X₃, X₃, X₄, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₃₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___4(X₀, X₁, X₂, X₃-1, X₄, X₅) :|: 0 < X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀
t₃₃₈: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___1(X₀, X₁, X₂, X₃-1, X₄, X₅) :|: 0 ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 < X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₃₃₉: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___4(X₀, X₁, X₂, X₃-1, X₄, X₅) :|: 0 ≤ X₃ ∧ 0 < X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₃₄₁: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___2(X₀, X₁, X₀+X₁+X₂, X₃, X₄, X₅) :|: 0 < 1+X₃ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₃₄₂: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___2(X₀, X₀, X₁, X₃, X₄, X₅) :|: 0 < 1+X₃ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₃₄₃: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___2(X₀, X₀, X₁, X₃, X₄, X₅) :|: 0 < 1+X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₃₄₄: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___3(X₀, X₁, X₀+X₁+X₂, X₃, X₄, X₅) :|: 0 < 1+X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:16⋅4^(X₀)⋅X₀⋅X₀+2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+24⋅4^(X₀)⋅X₀+4^(X₀)⋅6⋅X₀⋅X₁+4^(X₀)⋅6⋅X₀⋅X₂+4^(X₀)⋅6⋅X₀⋅X₃+4^(X₀)⋅6⋅X₁+4^(X₀)⋅6⋅X₂+4^(X₀)⋅6⋅X₃+4^(X₀)⋅8⋅X₀+4^(X₀)⋅8⋅X₁+4^(X₀)⋅8⋅X₂+4^(X₀)⋅8⋅X₃+3⋅X₀+4⋅X₁+4⋅X₂+8 {O(EXP)}
t₀: 1 {O(1)}
t₁: X₀ {O(n)}
t₂: 2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₀+X₁+X₂+1 {O(EXP)}
t₃: 2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₁+X₂ {O(EXP)}
t₄: 2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₁+X₂ {O(EXP)}
t₅: 2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₁+X₂ {O(EXP)}
t₆: X₀ {O(n)}
t₇: 1 {O(1)}
t₃₃₈: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀+1 {O(EXP)}
t₃₃₉: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+1 {O(EXP)}
t₃₄₀: 1 {O(1)}
t₃₄₁: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀ {O(EXP)}
t₃₄₂: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀ {O(EXP)}
t₃₄₃: 1 {O(1)}
t₃₄₄: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+1 {O(EXP)}

Costbounds

Overall costbound: 16⋅4^(X₀)⋅X₀⋅X₀+2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+24⋅4^(X₀)⋅X₀+4^(X₀)⋅6⋅X₀⋅X₁+4^(X₀)⋅6⋅X₀⋅X₂+4^(X₀)⋅6⋅X₀⋅X₃+4^(X₀)⋅6⋅X₁+4^(X₀)⋅6⋅X₂+4^(X₀)⋅6⋅X₃+4^(X₀)⋅8⋅X₀+4^(X₀)⋅8⋅X₁+4^(X₀)⋅8⋅X₂+4^(X₀)⋅8⋅X₃+3⋅X₀+4⋅X₁+4⋅X₂+8 {O(EXP)}
t₀: 1 {O(1)}
t₁: X₀ {O(n)}
t₂: 2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₀+X₁+X₂+1 {O(EXP)}
t₃: 2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₁+X₂ {O(EXP)}
t₄: 2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₁+X₂ {O(EXP)}
t₅: 2⋅4^(X₀)⋅X₀⋅X₁+2⋅4^(X₀)⋅X₀⋅X₂+2⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₀⋅X₀+X₁+X₂ {O(EXP)}
t₆: X₀ {O(n)}
t₇: 1 {O(1)}
t₃₃₈: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀+1 {O(EXP)}
t₃₃₉: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+1 {O(EXP)}
t₃₄₀: 1 {O(1)}
t₃₄₁: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀ {O(EXP)}
t₃₄₂: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀ {O(EXP)}
t₃₄₃: 1 {O(1)}
t₃₄₄: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+1 {O(EXP)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₀ {O(n)}
t₀, X₅: 0 {O(1)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₁, X₂: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₁, X₃: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₁, X₄: X₀ {O(n)}
t₁, X₅: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+X₁+X₂ {O(EXP)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀ {O(EXP)}
t₂, X₂: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀ {O(EXP)}
t₂, X₃: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₂, X₄: X₀ {O(n)}
t₂, X₅: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+X₁+X₂ {O(EXP)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₃, X₂: X₀ {O(n)}
t₃, X₃: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₃, X₄: X₀ {O(n)}
t₃, X₅: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+X₁+X₂ {O(EXP)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₀ {O(n)}
t₄, X₂: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₄, X₃: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₄, X₄: X₀ {O(n)}
t₄, X₅: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+X₁+X₂ {O(EXP)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₅, X₂: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₅, X₃: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₅, X₄: X₀ {O(n)}
t₅, X₅: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀+X₁+X₂ {O(EXP)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₆, X₂: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₆, X₃: 2⋅4^(X₀)⋅X₀+4^(X₀)⋅X₁+4^(X₀)⋅X₂+4^(X₀)⋅X₃ {O(EXP)}
t₆, X₄: X₀ {O(n)}
t₆, X₅: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀+2⋅X₁+2⋅X₂ {O(EXP)}
t₇, X₀: 2⋅X₀ {O(n)}
t₇, X₁: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀ {O(EXP)}
t₇, X₂: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀ {O(EXP)}
t₇, X₃: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀ {O(EXP)}
t₇, X₄: 2⋅X₀ {O(n)}
t₇, X₅: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀+2⋅X₁+2⋅X₂ {O(EXP)}
t₃₃₈, X₀: 4⋅X₀ {O(n)}
t₃₃₈, X₁: 8⋅X₀ {O(n)}
t₃₃₈, X₂: 12⋅2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅X₀+16⋅2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4^(X₀)⋅X₀⋅X₁+16⋅2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4^(X₀)⋅X₀⋅X₂+16⋅2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4^(X₀)⋅X₀⋅X₃+2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅32⋅4^(X₀)⋅X₀⋅X₀+2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4⋅4^(X₀)⋅X₁+2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4⋅4^(X₀)⋅X₂+2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4⋅4^(X₀)⋅X₃+2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4^(X₀)⋅8⋅X₀ {O(EXP^O(EXP))}
t₃₃₈, X₃: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀ {O(EXP)}
t₃₃₈, X₄: 4⋅X₀ {O(n)}
t₃₃₈, X₅: 16⋅4^(X₀)⋅X₀+4^(X₀)⋅8⋅X₁+4^(X₀)⋅8⋅X₂+4^(X₀)⋅8⋅X₃+4⋅X₁+4⋅X₂ {O(EXP)}
t₃₃₉, X₀: 2⋅X₀ {O(n)}
t₃₃₉, X₁: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀ {O(EXP)}
t₃₃₉, X₂: 16⋅4^(X₀)⋅4^(X₀)⋅X₁⋅X₂+16⋅4^(X₀)⋅4^(X₀)⋅X₁⋅X₃+16⋅4^(X₀)⋅4^(X₀)⋅X₂⋅X₃+16⋅4^(X₀)⋅X₀⋅X₀+20⋅4^(X₀)⋅X₀+32⋅4^(X₀)⋅4^(X₀)⋅X₀⋅X₀+32⋅4^(X₀)⋅4^(X₀)⋅X₀⋅X₁+32⋅4^(X₀)⋅4^(X₀)⋅X₀⋅X₂+32⋅4^(X₀)⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅4^(X₀)⋅8⋅X₁⋅X₁+4^(X₀)⋅4^(X₀)⋅8⋅X₂⋅X₂+4^(X₀)⋅4^(X₀)⋅8⋅X₃⋅X₃+4^(X₀)⋅6⋅X₁+4^(X₀)⋅6⋅X₂+4^(X₀)⋅6⋅X₃+4^(X₀)⋅8⋅X₀⋅X₁+4^(X₀)⋅8⋅X₀⋅X₂+4^(X₀)⋅8⋅X₀⋅X₃+8⋅X₀ {O(EXP)}
t₃₃₉, X₃: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀ {O(EXP)}
t₃₃₉, X₄: 2⋅X₀ {O(n)}
t₃₃₉, X₅: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀+2⋅X₁+2⋅X₂ {O(EXP)}
t₃₄₀, X₀: 2⋅X₀ {O(n)}
t₃₄₀, X₁: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀ {O(EXP)}
t₃₄₀, X₂: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀ {O(EXP)}
t₃₄₀, X₃: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀ {O(EXP)}
t₃₄₀, X₄: 2⋅X₀ {O(n)}
t₃₄₀, X₅: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀+2⋅X₁+2⋅X₂ {O(EXP)}
t₃₄₁, X₀: 4⋅X₀ {O(n)}
t₃₄₁, X₁: 8⋅X₀ {O(n)}
t₃₄₁, X₂: 12⋅2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅X₀+16⋅2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4^(X₀)⋅X₀⋅X₁+16⋅2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4^(X₀)⋅X₀⋅X₂+16⋅2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4^(X₀)⋅X₀⋅X₃+2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅32⋅4^(X₀)⋅X₀⋅X₀+2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4⋅4^(X₀)⋅X₁+2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4⋅4^(X₀)⋅X₂+2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4⋅4^(X₀)⋅X₃+2^(4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀)⋅4^(X₀)⋅8⋅X₀ {O(EXP^O(EXP))}
t₃₄₁, X₃: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀ {O(EXP)}
t₃₄₁, X₄: 4⋅X₀ {O(n)}
t₃₄₁, X₅: 16⋅4^(X₀)⋅X₀+4^(X₀)⋅8⋅X₁+4^(X₀)⋅8⋅X₂+4^(X₀)⋅8⋅X₃+4⋅X₁+4⋅X₂ {O(EXP)}
t₃₄₂, X₀: 4⋅X₀ {O(n)}
t₃₄₂, X₁: 4⋅X₀ {O(n)}
t₃₄₂, X₂: 8⋅X₀ {O(n)}
t₃₄₂, X₃: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀ {O(EXP)}
t₃₄₂, X₄: 4⋅X₀ {O(n)}
t₃₄₂, X₅: 16⋅4^(X₀)⋅X₀+4^(X₀)⋅8⋅X₁+4^(X₀)⋅8⋅X₂+4^(X₀)⋅8⋅X₃+4⋅X₁+4⋅X₂ {O(EXP)}
t₃₄₃, X₀: 4⋅X₀ {O(n)}
t₃₄₃, X₁: 4⋅X₀ {O(n)}
t₃₄₃, X₂: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀ {O(EXP)}
t₃₄₃, X₃: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀ {O(EXP)}
t₃₄₃, X₄: 4⋅X₀ {O(n)}
t₃₄₃, X₅: 16⋅4^(X₀)⋅X₀+4^(X₀)⋅8⋅X₁+4^(X₀)⋅8⋅X₂+4^(X₀)⋅8⋅X₃+4⋅X₁+4⋅X₂ {O(EXP)}
t₃₄₄, X₀: 2⋅X₀ {O(n)}
t₃₄₄, X₁: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀ {O(EXP)}
t₃₄₄, X₂: 16⋅4^(X₀)⋅4^(X₀)⋅X₁⋅X₂+16⋅4^(X₀)⋅4^(X₀)⋅X₁⋅X₃+16⋅4^(X₀)⋅4^(X₀)⋅X₂⋅X₃+16⋅4^(X₀)⋅X₀⋅X₀+20⋅4^(X₀)⋅X₀+32⋅4^(X₀)⋅4^(X₀)⋅X₀⋅X₀+32⋅4^(X₀)⋅4^(X₀)⋅X₀⋅X₁+32⋅4^(X₀)⋅4^(X₀)⋅X₀⋅X₂+32⋅4^(X₀)⋅4^(X₀)⋅X₀⋅X₃+4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅4^(X₀)⋅8⋅X₁⋅X₁+4^(X₀)⋅4^(X₀)⋅8⋅X₂⋅X₂+4^(X₀)⋅4^(X₀)⋅8⋅X₃⋅X₃+4^(X₀)⋅6⋅X₁+4^(X₀)⋅6⋅X₂+4^(X₀)⋅6⋅X₃+4^(X₀)⋅8⋅X₀⋅X₁+4^(X₀)⋅8⋅X₀⋅X₂+4^(X₀)⋅8⋅X₀⋅X₃+8⋅X₀ {O(EXP)}
t₃₄₄, X₃: 2⋅4^(X₀)⋅X₁+2⋅4^(X₀)⋅X₂+2⋅4^(X₀)⋅X₃+4⋅4^(X₀)⋅X₀ {O(EXP)}
t₃₄₄, X₄: 2⋅X₀ {O(n)}
t₃₄₄, X₅: 4⋅4^(X₀)⋅X₁+4⋅4^(X₀)⋅X₂+4⋅4^(X₀)⋅X₃+4^(X₀)⋅8⋅X₀+2⋅X₁+2⋅X₂ {O(EXP)}