Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: I, J, K
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄+1, J, I, X₇) :|: X₄ ≤ X₀ ∧ J ≤ I
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, J, X₄, X₄+1, I, K, X₇) :|: X₄ ≤ X₀ ∧ 1+K ≤ I
t₁₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄
t₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂+1 ≤ 0
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₂
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁+1, 0, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, 0) :|: X₃ ≤ X₀
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₃
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, J) :|: X₃ ≤ X₀ ∧ I+1 ≤ 0
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, J) :|: X₃ ≤ X₀ ∧ 1 ≤ I
t₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, 0, X₁, X₄, X₅, X₆, X₇) :|: X₁+1 ≤ X₀
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₁
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, J) :|: X₄ ≤ X₀
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, J) :|: X₄ ≤ X₀
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇) :|: X₄ ≤ X₀
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄
t₁₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄
t₁₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇) :|: X₄ ≤ X₀
Preprocessing
Cut unsatisfiable transition t₃: l6→l6
Cut unsatisfiable transition t₄: l7→l7
Cut unsatisfiable transition t₁₀: l9→l9
Eliminate variables {X₅,X₆,X₇} that do not contribute to the problem
Found invariant X₀ ≤ X₁ for location l2
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l6
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l7
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l8
Found invariant X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l1
Found invariant X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ for location l4
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l9
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3
Cut unsatisfiable transition t₆₉: l8→l8
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: I, J, K
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₅₂: l0(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄)
t₅₃: l1(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₀ ∧ J ≤ I ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₄: l1(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, J, X₄, X₄+1) :|: X₄ ≤ X₀ ∧ 1+K ≤ I ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₅: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₁, X₄) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₆: l1(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₇: l1(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₈: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0 ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₉: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₀: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁+1, 0, X₃, X₄) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₁: l4(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₀ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀
t₆₂: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁+1, X₂, X₃, X₄) :|: 1+X₀ ≤ X₃ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀
t₆₃: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₀ ∧ I+1 ≤ 0 ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀
t₆₄: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₀ ∧ 1 ≤ I ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀
t₆₅: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, 0, X₁, X₄) :|: X₁+1 ≤ X₀
t₆₆: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₁
t₆₇: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₈: l7(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₇₀: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₇₁: l9(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
MPRF for transition t₅₃: l1(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₀ ∧ J ≤ I ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₄+1 {O(n)}
MPRF for transition t₅₄: l1(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, J, X₄, X₄+1) :|: X₄ ≤ X₀ ∧ 1+K ≤ I ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₄+1 {O(n)}
MPRF for transition t₅₅: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₁, X₄) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF for transition t₅₆: l1(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁+1 {O(n)}
MPRF for transition t₅₇: l1(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁+1 {O(n)}
MPRF for transition t₅₈: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0 ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF for transition t₅₉: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF for transition t₆₀: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁+1, 0, X₃, X₄) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF for transition t₆₂: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁+1, X₂, X₃, X₄) :|: 1+X₀ ≤ X₃ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF for transition t₆₅: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, 0, X₁, X₄) :|: X₁+1 ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
MPRF for transition t₆₇: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁+1 {O(n)}
MPRF for transition t₆₈: l7(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁+1 {O(n)}
MPRF for transition t₆₁: l4(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₀ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
MPRF for transition t₆₃: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₀ ∧ I+1 ≤ 0 ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
MPRF for transition t₆₄: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₀ ∧ 1 ≤ I ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
MPRF for transition t₇₀: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
MPRF for transition t₇₁: l9(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
Chain transitions t₆₈: l7→l3 and t₆₀: l3→l5 to t₂₁₃: l7→l5
Chain transitions t₅₅: l1→l3 and t₆₀: l3→l5 to t₂₁₄: l1→l5
Chain transitions t₅₅: l1→l3 and t₅₉: l3→l4 to t₂₁₅: l1→l4
Chain transitions t₆₈: l7→l3 and t₅₉: l3→l4 to t₂₁₆: l7→l4
Chain transitions t₅₅: l1→l3 and t₅₈: l3→l4 to t₂₁₇: l1→l4
Chain transitions t₆₈: l7→l3 and t₅₈: l3→l4 to t₂₁₈: l7→l4
Chain transitions t₂₁₃: l7→l5 and t₆₆: l5→l2 to t₂₁₉: l7→l2
Chain transitions t₆₂: l4→l5 and t₆₆: l5→l2 to t₂₂₀: l4→l2
Chain transitions t₆₂: l4→l5 and t₆₅: l5→l1 to t₂₂₁: l4→l1
Chain transitions t₂₁₃: l7→l5 and t₆₅: l5→l1 to t₂₂₂: l7→l1
Chain transitions t₂₁₄: l1→l5 and t₆₅: l5→l1 to t₂₂₃: l1→l1
Chain transitions t₂₁₄: l1→l5 and t₆₆: l5→l2 to t₂₂₄: l1→l2
Chain transitions t₅₂: l0→l5 and t₆₅: l5→l1 to t₂₂₅: l0→l1
Chain transitions t₅₂: l0→l5 and t₆₆: l5→l2 to t₂₂₆: l0→l2
Chain transitions t₅₇: l1→l6 and t₆₇: l6→l7 to t₂₂₇: l1→l7
Chain transitions t₅₆: l1→l6 and t₆₇: l6→l7 to t₂₂₈: l1→l7
Chain transitions t₂₂₈: l1→l7 and t₂₁₃: l7→l5 to t₂₂₉: l1→l5
Chain transitions t₂₂₇: l1→l7 and t₂₁₃: l7→l5 to t₂₃₀: l1→l5
Chain transitions t₂₂₇: l1→l7 and t₂₁₈: l7→l4 to t₂₃₁: l1→l4
Chain transitions t₂₂₈: l1→l7 and t₂₁₈: l7→l4 to t₂₃₂: l1→l4
Chain transitions t₂₂₇: l1→l7 and t₂₁₆: l7→l4 to t₂₃₃: l1→l4
Chain transitions t₂₂₈: l1→l7 and t₂₁₆: l7→l4 to t₂₃₄: l1→l4
Chain transitions t₂₂₇: l1→l7 and t₆₈: l7→l3 to t₂₃₅: l1→l3
Chain transitions t₂₂₈: l1→l7 and t₆₈: l7→l3 to t₂₃₆: l1→l3
Chain transitions t₂₂₇: l1→l7 and t₂₁₉: l7→l2 to t₂₃₇: l1→l2
Chain transitions t₂₂₈: l1→l7 and t₂₁₉: l7→l2 to t₂₃₈: l1→l2
Chain transitions t₂₂₇: l1→l7 and t₂₂₂: l7→l1 to t₂₃₉: l1→l1
Chain transitions t₂₂₈: l1→l7 and t₂₂₂: l7→l1 to t₂₄₀: l1→l1
Chain transitions t₆₄: l4→l8 and t₇₀: l8→l9 to t₂₄₁: l4→l9
Chain transitions t₆₃: l4→l8 and t₇₀: l8→l9 to t₂₄₂: l4→l9
Chain transitions t₂₄₂: l4→l9 and t₇₁: l9→l4 to t₂₄₃: l4→l4
Chain transitions t₂₄₁: l4→l9 and t₇₁: l9→l4 to t₂₄₄: l4→l4
Analysing control-flow refined program
Found invariant X₀ ≤ X₁ for location l2
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l6
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l7
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l8
Found invariant X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l1
Found invariant X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ for location l4
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l9
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3
knowledge_propagation leads to new time bound X₀+X₄+1 {O(n)} for transition t₂₁₅: l1(X₀, X₁, X₂, X₃, X₄) -{2}> l4(X₀, X₁, X₂, X₁, X₄) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₄+1 {O(n)} for transition t₂₁₇: l1(X₀, X₁, X₂, X₃, X₄) -{2}> l4(X₀, X₁, X₂, X₁, X₄) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₂+1 ≤ 0 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₄+2 {O(n)} for transition t₂₃₁: l1(X₀, X₁, X₂, X₃, X₄) -{4}> l4(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂+1 ≤ 0 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₄+1 {O(n)} for transition t₂₃₂: l1(X₀, X₁, X₂, X₃, X₄) -{4}> l4(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂+1 ≤ 0 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₄+2 {O(n)} for transition t₂₃₃: l1(X₀, X₁, X₂, X₃, X₄) -{4}> l4(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₄+1 {O(n)} for transition t₂₃₄: l1(X₀, X₁, X₂, X₃, X₄) -{4}> l4(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₄+2 {O(n)} for transition t₂₃₉: l1(X₀, X₁, X₂, X₃, X₄) -{5}> l1(X₀, 1+X₁, 0, 1+X₁, X₄) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₄+1 {O(n)} for transition t₂₄₀: l1(X₀, X₁, X₂, X₃, X₄) -{5}> l1(X₀, 1+X₁, 0, 1+X₁, X₄) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
Analysing control-flow refined program
Cut unsatisfiable transition t₆₂: l4→l5
Found invariant X₀ ≤ X₁ for location l2
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l8___2
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l6
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location n_l9___4
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l9___1
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location n_l8___5
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ for location n_l8___6
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ for location n_l9___3
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l7
Found invariant X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l1
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l4
Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3
Found invariant X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ for location n_l4___7
knowledge_propagation leads to new time bound X₀+X₁ {O(n)} for transition t₇₅₆: l4(X₀, X₁, X₂, X₃, X₄) → n_l4___7(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₁ {O(n)} for transition t₇₅₇: l4(X₀, X₁, X₂, X₃, X₄) → n_l8___2(X₀, Arg1_P, X₂, Arg3_P, Arg4_P) :|: X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg1_P ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₁ {O(n)} for transition t₇₅₈: l4(X₀, X₁, X₂, X₃, X₄) → n_l8___2(X₀, Arg1_P, X₂, Arg3_P, Arg4_P) :|: X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg1_P ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₁ {O(n)} for transition t₇₅₉: l4(X₀, X₁, X₂, X₃, X₄) → n_l4___7(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₁ {O(n)} for transition t₇₆₀: l4(X₀, X₁, X₂, X₃, X₄) → n_l8___6(X₀, Arg1_P, X₂, Arg3_P, Arg4_P) :|: X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg1_P ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₀+X₁ {O(n)} for transition t₇₆₁: l4(X₀, X₁, X₂, X₃, X₄) → n_l8___6(X₀, Arg1_P, X₂, Arg3_P, Arg4_P) :|: X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ Arg4_P ∧ 1+Arg1_P ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁ {O(n)} for transition t₇₆₂: n_l8___2(X₀, X₁, X₂, X₃, X₄) → n_l9___1(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁ {O(n)} for transition t₇₆₄: n_l8___6(X₀, X₁, X₂, X₃, X₄) → n_l9___3(X₀, X₁, X₂, X₃, X₄) :|: 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁ {O(n)} for transition t₇₆₅: n_l9___1(X₀, X₁, X₂, X₃, X₄) → n_l4___7(X₀, X₁, X₂, X₃+1, X₄) :|: 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁ {O(n)} for transition t₇₆₆: n_l9___3(X₀, X₁, X₂, X₃, X₄) → n_l4___7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀
MPRF for transition t₇₅₃: n_l4___7(X₀, X₁, X₂, X₃, X₄) → n_l4___7(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
200⋅X₁⋅X₁+288⋅X₀⋅X₄+288⋅X₁⋅X₄+312⋅X₀⋅X₀+512⋅X₀⋅X₁+204⋅X₀+204⋅X₁ {O(n^2)}
MPRF for transition t₇₅₄: n_l4___7(X₀, X₁, X₂, X₃, X₄) → n_l8___5(X₀, Arg1_P, X₂, Arg3_P, Arg4_P) :|: 1+X₀ ≤ Arg4_P ∧ 1+Arg1_P ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
200⋅X₁⋅X₁+270⋅X₀⋅X₄+270⋅X₁⋅X₄+306⋅X₀⋅X₀+506⋅X₀⋅X₁+192⋅X₀+192⋅X₁ {O(n^2)}
MPRF for transition t₇₅₅: n_l4___7(X₀, X₁, X₂, X₃, X₄) → n_l8___5(X₀, Arg1_P, X₂, Arg3_P, Arg4_P) :|: 1+X₀ ≤ Arg4_P ∧ 1+Arg1_P ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
200⋅X₁⋅X₁+270⋅X₀⋅X₄+270⋅X₁⋅X₄+306⋅X₀⋅X₀+506⋅X₀⋅X₁+192⋅X₀+192⋅X₁ {O(n^2)}
MPRF for transition t₇₆₃: n_l8___5(X₀, X₁, X₂, X₃, X₄) → n_l9___4(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
200⋅X₁⋅X₁+288⋅X₀⋅X₄+288⋅X₁⋅X₄+312⋅X₀⋅X₀+512⋅X₀⋅X₁+198⋅X₀+198⋅X₁ {O(n^2)}
MPRF for transition t₇₆₇: n_l9___4(X₀, X₁, X₂, X₃, X₄) → n_l4___7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
200⋅X₁⋅X₁+270⋅X₀⋅X₄+270⋅X₁⋅X₄+306⋅X₀⋅X₀+506⋅X₀⋅X₁+192⋅X₀+192⋅X₁ {O(n^2)}
MPRF for transition t₇₇₉: n_l4___7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁+1, X₂, X₃, X₄) :|: 1+X₀ ≤ X₃ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:135⋅X₀⋅X₄+135⋅X₁⋅X₄+150⋅X₀⋅X₀+235⋅X₀⋅X₁+85⋅X₁⋅X₁+137⋅X₄+180⋅X₁+247⋅X₀+103 {O(n^2)}
t₅₂: 1 {O(1)}
t₅₃: X₀+X₄+1 {O(n)}
t₅₄: X₀+X₄+1 {O(n)}
t₅₅: X₀+X₁ {O(n)}
t₅₆: X₀+X₁+1 {O(n)}
t₅₇: X₀+X₁+1 {O(n)}
t₅₈: X₀+X₁ {O(n)}
t₅₉: X₀+X₁ {O(n)}
t₆₀: X₀+X₁ {O(n)}
t₆₁: 17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
t₆₂: X₀+X₁ {O(n)}
t₆₃: 17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
t₆₄: 17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
t₆₅: X₀+X₁ {O(n)}
t₆₆: 1 {O(1)}
t₆₇: X₀+X₁+1 {O(n)}
t₆₈: X₀+X₁+1 {O(n)}
t₇₀: 17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
t₇₁: 17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
Costbounds
Overall costbound: 135⋅X₀⋅X₄+135⋅X₁⋅X₄+150⋅X₀⋅X₀+235⋅X₀⋅X₁+85⋅X₁⋅X₁+137⋅X₄+180⋅X₁+247⋅X₀+103 {O(n^2)}
t₅₂: 1 {O(1)}
t₅₃: X₀+X₄+1 {O(n)}
t₅₄: X₀+X₄+1 {O(n)}
t₅₅: X₀+X₁ {O(n)}
t₅₆: X₀+X₁+1 {O(n)}
t₅₇: X₀+X₁+1 {O(n)}
t₅₈: X₀+X₁ {O(n)}
t₅₉: X₀+X₁ {O(n)}
t₆₀: X₀+X₁ {O(n)}
t₆₁: 17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
t₆₂: X₀+X₁ {O(n)}
t₆₃: 17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
t₆₄: 17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
t₆₅: X₀+X₁ {O(n)}
t₆₆: 1 {O(1)}
t₆₇: X₀+X₁+1 {O(n)}
t₆₈: X₀+X₁+1 {O(n)}
t₇₀: 17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
t₇₁: 17⋅X₁⋅X₁+27⋅X₀⋅X₄+27⋅X₁⋅X₄+30⋅X₀⋅X₀+47⋅X₀⋅X₁+27⋅X₄+34⋅X₁+47⋅X₀+19 {O(n^2)}
Sizebounds
t₅₂, X₀: X₀ {O(n)}
t₅₂, X₁: X₁ {O(n)}
t₅₂, X₂: X₂ {O(n)}
t₅₂, X₃: X₃ {O(n)}
t₅₂, X₄: X₄ {O(n)}
t₅₃, X₀: X₀ {O(n)}
t₅₃, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₃, X₃: 10⋅X₀+7⋅X₁+9⋅X₄+6 {O(n)}
t₅₃, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₄, X₀: X₀ {O(n)}
t₅₄, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₄, X₃: 6⋅X₀+9⋅X₄+6 {O(n)}
t₅₄, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₅, X₀: X₀ {O(n)}
t₅₅, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₅, X₃: 4⋅X₀+6⋅X₁ {O(n)}
t₅₅, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₆, X₀: X₀ {O(n)}
t₅₆, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₆, X₃: 10⋅X₀+7⋅X₁+9⋅X₄+6 {O(n)}
t₅₆, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₇, X₀: X₀ {O(n)}
t₅₇, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₇, X₃: 16⋅X₀+18⋅X₄+7⋅X₁+12 {O(n)}
t₅₇, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₈, X₀: X₀ {O(n)}
t₅₈, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₈, X₃: 20⋅X₁+27⋅X₄+30⋅X₀+18 {O(n)}
t₅₈, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₉, X₀: X₀ {O(n)}
t₅₉, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₉, X₃: 20⋅X₁+27⋅X₄+30⋅X₀+18 {O(n)}
t₅₉, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₀, X₀: X₀ {O(n)}
t₆₀, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₀, X₂: 0 {O(1)}
t₆₀, X₃: 20⋅X₁+27⋅X₄+30⋅X₀+18 {O(n)}
t₆₀, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₁, X₀: X₀ {O(n)}
t₆₁, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₁, X₃: 34⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+60⋅X₀⋅X₀+94⋅X₀⋅X₁+108⋅X₁+108⋅X₄+154⋅X₀+74 {O(n^2)}
t₆₁, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₂, X₀: X₀ {O(n)}
t₆₂, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₂, X₃: 108⋅X₀⋅X₄+108⋅X₁⋅X₄+120⋅X₀⋅X₀+188⋅X₀⋅X₁+68⋅X₁⋅X₁+216⋅X₁+216⋅X₄+308⋅X₀+148 {O(n^2)}
t₆₂, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₃, X₀: X₀ {O(n)}
t₆₃, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₃, X₃: 34⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+60⋅X₀⋅X₀+94⋅X₀⋅X₁+108⋅X₁+108⋅X₄+154⋅X₀+74 {O(n^2)}
t₆₃, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₄, X₀: X₀ {O(n)}
t₆₄, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₄, X₃: 34⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+60⋅X₀⋅X₀+94⋅X₀⋅X₁+108⋅X₁+108⋅X₄+154⋅X₀+74 {O(n^2)}
t₆₄, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₅, X₀: X₀ {O(n)}
t₆₅, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₅, X₂: 0 {O(1)}
t₆₅, X₃: 4⋅X₀+7⋅X₁ {O(n)}
t₆₅, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₆, X₀: 3⋅X₀ {O(n)}
t₆₆, X₁: 4⋅X₀+7⋅X₁ {O(n)}
t₆₆, X₃: 108⋅X₀⋅X₄+108⋅X₁⋅X₄+120⋅X₀⋅X₀+188⋅X₀⋅X₁+68⋅X₁⋅X₁+236⋅X₁+243⋅X₄+338⋅X₀+X₃+166 {O(n^2)}
t₆₆, X₄: 4⋅X₀+7⋅X₄+4 {O(n)}
t₆₇, X₀: X₀ {O(n)}
t₆₇, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₇, X₃: 14⋅X₁+26⋅X₀+27⋅X₄+18 {O(n)}
t₆₇, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₈, X₀: X₀ {O(n)}
t₆₈, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₈, X₃: 14⋅X₁+26⋅X₀+27⋅X₄+18 {O(n)}
t₆₈, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₇₀, X₀: X₀ {O(n)}
t₇₀, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₇₀, X₃: 34⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+60⋅X₀⋅X₀+94⋅X₀⋅X₁+108⋅X₁+108⋅X₄+154⋅X₀+74 {O(n^2)}
t₇₀, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₇₁, X₀: X₀ {O(n)}
t₇₁, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₇₁, X₃: 34⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+60⋅X₀⋅X₀+94⋅X₀⋅X₁+108⋅X₁+108⋅X₄+154⋅X₀+74 {O(n^2)}
t₇₁, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}