Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1, nondef_2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₅, X₆, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀
t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0
t₁₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: nondef_0 ≤ 0 ∧ 0 ≤ nondef_0
t₁₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₁, X₃, X₄, X₅, X₆, X₇) :|: nondef_0 < 0
t₁₃: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₁, X₃, X₄, X₅, X₆, X₇) :|: 0 < nondef_0
t₂₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀-1, X₃, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₂: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇) :|: nondef_2 < 0
t₂₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇) :|: 0 < nondef_2
t₂₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₇, X₄, X₅, X₆, X₇) :|: nondef_2 ≤ 0 ∧ 0 ≤ nondef_2
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₄, X₃, X₄, X₅, X₆, X₇)
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₂-1, X₅, X₆, X₇)
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: nondef_1 ≤ 0 ∧ 0 ≤ nondef_1
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: nondef_1 < 0 ∧ 0 < X₂
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < nondef_1 ∧ 0 < X₂
t₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
Preprocessing
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l15
Found invariant X₀ ≤ X₅ ∧ X₀ ≤ 0 for location l19
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l17
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location l8
Found invariant X₀ ≤ X₅ ∧ X₀ ≤ 0 for location l16
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l18
Found invariant X₀ ≤ X₅ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1, nondef_2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₅, X₆, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀ ∧ X₀ ≤ X₅
t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₀ ≤ X₅
t₁₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: nondef_0 ≤ 0 ∧ 0 ≤ nondef_0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₁₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₁, X₃, X₄, X₅, X₆, X₇) :|: nondef_0 < 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₁₃: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₁, X₃, X₄, X₅, X₆, X₇) :|: 0 < nondef_0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₂₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₅ ∧ X₀ ≤ 0
t₂₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀-1, X₃, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₂₂: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇) :|: nondef_2 < 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₂₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇) :|: 0 < nondef_2 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₂₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₇, X₄, X₅, X₆, X₇) :|: nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₄, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₂-1, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: nondef_1 < 0 ∧ 0 < X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < nondef_1 ∧ 0 < X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
MPRF for transition t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀ ∧ X₀ ≤ X₅ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₁₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₁, X₃, X₄, X₅, X₆, X₇) :|: nondef_0 < 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₁₃: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₁, X₃, X₄, X₅, X₆, X₇) :|: 0 < nondef_0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₁₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: nondef_0 ≤ 0 ∧ 0 ≤ nondef_0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅+1 {O(n)}
MPRF for transition t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₂₂: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇) :|: nondef_2 < 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₂₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇) :|: 0 < nondef_2 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₂₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₇, X₄, X₅, X₆, X₇) :|: nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₂₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀-1, X₃, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: nondef_1 < 0 ∧ 0 < X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
MPRF for transition t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < nondef_1 ∧ 0 < X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
MPRF for transition t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₂-1, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
MPRF for transition t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
MPRF for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₄, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
Chain transitions t₂₅: l17→l14 and t₁₁: l14→l16 to t₁₆₈: l17→l16
Chain transitions t₉: l13→l14 and t₁₁: l14→l16 to t₁₆₉: l13→l16
Chain transitions t₉: l13→l14 and t₁₀: l14→l15 to t₁₇₀: l13→l15
Chain transitions t₂₅: l17→l14 and t₁₀: l14→l15 to t₁₇₁: l17→l15
Chain transitions t₁₇₁: l17→l15 and t₁₃: l15→l8 to t₁₇₂: l17→l8
Chain transitions t₁₇₀: l13→l15 and t₁₃: l15→l8 to t₁₇₃: l13→l8
Chain transitions t₁₇₀: l13→l15 and t₁₂: l15→l8 to t₁₇₄: l13→l8
Chain transitions t₁₇₁: l17→l15 and t₁₂: l15→l8 to t₁₇₅: l17→l8
Chain transitions t₁₇₀: l13→l15 and t₁₄: l15→l18 to t₁₇₆: l13→l18
Chain transitions t₁₇₁: l17→l15 and t₁₄: l15→l18 to t₁₇₇: l17→l18
Chain transitions t₁₈: l8→l17 and t₁₇₅: l17→l8 to t₁₇₈: l8→l8
Chain transitions t₁₇: l8→l17 and t₁₇₅: l17→l8 to t₁₇₉: l8→l8
Chain transitions t₁₇: l8→l17 and t₁₇₂: l17→l8 to t₁₈₀: l8→l8
Chain transitions t₁₈: l8→l17 and t₁₇₂: l17→l8 to t₁₈₁: l8→l8
Chain transitions t₂₄: l18→l17 and t₁₇₂: l17→l8 to t₁₈₂: l18→l8
Chain transitions t₂₄: l18→l17 and t₁₇₅: l17→l8 to t₁₈₃: l18→l8
Chain transitions t₂₄: l18→l17 and t₁₇₇: l17→l18 to t₁₈₄: l18→l18
Chain transitions t₁₇: l8→l17 and t₁₇₇: l17→l18 to t₁₈₅: l8→l18
Chain transitions t₁₈: l8→l17 and t₁₇₇: l17→l18 to t₁₈₆: l8→l18
Chain transitions t₂₃: l18→l17 and t₁₇₇: l17→l18 to t₁₈₇: l18→l18
Chain transitions t₂₃: l18→l17 and t₁₇₂: l17→l8 to t₁₈₈: l18→l8
Chain transitions t₂₃: l18→l17 and t₁₇₅: l17→l8 to t₁₈₉: l18→l8
Chain transitions t₂₃: l18→l17 and t₁₆₈: l17→l16 to t₁₉₀: l18→l16
Chain transitions t₂₄: l18→l17 and t₁₆₈: l17→l16 to t₁₉₁: l18→l16
Chain transitions t₁₇: l8→l17 and t₁₆₈: l17→l16 to t₁₉₂: l8→l16
Chain transitions t₁₈: l8→l17 and t₁₆₈: l17→l16 to t₁₉₃: l8→l16
Chain transitions t₂₂: l18→l17 and t₁₆₈: l17→l16 to t₁₉₄: l18→l16
Chain transitions t₂₂: l18→l17 and t₁₇₇: l17→l18 to t₁₉₅: l18→l18
Chain transitions t₂₂: l18→l17 and t₁₇₂: l17→l8 to t₁₉₆: l18→l8
Chain transitions t₂₂: l18→l17 and t₁₇₅: l17→l8 to t₁₉₇: l18→l8
Chain transitions t₂₂: l18→l17 and t₁₇₁: l17→l15 to t₁₉₈: l18→l15
Chain transitions t₂₃: l18→l17 and t₁₇₁: l17→l15 to t₁₉₉: l18→l15
Chain transitions t₂₄: l18→l17 and t₁₇₁: l17→l15 to t₂₀₀: l18→l15
Chain transitions t₁₇: l8→l17 and t₁₇₁: l17→l15 to t₂₀₁: l8→l15
Chain transitions t₁₈: l8→l17 and t₁₇₁: l17→l15 to t₂₀₂: l8→l15
Chain transitions t₂₂: l18→l17 and t₂₅: l17→l14 to t₂₀₃: l18→l14
Chain transitions t₂₃: l18→l17 and t₂₅: l17→l14 to t₂₀₄: l18→l14
Chain transitions t₂₄: l18→l17 and t₂₅: l17→l14 to t₂₀₅: l18→l14
Chain transitions t₁₇: l8→l17 and t₂₅: l17→l14 to t₂₀₆: l8→l14
Chain transitions t₁₈: l8→l17 and t₂₅: l17→l14 to t₂₀₇: l8→l14
Chain transitions t₂₀: l7→l5 and t₂₁: l5→l8 to t₂₀₈: l7→l8
Chain transitions t₁₆: l8→l6 and t₁₉: l6→l7 to t₂₀₉: l8→l7
Chain transitions t₁₅: l8→l6 and t₁₉: l6→l7 to t₂₁₀: l8→l7
Chain transitions t₂₁₀: l8→l7 and t₂₀₈: l7→l8 to t₂₁₁: l8→l8
Chain transitions t₂₀₉: l8→l7 and t₂₀₈: l7→l8 to t₂₁₂: l8→l8
Chain transitions t₂₀₉: l8→l7 and t₂₀: l7→l5 to t₂₁₃: l8→l5
Chain transitions t₂₁₀: l8→l7 and t₂₀: l7→l5 to t₂₁₄: l8→l5
Analysing control-flow refined program
Eliminate variables {X₃,X₄} that do not contribute to the problem
Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l15
Found invariant X₀ ≤ X₃ ∧ X₀ ≤ 0 for location l19
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l17
Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7
Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location l8
Found invariant X₀ ≤ X₃ ∧ X₀ ≤ 0 for location l16
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l18
Found invariant X₀ ≤ X₃ for location l14
Analysing control-flow refined program
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___3
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___1
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l15
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___5
Found invariant X₀ ≤ X₅ ∧ X₀ ≤ 0 for location l19
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l7___6
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l17
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l7___2
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___7
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___4
Found invariant X₀ ≤ X₅ ∧ X₀ ≤ 0 for location l16
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l18
Found invariant X₀ ≤ X₅ for location l14
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₇₉₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___7(X₀, X₁, X₂, X₃, X₄, Arg5_P, X₆, X₇) :|: X₁ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ Arg5_P ∧ 0 < X₂ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₇₉₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___7(X₀, X₁, X₂, X₃, X₄, Arg5_P, X₆, X₇) :|: X₁ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ Arg5_P ∧ 0 < X₂ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 4⋅X₅ {O(n)} for transition t₇₈₉: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___6(X₀, X₁, X₂, X₃, X₂-1, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 4⋅X₅ {O(n)} for transition t₇₉₁: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___5(X₀, X₁, X₂, X₃, X₂-1, X₅, X₆, X₇) :|: X₁ ≤ X₄+1 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₄+1 ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 4⋅X₅ {O(n)} for transition t₇₈₇: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___4(X₀, X₁, X₂-1, X₃, X₂-1, X₅, X₆, X₇) :|: X₁ ≤ X₄+1 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₄+1 ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
MPRF for transition t₇₈₆: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___4(X₀, X₁, X₂-1, X₃, X₂-1, X₅, X₆, X₇) :|: 2+X₄ ≤ X₁ ∧ X₂ ≤ X₄+1 ∧ X₂ ≤ X₄+1 ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₂ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₅⋅X₆+4⋅X₅⋅X₇+8⋅X₅⋅X₅ {O(n^2)}
MPRF for transition t₇₈₈: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___2(X₀, X₁, X₂, X₃, X₂-1, X₅, X₆, X₇) :|: 1+X₄ ≤ X₁ ∧ 0 < X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₅⋅X₆+4⋅X₅⋅X₇+8⋅X₅⋅X₅ {O(n^2)}
MPRF for transition t₇₉₀: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___1(X₀, X₁, X₂, X₃, X₂-1, X₅, X₆, X₇) :|: 2+X₄ ≤ X₁ ∧ X₂ ≤ X₄+1 ∧ X₂ ≤ X₄+1 ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₂ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₅⋅X₆+4⋅X₅⋅X₇+8⋅X₅⋅X₅ {O(n^2)}
MPRF for transition t₇₉₂: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___3(X₀, X₁, X₂, X₃, X₄, Arg5_P, X₆, X₇) :|: X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ Arg5_P ∧ 0 < X₂ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
16⋅X₅⋅X₆+16⋅X₅⋅X₇+32⋅X₅⋅X₅ {O(n^2)}
MPRF for transition t₇₉₃: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___3(X₀, X₁, X₂, X₃, X₄, Arg5_P, X₆, X₇) :|: X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ Arg5_P ∧ 0 < X₂ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
16⋅X₅⋅X₅+8⋅X₅⋅X₆+8⋅X₅⋅X₇ {O(n^2)}
MPRF for transition t₈₀₄: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₈₀₅: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:5⋅X₅⋅X₅+5⋅X₅⋅X₇+20⋅X₅+5⋅X₆+13 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: X₅ {O(n)}
t₁₁: 1 {O(1)}
t₁₂: X₅ {O(n)}
t₁₃: X₅ {O(n)}
t₁₄: X₅+1 {O(n)}
t₁₅: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₁₆: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₁₇: X₅ {O(n)}
t₁₈: X₅ {O(n)}
t₁₉: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₂₀: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₂₁: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₂₂: X₅ {O(n)}
t₂₃: X₅ {O(n)}
t₂₄: X₅ {O(n)}
t₂₅: X₅ {O(n)}
t₂₆: 1 {O(1)}
Costbounds
Overall costbound: 5⋅X₅⋅X₅+5⋅X₅⋅X₇+20⋅X₅+5⋅X₆+13 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: X₅ {O(n)}
t₁₁: 1 {O(1)}
t₁₂: X₅ {O(n)}
t₁₃: X₅ {O(n)}
t₁₄: X₅+1 {O(n)}
t₁₅: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₁₆: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₁₇: X₅ {O(n)}
t₁₈: X₅ {O(n)}
t₁₉: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₂₀: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₂₁: X₅⋅X₅+X₅⋅X₇+2⋅X₅+X₆ {O(n^2)}
t₂₂: X₅ {O(n)}
t₂₃: X₅ {O(n)}
t₂₄: X₅ {O(n)}
t₂₅: X₅ {O(n)}
t₂₆: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₉, X₀: X₅ {O(n)}
t₉, X₁: X₆ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₁₀, X₀: X₅ {O(n)}
t₁₀, X₁: 2⋅X₅+X₆+X₇ {O(n)}
t₁₀, X₂: 12⋅X₅+6⋅X₆+6⋅X₇+X₂ {O(n)}
t₁₀, X₃: 4⋅X₆+5⋅X₇+8⋅X₅+X₃ {O(n)}
t₁₀, X₄: 2⋅X₆+2⋅X₇+4⋅X₅+X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₁, X₀: 2⋅X₅ {O(n)}
t₁₁, X₁: 2⋅X₅+2⋅X₆+X₇ {O(n)}
t₁₁, X₂: 12⋅X₅+2⋅X₂+6⋅X₆+6⋅X₇ {O(n)}
t₁₁, X₃: 4⋅X₆+5⋅X₇+8⋅X₅+X₃ {O(n)}
t₁₁, X₄: 2⋅X₄+2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₁₁, X₅: 2⋅X₅ {O(n)}
t₁₁, X₆: 2⋅X₆ {O(n)}
t₁₁, X₇: 2⋅X₇ {O(n)}
t₁₂, X₀: X₅ {O(n)}
t₁₂, X₁: 2⋅X₅+X₆+X₇ {O(n)}
t₁₂, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₁₂, X₃: 4⋅X₆+5⋅X₇+8⋅X₅+X₃ {O(n)}
t₁₂, X₄: 2⋅X₆+2⋅X₇+4⋅X₅+X₄ {O(n)}
t₁₂, X₅: X₅ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₇ {O(n)}
t₁₃, X₀: X₅ {O(n)}
t₁₃, X₁: 2⋅X₅+X₆+X₇ {O(n)}
t₁₃, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₁₃, X₃: 4⋅X₆+5⋅X₇+8⋅X₅+X₃ {O(n)}
t₁₃, X₄: 2⋅X₆+2⋅X₇+4⋅X₅+X₄ {O(n)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁₃, X₇: X₇ {O(n)}
t₁₄, X₀: X₅ {O(n)}
t₁₄, X₁: 2⋅X₅+X₆+X₇ {O(n)}
t₁₄, X₂: 12⋅X₅+6⋅X₆+6⋅X₇+X₂ {O(n)}
t₁₄, X₃: 4⋅X₆+5⋅X₇+8⋅X₅+X₃ {O(n)}
t₁₄, X₄: 2⋅X₆+2⋅X₇+4⋅X₅+X₄ {O(n)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: X₇ {O(n)}
t₁₅, X₀: X₅ {O(n)}
t₁₅, X₁: 2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₁₅, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₁₅, X₃: 10⋅X₇+16⋅X₅+2⋅X₃+8⋅X₆ {O(n)}
t₁₅, X₄: 12⋅X₅+2⋅X₄+6⋅X₆+6⋅X₇ {O(n)}
t₁₅, X₅: X₅ {O(n)}
t₁₅, X₆: X₆ {O(n)}
t₁₅, X₇: X₇ {O(n)}
t₁₆, X₀: X₅ {O(n)}
t₁₆, X₁: 2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₁₆, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₁₆, X₃: 10⋅X₇+16⋅X₅+2⋅X₃+8⋅X₆ {O(n)}
t₁₆, X₄: 12⋅X₅+2⋅X₄+6⋅X₆+6⋅X₇ {O(n)}
t₁₆, X₅: X₅ {O(n)}
t₁₆, X₆: X₆ {O(n)}
t₁₆, X₇: X₇ {O(n)}
t₁₇, X₀: X₅ {O(n)}
t₁₇, X₁: 4⋅X₆+4⋅X₇+8⋅X₅ {O(n)}
t₁₇, X₂: 3⋅X₆+3⋅X₇+6⋅X₅ {O(n)}
t₁₇, X₃: 2⋅X₅+X₆+X₇ {O(n)}
t₁₇, X₄: 2⋅X₆+2⋅X₇+4⋅X₅+X₄ {O(n)}
t₁₇, X₅: X₅ {O(n)}
t₁₇, X₆: X₆ {O(n)}
t₁₇, X₇: X₇ {O(n)}
t₁₈, X₀: X₅ {O(n)}
t₁₈, X₁: 4⋅X₆+4⋅X₇+8⋅X₅ {O(n)}
t₁₈, X₂: 3⋅X₆+3⋅X₇+6⋅X₅ {O(n)}
t₁₈, X₃: 2⋅X₅+X₆+X₇ {O(n)}
t₁₈, X₄: 2⋅X₆+2⋅X₇+4⋅X₅+X₄ {O(n)}
t₁₈, X₅: X₅ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₇: X₇ {O(n)}
t₁₉, X₀: X₅ {O(n)}
t₁₉, X₁: 2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₁₉, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₁₉, X₃: 10⋅X₇+16⋅X₅+2⋅X₃+8⋅X₆ {O(n)}
t₁₉, X₄: 2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₁₉, X₅: X₅ {O(n)}
t₁₉, X₆: X₆ {O(n)}
t₁₉, X₇: X₇ {O(n)}
t₂₀, X₀: X₅ {O(n)}
t₂₀, X₁: 2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₂₀, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₂₀, X₃: 10⋅X₇+16⋅X₅+2⋅X₃+8⋅X₆ {O(n)}
t₂₀, X₄: 2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₂₀, X₅: X₅ {O(n)}
t₂₀, X₆: X₆ {O(n)}
t₂₀, X₇: X₇ {O(n)}
t₂₁, X₀: X₅ {O(n)}
t₂₁, X₁: 2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₂₁, X₂: 2⋅X₅+X₆+X₇ {O(n)}
t₂₁, X₃: 10⋅X₇+16⋅X₅+2⋅X₃+8⋅X₆ {O(n)}
t₂₁, X₄: 2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₂₁, X₅: X₅ {O(n)}
t₂₁, X₆: X₆ {O(n)}
t₂₁, X₇: X₇ {O(n)}
t₂₂, X₀: X₅ {O(n)}
t₂₂, X₁: 2⋅X₅+X₆+X₇ {O(n)}
t₂₂, X₂: 12⋅X₅+6⋅X₆+6⋅X₇+X₂ {O(n)}
t₂₂, X₃: 2⋅X₅+X₆+X₇ {O(n)}
t₂₂, X₄: 2⋅X₆+2⋅X₇+4⋅X₅+X₄ {O(n)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₇: X₇ {O(n)}
t₂₃, X₀: X₅ {O(n)}
t₂₃, X₁: 2⋅X₅+X₆+X₇ {O(n)}
t₂₃, X₂: 12⋅X₅+6⋅X₆+6⋅X₇+X₂ {O(n)}
t₂₃, X₃: 2⋅X₅+X₆+X₇ {O(n)}
t₂₃, X₄: 2⋅X₆+2⋅X₇+4⋅X₅+X₄ {O(n)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₇: X₇ {O(n)}
t₂₄, X₀: X₅ {O(n)}
t₂₄, X₁: 2⋅X₅+X₆+X₇ {O(n)}
t₂₄, X₂: 12⋅X₅+6⋅X₆+6⋅X₇+X₂ {O(n)}
t₂₄, X₃: X₇ {O(n)}
t₂₄, X₄: 2⋅X₆+2⋅X₇+4⋅X₅+X₄ {O(n)}
t₂₄, X₅: X₅ {O(n)}
t₂₄, X₆: X₆ {O(n)}
t₂₄, X₇: X₇ {O(n)}
t₂₅, X₀: X₅ {O(n)}
t₂₅, X₁: 2⋅X₅+X₆+X₇ {O(n)}
t₂₅, X₂: 12⋅X₅+6⋅X₆+6⋅X₇+X₂ {O(n)}
t₂₅, X₃: 4⋅X₆+5⋅X₇+8⋅X₅ {O(n)}
t₂₅, X₄: 2⋅X₆+2⋅X₇+4⋅X₅+X₄ {O(n)}
t₂₅, X₅: X₅ {O(n)}
t₂₅, X₆: X₆ {O(n)}
t₂₅, X₇: X₇ {O(n)}
t₂₆, X₀: 2⋅X₅ {O(n)}
t₂₆, X₁: 2⋅X₅+2⋅X₆+X₇ {O(n)}
t₂₆, X₂: 12⋅X₅+2⋅X₂+6⋅X₆+6⋅X₇ {O(n)}
t₂₆, X₃: 4⋅X₆+5⋅X₇+8⋅X₅+X₃ {O(n)}
t₂₆, X₄: 2⋅X₄+2⋅X₆+2⋅X₇+4⋅X₅ {O(n)}
t₂₆, X₅: 2⋅X₅ {O(n)}
t₂₆, X₆: 2⋅X₆ {O(n)}
t₂₆, X₇: 2⋅X₇ {O(n)}