Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₆: l0(X₀, X₁, X₂, X₃) → l1(E, 0, X₂, 0)
t₀: l1(X₀, X₁, X₂, X₃) → l2(X₀, 0, E, X₃) :|: X₀ ≤ 0 ∧ 1 ≤ E
t₅: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 1 ≤ X₀
t₄: l2(X₀, X₁, X₂, X₃) → l1(E, X₁, X₂, 0) :|: X₂ ≤ 0
t₁: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 1 ≤ X₂
t₂: l3(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₃: l5(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
Cut unreachable locations [l4; l5] from the program graph
Cut unsatisfiable transition t₄: l2→l1
Eliminate variables {X₁,X₃} that do not contribute to the problem
Found invariant 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l2
Found invariant 1 ≤ X₀ for location l3
Start: l0
Program_Vars: X₀, X₁
Temp_Vars: E
Locations: l0, l1, l2, l3
Transitions:
t₁₅: l0(X₀, X₁) → l1(E, X₁)
t₁₆: l1(X₀, X₁) → l2(X₀, E) :|: X₀ ≤ 0 ∧ 1 ≤ E
t₁₇: l1(X₀, X₁) → l3(X₀, X₁) :|: 1 ≤ X₀
t₁₈: l2(X₀, X₁) → l2(X₀, X₁) :|: 1 ≤ X₁ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₁₉: l3(X₀, X₁) → l3(X₀, X₁) :|: 1 ≤ X₀
Found invariant 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l2
Found invariant 1 ≤ X₀ for location l3
Found invariant 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l2
Found invariant 1 ≤ X₀ for location l3
Overall timebound:inf {Infinity}
t₁₅: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: 1 {O(1)}
t₁₈: inf {Infinity}
t₁₉: inf {Infinity}
Overall costbound: inf {Infinity}
t₁₅: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: 1 {O(1)}
t₁₈: inf {Infinity}
t₁₉: inf {Infinity}
t₁₅, X₁: X₁ {O(n)}
t₁₇, X₁: X₁ {O(n)}
t₁₉, X₁: X₁ {O(n)}