Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇
Temp_Vars: S, T, U, V, W, X
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l1(X₀, 1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₀ ≤ 0
t₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l1(X₀, 1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 2 ≤ X₀
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l3(1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 1+X₀ ≤ X₁
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l4(X₀, X₁, X₁+1, S, T, 1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₁ ≤ X₀
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₅ ≤ X₁
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l3(X₀, X₁, X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 1+X₁ ≤ X₅ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l6(X₀, X₁, X₂, X₃, X₄, 1, S, T, U, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₂+1 ≤ X₀ ∧ 1+X₁ ≤ X₅
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l6(X₀, X₁, X₂, X₃, X₄, 1, S, T, U, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₅
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l2(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₄+1 ≤ 0 ∧ 1+X₁ ≤ X₅
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l2(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 1 ≤ X₄ ∧ 1+X₁ ≤ X₅
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l2(X₀, X₁, X₂, X₃, 0, 1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 1+X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l4(X₀, X₁, X₂, X₃+S*T, X₄+U*V, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₅ ≤ X₁
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: 1+X₉ ≤ X₅
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀-1, S, T, U, V, X₁₀, X₁₆, X₁₇) :|: X₅ ≤ X₉
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l5(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇, X₈, S, X₁, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, T, U) :|: 2⋅V ≤ X₁+1 ∧ X₁+2 ≤ 3⋅V ∧ S ≤ V ∧ 2⋅W ≤ X₁+1 ∧ X₁+2 ≤ 3⋅W ∧ W ≤ S ∧ 1+X₁ ≤ X₅
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆+S*T, X₇+U*V, X₈+W*X, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇) :|: X₅ ≤ X₁
Preprocessing
Eliminate variables {X,X₃,X₆,X₇,X₈,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇} that do not contribute to the problem
Found invariant X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 3 ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 2 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 2 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 3 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant X₁ ≤ 2 ∧ 1 ≤ X₁ for location l1
Found invariant X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Found invariant X₀ ≤ 3 for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: S, T, U, V, W
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₃₄: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, 1, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0
t₃₅: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, 1, X₂, X₃, X₄, X₅) :|: 2 ≤ X₀
t₃₆: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l3(1, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₃₇: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₀ ≤ X₁ ∧ X₁ ≤ 2 ∧ 1 ≤ X₁
t₃₈: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₁+1, T, 1, X₅) :|: X₁ ≤ X₀ ∧ X₁ ≤ 2 ∧ 1 ≤ X₁
t₃₉: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: X₄ ≤ X₁ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₀: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₀, X₃, X₄, X₅) :|: 1+X₁ ≤ X₄ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, 1, X₅) :|: X₂+1 ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₂: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, 1, X₅) :|: 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, 1, X₅) :|: X₃+1 ≤ 0 ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₄: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, 1, X₅) :|: 1 ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, 0, 1, X₅) :|: 1+X₁ ≤ X₄ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃+U*V, X₄+1, X₅) :|: X₄ ≤ X₁ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 3 ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 2 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 2 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 3 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₈: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: X₄ ≤ X₅ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 3 ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 2 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 2 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 3 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₉: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, 1, S) :|: 2⋅V ≤ X₁+1 ∧ X₁+2 ≤ 3⋅V ∧ S ≤ V ∧ 2⋅W ≤ X₁+1 ∧ X₁+2 ≤ 3⋅W ∧ W ≤ S ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅₀: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: X₄ ≤ X₁ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
MPRF for transition t₃₈: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₁+1, T, 1, X₅) :|: X₁ ≤ X₀ ∧ X₁ ≤ 2 ∧ 1 ≤ X₁ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₃₉: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: X₄ ≤ X₁ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
6 {O(1)}
MPRF for transition t₄₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, 1, X₅) :|: X₂+1 ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4 {O(1)}
MPRF for transition t₄₂: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, 1, X₅) :|: 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4 {O(1)}
MPRF for transition t₄₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, 1, X₅) :|: X₃+1 ≤ 0 ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4 {O(1)}
MPRF for transition t₄₄: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, 1, X₅) :|: 1 ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
7 {O(1)}
MPRF for transition t₄₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, 0, 1, X₅) :|: 1+X₁ ≤ X₄ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4 {O(1)}
MPRF for transition t₄₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃+Temp_Int₈₃₂, X₄+1, X₅) :|: X₄ ≤ X₁ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
5 {O(1)}
MPRF for transition t₄₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 3 ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 2 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 2 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 3 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀+1 {O(n)}
MPRF for transition t₄₈: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: X₄ ≤ X₅ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 3 ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 2 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 2 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 3 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
5 {O(1)}
MPRF for transition t₄₉: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, 1, S) :|: 2⋅V ≤ X₁+1 ∧ X₁+2 ≤ 3⋅V ∧ S ≤ V ∧ 2⋅W ≤ X₁+1 ∧ X₁+2 ≤ 3⋅W ∧ W ≤ S ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4 {O(1)}
MPRF for transition t₅₀: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: X₄ ≤ X₁ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 5 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 2+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 3 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 5 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
6 {O(1)}
knowledge_propagation leads to new time bound 5 {O(1)} for transition t₄₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 3 ∧ 1+X₅ ≤ X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 2 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 4 ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 3 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ 2 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 3 ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 6 {O(1)} for transition t₃₈: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₁+1, T, 1, X₅) :|: X₁ ≤ X₀ ∧ X₁ ≤ 2 ∧ 1 ≤ X₁
All Bounds
Timebounds
Overall timebound:65 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 1 {O(1)}
t₃₇: 1 {O(1)}
t₃₈: 6 {O(1)}
t₃₉: 6 {O(1)}
t₄₀: 1 {O(1)}
t₄₁: 4 {O(1)}
t₄₂: 4 {O(1)}
t₄₃: 4 {O(1)}
t₄₄: 7 {O(1)}
t₄₅: 4 {O(1)}
t₄₆: 5 {O(1)}
t₄₇: 5 {O(1)}
t₄₈: 5 {O(1)}
t₄₉: 4 {O(1)}
t₅₀: 6 {O(1)}
Costbounds
Overall costbound: 65 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 1 {O(1)}
t₃₇: 1 {O(1)}
t₃₈: 6 {O(1)}
t₃₉: 6 {O(1)}
t₄₀: 1 {O(1)}
t₄₁: 4 {O(1)}
t₄₂: 4 {O(1)}
t₄₃: 4 {O(1)}
t₄₄: 7 {O(1)}
t₄₅: 4 {O(1)}
t₄₆: 5 {O(1)}
t₄₇: 5 {O(1)}
t₄₈: 5 {O(1)}
t₄₉: 4 {O(1)}
t₅₀: 6 {O(1)}
Sizebounds
t₃₄, X₀: X₀ {O(n)}
t₃₄, X₁: 1 {O(1)}
t₃₄, X₂: X₂ {O(n)}
t₃₄, X₃: X₃ {O(n)}
t₃₄, X₄: X₄ {O(n)}
t₃₄, X₅: X₅ {O(n)}
t₃₅, X₀: X₀ {O(n)}
t₃₅, X₁: 1 {O(1)}
t₃₅, X₂: X₂ {O(n)}
t₃₅, X₃: X₃ {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₅, X₅: X₅ {O(n)}
t₃₆, X₀: 1 {O(1)}
t₃₆, X₁: X₁ {O(n)}
t₃₆, X₂: X₂ {O(n)}
t₃₆, X₃: X₃ {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₅: X₅ {O(n)}
t₃₇, X₀: 2⋅X₀+2 {O(n)}
t₃₇, X₁: 2 {O(1)}
t₃₇, X₂: X₂+2 {O(n)}
t₃₇, X₄: X₄+2 {O(n)}
t₃₇, X₅: X₅+1 {O(n)}
t₃₈, X₀: X₀+2 {O(n)}
t₃₈, X₁: 2 {O(1)}
t₃₈, X₂: 3 {O(1)}
t₃₈, X₄: 1 {O(1)}
t₃₈, X₅: X₅+1 {O(n)}
t₃₉, X₀: X₀+2 {O(n)}
t₃₉, X₁: 2 {O(1)}
t₃₉, X₂: 3 {O(1)}
t₃₉, X₄: 3 {O(1)}
t₃₉, X₅: 3⋅X₅+3 {O(n)}
t₄₀, X₀: 3 {O(1)}
t₄₀, X₁: 2 {O(1)}
t₄₀, X₂: 3 {O(1)}
t₄₀, X₄: 3 {O(1)}
t₄₀, X₅: 3⋅X₅+3 {O(n)}
t₄₁, X₀: X₀+2 {O(n)}
t₄₁, X₁: 2 {O(1)}
t₄₁, X₂: 3 {O(1)}
t₄₁, X₄: 1 {O(1)}
t₄₁, X₅: 3⋅X₅+3 {O(n)}
t₄₂, X₀: 2 {O(1)}
t₄₂, X₁: 2 {O(1)}
t₄₂, X₂: 3 {O(1)}
t₄₂, X₄: 1 {O(1)}
t₄₂, X₅: 3⋅X₅+3 {O(n)}
t₄₃, X₀: X₀+2 {O(n)}
t₄₃, X₁: 2 {O(1)}
t₄₃, X₂: 3 {O(1)}
t₄₃, X₄: 1 {O(1)}
t₄₃, X₅: X₅+1 {O(n)}
t₄₄, X₀: X₀+2 {O(n)}
t₄₄, X₁: 2 {O(1)}
t₄₄, X₂: 3 {O(1)}
t₄₄, X₄: 1 {O(1)}
t₄₄, X₅: X₅+1 {O(n)}
t₄₅, X₀: X₀+2 {O(n)}
t₄₅, X₁: 2 {O(1)}
t₄₅, X₂: 3 {O(1)}
t₄₅, X₃: 0 {O(1)}
t₄₅, X₄: 1 {O(1)}
t₄₅, X₅: X₅+1 {O(n)}
t₄₆, X₀: X₀+2 {O(n)}
t₄₆, X₁: 2 {O(1)}
t₄₆, X₂: 3 {O(1)}
t₄₆, X₄: 3 {O(1)}
t₄₆, X₅: X₅+1 {O(n)}
t₄₇, X₀: X₀+2 {O(n)}
t₄₇, X₁: 2 {O(1)}
t₄₇, X₂: 2 {O(1)}
t₄₇, X₄: 2 {O(1)}
t₄₇, X₅: 1 {O(1)}
t₄₈, X₀: X₀+2 {O(n)}
t₄₈, X₁: 1 {O(1)}
t₄₈, X₂: 2 {O(1)}
t₄₈, X₄: 2 {O(1)}
t₄₈, X₅: 1 {O(1)}
t₄₉, X₀: X₀+2 {O(n)}
t₄₉, X₁: 1 {O(1)}
t₄₉, X₂: 2 {O(1)}
t₄₉, X₄: 1 {O(1)}
t₄₉, X₅: 1 {O(1)}
t₅₀, X₀: X₀+2 {O(n)}
t₅₀, X₁: 2 {O(1)}
t₅₀, X₂: 3 {O(1)}
t₅₀, X₄: 3 {O(1)}
t₅₀, X₅: 6⋅X₅+6 {O(n)}