Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: P, Q
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, 0, X₃, X₃, X₅, X₅, 3, Q, 0, 0, 3, Q, 2, X₁₃, X₁₄) :|: Q ≤ 7 ∧ Q ≤ 3 ∧ 1 ≤ Q
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, 0, X₃, X₃, X₅, X₅, 3, Q, 0, 0, 3, Q, 2, X₁₃, X₁₄) :|: Q ≤ 7 ∧ 5 ≤ Q
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, 0, X₃+1, X₃+1, X₅+1, X₅+1, 3, 4, 1, 0, 3, 4, 2, X₁₃, X₁₄)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀-1, 1, X₃, X₃, X₅, X₅, Q, P, 0, 1, Q, P, 7, X₁₃, X₁₄) :|: 1 ≤ X₀ ∧ P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, 1, X₃, X₃, X₅, X₅, Q, P, 0, 1, Q, P, 7, X₁₃, X₁₄) :|: P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, 1, X₃+1, X₃+1, X₅+1, X₅+1, Q, 4, 1, 1, Q, 4, 7, X₁₃, X₁₄) :|: Q ≤ 7 ∧ 1 ≤ Q
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, 1, X₃, X₃, X₅, X₅, Q, P, X₈, 1, Q, P, 7, X₁₃, X₁₄) :|: P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, 1, X₃, X₃, X₅, X₅, Q, P, X₈, 1, Q, P, 7, X₁₃, X₁₄) :|: P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, 1, X₃+1, X₃+1, X₅+1, X₅+1, Q, 4, 1, 1, Q, 4, 7, X₁₃, X₁₄) :|: Q ≤ 7 ∧ 1 ≤ Q
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, 0, X₃, X₃, X₅, X₅, Q, P, X₈, 0, Q, P, 3, X₁₃, X₁₄) :|: P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, 0, X₃, X₃, X₅, X₅, Q, P, X₈, 0, Q, P, 3, X₁₃, X₁₄) :|: P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, 0, X₃+1, X₃+1, X₅+1, X₅+1, Q, 4, 1, 0, Q, 4, 3, X₁₃, X₁₄) :|: Q ≤ 7 ∧ 1 ≤ Q
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, 1, X₃, X₃, X₅, X₅, Q, P, X₈, 1, Q, P, 6, X₁₃, X₁₄) :|: P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, 1, X₃, X₃, X₅, X₅, Q, P, X₈, 1, Q, P, 6, X₁₃, X₁₄) :|: P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, 1, X₃+1, X₃+1, X₅+1, X₅+1, Q, 4, 1, 1, Q, 4, 6, X₁₃, X₁₄) :|: Q ≤ 7 ∧ 1 ≤ Q
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, 0, X₃, X₃, X₅, X₅, Q, P, 1, 0, Q, P, 2, X₁₃, X₁₄) :|: 1 ≤ X₁₃ ∧ X₅+1 ≤ X₁₃ ∧ 1 ≤ X₁₄ ∧ X₃+1 ≤ X₁₄ ∧ P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q ∧ X₈ ≤ 1 ∧ 1 ≤ X₈
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, 0, X₃, X₃, X₅, X₅, Q, P, 1, 0, Q, P, 2, X₁₃, X₁₄) :|: 1 ≤ X₁₃ ∧ X₅+1 ≤ X₁₃ ∧ 1 ≤ X₁₄ ∧ X₃+1 ≤ X₁₄ ∧ P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q ∧ X₈ ≤ 1 ∧ 1 ≤ X₈
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, 0, X₃+1, X₃+1, X₅+1, X₅+1, Q, 4, 1, 0, Q, 4, 2, X₁₃, X₁₄) :|: X₅+2 ≤ X₁₃ ∧ X₃+2 ≤ X₁₄ ∧ 1 ≤ X₁₃ ∧ 1 ≤ X₁₄ ∧ Q ≤ 7 ∧ 1 ≤ Q
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, 0, X₃, X₃, X₅, X₅, Q, P, X₈, 0, Q, P, 7, X₁₃, X₁₄) :|: X₁₃ ≤ X₅ ∧ X₁₄ ≤ X₃ ∧ P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q
t₂₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, 0, X₃, X₃, X₅, X₅, Q, P, X₈, 0, Q, P, 7, X₁₃, X₁₄) :|: X₁₃ ≤ X₅ ∧ X₁₄ ≤ X₃ ∧ P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, 0, X₃+1, X₃+1, X₅+1, X₅+1, Q, 4, 1, 0, Q, 4, 7, X₁₃, X₁₄) :|: X₁₃ ≤ X₅+1 ∧ X₁₄ ≤ X₃+1 ∧ Q ≤ 7 ∧ 1 ≤ Q
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, 1, X₃, X₃, X₅, X₅, Q, P, X₈, 1, Q, P, 7, X₁₃, X₁₄) :|: P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, 1, X₃, X₃, X₅, X₅, Q, P, X₈, 1, Q, P, 7, X₁₃, X₁₄) :|: P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, 1, X₃+1, X₃+1, X₅+1, X₅+1, Q, 4, 1, 1, Q, 4, 7, X₁₃, X₁₄) :|: Q ≤ 7 ∧ 1 ≤ Q
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, 1, X₃, X₃, X₅, X₅, Q, 2, 0, 1, Q, 2, 4, X₁₃, X₁₄) :|: 1 ≤ Q ∧ Q ≤ 7
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, Q, X₃, X₃, X₅, X₅, P, 7, 1, Q, P, 7, 4, X₁₃, X₁₄) :|: P ≤ 7 ∧ Q ≤ 1 ∧ 0 ≤ Q ∧ 1 ≤ P ∧ X₈ ≤ 1 ∧ 1 ≤ X₈

Preprocessing

Eliminate variables {X₁,X₂,X₄,X₆,X₇,X₉,X₁₀,X₁₁,X₁₂} that do not contribute to the problem

Found invariant X₃ ≤ 1 ∧ 0 ≤ X₃ for location l2

Found invariant X₃ ≤ 1 ∧ 0 ≤ X₃ for location l6

Found invariant X₃ ≤ 1 ∧ 0 ≤ X₃ for location l5

Found invariant X₃ ≤ 1 ∧ 0 ≤ X₃ for location l4

Found invariant X₃ ≤ 1 ∧ 0 ≤ X₃ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: P, Q
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₅₃: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₄, X₅)
t₅₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, 0, X₄, X₅) :|: Q ≤ 7 ∧ Q ≤ 3 ∧ 1 ≤ Q
t₅₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, 0, X₄, X₅) :|: Q ≤ 7 ∧ 5 ≤ Q
t₅₆: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁+1, X₂+1, 1, X₄, X₅)
t₅₇: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀-1, X₁, X₂, 0, X₄, X₅) :|: 1 ≤ X₀ ∧ P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q
t₅₈: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, 0, X₄, X₅) :|: P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q
t₅₉: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁+1, X₂+1, 1, X₄, X₅) :|: Q ≤ 7 ∧ 1 ≤ Q
t₆₀: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₆₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₆₂: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁+1, X₂+1, 1, X₄, X₅) :|: Q ≤ 7 ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₆₃: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₆₄: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₆₅: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁+1, X₂+1, 1, X₄, X₅) :|: Q ≤ 7 ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₆₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₆₇: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₆₈: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁+1, X₂+1, 1, X₄, X₅) :|: Q ≤ 7 ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₆₉: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, 1, X₄, X₅) :|: 1 ≤ X₄ ∧ X₂+1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₁+1 ≤ X₅ ∧ P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₇₀: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, 1, X₄, X₅) :|: 1 ≤ X₄ ∧ X₂+1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₁+1 ≤ X₅ ∧ P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₇₁: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁+1, X₂+1, 1, X₄, X₅) :|: X₂+2 ≤ X₄ ∧ X₁+2 ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ Q ≤ 7 ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₂ ∧ X₅ ≤ X₁ ∧ P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₂ ∧ X₅ ≤ X₁ ∧ P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₇₄: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁+1, X₂+1, 1, X₄, X₅) :|: X₄ ≤ X₂+1 ∧ X₅ ≤ X₁+1 ∧ Q ≤ 7 ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: P ≤ 7 ∧ Q ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₇₆: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: P ≤ 7 ∧ Q ≤ 7 ∧ 5 ≤ P ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₇₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁+1, X₂+1, 1, X₄, X₅) :|: Q ≤ 7 ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₇₈: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, 0, X₄, X₅) :|: 1 ≤ Q ∧ Q ≤ 7 ∧ X₃ ≤ 1 ∧ 0 ≤ X₃
t₇₉: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, 1, X₄, X₅) :|: P ≤ 7 ∧ Q ≤ 1 ∧ 0 ≤ Q ∧ 1 ≤ P ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃

MPRF for transition t₇₁: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁+1, X₂+1, 1, X₄, X₅) :|: X₂+2 ≤ X₄ ∧ X₁+2 ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ Q ≤ 7 ∧ 1 ≤ Q ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ of depth 1:

new bound:

3⋅X₂+3⋅X₄+4 {O(n)}

MPRF for transition t₇₈: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, 0, X₄, X₅) :|: 1 ≤ Q ∧ Q ≤ 7 ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ of depth 1:

new bound:

9⋅X₂+9⋅X₄+19 {O(n)}

Chain transitions t₇₁: l5→l2 and t₆₅: l2→l4 to t₁₇₉₃: l5→l4

Chain transitions t₇₀: l5→l2 and t₆₅: l2→l4 to t₁₇₉₄: l5→l4

Chain transitions t₇₀: l5→l2 and t₆₄: l2→l4 to t₁₇₉₅: l5→l4

Chain transitions t₇₁: l5→l2 and t₆₄: l2→l4 to t₁₇₉₆: l5→l4

Chain transitions t₆₉: l5→l2 and t₆₄: l2→l4 to t₁₇₉₇: l5→l4

Chain transitions t₆₉: l5→l2 and t₆₅: l2→l4 to t₁₇₉₈: l5→l4

Chain transitions t₆₉: l5→l2 and t₆₃: l2→l4 to t₁₇₉₉: l5→l4

Chain transitions t₇₀: l5→l2 and t₆₃: l2→l4 to t₁₈₀₀: l5→l4

Chain transitions t₇₁: l5→l2 and t₆₃: l2→l4 to t₁₈₀₁: l5→l4

Chain transitions t₅₆: l1→l2 and t₆₃: l2→l4 to t₁₈₀₂: l1→l4

Chain transitions t₅₆: l1→l2 and t₆₄: l2→l4 to t₁₈₀₃: l1→l4

Chain transitions t₅₆: l1→l2 and t₆₅: l2→l4 to t₁₈₀₄: l1→l4

Chain transitions t₅₆: l1→l2 and t₆₂: l2→l3 to t₁₈₀₅: l1→l3

Chain transitions t₆₉: l5→l2 and t₆₂: l2→l3 to t₁₈₀₆: l5→l3

Chain transitions t₇₀: l5→l2 and t₆₂: l2→l3 to t₁₈₀₇: l5→l3

Chain transitions t₇₁: l5→l2 and t₆₂: l2→l3 to t₁₈₀₈: l5→l3

Chain transitions t₅₅: l1→l2 and t₆₂: l2→l3 to t₁₈₀₉: l1→l3

Chain transitions t₅₅: l1→l2 and t₆₃: l2→l4 to t₁₈₁₀: l1→l4

Chain transitions t₅₅: l1→l2 and t₆₄: l2→l4 to t₁₈₁₁: l1→l4

Chain transitions t₅₅: l1→l2 and t₆₅: l2→l4 to t₁₈₁₂: l1→l4

Chain transitions t₅₅: l1→l2 and t₆₁: l2→l3 to t₁₈₁₃: l1→l3

Chain transitions t₅₆: l1→l2 and t₆₁: l2→l3 to t₁₈₁₄: l1→l3

Chain transitions t₆₉: l5→l2 and t₆₁: l2→l3 to t₁₈₁₅: l5→l3

Chain transitions t₇₀: l5→l2 and t₆₁: l2→l3 to t₁₈₁₆: l5→l3

Chain transitions t₇₁: l5→l2 and t₆₁: l2→l3 to t₁₈₁₇: l5→l3

Chain transitions t₅₄: l1→l2 and t₆₁: l2→l3 to t₁₈₁₈: l1→l3

Chain transitions t₅₄: l1→l2 and t₆₂: l2→l3 to t₁₈₁₉: l1→l3

Chain transitions t₅₄: l1→l2 and t₆₃: l2→l4 to t₁₈₂₀: l1→l4

Chain transitions t₅₄: l1→l2 and t₆₄: l2→l4 to t₁₈₂₁: l1→l4

Chain transitions t₅₄: l1→l2 and t₆₅: l2→l4 to t₁₈₂₂: l1→l4

Chain transitions t₅₄: l1→l2 and t₆₀: l2→l3 to t₁₈₂₃: l1→l3

Chain transitions t₅₅: l1→l2 and t₆₀: l2→l3 to t₁₈₂₄: l1→l3

Chain transitions t₅₆: l1→l2 and t₆₀: l2→l3 to t₁₈₂₅: l1→l3

Chain transitions t₆₉: l5→l2 and t₆₀: l2→l3 to t₁₈₂₆: l5→l3

Chain transitions t₇₀: l5→l2 and t₆₀: l2→l3 to t₁₈₂₇: l5→l3

Chain transitions t₇₁: l5→l2 and t₆₀: l2→l3 to t₁₈₂₈: l5→l3

Chain transitions t₁₈₀₁: l5→l4 and t₆₈: l4→l6 to t₁₈₂₉: l5→l6

Chain transitions t₁₈₀₀: l5→l4 and t₆₈: l4→l6 to t₁₈₃₀: l5→l6

Chain transitions t₁₈₀₀: l5→l4 and t₆₇: l4→l6 to t₁₈₃₁: l5→l6

Chain transitions t₁₈₀₁: l5→l4 and t₆₇: l4→l6 to t₁₈₃₂: l5→l6

Chain transitions t₁₇₉₉: l5→l4 and t₆₇: l4→l6 to t₁₈₃₃: l5→l6

Chain transitions t₁₇₉₉: l5→l4 and t₆₈: l4→l6 to t₁₈₃₄: l5→l6

Chain transitions t₁₇₉₉: l5→l4 and t₆₆: l4→l6 to t₁₈₃₅: l5→l6

Chain transitions t₁₈₀₀: l5→l4 and t₆₆: l4→l6 to t₁₈₃₆: l5→l6

Chain transitions t₁₈₀₁: l5→l4 and t₆₆: l4→l6 to t₁₈₃₇: l5→l6

Chain transitions t₁₇₉₈: l5→l4 and t₆₆: l4→l6 to t₁₈₃₈: l5→l6

Chain transitions t₁₇₉₈: l5→l4 and t₆₇: l4→l6 to t₁₈₃₉: l5→l6

Chain transitions t₁₇₉₈: l5→l4 and t₆₈: l4→l6 to t₁₈₄₀: l5→l6

Chain transitions t₁₇₉₇: l5→l4 and t₆₆: l4→l6 to t₁₈₄₁: l5→l6

Chain transitions t₁₇₉₇: l5→l4 and t₆₇: l4→l6 to t₁₈₄₂: l5→l6

Chain transitions t₁₇₉₇: l5→l4 and t₆₈: l4→l6 to t₁₈₄₃: l5→l6

Chain transitions t₁₇₉₆: l5→l4 and t₆₆: l4→l6 to t₁₈₄₄: l5→l6

Chain transitions t₁₇₉₆: l5→l4 and t₆₇: l4→l6 to t₁₈₄₅: l5→l6

Chain transitions t₁₇₉₆: l5→l4 and t₆₈: l4→l6 to t₁₈₄₆: l5→l6

Chain transitions t₁₇₉₅: l5→l4 and t₆₆: l4→l6 to t₁₈₄₇: l5→l6

Chain transitions t₁₇₉₅: l5→l4 and t₆₇: l4→l6 to t₁₈₄₈: l5→l6

Chain transitions t₁₇₉₅: l5→l4 and t₆₈: l4→l6 to t₁₈₄₉: l5→l6

Chain transitions t₁₇₉₄: l5→l4 and t₆₆: l4→l6 to t₁₈₅₀: l5→l6

Chain transitions t₁₇₉₄: l5→l4 and t₆₇: l4→l6 to t₁₈₅₁: l5→l6

Chain transitions t₁₇₉₄: l5→l4 and t₆₈: l4→l6 to t₁₈₅₂: l5→l6

Chain transitions t₁₇₉₃: l5→l4 and t₆₆: l4→l6 to t₁₈₅₃: l5→l6

Chain transitions t₁₇₉₃: l5→l4 and t₆₇: l4→l6 to t₁₈₅₄: l5→l6

Chain transitions t₁₇₉₃: l5→l4 and t₆₈: l4→l6 to t₁₈₅₅: l5→l6

Chain transitions t₁₈₂₂: l1→l4 and t₆₆: l4→l6 to t₁₈₅₆: l1→l6

Chain transitions t₁₈₂₂: l1→l4 and t₆₇: l4→l6 to t₁₈₅₇: l1→l6

Chain transitions t₁₈₂₂: l1→l4 and t₆₈: l4→l6 to t₁₈₅₈: l1→l6

Chain transitions t₁₈₂₁: l1→l4 and t₆₆: l4→l6 to t₁₈₅₉: l1→l6

Chain transitions t₁₈₂₁: l1→l4 and t₆₇: l4→l6 to t₁₈₆₀: l1→l6

Chain transitions t₁₈₂₁: l1→l4 and t₆₈: l4→l6 to t₁₈₆₁: l1→l6

Chain transitions t₁₈₂₀: l1→l4 and t₆₆: l4→l6 to t₁₈₆₂: l1→l6

Chain transitions t₁₈₂₀: l1→l4 and t₆₇: l4→l6 to t₁₈₆₃: l1→l6

Chain transitions t₁₈₂₀: l1→l4 and t₆₈: l4→l6 to t₁₈₆₄: l1→l6

Chain transitions t₁₈₁₂: l1→l4 and t₆₆: l4→l6 to t₁₈₆₅: l1→l6

Chain transitions t₁₈₁₂: l1→l4 and t₆₇: l4→l6 to t₁₈₆₆: l1→l6

Chain transitions t₁₈₁₂: l1→l4 and t₆₈: l4→l6 to t₁₈₆₇: l1→l6

Chain transitions t₁₈₁₁: l1→l4 and t₆₆: l4→l6 to t₁₈₆₈: l1→l6

Chain transitions t₁₈₁₁: l1→l4 and t₆₇: l4→l6 to t₁₈₆₉: l1→l6

Chain transitions t₁₈₁₁: l1→l4 and t₆₈: l4→l6 to t₁₈₇₀: l1→l6

Chain transitions t₁₈₁₀: l1→l4 and t₆₆: l4→l6 to t₁₈₇₁: l1→l6

Chain transitions t₁₈₁₀: l1→l4 and t₆₇: l4→l6 to t₁₈₇₂: l1→l6

Chain transitions t₁₈₁₀: l1→l4 and t₆₈: l4→l6 to t₁₈₇₃: l1→l6

Chain transitions t₁₈₀₄: l1→l4 and t₆₆: l4→l6 to t₁₈₇₄: l1→l6

Chain transitions t₁₈₀₄: l1→l4 and t₆₇: l4→l6 to t₁₈₇₅: l1→l6

Chain transitions t₁₈₀₄: l1→l4 and t₆₈: l4→l6 to t₁₈₇₆: l1→l6

Chain transitions t₁₈₀₃: l1→l4 and t₆₆: l4→l6 to t₁₈₇₇: l1→l6

Chain transitions t₁₈₀₃: l1→l4 and t₆₇: l4→l6 to t₁₈₇₈: l1→l6

Chain transitions t₁₈₀₃: l1→l4 and t₆₈: l4→l6 to t₁₈₇₉: l1→l6

Chain transitions t₁₈₀₂: l1→l4 and t₆₆: l4→l6 to t₁₈₈₀: l1→l6

Chain transitions t₁₈₀₂: l1→l4 and t₆₇: l4→l6 to t₁₈₈₁: l1→l6

Chain transitions t₁₈₀₂: l1→l4 and t₆₈: l4→l6 to t₁₈₈₂: l1→l6

Chain transitions t₇₉: l6→l5 and t₁₈₅₅: l5→l6 to t₁₈₈₃: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₅₅: l5→l6 to t₁₈₈₄: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₅₄: l5→l6 to t₁₈₈₅: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₅₄: l5→l6 to t₁₈₈₆: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₅₃: l5→l6 to t₁₈₈₇: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₅₃: l5→l6 to t₁₈₈₈: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₅₂: l5→l6 to t₁₈₈₉: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₅₂: l5→l6 to t₁₈₉₀: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₅₁: l5→l6 to t₁₈₉₁: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₅₁: l5→l6 to t₁₈₉₂: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₅₀: l5→l6 to t₁₈₉₃: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₅₀: l5→l6 to t₁₈₉₄: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₄₉: l5→l6 to t₁₈₉₅: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₄₉: l5→l6 to t₁₈₉₆: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₄₈: l5→l6 to t₁₈₉₇: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₄₈: l5→l6 to t₁₈₉₈: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₄₇: l5→l6 to t₁₈₉₉: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₄₇: l5→l6 to t₁₉₀₀: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₄₆: l5→l6 to t₁₉₀₁: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₄₆: l5→l6 to t₁₉₀₂: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₄₅: l5→l6 to t₁₉₀₃: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₄₅: l5→l6 to t₁₉₀₄: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₄₄: l5→l6 to t₁₉₀₅: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₄₄: l5→l6 to t₁₉₀₆: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₄₃: l5→l6 to t₁₉₀₇: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₄₃: l5→l6 to t₁₉₀₈: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₄₂: l5→l6 to t₁₉₀₉: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₄₂: l5→l6 to t₁₉₁₀: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₄₁: l5→l6 to t₁₉₁₁: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₄₁: l5→l6 to t₁₉₁₂: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₄₀: l5→l6 to t₁₉₁₃: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₄₀: l5→l6 to t₁₉₁₄: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₃₉: l5→l6 to t₁₉₁₅: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₃₉: l5→l6 to t₁₉₁₆: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₃₈: l5→l6 to t₁₉₁₇: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₃₈: l5→l6 to t₁₉₁₈: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₃₇: l5→l6 to t₁₉₁₉: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₃₇: l5→l6 to t₁₉₂₀: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₃₆: l5→l6 to t₁₉₂₁: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₃₆: l5→l6 to t₁₉₂₂: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₃₅: l5→l6 to t₁₉₂₃: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₃₅: l5→l6 to t₁₉₂₄: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₃₄: l5→l6 to t₁₉₂₅: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₃₄: l5→l6 to t₁₉₂₆: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₃₃: l5→l6 to t₁₉₂₇: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₃₃: l5→l6 to t₁₉₂₈: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₃₂: l5→l6 to t₁₉₂₉: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₃₂: l5→l6 to t₁₉₃₀: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₃₁: l5→l6 to t₁₉₃₁: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₃₁: l5→l6 to t₁₉₃₂: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₃₀: l5→l6 to t₁₉₃₃: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₃₀: l5→l6 to t₁₉₃₄: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₂₉: l5→l6 to t₁₉₃₅: l6→l6

Chain transitions t₇₉: l6→l5 and t₁₈₂₉: l5→l6 to t₁₉₃₆: l6→l6

Chain transitions t₇₈: l6→l5 and t₁₈₀₁: l5→l4 to t₁₉₃₇: l6→l4

Chain transitions t₇₉: l6→l5 and t₁₈₀₁: l5→l4 to t₁₉₃₈: l6→l4

Chain transitions t₇₈: l6→l5 and t₁₈₀₀: l5→l4 to t₁₉₃₉: l6→l4

Chain transitions t₇₉: l6→l5 and t₁₈₀₀: l5→l4 to t₁₉₄₀: l6→l4

Chain transitions t₇₈: l6→l5 and t₁₇₉₉: l5→l4 to t₁₉₄₁: l6→l4

Chain transitions t₇₉: l6→l5 and t₁₇₉₉: l5→l4 to t₁₉₄₂: l6→l4

Chain transitions t₇₈: l6→l5 and t₁₇₉₈: l5→l4 to t₁₉₄₃: l6→l4

Chain transitions t₇₉: l6→l5 and t₁₇₉₈: l5→l4 to t₁₉₄₄: l6→l4

Chain transitions t₇₈: l6→l5 and t₁₇₉₇: l5→l4 to t₁₉₄₅: l6→l4

Chain transitions t₇₉: l6→l5 and t₁₇₉₇: l5→l4 to t₁₉₄₆: l6→l4

Chain transitions t₇₈: l6→l5 and t₁₇₉₆: l5→l4 to t₁₉₄₇: l6→l4

Chain transitions t₇₉: l6→l5 and t₁₇₉₆: l5→l4 to t₁₉₄₈: l6→l4

Chain transitions t₇₈: l6→l5 and t₁₇₉₅: l5→l4 to t₁₉₄₉: l6→l4

Chain transitions t₇₉: l6→l5 and t₁₇₉₅: l5→l4 to t₁₉₅₀: l6→l4

Chain transitions t₇₈: l6→l5 and t₁₇₉₄: l5→l4 to t₁₉₅₁: l6→l4

Chain transitions t₇₉: l6→l5 and t₁₇₉₄: l5→l4 to t₁₉₅₂: l6→l4

Chain transitions t₇₈: l6→l5 and t₁₇₉₃: l5→l4 to t₁₉₅₃: l6→l4

Chain transitions t₇₉: l6→l5 and t₁₇₉₃: l5→l4 to t₁₉₅₄: l6→l4

Chain transitions t₇₈: l6→l5 and t₁₈₂₈: l5→l3 to t₁₉₅₅: l6→l3

Chain transitions t₇₉: l6→l5 and t₁₈₂₈: l5→l3 to t₁₉₅₆: l6→l3

Chain transitions t₇₈: l6→l5 and t₁₈₂₇: l5→l3 to t₁₉₅₇: l6→l3

Chain transitions t₇₉: l6→l5 and t₁₈₂₇: l5→l3 to t₁₉₅₈: l6→l3

Chain transitions t₇₈: l6→l5 and t₁₈₂₆: l5→l3 to t₁₉₅₉: l6→l3

Chain transitions t₇₉: l6→l5 and t₁₈₂₆: l5→l3 to t₁₉₆₀: l6→l3

Chain transitions t₇₈: l6→l5 and t₁₈₁₇: l5→l3 to t₁₉₆₁: l6→l3

Chain transitions t₇₉: l6→l5 and t₁₈₁₇: l5→l3 to t₁₉₆₂: l6→l3

Chain transitions t₇₈: l6→l5 and t₁₈₁₆: l5→l3 to t₁₉₆₃: l6→l3

Chain transitions t₇₉: l6→l5 and t₁₈₁₆: l5→l3 to t₁₉₆₄: l6→l3

Chain transitions t₇₈: l6→l5 and t₁₈₁₅: l5→l3 to t₁₉₆₅: l6→l3

Chain transitions t₇₉: l6→l5 and t₁₈₁₅: l5→l3 to t₁₉₆₆: l6→l3

Chain transitions t₇₈: l6→l5 and t₁₈₀₈: l5→l3 to t₁₉₆₇: l6→l3

Chain transitions t₇₉: l6→l5 and t₁₈₀₈: l5→l3 to t₁₉₆₈: l6→l3

Chain transitions t₇₈: l6→l5 and t₁₈₀₇: l5→l3 to t₁₉₆₉: l6→l3

Chain transitions t₇₉: l6→l5 and t₁₈₀₇: l5→l3 to t₁₉₇₀: l6→l3

Chain transitions t₇₈: l6→l5 and t₁₈₀₆: l5→l3 to t₁₉₇₁: l6→l3

Chain transitions t₇₉: l6→l5 and t₁₈₀₆: l5→l3 to t₁₉₇₂: l6→l3

Chain transitions t₇₈: l6→l5 and t₇₇: l5→l3 to t₁₉₇₃: l6→l3

Chain transitions t₇₉: l6→l5 and t₇₇: l5→l3 to t₁₉₇₄: l6→l3

Chain transitions t₇₈: l6→l5 and t₇₆: l5→l3 to t₁₉₇₅: l6→l3

Chain transitions t₇₉: l6→l5 and t₇₆: l5→l3 to t₁₉₇₆: l6→l3

Chain transitions t₇₈: l6→l5 and t₇₅: l5→l3 to t₁₉₇₇: l6→l3

Chain transitions t₇₉: l6→l5 and t₇₅: l5→l3 to t₁₉₇₈: l6→l3

Chain transitions t₇₈: l6→l5 and t₇₄: l5→l3 to t₁₉₇₉: l6→l3

Chain transitions t₇₉: l6→l5 and t₇₄: l5→l3 to t₁₉₈₀: l6→l3

Chain transitions t₇₈: l6→l5 and t₇₃: l5→l3 to t₁₉₈₁: l6→l3

Chain transitions t₇₉: l6→l5 and t₇₃: l5→l3 to t₁₉₈₂: l6→l3

Chain transitions t₇₈: l6→l5 and t₇₂: l5→l3 to t₁₉₈₃: l6→l3

Chain transitions t₇₉: l6→l5 and t₇₂: l5→l3 to t₁₉₈₄: l6→l3

Chain transitions t₇₈: l6→l5 and t₇₁: l5→l2 to t₁₉₈₅: l6→l2

Chain transitions t₇₉: l6→l5 and t₇₁: l5→l2 to t₁₉₈₆: l6→l2

Chain transitions t₇₈: l6→l5 and t₇₀: l5→l2 to t₁₉₈₇: l6→l2

Chain transitions t₇₉: l6→l5 and t₇₀: l5→l2 to t₁₉₈₈: l6→l2

Chain transitions t₇₈: l6→l5 and t₆₉: l5→l2 to t₁₉₈₉: l6→l2

Chain transitions t₇₉: l6→l5 and t₆₉: l5→l2 to t₁₉₉₀: l6→l2

Analysing control-flow refined program

Analysing control-flow refined program

Cut unsatisfiable transition t₃₁₆₁: n_l5___7→l3

Cut unsatisfiable transition t₃₁₆₂: n_l5___8→l3

Cut unsatisfiable transition t₃₁₆₉: n_l5___7→l3

Cut unsatisfiable transition t₃₁₇₀: n_l5___8→l3

Cut unsatisfiable transition t₃₂₀₉: n_l5___7→l3

Cut unsatisfiable transition t₃₂₁₀: n_l5___8→l3

Cut unsatisfiable transition t₃₂₁₇: n_l5___7→l3

Cut unsatisfiable transition t₃₂₁₈: n_l5___8→l3

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ for location n_l6___9

Found invariant X₃ ≤ 1 ∧ 0 ≤ X₃ for location l2

Found invariant X₃ ≤ 1 ∧ 1 ≤ X₃ for location n_l5___1

Found invariant X₃ ≤ 0 ∧ 0 ≤ X₃ for location n_l4___18

Found invariant X₃ ≤ 1 ∧ 1 ≤ X₃ for location n_l4___17

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ for location n_l6___4

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ for location n_l5___5

Found invariant X₃ ≤ 0 ∧ 0 ≤ X₃ for location n_l6___16

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ for location n_l6___10

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ for location n_l4___12

Found invariant X₃ ≤ 0 ∧ 0 ≤ X₃ for location n_l5___14

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ for location n_l5___2

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ for location n_l5___6

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ for location n_l5___8

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ for location n_l5___7

Found invariant X₃ ≤ 1 ∧ 0 ≤ X₃ for location l3

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ for location n_l2___13

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ for location n_l4___11

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ for location n_l5___3

Found invariant X₃ ≤ 1 ∧ 1 ≤ X₃ for location n_l6___15

MPRF for transition t₃₀₅₈: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___11(X₀, X₁+1, X₂+1, 1, X₄, X₅) :|: 1+X₁ ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1 ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1 ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

168⋅X₂+168⋅X₄+202 {O(n)}

MPRF for transition t₃₀₆₇: n_l4___11(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___4(X₀, X₁+1, X₂+1, 1, X₄, X₅) :|: X₁ ≤ X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₁+84⋅X₅+103 {O(n)}

MPRF for transition t₃₀₆₈: n_l4___11(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___9(X₀, X₁, X₂, Arg3_P, X₄, X₅) :|: X₁ ≤ X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ Arg3_P ≤ 1 ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₂+84⋅X₄+103 {O(n)}

MPRF for transition t₃₀₆₉: n_l4___11(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___9(X₀, X₁, X₂, Arg3_P, X₄, X₅) :|: X₁ ≤ X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ Arg3_P ≤ 1 ∧ 0 ≤ Arg3_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₂+84⋅X₄+103 {O(n)}

MPRF for transition t₃₀₇₂: n_l4___12(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___9(X₀, X₁+1, X₂+1, 1, X₄, X₅) :|: 1+X₁ ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₁+84⋅X₅+103 {O(n)}

MPRF for transition t₃₀₈₃: n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁, X₂, 1, Arg4_P, Arg5_P) :|: X₁ ≤ 1+X₅ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ Arg5_P ∧ 1+X₂ ≤ Arg4_P ∧ 1 ≤ Arg4_P ∧ 1 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₁+84⋅X₅+103 {O(n)}

MPRF for transition t₃₀₈₄: n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁+1, Arg2_P, 1, Arg4_P, Arg5_P) :|: X₁ ≤ 1+X₅ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 2+X₁ ≤ Arg5_P ∧ 1+Arg2_P ≤ Arg4_P ∧ 1 ≤ Arg4_P ∧ 1 ≤ Arg5_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₂+1 ≤ Arg2_P ∧ Arg2_P ≤ 1+X₂ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₂+84⋅X₄+107 {O(n)}

MPRF for transition t₃₀₈₅: n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁, X₂, 1, Arg4_P, Arg5_P) :|: X₁ ≤ 1+X₅ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ Arg5_P ∧ 1+X₂ ≤ Arg4_P ∧ 1 ≤ Arg4_P ∧ 1 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₂+84⋅X₄+103 {O(n)}

MPRF for transition t₃₀₈₆: n_l5___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁+1, Arg2_P, 1, Arg4_P, Arg5_P) :|: X₁ ≤ 1+X₅ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 0 ∧ 2+X₁ ≤ Arg5_P ∧ 1+Arg2_P ≤ Arg4_P ∧ 1 ≤ Arg4_P ∧ 1 ≤ Arg5_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₂+1 ≤ Arg2_P ∧ Arg2_P ≤ 1+X₂ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ of depth 1:

new bound:

84⋅X₂+84⋅X₄+107 {O(n)}

MPRF for transition t₃₀₈₇: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁, X₂, 1, Arg4_P, Arg5_P) :|: X₁ ≤ X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ Arg5_P ∧ 1+X₂ ≤ Arg4_P ∧ 1 ≤ Arg4_P ∧ 1 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₂+84⋅X₄+99 {O(n)}

MPRF for transition t₃₀₈₈: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁+1, Arg2_P, 1, Arg4_P, Arg5_P) :|: X₁ ≤ X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 2+X₁ ≤ Arg5_P ∧ 1+Arg2_P ≤ Arg4_P ∧ 1 ≤ Arg4_P ∧ 1 ≤ Arg5_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₂+1 ≤ Arg2_P ∧ Arg2_P ≤ 1+X₂ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₁+84⋅X₅+99 {O(n)}

MPRF for transition t₃₀₈₉: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁, X₂, 1, Arg4_P, Arg5_P) :|: X₁ ≤ X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ Arg5_P ∧ 1+X₂ ≤ Arg4_P ∧ 1 ≤ Arg4_P ∧ 1 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₂+84⋅X₄+99 {O(n)}

MPRF for transition t₃₀₉₀: n_l5___6(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁+1, Arg2_P, 1, Arg4_P, Arg5_P) :|: X₁ ≤ X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 0 ∧ 2+X₁ ≤ Arg5_P ∧ 1+Arg2_P ≤ Arg4_P ∧ 1 ≤ Arg4_P ∧ 1 ≤ Arg5_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₂+1 ≤ Arg2_P ∧ Arg2_P ≤ 1+X₂ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ of depth 1:

new bound:

84⋅X₁+84⋅X₅+103 {O(n)}

MPRF for transition t₃₀₉₂: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁+1, Arg2_P, 1, Arg4_P, Arg5_P) :|: 1+X₁ ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 2+X₁ ≤ Arg5_P ∧ 1+Arg2_P ≤ Arg4_P ∧ 1 ≤ Arg4_P ∧ 1 ≤ Arg5_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₂+1 ≤ Arg2_P ∧ Arg2_P ≤ 1+X₂ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₁+84⋅X₅+99 {O(n)}

MPRF for transition t₃₀₉₄: n_l5___8(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁+1, Arg2_P, 1, Arg4_P, Arg5_P) :|: 1+X₁ ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 0 ∧ 2+X₁ ≤ Arg5_P ∧ 1+Arg2_P ≤ Arg4_P ∧ 1 ≤ Arg4_P ∧ 1 ≤ Arg5_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₂+1 ≤ Arg2_P ∧ Arg2_P ≤ 1+X₂ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ of depth 1:

new bound:

84⋅X₂+84⋅X₄+99 {O(n)}

MPRF for transition t₃₀₉₆: n_l6___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l5___8(X₀, X₁, X₂, 0, X₄, X₅) :|: 1+X₁ ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₂+84⋅X₄+99 {O(n)}

MPRF for transition t₃₁₀₀: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l5___2(X₀, X₁, X₂, 1, X₄, X₅) :|: X₁ ≤ 1+X₅ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₂+84⋅X₄+84⋅X₅+99 {O(n)}

MPRF for transition t₃₁₀₁: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l5___3(X₀, X₁, X₂, 0, X₄, X₅) :|: X₁ ≤ 1+X₅ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₁+84⋅X₅+99 {O(n)}

MPRF for transition t₃₁₀₂: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅) → n_l5___5(X₀, X₁, X₂, 1, X₄, X₅) :|: X₁ ≤ X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₁+84⋅X₅+103 {O(n)}

MPRF for transition t₃₁₀₃: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅) → n_l5___6(X₀, X₁, X₂, 0, X₄, X₅) :|: X₁ ≤ X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ of depth 1:

new bound:

84⋅X₂+84⋅X₄+99 {O(n)}