Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₅: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₀+1, X₄) :|: X₂ ≤ X₀
t₁₃: l2(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄)
t₁: l3(X₀, X₁, X₂, X₃, X₄) → l4(1, X₁, X₂, X₃, X₄)
t₂: l4(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, 1, X₃, X₄) :|: X₀ ≤ X₁
t₃: l4(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₀
t₈: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃
t₉: l5(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₄
t₁₀: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1)
t₁₁: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃+1, X₄)
t₆: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₁
t₇: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃
t₁₂: l9(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂+1, X₃, X₄)
Preprocessing
Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l2
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6
Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l7
Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l5
Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8
Found invariant X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1
Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l10
Found invariant 1 ≤ X₀ for location l4
Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l9
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₅: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₀+1, X₄) :|: X₂ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₃: l2(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁: l3(X₀, X₁, X₂, X₃, X₄) → l4(1, X₁, X₂, X₃, X₄)
t₂: l4(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, 1, X₃, X₄) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀
t₃: l4(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₀ ∧ 1 ≤ X₀
t₈: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉: l5(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃+1, X₄) :|: X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₂: l9(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂+1, X₃, X₄) :|: X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
MPRF for transition t₂: l4(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, 1, X₃, X₄) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+2 {O(n)}
MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+2 {O(n)}
MPRF for transition t₄: l1(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₀+1, X₄) :|: X₂ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+5⋅X₁+7 {O(n^2)}
MPRF for transition t₇: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+3⋅X₁ {O(n^2)}
MPRF for transition t₁₂: l9(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂+1, X₃, X₄) :|: X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁⋅X₁+10⋅X₁+14 {O(n^2)}
MPRF for transition t₆: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁⋅X₁⋅X₁+10⋅X₁⋅X₁+15⋅X₁ {O(n^3)}
MPRF for transition t₉: l5(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+59⋅X₁+43 {O(n^3)}
MPRF for transition t₁₁: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃+1, X₄) :|: X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+59⋅X₁+43 {O(n^3)}
MPRF for transition t₈: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁ {O(n^4)}
MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁ {O(n^4)}
Chain transitions t₁₂: l9→l1 and t₄: l1→l8 to t₁₁₂: l9→l8
Chain transitions t₂: l4→l1 and t₄: l1→l8 to t₁₁₃: l4→l8
Chain transitions t₂: l4→l1 and t₅: l1→l4 to t₁₁₄: l4→l4
Chain transitions t₁₂: l9→l1 and t₅: l1→l4 to t₁₁₅: l9→l4
Chain transitions t₆: l8→l5 and t₉: l5→l7 to t₁₁₆: l8→l7
Chain transitions t₁₀: l6→l5 and t₉: l5→l7 to t₁₁₇: l6→l7
Chain transitions t₁₀: l6→l5 and t₈: l5→l6 to t₁₁₈: l6→l6
Chain transitions t₆: l8→l5 and t₈: l5→l6 to t₁₁₉: l8→l6
Chain transitions t₁₁₆: l8→l7 and t₁₁: l7→l8 to t₁₂₀: l8→l8
Chain transitions t₁₁₇: l6→l7 and t₁₁: l7→l8 to t₁₂₁: l6→l8
Chain transitions t₇: l8→l9 and t₁₁₂: l9→l8 to t₁₂₂: l8→l8
Chain transitions t₇: l8→l9 and t₁₁₅: l9→l4 to t₁₂₃: l8→l4
Chain transitions t₇: l8→l9 and t₁₂: l9→l1 to t₁₂₄: l8→l1
Analysing control-flow refined program
Cut unsatisfiable transition t₁₁₄: l4→l4
Cut unsatisfiable transition t₁₁₆: l8→l7
Cut unsatisfiable transition t₁₂₀: l8→l8
Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l2
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6
Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l7
Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l5
Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8
Found invariant X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1
Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l10
Found invariant 1 ≤ X₀ for location l4
Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l9
MPRF for transition t₁₁₃: l4(X₀, X₁, X₂, X₃, X₄) -{2}> l8(X₀, X₁, 1, X₀+1, X₄) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+2 {O(n)}
MPRF for transition t₁₂₃: l8(X₀, X₁, X₂, X₃, X₄) -{3}> l4(X₀+1, X₁, 1+X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+2 {O(n)}
MPRF for transition t₁₂₂: l8(X₀, X₁, X₂, X₃, X₄) -{3}> l8(X₀, X₁, 1+X₂, X₀+1, X₄) :|: X₁+1 ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+3⋅X₁ {O(n^2)}
MPRF for transition t₁₁₉: l8(X₀, X₁, X₂, X₃, X₄) -{2}> l6(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ 0 ∧ 2 ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁⋅X₁+27⋅X₁⋅X₁+47⋅X₁+7 {O(n^3)}
MPRF for transition t₁₂₁: l6(X₀, X₁, X₂, X₃, X₄) -{3}> l8(X₀, X₁, X₂, X₃+1, 1+X₄) :|: X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁⋅X₁+27⋅X₁⋅X₁+47⋅X₁+7 {O(n^3)}
MPRF for transition t₁₁₈: l6(X₀, X₁, X₂, X₃, X₄) -{2}> l6(X₀, X₁, X₂, X₃, 1+X₄) :|: 1+X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
8⋅X₁⋅X₁⋅X₁⋅X₁+54⋅X₁⋅X₁⋅X₁+94⋅X₁⋅X₁+16⋅X₁ {O(n^4)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₅: l1→l4
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___9
Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l2
Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l8___1
Found invariant X₄ ≤ 1+X₁ ∧ 4 ≤ X₄ ∧ 7 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l8___3
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___4
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l8___6
Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___2
Found invariant X₄ ≤ 2 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___10
Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___8
Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l8___14
Found invariant X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___13
Found invariant X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___11
Found invariant X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1
Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l10
Found invariant 1 ≤ X₀ for location l4
Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l7___7
Found invariant X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l9___12
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l9___5
knowledge_propagation leads to new time bound X₁+2 {O(n)} for transition t₂₅₁: l1(X₀, X₁, X₂, X₃, X₄) → n_l8___14(X₀, X₁, X₂, X₀+1, X₄) :|: X₂ ≤ X₀ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁+2 {O(n)} for transition t₂₆₂: n_l8___14(X₀, X₁, X₂, X₃, X₄) → n_l5___13(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ 1+X₀ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁+2 {O(n)} for transition t₂₆₃: n_l8___14(X₀, X₁, X₂, X₃, X₄) → n_l9___12(X₀, X₁, X₂, X₁+1, X₄) :|: X₃ ≤ 1+X₀ ∧ X₁+1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
MPRF for transition t₂₅₂: n_l1___2(X₀, X₁, X₂, X₃, X₄) → n_l8___1(X₀, X₁, X₂, X₀+1, X₄) :|: X₁ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁ {O(n)}
MPRF for transition t₂₅₃: n_l1___4(X₀, X₁, X₂, X₃, X₄) → n_l8___3(X₀, X₁, X₂, X₀+1, X₄) :|: 1+X₀ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+3⋅X₁+2 {O(n^2)}
MPRF for transition t₂₆₁: n_l8___1(X₀, X₁, X₂, X₃, X₄) → n_l9___12(X₀, X₁, X₂, X₁+1, X₄) :|: X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₁ {O(n)}
MPRF for transition t₂₆₄: n_l8___3(X₀, X₁, X₂, X₃, X₄) → n_l5___13(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 4 ≤ X₄ ∧ 7 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₀ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+4⋅X₁+X₄+2 {O(n^2)}
MPRF for transition t₂₆₆: n_l8___6(X₀, X₁, X₂, X₃, X₄) → n_l9___5(X₀, X₁, X₂, X₁+1, X₄) :|: X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 2+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₁+1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁⋅X₁+6⋅X₁+2 {O(n^2)}
MPRF for transition t₂₆₇: n_l9___12(X₀, X₁, X₂, X₃, X₄) → n_l1___2(X₀, X₁, X₂+1, X₁+1, X₄) :|: X₁ ≤ X₀ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ 1+X₀ ∧ X₁+1 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁+2 {O(n)}
MPRF for transition t₂₆₈: n_l9___5(X₀, X₁, X₂, X₃, X₄) → n_l1___4(X₀, X₁, X₂+1, X₁+1, X₄) :|: 1+X₀ ≤ X₁ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₁+1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁⋅X₁+7⋅X₁+X₄+2 {O(n^2)}
MPRF for transition t₂₈₂: n_l1___2(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+2 {O(n)}
MPRF for transition t₂₈₃: n_l1___4(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+3 {O(n)}
MPRF for transition t₂₅₄: n_l5___10(X₀, X₁, X₂, X₃, X₄) → n_l6___9(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ 2 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁⋅X₁+14⋅X₁⋅X₁+2⋅X₁⋅X₄+6⋅X₁ {O(n^3)}
MPRF for transition t₂₅₅: n_l5___13(X₀, X₁, X₂, X₃, X₄) → n_l6___11(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁⋅X₁+18⋅X₁⋅X₁+2⋅X₁⋅X₄+2⋅X₄+20⋅X₁+6 {O(n^3)}
MPRF for transition t₂₅₇: n_l5___8(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃, X₃+1) :|: 2 ≤ X₄ ∧ X₃+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁⋅X₁+14⋅X₁⋅X₁+2⋅X₁⋅X₄+6⋅X₁+2 {O(n^3)}
MPRF for transition t₂₅₈: n_l6___11(X₀, X₁, X₂, X₃, X₄) → n_l5___10(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ 1 ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₀ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁⋅X₁⋅X₁+7⋅X₁⋅X₁+X₁⋅X₄+3⋅X₁+1 {O(n^3)}
MPRF for transition t₂₆₀: n_l7___7(X₀, X₁, X₂, X₃, X₄) → n_l8___6(X₀, X₁, X₂, X₃+1, X₃+1) :|: X₃+1 ≤ X₄ ∧ X₃+1 ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁⋅X₁+16⋅X₁⋅X₁+2⋅X₁⋅X₄+13⋅X₁+X₄+2 {O(n^3)}
MPRF for transition t₂₆₅: n_l8___6(X₀, X₁, X₂, X₃, X₄) → n_l5___13(X₀, X₁, X₂, X₃, 1) :|: X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 2+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁⋅X₁+14⋅X₁⋅X₁+2⋅X₁⋅X₄+6⋅X₁ {O(n^3)}
MPRF for transition t₂₅₆: n_l5___8(X₀, X₁, X₂, X₃, X₄) → n_l6___9(X₀, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₄ ≤ 1+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
16⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+144⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+16⋅X₁⋅X₁⋅X₁⋅X₁⋅X₄+4⋅X₁⋅X₁⋅X₄⋅X₄+496⋅X₁⋅X₁⋅X₁⋅X₁+88⋅X₁⋅X₁⋅X₁⋅X₄+158⋅X₁⋅X₁⋅X₄+8⋅X₁⋅X₄⋅X₄+856⋅X₁⋅X₁⋅X₁+127⋅X₁⋅X₄+4⋅X₄⋅X₄+849⋅X₁⋅X₁+491⋅X₁+51⋅X₄+86 {O(n^6)}
MPRF for transition t₂₅₉: n_l6___9(X₀, X₁, X₂, X₃, X₄) → n_l5___8(X₀, X₁, X₂, X₃, X₄+1) :|: 2 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
16⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+120⋅X₁⋅X₁⋅X₁⋅X₁⋅X₁+16⋅X₁⋅X₁⋅X₁⋅X₁⋅X₄+308⋅X₁⋅X₁⋅X₁⋅X₁+4⋅X₁⋅X₁⋅X₄⋅X₄+64⋅X₁⋅X₁⋅X₁⋅X₄+2⋅X₁⋅X₄⋅X₄+356⋅X₁⋅X₁⋅X₁+56⋅X₁⋅X₁⋅X₄+265⋅X₁⋅X₁+31⋅X₁⋅X₄+75⋅X₁ {O(n^6)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:8⋅X₁⋅X₁⋅X₁⋅X₁+62⋅X₁⋅X₁⋅X₁+184⋅X₁⋅X₁+241⋅X₁+115 {O(n^4)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁+2 {O(n)}
t₃: 1 {O(1)}
t₄: X₁⋅X₁+5⋅X₁+7 {O(n^2)}
t₅: X₁+2 {O(n)}
t₆: 2⋅X₁⋅X₁⋅X₁+10⋅X₁⋅X₁+15⋅X₁ {O(n^3)}
t₇: X₁⋅X₁+3⋅X₁ {O(n^2)}
t₈: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁ {O(n^4)}
t₉: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+59⋅X₁+43 {O(n^3)}
t₁₀: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁ {O(n^4)}
t₁₁: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+59⋅X₁+43 {O(n^3)}
t₁₂: 2⋅X₁⋅X₁+10⋅X₁+14 {O(n^2)}
t₁₃: 1 {O(1)}
Costbounds
Overall costbound: 8⋅X₁⋅X₁⋅X₁⋅X₁+62⋅X₁⋅X₁⋅X₁+184⋅X₁⋅X₁+241⋅X₁+115 {O(n^4)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁+2 {O(n)}
t₃: 1 {O(1)}
t₄: X₁⋅X₁+5⋅X₁+7 {O(n^2)}
t₅: X₁+2 {O(n)}
t₆: 2⋅X₁⋅X₁⋅X₁+10⋅X₁⋅X₁+15⋅X₁ {O(n^3)}
t₇: X₁⋅X₁+3⋅X₁ {O(n^2)}
t₈: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁ {O(n^4)}
t₉: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+59⋅X₁+43 {O(n^3)}
t₁₀: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁ {O(n^4)}
t₁₁: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+59⋅X₁+43 {O(n^3)}
t₁₂: 2⋅X₁⋅X₁+10⋅X₁+14 {O(n^2)}
t₁₃: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₁, X₀: 1 {O(1)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₂, X₀: X₁+3 {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: 1 {O(1)}
t₂, X₃: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+63⋅X₁+X₃+59 {O(n^3)}
t₂, X₄: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁+X₄+1 {O(n^4)}
t₃, X₀: X₁+4 {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: 2⋅X₁⋅X₁+10⋅X₁+X₂+15 {O(n^2)}
t₃, X₃: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+63⋅X₁+X₃+59 {O(n^3)}
t₃, X₄: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+2⋅X₄+44⋅X₁+1 {O(n^4)}
t₄, X₀: X₁+3 {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: 2⋅X₁⋅X₁+10⋅X₁+15 {O(n^2)}
t₄, X₃: 2⋅X₁+8 {O(n)}
t₄, X₄: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁+X₄+1 {O(n^4)}
t₅, X₀: X₁+3 {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: 2⋅X₁⋅X₁+10⋅X₁+15 {O(n^2)}
t₅, X₃: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+63⋅X₁+59 {O(n^3)}
t₅, X₄: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁+X₄+1 {O(n^4)}
t₆, X₀: X₁+3 {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: 2⋅X₁⋅X₁+10⋅X₁+15 {O(n^2)}
t₆, X₃: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+61⋅X₁+51 {O(n^3)}
t₆, X₄: 1 {O(1)}
t₇, X₀: X₁+3 {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: 2⋅X₁⋅X₁+10⋅X₁+15 {O(n^2)}
t₇, X₃: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+63⋅X₁+59 {O(n^3)}
t₇, X₄: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁+X₄+1 {O(n^4)}
t₈, X₀: X₁+3 {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: 2⋅X₁⋅X₁+10⋅X₁+15 {O(n^2)}
t₈, X₃: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+61⋅X₁+51 {O(n^3)}
t₈, X₄: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁+1 {O(n^4)}
t₉, X₀: X₁+3 {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: 2⋅X₁⋅X₁+10⋅X₁+15 {O(n^2)}
t₉, X₃: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+61⋅X₁+51 {O(n^3)}
t₉, X₄: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁+1 {O(n^4)}
t₁₀, X₀: X₁+3 {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: 2⋅X₁⋅X₁+10⋅X₁+15 {O(n^2)}
t₁₀, X₃: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+61⋅X₁+51 {O(n^3)}
t₁₀, X₄: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁+1 {O(n^4)}
t₁₁, X₀: X₁+3 {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: 2⋅X₁⋅X₁+10⋅X₁+15 {O(n^2)}
t₁₁, X₃: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+61⋅X₁+51 {O(n^3)}
t₁₁, X₄: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁+1 {O(n^4)}
t₁₂, X₀: X₁+3 {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: 2⋅X₁⋅X₁+10⋅X₁+15 {O(n^2)}
t₁₂, X₃: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+63⋅X₁+59 {O(n^3)}
t₁₂, X₄: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+44⋅X₁+X₄+1 {O(n^4)}
t₁₃, X₀: X₁+4 {O(n)}
t₁₃, X₁: 2⋅X₁ {O(n)}
t₁₃, X₂: 2⋅X₁⋅X₁+10⋅X₁+X₂+15 {O(n^2)}
t₁₃, X₃: 4⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁+63⋅X₁+X₃+59 {O(n^3)}
t₁₃, X₄: 4⋅X₁⋅X₁⋅X₁⋅X₁+26⋅X₁⋅X₁⋅X₁+59⋅X₁⋅X₁+2⋅X₄+44⋅X₁+1 {O(n^4)}