Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef_1, nondef_2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₂-1, X₂, X₃, X₄, X₅, X₆)
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃
t₂₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: nondef_1 ≤ nondef_2
t₁₆: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: nondef_2 < nondef_1
t₂₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < 0
t₂₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅
t₂₀: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₉: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆)
t₁₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, 1)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, 0, X₄, 0, X₆) :|: 0 < X₂
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₀, X₃, X₄, X₅, X₆)
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₁, X₃, X₄, X₅, X₆)

Preprocessing

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l6

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l15

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l19

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l12

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l17

Found invariant X₆ ≤ 1+X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l20

Found invariant 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l21

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l5

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l13

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l22

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l8

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l10

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l16

Found invariant 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l18

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l4

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l14

Cut unsatisfiable transition t₂₁: l19→l10

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef_1, nondef_2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₁₄: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀
t₁₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: nondef_1 ≤ nondef_2 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₆: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: nondef_2 < nondef_1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂₀: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₉: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₆ ≤ 1+X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, 1) :|: 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, 0, X₄, 0, X₆) :|: 0 < X₂ ∧ X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄
t₂₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, 0, X₄, 0, X₆) :|: 0 < X₂ ∧ X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF for transition t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄+2 {O(n)}

MPRF for transition t₂₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄+2 {O(n)}

MPRF for transition t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₄+2 {O(n)}

MPRF for transition t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₄+2 {O(n)}

MPRF for transition t₂₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF for transition t₁₄: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₄⋅X₄+8⋅X₄+4 {O(n^2)}

MPRF for transition t₁₆: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: nondef_2 < nondef_1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄⋅X₄+3⋅X₄+2 {O(n^2)}

MPRF for transition t₁₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: nondef_1 ≤ nondef_2 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄⋅X₄+3⋅X₄+2 {O(n^2)}

MPRF for transition t₁₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, 1) :|: 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄⋅X₄+2⋅X₄ {O(n^2)}

MPRF for transition t₁₉: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₆ ≤ 1+X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₄⋅X₄+3⋅X₄+2 {O(n^2)}

Chain transitions t₂₂: l19→l10 and t₂₃: l10→l11 to t₂₀₄: l19→l11

Chain transitions t₂₀₄: l19→l11 and t₂₄: l11→l9 to t₂₀₅: l19→l9

Chain transitions t₁₂: l4→l16 and t₁₅: l16→l19 to t₂₀₆: l4→l19

Chain transitions t₁₉: l20→l16 and t₁₅: l16→l19 to t₂₀₇: l20→l19

Chain transitions t₁₉: l20→l16 and t₁₄: l16→l18 to t₂₀₈: l20→l18

Chain transitions t₁₂: l4→l16 and t₁₄: l16→l18 to t₂₀₉: l4→l18

Chain transitions t₂₀₉: l4→l18 and t₁₆: l18→l21 to t₂₁₀: l4→l21

Chain transitions t₂₀₈: l20→l18 and t₁₆: l18→l21 to t₂₁₁: l20→l21

Chain transitions t₂₀₈: l20→l18 and t₁₇: l18→l20 to t₂₁₂: l20→l20

Chain transitions t₂₀₉: l4→l18 and t₁₇: l18→l20 to t₂₁₃: l4→l20

Chain transitions t₂₀₆: l4→l19 and t₂₀₅: l19→l9 to t₂₁₄: l4→l9

Chain transitions t₂₀₇: l20→l19 and t₂₀₅: l19→l9 to t₂₁₅: l20→l9

Chain transitions t₂₀₇: l20→l19 and t₂₀: l19→l17 to t₂₁₆: l20→l17

Chain transitions t₂₀₆: l4→l19 and t₂₀: l19→l17 to t₂₁₇: l4→l17

Chain transitions t₂₀₇: l20→l19 and t₂₀₄: l19→l11 to t₂₁₈: l20→l11

Chain transitions t₂₀₆: l4→l19 and t₂₀₄: l19→l11 to t₂₁₉: l4→l11

Chain transitions t₂₀₇: l20→l19 and t₂₂: l19→l10 to t₂₂₀: l20→l10

Chain transitions t₂₀₆: l4→l19 and t₂₂: l19→l10 to t₂₂₁: l4→l10

Chain transitions t₂₁₀: l4→l21 and t₁₈: l21→l20 to t₂₂₂: l4→l20

Chain transitions t₂₁₁: l20→l21 and t₁₈: l21→l20 to t₂₂₃: l20→l20

Chain transitions t₂₅: l9→l4 and t₂₁₄: l4→l9 to t₂₂₄: l9→l9

Chain transitions t₁₁: l6→l4 and t₂₁₄: l4→l9 to t₂₂₅: l6→l9

Chain transitions t₁₁: l6→l4 and t₂₁₀: l4→l21 to t₂₂₆: l6→l21

Chain transitions t₂₅: l9→l4 and t₂₁₀: l4→l21 to t₂₂₇: l9→l21

Chain transitions t₁₁: l6→l4 and t₂₂₂: l4→l20 to t₂₂₈: l6→l20

Chain transitions t₂₅: l9→l4 and t₂₂₂: l4→l20 to t₂₂₉: l9→l20

Chain transitions t₁₁: l6→l4 and t₂₁₃: l4→l20 to t₂₃₀: l6→l20

Chain transitions t₂₅: l9→l4 and t₂₁₃: l4→l20 to t₂₃₁: l9→l20

Chain transitions t₁₁: l6→l4 and t₂₀₆: l4→l19 to t₂₃₂: l6→l19

Chain transitions t₂₅: l9→l4 and t₂₀₆: l4→l19 to t₂₃₃: l9→l19

Chain transitions t₁₁: l6→l4 and t₂₀₉: l4→l18 to t₂₃₄: l6→l18

Chain transitions t₂₅: l9→l4 and t₂₀₉: l4→l18 to t₂₃₅: l9→l18

Chain transitions t₁₁: l6→l4 and t₂₁₇: l4→l17 to t₂₃₆: l6→l17

Chain transitions t₂₅: l9→l4 and t₂₁₇: l4→l17 to t₂₃₇: l9→l17

Chain transitions t₁₁: l6→l4 and t₁₃: l4→l17 to t₂₃₈: l6→l17

Chain transitions t₂₅: l9→l4 and t₁₃: l4→l17 to t₂₃₉: l9→l17

Chain transitions t₁₁: l6→l4 and t₁₂: l4→l16 to t₂₄₀: l6→l16

Chain transitions t₂₅: l9→l4 and t₁₂: l4→l16 to t₂₄₁: l9→l16

Chain transitions t₁₁: l6→l4 and t₂₁₉: l4→l11 to t₂₄₂: l6→l11

Chain transitions t₂₅: l9→l4 and t₂₁₉: l4→l11 to t₂₄₃: l9→l11

Chain transitions t₁₁: l6→l4 and t₂₂₁: l4→l10 to t₂₄₄: l6→l10

Chain transitions t₂₅: l9→l4 and t₂₂₁: l4→l10 to t₂₄₅: l9→l10

Analysing control-flow refined program

Cut unsatisfiable transition t₂₂₄: l9→l9

Cut unsatisfiable transition t₂₂₅: l6→l9

Cut unsatisfiable transition t₂₃₂: l6→l19

Cut unsatisfiable transition t₂₃₃: l9→l19

Cut unsatisfiable transition t₂₃₆: l6→l17

Cut unsatisfiable transition t₂₃₇: l9→l17

Cut unsatisfiable transition t₂₄₂: l6→l11

Cut unsatisfiable transition t₂₄₃: l9→l11

Cut unsatisfiable transition t₂₄₄: l6→l10

Cut unsatisfiable transition t₂₄₅: l9→l10

Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l6

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l15

Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l19

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l12

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l17

Found invariant X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l20

Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l21

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l5

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l13

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l22

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l8

Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l10

Found invariant X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l16

Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l18

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l4

Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l14

MPRF for transition t₂₁₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{5}> l9(X₀, X₂-1, X₂, 1+X₃, X₄, X₆, X₆) :|: X₂ ≤ X₃+1 ∧ 0 < X₆ ∧ X₆ ≤ 1+X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃+1 ≤ X₂ ∧ X₃+1 ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 0 ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ 2⋅X₂ ∧ 0 ≤ 0 ∧ 2 ≤ X₀+X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₄+6 {O(n)}

MPRF for transition t₂₂₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{5}> l20(X₀, X₁, X₁, 0, X₄, 0, 1) :|: 0 < X₁ ∧ 0 < X₁ ∧ Temp_Int₁₂₀₂ < Temp_Int₁₂₀₃ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 0 ∧ 2 ≤ X₄ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₄ ∧ 1 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₄ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ 2 ≤ X₄ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₄ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₄ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ 2 ≤ X₄ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₄ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₄+2 {O(n)}

MPRF for transition t₂₃₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{4}> l20(X₀, X₁, X₁, 0, X₄, 0, 0) :|: 0 < X₁ ∧ 0 < X₁ ∧ Temp_Int₁₂₁₄ ≤ Temp_Int₁₂₁₅ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ 1+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 0 ∧ 2 ≤ X₄ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₄ ∧ 1 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₄ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ 2 ≤ X₄ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₄ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₄+2 {O(n)}

MPRF for transition t₂₁₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l20(X₀, X₁, X₂, 1+X₃, X₄, X₆, X₆) :|: 1+X₃ < X₂ ∧ Temp_Int₁₀₉₆ ≤ Temp_Int₁₀₉₇ ∧ X₆ ≤ 1+X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃+1 ≤ X₂ ∧ X₃+1 ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

16⋅X₄⋅X₄+28⋅X₄+10 {O(n^2)}

MPRF for transition t₂₂₃: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{4}> l20(X₀, X₁, X₂, 1+X₃, X₄, X₆, 1) :|: 1+X₃ < X₂ ∧ Temp_Int₁₀₈₈ < Temp_Int₁₀₈₉ ∧ X₆ ≤ 1+X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃+1 ≤ X₂ ∧ X₃+1 ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₄⋅X₄+18⋅X₄+10 {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₁₅: l16→l19

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11

Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l18___9

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l6

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l16___6

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l15

Found invariant X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 1 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₃+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l20___1

Found invariant X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location n_l20___4

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l19

Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l20___8

Found invariant X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location n_l20___2

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l12

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l17

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l5

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l13

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l22

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l8

Found invariant X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location n_l21___3

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l10

Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l16

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ X₀ for location l4

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9

Found invariant X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ for location l14

Found invariant X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location n_l18___5

Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l21___7

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₄₈₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l18___9(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: X₃ < X₂ ∧ X₀+1 ≤ X₄ ∧ X₃ < X₂ ∧ X₀+1 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₄₈₉: n_l18___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l20___8(X₀, X₁, X₂, Arg3_P, X₀+1, Arg5_P, Arg6_P) :|: X₃ < X₂ ∧ X₀+1 ≤ X₄ ∧ 1+Arg3_P ≤ X₂ ∧ Arg5_P ≤ Arg3_P ∧ 0 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg5_P ≤ Arg6_P ∧ Arg6_P ≤ Arg5_P ∧ 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₄₉₀: n_l18___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l21___7(X₀, X₁, X₂, Arg3_P, X₀+1, Arg5_P, X₆) :|: X₃ < X₂ ∧ X₀+1 ≤ X₄ ∧ 1+Arg3_P ≤ X₂ ∧ Arg5_P ≤ Arg3_P ∧ 0 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₄₉₄: n_l20___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l16___6(X₀, X₁, X₂, X₃+1, X₀+1, X₆, X₆) :|: X₆ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₀+1 ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₄₉₆: n_l21___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l20___1(X₀, X₁, X₂, X₃, X₀+1, X₅, 1) :|: X₀+1 ≤ X₄ ∧ X₀+1 ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ 1+X₀ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₄₉₁: n_l20___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l16___6(X₀, X₁, X₂, X₃+1, X₀+1, X₆, X₆) :|: X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₀+1 ≤ X₄ ∧ X₀+1 ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 1 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₃+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀

MPRF for transition t₄₈₆: n_l16___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l18___5(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₃ < X₂ ∧ X₀+1 ≤ X₄ ∧ 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₄⋅X₄+11⋅X₄+7 {O(n^2)}

MPRF for transition t₄₈₇: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l20___4(X₀, X₁, X₂, Arg3_P, X₀+1, Arg5_P, Arg6_P) :|: X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃ ∧ X₃ < X₂ ∧ X₀+1 ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+Arg3_P ≤ X₂ ∧ Arg5_P ≤ Arg3_P ∧ 0 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ Arg5_P ≤ Arg6_P ∧ Arg6_P ≤ Arg5_P ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₄⋅X₄+9⋅X₄+7 {O(n^2)}

MPRF for transition t₄₈₈: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l21___3(X₀, X₁, X₂, Arg3_P, X₀+1, Arg5_P, X₆) :|: X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃ ∧ X₃ < X₂ ∧ X₀+1 ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+Arg3_P ≤ X₂ ∧ Arg5_P ≤ Arg3_P ∧ 0 ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₄⋅X₄+8⋅X₄+X₁+6 {O(n^2)}

MPRF for transition t₄₉₂: n_l20___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l16___6(X₀, X₁, X₂, X₃+1, X₀+1, X₆, X₆) :|: 1 ≤ X₃ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₀+1 ≤ X₄ ∧ X₀+1 ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₄⋅X₄+5⋅X₄+3 {O(n^2)}

MPRF for transition t₄₉₃: n_l20___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l16___6(X₀, X₁, X₂, X₃+1, X₀+1, X₆, X₆) :|: X₆ ≤ X₃ ∧ 1 ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₄⋅X₄+8⋅X₄+7 {O(n^2)}

MPRF for transition t₄₉₅: n_l21___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l20___2(X₀, X₁, X₂, X₃, X₀+1, X₅, 1) :|: X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃ ∧ X₀+1 ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₀+1 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

4⋅X₄⋅X₄+9⋅X₄+5 {O(n^2)}

MPRF for transition t₅₀₄: n_l16___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₄+3 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:7⋅X₄⋅X₄+27⋅X₄+35 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: X₄+1 {O(n)}
t₁₃: 1 {O(1)}
t₁₄: 3⋅X₄⋅X₄+8⋅X₄+4 {O(n^2)}
t₁₅: X₄+2 {O(n)}
t₁₆: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₇: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₈: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₉: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₂₀: 1 {O(1)}
t₂₂: X₄+2 {O(n)}
t₂₃: 2⋅X₄+2 {O(n)}
t₂₄: 2⋅X₄+2 {O(n)}
t₂₅: X₄+1 {O(n)}
t₂₆: 1 {O(1)}

Costbounds

Overall costbound: 7⋅X₄⋅X₄+27⋅X₄+35 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: X₄+1 {O(n)}
t₁₃: 1 {O(1)}
t₁₄: 3⋅X₄⋅X₄+8⋅X₄+4 {O(n^2)}
t₁₅: X₄+2 {O(n)}
t₁₆: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₇: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₈: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₉: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₂₀: 1 {O(1)}
t₂₂: X₄+2 {O(n)}
t₂₃: 2⋅X₄+2 {O(n)}
t₂₄: 2⋅X₄+2 {O(n)}
t₂₅: X₄+1 {O(n)}
t₂₆: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₄, X₀: X₄+1 {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₅, X₀: X₄+1 {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₆, X₀: X₄+1 {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₇, X₀: X₄+1 {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₈, X₀: X₄+1 {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₉, X₀: X₄+1 {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₁₀, X₀: X₄+1 {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₁, X₀: X₄+1 {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₄+1 {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₂, X₀: X₄+1 {O(n)}
t₁₂, X₁: X₁+X₄+1 {O(n)}
t₁₂, X₂: X₄+1 {O(n)}
t₁₂, X₃: 0 {O(1)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: 0 {O(1)}
t₁₂, X₆: X₄⋅X₄+3⋅X₄+X₆+3 {O(n^2)}
t₁₃, X₀: 2⋅X₄+2 {O(n)}
t₁₃, X₁: X₁+X₄+1 {O(n)}
t₁₃, X₂: 2⋅X₄+2 {O(n)}
t₁₃, X₃: X₄⋅X₄+3⋅X₄+X₃+2 {O(n^2)}
t₁₃, X₄: 2⋅X₄ {O(n)}
t₁₃, X₅: X₄⋅X₄+3⋅X₄+X₅+2 {O(n^2)}
t₁₃, X₆: X₄⋅X₄+3⋅X₄+X₆+3 {O(n^2)}
t₁₄, X₀: X₄+1 {O(n)}
t₁₄, X₁: X₁+X₄+1 {O(n)}
t₁₄, X₂: X₄+1 {O(n)}
t₁₄, X₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₄, X₆: 2⋅X₄⋅X₄+6⋅X₄+X₆+6 {O(n^2)}
t₁₅, X₀: X₄+1 {O(n)}
t₁₅, X₁: X₁+X₄+1 {O(n)}
t₁₅, X₂: X₄+1 {O(n)}
t₁₅, X₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₅, X₆: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₁₆, X₀: X₄+1 {O(n)}
t₁₆, X₁: X₁+X₄+1 {O(n)}
t₁₆, X₂: X₄+1 {O(n)}
t₁₆, X₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₆, X₆: 2⋅X₄⋅X₄+6⋅X₄+X₆+6 {O(n^2)}
t₁₇, X₀: X₄+1 {O(n)}
t₁₇, X₁: X₁+X₄+1 {O(n)}
t₁₇, X₂: X₄+1 {O(n)}
t₁₇, X₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₇, X₆: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₈, X₀: X₄+1 {O(n)}
t₁₈, X₁: X₁+X₄+1 {O(n)}
t₁₈, X₂: X₄+1 {O(n)}
t₁₈, X₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₈, X₆: 1 {O(1)}
t₁₉, X₀: X₄+1 {O(n)}
t₁₉, X₁: X₁+X₄+1 {O(n)}
t₁₉, X₂: X₄+1 {O(n)}
t₁₉, X₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₉, X₆: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₂₀, X₀: X₄+1 {O(n)}
t₂₀, X₁: X₁+X₄+1 {O(n)}
t₂₀, X₂: X₄+1 {O(n)}
t₂₀, X₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: 0 {O(1)}
t₂₀, X₆: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₂₂, X₀: X₄+1 {O(n)}
t₂₂, X₁: X₁+X₄+1 {O(n)}
t₂₂, X₂: X₄+1 {O(n)}
t₂₂, X₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₂₂, X₆: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₂₃, X₀: X₄+1 {O(n)}
t₂₃, X₁: X₄+1 {O(n)}
t₂₃, X₂: X₄+1 {O(n)}
t₂₃, X₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₂₃, X₆: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₂₄, X₀: X₄+1 {O(n)}
t₂₄, X₁: X₄+1 {O(n)}
t₂₄, X₂: X₄+1 {O(n)}
t₂₄, X₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₂₄, X₆: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₂₅, X₀: X₄+1 {O(n)}
t₂₅, X₁: X₄+1 {O(n)}
t₂₅, X₂: X₄+1 {O(n)}
t₂₅, X₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₂₅, X₄: X₄ {O(n)}
t₂₅, X₅: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₂₅, X₆: X₄⋅X₄+3⋅X₄+3 {O(n^2)}
t₂₆, X₀: 3⋅X₄+3 {O(n)}
t₂₆, X₁: 2⋅X₁+2⋅X₄+2 {O(n)}
t₂₆, X₂: 3⋅X₄+3 {O(n)}
t₂₆, X₃: 2⋅X₄⋅X₄+6⋅X₄+X₃+4 {O(n^2)}
t₂₆, X₄: 3⋅X₄ {O(n)}
t₂₆, X₅: X₄⋅X₄+3⋅X₄+X₅+2 {O(n^2)}
t₂₆, X₆: 2⋅X₄⋅X₄+6⋅X₄+X₆+6 {O(n^2)}