Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars: D, E, F
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂) → l7(X₀, X₁, X₂)
t₆: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: 1 ≤ X₂
t₅: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₂ ≤ 0
t₇: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₈: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D
t₉: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₂+2 ≤ 0 ∧ D ≤ 0 ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₁₀: l2(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₁: l2(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D
t₁₂: l2(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₂+2 ≤ 0 ∧ D ≤ 0 ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₁₃: l3(X₀, X₁, X₂) → l1(X₀, X₁, -1) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₄: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 1 ≤ 0 ∧ 0 ≤ D ∧ 2⋅D ≤ 0 ∧ 0 ≤ 1+2⋅D ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₅: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 1 ≤ 0 ∧ D ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₁₆: l3(X₀, X₁, X₂) → l1(X₀, X₁, -1) :|: 1 ≤ 0 ∧ 0 ≤ D ∧ 2⋅D ≤ 0 ∧ 0 ≤ 1+2⋅D ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₇: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ 0 ≤ D ∧ 2⋅D ≤ 0 ∧ 0 ≤ 1+2⋅D ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₈: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ D ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₁₉: l3(X₀, X₁, X₂) → l1(X₀, X₁, -1) :|: 1 ≤ 0 ∧ D ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₂₀: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ 0 ≤ D ∧ 2⋅D ≤ 0 ∧ 0 ≤ 1+2⋅D ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₁: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ D ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₂₂: l3(X₀, X₁, X₂) → l1(X₀, X₁, -1) :|: 1 ≤ 0 ∧ 0 ≤ D ∧ 2⋅D ≤ 0 ∧ 0 ≤ 1+2⋅D ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₂₃: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ 0 ≤ D ∧ 2⋅D ≤ 0 ∧ 0 ≤ 1+2⋅D ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₂₄: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ D ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₂₅: l3(X₀, X₁, X₂) → l1(X₀, X₁, -1) :|: 1 ≤ 0 ∧ 0 ≤ D ∧ 2⋅D ≤ 0 ∧ 0 ≤ 1+2⋅D ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₂₆: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D
t₂₇: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ X₂+2 ≤ 0 ∧ D ≤ 0 ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₂₈: l3(X₀, X₁, X₂) → l1(X₀, X₁, -1) :|: 1 ≤ 0 ∧ 0 ≤ D ∧ 2⋅D ≤ 0 ∧ 0 ≤ 1+2⋅D ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₉: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂+2 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₃₀: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂+2 ≤ 0 ∧ F ≤ 0 ∧ D ≤ 0 ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₃₁: l3(X₀, X₁, X₂) → l1(X₀, X₁, -1) :|: 1 ≤ 0 ∧ D ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₃₂: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ 0 ≤ D ∧ 2⋅D ≤ 0 ∧ 0 ≤ 1+2⋅D ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₃: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ D ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₃₄: l3(X₀, X₁, X₂) → l1(X₀, X₁, -1) :|: 1 ≤ 0 ∧ D ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₃₅: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: X₂+2 ≤ 0 ∧ E ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₆: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: X₂+2 ≤ 0 ∧ E ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ D ≤ 0 ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₃₇: l3(X₀, X₁, X₂) → l1(X₀, X₁, -1) :|: 1 ≤ 0 ∧ D ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₈: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: X₂+2 ≤ 0 ∧ E ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₃₉: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: X₂+2 ≤ 0 ∧ E ≤ 0 ∧ F ≤ 0 ∧ D ≤ 0 ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅D ∧ 2⋅D ≤ 2+X₂
t₄₀: l4(X₀, X₁, X₂) → l5(X₀, X₁+1, X₂)
t₃: l5(X₀, X₁, X₂) → l1(X₀, X₁, X₁) :|: 1+X₁ ≤ X₀
t₄: l5(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₀ ≤ X₁
t₄₁: l6(X₀, X₁, X₂) → l8(X₀, X₁, X₂)
t₁: l7(X₀, X₁, X₂) → l5(X₀, 1, X₂) :|: 3 ≤ X₀
t₂: l7(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₀ ≤ 2
Preprocessing
Cut unsatisfiable transition t₇: l2→l3
Cut unsatisfiable transition t₉: l2→l3
Cut unsatisfiable transition t₁₀: l2→l4
Cut unsatisfiable transition t₁₂: l2→l4
Cut unsatisfiable transition t₁₄: l3→l1
Cut unsatisfiable transition t₁₅: l3→l1
Cut unsatisfiable transition t₁₆: l3→l1
Cut unsatisfiable transition t₁₇: l3→l1
Cut unsatisfiable transition t₁₈: l3→l1
Cut unsatisfiable transition t₁₉: l3→l1
Cut unsatisfiable transition t₂₀: l3→l1
Cut unsatisfiable transition t₂₁: l3→l1
Cut unsatisfiable transition t₂₂: l3→l1
Cut unsatisfiable transition t₂₃: l3→l1
Cut unsatisfiable transition t₂₄: l3→l1
Cut unsatisfiable transition t₂₅: l3→l1
Cut unsatisfiable transition t₂₇: l3→l1
Cut unsatisfiable transition t₂₈: l3→l1
Cut unsatisfiable transition t₂₉: l3→l1
Cut unsatisfiable transition t₃₀: l3→l1
Cut unsatisfiable transition t₃₁: l3→l1
Cut unsatisfiable transition t₃₂: l3→l1
Cut unsatisfiable transition t₃₃: l3→l1
Cut unsatisfiable transition t₃₄: l3→l1
Cut unsatisfiable transition t₃₅: l3→l1
Cut unsatisfiable transition t₃₆: l3→l1
Cut unsatisfiable transition t₃₇: l3→l1
Cut unsatisfiable transition t₃₈: l3→l1
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l2
Found invariant X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l1
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l4
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l3
Cut unsatisfiable transition t₁₃: l3→l1
Cut unsatisfiable transition t₃₉: l3→l1
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars: D, E, F
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂) → l7(X₀, X₁, X₂)
t₆: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₈: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₁₁: l2(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₆: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₀: l4(X₀, X₁, X₂) → l5(X₀, X₁+1, X₂) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₃: l5(X₀, X₁, X₂) → l1(X₀, X₁, X₁) :|: 1+X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄: l5(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₁: l6(X₀, X₁, X₂) → l8(X₀, X₁, X₂)
t₁: l7(X₀, X₁, X₂) → l5(X₀, 1, X₂) :|: 3 ≤ X₀
t₂: l7(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₀ ≤ 2
MPRF for transition t₃: l5(X₀, X₁, X₂) → l1(X₀, X₁, X₁) :|: 1+X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₅: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₁₁: l2(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀+3 {O(n)}
MPRF for transition t₄₀: l4(X₀, X₁, X₂) → l5(X₀, X₁+1, X₂) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₆: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+7⋅X₀+8 {O(n^2)}
MPRF for transition t₈: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+7⋅X₀+8 {O(n^2)}
MPRF for transition t₂₆: l3(X₀, X₁, X₂) → l1(X₀, X₁, D-1) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+7⋅X₀+8 {O(n^2)}
Chain transitions t₃: l5→l1 and t₅: l1→l4 to t₂₁₀: l5→l4
Chain transitions t₂₆: l3→l1 and t₅: l1→l4 to t₂₁₁: l3→l4
Chain transitions t₂₆: l3→l1 and t₆: l1→l2 to t₂₁₂: l3→l2
Chain transitions t₃: l5→l1 and t₆: l1→l2 to t₂₁₃: l5→l2
Chain transitions t₂₁₃: l5→l2 and t₁₁: l2→l4 to t₂₁₄: l5→l4
Chain transitions t₂₁₂: l3→l2 and t₁₁: l2→l4 to t₂₁₅: l3→l4
Chain transitions t₂₁₂: l3→l2 and t₈: l2→l3 to t₂₁₆: l3→l3
Chain transitions t₂₁₃: l5→l2 and t₈: l2→l3 to t₂₁₇: l5→l3
Chain transitions t₂₁₄: l5→l4 and t₄₀: l4→l5 to t₂₁₈: l5→l5
Chain transitions t₂₁₀: l5→l4 and t₄₀: l4→l5 to t₂₁₉: l5→l5
Chain transitions t₂₁₅: l3→l4 and t₄₀: l4→l5 to t₂₂₀: l3→l5
Chain transitions t₂₁₁: l3→l4 and t₄₀: l4→l5 to t₂₂₁: l3→l5
Analysing control-flow refined program
Cut unsatisfiable transition t₂₁₀: l5→l4
Cut unsatisfiable transition t₂₁₉: l5→l5
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l2
Found invariant X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l1
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l4
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l3
MPRF for transition t₂₁₇: l5(X₀, X₁, X₂) -{3}> l3(X₀, X₁, X₁) :|: 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ Temp_Int₆₅₀ ∧ 2⋅Temp_Int₆₅₀ ≤ X₁+1 ∧ X₁ ≤ 2⋅Temp_Int₆₅₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ 2⋅X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ 2⋅X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₂₁₈: l5(X₀, X₁, X₂) -{4}> l5(X₀, X₁+1, X₁) :|: 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ Temp_Int₆₃₈ ∧ 2⋅Temp_Int₆₃₈ ≤ X₁+1 ∧ X₁ ≤ 2⋅Temp_Int₆₃₈ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ 2⋅X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ 2⋅X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ 2⋅X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀+1 {O(n)}
MPRF for transition t₂₂₀: l3(X₀, X₁, X₂) -{4}> l5(X₀, X₁+1, D-1) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D ∧ 2 ≤ D ∧ 1 ≤ D ∧ 0 ≤ Temp_Int₆₄₂ ∧ 2⋅Temp_Int₆₄₂ ≤ D ∧ D ≤ 1+2⋅Temp_Int₆₄₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ D ≤ X₁+1 ∧ D ≤ X₀ ∧ 1 ≤ D ∧ 2 ≤ X₁+D ∧ 4 ≤ X₀+D ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ D ≤ X₁+1 ∧ D ≤ X₀ ∧ 2 ≤ D ∧ 3 ≤ X₁+D ∧ 5 ≤ X₀+D ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ D ≤ X₁+1 ∧ D ≤ X₀ ∧ 1 ≤ D ∧ 2 ≤ X₁+D ∧ 4 ≤ X₀+D ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₂₂₁: l3(X₀, X₁, X₂) -{3}> l5(X₀, X₁+1, D-1) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D ∧ D ≤ 1 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ D ≤ X₁+1 ∧ D ≤ X₀ ∧ 1 ≤ D ∧ 2 ≤ X₁+D ∧ 4 ≤ X₀+D ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ D ≤ X₁+1 ∧ D ≤ X₀ ∧ 1 ≤ D ∧ 2 ≤ X₁+D ∧ 4 ≤ X₀+D ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₂₁₆: l3(X₀, X₁, X₂) -{3}> l3(X₀, X₁, D-1) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ D ∧ 2⋅D ≤ X₂+1 ∧ X₂ ≤ 2⋅D ∧ 2 ≤ D ∧ 1 ≤ D ∧ 0 ≤ Temp_Int₆₄₆ ∧ 2⋅Temp_Int₆₄₆ ≤ D ∧ D ≤ 1+2⋅Temp_Int₆₄₆ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ D ≤ X₁+1 ∧ D ≤ X₀ ∧ 1 ≤ D ∧ 2 ≤ X₁+D ∧ 4 ≤ X₀+D ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ D ≤ X₁+1 ∧ D ≤ X₀ ∧ 2 ≤ D ∧ 3 ≤ X₁+D ∧ 5 ≤ X₀+D ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+5⋅X₀+3 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₄: l5→l6
Cut unsatisfiable transition t₃₆₃: n_l1___8→l4
Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l5___1
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l2___7
Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l5___9
Found invariant 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___4
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___6
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___8
Found invariant 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l2___3
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l4___5
Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5
Found invariant 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l3___2
Found invariant X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l4
MPRF for transition t₃₃₈: n_l1___8(X₀, X₁, X₂) → n_l2___7(X₀, X₁, X₂) :|: 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₃₄₀: n_l2___3(X₀, X₁, X₂) → n_l4___5(X₀, X₁, Arg2_P) :|: 1+2⋅X₂ ≤ X₁ ∧ 1 ≤ Arg2_P ∧ Arg2_P ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₃₄₁: n_l2___7(X₀, X₁, X₂) → n_l3___6(X₀, X₁, Arg2_P) :|: X₁ ≤ X₂ ∧ 1 ≤ Arg2_P ∧ Arg2_P ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₃₄₂: n_l2___7(X₀, X₁, X₂) → n_l4___5(X₀, X₁, Arg2_P) :|: X₁ ≤ X₂ ∧ 1 ≤ Arg2_P ∧ Arg2_P ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₃₄₄: n_l3___6(X₀, X₁, X₂) → n_l1___4(X₀, X₁, Arg2_P) :|: X₁ ≤ X₂ ∧ X₂ ≤ 2+2⋅Arg2_P ∧ 1+2⋅Arg2_P ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₃₄₅: l4(X₀, X₁, X₂) → n_l5___9(X₀, X₁+1, X₂) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₃₄₆: n_l4___5(X₀, X₁, X₂) → n_l5___1(X₀, X₁+1, X₂) :|: 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₃₄₇: n_l5___1(X₀, X₁, X₂) → n_l1___8(X₀, X₁, X₁) :|: 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₃₄₉: n_l5___9(X₀, X₁, X₂) → n_l1___8(X₀, X₁, X₁) :|: 2 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 3 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₃₆₂: n_l1___4(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₃₃₇: n_l1___4(X₀, X₁, X₂) → n_l2___3(X₀, X₁, X₂) :|: 1+2⋅X₂ ≤ X₁ ∧ 0 ≤ 1+2⋅X₂ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
8⋅X₀⋅X₀+26⋅X₀+22 {O(n^2)}
MPRF for transition t₃₃₉: n_l2___3(X₀, X₁, X₂) → n_l3___2(X₀, X₁, Arg2_P) :|: 1+2⋅X₂ ≤ X₁ ∧ 1 ≤ Arg2_P ∧ Arg2_P ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
4⋅X₀⋅X₀+11⋅X₀+8 {O(n^2)}
MPRF for transition t₃₄₃: n_l3___2(X₀, X₁, X₂) → n_l1___4(X₀, X₁, Arg2_P) :|: 1+2⋅X₂ ≤ X₁ ∧ X₂ ≤ 2+2⋅Arg2_P ∧ 1+2⋅Arg2_P ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
4⋅X₀⋅X₀+11⋅X₀+8 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:6⋅X₀⋅X₀+27⋅X₀+36 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₀+2 {O(n)}
t₄: 1 {O(1)}
t₅: X₀+1 {O(n)}
t₆: 2⋅X₀⋅X₀+7⋅X₀+8 {O(n^2)}
t₈: 2⋅X₀⋅X₀+7⋅X₀+8 {O(n^2)}
t₁₁: 3⋅X₀+3 {O(n)}
t₂₆: 2⋅X₀⋅X₀+7⋅X₀+8 {O(n^2)}
t₄₀: X₀+1 {O(n)}
t₄₁: 1 {O(1)}
Costbounds
Overall costbound: 6⋅X₀⋅X₀+27⋅X₀+36 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₀+2 {O(n)}
t₄: 1 {O(1)}
t₅: X₀+1 {O(n)}
t₆: 2⋅X₀⋅X₀+7⋅X₀+8 {O(n^2)}
t₈: 2⋅X₀⋅X₀+7⋅X₀+8 {O(n^2)}
t₁₁: 3⋅X₀+3 {O(n)}
t₂₆: 2⋅X₀⋅X₀+7⋅X₀+8 {O(n^2)}
t₄₀: X₀+1 {O(n)}
t₄₁: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: 1 {O(1)}
t₁, X₂: X₂ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₀+2 {O(n)}
t₃, X₂: X₀+3 {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₀+2 {O(n)}
t₄, X₂: X₀+3 {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₀+2 {O(n)}
t₅, X₂: 0 {O(1)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₀+2 {O(n)}
t₆, X₂: X₀+3 {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₀+2 {O(n)}
t₈, X₂: X₀+3 {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₀+2 {O(n)}
t₁₁, X₂: X₀+3 {O(n)}
t₂₆, X₀: X₀ {O(n)}
t₂₆, X₁: X₀+2 {O(n)}
t₂₆, X₂: X₀+3 {O(n)}
t₄₀, X₀: X₀ {O(n)}
t₄₀, X₁: X₀+2 {O(n)}
t₄₀, X₂: X₀+3 {O(n)}
t₄₁, X₀: 2⋅X₀ {O(n)}
t₄₁, X₁: X₀+X₁+2 {O(n)}
t₄₁, X₂: X₀+X₂+3 {O(n)}