Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆
Temp_Vars: B1, C1, D1, E1, F1, G1, H1, I1, J1, K1, L1, M1, N1, O1, P1, Q1, R1
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆)
t₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ 0
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, B1, Q1, D1, G1, L1, 1, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 2⋅C1 ≤ X₃ ∧ X₃+1 ≤ 3⋅C1 ∧ D1 ≤ C1 ∧ 2⋅E1 ≤ X₃ ∧ X₃+1 ≤ 3⋅E1 ∧ E1 ≤ D1 ∧ 2⋅B1*F1 ≤ B1*X₃ ∧ B1*X₃+1 ≤ 2⋅B1*F1+F1 ∧ G1 ≤ F1 ∧ 2⋅B1*H1 ≤ B1*X₃ ∧ B1*X₃+1 ≤ 2⋅B1*H1+H1 ∧ H1 ≤ G1 ∧ B1*I1*X₃ ≤ X₂ ∧ X₂+1 ≤ B1*I1*X₃+I1 ∧ B1*J1*X₃ ≤ X₂ ∧ X₂+1 ≤ B1*J1*X₃+J1 ∧ 2⋅B1*J1*K1 ≤ B1*I1*X₃ ∧ B1*I1*X₃+1 ≤ 2⋅B1*J1*K1+K1 ∧ L1 ≤ K1 ∧ B1*M1*X₃ ≤ X₂ ∧ X₂+1 ≤ B1*M1*X₃+M1 ∧ B1*N1*X₃ ≤ X₂ ∧ X₂+1 ≤ B1*N1*X₃+N1 ∧ 2⋅B1*N1*O1 ≤ B1*M1*X₃ ∧ B1*M1*X₃+1 ≤ 2⋅B1*N1*O1+O1 ∧ O1 ≤ L1 ∧ 1 ≤ X₁ ∧ B1*P1*X₃ ≤ X₂ ∧ X₂+1 ≤ B1*P1*X₃+P1 ∧ Q1 ≤ P1 ∧ B1*R1*X₃ ≤ X₂ ∧ X₂+1 ≤ B1*R1*X₃+R1 ∧ R1 ≤ Q1
t₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 2+X₁₁ ≤ X₁₂+X₆
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+X₆, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₂₂, X₂₀, X₂₁, X₂₀*X₂₂+X₂₂-X₂₁*X₂₃, X₂₀*X₂₃+X₂₁*X₂₂+X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₂+X₆ ≤ X₁₁+1
t₁₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁+2, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₈ ≤ X₁₀
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+X₁₇, X₁₁, X₁₂, X₁₃, B1*X₂₂-Q1*X₂₃, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₁₀, X₁₀+X₁₆, D1*X₂₂+G1*X₂₃) :|: X₁₀ ≤ X₈
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₇ ≤ X₁₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₀ ≤ X₇ ∧ X₁₀+1 ≤ X₉
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, B1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₁₀ ∧ 2⋅Q1 ≤ X₇ ∧ X₇+1 ≤ 3⋅Q1 ∧ B1 ≤ Q1 ∧ 2⋅D1 ≤ X₇ ∧ X₇+1 ≤ 3⋅D1 ∧ D1 ≤ B1 ∧ X₁₀ ≤ X₇
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, 1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₁
t₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁+1, B1*X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₀
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁-1, X₂, X₃*X₄, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₇ ≤ X₁₆
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, 2⋅X₁₆, B1, Q1, D1, G1, 1, 0, X₂₄, X₂₅, X₂₆) :|: X₁₆+1 ≤ X₇
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, B1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₀+X₆ ≤ X₁₁+1 ∧ 2⋅Q1 ≤ X₇ ∧ X₇+1 ≤ 3⋅Q1 ∧ B1 ≤ Q1 ∧ 2⋅D1 ≤ X₇ ∧ X₇+1 ≤ 3⋅D1 ∧ D1 ≤ B1
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 2+X₁₁ ≤ X₁₀+X₆
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+X₁₅, X₁₀+X₆, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₆ ≤ X₁₅ ∧ X₉ ≤ X₁₅
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+X₁₅, X₁₀+X₆, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₅+1 ≤ X₆
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-X₁₅, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, B1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁₅ ≤ X₉ ∧ 2⋅Q1 ≤ X₁₅ ∧ X₁₅+1 ≤ 3⋅Q1 ∧ B1 ≤ Q1 ∧ 2⋅D1 ≤ X₁₅ ∧ X₁₅+1 ≤ 3⋅D1 ∧ D1 ≤ B1 ∧ X₆ ≤ X₁₅
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁+2, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₈ ≤ X₁₂
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+X₇, X₉+X₁₂-X₁₀, B1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₂ ≤ X₈
t₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₂ ≤ X₁₆
t₁₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₇, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁₆ ≤ X₁₂

Preprocessing

Eliminate variables {X₅,X₁₃,X₁₄,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆} that do not contribute to the problem

Found invariant 1 ≤ 0 for location l11

Found invariant X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₀+X₃ ≤ 0 ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location l2

Found invariant 1 ≤ 0 for location l6

Found invariant 1 ≤ 0 for location l7

Found invariant 1 ≤ 0 for location l5

Found invariant 1 ≤ 0 for location l8

Found invariant X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₁ for location l1

Found invariant 1 ≤ 0 for location l10

Found invariant 1 ≤ 0 for location l9

Found invariant 1 ≤ 0 for location l3

Cut unsatisfiable transition t₅₁: l1→l3

Cut unsatisfiable transition t₅₂: l10→l11

Cut unsatisfiable transition t₅₃: l10→l9

Cut unsatisfiable transition t₅₄: l11→l10

Cut unsatisfiable transition t₅₅: l11→l11

Cut unsatisfiable transition t₅₆: l3→l5

Cut unsatisfiable transition t₅₇: l3→l6

Cut unsatisfiable transition t₅₈: l3→l7

Cut unsatisfiable transition t₆₁: l5→l1

Cut unsatisfiable transition t₆₂: l5→l9

Cut unsatisfiable transition t₆₃: l6→l7

Cut unsatisfiable transition t₆₄: l6→l8

Cut unsatisfiable transition t₆₅: l7→l3

Cut unsatisfiable transition t₆₆: l7→l3

Cut unsatisfiable transition t₆₇: l7→l7

Cut unsatisfiable transition t₆₈: l8→l6

Cut unsatisfiable transition t₆₉: l8→l8

Cut unsatisfiable transition t₇₀: l9→l10

Cut unsatisfiable transition t₇₁: l9→l5

Cut unreachable locations [l10; l11; l3; l5; l6; l7; l8; l9] from the program graph

Eliminate variables {B1,X₂,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄} that do not contribute to the problem

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l4
Transitions:
t₁₂₁: l0(X₀, X₁, X₂) → l4(X₀, X₁, X₂)
t₁₂₂: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₁ ≤ 0
t₁₂₃: l4(X₀, X₁, X₂) → l1(X₀, X₁, 1) :|: 1+X₀ ≤ X₁
t₁₂₄: l4(X₀, X₁, X₂) → l4(X₀, X₁+1, X₂) :|: X₁ ≤ X₀

MPRF for transition t₁₂₄: l4(X₀, X₁, X₂) → l4(X₀, X₁+1, X₂) :|: X₁ ≤ X₀ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

All Bounds

Timebounds

Overall timebound:X₀+X₁+4 {O(n)}
t₁₂₁: 1 {O(1)}
t₁₂₂: 1 {O(1)}
t₁₂₃: 1 {O(1)}
t₁₂₄: X₀+X₁+1 {O(n)}

Costbounds

Overall costbound: X₀+X₁+4 {O(n)}
t₁₂₁: 1 {O(1)}
t₁₂₂: 1 {O(1)}
t₁₂₃: 1 {O(1)}
t₁₂₄: X₀+X₁+1 {O(n)}

Sizebounds

t₁₂₁, X₀: X₀ {O(n)}
t₁₂₁, X₁: X₁ {O(n)}
t₁₂₁, X₂: X₂ {O(n)}
t₁₂₂, X₀: 2⋅X₀ {O(n)}
t₁₂₂, X₁: 3⋅X₁+X₀+1 {O(n)}
t₁₂₂, X₂: 1 {O(1)}
t₁₂₃, X₀: 2⋅X₀ {O(n)}
t₁₂₃, X₁: 3⋅X₁+X₀+1 {O(n)}
t₁₂₃, X₂: 1 {O(1)}
t₁₂₄, X₀: X₀ {O(n)}
t₁₂₄, X₁: 2⋅X₁+X₀+1 {O(n)}
t₁₂₄, X₂: X₂ {O(n)}