Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₅: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ X₃
t₆: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂
t₇: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃-1) :|: E+1 ≤ 0
t₈: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃-1) :|: E+1 ≤ 0 ∧ 1 ≤ E
t₉: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃-1) :|: 1 ≤ E
t₁₀: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: 1 ≤ 0
t₁₁: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: 1 ≤ 0
t₁₂: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃-1) :|: 1 ≤ 0
t₁₃: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃-1) :|: 1 ≤ 0
t₁₄: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃)
t₁₅: l3(X₀, X₁, X₂, X₃) → l5(X₀+1, X₃, X₂, X₃)
t₄: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₀+1, X₁)
t₂: l5(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀+1 ≤ X₁
t₃: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₀
t₁₆: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₁: l7(X₀, X₁, X₂, X₃) → l5(0, X₀, X₂, X₃)
Preprocessing
Cut unsatisfiable transition t₈: l2→l1
Cut unsatisfiable transition t₁₀: l2→l1
Cut unsatisfiable transition t₁₁: l2→l1
Cut unsatisfiable transition t₁₂: l2→l1
Cut unsatisfiable transition t₁₃: l2→l1
Found invariant X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l2
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ X₀ for location l5
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l8
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4
Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₅: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃-1) :|: E+1 ≤ 0 ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₉: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃-1) :|: 1 ≤ E ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₄: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃) :|: X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₅: l3(X₀, X₁, X₂, X₃) → l5(X₀+1, X₃, X₂, X₃) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₄: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₀+1, X₁) :|: 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₂: l5(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀+1 ≤ X₁ ∧ 0 ≤ X₀
t₃: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀
t₁₆: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀
t₁: l7(X₀, X₁, X₂, X₃) → l5(0, X₀, X₂, X₃)
MPRF for transition t₂: l5(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀+1 ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₄: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₀+1, X₁) :|: 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₆: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₇: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃-1) :|: E+1 ≤ 0 ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₉: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃-1) :|: 1 ≤ E ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₁₅: l3(X₀, X₁, X₂, X₃) → l5(X₀+1, X₃, X₂, X₃) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₅: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+2⋅X₀ {O(n^2)}
MPRF for transition t₁₄: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃) :|: X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀⋅X₀+X₀ {O(n^2)}
Chain transitions t₄: l4→l1 and t₆: l1→l3 to t₈₆: l4→l3
Chain transitions t₁₄: l2→l1 and t₆: l1→l3 to t₈₇: l2→l3
Chain transitions t₁₄: l2→l1 and t₅: l1→l2 to t₈₈: l2→l2
Chain transitions t₄: l4→l1 and t₅: l1→l2 to t₈₉: l4→l2
Chain transitions t₉: l2→l1 and t₅: l1→l2 to t₉₀: l2→l2
Chain transitions t₉: l2→l1 and t₆: l1→l3 to t₉₁: l2→l3
Chain transitions t₇: l2→l1 and t₅: l1→l2 to t₉₂: l2→l2
Chain transitions t₇: l2→l1 and t₆: l1→l3 to t₉₃: l2→l3
Chain transitions t₈₆: l4→l3 and t₁₅: l3→l5 to t₉₄: l4→l5
Chain transitions t₉₃: l2→l3 and t₁₅: l3→l5 to t₉₅: l2→l5
Chain transitions t₉₁: l2→l3 and t₁₅: l3→l5 to t₉₆: l2→l5
Chain transitions t₈₇: l2→l3 and t₁₅: l3→l5 to t₉₇: l2→l5
Chain transitions t₂: l5→l4 and t₉₄: l4→l5 to t₉₈: l5→l5
Chain transitions t₂: l5→l4 and t₈₆: l4→l3 to t₉₉: l5→l3
Chain transitions t₂: l5→l4 and t₈₉: l4→l2 to t₁₀₀: l5→l2
Chain transitions t₂: l5→l4 and t₄: l4→l1 to t₁₀₁: l5→l1
Analysing control-flow refined program
Found invariant X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l2
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ X₀ for location l5
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l8
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4
Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l3
MPRF for transition t₉₀: l2(X₀, X₁, X₂, X₃) -{2}> l2(X₀, X₁, X₂, X₃-1) :|: 1 ≤ E ∧ X₂+2 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁+1 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂+1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₉₂: l2(X₀, X₁, X₂, X₃) -{2}> l2(X₀, X₁, X₂, X₃-1) :|: E+1 ≤ 0 ∧ X₂+2 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁+1 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂+1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₉₅: l2(X₀, X₁, X₂, X₃) -{3}> l5(X₀+1, X₃-1, X₂, X₃-1) :|: E+1 ≤ 0 ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁+1 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂+1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₂+1 ∧ X₃ ≤ X₁+1 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂+1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₉₆: l2(X₀, X₁, X₂, X₃) -{3}> l5(X₀+1, X₃-1, X₂, X₃-1) :|: 1 ≤ E ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁+1 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂+1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₂+1 ∧ X₃ ≤ X₁+1 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂+1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₉₇: l2(X₀, X₁, X₂, X₃) -{3}> l5(X₀+1, X₃, 1+X₂, X₃) :|: X₃ ≤ X₂+1 ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂+1 ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₉₈: l5(X₀, X₁, X₂, X₃) -{4}> l5(X₀+1, X₁, 1+X₀, X₁) :|: X₀+1 ≤ X₁ ∧ X₁ ≤ X₀+1 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ 2⋅X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁+X₀ ∧ 0 ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ 2⋅X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁+X₀ ∧ 0 ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₁₀₀: l5(X₀, X₁, X₂, X₃) -{3}> l2(X₀, X₁, 1+X₀, X₁) :|: X₀+1 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ 2⋅X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁+X₀ ∧ 0 ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₈₈: l2(X₀, X₁, X₂, X₃) -{2}> l2(X₀, X₁, 1+X₂, X₃) :|: 2+X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂+1 ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
11⋅X₀⋅X₀+5⋅X₀ {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l1___6
Found invariant X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l2___7
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l6
Found invariant 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l1___3
Found invariant X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l2___1
Found invariant 1+X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l2___2
Found invariant 0 ≤ X₀ for location l5
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l8
Found invariant X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l1___5
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4
Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l3
Found invariant 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l2___4
knowledge_propagation leads to new time bound X₀ {O(n)} for transition t₂₄₆: l1(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₀ {O(n)} for transition t₂₅₆: n_l2___7(X₀, X₁, X₂, X₃) → n_l1___5(X₀, X₁, X₂+1, X₃) :|: X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₀ {O(n)} for transition t₂₅₇: n_l2___7(X₀, X₁, X₂, X₃) → n_l1___6(X₀, X₁, X₂, X₃-1) :|: X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₀ {O(n)} for transition t₂₅₈: n_l2___7(X₀, X₁, X₂, X₃) → n_l1___6(X₀, X₁, X₂, X₃-1) :|: X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
MPRF for transition t₂₄₃: n_l1___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 2+X₀ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
18⋅X₀⋅X₀+7⋅X₀ {O(n^2)}
MPRF for transition t₂₄₄: n_l1___5(X₀, X₁, X₂, X₃) → n_l2___1(X₀, X₁, X₂, X₃) :|: 2+X₀ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+3⋅X₀ {O(n^2)}
MPRF for transition t₂₄₅: n_l1___6(X₀, X₁, X₂, X₃) → n_l2___4(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₂₄₇: n_l2___1(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁, X₂, X₃-1) :|: 2+X₀ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₂₄₈: n_l2___1(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁, X₂, X₃-1) :|: 2+X₀ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₂₄₉: n_l2___1(X₀, X₁, X₂, X₃) → n_l1___5(X₀, X₁, X₂+1, X₃) :|: 2+X₀ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+2⋅X₀ {O(n^2)}
MPRF for transition t₂₅₀: n_l2___2(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁, X₂, X₃-1) :|: 1+X₃ ≤ X₁ ∧ 2+X₀ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₂₅₁: n_l2___2(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁, X₂, X₃-1) :|: 1+X₃ ≤ X₁ ∧ 2+X₀ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₂₅₂: n_l2___2(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 2+X₀ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
8⋅X₀⋅X₀+X₀ {O(n^2)}
MPRF for transition t₂₅₃: n_l2___4(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₂₅₄: n_l2___4(X₀, X₁, X₂, X₃) → n_l1___6(X₀, X₁, X₂, X₃-1) :|: 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₂₅₅: n_l2___4(X₀, X₁, X₂, X₃) → n_l1___6(X₀, X₁, X₂, X₃-1) :|: 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₂₆₈: n_l1___3(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₀ {O(n)}
MPRF for transition t₂₆₉: n_l1___5(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₂₇₀: n_l1___6(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:3⋅X₀⋅X₀+9⋅X₀+6 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₀+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₀ {O(n)}
t₅: 2⋅X₀⋅X₀+2⋅X₀ {O(n^2)}
t₆: X₀ {O(n)}
t₇: X₀ {O(n)}
t₉: X₀+1 {O(n)}
t₁₄: X₀⋅X₀+X₀ {O(n^2)}
t₁₅: X₀ {O(n)}
t₁₆: 1 {O(1)}
Costbounds
Overall costbound: 3⋅X₀⋅X₀+9⋅X₀+6 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₀+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₀ {O(n)}
t₅: 2⋅X₀⋅X₀+2⋅X₀ {O(n^2)}
t₆: X₀ {O(n)}
t₇: X₀ {O(n)}
t₉: X₀+1 {O(n)}
t₁₄: X₀⋅X₀+X₀ {O(n^2)}
t₁₅: X₀ {O(n)}
t₁₆: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: 0 {O(1)}
t₁, X₁: X₀ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₀ {O(n)}
t₂, X₂: 3⋅X₀⋅X₀+7⋅X₀+X₂+4 {O(n^2)}
t₂, X₃: 4⋅X₀+X₃ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: 2⋅X₀ {O(n)}
t₃, X₂: 3⋅X₀⋅X₀+7⋅X₀+X₂+4 {O(n^2)}
t₃, X₃: 4⋅X₀+X₃ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₀ {O(n)}
t₄, X₂: X₀+1 {O(n)}
t₄, X₃: X₀ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₀ {O(n)}
t₅, X₂: X₀⋅X₀+2⋅X₀+1 {O(n^2)}
t₅, X₃: X₀ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₀ {O(n)}
t₆, X₂: 3⋅X₀⋅X₀+7⋅X₀+4 {O(n^2)}
t₆, X₃: 4⋅X₀ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₀ {O(n)}
t₇, X₂: X₀⋅X₀+2⋅X₀+1 {O(n^2)}
t₇, X₃: X₀ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₀ {O(n)}
t₉, X₂: X₀⋅X₀+2⋅X₀+1 {O(n^2)}
t₉, X₃: X₀ {O(n)}
t₁₄, X₀: X₀ {O(n)}
t₁₄, X₁: X₀ {O(n)}
t₁₄, X₂: X₀⋅X₀+2⋅X₀+1 {O(n^2)}
t₁₄, X₃: X₀ {O(n)}
t₁₅, X₀: X₀ {O(n)}
t₁₅, X₁: X₀ {O(n)}
t₁₅, X₂: 3⋅X₀⋅X₀+7⋅X₀+4 {O(n^2)}
t₁₅, X₃: 4⋅X₀ {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: 2⋅X₀ {O(n)}
t₁₆, X₂: 3⋅X₀⋅X₀+7⋅X₀+X₂+4 {O(n^2)}
t₁₆, X₃: 4⋅X₀+X₃ {O(n)}