Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₅-1, X₄, X₅, X₆, X₇)
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₀)
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇) :|: 0 < X₅
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ 0
t₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₄)
t₁₅: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₆
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₅
t₂₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < 0
t₂₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇
t₂₉: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ 0 ≤ X₇
t₁₇: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₅, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₂, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₂₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₇, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₇, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₆
t₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₇-X₅, X₃, X₄, X₅, X₆, X₇)
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)

Preprocessing

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l11

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l6

Found invariant 2 ≤ X₄ for location l15

Found invariant X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l19

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l12

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l23

Found invariant 2 ≤ X₄ for location l17

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l7

Found invariant X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l20

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l21

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l13

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l22

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l8

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l10

Found invariant 2 ≤ X₄ for location l16

Found invariant X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l18

Found invariant 2 ≤ X₄ for location l4

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l9

Found invariant 2 ≤ X₄ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₅-1, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁
t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₀) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇) :|: 0 < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ 0 ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₄) :|: X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁₅: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₂₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < 0 ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₂₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₂₉: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁₇: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₅, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₃₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₂, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁
t₂₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₇, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₇, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁
t₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₇-X₅, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁

Solv. Size Bound: t₁₃: l13→l21 for X₀

cycle: [t₁₃: l13→l21; t₁₆: l21→l7; t₁₈: l7→l8; t₁₉: l8→l6; t₂₁: l6→l9; t₂₂: l6→l9; t₂₃: l9→l10; t₂₄: l10→l11; t₂₅: l11→l12; t₂₆: l12→l13]
loop: (0 < X₅ ∧ X₄ < X₅ ∧ X₄ < 0 ∨ 0 < X₅ ∧ X₄ < X₅ ∧ 0 < X₄,(X₀,X₇) -> (X₇,X₇)
overappr. closed-form: 2⋅X₇ {O(n)}
runtime bound: X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₁₃: l13→l21 and X₀: inf {Infinity}

Solv. Size Bound: t₁₆: l21→l7 for X₀

cycle: [t₁₆: l21→l7; t₁₈: l7→l8; t₁₉: l8→l6; t₂₁: l6→l9; t₂₂: l6→l9; t₂₃: l9→l10; t₂₄: l10→l11; t₂₅: l11→l12; t₂₆: l12→l13; t₁₃: l13→l21]
loop: (X₆ < X₅ ∧ X₆ < 0 ∧ 1 < X₅ ∨ X₆ < X₅ ∧ 0 < X₆ ∧ 1 < X₅,(X₀,X₇) -> (X₇,X₇)
overappr. closed-form: 2⋅X₇ {O(n)}
runtime bound: X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₁₆: l21→l7 and X₀: inf {Infinity}

Solv. Size Bound: t₁₈: l7→l8 for X₀

Solv. Size Bound: t₁₈: l7→l8 for X₂

Solv. Size Bound: t₁₈: l7→l8 for X₇

cycle: [t₁₆: l21→l7; t₁₃: l13→l21; t₂₆: l12→l13; t₂₅: l11→l12; t₂₄: l10→l11; t₂₃: l9→l10; t₂₁: l6→l9; t₂₂: l6→l9; t₁₉: l8→l6; t₁₈: l7→l8]
loop: (X₆ < X₅ ∧ 0 < X₅ ∧ X₄ < 0 ∨ X₆ < X₅ ∧ 0 < X₅ ∧ 0 < X₄,(X₀,X₇) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: 8⋅X₃+8⋅X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₁₈: l7→l8 and X₇: inf {Infinity}

Solv. Size Bound: t₁₉: l8→l6 for X₀

cycle: [t₁₉: l8→l6; t₂₁: l6→l9; t₂₂: l6→l9; t₂₃: l9→l10; t₂₄: l10→l11; t₂₅: l11→l12; t₂₆: l12→l13; t₁₃: l13→l21; t₁₆: l21→l7; t₁₈: l7→l8]
loop: (X₆ < 0 ∧ 1 < X₅ ∧ X₄+1 < X₅ ∨ 0 < X₆ ∧ 1 < X₅ ∧ X₄+1 < X₅,(X₀,X₇) -> (X₇,X₇)
overappr. closed-form: 2⋅X₇ {O(n)}
runtime bound: X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₁₉: l8→l6 and X₀: inf {Infinity}

Solv. Size Bound: t₂₁: l6→l9 for X₀

cycle: [t₂₁: l6→l9; t₂₂: l6→l9; t₂₃: l9→l10; t₂₄: l10→l11; t₂₅: l11→l12; t₂₆: l12→l13; t₁₃: l13→l21; t₁₆: l21→l7; t₁₈: l7→l8; t₁₉: l8→l6]
loop: (X₆ < 0 ∧ 1 < X₅ ∧ X₄+1 < X₅ ∨ 0 < X₆ ∧ 1 < X₅ ∧ X₄+1 < X₅,(X₀,X₇) -> (X₇,X₇)
overappr. closed-form: 2⋅X₇ {O(n)}
runtime bound: X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₂₁: l6→l9 and X₀: inf {Infinity}

Solv. Size Bound: t₂₂: l6→l9 for X₀

cycle: [t₂₁: l6→l9; t₂₂: l6→l9; t₂₃: l9→l10; t₂₄: l10→l11; t₂₅: l11→l12; t₂₆: l12→l13; t₁₃: l13→l21; t₁₆: l21→l7; t₁₈: l7→l8; t₁₉: l8→l6]
loop: (X₆ < 0 ∧ 1 < X₅ ∧ X₄+1 < X₅ ∨ 0 < X₆ ∧ 1 < X₅ ∧ X₄+1 < X₅,(X₀,X₇) -> (X₇,X₇)
overappr. closed-form: 2⋅X₇ {O(n)}
runtime bound: X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₂₂: l6→l9 and X₀: inf {Infinity}

Solv. Size Bound: t₂₃: l9→l10 for X₀

Solv. Size Bound: t₂₃: l9→l10 for X₂

Solv. Size Bound: t₂₃: l9→l10 for X₇

cycle: [t₂₃: l9→l10; t₂₄: l10→l11; t₂₅: l11→l12; t₂₆: l12→l13; t₁₃: l13→l21; t₁₆: l21→l7; t₁₈: l7→l8; t₁₉: l8→l6; t₂₁: l6→l9; t₂₂: l6→l9]
loop: (1 < X₅ ∧ X₄+1 < X₅ ∧ X₄ < 0 ∨ 1 < X₅ ∧ X₄+1 < X₅ ∧ 0 < X₄,(X₀,X₇) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₂₃: l9→l10 and X₇: inf {Infinity}

Solv. Size Bound: t₂₄: l10→l11 for X₀

Solv. Size Bound: t₂₄: l10→l11 for X₂

Solv. Size Bound: t₂₄: l10→l11 for X₇

cycle: [t₂₄: l10→l11; t₂₅: l11→l12; t₂₆: l12→l13; t₁₃: l13→l21; t₁₆: l21→l7; t₁₈: l7→l8; t₁₉: l8→l6; t₂₁: l6→l9; t₂₂: l6→l9; t₂₃: l9→l10]
loop: (1 < X₅ ∧ X₄+1 < X₅ ∧ X₄ < 0 ∨ 1 < X₅ ∧ X₄+1 < X₅ ∧ 0 < X₄,(X₀,X₇) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₂₄: l10→l11 and X₇: inf {Infinity}

Solv. Size Bound: t₂₅: l11→l12 for X₀

Solv. Size Bound: t₂₅: l11→l12 for X₂

Solv. Size Bound: t₂₅: l11→l12 for X₇

cycle: [t₂₅: l11→l12; t₂₆: l12→l13; t₁₃: l13→l21; t₁₆: l21→l7; t₁₈: l7→l8; t₁₉: l8→l6; t₂₁: l6→l9; t₂₂: l6→l9; t₂₃: l9→l10; t₂₄: l10→l11]
loop: (0 < X₃ ∧ X₄ < X₃ ∧ X₄ < 0 ∨ 0 < X₃ ∧ X₄ < X₃ ∧ 0 < X₄,(X₀,X₇) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: X₃+1 {O(n)}

Solv. Size Bound - Lifting for t₂₅: l11→l12 and X₇: inf {Infinity}

Solv. Size Bound: t₂₆: l12→l13 for X₀

Solv. Size Bound: t₂₆: l12→l13 for X₂

Solv. Size Bound: t₂₆: l12→l13 for X₇

cycle: [t₂₆: l12→l13; t₁₃: l13→l21; t₁₆: l21→l7; t₁₈: l7→l8; t₁₉: l8→l6; t₂₁: l6→l9; t₂₂: l6→l9; t₂₃: l9→l10; t₂₄: l10→l11; t₂₅: l11→l12]
loop: (0 < X₃ ∧ X₄ < X₃ ∧ X₄ < 0 ∨ 0 < X₃ ∧ X₄ < X₃ ∧ 0 < X₄,(X₀,X₇) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: X₃+1 {O(n)}

Solv. Size Bound - Lifting for t₂₆: l12→l13 and X₇: inf {Infinity}

MPRF for transition t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇) :|: 0 < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₄ {O(n)}

MPRF for transition t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₄+1 {O(n)}

MPRF for transition t₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₇-X₅, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₄+2 {O(n)}

MPRF for transition t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ of depth 1:

new bound:

3⋅X₄ {O(n)}

MPRF for transition t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₂, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ of depth 1:

new bound:

4⋅X₄ {O(n)}

MPRF for transition t₂₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₇, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF for transition t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₇, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ of depth 1:

new bound:

3⋅X₄+1 {O(n)}

MPRF for transition t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF for transition t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₅-1, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ of depth 1:

new bound:

X₄ {O(n)}

MPRF for transition t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ of depth 1:

new bound:

2⋅X₄+1 {O(n)}

MPRF for transition t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₀) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ of depth 1:

new bound:

2⋅X₄+2 {O(n)}

TWN: t₁₅: l21→l23

cycle: [t₁₅: l21→l23; t₁₇: l23→l21]
loop: (X₅ ≤ X₆,(X₅,X₆) -> (X₅,X₆-X₅)
order: [X₅; X₆]
closed-form:
X₅: X₅
X₆: X₆ + [[n != 0]] * -X₅ * n^1

Termination: true
Formula:

X₅ < 0
∨ X₅ < X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
∨ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅

Stabilization-Threshold for: X₅ ≤ X₆
alphas_abs: X₅+X₆
M: 0
N: 1
Bound: 2⋅X₅+2⋅X₆+2 {O(n)}

TWN - Lifting for t₁₅: l21→l23 of 2⋅X₅+2⋅X₆+4 {O(n)}

relevant size-bounds w.r.t. t₁₃:
X₅: X₄ {O(n)}
X₆: 2⋅X₄ {O(n)}
Runtime-bound of t₁₃: 2⋅X₄ {O(n)}
Results in: 12⋅X₄⋅X₄+8⋅X₄ {O(n^2)}

TWN: t₁₇: l23→l21

TWN - Lifting for t₁₇: l23→l21 of 2⋅X₅+2⋅X₆+4 {O(n)}

relevant size-bounds w.r.t. t₁₃:
X₅: X₄ {O(n)}
X₆: 2⋅X₄ {O(n)}
Runtime-bound of t₁₃: 2⋅X₄ {O(n)}
Results in: 12⋅X₄⋅X₄+8⋅X₄ {O(n^2)}

Chain transitions t₂₃: l9→l10 and t₂₄: l10→l11 to t₄₈₉: l9→l11

Chain transitions t₄₈₉: l9→l11 and t₂₅: l11→l12 to t₄₉₀: l9→l12

Chain transitions t₄₉₀: l9→l12 and t₂₆: l12→l13 to t₄₉₁: l9→l13

Chain transitions t₄₉₁: l9→l13 and t₁₄: l13→l22 to t₄₉₂: l9→l22

Chain transitions t₁₂: l20→l13 and t₁₄: l13→l22 to t₄₉₃: l20→l22

Chain transitions t₁₂: l20→l13 and t₁₃: l13→l21 to t₄₉₄: l20→l21

Chain transitions t₄₉₁: l9→l13 and t₁₃: l13→l21 to t₄₉₅: l9→l21

Chain transitions t₄₉₅: l9→l21 and t₁₆: l21→l7 to t₄₉₆: l9→l7

Chain transitions t₁₇: l23→l21 and t₁₆: l21→l7 to t₄₉₇: l23→l7

Chain transitions t₁₇: l23→l21 and t₁₅: l21→l23 to t₄₉₈: l23→l23

Chain transitions t₄₉₅: l9→l21 and t₁₅: l21→l23 to t₄₉₉: l9→l23

Chain transitions t₄₉₄: l20→l21 and t₁₅: l21→l23 to t₅₀₀: l20→l23

Chain transitions t₄₉₄: l20→l21 and t₁₆: l21→l7 to t₅₀₁: l20→l7

Chain transitions t₁₉: l8→l6 and t₂₂: l6→l9 to t₅₀₂: l8→l9

Chain transitions t₁₉: l8→l6 and t₂₁: l6→l9 to t₅₀₃: l8→l9

Chain transitions t₁₉: l8→l6 and t₂₀: l6→l9 to t₅₀₄: l8→l9

Chain transitions t₄₉₆: l9→l7 and t₁₈: l7→l8 to t₅₀₅: l9→l8

Chain transitions t₄₉₇: l23→l7 and t₁₈: l7→l8 to t₅₀₆: l23→l8

Chain transitions t₅₀₁: l20→l7 and t₁₈: l7→l8 to t₅₀₇: l20→l8

Chain transitions t₅₀₅: l9→l8 and t₅₀₄: l8→l9 to t₅₀₈: l9→l9

Chain transitions t₅₀₆: l23→l8 and t₅₀₄: l8→l9 to t₅₀₉: l23→l9

Chain transitions t₅₀₆: l23→l8 and t₅₀₃: l8→l9 to t₅₁₀: l23→l9

Chain transitions t₅₀₅: l9→l8 and t₅₀₃: l8→l9 to t₅₁₁: l9→l9

Chain transitions t₅₀₇: l20→l8 and t₅₀₃: l8→l9 to t₅₁₂: l20→l9

Chain transitions t₅₀₇: l20→l8 and t₅₀₄: l8→l9 to t₅₁₃: l20→l9

Chain transitions t₅₀₇: l20→l8 and t₅₀₂: l8→l9 to t₅₁₄: l20→l9

Chain transitions t₅₀₆: l23→l8 and t₅₀₂: l8→l9 to t₅₁₅: l23→l9

Chain transitions t₅₀₅: l9→l8 and t₅₀₂: l8→l9 to t₅₁₆: l9→l9

Chain transitions t₅₀₇: l20→l8 and t₁₉: l8→l6 to t₅₁₇: l20→l6

Chain transitions t₅₀₆: l23→l8 and t₁₉: l8→l6 to t₅₁₈: l23→l6

Chain transitions t₅₀₅: l9→l8 and t₁₉: l8→l6 to t₅₁₉: l9→l6

Analysing control-flow refined program

Cut unsatisfiable transition t₄₉₃: l20→l22

Cut unsatisfiable transition t₄₉₆: l9→l7

Cut unsatisfiable transition t₅₀₁: l20→l7

Cut unsatisfiable transition t₅₀₅: l9→l8

Cut unsatisfiable transition t₅₀₇: l20→l8

Cut unsatisfiable transition t₅₀₈: l9→l9

Cut unsatisfiable transition t₅₁₀: l23→l9

Cut unsatisfiable transition t₅₁₁: l9→l9

Cut unsatisfiable transition t₅₁₂: l20→l9

Cut unsatisfiable transition t₅₁₃: l20→l9

Cut unsatisfiable transition t₅₁₄: l20→l9

Cut unsatisfiable transition t₅₁₆: l9→l9

Cut unsatisfiable transition t₅₁₇: l20→l6

Cut unsatisfiable transition t₅₁₉: l9→l6

Eliminate variables {X₃} that do not contribute to the problem

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l11

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l6

Found invariant 2 ≤ X₃ for location l15

Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l19

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l12

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l23

Found invariant 2 ≤ X₃ for location l17

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l7

Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l20

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 1+X₁ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l21

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l13

Found invariant X₆ ≤ X₀ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l22

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l8

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l10

Found invariant 2 ≤ X₃ for location l16

Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l18

Found invariant 2 ≤ X₃ for location l4

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l9

Found invariant 2 ≤ X₃ for location l14

Solv. Size Bound: t₆₆₂: l23→l9 for X₀

cycle: [t₆₆₂: l23→l9; t₆₇₂: l9→l23]
loop: (X₅ < 2⋅X₄ ∧ X₄ < X₅ ∧ 1 < X₄ ∧ X₄ ≤ 1+X₃,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: X₄+1 {O(n)}

Solv. Size Bound - Lifting for t₆₆₂: l23→l9 and X₀: inf {Infinity}

Solv. Size Bound: t₆₇₂: l9→l23 for X₀

Solv. Size Bound: t₆₇₂: l9→l23 for X₂

Solv. Size Bound: t₆₇₂: l9→l23 for X₆

cycle: [t₆₇₂: l9→l23; t₆₆₂: l23→l9]
loop: (1 < X₄ ∧ X₄ ≤ 1+X₃ ∧ X₃+2 < 2⋅X₄ ∧ X₄ < X₃+1,(X₀,X₆) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: X₄+1 {O(n)}

Solv. Size Bound - Lifting for t₆₇₂: l9→l23 and X₆: inf {Infinity}

MPRF for transition t₆₆₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{5}> l9(X₆-X₄, X₁, X₆-X₄, X₃, X₄, X₅-X₄, X₆) :|: X₅ < 2⋅X₄ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₃+2 {O(n)}

MPRF for transition t₆₆₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{5}> l9(X₆, X₁, X₆-X₄, X₃, X₄, X₅-X₄, X₆) :|: X₅ < 2⋅X₄ ∧ X₄ < X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₆₇₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{6}> l23(X₀, X₁, X₂, X₃, X₄-1, X₃, X₀) :|: 1 < X₄ ∧ X₄ ≤ 1+X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₆₅₇: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{2}> l23(X₀, X₁, X₂, X₃, X₄, X₅-X₄, X₆) :|: 2⋅X₄ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

4⋅X₃⋅X₃+4⋅X₃+1 {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₁₆: l21→l7

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l11

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l6

Found invariant 2 ≤ X₄ for location l15

Found invariant X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l19

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location n_l21___2

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location n_l23___3

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l12

Found invariant 2 ≤ X₄ for location l17

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l7

Found invariant X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l20

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l21

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l13

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l22

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l8

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l10

Found invariant 2 ≤ X₄ for location l16

Found invariant X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l18

Found invariant 2 ≤ X₄ for location l4

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l9

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location n_l23___1

Found invariant 2 ≤ X₄ for location l14

knowledge_propagation leads to new time bound 2⋅X₄ {O(n)} for transition t₈₀₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l23___3(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₅ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ X₇ ≤ 1+X₁ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound 2⋅X₄ {O(n)} for transition t₈₀₈: n_l23___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l21___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆-X₅, X₇) :|: X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₇ ≤ 1+X₁ ∧ 1 ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁

MPRF for transition t₈₀₅: n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l23___1(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₁+1 ≤ X₄ ∧ 0 ≤ X₆ ∧ X₅+X₆ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ X₇ ≤ 1+X₁ ∧ 1 ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₅ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ of depth 1:

new bound:

4⋅X₄⋅X₄+3⋅X₄+1 {O(n^2)}

MPRF for transition t₈₀₇: n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l21___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆-X₅, X₇) :|: X₅+X₆ ≤ 1+X₁ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ of depth 1:

new bound:

8⋅X₄⋅X₄+4⋅X₄ {O(n^2)}

MPRF for transition t₈₁₂: n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ of depth 1:

new bound:

3⋅X₄ {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:24⋅X₄⋅X₄+39⋅X₄+27 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₁₃: 2⋅X₄ {O(n)}
t₁₄: 1 {O(1)}
t₁₅: 12⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₆: 2⋅X₄+1 {O(n)}
t₁₇: 12⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₈: 2⋅X₄+2 {O(n)}
t₁₉: 3⋅X₄ {O(n)}
t₂₀: 4⋅X₄ {O(n)}
t₂₁: X₄+1 {O(n)}
t₂₂: 3⋅X₄+1 {O(n)}
t₂₃: X₄+1 {O(n)}
t₂₄: X₄ {O(n)}
t₂₅: 2⋅X₄+1 {O(n)}
t₂₆: 2⋅X₄+2 {O(n)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}

Costbounds

Overall costbound: 24⋅X₄⋅X₄+39⋅X₄+27 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₁₃: 2⋅X₄ {O(n)}
t₁₄: 1 {O(1)}
t₁₅: 12⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₆: 2⋅X₄+1 {O(n)}
t₁₇: 12⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₈: 2⋅X₄+2 {O(n)}
t₁₉: 3⋅X₄ {O(n)}
t₂₀: 4⋅X₄ {O(n)}
t₂₁: X₄+1 {O(n)}
t₂₂: 3⋅X₄+1 {O(n)}
t₂₃: X₄+1 {O(n)}
t₂₄: X₄ {O(n)}
t₂₅: 2⋅X₄+1 {O(n)}
t₂₆: 2⋅X₄+2 {O(n)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₄ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₄ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₄ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₇ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₄ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₄ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₄ {O(n)}
t₁₃, X₀: 2⋅X₄⋅X₄+4⋅X₄+X₀ {O(n^2)}
t₁₃, X₁: X₄ {O(n)}
t₁₃, X₂: 6⋅X₄⋅X₄+12⋅X₄+X₂ {O(n^2)}
t₁₃, X₃: X₃+X₄ {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: X₄ {O(n)}
t₁₃, X₆: 2⋅X₄ {O(n)}
t₁₃, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₄, X₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₄, X₁: X₄ {O(n)}
t₁₄, X₂: 6⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₁₄, X₃: X₄ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: 0 {O(1)}
t₁₄, X₆: 4⋅X₄ {O(n)}
t₁₄, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₅, X₀: 2⋅X₄⋅X₄+4⋅X₄+X₀ {O(n^2)}
t₁₅, X₁: X₄ {O(n)}
t₁₅, X₂: 6⋅X₄⋅X₄+12⋅X₄+X₂ {O(n^2)}
t₁₅, X₃: X₃+X₄ {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: X₄ {O(n)}
t₁₅, X₆: 2⋅X₄ {O(n)}
t₁₅, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₆, X₀: 2⋅X₄⋅X₄+4⋅X₄+X₀ {O(n^2)}
t₁₆, X₁: X₄ {O(n)}
t₁₆, X₂: 6⋅X₄⋅X₄+12⋅X₄+X₂ {O(n^2)}
t₁₆, X₃: X₃+X₄ {O(n)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: X₄ {O(n)}
t₁₆, X₆: 2⋅X₄ {O(n)}
t₁₆, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₇, X₀: 2⋅X₄⋅X₄+4⋅X₄+X₀ {O(n^2)}
t₁₇, X₁: X₄ {O(n)}
t₁₇, X₂: 6⋅X₄⋅X₄+12⋅X₄+X₂ {O(n^2)}
t₁₇, X₃: X₃+X₄ {O(n)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₄ {O(n)}
t₁₇, X₆: 2⋅X₄ {O(n)}
t₁₇, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₈, X₀: 2⋅X₄⋅X₄+4⋅X₄+X₀ {O(n^2)}
t₁₈, X₁: X₄ {O(n)}
t₁₈, X₂: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₈, X₃: X₃+X₄ {O(n)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: X₄ {O(n)}
t₁₈, X₆: 2⋅X₄ {O(n)}
t₁₈, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₉, X₀: 2⋅X₄⋅X₄+4⋅X₄+X₀ {O(n^2)}
t₁₉, X₁: X₄ {O(n)}
t₁₉, X₂: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₉, X₃: X₃+X₄ {O(n)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: X₄ {O(n)}
t₁₉, X₆: 2⋅X₄ {O(n)}
t₁₉, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₀, X₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₀, X₁: X₄ {O(n)}
t₂₀, X₂: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₀, X₃: X₃+X₄ {O(n)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: X₄ {O(n)}
t₂₀, X₆: 0 {O(1)}
t₂₀, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₁, X₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₁, X₁: X₄ {O(n)}
t₂₁, X₂: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₁, X₃: X₃+X₄ {O(n)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: X₄ {O(n)}
t₂₁, X₆: 2⋅X₄ {O(n)}
t₂₁, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₂, X₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₂, X₁: X₄ {O(n)}
t₂₂, X₂: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₂, X₃: X₃+X₄ {O(n)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: X₄ {O(n)}
t₂₂, X₆: 2⋅X₄ {O(n)}
t₂₂, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₃, X₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₃, X₁: X₄ {O(n)}
t₂₃, X₂: 6⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₂₃, X₃: 3⋅X₃+3⋅X₄ {O(n)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: X₄ {O(n)}
t₂₃, X₆: 4⋅X₄ {O(n)}
t₂₃, X₇: 6⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₂₄, X₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₄, X₁: X₄ {O(n)}
t₂₄, X₂: 6⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₂₄, X₃: X₄ {O(n)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: X₄ {O(n)}
t₂₄, X₆: 4⋅X₄ {O(n)}
t₂₄, X₇: 6⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₂₅, X₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₅, X₁: X₄ {O(n)}
t₂₅, X₂: 6⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₂₅, X₃: X₄ {O(n)}
t₂₅, X₄: X₄ {O(n)}
t₂₅, X₅: X₄ {O(n)}
t₂₅, X₆: 4⋅X₄ {O(n)}
t₂₅, X₇: 6⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₂₆, X₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₆, X₁: X₄ {O(n)}
t₂₆, X₂: 6⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₂₆, X₃: X₄ {O(n)}
t₂₆, X₄: X₄ {O(n)}
t₂₆, X₅: X₄ {O(n)}
t₂₆, X₆: 4⋅X₄ {O(n)}
t₂₆, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₇, X₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₇, X₁: X₄ {O(n)}
t₂₇, X₂: 6⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₂₇, X₃: X₄ {O(n)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₅: 0 {O(1)}
t₂₇, X₆: 4⋅X₄ {O(n)}
t₂₇, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₈, X₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₈, X₁: X₄ {O(n)}
t₂₈, X₂: 6⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₂₈, X₃: X₄ {O(n)}
t₂₈, X₄: X₄ {O(n)}
t₂₈, X₅: 0 {O(1)}
t₂₈, X₆: 4⋅X₄ {O(n)}
t₂₈, X₇: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₉, X₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₂₉, X₁: X₄ {O(n)}
t₂₉, X₂: 6⋅X₄⋅X₄+12⋅X₄ {O(n^2)}
t₂₉, X₃: X₄ {O(n)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₅: 0 {O(1)}
t₂₉, X₆: 4⋅X₄ {O(n)}
t₂₉, X₇: 0 {O(1)}
t₃₀, X₀: 6⋅X₄⋅X₄+12⋅X₄+X₀ {O(n^2)}
t₃₀, X₁: 3⋅X₄+X₁ {O(n)}
t₃₀, X₂: 18⋅X₄⋅X₄+36⋅X₄+X₂ {O(n^2)}
t₃₀, X₃: 3⋅X₄+X₃ {O(n)}
t₃₀, X₄: 4⋅X₄ {O(n)}
t₃₀, X₅: X₅ {O(n)}
t₃₀, X₆: 12⋅X₄+X₆ {O(n)}
t₃₀, X₇: 4⋅X₄⋅X₄+8⋅X₄+X₇ {O(n^2)}