Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
t₈: l10(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂
t₇: l10(X₀, X₁, X₂, X₃) → l14(X₀, X₂, X₂, X₃) :|: X₂ < X₃
t₁₈: l11(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₁₆: l12(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃)
t₁₇: l13(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃)
t₉: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: 0 < X₁ ∧ X₁ < X₃
t₁₀: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0
t₁₁: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁
t₁₂: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁+1, X₂, X₃) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₃: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁-1, X₂, X₃) :|: X₀ < 1
t₁₄: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁-1, X₂, X₃) :|: 1 < X₀
t₁₅: l16(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₁: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₂: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₄: l4(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃)
t₂₁: l5(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₁₉: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₂₀: l7(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)
t₅: l9(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: 0 < X₂
t₆: l9(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
Preprocessing
Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l11
Found invariant X₂ ≤ 0 for location l6
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l15
Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l12
Found invariant X₂ ≤ 0 for location l7
Found invariant X₂ ≤ 0 for location l5
Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l13
Found invariant 1 ≤ X₂ for location l10
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l16
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
t₈: l10(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂
t₇: l10(X₀, X₁, X₂, X₃) → l14(X₀, X₂, X₂, X₃) :|: X₂ < X₃ ∧ 1 ≤ X₂
t₁₈: l11(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂
t₁₆: l12(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂
t₁₇: l13(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂
t₉: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: 0 < X₁ ∧ X₁ < X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₀: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₁: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₂: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁+1, X₂, X₃) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₃: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁-1, X₂, X₃) :|: X₀ < 1 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₄: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁-1, X₂, X₃) :|: 1 < X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₅: l16(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₂: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₄: l4(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃)
t₂₁: l5(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₁₉: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₂₀: l7(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₅: l9(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: 0 < X₂
t₆: l9(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
Chain transitions t₁₄: l15→l14 and t₁₁: l14→l16 to t₁₄₇: l15→l16
Chain transitions t₁₃: l15→l14 and t₁₁: l14→l16 to t₁₄₈: l15→l16
Chain transitions t₁₃: l15→l14 and t₁₀: l14→l16 to t₁₄₉: l15→l16
Chain transitions t₁₄: l15→l14 and t₁₀: l14→l16 to t₁₅₀: l15→l16
Chain transitions t₁₂: l15→l14 and t₁₀: l14→l16 to t₁₅₁: l15→l16
Chain transitions t₁₂: l15→l14 and t₁₁: l14→l16 to t₁₅₂: l15→l16
Chain transitions t₁₂: l15→l14 and t₉: l14→l15 to t₁₅₃: l15→l15
Chain transitions t₁₃: l15→l14 and t₉: l14→l15 to t₁₅₄: l15→l15
Chain transitions t₁₄: l15→l14 and t₉: l14→l15 to t₁₅₅: l15→l15
Chain transitions t₇: l10→l14 and t₉: l14→l15 to t₁₅₆: l10→l15
Chain transitions t₇: l10→l14 and t₁₀: l14→l16 to t₁₅₇: l10→l16
Chain transitions t₇: l10→l14 and t₁₁: l14→l16 to t₁₅₈: l10→l16
Analysing control-flow refined program
Cut unsatisfiable transition t₁₄₇: l15→l16
Cut unsatisfiable transition t₁₄₈: l15→l16
Cut unsatisfiable transition t₁₅₁: l15→l16
Cut unsatisfiable transition t₁₅₇: l10→l16
Cut unsatisfiable transition t₁₅₈: l10→l16
Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l11
Found invariant X₂ ≤ 0 for location l6
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l15
Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l12
Found invariant X₂ ≤ 0 for location l7
Found invariant X₂ ≤ 0 for location l5
Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l13
Found invariant 1 ≤ X₂ for location l10
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l16
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l14
MPRF for transition t₁₅₃: l15(X₀, X₁, X₂, X₃) -{2}> l15(X₀, 1+X₁, X₂, X₃) :|: X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 0 < 1+X₁ ∧ 1+X₁ < X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₂+X₃ {O(n)}
MPRF for transition t₁₅₄: l15(X₀, X₁, X₂, X₃) -{2}> l15(X₀, X₁-1, X₂, X₃) :|: X₀ < 1 ∧ 1 < X₁ ∧ X₁ < 1+X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₁₅₅: l15(X₀, X₁, X₂, X₃) -{2}> l15(X₀, X₁-1, X₂, X₃) :|: 1 < X₀ ∧ 1 < X₁ ∧ X₁ < 1+X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₂ {O(n)}
Analysing control-flow refined program
Cut unsatisfiable transition t₁₀: l14→l16
Cut unsatisfiable transition t₁₁: l14→l16
Cut unsatisfiable transition t₃₄₃: n_l14___6→l16
Cut unsatisfiable transition t₃₄₄: n_l14___4→l16
Cut unsatisfiable transition t₃₄₅: n_l14___5→l16
Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l11
Found invariant X₂ ≤ 0 for location l6
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l14___4
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l15___7
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l14___6
Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l15___3
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l14___5
Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l12
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l15___2
Found invariant X₂ ≤ 0 for location l7
Found invariant X₂ ≤ 0 for location l5
Found invariant X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l13
Found invariant 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l15___1
Found invariant 1 ≤ X₂ for location l10
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l16
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l14
MPRF for transition t₃₁₉: n_l14___4(X₀, X₁, X₂, X₃) → n_l15___1(X₀, X₁, X₂, X₃) :|: X₁ < X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₀ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₃₂₃: n_l15___1(X₀, X₁, X₂, X₃) → n_l14___4(X₀, X₁-1, X₂, X₃) :|: 0 < X₁ ∧ 1 < X₀ ∧ 1 < X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₃₂₀: n_l14___5(X₀, X₁, X₂, X₃) → n_l15___2(X₀, X₁, X₂, X₃) :|: X₁ < X₃ ∧ 1+X₁ ≤ X₃ ∧ X₀ < 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₃₂₄: n_l15___2(X₀, X₁, X₂, X₃) → n_l14___5(X₀, X₁-1, X₂, X₃) :|: 0 < X₁ ∧ X₀ < 1 ∧ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₃₂₁: n_l14___6(X₀, X₁, X₂, X₃) → n_l15___3(X₀, X₁, X₂, X₃) :|: 0 < X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂+X₃+2 {O(n)}
MPRF for transition t₃₂₅: n_l15___3(X₀, X₁, X₂, X₃) → n_l14___6(1, X₁+1, X₂, X₃) :|: X₁ < X₃ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂+X₃+1 {O(n)}
CFR: Improvement to new bound with the following program:
new bound:
Infinite
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l16, l2, l3, l4, l5, l6, l7, l8, l9, n_l14___4, n_l14___5, n_l14___6, n_l15___1, n_l15___2, n_l15___3, n_l15___7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
t₈: l10(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂
t₇: l10(X₀, X₁, X₂, X₃) → l14(X₀, X₂, X₂, X₃) :|: X₂ < X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂
t₁₈: l11(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₂
t₁₆: l12(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₂
t₁₇: l13(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₂
t₃₂₂: l14(X₀, X₁, X₂, X₃) → n_l15___7(X₀, X₁, X₂, X₃) :|: X₁ < X₃ ∧ 0 < X₁ ∧ 1 ≤ X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₅: l16(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₂: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₄: l4(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃)
t₂₁: l5(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ 0
t₁₉: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ 0
t₂₀: l7(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ 0
t₅: l9(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: 0 < X₂
t₆: l9(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₃₄₁: n_l14___4(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₁₉: n_l14___4(X₀, X₁, X₂, X₃) → n_l15___1(X₀, X₁, X₂, X₃) :|: X₁ < X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₀ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₄₂: n_l14___5(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0
t₃₂₀: n_l14___5(X₀, X₁, X₂, X₃) → n_l15___2(X₀, X₁, X₂, X₃) :|: X₁ < X₃ ∧ 1+X₁ ≤ X₃ ∧ X₀ < 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0
t₃₄₆: n_l14___6(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₃₂₁: n_l14___6(X₀, X₁, X₂, X₃) → n_l15___3(X₀, X₁, X₂, X₃) :|: 0 < X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₃₂₃: n_l15___1(X₀, X₁, X₂, X₃) → n_l14___4(X₀, X₁-1, X₂, X₃) :|: 0 < X₁ ∧ 1 < X₀ ∧ 1 < X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₂₄: n_l15___2(X₀, X₁, X₂, X₃) → n_l14___5(X₀, X₁-1, X₂, X₃) :|: 0 < X₁ ∧ X₀ < 1 ∧ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₃₂₅: n_l15___3(X₀, X₁, X₂, X₃) → n_l14___6(1, X₁+1, X₂, X₃) :|: X₁ < X₃ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₃₂₆: n_l15___7(X₀, X₁, X₂, X₃) → n_l14___4(X₀, X₁-1, X₂, X₃) :|: X₁ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₃₂₇: n_l15___7(X₀, X₁, X₂, X₃) → n_l14___5(X₀, X₁-1, X₂, X₃) :|: X₁ < X₃ ∧ X₀ < 1 ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₃₂₈: n_l15___7(X₀, X₁, X₂, X₃) → n_l14___6(1, X₁+1, X₂, X₃) :|: X₁ < X₃ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
CFR: Improvement to new bound with the following program:
new bound:
2⋅X₃+6⋅X₂+4 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l16, l2, l3, l4, l5, l6, l7, l8, l9, n_l14___4, n_l14___5, n_l14___6, n_l15___1, n_l15___2, n_l15___3, n_l15___7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
t₈: l10(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂
t₇: l10(X₀, X₁, X₂, X₃) → l14(X₀, X₂, X₂, X₃) :|: X₂ < X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂
t₁₈: l11(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₂
t₁₆: l12(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₂
t₁₇: l13(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₂
t₃₂₂: l14(X₀, X₁, X₂, X₃) → n_l15___7(X₀, X₁, X₂, X₃) :|: X₁ < X₃ ∧ 0 < X₁ ∧ 1 ≤ X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₅: l16(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₂: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₄: l4(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃)
t₂₁: l5(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ 0
t₁₉: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ 0
t₂₀: l7(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ 0
t₅: l9(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: 0 < X₂
t₆: l9(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₃₄₁: n_l14___4(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₁₉: n_l14___4(X₀, X₁, X₂, X₃) → n_l15___1(X₀, X₁, X₂, X₃) :|: X₁ < X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₀ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₄₂: n_l14___5(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0
t₃₂₀: n_l14___5(X₀, X₁, X₂, X₃) → n_l15___2(X₀, X₁, X₂, X₃) :|: X₁ < X₃ ∧ 1+X₁ ≤ X₃ ∧ X₀ < 1 ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0
t₃₄₆: n_l14___6(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₃₂₁: n_l14___6(X₀, X₁, X₂, X₃) → n_l15___3(X₀, X₁, X₂, X₃) :|: 0 < X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 0 < X₁ ∧ X₁ < X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₃₂₃: n_l15___1(X₀, X₁, X₂, X₃) → n_l14___4(X₀, X₁-1, X₂, X₃) :|: 0 < X₁ ∧ 1 < X₀ ∧ 1 < X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₂₄: n_l15___2(X₀, X₁, X₂, X₃) → n_l14___5(X₀, X₁-1, X₂, X₃) :|: 0 < X₁ ∧ X₀ < 1 ∧ X₀ < 1 ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₃₂₅: n_l15___3(X₀, X₁, X₂, X₃) → n_l14___6(1, X₁+1, X₂, X₃) :|: X₁ < X₃ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₃₂₆: n_l15___7(X₀, X₁, X₂, X₃) → n_l14___4(X₀, X₁-1, X₂, X₃) :|: X₁ < X₃ ∧ 1 < X₀ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₃₂₇: n_l15___7(X₀, X₁, X₂, X₃) → n_l14___5(X₀, X₁-1, X₂, X₃) :|: X₁ < X₃ ∧ X₀ < 1 ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₃₂₈: n_l15___7(X₀, X₁, X₂, X₃) → n_l14___6(1, X₁+1, X₂, X₃) :|: X₁ < X₃ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
All Bounds
Timebounds
Overall timebound:2⋅X₃+6⋅X₂+27 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: 1 {O(1)}
t₁₈: 1 {O(1)}
t₁₉: 1 {O(1)}
t₂₀: 1 {O(1)}
t₂₁: 1 {O(1)}
t₃₁₉: X₂+1 {O(n)}
t₃₂₀: X₂ {O(n)}
t₃₂₁: X₂+X₃+2 {O(n)}
t₃₂₂: 1 {O(1)}
t₃₂₃: X₂ {O(n)}
t₃₂₄: X₂ {O(n)}
t₃₂₅: X₂+X₃+1 {O(n)}
t₃₂₆: 1 {O(1)}
t₃₂₇: 1 {O(1)}
t₃₂₈: 1 {O(1)}
t₃₄₁: 1 {O(1)}
t₃₄₂: 1 {O(1)}
t₃₄₆: 1 {O(1)}
Costbounds
Overall costbound: 2⋅X₃+6⋅X₂+27 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: 1 {O(1)}
t₁₈: 1 {O(1)}
t₁₉: 1 {O(1)}
t₂₀: 1 {O(1)}
t₂₁: 1 {O(1)}
t₃₁₉: X₂+1 {O(n)}
t₃₂₀: X₂ {O(n)}
t₃₂₁: X₂+X₃+2 {O(n)}
t₃₂₂: 1 {O(1)}
t₃₂₃: X₂ {O(n)}
t₃₂₄: X₂ {O(n)}
t₃₂₅: X₂+X₃+1 {O(n)}
t₃₂₆: 1 {O(1)}
t₃₂₇: 1 {O(1)}
t₃₂₈: 1 {O(1)}
t₃₄₁: 1 {O(1)}
t₃₄₂: 1 {O(1)}
t₃₄₆: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₂ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₁₅, X₀: 4⋅X₀+1 {O(n)}
t₁₅, X₁: 3⋅X₂+X₃+3 {O(n)}
t₁₅, X₂: 6⋅X₂ {O(n)}
t₁₅, X₃: 6⋅X₃ {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: X₁ {O(n)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₇, X₀: X₀ {O(n)}
t₁₇, X₁: X₁ {O(n)}
t₁₇, X₂: X₂ {O(n)}
t₁₇, X₃: X₃ {O(n)}
t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: X₃ {O(n)}
t₁₉, X₀: X₀ {O(n)}
t₁₉, X₁: X₁ {O(n)}
t₁₉, X₂: X₂ {O(n)}
t₁₉, X₃: X₃ {O(n)}
t₂₀, X₀: X₀ {O(n)}
t₂₀, X₁: X₁ {O(n)}
t₂₀, X₂: X₂ {O(n)}
t₂₀, X₃: X₃ {O(n)}
t₂₁, X₀: X₀ {O(n)}
t₂₁, X₁: X₁ {O(n)}
t₂₁, X₂: X₂ {O(n)}
t₂₁, X₃: X₃ {O(n)}
t₃₁₉, X₀: X₀ {O(n)}
t₃₁₉, X₁: X₂ {O(n)}
t₃₁₉, X₂: X₂ {O(n)}
t₃₁₉, X₃: X₃ {O(n)}
t₃₂₀, X₀: X₀ {O(n)}
t₃₂₀, X₁: X₂ {O(n)}
t₃₂₀, X₂: X₂ {O(n)}
t₃₂₀, X₃: X₃ {O(n)}
t₃₂₁, X₀: 1 {O(1)}
t₃₂₁, X₁: 2⋅X₂+X₃+2 {O(n)}
t₃₂₁, X₂: X₂ {O(n)}
t₃₂₁, X₃: X₃ {O(n)}
t₃₂₂, X₀: X₀ {O(n)}
t₃₂₂, X₁: X₂ {O(n)}
t₃₂₂, X₂: X₂ {O(n)}
t₃₂₂, X₃: X₃ {O(n)}
t₃₂₃, X₀: X₀ {O(n)}
t₃₂₃, X₁: X₂ {O(n)}
t₃₂₃, X₂: X₂ {O(n)}
t₃₂₃, X₃: X₃ {O(n)}
t₃₂₄, X₀: X₀ {O(n)}
t₃₂₄, X₁: X₂ {O(n)}
t₃₂₄, X₂: X₂ {O(n)}
t₃₂₄, X₃: X₃ {O(n)}
t₃₂₅, X₀: 1 {O(1)}
t₃₂₅, X₁: 2⋅X₂+X₃+2 {O(n)}
t₃₂₅, X₂: X₂ {O(n)}
t₃₂₅, X₃: X₃ {O(n)}
t₃₂₆, X₀: X₀ {O(n)}
t₃₂₆, X₁: X₂ {O(n)}
t₃₂₆, X₂: X₂ {O(n)}
t₃₂₆, X₃: X₃ {O(n)}
t₃₂₇, X₀: X₀ {O(n)}
t₃₂₇, X₁: X₂ {O(n)}
t₃₂₇, X₂: X₂ {O(n)}
t₃₂₇, X₃: X₃ {O(n)}
t₃₂₈, X₀: 1 {O(1)}
t₃₂₈, X₁: X₂+1 {O(n)}
t₃₂₈, X₂: X₂ {O(n)}
t₃₂₈, X₃: X₃ {O(n)}
t₃₄₁, X₀: 2⋅X₀ {O(n)}
t₃₄₁, X₁: 0 {O(1)}
t₃₄₁, X₂: 2⋅X₂ {O(n)}
t₃₄₁, X₃: 2⋅X₃ {O(n)}
t₃₄₂, X₀: 2⋅X₀ {O(n)}
t₃₄₂, X₁: 0 {O(1)}
t₃₄₂, X₂: 2⋅X₂ {O(n)}
t₃₄₂, X₃: 2⋅X₃ {O(n)}
t₃₄₆, X₀: 1 {O(1)}
t₃₄₆, X₁: 3⋅X₂+X₃+3 {O(n)}
t₃₄₆, X₂: 2⋅X₂ {O(n)}
t₃₄₆, X₃: 2⋅X₃ {O(n)}