Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃
Temp_Vars: A1, B1, Y, Z
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₁₈: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l1(X₀, X₁, 0, X₃, X₄, X₅, 0, Z, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, 0, Y, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, 1)
t₁₉: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l2(X₀, X₁, 1, X₃, X₄, X₅, 0, A1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, 0, Z, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, Y) :|: Y ≤ 0
t₂₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l2(X₀, X₁, 1, X₃, X₄, X₅, 0, A1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, 0, Z, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, Y) :|: 2 ≤ Y
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, Y, Z, 0, 0, 0, X₂₃) :|: X₂+1 ≤ X₁₇
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, Y, Z, A1, A1, A1, X₂₃) :|: A1+1 ≤ 0 ∧ X₂+1 ≤ X₁₇
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, Y, Z, A1, A1, A1, X₂₃) :|: 1 ≤ A1 ∧ X₂+1 ≤ X₁₇
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) :|: X₁₇ ≤ X₂
t₁₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃)
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, Y, Z, A1, B1, B1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) :|: X₂ ≤ X₇
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, 0, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) :|: 1+X₇ ≤ X₂
t₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) :|: X₁+1 ≤ X₀
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l1(X₀, X₁, X₂+1, Y, 0, 1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) :|: X₀ ≤ X₁
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃)
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l2(X₀, X₁, 1, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃)
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l2(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 0, 0, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) :|: X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₂, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) :|: X₁₂+1 ≤ 0
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₂, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) :|: 1 ≤ X₁₂
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃)
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l2(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) :|: X₁+1 ≤ X₀
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l2(X₀, X₁, X₂+1, Y, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, Z, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) :|: X₀ ≤ X₁
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, Y, Z, A1, A1, X₁₃, X₁₄, B1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃) :|: X₀ ≤ X₁
Cut unreachable locations [l10; l5; l9] from the program graph
Eliminate variables {X₃,X₄,X₅,X₆,X₈,X₉,X₁₀,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃} that do not contribute to the problem
Found invariant 1 ≤ X₂ for location l2
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l6
Found invariant 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l7
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l8
Found invariant 0 ≤ X₂ for location l1
Found invariant X₅ ≤ X₂ ∧ 0 ≤ X₂ for location l4
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 0 ≤ X₂ for location l3
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: A1, B1, Y, Z
Locations: l0, l1, l2, l3, l4, l6, l7, l8
Transitions:
t₃₉: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, 0, Z, X₄, Y)
t₄₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, 1, A1, X₄, Z) :|: Y ≤ 0
t₄₁: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, 1, A1, X₄, Z) :|: 2 ≤ Y
t₄₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅) :|: X₂+1 ≤ X₅ ∧ 0 ≤ X₂
t₄₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: A1+1 ≤ 0 ∧ X₂+1 ≤ X₅ ∧ 0 ≤ X₂
t₄₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ A1 ∧ X₂+1 ≤ X₅ ∧ 0 ≤ X₂
t₄₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₂ ∧ 0 ≤ X₂
t₄₆: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, B1, X₅) :|: X₂ ≤ X₃ ∧ 1 ≤ X₂
t₄₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₃ ≤ X₂ ∧ 1 ≤ X₂
t₄₈: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅) :|: X₁+1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 0 ≤ X₂
t₄₉: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 0 ≤ X₂
t₅₀: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₂ ∧ 0 ≤ X₂
t₅₁: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂+1, X₃, 0, X₅) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂
t₅₂: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄+1 ≤ 0 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂
t₅₃: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂
t₅₄: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₃ ≤ X₂ ∧ 1 ≤ X₂
t₅₅: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂+1, X₃, X₄, X₅) :|: X₁+1 ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂
t₅₆: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂+1, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂
t₅₇: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, A1, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂
Chain transitions t₄₄: l1→l3 and t₄₉: l3→l1 to t₁₇₄: l1→l1
Chain transitions t₄₃: l1→l3 and t₄₉: l3→l1 to t₁₇₅: l1→l1
Chain transitions t₄₃: l1→l3 and t₄₈: l3→l1 to t₁₇₆: l1→l1
Chain transitions t₄₄: l1→l3 and t₄₈: l3→l1 to t₁₇₇: l1→l1
Found invariant 1 ≤ X₂ for location l2
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l6
Found invariant 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l7
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l8
Found invariant 0 ≤ X₂ for location l1
Found invariant X₅ ≤ X₂ ∧ 0 ≤ X₂ for location l4
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 0 ≤ X₂ for location l3
Found invariant 1 ≤ X₂ for location l2
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l6
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l1___4
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₂ for location n_l1___7
Found invariant 2 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₂ for location n_l3___5
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l3___6
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ for location n_l1___3
Found invariant 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l7
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l8
Found invariant 2 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___2
Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ for location l1
Found invariant X₅ ≤ X₂ ∧ 0 ≤ X₂ for location l4
Found invariant 2 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ for location n_l3___1
Found invariant 1 ≤ X₂ for location l2
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l6
Found invariant 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l7
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l8
Found invariant 0 ≤ X₂ for location l1
Found invariant X₅ ≤ X₂ ∧ 0 ≤ X₂ for location l4
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 0 ≤ X₂ for location l3
Chain transitions t₅₆: l8→l2 and t₄₇: l2→l7 to t₈₈₂: l8→l7
Chain transitions t₅₅: l8→l2 and t₄₇: l2→l7 to t₈₈₃: l8→l7
Chain transitions t₅₅: l8→l2 and t₄₆: l2→l6 to t₈₈₄: l8→l6
Chain transitions t₅₆: l8→l2 and t₄₆: l2→l6 to t₈₈₅: l8→l6
Chain transitions t₅₁: l6→l2 and t₄₆: l2→l6 to t₈₈₆: l6→l6
Chain transitions t₅₁: l6→l2 and t₄₇: l2→l7 to t₈₈₇: l6→l7
Chain transitions t₄₁: l0→l2 and t₄₆: l2→l6 to t₈₈₈: l0→l6
Chain transitions t₄₁: l0→l2 and t₄₇: l2→l7 to t₈₈₉: l0→l7
Chain transitions t₄₀: l0→l2 and t₄₆: l2→l6 to t₈₉₀: l0→l6
Chain transitions t₄₀: l0→l2 and t₄₇: l2→l7 to t₈₉₁: l0→l7
Chain transitions t₅₃: l6→l8 and t₈₈₃: l8→l7 to t₈₉₂: l6→l7
Chain transitions t₅₂: l6→l8 and t₈₈₃: l8→l7 to t₈₉₃: l6→l7
Chain transitions t₅₂: l6→l8 and t₈₈₂: l8→l7 to t₈₉₄: l6→l7
Chain transitions t₅₃: l6→l8 and t₈₈₂: l8→l7 to t₈₉₅: l6→l7
Chain transitions t₅₂: l6→l8 and t₈₈₅: l8→l6 to t₈₉₆: l6→l6
Chain transitions t₅₃: l6→l8 and t₈₈₅: l8→l6 to t₈₉₇: l6→l6
Chain transitions t₅₂: l6→l8 and t₈₈₄: l8→l6 to t₈₉₈: l6→l6
Chain transitions t₅₃: l6→l8 and t₈₈₄: l8→l6 to t₈₉₉: l6→l6
Chain transitions t₅₂: l6→l8 and t₅₇: l8→l6 to t₉₀₀: l6→l6
Chain transitions t₅₃: l6→l8 and t₅₇: l8→l6 to t₉₀₁: l6→l6
Chain transitions t₅₂: l6→l8 and t₅₆: l8→l2 to t₉₀₂: l6→l2
Chain transitions t₅₃: l6→l8 and t₅₆: l8→l2 to t₉₀₃: l6→l2
Chain transitions t₅₂: l6→l8 and t₅₅: l8→l2 to t₉₀₄: l6→l2
Chain transitions t₅₃: l6→l8 and t₅₅: l8→l2 to t₉₀₅: l6→l2
Found invariant 1 ≤ X₂ for location l2
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l6
Found invariant 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l7
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l8
Found invariant 0 ≤ X₂ for location l1
Found invariant X₅ ≤ X₂ ∧ 0 ≤ X₂ for location l4
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 0 ≤ X₂ for location l3
Found invariant X₂ ≤ 1 ∧ 1 ≤ X₂ for location l2
Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l2___6
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ for location n_l8___1
Found invariant 1+X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ for location n_l8___2
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location n_l8___11
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location n_l6___14
Found invariant 1+X₄ ≤ 0 ∧ 3+X₄ ≤ X₃ ∧ 3+X₄ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l8___5
Found invariant 1+X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location n_l8___12
Found invariant X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ X₀ ≤ X₁ for location n_l2___3
Found invariant 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ for location l7
Found invariant 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ X₀ ≤ X₁ for location n_l2___9
Found invariant 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l6___7
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ for location n_l6___8
Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l8___4
Found invariant 0 ≤ X₂ for location l1
Found invariant X₅ ≤ X₂ ∧ 0 ≤ X₂ for location l4
Found invariant 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l2___10
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 0 ≤ X₂ for location l3
Found invariant X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂ for location n_l2___13
Overall timebound:inf {Infinity}
t₃₉: 1 {O(1)}
t₄₀: 1 {O(1)}
t₄₁: 1 {O(1)}
t₄₂: inf {Infinity}
t₄₃: inf {Infinity}
t₄₄: inf {Infinity}
t₄₅: 1 {O(1)}
t₄₆: inf {Infinity}
t₄₇: 1 {O(1)}
t₄₈: inf {Infinity}
t₄₉: inf {Infinity}
t₅₀: inf {Infinity}
t₅₁: inf {Infinity}
t₅₂: inf {Infinity}
t₅₃: inf {Infinity}
t₅₄: inf {Infinity}
t₅₅: inf {Infinity}
t₅₆: inf {Infinity}
t₅₇: inf {Infinity}
Overall costbound: inf {Infinity}
t₃₉: 1 {O(1)}
t₄₀: 1 {O(1)}
t₄₁: 1 {O(1)}
t₄₂: inf {Infinity}
t₄₃: inf {Infinity}
t₄₄: inf {Infinity}
t₄₅: 1 {O(1)}
t₄₆: inf {Infinity}
t₄₇: 1 {O(1)}
t₄₈: inf {Infinity}
t₄₉: inf {Infinity}
t₅₀: inf {Infinity}
t₅₁: inf {Infinity}
t₅₂: inf {Infinity}
t₅₃: inf {Infinity}
t₅₄: inf {Infinity}
t₅₅: inf {Infinity}
t₅₆: inf {Infinity}
t₅₇: inf {Infinity}
t₃₉, X₀: X₀ {O(n)}
t₃₉, X₁: X₁ {O(n)}
t₃₉, X₂: 0 {O(1)}
t₃₉, X₄: X₄ {O(n)}
t₄₀, X₀: X₀ {O(n)}
t₄₀, X₁: X₁ {O(n)}
t₄₀, X₂: 1 {O(1)}
t₄₀, X₄: X₄ {O(n)}
t₄₁, X₀: X₀ {O(n)}
t₄₁, X₁: X₁ {O(n)}
t₄₁, X₂: 1 {O(1)}
t₄₁, X₄: X₄ {O(n)}
t₄₂, X₀: X₀ {O(n)}
t₄₂, X₁: X₁ {O(n)}
t₄₂, X₄: X₄ {O(n)}
t₄₃, X₀: X₀ {O(n)}
t₄₃, X₁: X₁ {O(n)}
t₄₃, X₄: X₄ {O(n)}
t₄₄, X₀: X₀ {O(n)}
t₄₄, X₁: X₁ {O(n)}
t₄₄, X₄: X₄ {O(n)}
t₄₅, X₀: 4⋅X₀ {O(n)}
t₄₅, X₁: 4⋅X₁ {O(n)}
t₄₅, X₄: 4⋅X₄ {O(n)}
t₄₆, X₀: 2⋅X₀ {O(n)}
t₄₆, X₁: 2⋅X₁ {O(n)}
t₄₇, X₀: 8⋅X₀ {O(n)}
t₄₇, X₁: 8⋅X₁ {O(n)}
t₄₈, X₀: X₀ {O(n)}
t₄₈, X₁: X₁ {O(n)}
t₄₈, X₄: X₄ {O(n)}
t₄₉, X₀: X₀ {O(n)}
t₄₉, X₁: X₁ {O(n)}
t₄₉, X₄: X₄ {O(n)}
t₅₀, X₀: 4⋅X₀ {O(n)}
t₅₀, X₁: 4⋅X₁ {O(n)}
t₅₀, X₄: 4⋅X₄ {O(n)}
t₅₁, X₀: 2⋅X₀ {O(n)}
t₅₁, X₁: 2⋅X₁ {O(n)}
t₅₁, X₄: 0 {O(1)}
t₅₂, X₀: 2⋅X₀ {O(n)}
t₅₂, X₁: 2⋅X₁ {O(n)}
t₅₃, X₀: 2⋅X₀ {O(n)}
t₅₃, X₁: 2⋅X₁ {O(n)}
t₅₄, X₀: 8⋅X₀ {O(n)}
t₅₄, X₁: 8⋅X₁ {O(n)}
t₅₅, X₀: 2⋅X₀ {O(n)}
t₅₅, X₁: 2⋅X₁ {O(n)}
t₅₆, X₀: 2⋅X₀ {O(n)}
t₅₆, X₁: 2⋅X₁ {O(n)}
t₅₇, X₀: 2⋅X₀ {O(n)}
t₅₇, X₁: 2⋅X₁ {O(n)}