Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₁₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₆-X₁, X₃, X₄, X₅, X₆)
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₁₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₁
t₁₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅
t₁₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅-X₁, X₆)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: X₄ < 1
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 1 < X₄
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₂, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < 0
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₁, X₅, X₀)

Preprocessing

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l11

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l6

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l12

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l7

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l8

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l10

Found invariant X₄ ≤ X₃ for location l4

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l9

Found invariant X₄ ≤ 1+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₁₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₆-X₁, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0 ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅-X₁, X₆) :|: X₄ ≤ 1+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: X₄ < 1 ∧ X₄ ≤ X₃
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 1 < X₄ ∧ X₄ ≤ X₃
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₂, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃

Solv. Size Bound: t₆: l4→l12 for X₀

cycle: [t₆: l4→l12; t₇: l4→l12; t₁₃: l12→l10; t₁₅: l10→l7; t₁₆: l7→l8; t₁₈: l8→l6; t₁₉: l8→l6; t₂₀: l6→l9; t₂₁: l9→l4]
loop: (X₄ < 1 ∧ X₃+1 < X₄ ∧ X₃ < 0 ∨ X₄ < 1 ∧ X₃+1 < X₄ ∧ 0 < X₃ ∨ 1 < X₄ ∧ X₃+1 < X₄ ∧ X₃ < 0 ∨ 1 < X₄ ∧ X₃+1 < X₄ ∧ 0 < X₃,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: X₃+X₄+1 {O(n)}

Solv. Size Bound - Lifting for t₆: l4→l12 and X₀: inf {Infinity}

Solv. Size Bound: t₇: l4→l12 for X₀

cycle: [t₆: l4→l12; t₇: l4→l12; t₁₃: l12→l10; t₁₅: l10→l7; t₁₆: l7→l8; t₁₈: l8→l6; t₁₉: l8→l6; t₂₀: l6→l9; t₂₁: l9→l4]
loop: (X₄ < 1 ∧ X₃+1 < X₄ ∧ X₃ < 0 ∨ X₄ < 1 ∧ X₃+1 < X₄ ∧ 0 < X₃ ∨ 1 < X₄ ∧ X₃+1 < X₄ ∧ X₃ < 0 ∨ 1 < X₄ ∧ X₃+1 < X₄ ∧ 0 < X₃,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: X₃+X₄+1 {O(n)}

Solv. Size Bound - Lifting for t₇: l4→l12 and X₀: inf {Infinity}

Solv. Size Bound: t₁₂: l12→l14 for X₀

Solv. Size Bound: t₁₂: l12→l14 for X₁

Solv. Size Bound: t₁₂: l12→l14 for X₂

Solv. Size Bound: t₁₂: l12→l14 for X₄

Solv. Size Bound: t₁₂: l12→l14 for X₅

cycle: [t₁₂: l12→l14; t₁₄: l14→l12]
loop: (X₁ ≤ X₅,(X₁,X₅) -> (X₁,X₅-X₁)
overappr. closed-form: X₁⋅n+X₅ {O(n^2)}
runtime bound: inf {Infinity}

Solv. Size Bound - Lifting for t₁₂: l12→l14 and X₅: inf {Infinity}

Solv. Size Bound: t₁₃: l12→l10 for X₀

cycle: [t₁₃: l12→l10; t₁₅: l10→l7; t₁₆: l7→l8; t₁₈: l8→l6; t₁₉: l8→l6; t₂₀: l6→l9; t₂₁: l9→l4; t₆: l4→l12; t₇: l4→l12]
loop: (X₅ < X₁ ∧ X₅ < 0 ∧ X₁ < 1 ∨ X₅ < X₁ ∧ X₅ < 0 ∧ 1 < X₁ ∨ X₅ < X₁ ∧ 0 < X₅ ∧ X₁ < 1 ∨ X₅ < X₁ ∧ 0 < X₅ ∧ 1 < X₁,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: 16⋅X₁+8⋅X₃+8⋅X₅+9 {O(n)}

Solv. Size Bound - Lifting for t₁₃: l12→l10 and X₀: inf {Infinity}

Solv. Size Bound: t₁₃: l12→l10 for X₁

Solv. Size Bound: t₁₃: l12→l10 for X₂

Solv. Size Bound: t₁₃: l12→l10 for X₄

Solv. Size Bound: t₁₃: l12→l10 for X₅

cycle: [t₁₃: l12→l10; t₁₅: l10→l7; t₁₆: l7→l8; t₁₇: l8→l6; t₂₀: l6→l9; t₂₁: l9→l4; t₆: l4→l12; t₇: l4→l12]
loop: (X₅ < X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ < 1 ∨ X₅ < X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 < X₁,(X₃,X₅) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₁+1 {O(n)}

Solv. Size Bound - Lifting for t₁₃: l12→l10 and X₅: 8⋅X₃ {O(n)}

Solv. Size Bound: t₁₄: l14→l12 for X₀

Solv. Size Bound: t₁₄: l14→l12 for X₁

Solv. Size Bound: t₁₄: l14→l12 for X₂

Solv. Size Bound: t₁₄: l14→l12 for X₄

Solv. Size Bound: t₁₄: l14→l12 for X₅

cycle: [t₁₂: l12→l14; t₁₄: l14→l12]
loop: (2⋅X₁ ≤ X₅,(X₁,X₅) -> (X₁,X₅-X₁)
overappr. closed-form: X₁⋅n+X₅ {O(n^2)}
runtime bound: inf {Infinity}

Solv. Size Bound - Lifting for t₁₄: l14→l12 and X₅: inf {Infinity}

Solv. Size Bound: t₁₅: l10→l7 for X₀

Solv. Size Bound: t₁₅: l10→l7 for X₁

Solv. Size Bound: t₁₅: l10→l7 for X₂

Solv. Size Bound: t₁₅: l10→l7 for X₄

Solv. Size Bound: t₁₅: l10→l7 for X₅

cycle: [t₁₃: l12→l10; t₆: l4→l12; t₇: l4→l12; t₂₁: l9→l4; t₂₀: l6→l9; t₁₈: l8→l6; t₁₉: l8→l6; t₁₆: l7→l8; t₁₅: l10→l7]
loop: (X₅ < X₁ ∧ X₄ < 1 ∧ X₃ < 0 ∨ X₅ < X₁ ∧ X₄ < 1 ∧ 0 < X₃ ∨ X₅ < X₁ ∧ 1 < X₄ ∧ X₃ < 0 ∨ X₅ < X₁ ∧ 1 < X₄ ∧ 0 < X₃,(X₃,X₅) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: 8⋅X₁+8⋅X₃+8⋅X₄+8⋅X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₁₅: l10→l7 and X₅: 6⋅X₃ {O(n)}

Solv. Size Bound: t₁₅: l10→l7 for X₆

cycle: [t₁₃: l12→l10; t₆: l4→l12; t₇: l4→l12; t₂₁: l9→l4; t₂₀: l6→l9; t₁₈: l8→l6; t₁₉: l8→l6; t₁₆: l7→l8; t₁₅: l10→l7]
loop: (X₅ < X₁ ∧ X₄ < 1 ∧ X₃ < 0 ∨ X₅ < X₁ ∧ X₄ < 1 ∧ 0 < X₃ ∨ X₅ < X₁ ∧ 1 < X₄ ∧ X₃ < 0 ∨ X₅ < X₁ ∧ 1 < X₄ ∧ 0 < X₃,(X₀,X₆) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: 8⋅X₁+8⋅X₃+8⋅X₄+8⋅X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₁₅: l10→l7 and X₆: inf {Infinity}

Solv. Size Bound: t₁₆: l7→l8 for X₀

cycle: [t₁₆: l7→l8; t₁₈: l8→l6; t₁₉: l8→l6; t₂₀: l6→l9; t₂₁: l9→l4; t₆: l4→l12; t₇: l4→l12; t₁₃: l12→l10; t₁₅: l10→l7]
loop: (X₅ < 0 ∧ X₁ < 1 ∧ X₃+1 < X₁ ∨ X₅ < 0 ∧ 1 < X₁ ∧ X₃+1 < X₁ ∨ 0 < X₅ ∧ X₁ < 1 ∧ X₃+1 < X₁ ∨ 0 < X₅ ∧ 1 < X₁ ∧ X₃+1 < X₁,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: X₁+X₃+1 {O(n)}

Solv. Size Bound - Lifting for t₁₆: l7→l8 and X₀: inf {Infinity}

Solv. Size Bound: t₁₆: l7→l8 for X₁

Solv. Size Bound: t₁₆: l7→l8 for X₂

Solv. Size Bound: t₁₆: l7→l8 for X₄

Solv. Size Bound: t₁₆: l7→l8 for X₅

cycle: [t₁₆: l7→l8; t₁₇: l8→l6; t₂₀: l6→l9; t₂₁: l9→l4; t₆: l4→l12; t₇: l4→l12; t₁₃: l12→l10; t₁₅: l10→l7]
loop: (X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ < 1 ∧ X₃+1 < X₁ ∨ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 < X₁ ∧ X₃+1 < X₁,(X₃,X₅) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₁+X₃+2 {O(n)}

Solv. Size Bound - Lifting for t₁₆: l7→l8 and X₅: 8⋅X₃ {O(n)}

Solv. Size Bound: t₁₈: l8→l6 for X₀

cycle: [t₁₈: l8→l6; t₁₉: l8→l6; t₂₀: l6→l9; t₂₁: l9→l4; t₆: l4→l12; t₇: l4→l12; t₁₃: l12→l10; t₁₅: l10→l7; t₁₆: l7→l8]
loop: (X₅ < 0 ∧ X₁ < 1 ∧ X₃+1 < X₁ ∨ X₅ < 0 ∧ 1 < X₁ ∧ X₃+1 < X₁ ∨ 0 < X₅ ∧ X₁ < 1 ∧ X₃+1 < X₁ ∨ 0 < X₅ ∧ 1 < X₁ ∧ X₃+1 < X₁,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: X₁+X₃+1 {O(n)}

Solv. Size Bound - Lifting for t₁₈: l8→l6 and X₀: inf {Infinity}

Solv. Size Bound: t₁₈: l8→l6 for X₁

Solv. Size Bound: t₁₈: l8→l6 for X₂

Solv. Size Bound: t₁₈: l8→l6 for X₄

Solv. Size Bound: t₁₈: l8→l6 for X₅

cycle: [t₁₈: l8→l6; t₁₉: l8→l6; t₂₀: l6→l9; t₂₁: l9→l4; t₆: l4→l12; t₇: l4→l12; t₁₃: l12→l10; t₁₅: l10→l7; t₁₆: l7→l8]
loop: (X₅ < 0 ∧ X₁ < 1 ∧ X₃+1 < X₁ ∨ X₅ < 0 ∧ 1 < X₁ ∧ X₃+1 < X₁ ∨ 0 < X₅ ∧ X₁ < 1 ∧ X₃+1 < X₁ ∨ 0 < X₅ ∧ 1 < X₁ ∧ X₃+1 < X₁,(X₃,X₅) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₁+X₃+1 {O(n)}

Solv. Size Bound - Lifting for t₁₈: l8→l6 and X₅: 6⋅X₃ {O(n)}

Solv. Size Bound: t₁₉: l8→l6 for X₀

cycle: [t₁₈: l8→l6; t₁₉: l8→l6; t₂₀: l6→l9; t₂₁: l9→l4; t₆: l4→l12; t₇: l4→l12; t₁₃: l12→l10; t₁₅: l10→l7; t₁₆: l7→l8]
loop: (X₅ < 0 ∧ X₁ < 1 ∧ X₃+1 < X₁ ∨ X₅ < 0 ∧ 1 < X₁ ∧ X₃+1 < X₁ ∨ 0 < X₅ ∧ X₁ < 1 ∧ X₃+1 < X₁ ∨ 0 < X₅ ∧ 1 < X₁ ∧ X₃+1 < X₁,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: X₁+X₃+1 {O(n)}

Solv. Size Bound - Lifting for t₁₉: l8→l6 and X₀: inf {Infinity}

Solv. Size Bound: t₁₉: l8→l6 for X₁

Solv. Size Bound: t₁₉: l8→l6 for X₂

Solv. Size Bound: t₁₉: l8→l6 for X₄

Solv. Size Bound: t₁₉: l8→l6 for X₅

cycle: [t₁₈: l8→l6; t₁₉: l8→l6; t₂₀: l6→l9; t₂₁: l9→l4; t₆: l4→l12; t₇: l4→l12; t₁₃: l12→l10; t₁₅: l10→l7; t₁₆: l7→l8]
loop: (X₅ < 0 ∧ X₁ < 1 ∧ X₃+1 < X₁ ∨ X₅ < 0 ∧ 1 < X₁ ∧ X₃+1 < X₁ ∨ 0 < X₅ ∧ X₁ < 1 ∧ X₃+1 < X₁ ∨ 0 < X₅ ∧ 1 < X₁ ∧ X₃+1 < X₁,(X₃,X₅) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₁+X₃+1 {O(n)}

Solv. Size Bound - Lifting for t₁₉: l8→l6 and X₅: 6⋅X₃ {O(n)}

Solv. Size Bound: t₂₀: l6→l9 for X₀

Solv. Size Bound: t₂₀: l6→l9 for X₁

Solv. Size Bound: t₂₀: l6→l9 for X₂

Solv. Size Bound: t₂₀: l6→l9 for X₄

Solv. Size Bound: t₂₀: l6→l9 for X₅

cycle: [t₂₀: l6→l9; t₂₁: l9→l4; t₆: l4→l12; t₇: l4→l12; t₁₃: l12→l10; t₁₅: l10→l7; t₁₆: l7→l8; t₁₈: l8→l6; t₁₉: l8→l6]
loop: (X₁ < 1 ∧ X₃+1 < X₁ ∧ X₃ < 0 ∨ X₁ < 1 ∧ X₃+1 < X₁ ∧ 0 < X₃ ∨ 1 < X₁ ∧ X₃+1 < X₁ ∧ X₃ < 0 ∨ 1 < X₁ ∧ X₃+1 < X₁ ∧ 0 < X₃,(X₃,X₅) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₁+X₃+1 {O(n)}

Solv. Size Bound - Lifting for t₂₀: l6→l9 and X₅: 6⋅X₃ {O(n)}

Solv. Size Bound: t₂₀: l6→l9 for X₆

cycle: [t₂₀: l6→l9; t₂₁: l9→l4; t₆: l4→l12; t₇: l4→l12; t₁₃: l12→l10; t₁₅: l10→l7; t₁₆: l7→l8; t₁₈: l8→l6; t₁₉: l8→l6]
loop: (X₁ < 1 ∧ X₃+1 < X₁ ∧ X₃ < 0 ∨ X₁ < 1 ∧ X₃+1 < X₁ ∧ 0 < X₃ ∨ 1 < X₁ ∧ X₃+1 < X₁ ∧ X₃ < 0 ∨ 1 < X₁ ∧ X₃+1 < X₁ ∧ 0 < X₃,(X₀,X₆) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: X₁+X₃+1 {O(n)}

Solv. Size Bound - Lifting for t₂₀: l6→l9 and X₆: inf {Infinity}

Solv. Size Bound: t₂₁: l9→l4 for X₀

Solv. Size Bound: t₂₁: l9→l4 for X₁

Solv. Size Bound: t₂₁: l9→l4 for X₂

Solv. Size Bound: t₂₁: l9→l4 for X₄

Solv. Size Bound: t₂₁: l9→l4 for X₅

cycle: [t₂₁: l9→l4; t₆: l4→l12; t₇: l4→l12; t₁₃: l12→l10; t₁₅: l10→l7; t₁₆: l7→l8; t₁₇: l8→l6; t₂₀: l6→l9]
loop: (X₁ < 1 ∧ X₃+1 < X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∨ 1 < X₁ ∧ X₃+1 < X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃,(X₃,X₅) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₁+2 {O(n)}

Solv. Size Bound - Lifting for t₂₁: l9→l4 and X₅: 8⋅X₃ {O(n)}

Solv. Size Bound: t₂₁: l9→l4 for X₆

cycle: [t₂₁: l9→l4; t₆: l4→l12; t₇: l4→l12; t₁₃: l12→l10; t₁₅: l10→l7; t₁₆: l7→l8; t₁₈: l8→l6; t₁₉: l8→l6; t₂₀: l6→l9]
loop: (X₁ < 1 ∧ X₃+1 < X₁ ∧ X₃ < 0 ∨ X₁ < 1 ∧ X₃+1 < X₁ ∧ 0 < X₃ ∨ 1 < X₁ ∧ X₃+1 < X₁ ∧ X₃ < 0 ∨ 1 < X₁ ∧ X₃+1 < X₁ ∧ 0 < X₃,(X₀,X₆) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: X₁+X₃+1 {O(n)}

Solv. Size Bound - Lifting for t₂₁: l9→l4 and X₆: inf {Infinity}

MPRF for transition t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 1 < X₄ ∧ X₄ ≤ X₃ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₂, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ of depth 1:

new bound:

X₃ {O(n)}

Solv. Size Bound - Lifting for t₆: l4→l12 and X₀: inf {Infinity}

Solv. Size Bound - Lifting for t₇: l4→l12 and X₀: inf {Infinity}

Solv. Size Bound: t₁₂: l12→l14 for X₀

Solv. Size Bound: t₁₂: l12→l14 for X₁

Solv. Size Bound: t₁₂: l12→l14 for X₂

Solv. Size Bound: t₁₂: l12→l14 for X₄

Solv. Size Bound - Lifting for t₁₂: l12→l14 and X₅: inf {Infinity}

Solv. Size Bound - Lifting for t₁₃: l12→l10 and X₀: inf {Infinity}

Solv. Size Bound: t₁₄: l14→l12 for X₀

Solv. Size Bound: t₁₄: l14→l12 for X₁

Solv. Size Bound: t₁₄: l14→l12 for X₂

Solv. Size Bound: t₁₄: l14→l12 for X₄

Solv. Size Bound - Lifting for t₁₄: l14→l12 and X₅: inf {Infinity}

Solv. Size Bound: t₁₅: l10→l7 for X₀

Solv. Size Bound: t₁₅: l10→l7 for X₁

Solv. Size Bound: t₁₅: l10→l7 for X₂

Solv. Size Bound: t₁₅: l10→l7 for X₄

Solv. Size Bound - Lifting for t₁₅: l10→l7 and X₆: inf {Infinity}

Solv. Size Bound - Lifting for t₁₆: l7→l8 and X₀: inf {Infinity}

Solv. Size Bound - Lifting for t₁₈: l8→l6 and X₀: inf {Infinity}

Solv. Size Bound - Lifting for t₁₉: l8→l6 and X₀: inf {Infinity}

Solv. Size Bound: t₂₀: l6→l9 for X₀

Solv. Size Bound: t₂₀: l6→l9 for X₁

Solv. Size Bound: t₂₀: l6→l9 for X₂

Solv. Size Bound: t₂₀: l6→l9 for X₄

Solv. Size Bound - Lifting for t₂₀: l6→l9 and X₆: inf {Infinity}

Solv. Size Bound: t₂₁: l9→l4 for X₀

Solv. Size Bound: t₂₁: l9→l4 for X₁

Solv. Size Bound: t₂₁: l9→l4 for X₂

Solv. Size Bound: t₂₁: l9→l4 for X₄

Solv. Size Bound - Lifting for t₂₁: l9→l4 and X₆: inf {Infinity}

Chain transitions t₁₃: l12→l10 and t₁₅: l10→l7 to t₈₆₂: l12→l7

Chain transitions t₇: l4→l12 and t₈₆₂: l12→l7 to t₈₆₃: l4→l7

Chain transitions t₆: l4→l12 and t₈₆₂: l12→l7 to t₈₆₄: l4→l7

Chain transitions t₆: l4→l12 and t₁₂: l12→l14 to t₈₆₅: l4→l14

Chain transitions t₇: l4→l12 and t₁₂: l12→l14 to t₈₆₆: l4→l14

Chain transitions t₁₄: l14→l12 and t₁₂: l12→l14 to t₈₆₇: l14→l14

Chain transitions t₁₄: l14→l12 and t₈₆₂: l12→l7 to t₈₆₈: l14→l7

Chain transitions t₁₄: l14→l12 and t₁₃: l12→l10 to t₈₆₉: l14→l10

Chain transitions t₆: l4→l12 and t₁₃: l12→l10 to t₈₇₀: l4→l10

Chain transitions t₇: l4→l12 and t₁₃: l12→l10 to t₈₇₁: l4→l10

Chain transitions t₂₁: l9→l4 and t₈₆₄: l4→l7 to t₈₇₂: l9→l7

Chain transitions t₄: l1→l4 and t₈₆₄: l4→l7 to t₈₇₃: l1→l7

Chain transitions t₄: l1→l4 and t₈₆₃: l4→l7 to t₈₇₄: l1→l7

Chain transitions t₂₁: l9→l4 and t₈₆₃: l4→l7 to t₈₇₅: l9→l7

Chain transitions t₄: l1→l4 and t₈₆₆: l4→l14 to t₈₇₆: l1→l14

Chain transitions t₂₁: l9→l4 and t₈₆₆: l4→l14 to t₈₇₇: l9→l14

Chain transitions t₄: l1→l4 and t₈₆₅: l4→l14 to t₈₇₈: l1→l14

Chain transitions t₂₁: l9→l4 and t₈₆₅: l4→l14 to t₈₇₉: l9→l14

Chain transitions t₄: l1→l4 and t₇: l4→l12 to t₈₈₀: l1→l12

Chain transitions t₂₁: l9→l4 and t₇: l4→l12 to t₈₈₁: l9→l12

Chain transitions t₄: l1→l4 and t₆: l4→l12 to t₈₈₂: l1→l12

Chain transitions t₂₁: l9→l4 and t₆: l4→l12 to t₈₈₃: l9→l12

Chain transitions t₄: l1→l4 and t₅: l4→l11 to t₈₈₄: l1→l11

Chain transitions t₂₁: l9→l4 and t₅: l4→l11 to t₈₈₅: l9→l11

Chain transitions t₄: l1→l4 and t₈₇₁: l4→l10 to t₈₈₆: l1→l10

Chain transitions t₂₁: l9→l4 and t₈₇₁: l4→l10 to t₈₈₇: l9→l10

Chain transitions t₄: l1→l4 and t₈₇₀: l4→l10 to t₈₈₈: l1→l10

Chain transitions t₂₁: l9→l4 and t₈₇₀: l4→l10 to t₈₈₉: l9→l10

Chain transitions t₁₉: l8→l6 and t₂₀: l6→l9 to t₈₉₀: l8→l9

Chain transitions t₁₈: l8→l6 and t₂₀: l6→l9 to t₈₉₁: l8→l9

Chain transitions t₁₇: l8→l6 and t₂₀: l6→l9 to t₈₉₂: l8→l9

Chain transitions t₈₇₅: l9→l7 and t₁₆: l7→l8 to t₈₉₃: l9→l8

Chain transitions t₈₇₂: l9→l7 and t₁₆: l7→l8 to t₈₉₄: l9→l8

Chain transitions t₈₆₈: l14→l7 and t₁₆: l7→l8 to t₈₉₅: l14→l8

Chain transitions t₈₇₄: l1→l7 and t₁₆: l7→l8 to t₈₉₆: l1→l8

Chain transitions t₈₇₃: l1→l7 and t₁₆: l7→l8 to t₈₉₇: l1→l8

Chain transitions t₈₉₄: l9→l8 and t₈₉₂: l8→l9 to t₈₉₈: l9→l9

Chain transitions t₈₉₃: l9→l8 and t₈₉₂: l8→l9 to t₈₉₉: l9→l9

Chain transitions t₈₉₃: l9→l8 and t₈₉₁: l8→l9 to t₉₀₀: l9→l9

Chain transitions t₈₉₄: l9→l8 and t₈₉₁: l8→l9 to t₉₀₁: l9→l9

Chain transitions t₈₉₅: l14→l8 and t₈₉₁: l8→l9 to t₉₀₂: l14→l9

Chain transitions t₈₉₅: l14→l8 and t₈₉₂: l8→l9 to t₉₀₃: l14→l9

Chain transitions t₈₉₅: l14→l8 and t₈₉₀: l8→l9 to t₉₀₄: l14→l9

Chain transitions t₈₉₃: l9→l8 and t₈₉₀: l8→l9 to t₉₀₅: l9→l9

Chain transitions t₈₉₄: l9→l8 and t₈₉₀: l8→l9 to t₉₀₆: l9→l9

Chain transitions t₈₉₇: l1→l8 and t₈₉₀: l8→l9 to t₉₀₇: l1→l9

Chain transitions t₈₉₇: l1→l8 and t₈₉₁: l8→l9 to t₉₀₈: l1→l9

Chain transitions t₈₉₇: l1→l8 and t₈₉₂: l8→l9 to t₉₀₉: l1→l9

Chain transitions t₈₉₇: l1→l8 and t₁₉: l8→l6 to t₉₁₀: l1→l6

Chain transitions t₈₉₅: l14→l8 and t₁₉: l8→l6 to t₉₁₁: l14→l6

Chain transitions t₈₉₃: l9→l8 and t₁₉: l8→l6 to t₉₁₂: l9→l6

Chain transitions t₈₉₄: l9→l8 and t₁₉: l8→l6 to t₉₁₃: l9→l6

Chain transitions t₈₉₆: l1→l8 and t₁₉: l8→l6 to t₉₁₄: l1→l6

Chain transitions t₈₉₆: l1→l8 and t₈₉₀: l8→l9 to t₉₁₅: l1→l9

Chain transitions t₈₉₆: l1→l8 and t₈₉₁: l8→l9 to t₉₁₆: l1→l9

Chain transitions t₈₉₆: l1→l8 and t₈₉₂: l8→l9 to t₉₁₇: l1→l9

Chain transitions t₈₉₆: l1→l8 and t₁₈: l8→l6 to t₉₁₈: l1→l6

Chain transitions t₈₉₇: l1→l8 and t₁₈: l8→l6 to t₉₁₉: l1→l6

Chain transitions t₈₉₅: l14→l8 and t₁₈: l8→l6 to t₉₂₀: l14→l6

Chain transitions t₈₉₃: l9→l8 and t₁₈: l8→l6 to t₉₂₁: l9→l6

Chain transitions t₈₉₄: l9→l8 and t₁₈: l8→l6 to t₉₂₂: l9→l6

Chain transitions t₈₉₆: l1→l8 and t₁₇: l8→l6 to t₉₂₃: l1→l6

Chain transitions t₈₉₇: l1→l8 and t₁₇: l8→l6 to t₉₂₄: l1→l6

Chain transitions t₈₉₅: l14→l8 and t₁₇: l8→l6 to t₉₂₅: l14→l6

Chain transitions t₈₉₃: l9→l8 and t₁₇: l8→l6 to t₉₂₆: l9→l6

Chain transitions t₈₉₄: l9→l8 and t₁₇: l8→l6 to t₉₂₇: l9→l6

Analysing control-flow refined program

Cut unsatisfiable transition t₈₇₂: l9→l7

Cut unsatisfiable transition t₈₇₃: l1→l7

Cut unsatisfiable transition t₈₇₄: l1→l7

Cut unsatisfiable transition t₈₇₅: l9→l7

Cut unsatisfiable transition t₈₇₈: l1→l14

Cut unsatisfiable transition t₈₇₉: l9→l14

Cut unsatisfiable transition t₈₈₂: l1→l12

Cut unsatisfiable transition t₈₈₃: l9→l12

Cut unsatisfiable transition t₈₈₆: l1→l10

Cut unsatisfiable transition t₈₈₇: l9→l10

Cut unsatisfiable transition t₈₈₈: l1→l10

Cut unsatisfiable transition t₈₈₉: l9→l10

Cut unsatisfiable transition t₈₉₃: l9→l8

Cut unsatisfiable transition t₈₉₄: l9→l8

Cut unsatisfiable transition t₈₉₆: l1→l8

Cut unsatisfiable transition t₈₉₇: l1→l8

Cut unsatisfiable transition t₈₉₈: l9→l9

Cut unsatisfiable transition t₈₉₉: l9→l9

Cut unsatisfiable transition t₉₀₀: l9→l9

Cut unsatisfiable transition t₉₀₁: l9→l9

Cut unsatisfiable transition t₉₀₂: l14→l9

Cut unsatisfiable transition t₉₀₅: l9→l9

Cut unsatisfiable transition t₉₀₆: l9→l9

Cut unsatisfiable transition t₉₀₇: l1→l9

Cut unsatisfiable transition t₉₀₈: l1→l9

Cut unsatisfiable transition t₉₀₉: l1→l9

Cut unsatisfiable transition t₉₁₀: l1→l6

Cut unsatisfiable transition t₉₁₂: l9→l6

Cut unsatisfiable transition t₉₁₃: l9→l6

Cut unsatisfiable transition t₉₁₄: l1→l6

Cut unsatisfiable transition t₉₁₅: l1→l9

Cut unsatisfiable transition t₉₁₆: l1→l9

Cut unsatisfiable transition t₉₁₇: l1→l9

Cut unsatisfiable transition t₉₁₈: l1→l6

Cut unsatisfiable transition t₉₁₉: l1→l6

Cut unsatisfiable transition t₉₂₀: l14→l6

Cut unsatisfiable transition t₉₂₁: l9→l6

Cut unsatisfiable transition t₉₂₂: l9→l6

Cut unsatisfiable transition t₉₂₃: l1→l6

Cut unsatisfiable transition t₉₂₄: l1→l6

Cut unsatisfiable transition t₉₂₆: l9→l6

Cut unsatisfiable transition t₉₂₇: l9→l6

Eliminate variables {X₂} that do not contribute to the problem

Found invariant X₅ ≤ X₂ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l11

Found invariant X₅ ≤ X₂ ∧ X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ for location l6

Found invariant X₅ ≤ X₂ ∧ X₄ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l12

Found invariant X₅ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l7

Found invariant X₅ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l8

Found invariant X₅ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l10

Found invariant X₅ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l4

Found invariant X₅ ≤ X₂ ∧ X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ for location l9

Found invariant X₅ ≤ X₂ ∧ X₄ ≤ X₂ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l14

Solv. Size Bound: t₁₃₃₃: l14→l9 for X₀

cycle: [t₁₃₃₃: l14→l9; t₁₃₃₉: l9→l14]
loop: (X₄ < 2⋅X₁ ∧ X₁ < X₄ ∧ 1 < X₁ ∧ X₁ ≤ 1+X₂,(X₀,X₅) -> (X₅,X₅)
overappr. closed-form: 2⋅X₅ {O(n)}
runtime bound: X₁+1 {O(n)}

Solv. Size Bound - Lifting for t₁₃₃₃: l14→l9 and X₀: inf {Infinity}

Solv. Size Bound: t₁₃₃₉: l9→l14 for X₀

Solv. Size Bound: t₁₃₃₉: l9→l14 for X₅

cycle: [t₁₃₃₉: l9→l14; t₁₃₃₃: l14→l9]
loop: (1 < X₁ ∧ X₁ ≤ 1+X₂ ∧ X₂+2 < 2⋅X₁ ∧ X₁ < X₂+1,(X₀,X₅) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: X₁+1 {O(n)}

Solv. Size Bound - Lifting for t₁₃₃₉: l9→l14 and X₅: inf {Infinity}

MPRF for transition t₁₃₃₂: l14(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l9(X₅-X₁, X₁, X₂, X₃, X₄-X₁, X₅) :|: X₄ < 2⋅X₁ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₂ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF for transition t₁₃₃₃: l14(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l9(X₅, X₁, X₂, X₃, X₄-X₁, X₅) :|: X₄ < 2⋅X₁ ∧ X₁ < X₄ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₂ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₂ {O(n)}

MPRF for transition t₁₃₃₉: l9(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l14(X₀, X₁-1, X₂, X₁, X₂, X₀) :|: 1 < X₁ ∧ X₁ ≤ 1+X₂ ∧ X₅ ≤ X₂ ∧ X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF for transition t₁₃₂₇: l14(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l14(X₀, X₁, X₂, X₃, X₄-X₁, X₅) :|: 2⋅X₁ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₂ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

8⋅X₂⋅X₂+15⋅X₂+2 {O(n^2)}

Analysing control-flow refined program

Cut unsatisfiable transition t₁₅₀₇: l4→n_l12___16

Cut unsatisfiable transition t₁₅₀₉: n_l4___3→n_l12___16

Cut unsatisfiable transition t₁₅₃₈: n_l4___5→l11

Cut unreachable locations [n_l12___13; n_l12___16; n_l14___11; n_l14___14] from the program graph

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l11

Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location n_l14___2

Found invariant X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ for location n_l4___3

Found invariant 1+X₂ ≤ X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ for location n_l9___4

Found invariant X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁ for location n_l4___5

Found invariant 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location n_l7___10

Found invariant 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location n_l12___1

Found invariant X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location n_l12___15

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location n_l8___9

Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ for location n_l6___7

Found invariant X₆ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁ for location n_l6___8

Found invariant X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁ for location n_l9___6

Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l4

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location n_l10___12

Solv. Size Bound: t₁₄₉₆: n_l10___12→n_l7___10 for X₀

cycle: [t₁₄₉₆: n_l10___12→n_l7___10; t₁₅₁₃: n_l7___10→n_l8___9; t₁₅₁₅: n_l8___9→n_l6___8; t₁₅₁₂: n_l6___8→n_l9___6; t₁₅₁₇: n_l9___6→n_l4___5; t₁₅₁₀: n_l4___5→n_l12___15; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₀₅: n_l14___2→n_l12___1; t₁₄₉₇: n_l12___1→n_l10___12]
loop: (1+X₅ < X₄ ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 1 < X₁ ∧ X₁ ≤ 1+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ 0 ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 < X₁ ∧ X₁ ≤ 1+X₃ ∧ 2+X₃ < 2⋅X₁ ∧ 0 ≤ 0,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: X₄+1 {O(n)}

Solv. Size Bound - Lifting for t₁₄₉₆: n_l10___12→n_l7___10 and X₀: inf {Infinity}

Solv. Size Bound: t₁₄₉₇: n_l12___1→n_l10___12 for X₀

cycle: [t₁₄₉₇: n_l12___1→n_l10___12; t₁₄₉₆: n_l10___12→n_l7___10; t₁₅₁₃: n_l7___10→n_l8___9; t₁₅₁₅: n_l8___9→n_l6___8; t₁₅₁₂: n_l6___8→n_l9___6; t₁₅₁₇: n_l9___6→n_l4___5; t₁₅₁₀: n_l4___5→n_l12___15; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₀₅: n_l14___2→n_l12___1]
loop: (X₁+1 ≤ X₄ ∧ 1 < X₄ ∧ 0 ≤ X₅ ∧ X₅ < X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ < X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 1 < X₁ ∧ X₁ ≤ 1+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ 0 ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: X₁+1 {O(n)}

Solv. Size Bound - Lifting for t₁₄₉₇: n_l12___1→n_l10___12 and X₀: inf {Infinity}

Solv. Size Bound: t₁₅₀₁: n_l12___15→n_l14___2 for X₀

cycle: [t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₀₅: n_l14___2→n_l12___1; t₁₄₉₇: n_l12___1→n_l10___12; t₁₄₉₆: n_l10___12→n_l7___10; t₁₅₁₃: n_l7___10→n_l8___9; t₁₅₁₅: n_l8___9→n_l6___8; t₁₅₁₂: n_l6___8→n_l9___6; t₁₅₁₇: n_l9___6→n_l4___5; t₁₅₁₀: n_l4___5→n_l12___15]
loop: (X₁+1 ≤ X₄ ∧ 0 < X₅ ∧ 1 < X₄ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ X₁ ≤ X₅ ∧ X₅ < 2⋅X₁ ∧ 0 ≤ 0 ∧ X₅ < 2⋅X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ 2⋅X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ 2⋅X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ < X₅ ∧ 0 ≤ 0 ∧ X₁ < X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₅ ≤ 2⋅X₁ ∧ X₁ < X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1 < X₁,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: X₁+1 {O(n)}

Solv. Size Bound - Lifting for t₁₅₀₁: n_l12___15→n_l14___2 and X₀: inf {Infinity}

Solv. Size Bound: t₁₅₀₅: n_l14___2→n_l12___1 for X₀

cycle: [t₁₅₀₅: n_l14___2→n_l12___1; t₁₄₉₇: n_l12___1→n_l10___12; t₁₄₉₆: n_l10___12→n_l7___10; t₁₅₁₃: n_l7___10→n_l8___9; t₁₅₁₅: n_l8___9→n_l6___8; t₁₅₁₂: n_l6___8→n_l9___6; t₁₅₁₇: n_l9___6→n_l4___5; t₁₅₁₀: n_l4___5→n_l12___15; t₁₅₀₁: n_l12___15→n_l14___2]
loop: (1 < X₄ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ X₁ ≤ X₅ ∧ X₅ < 2⋅X₁ ∧ 0 ≤ 0 ∧ X₅ < 2⋅X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ 2⋅X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ 2⋅X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ < X₅ ∧ 0 ≤ 0 ∧ X₁ < X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₅ ≤ 2⋅X₁ ∧ X₁ < X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 1 < X₁ ∧ X₁ ≤ 1+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ 0,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: X₁+1 {O(n)}

Solv. Size Bound - Lifting for t₁₅₀₅: n_l14___2→n_l12___1 and X₀: inf {Infinity}

Solv. Size Bound: t₁₅₁₀: n_l4___5→n_l12___15 for X₀

Solv. Size Bound: t₁₅₁₀: n_l4___5→n_l12___15 for X₂

Solv. Size Bound: t₁₅₁₀: n_l4___5→n_l12___15 for X₆

cycle: [t₁₅₁₇: n_l9___6→n_l4___5; t₁₅₁₂: n_l6___8→n_l9___6; t₁₅₁₅: n_l8___9→n_l6___8; t₁₅₁₃: n_l7___10→n_l8___9; t₁₄₉₆: n_l10___12→n_l7___10; t₁₄₉₇: n_l12___1→n_l10___12; t₁₅₀₅: n_l14___2→n_l12___1; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₁₀: n_l4___5→n_l12___15]
loop: (0 < X₃ ∧ 1 < X₄ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ 2+X₃ ≤ X₄ ∧ 0 < X₃ ∧ 0 ≤ 0 ∧ X₀+1 ≤ X₄+X₂ ∧ X₄+X₂ ≤ X₀+1 ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 1 ≤ 0 ∧ X₀+1 ≤ X₄+X₂ ∧ X₄+X₂ ≤ X₀+1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂+X₃ ∧ 1+X₂+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₂+X₄ ≤ X₀+1 ∧ 1+X₀ ≤ X₂+X₄ ∧ X₄+X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄+X₂ ∧ 0 < X₃ ∧ 0 ≤ 0 ∧ 1+X₀ ≤ X₂+X₃ ∧ 1+X₂+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₂+X₄ ≤ X₀+1 ∧ 1+X₀ ≤ X₂+X₄ ∧ X₄+X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄+X₂ ∧ 0 ≤ 0 ∧ 1+X₃ < X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 < X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ < X₄ ∧ 0 ≤ 0 ∧ 1 < X₄ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₄ < 1+X₃ ∧ 1 < X₄ ∧ 2⋅X₄ ≤ 2+X₃ ∧ 2⋅X₄ ≤ 2+X₃ ∧ X₄ ≤ 1+X₃ ∧ 2⋅X₄ ≤ 2+X₃ ∧ 0 ≤ 0,(X₀,X₆) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: 1 {O(1)}

Solv. Size Bound - Lifting for t₁₅₁₀: n_l4___5→n_l12___15 and X₆: inf {Infinity}

Solv. Size Bound: t₁₅₁₁: n_l6___7→n_l9___4 for X₀

cycle: [t₁₅₁₄: n_l8___9→n_l6___7; t₁₅₁₃: n_l7___10→n_l8___9; t₁₄₉₆: n_l10___12→n_l7___10; t₁₄₉₇: n_l12___1→n_l10___12; t₁₅₀₅: n_l14___2→n_l12___1; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₀₈: n_l4___3→n_l12___15; t₁₅₁₆: n_l9___4→n_l4___3; t₁₅₁₁: n_l6___7→n_l9___4]
loop: (1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₂+X₃ ∧ 1+X₂ ≤ X₆ ∧ 0 ≤ 0 ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ < 0 ∧ 0 < X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ X₁ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ 0 ≤ 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ 0,(X₀,X₁,X₂,X₆) -> (X₂,X₁,X₆-X₁,X₂)
overappr. closed-form: X₁⋅n+2⋅X₁+2⋅X₆+3⋅X₂ {O(n^2)}
runtime bound: 1 {O(1)}

Solv. Size Bound - Lifting for t₁₅₁₁: n_l6___7→n_l9___4 and X₀: inf {Infinity}

Solv. Size Bound: t₁₅₁₁: n_l6___7→n_l9___4 for X₂

cycle: [t₁₅₁₄: n_l8___9→n_l6___7; t₁₅₁₃: n_l7___10→n_l8___9; t₁₄₉₆: n_l10___12→n_l7___10; t₁₄₉₇: n_l12___1→n_l10___12; t₁₅₀₅: n_l14___2→n_l12___1; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₀₈: n_l4___3→n_l12___15; t₁₅₁₆: n_l9___4→n_l4___3; t₁₅₁₁: n_l6___7→n_l9___4]
loop: (1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₂+X₃ ∧ 1+X₂ ≤ X₆ ∧ 0 ≤ 0 ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ < 0 ∧ 0 < X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ X₁ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ 0 ≤ 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ 0,(X₁,X₂,X₆) -> (X₁,X₆-X₁,X₂)
overappr. closed-form: X₁⋅n+2⋅X₁+2⋅X₂+2⋅X₆ {O(n^2)}
runtime bound: 1 {O(1)}

Solv. Size Bound - Lifting for t₁₅₁₁: n_l6___7→n_l9___4 and X₂: inf {Infinity}

Solv. Size Bound: t₁₅₁₁: n_l6___7→n_l9___4 for X₆

cycle: [t₁₅₁₄: n_l8___9→n_l6___7; t₁₅₁₃: n_l7___10→n_l8___9; t₁₄₉₆: n_l10___12→n_l7___10; t₁₄₉₇: n_l12___1→n_l10___12; t₁₅₀₅: n_l14___2→n_l12___1; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₀₈: n_l4___3→n_l12___15; t₁₅₁₆: n_l9___4→n_l4___3; t₁₅₁₁: n_l6___7→n_l9___4]
loop: (1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₂+X₃ ∧ 1+X₂ ≤ X₆ ∧ 0 ≤ 0 ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ < 0 ∧ 0 < X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ X₁ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ 0 ≤ 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ 0,(X₁,X₂,X₆) -> (X₁,X₆-X₁,X₂)
overappr. closed-form: X₁⋅n+2⋅X₁+2⋅X₂+2⋅X₆ {O(n^2)}
runtime bound: 1 {O(1)}

Solv. Size Bound - Lifting for t₁₅₁₁: n_l6___7→n_l9___4 and X₆: inf {Infinity}

Solv. Size Bound: t₁₅₁₂: n_l6___8→n_l9___6 for X₀

cycle: [t₁₅₁₅: n_l8___9→n_l6___8; t₁₅₁₃: n_l7___10→n_l8___9; t₁₄₉₆: n_l10___12→n_l7___10; t₁₄₉₇: n_l12___1→n_l10___12; t₁₅₀₅: n_l14___2→n_l12___1; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₁₀: n_l4___5→n_l12___15; t₁₅₁₇: n_l9___6→n_l4___5; t₁₅₁₂: n_l6___8→n_l9___6]
loop: (0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 ≤ 0 ∧ X₅ < X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ X₅ ∧ X₅ < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ < X₅ ∧ 0 < X₁ ∧ 2⋅X₁ ≤ X₅ ∧ 2⋅X₁ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 2⋅X₁ ≤ X₅ ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: 1 {O(1)}

Solv. Size Bound - Lifting for t₁₅₁₂: n_l6___8→n_l9___6 and X₀: inf {Infinity}

Solv. Size Bound: t₁₅₁₂: n_l6___8→n_l9___6 for X₂

cycle: [t₁₅₁₅: n_l8___9→n_l6___8; t₁₅₁₃: n_l7___10→n_l8___9; t₁₄₉₆: n_l10___12→n_l7___10; t₁₄₉₇: n_l12___1→n_l10___12; t₁₅₀₅: n_l14___2→n_l12___1; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₁₀: n_l4___5→n_l12___15; t₁₅₁₇: n_l9___6→n_l4___5; t₁₅₁₂: n_l6___8→n_l9___6]
loop: (0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 ≤ 0 ∧ X₅ < X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ X₅ ∧ X₅ < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ < X₅ ∧ 0 < X₁ ∧ 2⋅X₁ ≤ X₅ ∧ 2⋅X₁ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 2⋅X₁ ≤ X₅ ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 < X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0,(X₁,X₂,X₆) -> (X₁,X₆-X₁,X₆)
overappr. closed-form: 2⋅X₁+2⋅X₆ {O(n)}
runtime bound: 1 {O(1)}

Solv. Size Bound - Lifting for t₁₅₁₂: n_l6___8→n_l9___6 and X₂: inf {Infinity}

Solv. Size Bound: t₁₅₁₃: n_l7___10→n_l8___9 for X₀

cycle: [t₁₅₁₃: n_l7___10→n_l8___9; t₁₅₁₅: n_l8___9→n_l6___8; t₁₅₁₂: n_l6___8→n_l9___6; t₁₅₁₇: n_l9___6→n_l4___5; t₁₅₁₀: n_l4___5→n_l12___15; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₀₅: n_l14___2→n_l12___1; t₁₄₉₇: n_l12___1→n_l10___12; t₁₄₉₆: n_l10___12→n_l7___10]
loop: (1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ X₁+1 ≤ X₄ ∧ 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₆ ∧ X₆ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ X₆ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₆ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ X₆ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₆ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 1 < X₁ ∧ X₁ ≤ 1+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ 0 ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 < X₁ ∧ X₁ ≤ 1+X₃ ∧ 2+X₃ < 2⋅X₁ ∧ 0 ≤ 0 ∧ 2+X₃ < 2⋅X₁ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: X₁+1 {O(n)}

Solv. Size Bound - Lifting for t₁₅₁₃: n_l7___10→n_l8___9 and X₀: inf {Infinity}

Solv. Size Bound: t₁₅₁₅: n_l8___9→n_l6___8 for X₀

cycle: [t₁₅₁₅: n_l8___9→n_l6___8; t₁₅₁₂: n_l6___8→n_l9___6; t₁₅₁₇: n_l9___6→n_l4___5; t₁₅₁₀: n_l4___5→n_l12___15; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₀₅: n_l14___2→n_l12___1; t₁₄₉₇: n_l12___1→n_l10___12; t₁₄₉₆: n_l10___12→n_l7___10; t₁₅₁₃: n_l7___10→n_l8___9]
loop: (1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ X₆ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₆ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ X₆ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₆ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 1 < X₁ ∧ X₁ ≤ 1+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ 0 ∧ 1 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 < X₁ ∧ X₁ ≤ 1+X₃ ∧ 2+X₃ < 2⋅X₁ ∧ 0 ≤ 0 ∧ 2+X₃ < 2⋅X₁ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₃ ∧ 3+X₃ ≤ 2⋅X₁ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0,(X₀,X₆) -> (X₆,X₆)
overappr. closed-form: 2⋅X₆ {O(n)}
runtime bound: X₁+1 {O(n)}

Solv. Size Bound - Lifting for t₁₅₁₅: n_l8___9→n_l6___8 and X₀: inf {Infinity}

Solv. Size Bound: t₁₅₁₆: n_l9___4→n_l4___3 for X₀

cycle: [t₁₅₁₁: n_l6___7→n_l9___4; t₁₅₁₄: n_l8___9→n_l6___7; t₁₅₁₃: n_l7___10→n_l8___9; t₁₄₉₆: n_l10___12→n_l7___10; t₁₄₉₇: n_l12___1→n_l10___12; t₁₅₀₅: n_l14___2→n_l12___1; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₀₈: n_l4___3→n_l12___15; t₁₅₁₆: n_l9___4→n_l4___3]
loop: (1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₀ ∧ X₀ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₀ ≤ X₂+X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ 0 ∧ X₂+X₁ ≤ X₀ ∧ X₀ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₁+X₂ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ < 0 ∧ 0 < X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁,(X₀,X₁,X₂) -> (X₂,X₁,X₀-X₁)
overappr. closed-form: X₁⋅n+2⋅X₀+2⋅X₁+2⋅X₂ {O(n^2)}
runtime bound: 2 {O(1)}

Solv. Size Bound - Lifting for t₁₅₁₆: n_l9___4→n_l4___3 and X₀: inf {Infinity}

Solv. Size Bound: t₁₅₁₆: n_l9___4→n_l4___3 for X₂

cycle: [t₁₅₁₁: n_l6___7→n_l9___4; t₁₅₁₄: n_l8___9→n_l6___7; t₁₅₁₃: n_l7___10→n_l8___9; t₁₄₉₆: n_l10___12→n_l7___10; t₁₄₉₇: n_l12___1→n_l10___12; t₁₅₀₅: n_l14___2→n_l12___1; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₀₈: n_l4___3→n_l12___15; t₁₅₁₆: n_l9___4→n_l4___3]
loop: (1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₀ ∧ X₀ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₀ ≤ X₂+X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ 0 ∧ X₂+X₁ ≤ X₀ ∧ X₀ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₁+X₂ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ < 0 ∧ 0 < X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁,(X₀,X₁,X₂) -> (X₂,X₁,X₀-X₁)
overappr. closed-form: X₁⋅n+2⋅X₀+2⋅X₁+2⋅X₂ {O(n^2)}
runtime bound: 2 {O(1)}

Solv. Size Bound - Lifting for t₁₅₁₆: n_l9___4→n_l4___3 and X₂: inf {Infinity}

Solv. Size Bound: t₁₅₁₆: n_l9___4→n_l4___3 for X₆

cycle: [t₁₅₁₁: n_l6___7→n_l9___4; t₁₅₁₄: n_l8___9→n_l6___7; t₁₅₁₃: n_l7___10→n_l8___9; t₁₄₉₆: n_l10___12→n_l7___10; t₁₄₉₇: n_l12___1→n_l10___12; t₁₅₀₅: n_l14___2→n_l12___1; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₀₈: n_l4___3→n_l12___15; t₁₅₁₆: n_l9___4→n_l4___3]
loop: (1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₀ ∧ X₀ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₀ ≤ X₂+X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ 0 ∧ X₂+X₁ ≤ X₀ ∧ X₀ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₁+X₂ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ < 0 ∧ 0 < X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁,(X₀,X₁,X₂,X₆) -> (X₂,X₁,X₀-X₁,X₀)
overappr. closed-form: X₁⋅n+2⋅X₁+2⋅X₂+3⋅X₀ {O(n^2)}
runtime bound: 2 {O(1)}

Solv. Size Bound - Lifting for t₁₅₁₆: n_l9___4→n_l4___3 and X₆: inf {Infinity}

Solv. Size Bound: t₁₅₁₇: n_l9___6→n_l4___5 for X₀

Solv. Size Bound: t₁₅₁₇: n_l9___6→n_l4___5 for X₂

cycle: [t₁₅₁₂: n_l6___8→n_l9___6; t₁₅₁₅: n_l8___9→n_l6___8; t₁₅₁₃: n_l7___10→n_l8___9; t₁₄₉₆: n_l10___12→n_l7___10; t₁₄₉₇: n_l12___1→n_l10___12; t₁₅₀₅: n_l14___2→n_l12___1; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₁₀: n_l4___5→n_l12___15; t₁₅₁₇: n_l9___6→n_l4___5]
loop: (1+X₅ ≤ X₁ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 0 < X₅ ∧ 1 ≤ 0 ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₀ ∧ X₀ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₁+X₂ ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ 1+X₀ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₀ ∧ X₀ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₁+X₂ ∧ 0 ≤ 0 ∧ X₅ < X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ X₅ ∧ X₅ < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ < X₅ ∧ 0 < X₁ ∧ 2⋅X₁ ≤ X₅ ∧ 2⋅X₁ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 2⋅X₁ ≤ X₅ ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁,(X₀,X₁,X₂) -> (X₀,X₁,X₀-X₁)
overappr. closed-form: 2⋅X₀+2⋅X₁ {O(n)}
runtime bound: 1 {O(1)}

Solv. Size Bound - Lifting for t₁₅₁₇: n_l9___6→n_l4___5 and X₂: inf {Infinity}

Solv. Size Bound: t₁₅₁₇: n_l9___6→n_l4___5 for X₆

cycle: [t₁₅₁₂: n_l6___8→n_l9___6; t₁₅₁₅: n_l8___9→n_l6___8; t₁₅₁₃: n_l7___10→n_l8___9; t₁₄₉₆: n_l10___12→n_l7___10; t₁₄₉₇: n_l12___1→n_l10___12; t₁₅₀₅: n_l14___2→n_l12___1; t₁₅₀₁: n_l12___15→n_l14___2; t₁₅₁₀: n_l4___5→n_l12___15; t₁₅₁₇: n_l9___6→n_l4___5]
loop: (1+X₅ ≤ X₁ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 0 < X₅ ∧ 1 ≤ 0 ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 ≤ 0 ∧ 1+X₀ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₀ ∧ X₀ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₁+X₂ ∧ 0 < X₅ ∧ 0 ≤ 0 ∧ 1+X₀ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₂+X₁ ≤ X₀ ∧ X₀ ≤ X₂+X₁ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₁+X₂ ∧ 0 ≤ 0 ∧ X₅ < X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ X₅ ∧ X₅ < X₁ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ < X₅ ∧ 0 < X₁ ∧ 2⋅X₁ ≤ X₅ ∧ 2⋅X₁ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 2⋅X₁ ≤ X₅ ∧ 0 ≤ 0 ∧ 0 < X₃ ∧ 0 < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 0 < X₁,(X₀,X₆) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: 1 {O(1)}

Solv. Size Bound - Lifting for t₁₅₁₇: n_l9___6→n_l4___5 and X₆: inf {Infinity}

MPRF for transition t₁₄₉₆: n_l10___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___10(X₀, X₁, X₆-X₁, X₃, X₁+1, X₅, X₆) :|: 1+X₅ < X₄ ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₁₄₉₇: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___12(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 1 < X₄ ∧ 0 ≤ X₅ ∧ X₅ < X₁ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₁₅₀₁: n_l12___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 0 < X₅ ∧ 1 < X₄ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₁₅₀₈: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₁₅₁₀: n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ 1 < X₄ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₃+2 {O(n)}

MPRF for transition t₁₅₁₁: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___4(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₃ {O(n)}

MPRF for transition t₁₅₁₂: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___6(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₃ {O(n)}

MPRF for transition t₁₅₁₃: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___9(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ X₁+1 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₁₅₁₄: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___7(X₂, X₁, X₂, X₃, X₁+1, 0, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₁₅₁₅: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___8(X₆, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₁₅₁₆: n_l9___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___3(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₁₅₁₇: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___5(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: 1+X₅ ≤ X₁ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₃+2 {O(n)}

TWN: t₁₄₉₈: n_l12___1→n_l14___2

cycle: [t₁₄₉₈: n_l12___1→n_l14___2; t₁₅₀₅: n_l14___2→n_l12___1]
loop: (1 < X₄ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ X₁ ≤ X₅ ∧ 2⋅X₁ ≤ X₅ ∧ 0 ≤ 0,(X₁,X₄,X₅) -> (X₁,X₁+1,X₅-X₁)
order: [X₁; X₄; X₅]
closed-form:
X₁: X₁
X₄: [[n == 0]] * X₄ + [[n != 0]] * X₁+1
X₅: X₅ + [[n != 0]] * -X₁ * n^1

Termination: true
Formula:

X₁ < 0 ∧ 0 < X₁
∨ X₁ < 0 ∧ X₁ < X₅ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < X₁
∨ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 0 < X₁
∨ 2⋅X₁ < X₅ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 0 ∧ 0 < X₁
∨ 2⋅X₁ < X₅ ∧ X₁ < X₅ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < X₁
∨ 2⋅X₁ < X₅ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 0 < X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2⋅X₁ ≤ X₅ ∧ X₅ ≤ 2⋅X₁ ∧ X₁ < 0 ∧ 0 < X₁
∨ 2⋅X₁ ≤ X₅ ∧ X₅ ≤ 2⋅X₁ ∧ X₁ < X₅ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < X₁
∨ 2⋅X₁ ≤ X₅ ∧ X₅ ≤ 2⋅X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 0 < X₁

Stabilization-Threshold for: 2⋅X₁ ≤ X₅
alphas_abs: 2⋅X₁+X₅
M: 0
N: 1
Bound: 2⋅X₅+4⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₁ ≤ X₅
alphas_abs: X₁+X₅
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₅+2 {O(n)}

TWN - Lifting for t₁₄₉₈: n_l12___1→n_l14___2 of 4⋅X₅+6⋅X₁+8 {O(n)}

relevant size-bounds w.r.t. t₁₅₀₁:
X₁: X₃ {O(n)}
X₅: 3⋅X₃ {O(n)}
Runtime-bound of t₁₅₀₁: X₃ {O(n)}
Results in: 18⋅X₃⋅X₃+8⋅X₃ {O(n^2)}

TWN: t₁₅₀₅: n_l14___2→n_l12___1

TWN - Lifting for t₁₅₀₅: n_l14___2→n_l12___1 of 4⋅X₅+6⋅X₁+8 {O(n)}

relevant size-bounds w.r.t. t₁₅₀₁:
X₁: X₃ {O(n)}
X₅: 3⋅X₃ {O(n)}
Runtime-bound of t₁₅₀₁: X₃ {O(n)}
Results in: 18⋅X₃⋅X₃+8⋅X₃ {O(n^2)}

CFR: Improvement to new bound with the following program:

new bound:

Infinite

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l11, l13, l2, l3, l4, l5, n_l10___12, n_l12___1, n_l12___15, n_l14___2, n_l4___3, n_l4___5, n_l6___7, n_l6___8, n_l7___10, n_l8___9, n_l9___4, n_l9___6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0 ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₅₀₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄₉₆: n_l10___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___10(X₀, X₁, X₆-X₁, X₃, X₁+1, X₅, X₆) :|: 1+X₅ < X₄ ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₄₉₇: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___12(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 1 < X₄ ∧ 0 ≤ X₅ ∧ X₅ < X₁ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₄₉₈: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 1 < X₄ ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₅₀₁: n_l12___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 0 < X₅ ∧ 1 < X₄ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₅₀₅: n_l14___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___1(X₀, X₁, X₂, X₃, X₁+1, X₅-X₁, X₆) :|: 1 < X₄ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₅₃₇: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₁₅₀₈: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₁₅₁₀: n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ 1 < X₄ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁
t₁₅₁₁: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___4(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₁₅₁₂: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___6(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁
t₁₅₁₃: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___9(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ X₁+1 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₅₁₄: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___7(X₂, X₁, X₂, X₃, X₁+1, 0, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₅₁₅: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___8(X₆, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₅₁₆: n_l9___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___3(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₁₅₁₇: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___5(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: 1+X₅ ≤ X₁ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁

CFR: Improvement to new bound with the following program:

new bound:

36⋅X₃⋅X₃+30⋅X₃+7 {O(n^2)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l11, l13, l2, l3, l4, l5, n_l10___12, n_l12___1, n_l12___15, n_l14___2, n_l4___3, n_l4___5, n_l6___7, n_l6___8, n_l7___10, n_l8___9, n_l9___4, n_l9___6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0 ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₅₀₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄₉₆: n_l10___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___10(X₀, X₁, X₆-X₁, X₃, X₁+1, X₅, X₆) :|: 1+X₅ < X₄ ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₄₉₇: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___12(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 1 < X₄ ∧ 0 ≤ X₅ ∧ X₅ < X₁ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₄₉₈: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 1 < X₄ ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₅₀₁: n_l12___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 0 < X₅ ∧ 1 < X₄ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₅₀₅: n_l14___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___1(X₀, X₁, X₂, X₃, X₁+1, X₅-X₁, X₆) :|: 1 < X₄ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₅₃₇: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₁₅₀₈: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₁₅₁₀: n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ 1 < X₄ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁
t₁₅₁₁: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___4(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₁₅₁₂: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___6(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁
t₁₅₁₃: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___9(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ X₁+1 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₅₁₄: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___7(X₂, X₁, X₂, X₃, X₁+1, 0, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₅₁₅: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___8(X₆, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₁₅₁₆: n_l9___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___3(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₁₅₁₇: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___5(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: 1+X₅ ≤ X₁ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁

All Bounds

Timebounds

Overall timebound:36⋅X₃⋅X₃+30⋅X₃+19 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₄₉₆: X₃+1 {O(n)}
t₁₄₉₇: X₃ {O(n)}
t₁₄₉₈: 18⋅X₃⋅X₃+8⋅X₃ {O(n^2)}
t₁₅₀₁: X₃ {O(n)}
t₁₅₀₅: 18⋅X₃⋅X₃+8⋅X₃ {O(n^2)}
t₁₅₀₆: 1 {O(1)}
t₁₅₀₈: X₃+1 {O(n)}
t₁₅₁₀: X₃+2 {O(n)}
t₁₅₁₁: 2⋅X₃ {O(n)}
t₁₅₁₂: 2⋅X₃ {O(n)}
t₁₅₁₃: X₃ {O(n)}
t₁₅₁₄: X₃ {O(n)}
t₁₅₁₅: X₃+1 {O(n)}
t₁₅₁₆: X₃ {O(n)}
t₁₅₁₇: X₃+2 {O(n)}
t₁₅₃₇: 1 {O(1)}

Costbounds

Overall costbound: 36⋅X₃⋅X₃+30⋅X₃+19 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₄₉₆: X₃+1 {O(n)}
t₁₄₉₇: X₃ {O(n)}
t₁₄₉₈: 18⋅X₃⋅X₃+8⋅X₃ {O(n^2)}
t₁₅₀₁: X₃ {O(n)}
t₁₅₀₅: 18⋅X₃⋅X₃+8⋅X₃ {O(n^2)}
t₁₅₀₆: 1 {O(1)}
t₁₅₀₈: X₃+1 {O(n)}
t₁₅₁₀: X₃+2 {O(n)}
t₁₅₁₁: 2⋅X₃ {O(n)}
t₁₅₁₂: 2⋅X₃ {O(n)}
t₁₅₁₃: X₃ {O(n)}
t₁₅₁₄: X₃ {O(n)}
t₁₅₁₅: X₃+1 {O(n)}
t₁₅₁₆: X₃ {O(n)}
t₁₅₁₇: X₃+2 {O(n)}
t₁₅₃₇: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₃ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₃ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 1 {O(1)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₃ {O(n)}
t₈, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₈, X₁: 1 {O(1)}
t₈, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: 1 {O(1)}
t₈, X₅: 0 {O(1)}
t₈, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉, X₀: X₃⋅X₃+3⋅X₃+X₀ {O(n^2)}
t₉, X₁: X₁+1 {O(n)}
t₉, X₂: X₃⋅X₃+3⋅X₃+X₂ {O(n^2)}
t₉, X₃: 2⋅X₃ {O(n)}
t₉, X₄: 1 {O(1)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₃⋅X₃+4⋅X₃ {O(n^2)}
t₁₀, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₀, X₁: 1 {O(1)}
t₁₀, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: 1 {O(1)}
t₁₀, X₅: 0 {O(1)}
t₁₀, X₆: 0 {O(1)}
t₁₁, X₀: 3⋅X₃⋅X₃+2⋅X₀+9⋅X₃ {O(n^2)}
t₁₁, X₁: 2⋅X₁+3 {O(n)}
t₁₁, X₂: 3⋅X₃⋅X₃+2⋅X₂+9⋅X₃ {O(n^2)}
t₁₁, X₃: 5⋅X₃ {O(n)}
t₁₁, X₄: X₄+3 {O(n)}
t₁₁, X₅: 2⋅X₅ {O(n)}
t₁₁, X₆: 2⋅X₃⋅X₃+7⋅X₃+X₆ {O(n^2)}
t₁₄₉₆, X₀: 2⋅X₃⋅X₃+6⋅X₃+X₀ {O(n^2)}
t₁₄₉₆, X₁: X₃ {O(n)}
t₁₄₉₆, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₄₉₆, X₃: X₃ {O(n)}
t₁₄₉₆, X₄: X₃+1 {O(n)}
t₁₄₉₆, X₅: 3⋅X₃ {O(n)}
t₁₄₉₆, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₄₉₇, X₀: 2⋅X₃⋅X₃+6⋅X₃+X₀ {O(n^2)}
t₁₄₉₇, X₁: X₃ {O(n)}
t₁₄₉₇, X₂: 2⋅X₃⋅X₃+6⋅X₃+X₂ {O(n^2)}
t₁₄₉₇, X₃: X₃ {O(n)}
t₁₄₉₇, X₄: X₃+1 {O(n)}
t₁₄₉₇, X₅: 3⋅X₃ {O(n)}
t₁₄₉₇, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₄₉₈, X₀: 2⋅X₃⋅X₃+6⋅X₃+X₀ {O(n^2)}
t₁₄₉₈, X₁: X₃ {O(n)}
t₁₄₉₈, X₂: 2⋅X₃⋅X₃+6⋅X₃+X₂ {O(n^2)}
t₁₄₉₈, X₃: X₃ {O(n)}
t₁₄₉₈, X₄: X₃+1 {O(n)}
t₁₄₉₈, X₅: 3⋅X₃ {O(n)}
t₁₄₉₈, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₀₁, X₀: 2⋅X₃⋅X₃+6⋅X₃+X₀ {O(n^2)}
t₁₅₀₁, X₁: X₃ {O(n)}
t₁₅₀₁, X₂: 2⋅X₃⋅X₃+6⋅X₃+X₂ {O(n^2)}
t₁₅₀₁, X₃: X₃ {O(n)}
t₁₅₀₁, X₄: 3⋅X₃+3 {O(n)}
t₁₅₀₁, X₅: 3⋅X₃ {O(n)}
t₁₅₀₁, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₀₅, X₀: 2⋅X₃⋅X₃+6⋅X₃+X₀ {O(n^2)}
t₁₅₀₅, X₁: X₃ {O(n)}
t₁₅₀₅, X₂: 2⋅X₃⋅X₃+6⋅X₃+X₂ {O(n^2)}
t₁₅₀₅, X₃: X₃ {O(n)}
t₁₅₀₅, X₄: 2⋅X₃+2 {O(n)}
t₁₅₀₅, X₅: 3⋅X₃ {O(n)}
t₁₅₀₅, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₀₆, X₀: X₀ {O(n)}
t₁₅₀₆, X₁: X₃ {O(n)}
t₁₅₀₆, X₂: X₂ {O(n)}
t₁₅₀₆, X₃: X₃ {O(n)}
t₁₅₀₆, X₄: X₃ {O(n)}
t₁₅₀₆, X₅: X₃ {O(n)}
t₁₅₀₆, X₆: X₃ {O(n)}
t₁₅₀₈, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₀₈, X₁: X₃ {O(n)}
t₁₅₀₈, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₀₈, X₃: X₃ {O(n)}
t₁₅₀₈, X₄: X₃ {O(n)}
t₁₅₀₈, X₅: X₃ {O(n)}
t₁₅₀₈, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₀, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₀, X₁: X₃ {O(n)}
t₁₅₁₀, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₀, X₃: X₃ {O(n)}
t₁₅₁₀, X₄: X₃ {O(n)}
t₁₅₁₀, X₅: X₃ {O(n)}
t₁₅₁₀, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₁, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₁, X₁: X₃ {O(n)}
t₁₅₁₁, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₁, X₃: X₃ {O(n)}
t₁₅₁₁, X₄: X₃+1 {O(n)}
t₁₅₁₁, X₅: 0 {O(1)}
t₁₅₁₁, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₂, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₂, X₁: X₃ {O(n)}
t₁₅₁₂, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₂, X₃: X₃ {O(n)}
t₁₅₁₂, X₄: X₃+1 {O(n)}
t₁₅₁₂, X₅: 3⋅X₃ {O(n)}
t₁₅₁₂, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₃, X₀: 2⋅X₃⋅X₃+6⋅X₃+X₀ {O(n^2)}
t₁₅₁₃, X₁: X₃ {O(n)}
t₁₅₁₃, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₃, X₃: X₃ {O(n)}
t₁₅₁₃, X₄: X₃+1 {O(n)}
t₁₅₁₃, X₅: 3⋅X₃ {O(n)}
t₁₅₁₃, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₄, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₄, X₁: X₃ {O(n)}
t₁₅₁₄, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₄, X₃: X₃ {O(n)}
t₁₅₁₄, X₄: X₃+1 {O(n)}
t₁₅₁₄, X₅: 0 {O(1)}
t₁₅₁₄, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₅, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₅, X₁: X₃ {O(n)}
t₁₅₁₅, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₅, X₃: X₃ {O(n)}
t₁₅₁₅, X₄: X₃+1 {O(n)}
t₁₅₁₅, X₅: 3⋅X₃ {O(n)}
t₁₅₁₅, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₆, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₆, X₁: X₃ {O(n)}
t₁₅₁₆, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₆, X₃: X₃ {O(n)}
t₁₅₁₆, X₄: X₃ {O(n)}
t₁₅₁₆, X₅: 0 {O(1)}
t₁₅₁₆, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₇, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₇, X₁: X₃ {O(n)}
t₁₅₁₇, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₁₇, X₃: X₃ {O(n)}
t₁₅₁₇, X₄: X₃ {O(n)}
t₁₅₁₇, X₅: 3⋅X₃ {O(n)}
t₁₅₁₇, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₃₇, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₃₇, X₁: 1 {O(1)}
t₁₅₃₇, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₅₃₇, X₃: X₃ {O(n)}
t₁₅₃₇, X₄: 1 {O(1)}
t₁₅₃₇, X₅: 0 {O(1)}
t₁₅₃₇, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}