Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉
Temp_Vars: U
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₃₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l11(X₀, X₂, X₂, X₄, X₄, X₆, X₆, X₈, X₈, X₁₀, X₁₀, X₁₂, X₁₂, X₁₄, X₁₄, X₁₆, X₁₆, X₁₈, X₁₈, X₀)
t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, U, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₅+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₅+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₅, X₁₈, X₁₉) :|: X₁+2 ≤ X₀ ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, 0, X₁₄, 1, X₁₆, 0, X₁₈, X₁₉) :|: 1 ≤ X₁ ∧ 1 ≤ 0 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₉ ≤ 2 ∧ 2 ≤ X₁₉ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₂₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, 0, X₁₆, 1, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₃₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, 0, X₁₆, 2, X₁₈, X₁₉) :|: 4 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, 0, X₁₆, X₁₉, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, 0, X₁₆, X₁₉, X₁₈, X₁₉) :|: 4 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 0, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ X₁+1 ∧ X₀ ≤ 1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1, X₁₆, 1, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₅ ≤ X₁₆ ∧ X₁₆ ≤ X₁₅ ∧ X₁₇ ≤ X₁₈ ∧ X₁₈ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₅ ≤ X₁₆ ∧ X₁₆ ≤ X₁₅ ∧ X₁₇ ≤ X₁₈ ∧ X₁₈ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l10(X₀, X₁₅, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l3(X₀, X₁, X₂, U, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁
t₂₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l1(X₀, X₁, X₂, X₃, X₄, U, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₃+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₃+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₇, X₁₈, X₁₉) :|: 2⋅X₇+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₇+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₅+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₅+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 1+2⋅X₇ ∧ 1 ≤ X₁₅ ∧ 0 ≤ 1+2⋅X₅ ∧ 0 ≤ 1+2⋅X₉ ∧ 0 ≤ 1+2⋅X₃ ∧ 2⋅X₉+1 ≤ X₁₅ ∧ 2⋅X₅+1 ≤ X₁₅ ∧ 2⋅X₃+1 ≤ X₁₅ ∧ 2⋅X₇+1 ≤ X₁₅ ∧ 2⋅X₅ ≤ 2⋅X₃+1 ∧ 2⋅X₉ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₇+1 ∧ 2⋅X₅ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₉+1 ∧ 2⋅X₅ ≤ 2⋅X₉+1 ∧ 2⋅X₉ ≤ 2⋅X₃+1 ∧ 2⋅X₇ ≤ 2⋅X₃+1 ∧ 2⋅X₃ ≤ 2⋅X₅+1 ∧ 2⋅X₉ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₉+1 ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₇ ∧ X₇ ≤ X₁₇ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, 0, X₁₄, 1+X₁₅, X₁₆, 0, X₁₈, X₁₉) :|: 1 ≤ X₁₇+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₃ ∧ 3 ≤ X₀ ∧ X₁₃ ≤ 1 ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₅+2 ≤ X₀ ∧ X₀ ≤ X₁₅+2 ∧ X₁₁+3 ≤ X₀ ∧ X₀ ≤ X₁₁+3
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, 1, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, 2, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ X₁₁+2 ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2⋅X₁₃+X₁₅+2 ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 1+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 2+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 2+X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 1+2⋅X₁₇, X₁₈, X₁₉) :|: X₀+X₁₅+3 ≤ 0 ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 2+2⋅X₁₇, X₁₈, X₁₉) :|: X₀+X₁₅+4 ≤ 0 ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₀+X₁₅+3 ≤ 0 ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇
t₁₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₀+X₁₅+4 ≤ 0 ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇

Preprocessing

Cut unsatisfiable transition t₈: l8→l8

Cut unsatisfiable transition t₉: l8→l7

Cut unsatisfiable transition t₁₀: l8→l8

Cut unsatisfiable transition t₁₁: l8→l7

Cut unsatisfiable transition t₂₅: l10→l9

Cut unsatisfiable transition t₂₆: l10→l6

Found invariant X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ for location l11

Found invariant X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l2

Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l6

Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l7

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l5

Found invariant X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l8

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l1

Found invariant X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l4

Found invariant X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ for location l9

Found invariant 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉
Temp_Vars: U
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₃₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l11(X₀, X₂, X₂, X₄, X₄, X₆, X₆, X₈, X₈, X₁₀, X₁₀, X₁₂, X₁₂, X₁₄, X₁₄, X₁₆, X₁₆, X₁₈, X₁₈, X₀)
t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, U, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₅+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₅+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₅, X₁₈, X₁₉) :|: X₁+2 ≤ X₀ ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, 0, X₁₆, 1, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₃₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, 0, X₁₆, 2, X₁₈, X₁₉) :|: 4 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, 0, X₁₆, X₁₉, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, 0, X₁₆, X₁₉, X₁₈, X₁₉) :|: 4 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1, X₁₆, 1, X₁₈, X₁₉) :|: 3 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₅ ≤ X₁₆ ∧ X₁₆ ≤ X₁₅ ∧ X₁₇ ≤ X₁₈ ∧ X₁₈ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂
t₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₅ ≤ X₁₆ ∧ X₁₆ ≤ X₁₅ ∧ X₁₇ ≤ X₁₈ ∧ X₁₈ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l10(X₀, X₁₅, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l3(X₀, X₁, X₂, U, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₂₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l1(X₀, X₁, X₂, X₃, X₄, U, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₃+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₃+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₇, X₁₈, X₁₉) :|: 2⋅X₇+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₇+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₅+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₅+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 1+2⋅X₇ ∧ 1 ≤ X₁₅ ∧ 0 ≤ 1+2⋅X₅ ∧ 0 ≤ 1+2⋅X₉ ∧ 0 ≤ 1+2⋅X₃ ∧ 2⋅X₉+1 ≤ X₁₅ ∧ 2⋅X₅+1 ≤ X₁₅ ∧ 2⋅X₃+1 ≤ X₁₅ ∧ 2⋅X₇+1 ≤ X₁₅ ∧ 2⋅X₅ ≤ 2⋅X₃+1 ∧ 2⋅X₉ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₇+1 ∧ 2⋅X₅ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₉+1 ∧ 2⋅X₅ ≤ 2⋅X₉+1 ∧ 2⋅X₉ ≤ 2⋅X₃+1 ∧ 2⋅X₇ ≤ 2⋅X₃+1 ∧ 2⋅X₃ ≤ 2⋅X₅+1 ∧ 2⋅X₉ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₉+1 ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₇ ∧ X₇ ≤ X₁₇ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, 0, X₁₄, 1+X₁₅, X₁₆, 0, X₁₈, X₁₉) :|: 1 ≤ X₁₇+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₃ ∧ 3 ≤ X₀ ∧ X₁₃ ≤ 1 ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₅+2 ≤ X₀ ∧ X₀ ≤ X₁₅+2 ∧ X₁₁+3 ≤ X₀ ∧ X₀ ≤ X₁₁+3 ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, 1, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, 2, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ X₁₁+2 ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2⋅X₁₃+X₁₅+2 ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 1+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 2+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 2+X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇ ∧ X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀

MPRF for transition t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l10(X₀, X₁₅, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₅, X₁₈, X₁₉) :|: X₁+2 ≤ X₀ ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁ ∧ X₁₅ ≤ X₁+1 ∧ X₁+1 ≤ X₁₅ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l3(X₀, X₁, X₂, U, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀+9⋅X₀+12 {O(n^2)}

MPRF for transition t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₇, X₁₈, X₁₉) :|: 2⋅X₇+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₇+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₅+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₅+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+3⋅X₀+3 {O(n^2)}

MPRF for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, U, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 1+2⋅X₇ ∧ 1 ≤ X₁₅ ∧ 0 ≤ 1+2⋅X₅ ∧ 0 ≤ 1+2⋅X₉ ∧ 0 ≤ 1+2⋅X₃ ∧ 2⋅X₉+1 ≤ X₁₅ ∧ 2⋅X₅+1 ≤ X₁₅ ∧ 2⋅X₃+1 ≤ X₁₅ ∧ 2⋅X₇+1 ≤ X₁₅ ∧ 2⋅X₅ ≤ 2⋅X₃+1 ∧ 2⋅X₉ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₇+1 ∧ 2⋅X₅ ≤ 2⋅X₇+1 ∧ 2⋅X₃ ≤ 2⋅X₉+1 ∧ 2⋅X₅ ≤ 2⋅X₉+1 ∧ 2⋅X₉ ≤ 2⋅X₃+1 ∧ 2⋅X₇ ≤ 2⋅X₃+1 ∧ 2⋅X₃ ≤ 2⋅X₅+1 ∧ 2⋅X₉ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₅+1 ∧ 2⋅X₇ ≤ 2⋅X₉+1 ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₇ ∧ X₇ ≤ X₁₇ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀+6⋅X₀+6 {O(n^2)}

MPRF for transition t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, U, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₅+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₅+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₃+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅X₃+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+3⋅X₀+3 {O(n^2)}

MPRF for transition t₂₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l1(X₀, X₁, X₂, X₃, X₄, U, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 2⋅X₃+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₃+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

4⋅X₀⋅X₀+11⋅X₀+8 {O(n^2)}

Chain transitions t₂₃: l3→l1 and t₂₂: l1→l4 to t₂₄₆: l3→l4

Chain transitions t₁₉: l2→l10 and t₂₉: l10→l8 to t₂₄₇: l2→l8

Chain transitions t₁₉: l2→l10 and t₂₇: l10→l8 to t₂₄₈: l2→l8

Chain transitions t₁₉: l2→l10 and t₃₀: l10→l7 to t₂₄₉: l2→l7

Chain transitions t₁₉: l2→l10 and t₂₈: l10→l7 to t₂₅₀: l2→l7

Chain transitions t₁₉: l2→l10 and t₂₄: l10→l2 to t₂₅₁: l2→l2

Chain transitions t₁₈: l2→l3 and t₂₄₆: l3→l4 to t₂₅₂: l2→l4

Chain transitions t₁₈: l2→l3 and t₂₃: l3→l1 to t₂₅₃: l2→l1

Chain transitions t₂₅₂: l2→l4 and t₂₀: l4→l5 to t₂₅₄: l2→l5

Chain transitions t₂₅₄: l2→l5 and t₂₁: l5→l2 to t₂₅₅: l2→l2

Analysing control-flow refined program

Found invariant X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ for location l11

Found invariant X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l2

Found invariant 1+X₉ ≤ X₁₉ ∧ X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ 1+X₁₇+X₉ ∧ 0 ≤ X₁₅+X₉ ∧ 0 ≤ 1+X₁₃+X₉ ∧ 0 ≤ 1+X₁₁+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l6

Found invariant 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 0 ≤ 1+X₁₅+X₉ ∧ 0 ≤ X₁₃+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l7

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ 3 ≤ X₀+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l5

Found invariant 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 2 ≤ X₁₇+X₉ ∧ 0 ≤ 1+X₁₅+X₉ ∧ 0 ≤ X₁₃+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l8

Found invariant 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l1

Found invariant 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ 1+X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 0 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 1 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l4

Found invariant X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ for location l9

Found invariant 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l3

MPRF for transition t₂₅₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) -{2}> l2(X₀, X₁₅, X₂, X₃, X₄, X₅, X₆, X₇, X₈, Temp_Int₄₃₅₆, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, 1+X₁₅, X₁₈, X₁₉) :|: 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₅+2 ≤ X₀ ∧ 3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ 1 ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ X₁₅ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ 2⋅X₁₅ ∧ 0 ≤ 0 ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 3 ≤ X₀ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₂₅₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) -{5}> l2(X₀, X₁, X₂, U, X₄, Temp_Int₄₃₇₃, X₆, Temp_Int₄₃₇₅, X₈, Temp_Int₄₄₃₇, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, Temp_Int₄₃₇₅, X₁₈, X₁₉) :|: 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ 1 ≤ X₁₅ ∧ 3 ≤ X₀ ∧ X₁₇ ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ 2⋅U+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅U+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 2⋅Temp_Int₄₃₇₃+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅Temp_Int₄₃₇₃+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅U+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅U+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 2⋅Temp_Int₄₃₇₅+1 ≤ X₁₇ ∧ X₁₇ ≤ 2⋅Temp_Int₄₃₇₅+2 ∧ 3 ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2⋅U+1 ≤ X₁₇ ∧ 2⋅Temp_Int₄₃₇₃+1 ≤ X₁₇ ∧ 2⋅X₉+1 ≤ X₁₇ ∧ X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ 2⋅X₉+2 ∧ X₁₇ ≤ 2⋅Temp_Int₄₃₇₃+2 ∧ X₁₇ ≤ 2⋅U+2 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ 1+2⋅Temp_Int₄₃₇₅ ∧ 1 ≤ X₁₅ ∧ 0 ≤ 1+2⋅Temp_Int₄₃₇₃ ∧ 0 ≤ 1+2⋅X₉ ∧ 0 ≤ 1+2⋅U ∧ 2⋅X₉+1 ≤ X₁₅ ∧ 2⋅Temp_Int₄₃₇₃+1 ≤ X₁₅ ∧ 2⋅U+1 ≤ X₁₅ ∧ 2⋅Temp_Int₄₃₇₅+1 ≤ X₁₅ ∧ 2⋅Temp_Int₄₃₇₃ ≤ 2⋅U+1 ∧ 2⋅X₉ ≤ 2⋅Temp_Int₄₃₇₅+1 ∧ 2⋅U ≤ 2⋅Temp_Int₄₃₇₅+1 ∧ 2⋅Temp_Int₄₃₇₃ ≤ 2⋅Temp_Int₄₃₇₅+1 ∧ 2⋅U ≤ 2⋅X₉+1 ∧ 2⋅Temp_Int₄₃₇₃ ≤ 2⋅X₉+1 ∧ 2⋅X₉ ≤ 2⋅U+1 ∧ 2⋅Temp_Int₄₃₇₅ ≤ 2⋅U+1 ∧ 2⋅U ≤ 2⋅Temp_Int₄₃₇₃+1 ∧ 2⋅X₉ ≤ 2⋅Temp_Int₄₃₇₃+1 ∧ 2⋅Temp_Int₄₃₇₅ ≤ 2⋅Temp_Int₄₃₇₃+1 ∧ 2⋅Temp_Int₄₃₇₅ ≤ 2⋅X₉+1 ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₃ ≤ X₁₄ ∧ X₁₄ ≤ X₁₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ ∧ 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ U+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ U ∧ 3 ≤ X₁₉+U ∧ 1 ≤ X₁₇+U ∧ 1 ≤ X₁₅+U ∧ 3 ≤ X₀+U ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ Temp_Int₄₃₇₃+X₉ ∧ 0 ≤ U+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ Temp_Int₄₃₇₃ ∧ 0 ≤ U+Temp_Int₄₃₇₃ ∧ 3 ≤ X₁₉+Temp_Int₄₃₇₃ ∧ 1 ≤ X₁₇+Temp_Int₄₃₇₃ ∧ 1 ≤ X₁₅+Temp_Int₄₃₇₃ ∧ 3 ≤ X₀+Temp_Int₄₃₇₃ ∧ 2+U ≤ X₁₉ ∧ 1+U ≤ X₁₇ ∧ 1+U ≤ X₁₅ ∧ 2+U ≤ X₀ ∧ 0 ≤ U ∧ 3 ≤ X₁₉+U ∧ 1 ≤ X₁₇+U ∧ 1 ≤ X₁₅+U ∧ 3 ≤ X₀+U ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ ∧ 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ Temp_Int₄₃₇₅+X₉ ∧ 0 ≤ Temp_Int₄₃₇₃+X₉ ∧ 0 ≤ U+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ Temp_Int₄₃₇₅+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ 0 ∧ 0 ≤ Temp_Int₄₃₇₅ ∧ 0 ≤ Temp_Int₄₃₇₃+Temp_Int₄₃₇₅ ∧ 0 ≤ U+Temp_Int₄₃₇₅ ∧ 3 ≤ X₁₉+Temp_Int₄₃₇₅ ∧ 0 ≤ 2⋅Temp_Int₄₃₇₅ ∧ 0 ≤ 0 ∧ 1 ≤ X₁₅+Temp_Int₄₃₇₅ ∧ 3 ≤ X₀+Temp_Int₄₃₇₅ ∧ 2+Temp_Int₄₃₇₃ ≤ X₁₉ ∧ 1+Temp_Int₄₃₇₃ ≤ X₁₅ ∧ 2+Temp_Int₄₃₇₃ ≤ X₀ ∧ 0 ≤ Temp_Int₄₃₇₃ ∧ 0 ≤ U+Temp_Int₄₃₇₃ ∧ 3 ≤ X₁₉+Temp_Int₄₃₇₃ ∧ 0 ≤ Temp_Int₄₃₇₅+Temp_Int₄₃₇₃ ∧ 1 ≤ X₁₅+Temp_Int₄₃₇₃ ∧ 3 ≤ X₀+Temp_Int₄₃₇₃ ∧ 2+U ≤ X₁₉ ∧ 1+U ≤ X₁₅ ∧ 2+U ≤ X₀ ∧ 0 ≤ U ∧ 3 ≤ X₁₉+U ∧ 0 ≤ Temp_Int₄₃₇₅+U ∧ 1 ≤ X₁₅+U ∧ 3 ≤ X₀+U ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ Temp_Int₄₃₇₅+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ Temp_Int₄₃₇₅ ∧ 1 ≤ X₁₅+Temp_Int₄₃₇₅ ∧ 3 ≤ X₀+Temp_Int₄₃₇₅ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ of depth 1:

new bound:

4⋅X₀⋅X₀+21⋅X₀+20 {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

MPRF for transition t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: X₀ ≤ 2⋅X₁₃+X₁₅+2 ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

6⋅X₀+16 {O(n)}

MPRF for transition t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

4⋅X₀+10 {O(n)}

MPRF for transition t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

8⋅X₀+24 {O(n)}

MPRF for transition t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, X₁₃, X₁₄, 1+X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) :|: 0 ≤ 2+X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₅+X₁₃+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₀ ∧ X₀ ≤ X₁₇ ∧ X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

8⋅X₀+24 {O(n)}

MPRF for transition t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, 0, X₁₄, 1+X₁₅, X₁₆, 0, X₁₈, X₁₉) :|: 1 ≤ X₁₇+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 4 ≤ X₀+X₁₃ ∧ 3 ≤ X₀ ∧ X₁₃ ≤ 1 ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₅+2 ≤ X₀ ∧ X₀ ≤ X₁₅+2 ∧ X₁₁+3 ≤ X₀ ∧ X₀ ≤ X₁₁+3 ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

8⋅X₀+20 {O(n)}

MPRF for transition t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

6⋅X₀+12 {O(n)}

MPRF for transition t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1, X₁₄, X₁₅, X₁₆, 1, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

8⋅X₀+20 {O(n)}

MPRF for transition t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

4⋅X₀+4 {O(n)}

MPRF for transition t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2, X₁₄, X₁₅, X₁₆, 2, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

8⋅X₀+20 {O(n)}

MPRF for transition t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 1+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 1+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

2016⋅X₀⋅X₀+9594⋅X₀+11326 {O(n^2)}

MPRF for transition t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 2+2⋅X₁₇, X₁₄, X₁₅, X₁₆, 2+2⋅X₁₇, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

352⋅X₀⋅X₀+1574⋅X₀+1726 {O(n^2)}

Chain transitions t₅: l7→l8 and t₇: l8→l6 to t₄₅₁: l7→l6

Chain transitions t₃: l7→l8 and t₇: l8→l6 to t₄₅₂: l7→l6

Chain transitions t₁₆: l6→l8 and t₇: l8→l6 to t₄₅₃: l6→l6

Chain transitions t₁₄: l6→l8 and t₇: l8→l6 to t₄₅₄: l6→l6

Chain transitions t₂₉: l10→l8 and t₇: l8→l6 to t₄₅₅: l10→l6

Chain transitions t₂₇: l10→l8 and t₇: l8→l6 to t₄₅₆: l10→l6

Analysing control-flow refined program

Found invariant X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ for location l11

Found invariant X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l2

Found invariant 1+X₉ ≤ X₁₉ ∧ X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ 1+X₁₇+X₉ ∧ 0 ≤ X₁₅+X₉ ∧ 0 ≤ 1+X₁₃+X₉ ∧ 0 ≤ 1+X₁₁+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l6

Found invariant 1+X₉ ≤ X₁₉ ∧ X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 0 ≤ 1+X₁₅+X₉ ∧ 0 ≤ X₁₃+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l7

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l5

Found invariant 1+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 2 ≤ X₁₇+X₉ ∧ 0 ≤ 1+X₁₅+X₉ ∧ 0 ≤ X₁₃+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l8

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l1

Found invariant 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ 1+X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 0 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 1 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l4

Found invariant X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ for location l9

Found invariant 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l3

knowledge_propagation leads to new time bound 2368⋅X₀⋅X₀+11184⋅X₀+13094 {O(n^2)} for transition t₄₅₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) -{2}> l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, 2+2⋅X₁₇, X₁₄, 1+X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+4 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ 2+X₀+X₁₅ ∧ 0 ≤ 1+2⋅X₁₇ ∧ 0 ≤ X₁₅ ∧ X₁₅+4+2⋅X₁₇ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ 2⋅X₁₉ ∧ 0 ≤ 0 ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 2 ≤ 2⋅X₁₇+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 2 ≤ 2⋅X₁₇+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 0 ≤ 1+2⋅X₁₇+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 0 ≤ 1+2⋅X₁₇ ∧ 1 ≤ X₁+2⋅X₁₇ ∧ 2 ≤ X₀+2⋅X₁₇ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ 1+X₉ ≤ X₁₉ ∧ X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 0 ≤ 1+X₁₅+X₉ ∧ 0 ≤ X₁₃+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 2368⋅X₀⋅X₀+11184⋅X₀+13094 {O(n^2)} for transition t₄₅₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) -{2}> l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, 1+2⋅X₁₇, X₁₄, 1+X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: 2⋅X₁₃+X₁₅+3 ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃ ∧ 2⋅X₁₃+X₁₅ ≤ X₀ ∧ X₁₃+X₁₅+2 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₇ ≤ X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ 2+X₀+X₁₅ ∧ 0 ≤ 2⋅X₁₇ ∧ 0 ≤ X₁₅ ∧ X₁₅+3+2⋅X₁₇ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ 2⋅X₁₉ ∧ 0 ≤ 0 ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 3 ≤ 2⋅X₁₇+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 3 ≤ 2⋅X₁₇+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 0 ≤ 2⋅X₁₇+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 0 ≤ 2⋅X₁₇ ∧ 2 ≤ X₁+2⋅X₁₇ ∧ 3 ≤ X₀+2⋅X₁₇ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ 1+X₉ ≤ X₁₉ ∧ X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 0 ≤ 1+X₁₅+X₉ ∧ 0 ≤ X₁₃+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀

MPRF for transition t₄₅₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) -{2}> l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, 2, X₁₄, 1+X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+5 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ 2+X₀+X₁₅ ∧ 0 ≤ 1 ∧ 0 ≤ X₁₅ ∧ X₁₅+4 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ 2⋅X₁₉ ∧ 0 ≤ 0 ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 2 ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 2 ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 0 ≤ 1+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ 1+X₉ ≤ X₁₉ ∧ X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ 1+X₁₇+X₉ ∧ 0 ≤ X₁₅+X₉ ∧ 0 ≤ 1+X₁₃+X₉ ∧ 0 ≤ 1+X₁₁+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

224⋅X₀⋅X₀+1152⋅X₀+1482 {O(n^2)}

MPRF for transition t₄₅₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉) -{2}> l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₅, X₁₂, 1, X₁₄, 1+X₁₅, X₁₆, X₁₉, X₁₈, X₁₉) :|: X₁₁+4 ≤ X₀ ∧ X₀ ≤ X₁₇+X₁₁+2+X₁₃ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₃ ∧ 0 ≤ X₁₁ ∧ X₁₁+2+X₁₃ ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₅ ≤ X₁₁+1 ∧ X₁₁+1 ≤ X₁₅ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ 2+X₀+X₁₅ ∧ 0 ≤ 0 ∧ 0 ≤ X₁₅ ∧ X₁₅+3 ≤ X₀ ∧ 2⋅X₉+1 ≤ X₁ ∧ X₀ ≤ X₁+1 ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ 2⋅X₁₉ ∧ 0 ≤ 0 ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 0 ≤ X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 0 ≤ 0 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ ∧ 1+X₉ ≤ X₁₉ ∧ X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ 1+X₁₇+X₉ ∧ 0 ≤ X₁₅+X₉ ∧ 0 ≤ 1+X₁₃+X₉ ∧ 0 ≤ 1+X₁₁+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

224⋅X₀⋅X₀+1152⋅X₀+1482 {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₇ ≤ X₈ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ ∧ X₁₈ ≤ X₁₇ ∧ X₁₇ ≤ X₁₈ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ for location l11

Found invariant X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l2

Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 3 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 3 ≤ X₁₁+X₁₉ ∧ 2+X₁₁ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 0 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 1 ≤ X₁₁+X₁₇ ∧ 2 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁₁ ∧ X₁₅ ≤ X₁ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₃+X₁₅ ∧ 1 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 0 ≤ X₁₃ ∧ 1 ≤ X₁₁+X₁₃ ∧ 2 ≤ X₁+X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ 1+X₁₁ ≤ X₁ ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l6

Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 2 ∧ X₁₇ ≤ 2+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 4 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 2 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 3 ≤ X₁+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 2+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 2 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l7

Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 5 ≤ X₁₉ ∧ 8 ≤ X₁₇+X₁₉ ∧ 2+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ 5+X₁₅ ≤ X₁₉ ∧ 8 ≤ X₁₃+X₁₉ ∧ 2+X₁₃ ≤ X₁₉ ∧ 9 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 10 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 3 ∧ X₁₇ ≤ 3+X₁₅ ∧ X₁₇ ≤ X₁₃ ∧ X₁₃+X₁₇ ≤ 6 ∧ 1+X₁₇ ≤ X₁ ∧ 2+X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 6 ≤ X₁₃+X₁₇ ∧ X₁₃ ≤ X₁₇ ∧ 7 ≤ X₁+X₁₇ ∧ 8 ≤ X₀+X₁₇ ∧ 4+X₁₅ ≤ X₁ ∧ 5+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 3 ≤ X₁₃+X₁₅ ∧ X₁₃ ≤ 3+X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₃ ≤ 3 ∧ 1+X₁₃ ≤ X₁ ∧ 2+X₁₃ ≤ X₀ ∧ 3 ≤ X₁₃ ∧ 7 ≤ X₁+X₁₃ ∧ 8 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 9 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 5 ≤ X₀ for location n_l7___2

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 0 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₇ ≤ X₁₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 3 ≤ X₁₉+X₇ ∧ 0 ≤ X₁₇+X₇ ∧ X₁₇ ≤ X₇ ∧ 1 ≤ X₁₅+X₇ ∧ 3 ≤ X₀+X₇ ∧ 2+X₅ ≤ X₁₉ ∧ 1+X₅ ≤ X₁₅ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 0 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 0 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 0 ≤ X₁₇ ∧ 1 ≤ X₁₅+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l5

Found invariant X₁₉ ≤ X₁₇ ∧ X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 6 ≤ X₁₇+X₁₉ ∧ X₁₇ ≤ X₁₉ ∧ 3 ≤ X₁₅+X₁₉ ∧ 3+X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁₃+X₁₉ ∧ 5 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ 1+X₁ ∧ X₁₇ ≤ X₀ ∧ 3 ≤ X₁₇ ∧ 3 ≤ X₁₅+X₁₇ ∧ 3+X₁₅ ≤ X₁₇ ∧ 4 ≤ X₁₃+X₁₇ ∧ 5 ≤ X₁+X₁₇ ∧ 1+X₁ ≤ X₁₇ ∧ 6 ≤ X₀+X₁₇ ∧ X₀ ≤ X₁₇ ∧ 2+X₁₅ ≤ X₁ ∧ 3+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 1 ≤ X₁₃+X₁₅ ∧ 2 ≤ X₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 4 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location l8

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l1

Found invariant 0 ≤ 1+X₉ ∧ 2 ≤ X₁₉+X₉ ∧ 0 ≤ 1+X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 0 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 3 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 5 ≤ X₁₅+X₁₉ ∧ X₁₅ ≤ X₁₉ ∧ 4 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 1+X₁₇ ≤ X₁₅ ∧ X₁₇ ≤ X₁ ∧ 1+X₁₇ ≤ X₀ ∧ 0 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 1 ≤ X₁+X₁₇ ∧ 3 ≤ X₀+X₁₇ ∧ X₁₅ ≤ 1+X₁ ∧ X₁₅ ≤ X₀ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁+X₁₅ ∧ 1+X₁ ≤ X₁₅ ∧ 5 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10

Found invariant 2+X₉ ≤ X₁₉ ∧ 1+X₉ ≤ X₁₇ ∧ 1+X₉ ≤ X₁₅ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₃+X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁₉+X₅ ∧ 1 ≤ X₁₇+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 3 ≤ X₀+X₅ ∧ 2+X₃ ≤ X₁₉ ∧ 1+X₃ ≤ X₁₇ ∧ 1+X₃ ≤ X₁₅ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁₉+X₃ ∧ 1 ≤ X₁₇+X₃ ∧ 1 ≤ X₁₅+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l4

Found invariant X₁₉ ≤ X₀ ∧ X₀ ≤ X₁₉ for location l9

Found invariant X₁₉ ≤ 1+X₁ ∧ X₁₉ ≤ X₀ ∧ 6 ≤ X₁₉ ∧ 10 ≤ X₁₇+X₁₉ ∧ 6 ≤ X₁₅+X₁₉ ∧ 6+X₁₅ ≤ X₁₉ ∧ 10 ≤ X₁₃+X₁₉ ∧ 11 ≤ X₁+X₁₉ ∧ 1+X₁ ≤ X₁₉ ∧ 12 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ 4 ≤ X₁₇ ∧ 4 ≤ X₁₅+X₁₇ ∧ 8 ≤ X₁₃+X₁₇ ∧ 9 ≤ X₁+X₁₇ ∧ 10 ≤ X₀+X₁₇ ∧ 5+X₁₅ ≤ X₁ ∧ 6+X₁₅ ≤ X₀ ∧ 0 ≤ X₁₅ ∧ 4 ≤ X₁₃+X₁₅ ∧ 5 ≤ X₁+X₁₅ ∧ 6 ≤ X₀+X₁₅ ∧ 4 ≤ X₁₃ ∧ 9 ≤ X₁+X₁₃ ∧ 10 ≤ X₀+X₁₃ ∧ 1+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 6 ≤ X₀ for location n_l7___1

Found invariant 0 ≤ X₉ ∧ 3 ≤ X₁₉+X₉ ∧ 1 ≤ X₁₇+X₉ ∧ 1 ≤ X₁₅+X₉ ∧ 3 ≤ X₀+X₉ ∧ X₁₉ ≤ X₀ ∧ 3 ≤ X₁₉ ∧ 4 ≤ X₁₇+X₁₉ ∧ 1+X₁₇ ≤ X₁₉ ∧ 4 ≤ X₁₅+X₁₉ ∧ 1+X₁₅ ≤ X₁₉ ∧ 6 ≤ X₀+X₁₉ ∧ X₀ ≤ X₁₉ ∧ X₁₇ ≤ X₁₅ ∧ 1+X₁₇ ≤ X₀ ∧ 1 ≤ X₁₇ ∧ 2 ≤ X₁₅+X₁₇ ∧ 4 ≤ X₀+X₁₇ ∧ 1+X₁₅ ≤ X₀ ∧ 1 ≤ X₁₅ ∧ 4 ≤ X₀+X₁₅ ∧ X₁₄ ≤ X₁₃ ∧ X₁₃ ≤ X₁₄ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 3 ≤ X₀ for location l3

All Bounds

Timebounds

Overall timebound:2378⋅X₀⋅X₀+11262⋅X₀+13244 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 6⋅X₀+16 {O(n)}
t₃: 4⋅X₀+10 {O(n)}
t₄: 2016⋅X₀⋅X₀+9594⋅X₀+11326 {O(n^2)}
t₅: 8⋅X₀+24 {O(n)}
t₆: 352⋅X₀⋅X₀+1574⋅X₀+1726 {O(n^2)}
t₇: 8⋅X₀+24 {O(n)}
t₁₂: 1 {O(1)}
t₁₃: 8⋅X₀+20 {O(n)}
t₁₄: 6⋅X₀+12 {O(n)}
t₁₅: 8⋅X₀+20 {O(n)}
t₁₆: 4⋅X₀+4 {O(n)}
t₁₇: 8⋅X₀+20 {O(n)}
t₁₈: 2⋅X₀⋅X₀+9⋅X₀+12 {O(n^2)}
t₁₉: X₀+1 {O(n)}
t₂₀: X₀⋅X₀+3⋅X₀+3 {O(n^2)}
t₂₁: 2⋅X₀⋅X₀+6⋅X₀+6 {O(n^2)}
t₂₂: X₀⋅X₀+3⋅X₀+3 {O(n^2)}
t₂₃: 4⋅X₀⋅X₀+11⋅X₀+8 {O(n^2)}
t₂₄: X₀+1 {O(n)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}

Costbounds

Overall costbound: 2378⋅X₀⋅X₀+11262⋅X₀+13244 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 6⋅X₀+16 {O(n)}
t₃: 4⋅X₀+10 {O(n)}
t₄: 2016⋅X₀⋅X₀+9594⋅X₀+11326 {O(n^2)}
t₅: 8⋅X₀+24 {O(n)}
t₆: 352⋅X₀⋅X₀+1574⋅X₀+1726 {O(n^2)}
t₇: 8⋅X₀+24 {O(n)}
t₁₂: 1 {O(1)}
t₁₃: 8⋅X₀+20 {O(n)}
t₁₄: 6⋅X₀+12 {O(n)}
t₁₅: 8⋅X₀+20 {O(n)}
t₁₆: 4⋅X₀+4 {O(n)}
t₁₇: 8⋅X₀+20 {O(n)}
t₁₈: 2⋅X₀⋅X₀+9⋅X₀+12 {O(n^2)}
t₁₉: X₀+1 {O(n)}
t₂₀: X₀⋅X₀+3⋅X₀+3 {O(n^2)}
t₂₁: 2⋅X₀⋅X₀+6⋅X₀+6 {O(n^2)}
t₂₂: X₀⋅X₀+3⋅X₀+3 {O(n^2)}
t₂₃: 4⋅X₀⋅X₀+11⋅X₀+8 {O(n^2)}
t₂₄: X₀+1 {O(n)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₂ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₄ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₆ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₈ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₁₀ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₂ {O(n)}
t₀, X₁₂: X₁₂ {O(n)}
t₀, X₁₃: X₁₄ {O(n)}
t₀, X₁₄: X₁₄ {O(n)}
t₀, X₁₅: X₁₆ {O(n)}
t₀, X₁₆: X₁₆ {O(n)}
t₀, X₁₇: X₁₈ {O(n)}
t₀, X₁₈: X₁₈ {O(n)}
t₀, X₁₉: X₀ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₂ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₄ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₆ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₈ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₂ {O(n)}
t₁, X₁₂: X₁₂ {O(n)}
t₁, X₁₃: X₁₄ {O(n)}
t₁, X₁₄: X₁₄ {O(n)}
t₁, X₁₅: 1 {O(1)}
t₁, X₁₆: X₁₆ {O(n)}
t₁, X₁₇: 1 {O(1)}
t₁, X₁₈: X₁₈ {O(n)}
t₁, X₁₉: X₀ {O(n)}
t₂, X₀: 4⋅X₀ {O(n)}
t₂, X₁: 8⋅X₀+20 {O(n)}
t₂, X₂: 4⋅X₂ {O(n)}
t₂, X₄: 4⋅X₄ {O(n)}
t₂, X₆: 4⋅X₆ {O(n)}
t₂, X₈: 4⋅X₈ {O(n)}
t₂, X₁₀: 4⋅X₁₀ {O(n)}
t₂, X₁₁: 56⋅X₀+160 {O(n)}
t₂, X₁₂: 4⋅X₁₂ {O(n)}
t₂, X₁₃: 22336⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅X₀+26116⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)+2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅4736⋅X₀⋅X₀+6 {O(EXP)}
t₂, X₁₄: 4⋅X₁₄ {O(n)}
t₂, X₁₅: 14⋅X₀+40 {O(n)}
t₂, X₁₆: 4⋅X₁₆ {O(n)}
t₂, X₁₇: 22336⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅X₀+26116⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)+2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅4736⋅X₀⋅X₀+6 {O(EXP)}
t₂, X₁₈: 4⋅X₁₈ {O(n)}
t₂, X₁₉: 4⋅X₀ {O(n)}
t₃, X₀: 4⋅X₀ {O(n)}
t₃, X₁: 8⋅X₀+20 {O(n)}
t₃, X₂: 4⋅X₂ {O(n)}
t₃, X₄: 4⋅X₄ {O(n)}
t₃, X₆: 4⋅X₆ {O(n)}
t₃, X₈: 4⋅X₈ {O(n)}
t₃, X₁₀: 4⋅X₁₀ {O(n)}
t₃, X₁₁: 6⋅X₁₂+672⋅X₀+1920 {O(n)}
t₃, X₁₂: 4⋅X₁₂ {O(n)}
t₃, X₁₃: 2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅44672⋅X₀+2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅52232+2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅9472⋅X₀⋅X₀+24 {O(EXP)}
t₃, X₁₄: 4⋅X₁₄ {O(n)}
t₃, X₁₅: 14⋅X₀+40 {O(n)}
t₃, X₁₆: 4⋅X₁₆ {O(n)}
t₃, X₁₇: 18⋅X₀ {O(n)}
t₃, X₁₈: 4⋅X₁₈ {O(n)}
t₃, X₁₉: 4⋅X₀ {O(n)}
t₄, X₀: 4⋅X₀ {O(n)}
t₄, X₁: 8⋅X₀+20 {O(n)}
t₄, X₂: 4⋅X₂ {O(n)}
t₄, X₄: 4⋅X₄ {O(n)}
t₄, X₆: 4⋅X₆ {O(n)}
t₄, X₈: 4⋅X₈ {O(n)}
t₄, X₁₀: 4⋅X₁₀ {O(n)}
t₄, X₁₁: 2⋅X₁₂+224⋅X₀+640 {O(n)}
t₄, X₁₂: 4⋅X₁₂ {O(n)}
t₄, X₁₃: 11168⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅X₀+13058⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)+2368⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅X₀⋅X₀ {O(EXP)}
t₄, X₁₄: 4⋅X₁₄ {O(n)}
t₄, X₁₅: 14⋅X₀+40 {O(n)}
t₄, X₁₆: 4⋅X₁₆ {O(n)}
t₄, X₁₇: 11168⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅X₀+13058⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)+2368⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅X₀⋅X₀ {O(EXP)}
t₄, X₁₈: 4⋅X₁₈ {O(n)}
t₄, X₁₉: 4⋅X₀ {O(n)}
t₅, X₀: 4⋅X₀ {O(n)}
t₅, X₁: 8⋅X₀+20 {O(n)}
t₅, X₂: 4⋅X₂ {O(n)}
t₅, X₄: 4⋅X₄ {O(n)}
t₅, X₆: 4⋅X₆ {O(n)}
t₅, X₈: 4⋅X₈ {O(n)}
t₅, X₁₀: 4⋅X₁₀ {O(n)}
t₅, X₁₁: 6⋅X₁₂+672⋅X₀+1920 {O(n)}
t₅, X₁₂: 4⋅X₁₂ {O(n)}
t₅, X₁₃: 2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅44672⋅X₀+2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅52232+2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅9472⋅X₀⋅X₀+24 {O(EXP)}
t₅, X₁₄: 4⋅X₁₄ {O(n)}
t₅, X₁₅: 14⋅X₀+40 {O(n)}
t₅, X₁₆: 4⋅X₁₆ {O(n)}
t₅, X₁₇: 18⋅X₀ {O(n)}
t₅, X₁₈: 4⋅X₁₈ {O(n)}
t₅, X₁₉: 4⋅X₀ {O(n)}
t₆, X₀: 4⋅X₀ {O(n)}
t₆, X₁: 8⋅X₀+20 {O(n)}
t₆, X₂: 4⋅X₂ {O(n)}
t₆, X₄: 4⋅X₄ {O(n)}
t₆, X₆: 4⋅X₆ {O(n)}
t₆, X₈: 4⋅X₈ {O(n)}
t₆, X₁₀: 4⋅X₁₀ {O(n)}
t₆, X₁₁: 2⋅X₁₂+224⋅X₀+640 {O(n)}
t₆, X₁₂: 4⋅X₁₂ {O(n)}
t₆, X₁₃: 11168⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅X₀+13058⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)+2368⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅X₀⋅X₀ {O(EXP)}
t₆, X₁₄: 4⋅X₁₄ {O(n)}
t₆, X₁₅: 14⋅X₀+40 {O(n)}
t₆, X₁₆: 4⋅X₁₆ {O(n)}
t₆, X₁₇: 11168⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅X₀+13058⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)+2368⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅X₀⋅X₀ {O(EXP)}
t₆, X₁₈: 4⋅X₁₈ {O(n)}
t₆, X₁₉: 4⋅X₀ {O(n)}
t₇, X₀: 4⋅X₀ {O(n)}
t₇, X₁: 8⋅X₀+20 {O(n)}
t₇, X₂: 4⋅X₂ {O(n)}
t₇, X₄: 4⋅X₄ {O(n)}
t₇, X₆: 4⋅X₆ {O(n)}
t₇, X₈: 4⋅X₈ {O(n)}
t₇, X₁₀: 4⋅X₁₀ {O(n)}
t₇, X₁₁: 56⋅X₀+160 {O(n)}
t₇, X₁₂: 4⋅X₁₂ {O(n)}
t₇, X₁₃: 104464⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)+18944⋅2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅X₀⋅X₀+2^(2016⋅X₀⋅X₀+9594⋅X₀+11326)⋅2^(352⋅X₀⋅X₀+1574⋅X₀+1726)⋅89344⋅X₀+54 {O(EXP)}
t₇, X₁₄: 4⋅X₁₄ {O(n)}
t₇, X₁₅: 14⋅X₀+40 {O(n)}
t₇, X₁₆: 4⋅X₁₆ {O(n)}
t₇, X₁₇: 54⋅X₀ {O(n)}
t₇, X₁₈: 4⋅X₁₈ {O(n)}
t₇, X₁₉: 4⋅X₀ {O(n)}
t₁₂, X₀: 8⋅X₀ {O(n)}
t₁₂, X₁: 16⋅X₀+40 {O(n)}
t₁₂, X₂: 8⋅X₂ {O(n)}
t₁₂, X₄: 8⋅X₄ {O(n)}
t₁₂, X₆: 8⋅X₆ {O(n)}
t₁₂, X₈: 8⋅X₈ {O(n)}
t₁₂, X₁₀: 8⋅X₁₀ {O(n)}
t₁₂, X₁₁: 112⋅X₀+322 {O(n)}
t₁₂, X₁₂: 8⋅X₁₂ {O(n)}
t₁₂, X₁₃: 0 {O(1)}
t₁₂, X₁₄: 8⋅X₁₄ {O(n)}
t₁₂, X₁₅: 28⋅X₀+82 {O(n)}
t₁₂, X₁₆: 8⋅X₁₆ {O(n)}
t₁₂, X₁₇: 0 {O(1)}
t₁₂, X₁₈: 8⋅X₁₈ {O(n)}
t₁₂, X₁₉: 8⋅X₀ {O(n)}
t₁₃, X₀: 8⋅X₀ {O(n)}
t₁₃, X₁: 16⋅X₀+40 {O(n)}
t₁₃, X₂: 8⋅X₂ {O(n)}
t₁₃, X₄: 8⋅X₄ {O(n)}
t₁₃, X₆: 8⋅X₆ {O(n)}
t₁₃, X₈: 8⋅X₈ {O(n)}
t₁₃, X₁₀: 8⋅X₁₀ {O(n)}
t₁₃, X₁₁: 112⋅X₀+322 {O(n)}
t₁₃, X₁₂: 8⋅X₁₂ {O(n)}
t₁₃, X₁₃: 0 {O(1)}
t₁₃, X₁₄: 8⋅X₁₄ {O(n)}
t₁₃, X₁₅: 28⋅X₀+82 {O(n)}
t₁₃, X₁₆: 8⋅X₁₆ {O(n)}
t₁₃, X₁₇: 0 {O(1)}
t₁₃, X₁₈: 8⋅X₁₈ {O(n)}
t₁₃, X₁₉: 8⋅X₀ {O(n)}
t₁₄, X₀: 4⋅X₀ {O(n)}
t₁₄, X₁: 8⋅X₀+20 {O(n)}
t₁₄, X₂: 4⋅X₂ {O(n)}
t₁₄, X₄: 4⋅X₄ {O(n)}
t₁₄, X₆: 4⋅X₆ {O(n)}
t₁₄, X₈: 4⋅X₈ {O(n)}
t₁₄, X₁₀: 4⋅X₁₀ {O(n)}
t₁₄, X₁₁: 112⋅X₀+320 {O(n)}
t₁₄, X₁₂: 4⋅X₁₂ {O(n)}
t₁₄, X₁₃: 1 {O(1)}
t₁₄, X₁₄: 4⋅X₁₄ {O(n)}
t₁₄, X₁₅: 14⋅X₀+40 {O(n)}
t₁₄, X₁₆: 4⋅X₁₆ {O(n)}
t₁₄, X₁₇: 8⋅X₀ {O(n)}
t₁₄, X₁₈: 4⋅X₁₈ {O(n)}
t₁₄, X₁₉: 4⋅X₀ {O(n)}
t₁₅, X₀: 4⋅X₀ {O(n)}
t₁₅, X₁: 8⋅X₀+20 {O(n)}
t₁₅, X₂: 4⋅X₂ {O(n)}
t₁₅, X₄: 4⋅X₄ {O(n)}
t₁₅, X₆: 4⋅X₆ {O(n)}
t₁₅, X₈: 4⋅X₈ {O(n)}
t₁₅, X₁₀: 4⋅X₁₀ {O(n)}
t₁₅, X₁₁: 112⋅X₀+320 {O(n)}
t₁₅, X₁₂: 4⋅X₁₂ {O(n)}
t₁₅, X₁₃: 1 {O(1)}
t₁₅, X₁₄: 4⋅X₁₄ {O(n)}
t₁₅, X₁₅: 14⋅X₀+40 {O(n)}
t₁₅, X₁₆: 4⋅X₁₆ {O(n)}
t₁₅, X₁₇: 1 {O(1)}
t₁₅, X₁₈: 4⋅X₁₈ {O(n)}
t₁₅, X₁₉: 4⋅X₀ {O(n)}
t₁₆, X₀: 4⋅X₀ {O(n)}
t₁₆, X₁: 8⋅X₀+20 {O(n)}
t₁₆, X₂: 4⋅X₂ {O(n)}
t₁₆, X₄: 4⋅X₄ {O(n)}
t₁₆, X₆: 4⋅X₆ {O(n)}
t₁₆, X₈: 4⋅X₈ {O(n)}
t₁₆, X₁₀: 4⋅X₁₀ {O(n)}
t₁₆, X₁₁: 112⋅X₀+320 {O(n)}
t₁₆, X₁₂: 4⋅X₁₂ {O(n)}
t₁₆, X₁₃: 2 {O(1)}
t₁₆, X₁₄: 4⋅X₁₄ {O(n)}
t₁₆, X₁₅: 14⋅X₀+40 {O(n)}
t₁₆, X₁₆: 4⋅X₁₆ {O(n)}
t₁₆, X₁₇: 8⋅X₀ {O(n)}
t₁₆, X₁₈: 4⋅X₁₈ {O(n)}
t₁₆, X₁₉: 4⋅X₀ {O(n)}
t₁₇, X₀: 4⋅X₀ {O(n)}
t₁₇, X₁: 8⋅X₀+20 {O(n)}
t₁₇, X₂: 4⋅X₂ {O(n)}
t₁₇, X₄: 4⋅X₄ {O(n)}
t₁₇, X₆: 4⋅X₆ {O(n)}
t₁₇, X₈: 4⋅X₈ {O(n)}
t₁₇, X₁₀: 4⋅X₁₀ {O(n)}
t₁₇, X₁₁: 112⋅X₀+320 {O(n)}
t₁₇, X₁₂: 4⋅X₁₂ {O(n)}
t₁₇, X₁₃: 2 {O(1)}
t₁₇, X₁₄: 4⋅X₁₄ {O(n)}
t₁₇, X₁₅: 14⋅X₀+40 {O(n)}
t₁₇, X₁₆: 4⋅X₁₆ {O(n)}
t₁₇, X₁₇: 2 {O(1)}
t₁₇, X₁₈: 4⋅X₁₈ {O(n)}
t₁₇, X₁₉: 4⋅X₀ {O(n)}
t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: 2⋅X₀+X₂+5 {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₁₀: X₁₀ {O(n)}
t₁₈, X₁₁: X₁₂ {O(n)}
t₁₈, X₁₂: X₁₂ {O(n)}
t₁₈, X₁₃: X₁₄ {O(n)}
t₁₈, X₁₄: X₁₄ {O(n)}
t₁₈, X₁₅: X₀+2 {O(n)}
t₁₈, X₁₆: X₁₆ {O(n)}
t₁₈, X₁₈: X₁₈ {O(n)}
t₁₈, X₁₉: X₀ {O(n)}
t₁₉, X₀: X₀ {O(n)}
t₁₉, X₁: 2⋅X₀+5 {O(n)}
t₁₉, X₂: X₂ {O(n)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₆: X₆ {O(n)}
t₁₉, X₈: X₈ {O(n)}
t₁₉, X₁₀: X₁₀ {O(n)}
t₁₉, X₁₁: X₁₂ {O(n)}
t₁₉, X₁₂: X₁₂ {O(n)}
t₁₉, X₁₃: X₁₄ {O(n)}
t₁₉, X₁₄: X₁₄ {O(n)}
t₁₉, X₁₅: X₀+2 {O(n)}
t₁₉, X₁₆: X₁₆ {O(n)}
t₁₉, X₁₈: X₁₈ {O(n)}
t₁₉, X₁₉: X₀ {O(n)}
t₂₀, X₀: X₀ {O(n)}
t₂₀, X₁: 2⋅X₀+X₂+5 {O(n)}
t₂₀, X₂: X₂ {O(n)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₆: X₆ {O(n)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₁₀: X₁₀ {O(n)}
t₂₀, X₁₁: X₁₂ {O(n)}
t₂₀, X₁₂: X₁₂ {O(n)}
t₂₀, X₁₃: X₁₄ {O(n)}
t₂₀, X₁₄: X₁₄ {O(n)}
t₂₀, X₁₅: X₀+2 {O(n)}
t₂₀, X₁₆: X₁₆ {O(n)}
t₂₀, X₁₈: X₁₈ {O(n)}
t₂₀, X₁₉: X₀ {O(n)}
t₂₁, X₀: X₀ {O(n)}
t₂₁, X₁: 2⋅X₀+X₂+5 {O(n)}
t₂₁, X₂: X₂ {O(n)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₆: X₆ {O(n)}
t₂₁, X₈: X₈ {O(n)}
t₂₁, X₁₀: X₁₀ {O(n)}
t₂₁, X₁₁: X₁₂ {O(n)}
t₂₁, X₁₂: X₁₂ {O(n)}
t₂₁, X₁₃: X₁₄ {O(n)}
t₂₁, X₁₄: X₁₄ {O(n)}
t₂₁, X₁₅: X₀+2 {O(n)}
t₂₁, X₁₆: X₁₆ {O(n)}
t₂₁, X₁₈: X₁₈ {O(n)}
t₂₁, X₁₉: X₀ {O(n)}
t₂₂, X₀: X₀ {O(n)}
t₂₂, X₁: 2⋅X₀+X₂+5 {O(n)}
t₂₂, X₂: X₂ {O(n)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₈: X₈ {O(n)}
t₂₂, X₁₀: X₁₀ {O(n)}
t₂₂, X₁₁: X₁₂ {O(n)}
t₂₂, X₁₂: X₁₂ {O(n)}
t₂₂, X₁₃: X₁₄ {O(n)}
t₂₂, X₁₄: X₁₄ {O(n)}
t₂₂, X₁₅: X₀+2 {O(n)}
t₂₂, X₁₆: X₁₆ {O(n)}
t₂₂, X₁₈: X₁₈ {O(n)}
t₂₂, X₁₉: X₀ {O(n)}
t₂₃, X₀: X₀ {O(n)}
t₂₃, X₁: 2⋅X₀+X₂+5 {O(n)}
t₂₃, X₂: X₂ {O(n)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₈: X₈ {O(n)}
t₂₃, X₁₀: X₁₀ {O(n)}
t₂₃, X₁₁: X₁₂ {O(n)}
t₂₃, X₁₂: X₁₂ {O(n)}
t₂₃, X₁₃: X₁₄ {O(n)}
t₂₃, X₁₄: X₁₄ {O(n)}
t₂₃, X₁₅: X₀+2 {O(n)}
t₂₃, X₁₆: X₁₆ {O(n)}
t₂₃, X₁₈: X₁₈ {O(n)}
t₂₃, X₁₉: X₀ {O(n)}
t₂₄, X₀: X₀ {O(n)}
t₂₄, X₁: 2⋅X₀+5 {O(n)}
t₂₄, X₂: X₂ {O(n)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₆: X₆ {O(n)}
t₂₄, X₈: X₈ {O(n)}
t₂₄, X₁₀: X₁₀ {O(n)}
t₂₄, X₁₁: X₁₂ {O(n)}
t₂₄, X₁₂: X₁₂ {O(n)}
t₂₄, X₁₃: X₁₄ {O(n)}
t₂₄, X₁₄: X₁₄ {O(n)}
t₂₄, X₁₅: X₀+2 {O(n)}
t₂₄, X₁₆: X₁₆ {O(n)}
t₂₄, X₁₇: X₀+2 {O(n)}
t₂₄, X₁₈: X₁₈ {O(n)}
t₂₄, X₁₉: X₀ {O(n)}
t₂₇, X₀: X₀ {O(n)}
t₂₇, X₁: 2⋅X₀+5 {O(n)}
t₂₇, X₂: X₂ {O(n)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₆: X₆ {O(n)}
t₂₇, X₈: X₈ {O(n)}
t₂₇, X₁₀: X₁₀ {O(n)}
t₂₇, X₁₁: X₁₂ {O(n)}
t₂₇, X₁₂: X₁₂ {O(n)}
t₂₇, X₁₃: 1 {O(1)}
t₂₇, X₁₄: X₁₄ {O(n)}
t₂₇, X₁₅: 0 {O(1)}
t₂₇, X₁₆: X₁₆ {O(n)}
t₂₇, X₁₇: X₀ {O(n)}
t₂₇, X₁₈: X₁₈ {O(n)}
t₂₇, X₁₉: X₀ {O(n)}
t₂₈, X₀: X₀ {O(n)}
t₂₈, X₁: 2⋅X₀+5 {O(n)}
t₂₈, X₂: X₂ {O(n)}
t₂₈, X₄: X₄ {O(n)}
t₂₈, X₆: X₆ {O(n)}
t₂₈, X₈: X₈ {O(n)}
t₂₈, X₁₀: X₁₀ {O(n)}
t₂₈, X₁₁: X₁₂ {O(n)}
t₂₈, X₁₂: X₁₂ {O(n)}
t₂₈, X₁₃: 1 {O(1)}
t₂₈, X₁₄: X₁₄ {O(n)}
t₂₈, X₁₅: 0 {O(1)}
t₂₈, X₁₆: X₁₆ {O(n)}
t₂₈, X₁₇: 1 {O(1)}
t₂₈, X₁₈: X₁₈ {O(n)}
t₂₈, X₁₉: X₀ {O(n)}
t₂₉, X₀: X₀ {O(n)}
t₂₉, X₁: 2⋅X₀+5 {O(n)}
t₂₉, X₂: X₂ {O(n)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₆: X₆ {O(n)}
t₂₉, X₈: X₈ {O(n)}
t₂₉, X₁₀: X₁₀ {O(n)}
t₂₉, X₁₁: X₁₂ {O(n)}
t₂₉, X₁₂: X₁₂ {O(n)}
t₂₉, X₁₃: 2 {O(1)}
t₂₉, X₁₄: X₁₄ {O(n)}
t₂₉, X₁₅: 0 {O(1)}
t₂₉, X₁₆: X₁₆ {O(n)}
t₂₉, X₁₇: X₀ {O(n)}
t₂₉, X₁₈: X₁₈ {O(n)}
t₂₉, X₁₉: X₀ {O(n)}
t₃₀, X₀: X₀ {O(n)}
t₃₀, X₁: 2⋅X₀+5 {O(n)}
t₃₀, X₂: X₂ {O(n)}
t₃₀, X₄: X₄ {O(n)}
t₃₀, X₆: X₆ {O(n)}
t₃₀, X₈: X₈ {O(n)}
t₃₀, X₁₀: X₁₀ {O(n)}
t₃₀, X₁₁: X₁₂ {O(n)}
t₃₀, X₁₂: X₁₂ {O(n)}
t₃₀, X₁₃: 2 {O(1)}
t₃₀, X₁₄: X₁₄ {O(n)}
t₃₀, X₁₅: 0 {O(1)}
t₃₀, X₁₆: X₁₆ {O(n)}
t₃₀, X₁₇: 2 {O(1)}
t₃₀, X₁₈: X₁₈ {O(n)}
t₃₀, X₁₉: X₀ {O(n)}
t₃₁, X₀: X₀ {O(n)}
t₃₁, X₁: X₂ {O(n)}
t₃₁, X₂: X₂ {O(n)}
t₃₁, X₃: X₄ {O(n)}
t₃₁, X₄: X₄ {O(n)}
t₃₁, X₅: X₆ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: X₈ {O(n)}
t₃₁, X₈: X₈ {O(n)}
t₃₁, X₉: X₁₀ {O(n)}
t₃₁, X₁₀: X₁₀ {O(n)}
t₃₁, X₁₁: X₁₂ {O(n)}
t₃₁, X₁₂: X₁₂ {O(n)}
t₃₁, X₁₃: X₁₄ {O(n)}
t₃₁, X₁₄: X₁₄ {O(n)}
t₃₁, X₁₅: X₁₆ {O(n)}
t₃₁, X₁₆: X₁₆ {O(n)}
t₃₁, X₁₇: X₁₈ {O(n)}
t₃₁, X₁₈: X₁₈ {O(n)}
t₃₁, X₁₉: X₀ {O(n)}