Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁
Temp_Vars: A1, W, X, Y, Z
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₁₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) → l1(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, 0)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) → l1(X₀+1, X₁, X₂, X₃, 1, X₅, W, X, Y, Z, X₃, W, W, W, W, X₁₆, X₁₆, 1, 1, 1, 0, X₂₁) :|: W ≤ 0 ∧ X₀+1 ≤ X₁
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) → l2(X₀, X₁, X₂, X₃, A1, X₅, W, X, Y, Z, X₃, W, W, W, W, X₁₆, 0, A1, A1, A1, 0, X₂₁) :|: X₀+1 ≤ X₁ ∧ W ≤ 0 ∧ 2 ≤ A1
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) → l2(X₀, X₁, X₂, X₃, A1, X₅, W, X, Y, Z, X₃, W, W, W, W, X₁₆, 0, A1, A1, A1, 0, X₂₁) :|: X₀+1 ≤ X₁ ∧ W ≤ 0 ∧ A1 ≤ 0
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) → l3(X₀, X₁, 0, 0, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) :|: X₁ ≤ X₀
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) → l3(X₀, X₁, 0, 0, X₄, X₅, W, X, Y, Z, X₃, W, W, W, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) :|: 1 ≤ W ∧ X₀+1 ≤ X₁
t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) → l3(X₀, X₁, 0, 0, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) :|: 3 ≤ X₄
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) → l3(X₀, X₁, 0, 0, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) :|: X₄ ≤ 1
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) → l3(X₀, X₁, 0, 0, 2, X₆, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) :|: X₄ ≤ 2 ∧ 2 ≤ X₄
t₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁)
t₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁)
Cut unreachable locations [l4; l5] from the program graph
Eliminate variables {X,Y,Z,X₂,X₃,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁} that do not contribute to the problem
Found invariant 1+X₀ ≤ X₁ for location l2
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars: A1, W
Locations: l0, l1, l2, l3
Transitions:
t₂₄: l0(X₀, X₁, X₂) → l1(X₀, X₁, X₂)
t₂₅: l1(X₀, X₁, X₂) → l1(X₀+1, X₁, 1) :|: W ≤ 0 ∧ X₀+1 ≤ X₁
t₂₆: l1(X₀, X₁, X₂) → l2(X₀, X₁, A1) :|: X₀+1 ≤ X₁ ∧ W ≤ 0 ∧ 2 ≤ A1
t₂₇: l1(X₀, X₁, X₂) → l2(X₀, X₁, A1) :|: X₀+1 ≤ X₁ ∧ W ≤ 0 ∧ A1 ≤ 0
t₂₈: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁ ≤ X₀
t₂₉: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: 1 ≤ W ∧ X₀+1 ≤ X₁
t₃₀: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: 3 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₃₁: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₂ ≤ 1 ∧ 1+X₀ ≤ X₁
t₃₂: l2(X₀, X₁, X₂) → l3(X₀, X₁, 2) :|: X₂ ≤ 2 ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₃₃: l3(X₀, X₁, X₂) → l3(X₀, X₁, X₂)
new bound:
X₀+X₁ {O(n)}
Found invariant 1+X₀ ≤ X₁ for location l2
Overall timebound:inf {Infinity}
t₂₄: 1 {O(1)}
t₂₅: X₀+X₁ {O(n)}
t₂₆: 1 {O(1)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: inf {Infinity}
Overall costbound: inf {Infinity}
t₂₄: 1 {O(1)}
t₂₅: X₀+X₁ {O(n)}
t₂₆: 1 {O(1)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: inf {Infinity}
t₂₄, X₀: X₀ {O(n)}
t₂₄, X₁: X₁ {O(n)}
t₂₄, X₂: X₂ {O(n)}
t₂₅, X₀: 2⋅X₀+X₁ {O(n)}
t₂₅, X₁: X₁ {O(n)}
t₂₅, X₂: 1 {O(1)}
t₂₆, X₀: 3⋅X₀+X₁ {O(n)}
t₂₆, X₁: 2⋅X₁ {O(n)}
t₂₇, X₀: 3⋅X₀+X₁ {O(n)}
t₂₇, X₁: 2⋅X₁ {O(n)}
t₂₈, X₀: 3⋅X₀+X₁ {O(n)}
t₂₈, X₁: 2⋅X₁ {O(n)}
t₂₈, X₂: X₂+1 {O(n)}
t₂₉, X₀: 3⋅X₀+X₁ {O(n)}
t₂₉, X₁: 2⋅X₁ {O(n)}
t₂₉, X₂: X₂+1 {O(n)}
t₃₀, X₀: 3⋅X₀+X₁ {O(n)}
t₃₀, X₁: 2⋅X₁ {O(n)}
t₃₁, X₀: 3⋅X₀+X₁ {O(n)}
t₃₁, X₁: 2⋅X₁ {O(n)}
t₃₂, X₀: 3⋅X₀+X₁ {O(n)}
t₃₂, X₁: 2⋅X₁ {O(n)}
t₃₂, X₂: 2 {O(1)}
t₃₃, X₀: 15⋅X₀+5⋅X₁ {O(n)}
t₃₃, X₁: 10⋅X₁ {O(n)}