Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁
Temp_Vars: G1, H1
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l1(1, 40, 0, 40, 0, 1, 0, 0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, 40, 0, 40, 0, 1, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₀+1 ≤ 0
t₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, 40, 0, 40, 0, 1, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 1 ≤ X₀
t₂₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 256 ≤ X₇
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, G1, 0, H1, 0, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₇ ≤ 255
t₁₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, G1, X₂₄+1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₂₄ ≤ 7
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀+1, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₃, X₃₀, X₃₁) :|: 8 ≤ X₂₄
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, G1, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 0 ≤ X₄
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₄+1 ≤ 0 ∧ 0 ≤ X₅
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, G1, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₄+1 ≤ 0 ∧ X₅+1 ≤ 0
t₁₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, G1, X₂₀+1, X₂₁, X₂₂, X₂₃, X₂₄, H1, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₁₈+1 ≤ 0 ∧ X₂₀ ≤ X₁₆
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, G1, X₂₀+1, X₂₁, X₂₂, X₂₃, X₂₄, H1, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 0 ≤ X₁₈ ∧ X₂₀ ≤ X₁₆
t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₁₉, X₁₉, X₁₉, X₂₉, X₃₀, X₃₁) :|: 0 ≤ X₁₈ ∧ 1+X₁₆ ≤ X₂₀
t₂₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, G1, G1, G1, X₂₉, X₃₀, X₃₁) :|: X₁₈+1 ≤ 0 ∧ 1+X₁₆ ≤ X₂₀
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₁₀) :|: 8 ≤ X₁₁
t₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, G1, X₁₁+1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₁₁ ≤ 7
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, G1, X₇+1, X₈, X₉, X₁₀, X₁₁, H1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₅+1 ≤ 0 ∧ X₇ ≤ X₃
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, G1, X₇+1, X₈, X₉, X₁₀, X₁₁, H1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 0 ≤ X₅ ∧ X₇ ≤ X₃
t₂₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₆, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₆, X₃₁) :|: 0 ≤ X₅ ∧ 1+X₃ ≤ X₇
t₂₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, G1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, G1, X₃₁) :|: X₅+1 ≤ 0 ∧ 1+X₃ ≤ X₇
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l8(1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₄, X₁₄, X₁₄, X₁+2, 0, 1, X₁₄, 0, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₄, X₁₄, X₁₄, X₁+2, 0, 1, X₁₄, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₀+1 ≤ 0
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₄, X₁₄, X₁₄, X₁+2, 0, 1, X₁₄, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 1 ≤ X₀
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, G1, 0, H1, 0, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₂₀ ≤ 255
t₂₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 256 ≤ X₂₀
t₁₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, G1, 1, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 0 ≤ X₁₇
t₁₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, 1, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₁₇+1 ≤ 0 ∧ 0 ≤ X₁₈
t₁₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, G1, 1, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₁₇+1 ≤ 0 ∧ X₁₈+1 ≤ 0

Preprocessing

Eliminate variables {G1,H1,X₂,X₆,X₈,X₉,X₁₀,X₁₂,X₁₃,X₁₄,X₁₅,X₁₉,X₂₁,X₂₂,X₂₃,X₂₅,X₂₆,X₂₇,X₂₈,X₂₉,X₃₀,X₃₁} that do not contribute to the problem

Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁ for location l2

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 41 ≤ X₂+X₅ ∧ X₂ ≤ 39+X₅ ∧ 41 ≤ X₁+X₅ ∧ X₁ ≤ 39+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁ for location l6

Found invariant 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁ for location l7

Found invariant X₆ ≤ 8 ∧ X₆ ≤ 8+X₅ ∧ X₆ ≤ 7+X₄ ∧ X₄+X₆ ≤ 9 ∧ X₆ ≤ 8+X₃ ∧ X₃+X₆ ≤ 8 ∧ 32+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 48 ∧ 32+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 48 ∧ X₆ ≤ 7+X₀ ∧ X₀+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 40 ≤ X₂+X₆ ∧ X₂ ≤ 40+X₆ ∧ 40 ≤ X₁+X₆ ∧ X₁ ≤ 40+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 40 ≤ X₂+X₅ ∧ X₂ ≤ 40+X₅ ∧ 40 ≤ X₁+X₅ ∧ X₁ ≤ 40+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l5

Found invariant X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ X₉ ≤ 1+X₁₀ ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ X₉ ≤ X₀ ∧ X₀+X₉ ≤ 2 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ X₈ ≤ X₁₀ ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 1 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 42+X₁₀ ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ X₇ ≤ 41+X₀ ∧ X₀+X₇ ≤ 43 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 42 ≤ X₁₀+X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 43 ≤ X₀+X₇ ∧ 41+X₀ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 41 ≤ X₁₀+X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 42 ≤ X₀+X₅ ∧ 40+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ X₄ ≤ 1+X₁₀ ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ X₃ ≤ X₁₀ ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ 40+X₁₀ ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 40 ≤ X₁₀+X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ 0 ≤ X₁₀ ∧ 40 ≤ X₁+X₁₀ ∧ X₁ ≤ 40+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ X₀ ≤ 1+X₁₀ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l8

Found invariant 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 40 ≤ X₂+X₅ ∧ X₂ ≤ 40+X₅ ∧ 40 ≤ X₁+X₅ ∧ X₁ ≤ 40+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l1

Found invariant X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ X₉ ≤ 1+X₁₁ ∧ X₁₁+X₉ ≤ 9 ∧ X₉ ≤ 1+X₁₀ ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ X₉ ≤ X₀ ∧ X₀+X₉ ≤ 2 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 7+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 8 ∧ X₈ ≤ X₁₀ ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 1 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 8+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 42+X₁₁ ∧ X₁₁+X₇ ≤ 50 ∧ X₇ ≤ 42+X₁₀ ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ X₇ ≤ 41+X₀ ∧ X₀+X₇ ≤ 43 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 42 ≤ X₁₁+X₇ ∧ 34+X₁₁ ≤ X₇ ∧ 42 ≤ X₁₀+X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 43 ≤ X₀+X₇ ∧ 41+X₀ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 41 ≤ X₁₁+X₅ ∧ 33+X₁₁ ≤ X₅ ∧ 41 ≤ X₁₀+X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 42 ≤ X₀+X₅ ∧ 40+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ X₄ ≤ 1+X₁₁ ∧ X₁₁+X₄ ≤ 9 ∧ X₄ ≤ 1+X₁₀ ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ X₁₁ ≤ 7+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ X₃ ≤ X₁₁ ∧ X₁₁+X₃ ≤ 8 ∧ X₃ ≤ X₁₀ ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ 8+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ 40+X₁₁ ∧ X₁₁+X₂ ≤ 48 ∧ X₂ ≤ 40+X₁₀ ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 40 ≤ X₁₁+X₂ ∧ 32+X₁₁ ≤ X₂ ∧ 40 ≤ X₁₀+X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ X₁₁ ≤ 8 ∧ X₁₁ ≤ 8+X₁₀ ∧ 32+X₁₁ ≤ X₁ ∧ X₁+X₁₁ ≤ 48 ∧ X₁₁ ≤ 7+X₀ ∧ X₀+X₁₁ ≤ 9 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 40 ≤ X₁+X₁₁ ∧ X₁ ≤ 40+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ X₀ ≤ 1+X₁₁ ∧ 0 ≤ X₁₀ ∧ 40 ≤ X₁+X₁₀ ∧ X₁ ≤ 40+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ X₀ ≤ 1+X₁₀ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l10

Found invariant X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ 42+X₉ ≤ X₁₀ ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 44 ≤ X₁₀+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ 43+X₈ ≤ X₁₀ ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 43 ≤ X₁₀+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 85 ≤ X₁₀+X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 84 ≤ X₁₀+X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 42+X₄ ≤ X₁₀ ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 44 ≤ X₁₀+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 43+X₃ ≤ X₁₀ ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 43 ≤ X₁₀+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ 3+X₂ ≤ X₁₀ ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 83 ≤ X₁₀+X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 43 ≤ X₁₀ ∧ 83 ≤ X₁+X₁₀ ∧ 3+X₁ ≤ X₁₀ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁ for location l4

Found invariant X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁ for location l9

Found invariant X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ X₉ ≤ X₁₀ ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ 1+X₈ ≤ X₁₀ ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 41+X₁₀ ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 43 ≤ X₁₀+X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 42 ≤ X₁₀+X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ X₄ ≤ X₁₀ ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 1+X₃ ≤ X₁₀ ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ 39+X₁₀ ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 41 ≤ X₁₀+X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 41 ≤ X₁+X₁₀ ∧ X₁ ≤ 39+X₁₀ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁ for location l3

Cut unsatisfiable transition t₇₂: l2→l6

Cut unsatisfiable transition t₇₃: l2→l6

Cut unsatisfiable transition t₇₄: l3→l3

Cut unsatisfiable transition t₇₇: l3→l4

Cut unsatisfiable transition t₈₀: l6→l6

Cut unsatisfiable transition t₈₃: l6→l7

Cut unsatisfiable transition t₉₀: l9→l3

Cut unsatisfiable transition t₉₁: l9→l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₆₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(1, 40, 40, 0, 1, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₆₅: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, 40, 40, 0, 1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀+1 ≤ 0
t₆₆: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, 40, 40, 0, 1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₀
t₆₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 256 ≤ X₅ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 40 ≤ X₂+X₅ ∧ X₂ ≤ 40+X₅ ∧ 40 ≤ X₁+X₅ ∧ X₁ ≤ 40+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₆₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ ≤ 255 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 40 ≤ X₂+X₅ ∧ X₂ ≤ 40+X₅ ∧ 40 ≤ X₁+X₅ ∧ X₁ ≤ 40+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₆₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁+1) :|: X₁₁ ≤ 7 ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ X₉ ≤ 1+X₁₁ ∧ X₁₁+X₉ ≤ 9 ∧ X₉ ≤ 1+X₁₀ ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ X₉ ≤ X₀ ∧ X₀+X₉ ≤ 2 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 7+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 8 ∧ X₈ ≤ X₁₀ ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 1 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 8+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 42+X₁₁ ∧ X₁₁+X₇ ≤ 50 ∧ X₇ ≤ 42+X₁₀ ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ X₇ ≤ 41+X₀ ∧ X₀+X₇ ≤ 43 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 42 ≤ X₁₁+X₇ ∧ 34+X₁₁ ≤ X₇ ∧ 42 ≤ X₁₀+X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 43 ≤ X₀+X₇ ∧ 41+X₀ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 41 ≤ X₁₁+X₅ ∧ 33+X₁₁ ≤ X₅ ∧ 41 ≤ X₁₀+X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 42 ≤ X₀+X₅ ∧ 40+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ X₄ ≤ 1+X₁₁ ∧ X₁₁+X₄ ≤ 9 ∧ X₄ ≤ 1+X₁₀ ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ X₁₁ ≤ 7+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ X₃ ≤ X₁₁ ∧ X₁₁+X₃ ≤ 8 ∧ X₃ ≤ X₁₀ ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ 8+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ 40+X₁₁ ∧ X₁₁+X₂ ≤ 48 ∧ X₂ ≤ 40+X₁₀ ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 40 ≤ X₁₁+X₂ ∧ 32+X₁₁ ≤ X₂ ∧ 40 ≤ X₁₀+X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ X₁₁ ≤ 8 ∧ X₁₁ ≤ 8+X₁₀ ∧ 32+X₁₁ ≤ X₁ ∧ X₁+X₁₁ ≤ 48 ∧ X₁₁ ≤ 7+X₀ ∧ X₀+X₁₁ ≤ 9 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 40 ≤ X₁+X₁₁ ∧ X₁ ≤ 40+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ X₀ ≤ 1+X₁₁ ∧ 0 ≤ X₁₀ ∧ 40 ≤ X₁+X₁₀ ∧ X₁ ≤ 40+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ X₀ ≤ 1+X₁₀ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₇₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: 8 ≤ X₁₁ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ X₉ ≤ 1+X₁₁ ∧ X₁₁+X₉ ≤ 9 ∧ X₉ ≤ 1+X₁₀ ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ X₉ ≤ X₀ ∧ X₀+X₉ ≤ 2 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 7+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 8 ∧ X₈ ≤ X₁₀ ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 1 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 8+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 42+X₁₁ ∧ X₁₁+X₇ ≤ 50 ∧ X₇ ≤ 42+X₁₀ ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ X₇ ≤ 41+X₀ ∧ X₀+X₇ ≤ 43 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 42 ≤ X₁₁+X₇ ∧ 34+X₁₁ ≤ X₇ ∧ 42 ≤ X₁₀+X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 43 ≤ X₀+X₇ ∧ 41+X₀ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 41 ≤ X₁₁+X₅ ∧ 33+X₁₁ ≤ X₅ ∧ 41 ≤ X₁₀+X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 42 ≤ X₀+X₅ ∧ 40+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ X₄ ≤ 1+X₁₁ ∧ X₁₁+X₄ ≤ 9 ∧ X₄ ≤ 1+X₁₀ ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ X₁₁ ≤ 7+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ X₃ ≤ X₁₁ ∧ X₁₁+X₃ ≤ 8 ∧ X₃ ≤ X₁₀ ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ 8+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ 40+X₁₁ ∧ X₁₁+X₂ ≤ 48 ∧ X₂ ≤ 40+X₁₀ ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 40 ≤ X₁₁+X₂ ∧ 32+X₁₁ ≤ X₂ ∧ 40 ≤ X₁₀+X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ X₁₁ ≤ 8 ∧ X₁₁ ≤ 8+X₁₀ ∧ 32+X₁₁ ≤ X₁ ∧ X₁+X₁₁ ≤ 48 ∧ X₁₁ ≤ 7+X₀ ∧ X₀+X₁₁ ≤ 9 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 40 ≤ X₁+X₁₁ ∧ X₁ ≤ 40+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ X₀ ≤ 1+X₁₁ ∧ 0 ≤ X₁₀ ∧ 40 ≤ X₁+X₁₀ ∧ X₁ ≤ 40+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ X₀ ≤ 1+X₁₀ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₇₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁
t₇₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: 0 ≤ X₉ ∧ X₁₀ ≤ X₇ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ X₉ ≤ X₁₀ ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ 1+X₈ ≤ X₁₀ ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 41+X₁₀ ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 43 ≤ X₁₀+X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 42 ≤ X₁₀+X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ X₄ ≤ X₁₀ ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 1+X₃ ≤ X₁₀ ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ 39+X₁₀ ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 41 ≤ X₁₀+X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 41 ≤ X₁+X₁₀ ∧ X₁ ≤ 39+X₁₀ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁
t₇₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ X₉ ∧ 1+X₇ ≤ X₁₀ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ X₉ ≤ X₁₀ ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ 1+X₈ ≤ X₁₀ ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 41+X₁₀ ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 43 ≤ X₁₀+X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 42 ≤ X₁₀+X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ X₄ ≤ X₁₀ ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 1+X₃ ≤ X₁₀ ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ 39+X₁₀ ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 41 ≤ X₁₀+X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 41 ≤ X₁+X₁₀ ∧ X₁ ≤ 39+X₁₀ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁
t₇₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 8 ≤ X₆ ∧ X₆ ≤ 8 ∧ X₆ ≤ 8+X₅ ∧ X₆ ≤ 7+X₄ ∧ X₄+X₆ ≤ 9 ∧ X₆ ≤ 8+X₃ ∧ X₃+X₆ ≤ 8 ∧ 32+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 48 ∧ 32+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 48 ∧ X₆ ≤ 7+X₀ ∧ X₀+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 40 ≤ X₂+X₆ ∧ X₂ ≤ 40+X₆ ∧ 40 ≤ X₁+X₆ ∧ X₁ ≤ 40+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 40 ≤ X₂+X₅ ∧ X₂ ≤ 40+X₅ ∧ 40 ≤ X₁+X₅ ∧ X₁ ≤ 40+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₇₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 7 ∧ X₆ ≤ 8 ∧ X₆ ≤ 8+X₅ ∧ X₆ ≤ 7+X₄ ∧ X₄+X₆ ≤ 9 ∧ X₆ ≤ 8+X₃ ∧ X₃+X₆ ≤ 8 ∧ 32+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 48 ∧ 32+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 48 ∧ X₆ ≤ 7+X₀ ∧ X₀+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 40 ≤ X₂+X₆ ∧ X₂ ≤ 40+X₆ ∧ 40 ≤ X₁+X₆ ∧ X₁ ≤ 40+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 40 ≤ X₂+X₅ ∧ X₂ ≤ 40+X₅ ∧ 40 ≤ X₁+X₅ ∧ X₁ ≤ 40+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₈₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ X₄ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 41 ≤ X₂+X₅ ∧ X₂ ≤ 39+X₅ ∧ 41 ≤ X₁+X₅ ∧ X₁ ≤ 39+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁
t₈₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ X₄ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 41 ≤ X₂+X₅ ∧ X₂ ≤ 39+X₅ ∧ 41 ≤ X₁+X₅ ∧ X₁ ≤ 39+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁
t₈₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(1, X₁, X₂, X₃, X₄, X₅, X₆, X₁+2, 0, 1, 0, X₁₁) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁
t₈₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁+2, 0, 1, X₁₀, X₁₁) :|: X₀+1 ≤ 0 ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁
t₈₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁+2, 0, 1, X₁₀, X₁₁) :|: 1 ≤ X₀ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁
t₈₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0) :|: X₁₀ ≤ 255 ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ X₉ ≤ 1+X₁₀ ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ X₉ ≤ X₀ ∧ X₀+X₉ ≤ 2 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ X₈ ≤ X₁₀ ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 1 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 42+X₁₀ ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ X₇ ≤ 41+X₀ ∧ X₀+X₇ ≤ 43 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 42 ≤ X₁₀+X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 43 ≤ X₀+X₇ ∧ 41+X₀ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 41 ≤ X₁₀+X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 42 ≤ X₀+X₅ ∧ 40+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ X₄ ≤ 1+X₁₀ ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ X₃ ≤ X₁₀ ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ 40+X₁₀ ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 40 ≤ X₁₀+X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ 0 ≤ X₁₀ ∧ 40 ≤ X₁+X₁₀ ∧ X₁ ≤ 40+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ X₀ ≤ 1+X₁₀ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₈₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 256 ≤ X₁₀ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ X₉ ≤ 1+X₁₀ ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ X₉ ≤ X₀ ∧ X₀+X₉ ≤ 2 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ X₈ ≤ X₁₀ ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 1 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 42+X₁₀ ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ X₇ ≤ 41+X₀ ∧ X₀+X₇ ≤ 43 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 42 ≤ X₁₀+X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 43 ≤ X₀+X₇ ∧ 41+X₀ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 41 ≤ X₁₀+X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 42 ≤ X₀+X₅ ∧ 40+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ X₄ ≤ 1+X₁₀ ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ X₃ ≤ X₁₀ ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ 40+X₁₀ ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 40 ≤ X₁₀+X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ 0 ≤ X₁₀ ∧ 40 ≤ X₁+X₁₀ ∧ X₁ ≤ 40+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ X₀ ≤ 1+X₁₀ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₈₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁) :|: 0 ≤ X₈ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁

MPRF for transition t₆₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ ≤ 255 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 40 ≤ X₂+X₅ ∧ X₂ ≤ 40+X₅ ∧ 40 ≤ X₁+X₅ ∧ X₁ ≤ 40+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:

new bound:

256 {O(1)}

TWN: t₇₉: l5→l5

cycle: [t₇₉: l5→l5]
loop: (X₆ ≤ 7,(X₆) -> (X₆+1)
order: [X₆]
closed-form:
X₆: X₆ + [[n != 0]] * n^1

Termination: true
Formula:

1 < 0
∨ X₆ < 7 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₆ ≤ 7 ∧ 7 ≤ X₆

Stabilization-Threshold for: X₆ ≤ 7
alphas_abs: X₆+7
M: 0
N: 1
Bound: 2⋅X₆+16 {O(n)}

TWN - Lifting for t₇₉: l5→l5 of 2⋅X₆+18 {O(n)}

relevant size-bounds w.r.t. t₆₈:
X₆: 0 {O(1)}
Runtime-bound of t₆₈: 256 {O(1)}
Results in: 4608 {O(1)}

knowledge_propagation leads to new time bound 4608 {O(1)} for transition t₇₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 8 ≤ X₆ ∧ X₆ ≤ 8 ∧ X₆ ≤ 8+X₅ ∧ X₆ ≤ 7+X₄ ∧ X₄+X₆ ≤ 9 ∧ X₆ ≤ 8+X₃ ∧ X₃+X₆ ≤ 8 ∧ 32+X₆ ≤ X₂ ∧ X₂+X₆ ≤ 48 ∧ 32+X₆ ≤ X₁ ∧ X₁+X₆ ≤ 48 ∧ X₆ ≤ 7+X₀ ∧ X₀+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 40 ≤ X₂+X₆ ∧ X₂ ≤ 40+X₆ ∧ 40 ≤ X₁+X₆ ∧ X₁ ≤ 40+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 1+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 40 ≤ X₂+X₅ ∧ X₂ ≤ 40+X₅ ∧ 40 ≤ X₁+X₅ ∧ X₁ ≤ 40+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀

MPRF for transition t₈₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ X₄ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 41 ≤ X₂+X₅ ∧ X₂ ≤ 39+X₅ ∧ 41 ≤ X₁+X₅ ∧ X₁ ≤ 39+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁ of depth 1:

new bound:

42 {O(1)}

MPRF for transition t₈₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0) :|: X₁₀ ≤ 255 ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ X₉ ≤ 1+X₁₀ ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ X₉ ≤ X₀ ∧ X₀+X₉ ≤ 2 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ X₈ ≤ X₁₀ ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 1 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 42+X₁₀ ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ X₇ ≤ 41+X₀ ∧ X₀+X₇ ≤ 43 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 42 ≤ X₁₀+X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 43 ≤ X₀+X₇ ∧ 41+X₀ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 41 ≤ X₁₀+X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 42 ≤ X₀+X₅ ∧ 40+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ X₄ ≤ 1+X₁₀ ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ X₃ ≤ X₁₀ ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 1 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 0 ≤ X₁₀+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ 40+X₁₀ ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ X₂ ≤ 39+X₀ ∧ X₀+X₂ ≤ 41 ∧ 40 ≤ X₂ ∧ 40 ≤ X₁₀+X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 41 ≤ X₀+X₂ ∧ 39+X₀ ≤ X₂ ∧ 0 ≤ X₁₀ ∧ 40 ≤ X₁+X₁₀ ∧ X₁ ≤ 40+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ X₀ ≤ 1+X₁₀ ∧ X₁ ≤ 40 ∧ X₁ ≤ 39+X₀ ∧ X₀+X₁ ≤ 41 ∧ 40 ≤ X₁ ∧ 41 ≤ X₀+X₁ ∧ 39+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:

new bound:

256 {O(1)}

TWN: t₆₉: l10→l10

cycle: [t₆₉: l10→l10]
loop: (X₁₁ ≤ 7,(X₁₁) -> (X₁₁+1)
order: [X₁₁]
closed-form:
X₁₁: X₁₁ + [[n != 0]] * n^1

Termination: true
Formula:

1 < 0
∨ X₁₁ < 7 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₁ ≤ 7 ∧ 7 ≤ X₁₁

Stabilization-Threshold for: X₁₁ ≤ 7
alphas_abs: X₁₁+7
M: 0
N: 1
Bound: 2⋅X₁₁+16 {O(n)}

TWN - Lifting for t₆₉: l10→l10 of 2⋅X₁₁+18 {O(n)}

relevant size-bounds w.r.t. t₈₇:
X₁₁: 0 {O(1)}
Runtime-bound of t₈₇: 256 {O(1)}
Results in: 4608 {O(1)}

TWN: t₇₀: l10→l8

cycle: [t₇₀: l10→l8; t₈₇: l8→l10]
loop: (8 ≤ X₁₁ ∧ X₁₀ ≤ 254,(X₁₀,X₁₁) -> (1+X₁₀,0)
order: [X₁₀; X₁₁]
closed-form:
X₁₀: X₁₀ + [[n != 0]] * n^1
X₁₁: [[n == 0]] * X₁₁

Termination: true
Formula:

1 < 0 ∧ 8 < 0
∨ 1 < 0 ∧ 8 ≤ 0 ∧ 0 ≤ 8
∨ X₁₀ < 254 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 8 < 0
∨ X₁₀ < 254 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 8 ≤ 0 ∧ 0 ≤ 8
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₀ ≤ 254 ∧ 254 ≤ X₁₀ ∧ 8 < 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₀ ≤ 254 ∧ 254 ≤ X₁₀ ∧ 8 ≤ 0 ∧ 0 ≤ 8

Stabilization-Threshold for: X₁₀ ≤ 254
alphas_abs: 254+X₁₀
M: 0
N: 1
Bound: 2⋅X₁₀+510 {O(n)}
loop: (X₁₀ ≤ 255 ∧ 8 ≤ 0,(X₁₀) -> (X₁₀+1)
order: [X₁₀]
closed-form:
X₁₀: X₁₀ + [[n != 0]] * n^1

Termination: true
Formula:

8 < 0 ∧ 1 < 0
∨ 8 < 0 ∧ X₁₀ < 255 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 8 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₀ ≤ 255 ∧ 255 ≤ X₁₀
∨ 8 ≤ 0 ∧ 0 ≤ 8 ∧ 1 < 0
∨ 8 ≤ 0 ∧ 0 ≤ 8 ∧ X₁₀ < 255 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 8 ≤ 0 ∧ 0 ≤ 8 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁₀ ≤ 255 ∧ 255 ≤ X₁₀

Stabilization-Threshold for: X₁₀ ≤ 255
alphas_abs: X₁₀+255
M: 0
N: 1
Bound: 2⋅X₁₀+512 {O(n)}

TWN - Lifting for t₇₀: l10→l8 of 2⋅X₁₀+513 {O(n)}

relevant size-bounds w.r.t. t₆₉:
X₁₀: 255 {O(1)}
Runtime-bound of t₆₉: 4608 {O(1)}
Results in: 4713984 {O(1)}

TWN - Lifting for t₇₀: l10→l8 of 2⋅X₁₀+515 {O(n)}

relevant size-bounds w.r.t. t₈₄:
X₁₀: 0 {O(1)}
Runtime-bound of t₈₄: 1 {O(1)}
Results in: 515 {O(1)}

MPRF for transition t₇₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: 0 ≤ X₉ ∧ X₁₀ ≤ X₇ ∧ X₉ ≤ 1 ∧ X₉ ≤ 1+X₈ ∧ X₈+X₉ ≤ 1 ∧ 41+X₉ ≤ X₇ ∧ X₇+X₉ ≤ 43 ∧ 40+X₉ ≤ X₅ ∧ X₉ ≤ X₄ ∧ X₄+X₉ ≤ 2 ∧ X₉ ≤ 1+X₃ ∧ X₃+X₉ ≤ 1 ∧ 39+X₉ ≤ X₂ ∧ X₂+X₉ ≤ 41 ∧ X₉ ≤ X₁₀ ∧ 39+X₉ ≤ X₁ ∧ X₁+X₉ ≤ 41 ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 43 ≤ X₇+X₉ ∧ X₇ ≤ 41+X₉ ∧ 42 ≤ X₅+X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 41 ≤ X₂+X₉ ∧ X₂ ≤ 39+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 41 ≤ X₁+X₉ ∧ X₁ ≤ 39+X₉ ∧ X₈ ≤ 0 ∧ 42+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 42 ∧ 41+X₈ ≤ X₅ ∧ 1+X₈ ≤ X₄ ∧ X₄+X₈ ≤ 1 ∧ X₈ ≤ X₃ ∧ X₃+X₈ ≤ 0 ∧ 40+X₈ ≤ X₂ ∧ X₂+X₈ ≤ 40 ∧ 1+X₈ ≤ X₁₀ ∧ 40+X₈ ≤ X₁ ∧ X₁+X₈ ≤ 40 ∧ 0 ≤ X₈ ∧ 42 ≤ X₇+X₈ ∧ X₇ ≤ 42+X₈ ∧ 41 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ X₄ ≤ 1+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 40 ≤ X₂+X₈ ∧ X₂ ≤ 40+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 40 ≤ X₁+X₈ ∧ X₁ ≤ 40+X₈ ∧ X₇ ≤ 42 ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ 41+X₄ ∧ X₄+X₇ ≤ 43 ∧ X₇ ≤ 42+X₃ ∧ X₃+X₇ ≤ 42 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 82 ∧ X₇ ≤ 41+X₁₀ ∧ X₇ ≤ 2+X₁ ∧ X₁+X₇ ≤ 82 ∧ 42 ≤ X₇ ∧ 83 ≤ X₅+X₇ ∧ 43 ≤ X₄+X₇ ∧ 41+X₄ ≤ X₇ ∧ 42 ≤ X₃+X₇ ∧ 42+X₃ ≤ X₇ ∧ 82 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 43 ≤ X₁₀+X₇ ∧ 82 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 41 ≤ X₅ ∧ 42 ≤ X₄+X₅ ∧ 40+X₄ ≤ X₅ ∧ 41 ≤ X₃+X₅ ∧ 41+X₃ ≤ X₅ ∧ 81 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 42 ≤ X₁₀+X₅ ∧ 81 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 1 ∧ 39+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 41 ∧ X₄ ≤ X₁₀ ∧ 39+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 41 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 41 ≤ X₂+X₄ ∧ X₂ ≤ 39+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 41 ≤ X₁+X₄ ∧ X₁ ≤ 39+X₄ ∧ X₃ ≤ 0 ∧ 40+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 40 ∧ 1+X₃ ≤ X₁₀ ∧ 40+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 40 ∧ 0 ≤ X₃ ∧ 40 ≤ X₂+X₃ ∧ X₂ ≤ 40+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 40 ≤ X₁+X₃ ∧ X₁ ≤ 40+X₃ ∧ X₂ ≤ 40 ∧ X₂ ≤ 39+X₁₀ ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 80 ∧ 40 ≤ X₂ ∧ 41 ≤ X₁₀+X₂ ∧ 80 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁₀ ∧ 41 ≤ X₁+X₁₀ ∧ X₁ ≤ 39+X₁₀ ∧ X₁ ≤ 40 ∧ 40 ≤ X₁ of depth 1:

new bound:

85 {O(1)}

All Bounds

Timebounds

Overall timebound:4728974 {O(1)}
t₆₄: 1 {O(1)}
t₆₅: 1 {O(1)}
t₆₆: 1 {O(1)}
t₆₇: 1 {O(1)}
t₆₈: 256 {O(1)}
t₆₉: 4608 {O(1)}
t₇₀: 4714499 {O(1)}
t₇₁: 1 {O(1)}
t₇₅: 85 {O(1)}
t₇₆: 1 {O(1)}
t₇₈: 4608 {O(1)}
t₇₉: 4608 {O(1)}
t₈₁: 42 {O(1)}
t₈₂: 1 {O(1)}
t₈₄: 1 {O(1)}
t₈₅: 1 {O(1)}
t₈₆: 1 {O(1)}
t₈₇: 256 {O(1)}
t₈₈: 1 {O(1)}
t₈₉: 1 {O(1)}

Costbounds

Overall costbound: 4728974 {O(1)}
t₆₄: 1 {O(1)}
t₆₅: 1 {O(1)}
t₆₆: 1 {O(1)}
t₆₇: 1 {O(1)}
t₆₈: 256 {O(1)}
t₆₉: 4608 {O(1)}
t₇₀: 4714499 {O(1)}
t₇₁: 1 {O(1)}
t₇₅: 85 {O(1)}
t₇₆: 1 {O(1)}
t₇₈: 4608 {O(1)}
t₇₉: 4608 {O(1)}
t₈₁: 42 {O(1)}
t₈₂: 1 {O(1)}
t₈₄: 1 {O(1)}
t₈₅: 1 {O(1)}
t₈₆: 1 {O(1)}
t₈₇: 256 {O(1)}
t₈₈: 1 {O(1)}
t₈₉: 1 {O(1)}

Sizebounds

t₆₄, X₀: 1 {O(1)}
t₆₄, X₁: 40 {O(1)}
t₆₄, X₂: 40 {O(1)}
t₆₄, X₃: 0 {O(1)}
t₆₄, X₄: 1 {O(1)}
t₆₄, X₅: 0 {O(1)}
t₆₄, X₆: X₆ {O(n)}
t₆₄, X₇: X₇ {O(n)}
t₆₄, X₈: X₈ {O(n)}
t₆₄, X₉: X₉ {O(n)}
t₆₄, X₁₀: X₁₀ {O(n)}
t₆₄, X₁₁: X₁₁ {O(n)}
t₆₅, X₀: X₀ {O(n)}
t₆₅, X₁: 40 {O(1)}
t₆₅, X₂: 40 {O(1)}
t₆₅, X₃: 0 {O(1)}
t₆₅, X₄: 1 {O(1)}
t₆₅, X₅: X₅ {O(n)}
t₆₅, X₆: X₆ {O(n)}
t₆₅, X₇: X₇ {O(n)}
t₆₅, X₈: X₈ {O(n)}
t₆₅, X₉: X₉ {O(n)}
t₆₅, X₁₀: X₁₀ {O(n)}
t₆₅, X₁₁: X₁₁ {O(n)}
t₆₆, X₀: X₀ {O(n)}
t₆₆, X₁: 40 {O(1)}
t₆₆, X₂: 40 {O(1)}
t₆₆, X₃: 0 {O(1)}
t₆₆, X₄: 1 {O(1)}
t₆₆, X₅: X₅ {O(n)}
t₆₆, X₆: X₆ {O(n)}
t₆₆, X₇: X₇ {O(n)}
t₆₆, X₈: X₈ {O(n)}
t₆₆, X₉: X₉ {O(n)}
t₆₆, X₁₀: X₁₀ {O(n)}
t₆₆, X₁₁: X₁₁ {O(n)}
t₆₇, X₀: 1 {O(1)}
t₆₇, X₁: 40 {O(1)}
t₆₇, X₂: 40 {O(1)}
t₆₇, X₃: 0 {O(1)}
t₆₇, X₄: 1 {O(1)}
t₆₇, X₅: 256 {O(1)}
t₆₇, X₆: 8 {O(1)}
t₆₇, X₇: X₇ {O(n)}
t₆₇, X₈: X₈ {O(n)}
t₆₇, X₉: X₉ {O(n)}
t₆₇, X₁₀: X₁₀ {O(n)}
t₆₇, X₁₁: X₁₁ {O(n)}
t₆₈, X₀: 1 {O(1)}
t₆₈, X₁: 40 {O(1)}
t₆₈, X₂: 40 {O(1)}
t₆₈, X₃: 0 {O(1)}
t₆₈, X₄: 1 {O(1)}
t₆₈, X₅: 255 {O(1)}
t₆₈, X₆: 0 {O(1)}
t₆₈, X₇: X₇ {O(n)}
t₆₈, X₈: X₈ {O(n)}
t₆₈, X₉: X₉ {O(n)}
t₆₈, X₁₀: X₁₀ {O(n)}
t₆₈, X₁₁: X₁₁ {O(n)}
t₆₉, X₀: 1 {O(1)}
t₆₉, X₁: 40 {O(1)}
t₆₉, X₂: 40 {O(1)}
t₆₉, X₃: 0 {O(1)}
t₆₉, X₄: 1 {O(1)}
t₆₉, X₅: 41 {O(1)}
t₆₉, X₆: 2⋅X₆+8 {O(n)}
t₆₉, X₇: 42 {O(1)}
t₆₉, X₈: 0 {O(1)}
t₆₉, X₉: 1 {O(1)}
t₆₉, X₁₀: 255 {O(1)}
t₆₉, X₁₁: 8 {O(1)}
t₇₀, X₀: 1 {O(1)}
t₇₀, X₁: 40 {O(1)}
t₇₀, X₂: 40 {O(1)}
t₇₀, X₃: 0 {O(1)}
t₇₀, X₄: 1 {O(1)}
t₇₀, X₅: 41 {O(1)}
t₇₀, X₆: 2⋅X₆+8 {O(n)}
t₇₀, X₇: 42 {O(1)}
t₇₀, X₈: 0 {O(1)}
t₇₀, X₉: 1 {O(1)}
t₇₀, X₁₀: 256 {O(1)}
t₇₀, X₁₁: 8 {O(1)}
t₇₁, X₀: 2⋅X₀+1 {O(n)}
t₇₁, X₁: 40 {O(1)}
t₇₁, X₂: 40 {O(1)}
t₇₁, X₃: 0 {O(1)}
t₇₁, X₄: 1 {O(1)}
t₇₁, X₅: 1 {O(1)}
t₇₁, X₆: 2⋅X₆+8 {O(n)}
t₇₁, X₇: 3⋅X₇ {O(n)}
t₇₁, X₈: 3⋅X₈ {O(n)}
t₇₁, X₉: 3⋅X₉ {O(n)}
t₇₁, X₁₀: 3⋅X₁₀ {O(n)}
t₇₁, X₁₁: 3⋅X₁₁ {O(n)}
t₇₅, X₀: 4⋅X₀+3 {O(n)}
t₇₅, X₁: 40 {O(1)}
t₇₅, X₂: 40 {O(1)}
t₇₅, X₃: 0 {O(1)}
t₇₅, X₄: 1 {O(1)}
t₇₅, X₅: 123 {O(1)}
t₇₅, X₆: 6⋅X₆+24 {O(n)}
t₇₅, X₇: 42 {O(1)}
t₇₅, X₈: 0 {O(1)}
t₇₅, X₉: 1 {O(1)}
t₇₅, X₁₀: 43 {O(1)}
t₇₅, X₁₁: 6⋅X₁₁+8 {O(n)}
t₇₆, X₀: 4⋅X₀+3 {O(n)}
t₇₆, X₁: 40 {O(1)}
t₇₆, X₂: 40 {O(1)}
t₇₆, X₃: 0 {O(1)}
t₇₆, X₄: 1 {O(1)}
t₇₆, X₅: 123 {O(1)}
t₇₆, X₆: 6⋅X₆+24 {O(n)}
t₇₆, X₇: 42 {O(1)}
t₇₆, X₈: 0 {O(1)}
t₇₆, X₉: 1 {O(1)}
t₇₆, X₁₀: 43 {O(1)}
t₇₆, X₁₁: 6⋅X₁₁+8 {O(n)}
t₇₈, X₀: 1 {O(1)}
t₇₈, X₁: 40 {O(1)}
t₇₈, X₂: 40 {O(1)}
t₇₈, X₃: 0 {O(1)}
t₇₈, X₄: 1 {O(1)}
t₇₈, X₅: 256 {O(1)}
t₇₈, X₆: 8 {O(1)}
t₇₈, X₇: X₇ {O(n)}
t₇₈, X₈: X₈ {O(n)}
t₇₈, X₉: X₉ {O(n)}
t₇₈, X₁₀: X₁₀ {O(n)}
t₇₈, X₁₁: X₁₁ {O(n)}
t₇₉, X₀: 1 {O(1)}
t₇₉, X₁: 40 {O(1)}
t₇₉, X₂: 40 {O(1)}
t₇₉, X₃: 0 {O(1)}
t₇₉, X₄: 1 {O(1)}
t₇₉, X₅: 255 {O(1)}
t₇₉, X₆: 8 {O(1)}
t₇₉, X₇: X₇ {O(n)}
t₇₉, X₈: X₈ {O(n)}
t₇₉, X₉: X₉ {O(n)}
t₇₉, X₁₀: X₁₀ {O(n)}
t₇₉, X₁₁: X₁₁ {O(n)}
t₈₁, X₀: 2⋅X₀+1 {O(n)}
t₈₁, X₁: 40 {O(1)}
t₈₁, X₂: 40 {O(1)}
t₈₁, X₃: 0 {O(1)}
t₈₁, X₄: 1 {O(1)}
t₈₁, X₅: 41 {O(1)}
t₈₁, X₆: 2⋅X₆+8 {O(n)}
t₈₁, X₇: 3⋅X₇ {O(n)}
t₈₁, X₈: 3⋅X₈ {O(n)}
t₈₁, X₉: 3⋅X₉ {O(n)}
t₈₁, X₁₀: 3⋅X₁₀ {O(n)}
t₈₁, X₁₁: 3⋅X₁₁ {O(n)}
t₈₂, X₀: 2⋅X₀+1 {O(n)}
t₈₂, X₁: 40 {O(1)}
t₈₂, X₂: 40 {O(1)}
t₈₂, X₃: 0 {O(1)}
t₈₂, X₄: 1 {O(1)}
t₈₂, X₅: 41 {O(1)}
t₈₂, X₆: 2⋅X₆+8 {O(n)}
t₈₂, X₇: 3⋅X₇ {O(n)}
t₈₂, X₈: 3⋅X₈ {O(n)}
t₈₂, X₉: 3⋅X₉ {O(n)}
t₈₂, X₁₀: 3⋅X₁₀ {O(n)}
t₈₂, X₁₁: 3⋅X₁₁ {O(n)}
t₈₄, X₀: 1 {O(1)}
t₈₄, X₁: 40 {O(1)}
t₈₄, X₂: 40 {O(1)}
t₈₄, X₃: 0 {O(1)}
t₈₄, X₄: 1 {O(1)}
t₈₄, X₅: 41 {O(1)}
t₈₄, X₆: 2⋅X₆+8 {O(n)}
t₈₄, X₇: 42 {O(1)}
t₈₄, X₈: 0 {O(1)}
t₈₄, X₉: 1 {O(1)}
t₈₄, X₁₀: 0 {O(1)}
t₈₄, X₁₁: 3⋅X₁₁ {O(n)}
t₈₅, X₀: 2⋅X₀+1 {O(n)}
t₈₅, X₁: 40 {O(1)}
t₈₅, X₂: 40 {O(1)}
t₈₅, X₃: 0 {O(1)}
t₈₅, X₄: 1 {O(1)}
t₈₅, X₅: 41 {O(1)}
t₈₅, X₆: 2⋅X₆+8 {O(n)}
t₈₅, X₇: 42 {O(1)}
t₈₅, X₈: 0 {O(1)}
t₈₅, X₉: 1 {O(1)}
t₈₅, X₁₀: 3⋅X₁₀ {O(n)}
t₈₅, X₁₁: 3⋅X₁₁ {O(n)}
t₈₆, X₀: 2⋅X₀+1 {O(n)}
t₈₆, X₁: 40 {O(1)}
t₈₆, X₂: 40 {O(1)}
t₈₆, X₃: 0 {O(1)}
t₈₆, X₄: 1 {O(1)}
t₈₆, X₅: 41 {O(1)}
t₈₆, X₆: 2⋅X₆+8 {O(n)}
t₈₆, X₇: 42 {O(1)}
t₈₆, X₈: 0 {O(1)}
t₈₆, X₉: 1 {O(1)}
t₈₆, X₁₀: 3⋅X₁₀ {O(n)}
t₈₆, X₁₁: 3⋅X₁₁ {O(n)}
t₈₇, X₀: 1 {O(1)}
t₈₇, X₁: 40 {O(1)}
t₈₇, X₂: 40 {O(1)}
t₈₇, X₃: 0 {O(1)}
t₈₇, X₄: 1 {O(1)}
t₈₇, X₅: 41 {O(1)}
t₈₇, X₆: 2⋅X₆+8 {O(n)}
t₈₇, X₇: 42 {O(1)}
t₈₇, X₈: 0 {O(1)}
t₈₇, X₉: 1 {O(1)}
t₈₇, X₁₀: 255 {O(1)}
t₈₇, X₁₁: 0 {O(1)}
t₈₈, X₀: 1 {O(1)}
t₈₈, X₁: 40 {O(1)}
t₈₈, X₂: 40 {O(1)}
t₈₈, X₃: 0 {O(1)}
t₈₈, X₄: 1 {O(1)}
t₈₈, X₅: 41 {O(1)}
t₈₈, X₆: 2⋅X₆+8 {O(n)}
t₈₈, X₇: 42 {O(1)}
t₈₈, X₈: 0 {O(1)}
t₈₈, X₉: 1 {O(1)}
t₈₈, X₁₀: 256 {O(1)}
t₈₈, X₁₁: 8 {O(1)}
t₈₉, X₀: 4⋅X₀+3 {O(n)}
t₈₉, X₁: 40 {O(1)}
t₈₉, X₂: 40 {O(1)}
t₈₉, X₃: 0 {O(1)}
t₈₉, X₄: 1 {O(1)}
t₈₉, X₅: 123 {O(1)}
t₈₉, X₆: 6⋅X₆+24 {O(n)}
t₈₉, X₇: 42 {O(1)}
t₈₉, X₈: 0 {O(1)}
t₈₉, X₉: 1 {O(1)}
t₈₉, X₁₀: 1 {O(1)}
t₈₉, X₁₁: 6⋅X₁₁+8 {O(n)}