Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃)
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀
t₅: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁+1
t₁₅: l10(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, 2⋅X₂+2)
t₁₆: l11(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃)
t₁₇: l11(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₀, X₃)
t₁₈: l12(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃, X₃)
t₂: l13(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2
t₁: l13(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 3 ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁
t₇: l2(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₁+3+2⋅X₂ ≤ X₀
t₁₉: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃)
t₆: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, 0, X₃)
t₂₀: l5(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃)
t₃: l6(X₀, X₁, X₂, X₃) → l1(X₀, 0, X₂, X₃)
t₁₃: l7(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃)
t₁₂: l7(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₁₄: l8(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, 2⋅X₂+1)
t₁₀: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₁+4+2⋅X₂ ≤ X₀
t₁₁: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁
t₉: l9(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀

Preprocessing

Cut unsatisfiable transition t₁₁: l9→l7

Found invariant 0 ≤ X₁ for location l11

Found invariant 0 ≤ X₁ for location l2

Found invariant 3 ≤ X₀ for location l6

Found invariant 0 ≤ X₁ for location l12

Found invariant 0 ≤ X₁ for location l7

Found invariant 0 ≤ X₁ for location l8

Found invariant 0 ≤ X₁ for location l1

Found invariant 0 ≤ X₁ for location l10

Found invariant 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l4

Found invariant 0 ≤ X₁ for location l9

Found invariant 0 ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃)
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁
t₅: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁+1 ∧ 0 ≤ X₁
t₁₅: l10(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, 2⋅X₂+2) :|: 0 ≤ X₁
t₁₆: l11(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁
t₁₇: l11(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₀, X₃) :|: 0 ≤ X₁
t₁₈: l12(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃, X₃) :|: 0 ≤ X₁
t₂: l13(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2
t₁: l13(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 3 ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₁
t₇: l2(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₁
t₁₉: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: 0 ≤ X₁
t₆: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, 0, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₂₀: l5(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃)
t₃: l6(X₀, X₁, X₂, X₃) → l1(X₀, 0, X₂, X₃) :|: 3 ≤ X₀
t₁₃: l7(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁
t₁₂: l7(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁
t₁₄: l8(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, 2⋅X₂+1) :|: 0 ≤ X₁
t₁₀: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₁
t₉: l9(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀ ∧ 0 ≤ X₁

Solv. Size Bound: t₇: l2→l9 for X₁

Solv. Size Bound: t₇: l2→l9 for X₂

cycle: [t₁₇: l11→l2; t₁₅: l10→l11; t₁₃: l7→l10; t₁₀: l9→l7; t₇: l2→l9]
loop: (X₁+3+2⋅X₂ ≤ X₀ ∧ X₁+4+X₀ ≤ 0,(X₀,X₂) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: inf {Infinity}

Solv. Size Bound - Lifting for t₇: l2→l9 and X₂: 6⋅X₀ {O(n)}

Solv. Size Bound: t₉: l9→l8 for X₁

Solv. Size Bound: t₉: l9→l8 for X₂

cycle: [t₇: l2→l9; t₁₇: l11→l2; t₁₄: l8→l11; t₉: l9→l8]
loop: (X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀ ∧ X₁+3+2⋅X₂ ≤ X₀,(X₀,X₂) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: inf {Infinity}

Solv. Size Bound - Lifting for t₉: l9→l8 and X₂: 8⋅X₀ {O(n)}

Solv. Size Bound: t₁₀: l9→l7 for X₁

Solv. Size Bound: t₁₀: l9→l7 for X₂

cycle: [t₇: l2→l9; t₁₇: l11→l2; t₁₄: l8→l11; t₁₂: l7→l8; t₁₀: l9→l7]
loop: (X₁+4+2⋅X₂ ≤ X₀ ∧ X₁+3+2⋅X₂ ≤ X₀,(X₀,X₂) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: inf {Infinity}

Solv. Size Bound - Lifting for t₁₀: l9→l7 and X₂: 8⋅X₀ {O(n)}

Solv. Size Bound: t₁₂: l7→l8 for X₁

Solv. Size Bound: t₁₂: l7→l8 for X₂

cycle: [t₁₀: l9→l7; t₇: l2→l9; t₁₇: l11→l2; t₁₄: l8→l11; t₁₂: l7→l8]
loop: (X₁+4+2⋅X₂ ≤ X₀ ∧ X₁+3+2⋅X₂ ≤ X₀,(X₀,X₂) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: inf {Infinity}

Solv. Size Bound - Lifting for t₁₂: l7→l8 and X₂: 8⋅X₀ {O(n)}

Solv. Size Bound: t₁₃: l7→l10 for X₁

Solv. Size Bound: t₁₃: l7→l10 for X₂

cycle: [t₁₀: l9→l7; t₇: l2→l9; t₁₇: l11→l2; t₁₅: l10→l11; t₁₃: l7→l10]
loop: (X₁+4+2⋅X₂ ≤ X₀ ∧ X₁+3+2⋅X₂ ≤ X₀,(X₀,X₂) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: inf {Infinity}

Solv. Size Bound - Lifting for t₁₃: l7→l10 and X₂: 6⋅X₀ {O(n)}

Solv. Size Bound: t₁₄: l8→l11 for X₁

Solv. Size Bound: t₁₄: l8→l11 for X₂

cycle: [t₁₂: l7→l8; t₁₀: l9→l7; t₇: l2→l9; t₁₇: l11→l2; t₁₄: l8→l11]
loop: (X₁+4+2⋅X₂ ≤ X₀ ∧ X₁+3+2⋅X₂ ≤ X₀,(X₀,X₂) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: inf {Infinity}

Solv. Size Bound - Lifting for t₁₄: l8→l11 and X₂: 8⋅X₀ {O(n)}

Solv. Size Bound: t₁₅: l10→l11 for X₁

Solv. Size Bound: t₁₅: l10→l11 for X₂

cycle: [t₁₃: l7→l10; t₁₀: l9→l7; t₇: l2→l9; t₁₇: l11→l2; t₁₅: l10→l11]
loop: (X₁+4+2⋅X₂ ≤ X₀ ∧ X₁+3+2⋅X₂ ≤ X₀,(X₀,X₂) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: inf {Infinity}

Solv. Size Bound - Lifting for t₁₅: l10→l11 and X₂: 6⋅X₀ {O(n)}

MPRF for transition t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₆: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, 0, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₈: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₁ of depth 1:

new bound:

2⋅X₀+3 {O(n)}

MPRF for transition t₁₉: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: 0 ≤ X₁ of depth 1:

new bound:

X₀+1 {O(n)}

Chain transitions t₃: l6→l1 and t₅: l1→l5 to t₅₂₅: l6→l5

Chain transitions t₁₉: l3→l1 and t₅: l1→l5 to t₅₂₆: l3→l5

Chain transitions t₁₉: l3→l1 and t₄: l1→l4 to t₅₂₇: l3→l4

Chain transitions t₃: l6→l1 and t₄: l1→l4 to t₅₂₈: l6→l4

Chain transitions t₁₃: l7→l10 and t₁₅: l10→l11 to t₅₂₉: l7→l11

Chain transitions t₁₄: l8→l11 and t₁₇: l11→l2 to t₅₃₀: l8→l2

Chain transitions t₅₂₉: l7→l11 and t₁₇: l11→l2 to t₅₃₁: l7→l2

Chain transitions t₅₂₉: l7→l11 and t₁₆: l11→l12 to t₅₃₂: l7→l12

Chain transitions t₁₄: l8→l11 and t₁₆: l11→l12 to t₅₃₃: l8→l12

Chain transitions t₅₃₃: l8→l12 and t₁₈: l12→l2 to t₅₃₄: l8→l2

Chain transitions t₅₃₂: l7→l12 and t₁₈: l12→l2 to t₅₃₅: l7→l2

Chain transitions t₅₃₄: l8→l2 and t₇: l2→l9 to t₅₃₆: l8→l9

Chain transitions t₅₃₀: l8→l2 and t₇: l2→l9 to t₅₃₇: l8→l9

Chain transitions t₅₃₀: l8→l2 and t₈: l2→l3 to t₅₃₈: l8→l3

Chain transitions t₅₃₄: l8→l2 and t₈: l2→l3 to t₅₃₉: l8→l3

Chain transitions t₅₃₅: l7→l2 and t₈: l2→l3 to t₅₄₀: l7→l3

Chain transitions t₅₃₅: l7→l2 and t₇: l2→l9 to t₅₄₁: l7→l9

Chain transitions t₅₃₁: l7→l2 and t₈: l2→l3 to t₅₄₂: l7→l3

Chain transitions t₅₃₁: l7→l2 and t₇: l2→l9 to t₅₄₃: l7→l9

Chain transitions t₆: l4→l2 and t₈: l2→l3 to t₅₄₄: l4→l3

Chain transitions t₆: l4→l2 and t₇: l2→l9 to t₅₄₅: l4→l9

Chain transitions t₅₃₉: l8→l3 and t₅₂₆: l3→l5 to t₅₄₆: l8→l5

Chain transitions t₅₃₈: l8→l3 and t₅₂₆: l3→l5 to t₅₄₇: l8→l5

Chain transitions t₅₃₈: l8→l3 and t₅₂₇: l3→l4 to t₅₄₈: l8→l4

Chain transitions t₅₃₉: l8→l3 and t₅₂₇: l3→l4 to t₅₄₉: l8→l4

Chain transitions t₅₄₂: l7→l3 and t₅₂₇: l3→l4 to t₅₅₀: l7→l4

Chain transitions t₅₄₂: l7→l3 and t₅₂₆: l3→l5 to t₅₅₁: l7→l5

Chain transitions t₅₄₂: l7→l3 and t₁₉: l3→l1 to t₅₅₂: l7→l1

Chain transitions t₅₃₈: l8→l3 and t₁₉: l3→l1 to t₅₅₃: l8→l1

Chain transitions t₅₃₉: l8→l3 and t₁₉: l3→l1 to t₅₅₄: l8→l1

Chain transitions t₅₄₀: l7→l3 and t₁₉: l3→l1 to t₅₅₅: l7→l1

Chain transitions t₅₄₀: l7→l3 and t₅₂₇: l3→l4 to t₅₅₆: l7→l4

Chain transitions t₅₄₀: l7→l3 and t₅₂₆: l3→l5 to t₅₅₇: l7→l5

Chain transitions t₅₄₄: l4→l3 and t₁₉: l3→l1 to t₅₅₈: l4→l1

Chain transitions t₅₄₄: l4→l3 and t₅₂₇: l3→l4 to t₅₅₉: l4→l4

Chain transitions t₅₄₄: l4→l3 and t₅₂₆: l3→l5 to t₅₆₀: l4→l5

Chain transitions t₁₀: l9→l7 and t₅₄₃: l7→l9 to t₅₆₁: l9→l9

Chain transitions t₁₀: l9→l7 and t₅₄₁: l7→l9 to t₅₆₂: l9→l9

Chain transitions t₁₀: l9→l7 and t₁₂: l7→l8 to t₅₆₃: l9→l8

Chain transitions t₁₀: l9→l7 and t₅₅₇: l7→l5 to t₅₆₄: l9→l5

Chain transitions t₁₀: l9→l7 and t₅₅₁: l7→l5 to t₅₆₅: l9→l5

Chain transitions t₁₀: l9→l7 and t₅₅₆: l7→l4 to t₅₆₆: l9→l4

Chain transitions t₁₀: l9→l7 and t₅₅₀: l7→l4 to t₅₆₇: l9→l4

Chain transitions t₁₀: l9→l7 and t₅₄₂: l7→l3 to t₅₆₈: l9→l3

Chain transitions t₁₀: l9→l7 and t₅₄₀: l7→l3 to t₅₆₉: l9→l3

Chain transitions t₁₀: l9→l7 and t₅₃₅: l7→l2 to t₅₇₀: l9→l2

Chain transitions t₁₀: l9→l7 and t₅₃₁: l7→l2 to t₅₇₁: l9→l2

Chain transitions t₁₀: l9→l7 and t₅₃₂: l7→l12 to t₅₇₂: l9→l12

Chain transitions t₁₀: l9→l7 and t₅₂₉: l7→l11 to t₅₇₃: l9→l11

Chain transitions t₁₀: l9→l7 and t₁₃: l7→l10 to t₅₇₄: l9→l10

Chain transitions t₁₀: l9→l7 and t₅₅₅: l7→l1 to t₅₇₅: l9→l1

Chain transitions t₁₀: l9→l7 and t₅₅₂: l7→l1 to t₅₇₆: l9→l1

Chain transitions t₅₆₃: l9→l8 and t₅₃₇: l8→l9 to t₅₇₇: l9→l9

Chain transitions t₉: l9→l8 and t₅₃₇: l8→l9 to t₅₇₈: l9→l9

Chain transitions t₉: l9→l8 and t₅₃₆: l8→l9 to t₅₇₉: l9→l9

Chain transitions t₅₆₃: l9→l8 and t₅₃₆: l8→l9 to t₅₈₀: l9→l9

Chain transitions t₉: l9→l8 and t₅₄₇: l8→l5 to t₅₈₁: l9→l5

Chain transitions t₅₆₃: l9→l8 and t₅₄₇: l8→l5 to t₅₈₂: l9→l5

Chain transitions t₉: l9→l8 and t₅₄₆: l8→l5 to t₅₈₃: l9→l5

Chain transitions t₅₆₃: l9→l8 and t₅₄₆: l8→l5 to t₅₈₄: l9→l5

Chain transitions t₉: l9→l8 and t₅₄₉: l8→l4 to t₅₈₅: l9→l4

Chain transitions t₅₆₃: l9→l8 and t₅₄₉: l8→l4 to t₅₈₆: l9→l4

Chain transitions t₉: l9→l8 and t₅₄₈: l8→l4 to t₅₈₇: l9→l4

Chain transitions t₅₆₃: l9→l8 and t₅₄₈: l8→l4 to t₅₈₈: l9→l4

Chain transitions t₉: l9→l8 and t₅₃₉: l8→l3 to t₅₈₉: l9→l3

Chain transitions t₅₆₃: l9→l8 and t₅₃₉: l8→l3 to t₅₉₀: l9→l3

Chain transitions t₉: l9→l8 and t₅₃₈: l8→l3 to t₅₉₁: l9→l3

Chain transitions t₅₆₃: l9→l8 and t₅₃₈: l8→l3 to t₅₉₂: l9→l3

Chain transitions t₉: l9→l8 and t₅₃₄: l8→l2 to t₅₉₃: l9→l2

Chain transitions t₅₆₃: l9→l8 and t₅₃₄: l8→l2 to t₅₉₄: l9→l2

Chain transitions t₉: l9→l8 and t₅₃₀: l8→l2 to t₅₉₅: l9→l2

Chain transitions t₅₆₃: l9→l8 and t₅₃₀: l8→l2 to t₅₉₆: l9→l2

Chain transitions t₉: l9→l8 and t₅₃₃: l8→l12 to t₅₉₇: l9→l12

Chain transitions t₅₆₃: l9→l8 and t₅₃₃: l8→l12 to t₅₉₈: l9→l12

Chain transitions t₉: l9→l8 and t₁₄: l8→l11 to t₅₉₉: l9→l11

Chain transitions t₅₆₃: l9→l8 and t₁₄: l8→l11 to t₆₀₀: l9→l11

Chain transitions t₉: l9→l8 and t₅₅₄: l8→l1 to t₆₀₁: l9→l1

Chain transitions t₅₆₃: l9→l8 and t₅₅₄: l8→l1 to t₆₀₂: l9→l1

Chain transitions t₉: l9→l8 and t₅₅₃: l8→l1 to t₆₀₃: l9→l1

Chain transitions t₅₆₃: l9→l8 and t₅₅₃: l8→l1 to t₆₀₄: l9→l1

Analysing control-flow refined program

Cut unsatisfiable transition t₅₂₅: l6→l5

Cut unsatisfiable transition t₅₅₉: l4→l4

Cut unsatisfiable transition t₅₈₃: l9→l5

Cut unsatisfiable transition t₅₈₄: l9→l5

Eliminate variables {X₃} that do not contribute to the problem

Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l11

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l2

Found invariant 3 ≤ X₀ for location l6

Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l12

Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l7

Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l8

Found invariant 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l1

Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l10

Found invariant 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l4

Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l9

Found invariant 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l3

Cut unsatisfiable transition t₇₃₃: l9→l5

Cut unsatisfiable transition t₇₃₄: l9→l5

Cut unsatisfiable transition t₇₃₅: l9→l5

Cut unsatisfiable transition t₇₃₆: l9→l5

Cut unsatisfiable transition t₇₄₀: l9→l9

Cut unsatisfiable transition t₇₄₂: l9→l9

Cut unsatisfiable transition t₇₄₃: l9→l9

Cut unsatisfiable transition t₇₄₄: l9→l9

MPRF for transition t₆₉₈: l4(X₀, X₁, X₂) -{2}> l9(X₀, X₁, 0) :|: X₁+3 ≤ X₀ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

MPRF for transition t₇₂₇: l9(X₀, X₁, X₂) -{8}> l4(X₀, 1+X₁, 2+2⋅X₂) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ X₀ ≤ 6+4⋅X₂+X₁ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

MPRF for transition t₇₂₈: l9(X₀, X₁, X₂) -{7}> l4(X₀, 1+X₁, X₀) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₀+2+X₁ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

MPRF for transition t₇₂₉: l9(X₀, X₁, X₂) -{7}> l4(X₀, 1+X₁, 1+2⋅X₂) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀ ∧ X₀ ≤ 4+4⋅X₂+X₁ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

MPRF for transition t₇₃₀: l9(X₀, X₁, X₂) -{8}> l4(X₀, 1+X₁, 1+2⋅X₂) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ X₀ ≤ 4+4⋅X₂+X₁ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

MPRF for transition t₇₃₁: l9(X₀, X₁, X₂) -{6}> l4(X₀, 1+X₁, X₀) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀ ∧ 0 ≤ X₀+2+X₁ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

MPRF for transition t₇₃₂: l9(X₀, X₁, X₂) -{7}> l4(X₀, 1+X₁, X₀) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₀+2+X₁ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

MPRF for transition t₇₄₁: l9(X₀, X₁, X₂) -{6}> l9(X₀, X₁, 2+2⋅X₂) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ X₁+7+4⋅X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

42⋅X₀⋅X₀+193⋅X₀+222 {O(n^2)}

MPRF for transition t₇₄₅: l9(X₀, X₁, X₂) -{6}> l9(X₀, X₁, 1+2⋅X₂) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ X₁+5+4⋅X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

42⋅X₀⋅X₀+157⋅X₀+144 {O(n^2)}

Analysing control-flow refined program

Cut unsatisfiable transition t₁₁₆₅: n_l2___13→l3

Cut unsatisfiable transition t₁₁₆₆: n_l2___14→l3

Cut unsatisfiable transition t₁₁₆₉: n_l2___6→l3

Found invariant 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l8___17

Found invariant 5+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 8+X₂+X₃ ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 5+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 8+X₀+X₃ ≤ 0 ∧ 3+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 3+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 6+X₀+X₂ ≤ 0 ∧ 0 ≤ 3+X₁+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l2___6

Found invariant X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l11___36

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l9___41

Found invariant 3 ≤ X₀ for location l6

Found invariant 6+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 10+X₂+X₃ ≤ 0 ∧ 6+X₃ ≤ X₁ ∧ 6+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 10+X₀+X₃ ≤ 0 ∧ 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l2___14

Found invariant X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ for location n_l2___34

Found invariant X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁ for location n_l8___28

Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l11___4

Found invariant 2+X₃ ≤ X₀ ∧ 0 ≤ X₁ for location n_l12___22

Found invariant X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l12___35

Found invariant 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 3+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l7___20

Found invariant 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l8___39

Found invariant X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁ for location n_l9___32

Found invariant X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ for location n_l9___21

Found invariant 5+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 8+X₂+X₃ ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 5+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 8+X₀+X₃ ≤ 0 ∧ 3+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 3+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 6+X₀+X₂ ≤ 0 ∧ 0 ≤ 3+X₁+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l12___7

Found invariant 0 ≤ X₁ for location l1

Found invariant 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l4

Found invariant 0 ≤ X₁ for location n_l11___25

Found invariant 5+X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 10+X₂+X₃ ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 5+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 8+X₀+X₃ ≤ 0 ∧ X₂ ≤ X₃ ∧ 5+X₂ ≤ 0 ∧ 5+X₂ ≤ X₁ ∧ 5+X₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l9___12

Found invariant 0 ≤ X₁ for location l3

Found invariant 5+X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 10+X₂+X₃ ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 5+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 8+X₀+X₃ ≤ 0 ∧ X₂ ≤ X₃ ∧ 5+X₂ ≤ 0 ∧ 5+X₂ ≤ X₁ ∧ 5+X₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l2___13

Found invariant 3+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 6+X₀+X₂ ≤ 0 ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l8___19

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l2

Found invariant 0 ≤ X₁ for location n_l11___27

Found invariant X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁ for location n_l10___29

Found invariant 7+X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 11+X₂+X₃ ≤ 0 ∧ 7+X₃ ≤ X₁ ∧ 7+X₁+X₃ ≤ 0 ∧ 3+X₃ ≤ X₀ ∧ 11+X₀+X₃ ≤ 0 ∧ 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l11___10

Found invariant 0 ≤ X₁ for location n_l11___23

Found invariant 0 ≤ X₁ for location n_l12___24

Found invariant 6+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 10+X₂+X₃ ≤ 0 ∧ 6+X₃ ≤ X₁ ∧ 6+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 10+X₀+X₃ ≤ 0 ∧ 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l9___11

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l8___37

Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l12___3

Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l11___2

Found invariant 5+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 8+X₂+X₃ ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 5+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 8+X₀+X₃ ≤ 0 ∧ 3+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 3+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 6+X₀+X₂ ≤ 0 ∧ 0 ≤ 3+X₁+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l11___8

Found invariant 0 ≤ X₁ for location n_l8___30

Found invariant 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l10___18

Found invariant 6+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 10+X₂+X₃ ≤ 0 ∧ 6+X₃ ≤ X₁ ∧ 6+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 10+X₀+X₃ ≤ 0 ∧ 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l11___16

Found invariant X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁ for location n_l2___33

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l7___40

Found invariant X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁ for location n_l7___31

Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l12___1

Found invariant 6+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 10+X₂+X₃ ≤ 0 ∧ 6+X₃ ≤ X₁ ∧ 6+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 10+X₀+X₃ ≤ 0 ∧ 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l12___15

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l10___38

Found invariant 0 ≤ X₁ for location n_l12___26

Found invariant 5+X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 8+X₂+X₃ ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 5+X₁+X₃ ≤ 0 ∧ 2+X₃ ≤ X₀ ∧ 8+X₀+X₃ ≤ 0 ∧ 3+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 3+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 6+X₀+X₂ ≤ 0 ∧ 0 ≤ 3+X₁+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 3+X₀ ≤ 0 for location n_l9___5

Found invariant 7+X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 11+X₂+X₃ ≤ 0 ∧ 7+X₃ ≤ X₁ ∧ 7+X₁+X₃ ≤ 0 ∧ 3+X₃ ≤ X₀ ∧ 11+X₀+X₃ ≤ 0 ∧ 4+X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 4+X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 8+X₀+X₂ ≤ 0 ∧ X₀ ≤ X₂ ∧ 4+X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 4+X₀ ≤ X₁ ∧ 4+X₀ ≤ 0 for location n_l12___9

Solv. Size Bound: t₁₀₉₃: n_l10___29→n_l11___27 for X₂

cycle: [t₁₁₃₀: n_l7___31→n_l10___29; t₁₁₄₄: n_l9___32→n_l7___31; t₁₁₂₄: n_l2___33→n_l9___32; t₁₁₁₈: n_l12___3→n_l2___33; t₁₁₀₉: n_l11___4→n_l12___3; t₁₁₃₈: n_l8___37→n_l11___4; t₁₁₃₃: n_l7___40→n_l8___37; t₁₁₄₆: n_l9___41→n_l7___40; t₁₁₂₆: l2→n_l9___41; t₆: l4→l2; t₄: l1→l4; t₁₉: l3→l1; t₁₁₆₈: n_l2___34→l3; t₁₁₀₆: n_l11___27→n_l2___34; t₁₀₉₃: n_l10___29→n_l11___27]
loop: (4+X₁+2⋅X₂ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 4+X₁+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂+2 ∧ X₂+2 ≤ 0 ∧ 7+X₁+4⋅X₂ ≤ X₀ ∧ 0 ≤ X₂+2 ∧ X₂+2 ≤ 0 ∧ 4+X₁+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂+2 ∧ X₂+2 ≤ 0 ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ 1+2⋅X₂ ≤ 0 ∧ 0 ≤ 1+2⋅X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₁ ≤ X₀ ∧ 1+2⋅X₂ ≤ 0 ∧ 0 ≤ 1+2⋅X₂ ∧ 2+2⋅X₂ ≤ 0 ∧ 0 ≤ 2+2⋅X₂ ∧ 4+X₁ ≤ X₀ ∧ 2+2⋅X₂ ≤ 0 ∧ 0 ≤ 2+2⋅X₂ ∧ 4+X₁ ≤ X₀ ∧ 2+2⋅X₂ ≤ 0 ∧ 0 ≤ 2+2⋅X₂ ∧ 3+X₁ ≤ X₀ ∧ 2+2⋅X₂ ≤ 0 ∧ 0 ≤ 2+2⋅X₂ ∧ 8+X₁+4⋅X₂ ≤ X₀ ∧ 2+2⋅X₂ ≤ 0 ∧ 0 ≤ 2+2⋅X₂ ∧ 2+X₁ ≤ X₀ ∧ 7+X₁+4⋅X₂ ≤ X₀ ∧ 2+X₁ ≤ X₀ ∧ X₀ ≤ 3+X₁ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ 3+4⋅X₂ ∧ 3+4⋅X₂ ≤ 0,(X₀,X₂) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: 2 {O(1)}

Solv. Size Bound - Lifting for t₁₀₉₃: n_l10___29→n_l11___27 and X₂: 26⋅X₀ {O(n)}

Solv. Size Bound: t₁₁₃₀: n_l7___31→n_l10___29 for X₂

cycle: [t₁₁₄₄: n_l9___32→n_l7___31; t₁₁₂₄: n_l2___33→n_l9___32; t₁₁₁₉: n_l12___35→n_l2___33; t₁₁₀₇: n_l11___36→n_l12___35; t₁₀₉₄: n_l10___38→n_l11___36; t₁₁₃₂: n_l7___40→n_l10___38; t₁₁₄₆: n_l9___41→n_l7___40; t₁₁₂₆: l2→n_l9___41; t₆: l4→l2; t₄: l1→l4; t₁₉: l3→l1; t₁₁₆₈: n_l2___34→l3; t₁₁₀₆: n_l11___27→n_l2___34; t₁₀₉₃: n_l10___29→n_l11___27; t₁₁₃₀: n_l7___31→n_l10___29]
loop: (4+X₁+2⋅X₂ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 3+X₁+2⋅X₃ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 4+X₁+2⋅X₂ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₁ ≤ X₀ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 4+X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 4+X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 4+X₁+2⋅X₃ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 2+X₁ ≤ X₀ ∧ 3+X₁+2⋅X₃ ≤ X₀ ∧ 2+X₁ ≤ X₀ ∧ X₀ ≤ 3+X₁ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 5+X₀+X₁ ≤ 0 ∧ X₀ ≤ 2+2⋅X₃ ∧ 2+2⋅X₃ ≤ X₀,(X₀,X₂) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: 2 {O(1)}

Solv. Size Bound - Lifting for t₁₁₃₀: n_l7___31→n_l10___29 and X₂: 26⋅X₀ {O(n)}

Solv. Size Bound: t₁₁₃₁: n_l7___31→n_l8___28 for X₂

cycle: [t₁₁₄₄: n_l9___32→n_l7___31; t₁₁₂₄: n_l2___33→n_l9___32; t₁₁₁₉: n_l12___35→n_l2___33; t₁₁₀₇: n_l11___36→n_l12___35; t₁₀₉₄: n_l10___38→n_l11___36; t₁₁₃₂: n_l7___40→n_l10___38; t₁₁₄₆: n_l9___41→n_l7___40; t₁₁₂₆: l2→n_l9___41; t₆: l4→l2; t₄: l1→l4; t₁₉: l3→l1; t₁₁₆₈: n_l2___34→l3; t₁₁₀₄: n_l11___25→n_l2___34; t₁₁₃₆: n_l8___28→n_l11___25; t₁₁₃₁: n_l7___31→n_l8___28]
loop: (4+X₁+2⋅X₂ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 3+X₁+2⋅X₃ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 4+X₁+2⋅X₂ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₁ ≤ X₀ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 4+X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 4+X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 4+X₁+2⋅X₃ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 2+X₁ ≤ X₀ ∧ 3+X₁+2⋅X₃ ≤ X₀ ∧ 2+X₁ ≤ X₀ ∧ X₀ ≤ 3+X₁ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ 1+2⋅X₃ ∧ 1+2⋅X₃ ≤ 0 ∧ 5+X₀+X₁ ≤ 0 ∧ X₀ ≤ 2+2⋅X₃ ∧ 2+2⋅X₃ ≤ X₀,(X₀,X₂) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: 2 {O(1)}

Solv. Size Bound - Lifting for t₁₁₃₁: n_l7___31→n_l8___28 and X₂: 26⋅X₀ {O(n)}

Solv. Size Bound: t₁₁₃₆: n_l8___28→n_l11___25 for X₂

cycle: [t₁₁₃₁: n_l7___31→n_l8___28; t₁₁₄₄: n_l9___32→n_l7___31; t₁₁₂₄: n_l2___33→n_l9___32; t₁₁₁₈: n_l12___3→n_l2___33; t₁₁₀₉: n_l11___4→n_l12___3; t₁₁₃₈: n_l8___37→n_l11___4; t₁₁₃₃: n_l7___40→n_l8___37; t₁₁₄₆: n_l9___41→n_l7___40; t₁₁₂₆: l2→n_l9___41; t₆: l4→l2; t₄: l1→l4; t₁₉: l3→l1; t₁₁₆₈: n_l2___34→l3; t₁₁₀₄: n_l11___25→n_l2___34; t₁₁₃₆: n_l8___28→n_l11___25]
loop: (4+X₁+2⋅X₂ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 4+X₁+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂+1 ∧ X₂+1 ≤ 0 ∧ 5+X₁+4⋅X₂ ≤ X₀ ∧ 0 ≤ X₂+1 ∧ X₂+1 ≤ 0 ∧ 4+X₁+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂+1 ∧ X₂+1 ≤ 0 ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ 2⋅X₂ ≤ 0 ∧ 0 ≤ 2⋅X₂ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₁ ≤ X₀ ∧ 2⋅X₂ ≤ 0 ∧ 0 ≤ 2⋅X₂ ∧ 1+2⋅X₂ ≤ 0 ∧ 0 ≤ 1+2⋅X₂ ∧ 4+X₁ ≤ X₀ ∧ 1+2⋅X₂ ≤ 0 ∧ 0 ≤ 1+2⋅X₂ ∧ 4+X₁ ≤ X₀ ∧ 1+2⋅X₂ ≤ 0 ∧ 0 ≤ 1+2⋅X₂ ∧ 3+X₁ ≤ X₀ ∧ 1+2⋅X₂ ≤ 0 ∧ 0 ≤ 1+2⋅X₂ ∧ 6+X₁+4⋅X₂ ≤ X₀ ∧ 1+2⋅X₂ ≤ 0 ∧ 0 ≤ 1+2⋅X₂ ∧ 2+X₁ ≤ X₀ ∧ 5+X₁+4⋅X₂ ≤ X₀ ∧ 2+X₁ ≤ X₀ ∧ X₀ ≤ 3+X₁ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ 2+4⋅X₂ ∧ 2+4⋅X₂ ≤ 0,(X₀,X₂) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: 2 {O(1)}

Solv. Size Bound - Lifting for t₁₁₃₆: n_l8___28→n_l11___25 and X₂: 26⋅X₀ {O(n)}

Solv. Size Bound: t₁₁₄₄: n_l9___32→n_l7___31 for X₂

cycle: [t₁₁₂₄: n_l2___33→n_l9___32; t₁₁₁₈: n_l12___3→n_l2___33; t₁₁₀₉: n_l11___4→n_l12___3; t₁₁₃₈: n_l8___37→n_l11___4; t₁₁₃₃: n_l7___40→n_l8___37; t₁₁₄₆: n_l9___41→n_l7___40; t₁₁₂₆: l2→n_l9___41; t₆: l4→l2; t₄: l1→l4; t₁₉: l3→l1; t₁₁₆₈: n_l2___34→l3; t₁₁₀₆: n_l11___27→n_l2___34; t₁₀₉₃: n_l10___29→n_l11___27; t₁₁₃₀: n_l7___31→n_l10___29; t₁₁₄₄: n_l9___32→n_l7___31]
loop: (3+X₁+2⋅X₃ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 4+X₁+2⋅X₂ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₁ ≤ X₀ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 4+X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 4+X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 4+X₁+2⋅X₃ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 2+X₁ ≤ X₀ ∧ 3+X₁+2⋅X₃ ≤ X₀ ∧ 2+X₁ ≤ X₀ ∧ X₀ ≤ 3+X₁ ∧ 5+X₁ ≤ X₀ ∧ 1 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 1 ∧ 5+X₀+X₁ ≤ 0 ∧ X₀ ≤ 1+2⋅X₃ ∧ 1+2⋅X₃ ≤ X₀ ∧ 5+X₀+X₁ ≤ 0 ∧ 0 ≤ X₀+2 ∧ X₀+2 ≤ 0,(X₀,X₂) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: 2 {O(1)}

Solv. Size Bound - Lifting for t₁₁₄₄: n_l9___32→n_l7___31 and X₂: 26⋅X₀ {O(n)}

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₂₆: l2(X₀, X₁, X₂, X₃) → n_l9___41(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₄₆: n_l9___41(X₀, X₁, X₂, X₃) → n_l7___40(X₀, X₁, X₂, X₃) :|: 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 4+X₁+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₄₇: n_l9___41(X₀, X₁, X₂, X₃) → n_l8___39(X₀, X₁, Arg2_P, X₃) :|: 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁+2⋅X₂+3 ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ X₀ ≤ X₁+2⋅Arg2_P+3 ∧ 3+X₁+2⋅Arg2_P ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₃₂: n_l7___40(X₀, X₁, X₂, X₃) → n_l10___38(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₃₃: n_l7___40(X₀, X₁, X₂, X₃) → n_l8___37(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₃₈: n_l8___37(X₀, X₁, X₂, X₃) → n_l11___4(X₀, X₁, X₂, 2⋅X₂+1) :|: 4+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₃₉: n_l8___39(X₀, X₁, X₂, X₃) → n_l11___2(X₀, X₁, X₂, 2⋅X₂+1) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+3 ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₀₉₄: n_l10___38(X₀, X₁, X₂, X₃) → n_l11___36(X₀, X₁, X₂, 2⋅X₂+2) :|: 4+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₀₉₉: n_l11___2(X₀, X₁, X₂, X₃) → n_l12___1(X₀, X₁, X₂, X₃) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+3 ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₀₀: n_l11___2(X₀, X₁, X₂, X₃) → n_l2___34(X₀, X₁, X₀, X₃) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+3 ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₀₇: n_l11___36(X₀, X₁, X₂, X₃) → n_l12___35(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₀₈: n_l11___36(X₀, X₁, X₂, X₃) → n_l2___34(X₀, X₁, X₀, X₃) :|: 4+X₁ ≤ X₀ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₀₉: n_l11___4(X₀, X₁, X₂, X₃) → n_l12___3(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₁₀: n_l11___4(X₀, X₁, X₂, X₃) → n_l2___34(X₀, X₁, X₀, X₃) :|: 4+X₁ ≤ X₀ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₁₃: n_l12___1(X₀, X₁, X₂, X₃) → n_l2___33(X₀, X₁, X₃, X₃) :|: 3 ≤ X₀ ∧ X₀ ≤ X₁+3 ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₁₈: n_l12___3(X₀, X₁, X₂, X₃) → n_l2___33(X₀, X₁, X₃, X₃) :|: 4+X₁ ≤ X₀ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₁₁₉: n_l12___35(X₀, X₁, X₂, X₃) → n_l2___33(X₀, X₁, X₃, X₃) :|: 4+X₁ ≤ X₀ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀

MPRF for transition t₁₁₆₇: n_l2___33(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁ of depth 1:

new bound:

10⋅X₀+14 {O(n)}

MPRF for transition t₁₁₆₈: n_l2___34(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₀+16⋅X₀+18 {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: X₀+1 {O(n)}
t₅: 1 {O(1)}
t₆: X₀+1 {O(n)}
t₇: inf {Infinity}
t₈: 2⋅X₀+3 {O(n)}
t₉: inf {Infinity}
t₁₀: inf {Infinity}
t₁₂: inf {Infinity}
t₁₃: inf {Infinity}
t₁₄: inf {Infinity}
t₁₅: inf {Infinity}
t₁₆: inf {Infinity}
t₁₇: inf {Infinity}
t₁₈: inf {Infinity}
t₁₉: X₀+1 {O(n)}
t₂₀: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: X₀+1 {O(n)}
t₅: 1 {O(1)}
t₆: X₀+1 {O(n)}
t₇: inf {Infinity}
t₈: 2⋅X₀+3 {O(n)}
t₉: inf {Infinity}
t₁₀: inf {Infinity}
t₁₂: inf {Infinity}
t₁₃: inf {Infinity}
t₁₄: inf {Infinity}
t₁₅: inf {Infinity}
t₁₆: inf {Infinity}
t₁₇: inf {Infinity}
t₁₈: inf {Infinity}
t₁₉: X₀+1 {O(n)}
t₂₀: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: 0 {O(1)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₀+1 {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₀+1 {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₀+1 {O(n)}
t₆, X₂: 0 {O(1)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₀+1 {O(n)}
t₇, X₂: 6⋅X₀ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₀+1 {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₀+1 {O(n)}
t₉, X₂: 8⋅X₀ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₀+1 {O(n)}
t₁₀, X₂: 8⋅X₀ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₀+1 {O(n)}
t₁₂, X₂: 8⋅X₀ {O(n)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₀+1 {O(n)}
t₁₃, X₂: 6⋅X₀ {O(n)}
t₁₄, X₀: X₀ {O(n)}
t₁₄, X₁: X₀+1 {O(n)}
t₁₄, X₂: 8⋅X₀ {O(n)}
t₁₅, X₀: X₀ {O(n)}
t₁₅, X₁: X₀+1 {O(n)}
t₁₅, X₂: 6⋅X₀ {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: X₀+1 {O(n)}
t₁₆, X₂: 14⋅X₀ {O(n)}
t₁₇, X₀: X₀ {O(n)}
t₁₇, X₁: X₀+1 {O(n)}
t₁₇, X₂: 2⋅X₀ {O(n)}
t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₀+1 {O(n)}
t₁₉, X₀: X₀ {O(n)}
t₁₉, X₁: X₀+1 {O(n)}
t₂₀, X₀: 2⋅X₀ {O(n)}
t₂₀, X₁: X₀+X₁+1 {O(n)}