Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇
Temp_Vars: A2, B2, C2, D2, E2, M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, X1, Y1, Z1
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₁₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l1(2, X₁, M1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, M1, P1, Q1, P1, X₂₀, X₂₁, P1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, O1, N1, 2) :|: 2 ≤ M1
t₁₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l5(T1, X₁, M1, 0, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 0, X₁₃, X₁₄, X₁₅, R1, Y1, B2, A2, X₂₀, X₂₁, Z1, C2, D2, X₂₅, X₂₆, N1, O1, P1, Q1, E2, S1, X₃₃, X₃₄, U1, X₃₆, X₃₇) :|: V1 ≤ 0 ∧ W1 ≤ 0 ∧ M1 ≤ 0 ∧ X1 ≤ 0
t₁₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l5(T1, X₁, 1, S1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 0, X₁₃, X₁₄, X₁₅, R1, Y1, B2, A2, X₂₀, X₂₁, Z1, C2, D2, X₂₅, X₂₆, Q1, M1, O1, P1, E2, N1, X₃₃, X₃₄, U1, X₃₆, X₃₇) :|: X₁₈ ≤ 0 ∧ 0 ≤ X₁₈
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l1(1+X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₈, M1, X₁₈, O1, X₀, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: X₀+1 ≤ X₁₆ ∧ 0 ≤ X₀
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₆, 0, M1, X₁₇, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₇, X₁₃, X₁₄, X₁₅, O1, P1, S1, N1, X₂₀, X₂₁, Q1, T1, U1, R1, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: X₁₆ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ M1 ≤ R1 ∧ M1 ≤ X₆ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, 1+X₁, M1, O1, P1, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, Q1, 1+X₁, X₆-1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₁ ∧ 0 ≤ X₆ ∧ 2 ≤ M1
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₃₃+1, M1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 0, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₃₃, 0, X₃, 0, X₃, X₃, X₃, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ O1 ∧ 2 ≤ M1 ∧ 0 ≤ X₁ ∧ 0 ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, M1, O1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 0, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, 0, O1, 0, O1, X₃₂, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ M1 ∧ 0 ≤ X₂₆ ∧ X₂₇ ≤ 0 ∧ 0 ≤ X₂₇
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l5(X₀, X₁, M1, T1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, U1, X₂₅, X₂₆, N1, O1, P1, Q1, R1, S1, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ M1 ∧ 0 ≤ X₂₆ ∧ X₂₇ ≤ X₃₂ ∧ X₃₂ ≤ X₂₇
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, M1, O1, P1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 0, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, 0, O1, 0, O1, X₃₂, X₃₂, X₃₃-1, X₃₃-1, X₃₅, X₃₆, X₃₇) :|: 2 ≤ M1 ∧ 0 ≤ X₃₃ ∧ X₂₇ ≤ 0 ∧ 0 ≤ X₂₇
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l5(X₀, X₁, M1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, T1, X₂₅, X₂₆, N1, O1, P1, Q1, U1, S1, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ M1 ∧ 0 ≤ X₃₃ ∧ X₂₇ ≤ X₃₂ ∧ X₃₂ ≤ X₂₇
t₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, 1, M1, O1, P1, 1+X₆, X₆, Q1, X₆, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₀ ∧ 2 ≤ M1 ∧ M1 ≤ N1 ∧ X₁ ≤ 1 ∧ 1 ≤ X₁
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, M1, O1, X₄, X₅, X₆, X₇, X₈, P1, Q1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ M1 ∧ 0 ≤ X₈
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₃₃+1, M1, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁, 0, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₃₃, 0, X₃, 0, X₃, X₃, X₃, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ O1 ∧ 2 ≤ M1 ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁ ≤ 1 ∧ 1 ≤ X₁

Preprocessing

Cut unreachable locations [l3; l6; l7] from the program graph

Eliminate variables {A2,C2,D2,E2,U1,Z1,X₂,X₄,X₅,X₇,X₈,X₉,X₁₀,X₁₁,X₁₃,X₁₄,X₁₅,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆,X₂₈,X₂₉,X₃₀,X₃₁,X₃₄,X₃₅,X₃₆,X₃₇} that do not contribute to the problem

Found invariant X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l2

Found invariant X₄ ≤ 0 ∧ 0 ≤ X₄ for location l5

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀ for location l1

Found invariant X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ X₈ ≤ X₃ ∧ 2+X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₁₀ ≤ X₁ ∧ 2 ≤ X₀ for location l4

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: B2, M1, N1, O1, P1, Q1, R1, S1, T1, V1, W1, X1, Y1
Locations: l0, l1, l2, l4, l5
Transitions:
t₂₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(2, X₁, X₂, X₃, X₄, M1, P1, Q1, X₈, X₉, X₁₀) :|: 2 ≤ M1
t₂₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(T1, X₁, 0, X₃, 0, R1, Y1, B2, N1, S1, X₁₀) :|: V1 ≤ 0 ∧ W1 ≤ 0 ∧ M1 ≤ 0 ∧ X1 ≤ 0
t₂₅: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(T1, X₁, S1, X₃, 0, R1, Y1, B2, Q1, N1, X₁₀) :|: X₇ ≤ 0 ∧ 0 ≤ X₇
t₂₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(1+X₀, X₁, X₂, X₃, X₄, X₅, X₇, M1, X₈, X₉, X₁₀) :|: X₀+1 ≤ X₅ ∧ 0 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
t₂₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₃, 0, X₆, X₃, X₆, O1, P1, S1, X₈, X₉, X₁₀) :|: X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ M1 ≤ R1 ∧ M1 ≤ X₃ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
t₂₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, 1+X₁, O1, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₁ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₂₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁₀+1, X₂, X₃, 0, X₅, X₆, X₇, 0, X₂, X₁₀) :|: 2 ≤ O1 ∧ 2 ≤ M1 ∧ 0 ≤ X₁ ∧ 0 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, O1, X₃, 0, X₅, X₆, X₇, 0, X₉, X₁₀-1) :|: 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ X₈ ≤ X₃ ∧ 2+X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₁₀ ≤ X₁ ∧ 2 ≤ X₀
t₃₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, N1, S1, X₁₀) :|: 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ X₈ ≤ X₃ ∧ 2+X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₁₀ ≤ X₁ ∧ 2 ≤ X₀

Analysing control-flow refined program

Found invariant X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l2

Found invariant X₄ ≤ 0 ∧ 0 ≤ X₄ for location l5

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l1

Found invariant X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ X₈ ≤ X₃ ∧ 2+X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₁₀ ≤ X₁ ∧ 2 ≤ X₀ for location l4

Found invariant 3 ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3 ≤ X₀ for location n_l1___1

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

TWN: t₂₈: l2→l2

cycle: [t₂₈: l2→l2]
loop: (0 ≤ X₁ ∧ 0 ≤ X₃,(X₁,X₃) -> (1+X₁,X₃-1)
order: [X₁; X₃]
closed-form:
X₁: X₁ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0

Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}

TWN - Lifting for t₂₈: l2→l2 of 2⋅X₁+2⋅X₃+6 {O(n)}

relevant size-bounds w.r.t. t₂₇:
X₁: 0 {O(1)}
X₃: 2⋅X₃ {O(n)}
Runtime-bound of t₂₇: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}

MPRF for transition t₃₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, O1, X₃, 0, X₅, X₆, X₇, 0, X₉, X₁₀-1) :|: 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄+X₈ ≤ 0 ∧ X₈ ≤ X₃ ∧ 2+X₈ ≤ X₀ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₁₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

4⋅X₁₀+1 {O(n)}

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₂₃: 1 {O(1)}
t₂₄: 1 {O(1)}
t₂₅: 1 {O(1)}
t₂₆: inf {Infinity}
t₂₇: 1 {O(1)}
t₂₈: 4⋅X₃+6 {O(n)}
t₂₉: 1 {O(1)}
t₃₀: 4⋅X₁₀+1 {O(n)}
t₃₁: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₂₃: 1 {O(1)}
t₂₄: 1 {O(1)}
t₂₅: 1 {O(1)}
t₂₆: inf {Infinity}
t₂₇: 1 {O(1)}
t₂₈: 4⋅X₃+6 {O(n)}
t₂₉: 1 {O(1)}
t₃₀: 4⋅X₁₀+1 {O(n)}
t₃₁: 1 {O(1)}

Sizebounds

t₂₃, X₀: 2 {O(1)}
t₂₃, X₁: X₁ {O(n)}
t₂₃, X₂: X₂ {O(n)}
t₂₃, X₃: X₃ {O(n)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₈: X₈ {O(n)}
t₂₃, X₉: X₉ {O(n)}
t₂₃, X₁₀: X₁₀ {O(n)}
t₂₄, X₁: X₁ {O(n)}
t₂₄, X₂: 0 {O(1)}
t₂₄, X₃: X₃ {O(n)}
t₂₄, X₄: 0 {O(1)}
t₂₄, X₁₀: X₁₀ {O(n)}
t₂₅, X₁: X₁ {O(n)}
t₂₅, X₃: X₃ {O(n)}
t₂₅, X₄: 0 {O(1)}
t₂₅, X₁₀: X₁₀ {O(n)}
t₂₆, X₁: X₁ {O(n)}
t₂₆, X₂: X₂ {O(n)}
t₂₆, X₃: X₃ {O(n)}
t₂₆, X₄: X₄ {O(n)}
t₂₆, X₈: X₈ {O(n)}
t₂₆, X₉: X₉ {O(n)}
t₂₆, X₁₀: X₁₀ {O(n)}
t₂₇, X₀: 2⋅X₃ {O(n)}
t₂₇, X₁: 0 {O(1)}
t₂₇, X₃: 2⋅X₃ {O(n)}
t₂₇, X₈: 2⋅X₈ {O(n)}
t₂₇, X₉: 2⋅X₉ {O(n)}
t₂₇, X₁₀: 2⋅X₁₀ {O(n)}
t₂₈, X₀: 2⋅X₃ {O(n)}
t₂₈, X₁: 4⋅X₃+6 {O(n)}
t₂₈, X₃: 2⋅X₃+1 {O(n)}
t₂₈, X₈: 2⋅X₈ {O(n)}
t₂₈, X₉: 2⋅X₉ {O(n)}
t₂₈, X₁₀: 2⋅X₁₀ {O(n)}
t₂₉, X₀: 4⋅X₃ {O(n)}
t₂₉, X₁: 4⋅X₁₀+2 {O(n)}
t₂₉, X₃: 4⋅X₃+1 {O(n)}
t₂₉, X₄: 0 {O(1)}
t₂₉, X₈: 0 {O(1)}
t₂₉, X₁₀: 4⋅X₁₀ {O(n)}
t₃₀, X₀: 4⋅X₃ {O(n)}
t₃₀, X₁: 4⋅X₁₀+2 {O(n)}
t₃₀, X₃: 4⋅X₃+1 {O(n)}
t₃₀, X₄: 0 {O(1)}
t₃₀, X₈: 0 {O(1)}
t₃₀, X₁₀: 4⋅X₁₀+1 {O(n)}
t₃₁, X₀: 8⋅X₃ {O(n)}
t₃₁, X₁: 8⋅X₁₀+4 {O(n)}
t₃₁, X₃: 8⋅X₃+2 {O(n)}
t₃₁, X₄: 0 {O(1)}
t₃₁, X₁₀: 8⋅X₁₀+1 {O(n)}