Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₆, X₇, X₆, X₇) :|: X₂ ≤ X₇
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇+1 ≤ X₂
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₁
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₄
t₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₄+1, X₅)
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1)
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₅+1, X₄, X₅, X₆, X₇)
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₃, X₆, X₇) :|: X₃+1 ≤ X₀
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₃
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, 0, X₄, X₅, X₆, X₇) :|: 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂
t₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀+1 ≤ 0
t₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁+1 ≤ 0
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂+1 ≤ 0
Preprocessing
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1
Found invariant 1+X₇ ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₆, X₇, X₆, X₇) :|: X₂ ≤ X₇ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇+1 ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₄+1, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: 1+X₇ ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₅+1, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₃, X₆, X₇) :|: X₃+1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, 0, X₄, X₅, X₆, X₇) :|: 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂
t₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀+1 ≤ 0
t₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁+1 ≤ 0
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂+1 ≤ 0
Solv. Size Bound: t₇: l2→l3 for X₃
Solv. Size Bound: t₇: l2→l3 for X₄
Solv. Size Bound: t₇: l2→l3 for X₅
cycle: [t₁₁: l1→l2; t₉: l3→l1; t₇: l2→l3]
loop: (X₄+1 ≤ X₁ ∧ X₂ ≤ X₇,(X₅,X₇) -> (X₇,X₇)
overappr. closed-form: 2⋅X₇ {O(n)}
runtime bound: 16⋅X₁+8⋅X₄+8⋅X₆+1 {O(n)}
Solv. Size Bound - Lifting for t₇: l2→l3 and X₅: inf {Infinity}
Solv. Size Bound: t₉: l3→l1 for X₃
Solv. Size Bound: t₉: l3→l1 for X₄
Solv. Size Bound: t₉: l3→l1 for X₅
Solv. Size Bound: t₉: l3→l1 for X₆
Solv. Size Bound: t₉: l3→l1 for X₇
cycle: [t₇: l2→l3; t₁₁: l1→l2; t₉: l3→l1]
loop: (X₄+1 ≤ X₁ ∧ X₂ ≤ X₅,(X₅,X₇) -> (X₅,X₅)
overappr. closed-form: 2⋅X₅ {O(n)}
runtime bound: X₁+X₄+1 {O(n)}
Solv. Size Bound - Lifting for t₉: l3→l1 and X₇: inf {Infinity}
Solv. Size Bound: t₁₁: l1→l2 for X₃
Solv. Size Bound: t₁₁: l1→l2 for X₄
Solv. Size Bound: t₁₁: l1→l2 for X₅
cycle: [t₉: l3→l1; t₇: l2→l3; t₁₁: l1→l2]
loop: (X₂ ≤ X₇ ∧ X₆+1 ≤ X₁,(X₅,X₇) -> (X₇,X₇)
overappr. closed-form: 2⋅X₇ {O(n)}
runtime bound: X₁+X₆+1 {O(n)}
Solv. Size Bound - Lifting for t₁₁: l1→l2 and X₅: inf {Infinity}
MPRF for transition t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₃, X₆, X₇) :|: X₃+1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇+1 ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+X₂ {O(n)}
MPRF for transition t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: 1+X₇ ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₅+1, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+X₀+X₁+1 {O(n^2)}
MPRF for transition t₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₄+1, X₅) :|: 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+X₁ {O(n^2)}
MPRF for transition t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₆, X₇, X₆, X₇) :|: X₂ ≤ X₇ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+X₁ {O(n^2)}
Chain transitions t₁₂: l4→l1 and t₁₀: l1→l4 to t₁₂₅: l4→l4
Chain transitions t₉: l3→l1 and t₁₀: l1→l4 to t₁₂₆: l3→l4
Chain transitions t₉: l3→l1 and t₁₁: l1→l2 to t₁₂₇: l3→l2
Chain transitions t₁₂: l4→l1 and t₁₁: l1→l2 to t₁₂₈: l4→l2
Chain transitions t₅: l6→l2 and t₈: l2→l5 to t₁₂₉: l6→l5
Chain transitions t₁₂₈: l4→l2 and t₈: l2→l5 to t₁₃₀: l4→l5
Chain transitions t₁₂₈: l4→l2 and t₇: l2→l3 to t₁₃₁: l4→l3
Chain transitions t₅: l6→l2 and t₇: l2→l3 to t₁₃₂: l6→l3
Chain transitions t₁₂₇: l3→l2 and t₇: l2→l3 to t₁₃₃: l3→l3
Chain transitions t₁₂₇: l3→l2 and t₈: l2→l5 to t₁₃₄: l3→l5
Chain transitions t₁₂₉: l6→l5 and t₁₃: l5→l6 to t₁₃₅: l6→l6
Chain transitions t₁₃₀: l4→l5 and t₁₃: l5→l6 to t₁₃₆: l4→l6
Chain transitions t₁₃₄: l3→l5 and t₁₃: l5→l6 to t₁₃₇: l3→l6
Analysing control-flow refined program
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1
Found invariant 1+X₇ ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
Solv. Size Bound: t₁₃₃: l3→l3 for X₃
Solv. Size Bound: t₁₃₃: l3→l3 for X₄
Solv. Size Bound: t₁₃₃: l3→l3 for X₅
Solv. Size Bound: t₁₃₃: l3→l3 for X₆
Solv. Size Bound: t₁₃₃: l3→l3 for X₇
cycle: [t₁₃₃: l3→l3]
loop: (X₂ ≤ X₅ ∧ 2+X₄ ≤ X₁,(X₅,X₇) -> (X₅,X₅)
overappr. closed-form: 2⋅X₅ {O(n)}
runtime bound: X₁+X₄+1 {O(n)}
Solv. Size Bound - Lifting for t₁₃₃: l3→l3 and X₇: inf {Infinity}
MPRF for transition t₁₂₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{2}> l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1+X₇) :|: 2+X₇ ≤ X₂ ∧ 1+X₇ ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇+1 ∧ X₅ ≤ X₇+1 ∧ 0 ≤ X₄+X₇+1 ∧ 0 ≤ X₃+X₇+1 ∧ X₃ ≤ X₇+1 ∧ 0 ≤ X₂+X₇+1 ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1+X₇ ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂ {O(n)}
MPRF for transition t₁₂₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{2}> l4(X₀, X₁, X₂, X₃, X₄, X₅, 1+X₄, X₅) :|: X₅+1 ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ 2⋅X₅ ∧ 0 ≤ 0 ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 0 ≤ 0 ∧ X₄+1 ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₅+X₄ ∧ 0 ≤ 2⋅X₄ ∧ 0 ≤ 0 ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₁₃₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{3}> l3(X₀, X₁, X₂, X₃, X₆, 1+X₇, X₆, 1+X₇) :|: X₂ ≤ X₇+1 ∧ X₆+1 ≤ X₁ ∧ 1+X₇ ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇+1 ∧ X₅ ≤ X₇+1 ∧ 0 ≤ X₄+X₇+1 ∧ 0 ≤ X₃+X₇+1 ∧ X₃ ≤ X₇+1 ∧ 0 ≤ X₂+X₇+1 ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+1+X₇ ∧ 0 ≤ X₃+1+X₇ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₂+1+X₇ ∧ 0 ≤ X₁+1+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1+X₇ ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+X₂ {O(n)}
MPRF for transition t₁₃₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{2}> l3(X₀, X₁, X₂, X₃, 0, X₃, X₆, X₇) :|: X₃+1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ 0 ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₁₃₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{3}> l6(X₀, X₁, X₂, X₃+1, 0, X₃, X₆, X₇) :|: X₃+1 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ 0 ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ 0 ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₁₃₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{4}> l6(X₀, X₁, X₂, 2+X₇, X₆, 1+X₇, X₆, 1+X₇) :|: X₂ ≤ X₇+1 ∧ X₁ ≤ X₆ ∧ 1+X₇ ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇+1 ∧ X₅ ≤ X₇+1 ∧ 0 ≤ X₄+X₇+1 ∧ 0 ≤ X₃+X₇+1 ∧ X₃ ≤ X₇+1 ∧ 0 ≤ X₂+X₇+1 ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+1+X₇ ∧ 0 ≤ X₃+1+X₇ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₂+1+X₇ ∧ 0 ≤ X₁+1+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+1+X₇ ∧ 0 ≤ X₃+1+X₇ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₂+1+X₇ ∧ 0 ≤ X₁+1+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1+X₇ ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₁₃₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{4}> l6(X₀, X₁, X₂, X₅+1, 1+X₄, X₅, 1+X₄, X₅) :|: X₂ ≤ X₅ ∧ X₁ ≤ 1+X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ 2⋅X₅ ∧ 0 ≤ 0 ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 0 ≤ 0 ∧ X₄+1 ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₅+X₄ ∧ 0 ≤ 2⋅X₄ ∧ 0 ≤ 0 ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+1+X₄ ∧ 0 ≤ X₂+1+X₄ ∧ 0 ≤ X₁+1+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+1+X₄ ∧ 0 ≤ X₂+1+X₄ ∧ 0 ≤ X₁+1+X₄ ∧ X₁ ≤ 1+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
TWN: t₁₃₃: l3→l3
cycle: [t₁₃₃: l3→l3]
loop: (X₂ ≤ X₅ ∧ 2+X₄ ≤ X₁,(X₁,X₂,X₄,X₅) -> (X₁,X₂,1+X₄,X₅)
order: [X₁; X₂; X₄; X₅]
closed-form:
X₁: X₁
X₂: X₂
X₄: X₄ + [[n != 0]] * n^1
X₅: X₅
Termination: true
Formula:
1 < 0 ∧ X₂ < X₅
∨ 1 < 0 ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂
∨ 2+X₄ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₅
∨ 2+X₄ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ X₁ ≤ 2+X₄ ∧ X₂ < X₅
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ X₁ ≤ 2+X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂
Stabilization-Threshold for: 2+X₄ ≤ X₁
alphas_abs: 2+X₄+X₁
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₄+6 {O(n)}
loop: (X₂ ≤ X₅ ∧ 2+X₄ ≤ X₁,(X₁,X₂,X₄,X₅) -> (X₁,X₂,1+X₄,X₅)
order: [X₁; X₂; X₄; X₅]
closed-form:
X₁: X₁
X₂: X₂
X₄: X₄ + [[n != 0]] * n^1
X₅: X₅
Termination: true
Formula:
1 < 0 ∧ X₂ < X₅
∨ 1 < 0 ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂
∨ 2+X₄ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ < X₅
∨ 2+X₄ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ X₁ ≤ 2+X₄ ∧ X₂ < X₅
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ X₁ ≤ 2+X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂
Stabilization-Threshold for: 2+X₄ ≤ X₁
alphas_abs: 2+X₄+X₁
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₄+6 {O(n)}
TWN - Lifting for t₁₃₃: l3→l3 of 2⋅X₁+2⋅X₄+9 {O(n)}
relevant size-bounds w.r.t. t₁₃₂:
X₁: X₁ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₃₂: X₀ {O(n)}
Results in: 2⋅X₀⋅X₁+9⋅X₀ {O(n^2)}
TWN - Lifting for t₁₃₃: l3→l3 of 2⋅X₁+2⋅X₄+9 {O(n)}
relevant size-bounds w.r.t. t₁₃₁:
X₁: X₁ {O(n)}
X₄: 2 {O(1)}
Runtime-bound of t₁₃₁: X₁+X₂ {O(n)}
Results in: 2⋅X₁⋅X₁+2⋅X₁⋅X₂+13⋅X₁+13⋅X₂ {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₂₈₇: n_l1___5→l4
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___7
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___3
Found invariant X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___6
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___5
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___2
Found invariant X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 1 ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1
Found invariant 1+X₇ ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 1 ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Found invariant X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 1 ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ 1+X₂ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___1
Found invariant X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___4
knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₂₇₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___7(X₀, X₁, X₂, X₃, X₄+1, X₇, X₄+1, X₇) :|: X₄+1 ≤ X₆ ∧ 1+X₅ ≤ X₇ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₄+1 ≤ X₆ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1+X₃ ≤ X₀ ∧ X₆ ≤ 1+X₄ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ X₆ ≤ 1+X₄ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 1 ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₂₇₄: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₃ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₇₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 0 ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₇₆: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₄+1, X₅) :|: 1+X₅ ≤ X₀ ∧ X₄ ≤ 0 ∧ X₅ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₂₇₈: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅, X₄+1, X₅) :|: 1+X₃ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₂₈₅: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 2 ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₈₆: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇+1 ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 1 ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ 1+X₂ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₇₀: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___4(X₀, X₁, X₂, X₃, X₄+1, X₇, X₄+1, X₇) :|: X₄+1 ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₇ ∧ X₄+1 ≤ X₆ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1+X₃ ≤ X₀ ∧ X₆ ≤ 1+X₄ ∧ X₅ ≤ X₇ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₆ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ X₆ ≤ 1+X₄ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 1 ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ 1+X₂ ∧ X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
MPRF for transition t₂₇₁: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___4(X₀, X₁, X₂, X₃, X₄+1, X₇, X₄+1, X₇) :|: X₂ ≤ X₇ ∧ X₄+1 ≤ X₆ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₇ ∧ X₄+1 ≤ X₆ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1+X₃ ≤ X₀ ∧ X₆ ≤ 1+X₄ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₅ ≤ X₇ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₆ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ X₆ ≤ 1+X₄ ∧ X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+2⋅X₁+X₀+X₆+1 {O(n^2)}
MPRF for transition t₂₇₃: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₅ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₇ ∧ X₇ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+2⋅X₁+X₀+X₆+1 {O(n^2)}
MPRF for transition t₂₇₇: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅, X₄+1, X₅) :|: X₂ ≤ X₅ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₅ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+2⋅X₁+X₀+X₆+1 {O(n^2)}
MPRF for transition t₂₈₄: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:3⋅X₀⋅X₁+2⋅X₂+4⋅X₀+4⋅X₁+10 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: X₀+1 {O(n)}
t₆: 1 {O(1)}
t₇: X₀⋅X₁+X₀+X₁+1 {O(n^2)}
t₈: X₀+1 {O(n)}
t₉: X₀⋅X₁+X₁ {O(n^2)}
t₁₀: X₁+X₂ {O(n)}
t₁₁: X₀⋅X₁+X₁ {O(n^2)}
t₁₂: X₂ {O(n)}
t₁₃: X₀ {O(n)}
t₁₄: 1 {O(1)}
Costbounds
Overall costbound: 3⋅X₀⋅X₁+2⋅X₂+4⋅X₀+4⋅X₁+10 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: X₀+1 {O(n)}
t₆: 1 {O(1)}
t₇: X₀⋅X₁+X₀+X₁+1 {O(n^2)}
t₈: X₀+1 {O(n)}
t₉: X₀⋅X₁+X₁ {O(n^2)}
t₁₀: X₁+X₂ {O(n)}
t₁₁: X₀⋅X₁+X₁ {O(n^2)}
t₁₂: X₂ {O(n)}
t₁₃: X₀ {O(n)}
t₁₄: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: 0 {O(1)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₀+X₂ {O(n)}
t₅, X₄: 0 {O(1)}
t₅, X₅: X₀+X₂ {O(n)}
t₅, X₆: 2⋅X₀⋅X₁+2⋅X₁+X₆+2 {O(n^2)}
t₅, X₇: 2⋅X₀+2⋅X₂+X₇ {O(n)}
t₆, X₀: 2⋅X₀ {O(n)}
t₆, X₁: 2⋅X₁ {O(n)}
t₆, X₂: 2⋅X₂ {O(n)}
t₆, X₃: X₀+X₂ {O(n)}
t₆, X₄: X₀⋅X₁+X₁+X₄ {O(n^2)}
t₆, X₅: X₀+X₂+X₅ {O(n)}
t₆, X₆: 2⋅X₀⋅X₁+2⋅X₁+2⋅X₆+2 {O(n^2)}
t₆, X₇: 2⋅X₀+2⋅X₂+2⋅X₇ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₀+X₂ {O(n)}
t₇, X₄: X₀⋅X₁+X₁ {O(n^2)}
t₇, X₅: X₀+X₂ {O(n)}
t₇, X₆: 4⋅X₀⋅X₁+4⋅X₁+X₆+4 {O(n^2)}
t₇, X₇: 4⋅X₀+4⋅X₂+X₇ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: 2⋅X₀+2⋅X₂ {O(n)}
t₈, X₄: X₀⋅X₁+X₁ {O(n^2)}
t₈, X₅: X₀+X₂ {O(n)}
t₈, X₆: 2⋅X₀⋅X₁+2⋅X₁+X₆+2 {O(n^2)}
t₈, X₇: 2⋅X₀+2⋅X₂+X₇ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₀+X₂ {O(n)}
t₉, X₄: X₀⋅X₁+X₁ {O(n^2)}
t₉, X₅: X₀+X₂ {O(n)}
t₉, X₆: X₀⋅X₁+X₁+1 {O(n^2)}
t₉, X₇: X₀+X₂ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₀+X₂ {O(n)}
t₁₀, X₄: X₀⋅X₁+X₁ {O(n^2)}
t₁₀, X₅: X₀+X₂ {O(n)}
t₁₀, X₆: X₀⋅X₁+X₁+1 {O(n^2)}
t₁₀, X₇: X₀+X₂ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₀+X₂ {O(n)}
t₁₁, X₄: X₀⋅X₁+X₁ {O(n^2)}
t₁₁, X₅: X₀+X₂ {O(n)}
t₁₁, X₆: 2⋅X₀⋅X₁+2⋅X₁+2 {O(n^2)}
t₁₁, X₇: 2⋅X₀+2⋅X₂ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₀+X₂ {O(n)}
t₁₂, X₄: X₀⋅X₁+X₁ {O(n^2)}
t₁₂, X₅: X₀+X₂ {O(n)}
t₁₂, X₆: X₀⋅X₁+X₁+1 {O(n^2)}
t₁₂, X₇: X₀+X₂ {O(n)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₁ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₀+X₂ {O(n)}
t₁₃, X₄: X₀⋅X₁+X₁ {O(n^2)}
t₁₃, X₅: X₀+X₂ {O(n)}
t₁₃, X₆: 2⋅X₀⋅X₁+2⋅X₁+X₆+2 {O(n^2)}
t₁₃, X₇: 2⋅X₀+2⋅X₂+X₇ {O(n)}
t₁₄, X₀: 5⋅X₀ {O(n)}
t₁₄, X₁: 5⋅X₁ {O(n)}
t₁₄, X₂: 5⋅X₂ {O(n)}
t₁₄, X₃: 3⋅X₃+X₀+X₂ {O(n)}
t₁₄, X₄: X₀⋅X₁+4⋅X₄+X₁ {O(n^2)}
t₁₄, X₅: 4⋅X₅+X₀+X₂ {O(n)}
t₁₄, X₆: 2⋅X₀⋅X₁+2⋅X₁+5⋅X₆+2 {O(n^2)}
t₁₄, X₇: 2⋅X₀+2⋅X₂+5⋅X₇ {O(n)}