Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇
Temp_Vars: C1, D1, E1, F1, G1, H1, I1, J1, K1, L1, M1, N1, O1, P1, Q1, R1, S1, T1, U1
Locations: l0, l1, l2, l3
Transitions:
t₉: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l1(X₀, X₁, C1, X₃, X₄, X₅, X₆, X₇, C1, 2, D1, F1, D1, X₁₃, X₁₄, E1, D1, G1, 2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) :|: 2 ≤ C1
t₁₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l3(X₀, 0, C1, 0, X₄, X₅, X₆, X₇, N1, L1, O1, R1, Q1, X₁₃, X₁₄, M1, P1, X₁₇, X₁₈, E1, D1, F1, G1, K1, S1, T1, U1, X₂₇) :|: H1 ≤ 0 ∧ I1 ≤ 0 ∧ C1 ≤ 0 ∧ J1 ≤ 0
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1+X₉, X₁₁, C1, X₁₁, E1, X₉, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) :|: X₉+1 ≤ X₈ ∧ 0 ≤ X₉
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l2(X₀, X₁₀, C1, E1, X₄, X₅, X₆, X₇, G1, F1, K1, N1, M1, X₁₃, X₁₄, X₁₅, L1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, O1, P1, X₂₆, D1) :|: X₈ ≤ X₉ ∧ 0 ≤ X₉ ∧ 2 ≤ Q1 ∧ Q1 ≤ F1 ∧ 0 ≤ F1 ∧ C1 ≤ D1 ∧ 2 ≤ C1 ∧ X₁₀+1 ≤ 0 ∧ E1+1 ≤ 0
t₁₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l2(X₀, X₁₀, C1, E1, X₄, X₅, X₆, X₇, G1, F1, K1, N1, M1, X₁₃, X₁₄, X₁₅, L1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, O1, P1, X₂₆, D1) :|: X₈ ≤ X₉ ∧ 0 ≤ X₉ ∧ 2 ≤ Q1 ∧ Q1 ≤ F1 ∧ 0 ≤ F1 ∧ C1 ≤ D1 ∧ 2 ≤ C1 ∧ X₁₀+1 ≤ 0 ∧ 1 ≤ E1
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l2(X₀, X₁₀, C1, E1, X₄, X₅, X₆, X₇, G1, F1, K1, N1, M1, X₁₃, X₁₄, X₁₅, L1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, O1, P1, X₂₆, D1) :|: X₈ ≤ X₉ ∧ 0 ≤ X₉ ∧ 2 ≤ Q1 ∧ Q1 ≤ F1 ∧ 0 ≤ F1 ∧ C1 ≤ D1 ∧ 2 ≤ C1 ∧ 1 ≤ X₁₀ ∧ E1+1 ≤ 0
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l2(X₀, X₁₀, C1, E1, X₄, X₅, X₆, X₇, G1, F1, K1, N1, M1, X₁₃, X₁₄, X₁₅, L1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, O1, P1, X₂₆, D1) :|: X₈ ≤ X₉ ∧ 0 ≤ X₉ ∧ 2 ≤ Q1 ∧ Q1 ≤ F1 ∧ 0 ≤ F1 ∧ C1 ≤ D1 ∧ 2 ≤ C1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ E1
t₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l2(X₀, X₁, C1, E1, X₁, X₆, X₆, X₀, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ D1+1 ≤ 0 ∧ E1+1 ≤ 0 ∧ X₁+1 ≤ 0
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l2(X₀, X₁, C1, E1, X₁, X₆, X₆, X₀, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ D1+1 ≤ 0 ∧ E1+1 ≤ 0 ∧ 1 ≤ X₁
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l2(X₀, X₁, C1, E1, X₁, X₆, X₆, X₀, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ D1+1 ≤ 0 ∧ 1 ≤ E1 ∧ X₁+1 ≤ 0
t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l2(X₀, X₁, C1, E1, X₁, X₆, X₆, X₀, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ D1+1 ≤ 0 ∧ 1 ≤ E1 ∧ 1 ≤ X₁
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l2(X₀, X₁, C1, E1, X₁, X₆, X₆, X₀, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ 1 ≤ D1 ∧ E1+1 ≤ 0 ∧ X₁+1 ≤ 0
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l2(X₀, X₁, C1, E1, X₁, X₆, X₆, X₀, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ 1 ≤ D1 ∧ E1+1 ≤ 0 ∧ 1 ≤ X₁
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l2(X₀, X₁, C1, E1, X₁, X₆, X₆, X₀, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ 1 ≤ D1 ∧ 1 ≤ E1 ∧ X₁+1 ≤ 0
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) → l2(X₀, X₁, C1, E1, X₁, X₆, X₆, X₀, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ 1 ≤ D1 ∧ 1 ≤ E1 ∧ 1 ≤ X₁
Eliminate variables {M1,P1,S1,T1,U1,X₂,X₃,X₄,X₅,X₆,X₇,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆,X₂₇} that do not contribute to the problem
Found invariant 2 ≤ X₃ for location l2
Found invariant X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location l1
Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l3
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: C1, D1, E1, F1, G1, H1, I1, J1, K1, L1, N1, O1, Q1, R1
Locations: l0, l1, l2, l3
Transitions:
t₃₇: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, C1, 2, D1, F1) :|: 2 ≤ C1
t₃₈: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, 0, N1, L1, O1, R1) :|: H1 ≤ 0 ∧ I1 ≤ 0 ∧ C1 ≤ 0 ∧ J1 ≤ 0
t₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, 1+X₃, X₅, C1) :|: X₃+1 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2 ≤ X₂
t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₄, G1, F1, K1, N1) :|: X₂ ≤ X₃ ∧ 0 ≤ X₃ ∧ 2 ≤ Q1 ∧ Q1 ≤ F1 ∧ 0 ≤ F1 ∧ C1 ≤ D1 ∧ 2 ≤ C1 ∧ X₄+1 ≤ 0 ∧ E1+1 ≤ 0 ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2 ≤ X₂
t₄₁: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₄, G1, F1, K1, N1) :|: X₂ ≤ X₃ ∧ 0 ≤ X₃ ∧ 2 ≤ Q1 ∧ Q1 ≤ F1 ∧ 0 ≤ F1 ∧ C1 ≤ D1 ∧ 2 ≤ C1 ∧ X₄+1 ≤ 0 ∧ 1 ≤ E1 ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2 ≤ X₂
t₄₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₄, G1, F1, K1, N1) :|: X₂ ≤ X₃ ∧ 0 ≤ X₃ ∧ 2 ≤ Q1 ∧ Q1 ≤ F1 ∧ 0 ≤ F1 ∧ C1 ≤ D1 ∧ 2 ≤ C1 ∧ 1 ≤ X₄ ∧ E1+1 ≤ 0 ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2 ≤ X₂
t₄₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₄, G1, F1, K1, N1) :|: X₂ ≤ X₃ ∧ 0 ≤ X₃ ∧ 2 ≤ Q1 ∧ Q1 ≤ F1 ∧ 0 ≤ F1 ∧ C1 ≤ D1 ∧ 2 ≤ C1 ∧ 1 ≤ X₄ ∧ 1 ≤ E1 ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2 ≤ X₂
t₄₄: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ D1+1 ≤ 0 ∧ E1+1 ≤ 0 ∧ X₁+1 ≤ 0 ∧ 2 ≤ X₃
t₄₅: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ D1+1 ≤ 0 ∧ E1+1 ≤ 0 ∧ 1 ≤ X₁ ∧ 2 ≤ X₃
t₄₆: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ D1+1 ≤ 0 ∧ 1 ≤ E1 ∧ X₁+1 ≤ 0 ∧ 2 ≤ X₃
t₄₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ D1+1 ≤ 0 ∧ 1 ≤ E1 ∧ 1 ≤ X₁ ∧ 2 ≤ X₃
t₄₈: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ 1 ≤ D1 ∧ E1+1 ≤ 0 ∧ X₁+1 ≤ 0 ∧ 2 ≤ X₃
t₄₉: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ 1 ≤ D1 ∧ E1+1 ≤ 0 ∧ 1 ≤ X₁ ∧ 2 ≤ X₃
t₅₀: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ 1 ≤ D1 ∧ 1 ≤ E1 ∧ X₁+1 ≤ 0 ∧ 2 ≤ X₃
t₅₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₀ ∧ 2 ≤ C1 ∧ 1 ≤ D1 ∧ 1 ≤ E1 ∧ 1 ≤ X₁ ∧ 2 ≤ X₃
Found invariant 2 ≤ X₃ for location l2
Found invariant X₃ ≤ 2 ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location l1
Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l3
Found invariant X₃ ≤ X₂ ∧ 3 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l1___1
Found invariant 2 ≤ X₃ for location l2
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l2___1
Found invariant 2 ≤ X₃ ∧ 3+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₀ for location n_l2___2
Found invariant X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location l1
Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l3
Overall timebound:inf {Infinity}
t₃₇: 1 {O(1)}
t₃₈: 1 {O(1)}
t₃₉: inf {Infinity}
t₄₀: 1 {O(1)}
t₄₁: 1 {O(1)}
t₄₂: 1 {O(1)}
t₄₃: 1 {O(1)}
t₄₄: inf {Infinity}
t₄₅: inf {Infinity}
t₄₆: inf {Infinity}
t₄₇: inf {Infinity}
t₄₈: inf {Infinity}
t₄₉: inf {Infinity}
t₅₀: inf {Infinity}
t₅₁: inf {Infinity}
Overall costbound: inf {Infinity}
t₃₇: 1 {O(1)}
t₃₈: 1 {O(1)}
t₃₉: inf {Infinity}
t₄₀: 1 {O(1)}
t₄₁: 1 {O(1)}
t₄₂: 1 {O(1)}
t₄₃: 1 {O(1)}
t₄₄: inf {Infinity}
t₄₅: inf {Infinity}
t₄₆: inf {Infinity}
t₄₇: inf {Infinity}
t₄₈: inf {Infinity}
t₄₉: inf {Infinity}
t₅₀: inf {Infinity}
t₅₁: inf {Infinity}
t₃₇, X₀: X₀ {O(n)}
t₃₇, X₁: X₁ {O(n)}
t₃₇, X₃: 2 {O(1)}
t₃₈, X₀: X₀ {O(n)}
t₃₈, X₁: 0 {O(1)}
t₃₉, X₀: X₀ {O(n)}
t₃₉, X₁: X₁ {O(n)}
t₄₀, X₀: 2⋅X₀ {O(n)}
t₄₁, X₀: 2⋅X₀ {O(n)}
t₄₂, X₀: 2⋅X₀ {O(n)}
t₄₃, X₀: 2⋅X₀ {O(n)}
t₄₄, X₀: 4⋅X₀ {O(n)}
t₄₅, X₀: 4⋅X₀ {O(n)}
t₄₆, X₀: 4⋅X₀ {O(n)}
t₄₇, X₀: 4⋅X₀ {O(n)}
t₄₈, X₀: 4⋅X₀ {O(n)}
t₄₉, X₀: 4⋅X₀ {O(n)}
t₅₀, X₀: 4⋅X₀ {O(n)}
t₅₁, X₀: 4⋅X₀ {O(n)}