Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4
Transitions:
t₉: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₂, X₂, X₄, X₄, X₀)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₃ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₅, X₄, X₅) :|: 1 ≤ X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₅-1, X₄, X₅) :|: 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
t₀: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₅, X₄, X₅) :|: X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅
Preprocessing
Cut unsatisfiable transition t₃: l1→l3
Cut unsatisfiable transition t₈: l2→l2
Found invariant X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1
Found invariant X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l4
Found invariant X₅ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4
Transitions:
t₉: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₂, X₂, X₄, X₄, X₀)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₅, X₄, X₅) :|: 1 ≤ X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₅-1, X₄, X₅) :|: 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₀: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₅, X₄, X₅) :|: X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀ {O(n)}
MPRF for transition t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁-1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀+1 {O(n)}
TWN: t₄: l1→l1
cycle: [t₄: l1→l1]
loop: (1 ≤ X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅,(X₀,X₁,X₃,X₅) -> (X₀,X₁-1,X₃,X₅)
order: [X₀; X₁; X₃; X₅]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₃: X₃
X₅: X₅
Termination: true
Formula:
X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
Stabilization-Threshold for: 0 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: 1+X₁
M: 0
N: 1
Bound: 2⋅X₁+4 {O(n)}
loop: (1 ≤ X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅,(X₀,X₁,X₃,X₅) -> (X₀,X₁-1,X₃,X₅)
order: [X₀; X₁; X₃; X₅]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * -1 * n^1
X₃: X₃
X₅: X₅
Termination: true
Formula:
X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ < X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ < X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ < X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < 0 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 < X₃
∨ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1 ≤ X₃ ∧ X₃ ≤ 1
Stabilization-Threshold for: 0 ≤ X₁
alphas_abs: X₁
M: 0
N: 1
Bound: 2⋅X₁+2 {O(n)}
Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: 1+X₁
M: 0
N: 1
Bound: 2⋅X₁+4 {O(n)}
TWN - Lifting for t₄: l1→l1 of 4⋅X₁+12 {O(n)}
relevant size-bounds w.r.t. t₁:
X₁: X₂ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 4⋅X₂+12 {O(n)}
TWN - Lifting for t₄: l1→l1 of 4⋅X₁+12 {O(n)}
relevant size-bounds w.r.t. t₇:
X₁: 4⋅X₀ {O(n)}
Runtime-bound of t₇: 2⋅X₀+1 {O(n)}
Results in: 32⋅X₀⋅X₀+40⋅X₀+12 {O(n^2)}
Chain transitions t₂: l4→l2 and t₆: l2→l3 to t₅₈: l4→l3
Chain transitions t₅: l1→l2 and t₆: l2→l3 to t₅₉: l1→l3
Chain transitions t₅: l1→l2 and t₇: l2→l1 to t₆₀: l1→l1
Chain transitions t₂: l4→l2 and t₇: l2→l1 to t₆₁: l4→l1
Analysing control-flow refined program
Found invariant X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1
Found invariant X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l4
Found invariant X₅ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₀ for location l3
knowledge_propagation leads to new time bound 32⋅X₀⋅X₀+4⋅X₂+40⋅X₀+25 {O(n^2)} for transition t₆₀: l1(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l1(X₀, X₅-1, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₃ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ 2⋅X₅ ∧ 0 ≤ 0 ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₅+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1
Found invariant X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l4
Found invariant X₅ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₀ for location l3
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___1
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₀+1 {O(n)} for transition t₁₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___1(X₀, X₁-1, X₂, X₃, X₄, X₀) :|: 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___1(X₀, X₁-1, X₂, X₃, X₄, X₀) :|: 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
MPRF for transition t₁₁₄: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___1(X₀, X₁-1, X₂, X₃, X₄, X₀) :|: 1 ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
8⋅X₀⋅X₀+6⋅X₀+X₂+2 {O(n^2)}
MPRF for transition t₁₁₉: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₅, X₂, X₃-1, X₄, X₅) :|: 1 ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀ {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:32⋅X₀⋅X₀+4⋅X₂+44⋅X₀+30 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 32⋅X₀⋅X₀+4⋅X₂+40⋅X₀+24 {O(n^2)}
t₅: 2⋅X₀ {O(n)}
t₆: 1 {O(1)}
t₇: 2⋅X₀+1 {O(n)}
t₉: 1 {O(1)}
Costbounds
Overall costbound: 32⋅X₀⋅X₀+4⋅X₂+44⋅X₀+30 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₄: 32⋅X₀⋅X₀+4⋅X₂+40⋅X₀+24 {O(n^2)}
t₅: 2⋅X₀ {O(n)}
t₆: 1 {O(1)}
t₇: 2⋅X₀+1 {O(n)}
t₉: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₂ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₀ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₀ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₂ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₀ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₀ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₀ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₀ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₀ {O(n)}
t₄, X₀: 2⋅X₀ {O(n)}
t₄, X₁: 4⋅X₀+X₂ {O(n)}
t₄, X₂: 2⋅X₂ {O(n)}
t₄, X₃: 2⋅X₀ {O(n)}
t₄, X₄: 2⋅X₄ {O(n)}
t₄, X₅: 2⋅X₀ {O(n)}
t₅, X₀: 2⋅X₀ {O(n)}
t₅, X₁: 3⋅X₀ {O(n)}
t₅, X₂: 2⋅X₂ {O(n)}
t₅, X₃: 2⋅X₀ {O(n)}
t₅, X₄: 2⋅X₄ {O(n)}
t₅, X₅: 2⋅X₀ {O(n)}
t₆, X₀: 3⋅X₀ {O(n)}
t₆, X₁: 4⋅X₀ {O(n)}
t₆, X₂: 3⋅X₂ {O(n)}
t₆, X₃: 0 {O(1)}
t₆, X₄: 3⋅X₄ {O(n)}
t₆, X₅: 3⋅X₀ {O(n)}
t₇, X₀: 2⋅X₀ {O(n)}
t₇, X₁: 4⋅X₀ {O(n)}
t₇, X₂: 2⋅X₂ {O(n)}
t₇, X₃: 2⋅X₀ {O(n)}
t₇, X₄: 2⋅X₄ {O(n)}
t₇, X₅: 2⋅X₀ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₂ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₄ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₀ {O(n)}