Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1, nondef_2, nondef_3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l34, l35, l36, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₁: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₃: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇)
t₅₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+2 ≤ X₂
t₅₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 2+X₆
t₇₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇)
t₇₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇)
t₇₃: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃
t₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₁₀: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_0 ≤ 0 ∧ 0 ≤ nondef_0
t₁₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_0+1
t₁₂: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_0 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_0 ∧ 2⋅nondef_0 < X₃+3
t₁₃: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_0 ≤ 0 ∧ 0 ≤ nondef_0
t₁₄: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_0+1
t₁₅: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_0 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_0 ∧ 2⋅nondef_0 < X₃+3
t₆₇: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₄+1)
t₆₈: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₄+2)
t₆₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ ≤ X₂ ∧ X₂ ≤ X₆+3+2⋅X₄
t₆₃: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ < X₂
t₆₄: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆+3+2⋅X₄
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆₅: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆₆: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆₉: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇₀: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, X₂, X₅, X₆, X₇)
t₇₁: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, X₇, X₅, X₆, X₇)
t₆₁: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆+3+2⋅X₄
t₆₀: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ ≤ X₂
t₁₆: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₁₇: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₁₈: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₁₉: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₂₀: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₂₁: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₂₂: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₂₃: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₂₄: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_1 ≤ 0 ∧ 0 ≤ nondef_1 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₂₅: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₂₆: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₂₇: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₂₈: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₂₉: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₃₀: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₃₁: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₃₂: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₃₃: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₃₄: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₃₅: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₃₆: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_2 ≤ 0 ∧ 0 ≤ nondef_2 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₃₇: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₃₈: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₃₉: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₄₀: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef_3 ≤ 0 ∧ 0 ≤ nondef_3
t₄₁: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1
t₄₂: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: X₃+1 < 0 ∧ nondef_1 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_1 ∧ 2⋅nondef_1 < X₃+3 ∧ X₃+1 < 0 ∧ nondef_2 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_2 ∧ 2⋅nondef_2 < X₃+3 ∧ X₃+1 < 0 ∧ nondef_3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef_3 ∧ 2⋅nondef_3 < X₃+3
t₅₉: l36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 2
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇) :|: 2 < X₂
t₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 1+X₅
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, X₅, X₄, X₅, X₆, X₇) :|: X₅+1 ≤ X₂
t₄₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₀, X₆, X₇)
t₄₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₅+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
Preprocessing
Cut unsatisfiable transition t₁₀: l26→l35
Cut unsatisfiable transition t₁₂: l26→l35
Cut unsatisfiable transition t₁₃: l26→l8
Cut unsatisfiable transition t₁₅: l26→l8
Cut unsatisfiable transition t₁₇: l35→l25
Cut unsatisfiable transition t₁₈: l35→l25
Cut unsatisfiable transition t₁₉: l35→l25
Cut unsatisfiable transition t₂₀: l35→l25
Cut unsatisfiable transition t₂₁: l35→l25
Cut unsatisfiable transition t₂₂: l35→l25
Cut unsatisfiable transition t₂₃: l35→l25
Cut unsatisfiable transition t₂₄: l35→l25
Cut unsatisfiable transition t₂₅: l35→l25
Cut unsatisfiable transition t₂₆: l35→l25
Cut unsatisfiable transition t₂₇: l35→l25
Cut unsatisfiable transition t₂₈: l35→l25
Cut unsatisfiable transition t₃₀: l35→l25
Cut unsatisfiable transition t₃₁: l35→l25
Cut unsatisfiable transition t₃₂: l35→l25
Cut unsatisfiable transition t₃₃: l35→l25
Cut unsatisfiable transition t₃₄: l35→l25
Cut unsatisfiable transition t₃₅: l35→l25
Cut unsatisfiable transition t₃₆: l35→l25
Cut unsatisfiable transition t₃₇: l35→l25
Cut unsatisfiable transition t₃₈: l35→l25
Cut unsatisfiable transition t₃₉: l35→l25
Cut unsatisfiable transition t₄₀: l35→l25
Cut unsatisfiable transition t₄₁: l35→l25
Cut unsatisfiable transition t₆₄: l29→l30
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l11
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l25
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l27
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l24
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l32
Found invariant X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂ for location l6
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l15
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l31
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l33
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location l30
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l35
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l19
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l26
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l29
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l23
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l12
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l17
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location l28
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location l7
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l21
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l20
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l13
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l8
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l22
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l16
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location l9
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l10
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l18
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l36
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l14
Cut unsatisfiable transition t₁₆: l35→l25
Cut unsatisfiable transition t₄₂: l35→l25
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0, nondef_1, nondef_2, nondef_3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l34, l35, l36, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₄₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₄₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₄₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₁: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₃: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇) :|: X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+2 ≤ X₂ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 2+X₆ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₇₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁
t₇₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₇₃: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁
t₈: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₁₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_0+1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₁₄: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_0+1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₆₇: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₄+1) :|: 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₆₈: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₄+2) :|: 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
t₆₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ ≤ X₂ ∧ X₂ ≤ X₆+3+2⋅X₄ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₆₃: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ < X₂ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆₅: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
t₆₆: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂
t₆₉: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₇₀: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, X₂, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₇₁: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, X₇, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₆₁: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆+3+2⋅X₄ ∧ 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₆₀: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₂₉: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₅₉: l36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 2
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇) :|: 2 < X₂
t₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l34(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 1+X₅ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, X₅, X₄, X₅, X₆, X₇) :|: X₅+1 ≤ X₂ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂
t₄₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₀, X₆, X₇) :|: 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
t₄₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₅+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₄₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀
MPRF for transition t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, X₅, X₄, X₅, X₆, X₇) :|: X₅+1 ≤ X₂ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+2 {O(n)}
MPRF for transition t₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+2 {O(n)}
MPRF for transition t₁₄: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_0+1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₄₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₅+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂+3 {O(n)}
MPRF for transition t₄₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₄₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₀, X₆, X₇) :|: 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₈: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
6⋅X₂⋅X₂+15⋅X₂+12 {O(n^2)}
MPRF for transition t₁₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_0+1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
12⋅X₂⋅X₂+28⋅X₂+20 {O(n^2)}
MPRF for transition t₂₉: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l25(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
6⋅X₂⋅X₂+14⋅X₂+10 {O(n^2)}
Chain transitions t₆: l6→l25 and t₉: l25→l8 to t₄₁₉: l6→l8
Chain transitions t₂₉: l35→l25 and t₉: l25→l8 to t₄₂₀: l35→l8
Chain transitions t₂₉: l35→l25 and t₈: l25→l26 to t₄₂₁: l35→l26
Chain transitions t₆: l6→l25 and t₈: l25→l26 to t₄₂₂: l6→l26
Chain transitions t₄₂₂: l6→l26 and t₁₄: l26→l8 to t₄₂₃: l6→l8
Chain transitions t₄₂₁: l35→l26 and t₁₄: l26→l8 to t₄₂₄: l35→l8
Chain transitions t₄₂₁: l35→l26 and t₁₁: l26→l35 to t₄₂₅: l35→l35
Chain transitions t₄₂₂: l6→l26 and t₁₁: l26→l35 to t₄₂₆: l6→l35
Chain transitions t₄₅: l7→l6 and t₄₂₃: l6→l8 to t₄₂₇: l7→l8
Chain transitions t₄: l4→l6 and t₄₂₃: l6→l8 to t₄₂₈: l4→l8
Chain transitions t₄: l4→l6 and t₄₁₉: l6→l8 to t₄₂₉: l4→l8
Chain transitions t₄₅: l7→l6 and t₄₁₉: l6→l8 to t₄₃₀: l7→l8
Chain transitions t₄: l4→l6 and t₄₂₆: l6→l35 to t₄₃₁: l4→l35
Chain transitions t₄₅: l7→l6 and t₄₂₆: l6→l35 to t₄₃₂: l7→l35
Chain transitions t₄: l4→l6 and t₄₂₂: l6→l26 to t₄₃₃: l4→l26
Chain transitions t₄₅: l7→l6 and t₄₂₂: l6→l26 to t₄₃₄: l7→l26
Chain transitions t₄: l4→l6 and t₆: l6→l25 to t₄₃₅: l4→l25
Chain transitions t₄₅: l7→l6 and t₆: l6→l25 to t₄₃₆: l7→l25
Chain transitions t₄: l4→l6 and t₇: l6→l11 to t₄₃₇: l4→l11
Chain transitions t₄₅: l7→l6 and t₇: l6→l11 to t₄₃₈: l7→l11
Chain transitions t₄₄: l9→l7 and t₄₃₀: l7→l8 to t₄₃₉: l9→l8
Chain transitions t₄₄: l9→l7 and t₄₂₇: l7→l8 to t₄₄₀: l9→l8
Chain transitions t₄₄: l9→l7 and t₄₅: l7→l6 to t₄₄₁: l9→l6
Chain transitions t₄₄: l9→l7 and t₄₃₂: l7→l35 to t₄₄₂: l9→l35
Chain transitions t₄₄: l9→l7 and t₄₃₄: l7→l26 to t₄₄₃: l9→l26
Chain transitions t₄₄: l9→l7 and t₄₃₆: l7→l25 to t₄₄₄: l9→l25
Chain transitions t₄₄: l9→l7 and t₄₃₈: l7→l11 to t₄₄₅: l9→l11
Chain transitions t₄₄₀: l9→l8 and t₄₃: l8→l9 to t₄₄₆: l9→l9
Chain transitions t₄₃₉: l9→l8 and t₄₃: l8→l9 to t₄₄₇: l9→l9
Chain transitions t₄₂₉: l4→l8 and t₄₃: l8→l9 to t₄₄₈: l4→l9
Chain transitions t₄₂₈: l4→l8 and t₄₃: l8→l9 to t₄₄₉: l4→l9
Chain transitions t₄₂₄: l35→l8 and t₄₃: l8→l9 to t₄₅₀: l35→l9
Chain transitions t₄₂₀: l35→l8 and t₄₃: l8→l9 to t₄₅₁: l35→l9
Analysing control-flow refined program
Cut unsatisfiable transition t₄₂₉: l4→l8
Cut unsatisfiable transition t₄₃₇: l4→l11
Cut unsatisfiable transition t₄₃₉: l9→l8
Cut unsatisfiable transition t₄₄₇: l9→l9
Cut unsatisfiable transition t₄₄₈: l4→l9
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l11
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l25
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l27
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l24
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 4 ≤ X₂+X₇ ∧ 4 ≤ X₀+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l32
Found invariant X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂ for location l6
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l15
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 4 ≤ X₂+X₇ ∧ 4 ≤ X₀+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l31
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l33
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 4+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 8 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 4+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 4 ≤ X₂ ∧ 8 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 4 ≤ X₀ for location l30
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l35
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l19
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l26
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l29
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l23
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l12
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l17
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 4+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 8 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 4+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 4 ≤ X₂ ∧ 8 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 4 ≤ X₀ for location l28
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location l7
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l21
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l20
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l13
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l8
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l22
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l16
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location l9
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l10
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l18
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l36
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l14
MPRF for transition t₄₄₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{5}> l35(X₀, X₁, X₂, X₀, X₄, X₀, X₆, X₇) :|: X₀+1 ≤ X₂ ∧ 0 < X₀ ∧ 0 < 1+X₀ ∧ 0 ≤ Temp_Int₂₇₇₃ ∧ 2⋅Temp_Int₂₇₇₃ ≤ 1+X₀ ∧ X₀ < 2⋅Temp_Int₂₇₇₃+1 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 4 ≤ X₂+X₀ ∧ 3 ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 4 ≤ X₂+X₀ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 3 ≤ X₂+X₀ ∧ 3 ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 2 ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 4 ≤ X₂+X₀ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 4 ≤ X₂+X₀ ∧ 3 ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₂+4 {O(n)}
MPRF for transition t₄₄₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{6}> l9(X₀+1, X₁, X₂, X₀, X₄, X₀, X₆, X₇) :|: X₀+1 ≤ X₂ ∧ 0 < X₀ ∧ 0 < 1+X₀ ∧ 0 ≤ Temp_Int₂₇₅₆ ∧ 2⋅Temp_Int₂₇₅₆ ≤ 1+X₀ ∧ X₀ < 2⋅Temp_Int₂₇₅₆+1 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 4 ≤ X₂+X₀ ∧ 3 ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 4 ≤ X₂+X₀ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 3 ≤ X₂+X₀ ∧ 3 ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 2 ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 4 ≤ X₂+X₀ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 4 ≤ X₂+X₀ ∧ 3 ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 4 ≤ X₂+X₀ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 3 ≤ X₂+X₀ ∧ 3 ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₂+3 {O(n)}
MPRF for transition t₄₅₀: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{4}> l9(X₅+1, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1 ∧ 1 < nondef_3 ∧ 0 < nondef_3 ∧ 0 ≤ Temp_Int₂₆₃₃ ∧ 2⋅Temp_Int₂₆₃₃ ≤ nondef_3 ∧ nondef_3 < 2+2⋅Temp_Int₂₆₃₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ nondef_3+X₅ ∧ nondef_3 ≤ 1+X₅ ∧ 4 ≤ X₂+X₅ ∧ nondef_3 ≤ X₂ ∧ 1 ≤ nondef_3 ∧ 4 ≤ X₂+nondef_3 ∧ 3 ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 3 ≤ nondef_3+X₅ ∧ nondef_3 ≤ 1+X₅ ∧ 4 ≤ X₂+X₅ ∧ nondef_3 ≤ X₂ ∧ 2 ≤ nondef_3 ∧ 5 ≤ X₂+nondef_3 ∧ 3 ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ nondef_3+X₅ ∧ nondef_3 ≤ 1+X₅ ∧ 4 ≤ X₂+X₅ ∧ nondef_3 ≤ X₂ ∧ 1 ≤ nondef_3 ∧ 4 ≤ X₂+nondef_3 ∧ 3 ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
2⋅X₂+3 {O(n)}
MPRF for transition t₄₅₁: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{3}> l9(X₅+1, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1 ∧ nondef_3 ≤ 1 ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ nondef_3+X₅ ∧ nondef_3 ≤ 1+X₅ ∧ 4 ≤ X₂+X₅ ∧ nondef_3 ≤ X₂ ∧ 1 ≤ nondef_3 ∧ 4 ≤ X₂+nondef_3 ∧ 3 ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ nondef_3+X₅ ∧ nondef_3 ≤ 1+X₅ ∧ 4 ≤ X₂+X₅ ∧ nondef_3 ≤ X₂ ∧ 1 ≤ nondef_3 ∧ 4 ≤ X₂+nondef_3 ∧ 3 ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
2⋅X₂+3 {O(n)}
MPRF for transition t₄₂₅: l35(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{3}> l35(X₀, X₁, X₂, nondef_3-1, X₄, X₅, X₆, X₇) :|: 0 < 1+X₃ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_1+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_2+1 ∧ 0 < 1+X₃ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef_3+1 ∧ 1 < nondef_3 ∧ 0 < nondef_3 ∧ 0 ≤ Temp_Int₂₆₄₂ ∧ 2⋅Temp_Int₂₆₄₂ ≤ nondef_3 ∧ nondef_3 < 2+2⋅Temp_Int₂₆₄₂ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ nondef_3+X₅ ∧ nondef_3 ≤ 1+X₅ ∧ 4 ≤ X₂+X₅ ∧ nondef_3 ≤ X₂ ∧ 1 ≤ nondef_3 ∧ 4 ≤ X₂+nondef_3 ∧ 3 ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 3 ≤ nondef_3+X₅ ∧ nondef_3 ≤ 1+X₅ ∧ 4 ≤ X₂+X₅ ∧ nondef_3 ≤ X₂ ∧ 2 ≤ nondef_3 ∧ 5 ≤ X₂+nondef_3 ∧ 3 ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
8⋅X₂⋅X₂+13⋅X₂ {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₇: l6→l11
Cut unsatisfiable transition t₇₅₅: n_l25___15→l8
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l27
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l26___10
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 4 ≤ X₂+X₇ ∧ 4 ≤ X₀+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l32
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 5 ≤ X₂+X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l6___5
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂ for location l6
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l8___8
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l19
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l29
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l26___14
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l7___6
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l9___2
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l12
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l20
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l35___9
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l22
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l10
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l18
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l7___1
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l14
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l11
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 4 ≤ X₂+X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l25___11
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l24
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l15
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 4 ≤ X₂+X₇ ∧ 4 ≤ X₀+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l31
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l33
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l9___4
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l9___7
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 4+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 8 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 4+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 4 ≤ X₂ ∧ 8 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 4 ≤ X₀ for location l30
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location n_l7___3
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l8___12
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l23
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l17
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 4+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 8 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 4+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 4 ≤ X₂ ∧ 8 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 4 ≤ X₀ for location l28
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l25___15
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l21
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l13
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₃ ≤ 0 ∧ 3+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l8
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l16
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 3 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₀ for location l36
Found invariant X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l35___13
Solv. Size Bound: t₆₀: l33→l29 for X₁
Solv. Size Bound: t₆₀: l33→l29 for X₄
cycle: [t₇₀: l31→l33; t₆₈: l28→l31; t₆₆: l30→l28; t₆₃: l29→l30; t₆₀: l33→l29]
loop: (2⋅X₄+3+X₆ ≤ X₂ ∧ X₂+3+X₆ < 0,(X₂,X₄) -> (X₂,X₂)
overappr. closed-form: 2⋅X₂ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₆₀: l33→l29 and X₄: 6⋅X₂ {O(n)}
Solv. Size Bound: t₆₂: l29→l27 for X₁
Solv. Size Bound: t₆₂: l29→l27 for X₄
cycle: [t₆₀: l33→l29; t₇₀: l31→l33; t₆₇: l27→l31; t₆₂: l29→l27]
loop: (2⋅X₄+3+X₆ ≤ X₂ ∧ X₂ ≤ X₆+3+2⋅X₄ ∧ 2⋅X₄+3+X₆ ≤ X₂,(X₂,X₄) -> (X₂,X₂)
overappr. closed-form: 2⋅X₂ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₆₂: l29→l27 and X₄: 8⋅X₂ {O(n)}
Solv. Size Bound: t₆₃: l29→l30 for X₁
Solv. Size Bound: t₆₃: l29→l30 for X₄
cycle: [t₆₀: l33→l29; t₇₀: l31→l33; t₆₇: l27→l31; t₆₅: l30→l27; t₆₃: l29→l30]
loop: (2⋅X₄+3+X₆ < X₂ ∧ 2⋅X₄+3+X₆ ≤ X₂,(X₂,X₄) -> (X₂,X₂)
overappr. closed-form: 2⋅X₂ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₆₃: l29→l30 and X₄: 8⋅X₂ {O(n)}
Solv. Size Bound: t₆₅: l30→l27 for X₁
Solv. Size Bound: t₆₅: l30→l27 for X₄
cycle: [t₆₃: l29→l30; t₆₀: l33→l29; t₇₀: l31→l33; t₆₇: l27→l31; t₆₅: l30→l27]
loop: (2⋅X₄+3+X₆ < X₂ ∧ 2⋅X₄+3+X₆ ≤ X₂,(X₂,X₄) -> (X₂,X₂)
overappr. closed-form: 2⋅X₂ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₆₅: l30→l27 and X₄: 8⋅X₂ {O(n)}
Solv. Size Bound: t₆₆: l30→l28 for X₁
Solv. Size Bound: t₆₆: l30→l28 for X₄
cycle: [t₆₃: l29→l30; t₆₀: l33→l29; t₇₀: l31→l33; t₆₈: l28→l31; t₆₆: l30→l28]
loop: (2⋅X₄+3+X₆ < X₂ ∧ 2⋅X₄+3+X₆ ≤ X₂,(X₂,X₄) -> (X₂,X₂)
overappr. closed-form: 2⋅X₂ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₆₆: l30→l28 and X₄: 6⋅X₂ {O(n)}
Solv. Size Bound: t₆₇: l27→l31 for X₁
Solv. Size Bound: t₆₇: l27→l31 for X₄
cycle: [t₆₅: l30→l27; t₆₃: l29→l30; t₆₀: l33→l29; t₇₀: l31→l33; t₆₇: l27→l31]
loop: (2⋅X₄+3+X₆ < X₂ ∧ 2⋅X₄+3+X₆ ≤ X₂,(X₂,X₄) -> (X₂,X₂)
overappr. closed-form: 2⋅X₂ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₆₇: l27→l31 and X₄: 8⋅X₂ {O(n)}
Solv. Size Bound: t₆₈: l28→l31 for X₁
Solv. Size Bound: t₆₈: l28→l31 for X₄
cycle: [t₆₆: l30→l28; t₆₃: l29→l30; t₆₀: l33→l29; t₇₀: l31→l33; t₆₈: l28→l31]
loop: (2⋅X₄+3+X₆ < X₂ ∧ 2⋅X₄+3+X₆ ≤ X₂,(X₂,X₄) -> (X₂,X₂)
overappr. closed-form: 2⋅X₂ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₆₈: l28→l31 and X₄: 6⋅X₂ {O(n)}
MPRF for transition t₅₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+2 ≤ X₂ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂+4 {O(n)}
MPRF for transition t₅₉: l36(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂+5 {O(n)}
MPRF for transition t₆₁: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆+3+2⋅X₄ ∧ 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₇₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₇₃: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
3⋅X₂+5 {O(n)}
MPRF for transition t₇₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇) :|: 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₆₀: l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂⋅X₂+2⋅X₂ {O(n^2)}
MPRF for transition t₆₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ ≤ X₂ ∧ X₂ ≤ X₆+3+2⋅X₄ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
4⋅X₂⋅X₂+12⋅X₂+8 {O(n^2)}
MPRF for transition t₆₃: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₄+3+X₆ < X₂ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+10⋅X₂+8 {O(n^2)}
MPRF for transition t₆₅: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+10⋅X₂+8 {O(n^2)}
MPRF for transition t₆₆: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+10⋅X₂+8 {O(n^2)}
MPRF for transition t₆₇: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₄+1) :|: 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+6⋅X₂ {O(n^2)}
MPRF for transition t₆₈: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₄+2) :|: 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ of depth 1:
new bound:
X₂⋅X₂+2⋅X₂ {O(n^2)}
MPRF for transition t₆₉: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂⋅X₂+2⋅X₂ {O(n^2)}
MPRF for transition t₇₀: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, X₂, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂⋅X₂+2⋅X₂ {O(n^2)}
MPRF for transition t₇₁: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l33(X₀, X₁, X₂, X₃, X₇, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
4⋅X₂⋅X₂+12⋅X₂+8 {O(n^2)}
Chain transitions t₇₄: l22→l21 and t₅₈: l21→l5 to t₁₃₅₀: l22→l5
Chain transitions t₅₆: l20→l21 and t₅₈: l21→l5 to t₁₃₅₁: l20→l5
Chain transitions t₅₆: l20→l21 and t₅₇: l21→l36 to t₁₃₅₂: l20→l36
Chain transitions t₇₄: l22→l21 and t₅₇: l21→l36 to t₁₃₅₃: l22→l36
Chain transitions t₇₃: l24→l22 and t₁₃₅₀: l22→l5 to t₁₃₅₄: l24→l5
Chain transitions t₇₃: l24→l22 and t₁₃₅₃: l22→l36 to t₁₃₅₅: l24→l36
Chain transitions t₇₃: l24→l22 and t₇₄: l22→l21 to t₁₃₅₆: l24→l21
Chain transitions t₆₁: l33→l23 and t₇₂: l23→l24 to t₁₃₅₇: l33→l24
Chain transitions t₁₃₅₇: l33→l24 and t₁₃₅₄: l24→l5 to t₁₃₅₈: l33→l5
Chain transitions t₁₃₅₇: l33→l24 and t₁₃₅₅: l24→l36 to t₁₃₅₉: l33→l36
Chain transitions t₁₃₅₇: l33→l24 and t₇₃: l24→l22 to t₁₃₆₀: l33→l22
Chain transitions t₁₃₅₇: l33→l24 and t₁₃₅₆: l24→l21 to t₁₃₆₁: l33→l21
Chain transitions t₆₅: l30→l27 and t₆₇: l27→l31 to t₁₃₆₂: l30→l31
Chain transitions t₆₂: l29→l27 and t₆₇: l27→l31 to t₁₃₆₃: l29→l31
Chain transitions t₆₆: l30→l28 and t₆₈: l28→l31 to t₁₃₆₄: l30→l31
Chain transitions t₆₀: l33→l29 and t₁₃₆₃: l29→l31 to t₁₃₆₅: l33→l31
Chain transitions t₆₀: l33→l29 and t₆₃: l29→l30 to t₁₃₆₆: l33→l30
Chain transitions t₆₀: l33→l29 and t₆₂: l29→l27 to t₁₃₆₇: l33→l27
Chain transitions t₁₃₆₆: l33→l30 and t₁₃₆₄: l30→l31 to t₁₃₆₈: l33→l31
Chain transitions t₁₃₆₆: l33→l30 and t₁₃₆₂: l30→l31 to t₁₃₆₉: l33→l31
Chain transitions t₁₃₆₆: l33→l30 and t₆₆: l30→l28 to t₁₃₇₀: l33→l28
Chain transitions t₁₃₆₆: l33→l30 and t₆₅: l30→l27 to t₁₃₇₁: l33→l27
Chain transitions t₁₃₆₉: l33→l31 and t₇₀: l31→l33 to t₁₃₇₂: l33→l33
Chain transitions t₁₃₆₈: l33→l31 and t₇₀: l31→l33 to t₁₃₇₃: l33→l33
Chain transitions t₁₃₆₈: l33→l31 and t₆₉: l31→l32 to t₁₃₇₄: l33→l32
Chain transitions t₁₃₆₉: l33→l31 and t₆₉: l31→l32 to t₁₃₇₅: l33→l32
Chain transitions t₁₃₆₅: l33→l31 and t₆₉: l31→l32 to t₁₃₇₆: l33→l32
Chain transitions t₁₃₆₅: l33→l31 and t₇₀: l31→l33 to t₁₃₇₇: l33→l33
Chain transitions t₁₃₇₆: l33→l32 and t₇₁: l32→l33 to t₁₃₇₈: l33→l33
Chain transitions t₁₃₇₅: l33→l32 and t₇₁: l32→l33 to t₁₃₇₉: l33→l33
Chain transitions t₁₃₇₄: l33→l32 and t₇₁: l32→l33 to t₁₃₈₀: l33→l33
Chain transitions t₁₃₅₉: l33→l36 and t₅₉: l36→l33 to t₁₃₈₁: l33→l33
Chain transitions t₁₃₅₂: l20→l36 and t₅₉: l36→l33 to t₁₃₈₂: l20→l33
Analysing control-flow refined program
Cut unsatisfiable transition t₁₃₅₁: l20→l5
Eliminate variables {X₁,X₇} that do not contribute to the problem
Found invariant X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l11
Found invariant 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l25
Found invariant 3+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l27
Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l24
Found invariant 3+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l32
Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₁ for location l6
Found invariant X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l15
Found invariant 3+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l31
Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l33
Found invariant 4+X₅ ≤ X₄ ∧ 4+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4+X₃ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 4 ≤ X₁ for location l30
Found invariant 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l35
Found invariant X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l19
Found invariant 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l26
Found invariant 3+X₅ ≤ X₄ ∧ 3+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l29
Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l23
Found invariant X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l12
Found invariant X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l17
Found invariant 4+X₅ ≤ X₄ ∧ 4+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4+X₃ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 4 ≤ X₁ for location l28
Found invariant 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ for location l7
Found invariant 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l21
Found invariant X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l20
Found invariant X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l13
Found invariant 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l8
Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l22
Found invariant X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l16
Found invariant 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ for location l9
Found invariant X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l10
Found invariant X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l18
Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l36
Found invariant X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₁ for location l14
MPRF for transition t₁₄₅₇: l25(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁+2 {O(n)}
MPRF for transition t₁₄₅₉: l26(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < 1+X₂ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₂ ∧ X₂ < 2⋅nondef_0+1 ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₁₄₉₀: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l25(X₀, X₁, X₄, X₃, X₄, X₅) :|: X₄+1 ≤ X₁ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁+2 {O(n)}
MPRF for transition t₁₄₉₁: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₀, X₅) :|: 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₁₄₉₂: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₄+1, X₁, X₂, X₃, X₄, X₅) :|: 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₁₄₉₃: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₁₄₅₆: l25(X₀, X₁, X₂, X₃, X₄, X₅) → l26(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
2⋅X₁⋅X₁+8⋅X₁+10 {O(n^2)}
MPRF for transition t₁₄₅₈: l26(X₀, X₁, X₂, X₃, X₄, X₅) → l35(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < 1+X₂ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ 1+X₂ ∧ X₂ < 2⋅nondef_0+1 ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
8⋅X₁⋅X₁+24⋅X₁+20 {O(n^2)}
MPRF for transition t₁₄₈₅: l35(X₀, X₁, X₂, X₃, X₄, X₅) → l25(X₀, X₁, nondef_3-1, X₃, X₄, X₅) :|: 0 < 1+X₂ ∧ 0 ≤ nondef_1 ∧ 2⋅nondef_1 ≤ 1+X₂ ∧ X₂ < 2⋅nondef_1+1 ∧ 0 < 1+X₂ ∧ 0 ≤ nondef_2 ∧ 2⋅nondef_2 ≤ 1+X₂ ∧ X₂ < 2⋅nondef_2+1 ∧ 0 < 1+X₂ ∧ 0 ≤ nondef_3 ∧ 2⋅nondef_3 ≤ 1+X₂ ∧ X₂ < 2⋅nondef_3+1 ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
2⋅X₁⋅X₁+6⋅X₁+6 {O(n^2)}
MPRF for transition t₁₄₈₂: l33(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l33(X₀, X₁, X₂, 0, X₄, 1+X₅) :|: X₁ < X₅+3+2⋅X₃ ∧ 3+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁ {O(n)}
MPRF for transition t₁₄₇₆: l33(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l33(X₀, X₁, X₂, X₁, X₄, X₅) :|: 2⋅X₃+3+X₅ ≤ X₁ ∧ 2⋅X₃+3+X₅ < X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:
new bound:
2⋅X₁⋅X₁+4⋅X₁+3 {O(n^2)}
MPRF for transition t₁₄₇₇: l33(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l33(X₀, X₁, X₂, X₁, X₄, X₅) :|: 2⋅X₃+3+X₅ ≤ X₁ ∧ 2⋅X₃+3+X₅ < X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:
new bound:
2⋅X₁⋅X₁+4⋅X₁+3 {O(n^2)}
MPRF for transition t₁₄₇₈: l33(X₀, X₁, X₂, X₃, X₄, X₅) -{4}> l33(X₀, X₁, X₂, X₁, X₄, X₅) :|: 2⋅X₃+3+X₅ ≤ X₁ ∧ 2⋅X₃+3+X₅ ≤ X₁ ∧ X₁ ≤ X₅+3+2⋅X₃ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+3⋅X₁+2 {O(n^2)}
MPRF for transition t₁₄₇₉: l33(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l33(X₀, X₁, X₂, 1+2⋅X₃, X₄, X₅) :|: 2⋅X₃+3+X₅ ≤ X₁ ∧ 2⋅X₃+3+X₅ ≤ X₁ ∧ X₁ ≤ X₅+3+2⋅X₃ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₁₄₈₀: l33(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l33(X₀, X₁, X₂, 1+2⋅X₃, X₄, X₅) :|: 2⋅X₃+3+X₅ ≤ X₁ ∧ 2⋅X₃+3+X₅ < X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₁₄₈₁: l33(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l33(X₀, X₁, X₂, 2+2⋅X₃, X₄, X₅) :|: 2⋅X₃+3+X₅ ≤ X₁ ∧ 2⋅X₃+3+X₅ < X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₁₉₇₁: n_l33___20→n_l29___19
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 8 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 8 ≤ X₂+X₇ ∧ 5+X₆ ≤ X₅ ∧ 5+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 5 ≤ X₂ for location n_l31___16
Found invariant 5+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 5+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 7 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l27___12
Found invariant X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₂ for location l6
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 9 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 9 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l32___9
Found invariant 5+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 5+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 7 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l30___17
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l19
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 5 ≤ X₄+X₇ ∧ 5 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₄ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 8 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 4 ≤ X₄ ∧ 8 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₂ for location n_l33___14
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l12
Found invariant 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 10 ≤ X₅+X₇ ∧ 5 ≤ X₄+X₇ ∧ 3+X₄ ≤ X₇ ∧ 10 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l31___8
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l30___24
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l20
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l27___6
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l22
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 3+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 3+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l31___4
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location n_l33___20
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l10
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l18
Found invariant 4+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 4+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 6 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ 5+X₆ ≤ X₅ ∧ 5+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 5 ≤ X₂ for location n_l29___19
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l14
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 9 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 9 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l31___10
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l11
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l25
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 2+X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 6 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l31___2
Found invariant X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l33___13
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ 2+X₇ ≤ X₄ ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 3 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₂ for location n_l33___21
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l24
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 2+X₄ ∧ X₄+X₇ ≤ 2 ∧ 2+X₇ ≤ X₂ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 6 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l32___1
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l15
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l33
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location n_l27___25
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l35
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l26
Found invariant 5+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 5+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 7 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 7 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l28___11
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location n_l31___23
Found invariant 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 10 ≤ X₅+X₇ ∧ 5 ≤ X₄+X₇ ∧ 3+X₄ ≤ X₇ ∧ 10 ≤ X₂+X₇ ∧ 6+X₆ ≤ X₅ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 6 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 6 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 5+X₄ ≤ X₅ ∧ 12 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 7 ≤ X₂+X₄ ∧ 6 ≤ X₂ for location n_l32___7
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l23
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l17
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location l7
Found invariant 2+X₇ ≤ X₅ ∧ 2+X₇ ≤ X₂ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 8 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 8 ≤ X₂+X₇ ∧ 5+X₆ ≤ X₅ ∧ 5+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 5 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 5 ≤ X₂ for location n_l32___15
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l21
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l13
Found invariant 1+X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l8
Found invariant 4+X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 4+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 6 ≤ X₂+X₇ ∧ 5+X₆ ≤ X₅ ∧ 5+X₆ ≤ X₂ ∧ X₅ ≤ X₂ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ 5 ≤ X₂ for location n_l27___18
Found invariant X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l16
Found invariant 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₀ for location l9
Found invariant 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l28___5
Found invariant 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location n_l29___26
Found invariant 2+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₂ for location l36
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 2+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ X₅ ≤ X₂ ∧ 3 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location n_l32___22
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 3+X₇ ≤ X₅ ∧ X₇ ≤ 1+X₄ ∧ X₄+X₇ ≤ 1 ∧ 3+X₇ ≤ X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₅ ≤ X₂ ∧ 4 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 8 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₂ for location n_l32___3
Solv. Size Bound: t₅₇: l21→l36 for X₄
cycle: [t₅₇: l21→l36; t₅₉: l36→l33; t₁₉₇₂: l33→n_l29___26; t₁₉₄₇: n_l29___26→n_l30___24; t₁₉₅₁: n_l30___24→n_l28___5; t₁₉₄₃: n_l28___5→n_l31___2; t₁₉₅₆: n_l31___2→n_l32___1; t₁₉₆₄: n_l32___1→n_l33___13; t₁₉₇₀: n_l33___13→n_l29___19; t₁₉₄₅: n_l29___19→n_l30___17; t₁₉₄₉: n_l30___17→n_l28___11; t₁₉₄₂: n_l28___11→n_l31___8; t₁₉₆₃: n_l31___8→n_l33___14; t₁₉₉₀: n_l33___14→l23; t₇₂: l23→l24; t₇₃: l24→l22; t₇₄: l22→l21]
loop: (X₆+2 ≤ X₂ ∧ 3 ≤ X₅ ∧ 0 ≤ 0 ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ 0 ∧ 3+X₆ < X₂ ∧ 3+X₆ < X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 3+X₆ ≤ X₂ ∧ 0 ≤ 1 ∧ 7+X₆ ≤ X₂ ∧ 7+X₆ ≤ X₂ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 7+X₆ < X₂ ∧ 7+X₆ < X₂ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 7+X₆ < X₂ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 7+X₆ < X₂ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₂+X₆+3,(X₂,X₄) -> (X₂,X₂)
overappr. closed-form: 2⋅X₂ {O(n)}
runtime bound: X₂+X₆+1 {O(n)}
Solv. Size Bound - Lifting for t₅₇: l21→l36 and X₄: 24⋅X₂ {O(n)}
Solv. Size Bound: t₇₂: l23→l24 for X₄
cycle: [t₇₂: l23→l24; t₇₃: l24→l22; t₇₄: l22→l21; t₅₇: l21→l36; t₅₉: l36→l33; t₁₉₇₂: l33→n_l29___26; t₁₉₄₇: n_l29___26→n_l30___24; t₁₉₅₀: n_l30___24→n_l27___6; t₁₉₄₁: n_l27___6→n_l31___4; t₁₉₆₀: n_l31___4→n_l32___3; t₁₉₆₇: n_l32___3→n_l33___13; t₁₉₇₀: n_l33___13→n_l29___19; t₁₉₄₅: n_l29___19→n_l30___17; t₁₉₄₈: n_l30___17→n_l27___12; t₁₉₃₈: n_l27___12→n_l31___10; t₁₉₅₃: n_l31___10→n_l33___14; t₁₉₉₀: n_l33___14→l23]
loop: (3+X₆ ≤ X₂ ∧ 3 ≤ X₅ ∧ 0 ≤ 0 ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ 0 ∧ 4+X₆ < X₂ ∧ 4+X₆ < X₂ ∧ 0 ≤ 0 ∧ 5+X₆ ≤ X₂ ∧ 0 ≤ 0 ∧ 5+X₆ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5+X₆ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5+X₆ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₆ ≤ X₂ ∧ 0 ≤ 0 ∧ 6+X₆ ≤ X₂ ∧ 6+X₆ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 6+X₆ < X₂ ∧ 6+X₆ < X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 6+X₆ < X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 6+X₆ < X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₂+4+X₆,(X₂,X₄) -> (X₂,X₂)
overappr. closed-form: 2⋅X₂ {O(n)}
runtime bound: X₂+X₆+1 {O(n)}
Solv. Size Bound - Lifting for t₇₂: l23→l24 and X₄: 24⋅X₂ {O(n)}
Solv. Size Bound: t₇₃: l24→l22 for X₄
cycle: [t₇₃: l24→l22; t₇₄: l22→l21; t₅₇: l21→l36; t₅₉: l36→l33; t₁₉₇₂: l33→n_l29___26; t₁₉₄₇: n_l29___26→n_l30___24; t₁₉₅₁: n_l30___24→n_l28___5; t₁₉₄₃: n_l28___5→n_l31___2; t₁₉₅₆: n_l31___2→n_l32___1; t₁₉₆₄: n_l32___1→n_l33___13; t₁₉₇₀: n_l33___13→n_l29___19; t₁₉₄₅: n_l29___19→n_l30___17; t₁₉₄₉: n_l30___17→n_l28___11; t₁₉₄₂: n_l28___11→n_l31___8; t₁₉₆₃: n_l31___8→n_l33___14; t₁₉₉₀: n_l33___14→l23; t₇₂: l23→l24]
loop: (X₁+2 ≤ X₂ ∧ 3 ≤ X₅ ∧ 0 ≤ 0 ∧ 3+X₁ ≤ X₂ ∧ 0 ≤ 0 ∧ 3+X₁ < X₂ ∧ 3+X₁ < X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₁ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₁ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₁ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 3+X₁ ≤ X₂ ∧ 0 ≤ 1 ∧ 7+X₁ ≤ X₂ ∧ 7+X₁ ≤ X₂ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 7+X₁ < X₂ ∧ 7+X₁ < X₂ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 7+X₁ < X₂ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 7+X₁ < X₂ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₂+X₁+3,(X₂,X₄) -> (X₂,X₂)
overappr. closed-form: 2⋅X₂ {O(n)}
runtime bound: X₁+X₂+1 {O(n)}
Solv. Size Bound - Lifting for t₇₃: l24→l22 and X₄: 24⋅X₂ {O(n)}
Solv. Size Bound: t₇₄: l22→l21 for X₄
cycle: [t₇₄: l22→l21; t₅₇: l21→l36; t₅₉: l36→l33; t₁₉₇₂: l33→n_l29___26; t₁₉₄₇: n_l29___26→n_l30___24; t₁₉₅₀: n_l30___24→n_l27___6; t₁₉₄₁: n_l27___6→n_l31___4; t₁₉₆₀: n_l31___4→n_l32___3; t₁₉₆₇: n_l32___3→n_l33___13; t₁₉₇₀: n_l33___13→n_l29___19; t₁₉₄₅: n_l29___19→n_l30___17; t₁₉₄₈: n_l30___17→n_l27___12; t₁₉₃₈: n_l27___12→n_l31___10; t₁₉₅₃: n_l31___10→n_l33___14; t₁₉₉₀: n_l33___14→l23; t₇₂: l23→l24; t₇₃: l24→l22]
loop: (X₁+2 ≤ X₂ ∧ 3 ≤ X₅ ∧ 0 ≤ 0 ∧ 3+X₁ ≤ X₂ ∧ 0 ≤ 0 ∧ 3+X₁ < X₂ ∧ 3+X₁ < X₂ ∧ 0 ≤ 0 ∧ 4+X₁ ≤ X₂ ∧ 0 ≤ 0 ∧ 4+X₁ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₁ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₁ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 3+X₁ ≤ X₂ ∧ 0 ≤ 0 ∧ 5+X₁ ≤ X₂ ∧ 5+X₁ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5+X₁ < X₂ ∧ 5+X₁ < X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5+X₁ < X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5+X₁ < X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₂+X₁+3,(X₂,X₄) -> (X₂,X₂)
overappr. closed-form: 2⋅X₂ {O(n)}
runtime bound: X₁+X₂+1 {O(n)}
Solv. Size Bound - Lifting for t₇₄: l22→l21 and X₄: 24⋅X₂ {O(n)}
All Bounds
Timebounds
Overall timebound:48⋅X₂⋅X₂+145⋅X₂+128 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: X₂+2 {O(n)}
t₇: 1 {O(1)}
t₈: 6⋅X₂⋅X₂+15⋅X₂+12 {O(n^2)}
t₉: X₂+2 {O(n)}
t₁₁: 12⋅X₂⋅X₂+28⋅X₂+20 {O(n^2)}
t₁₄: X₂+1 {O(n)}
t₂₉: 6⋅X₂⋅X₂+14⋅X₂+10 {O(n^2)}
t₄₃: 3⋅X₂+3 {O(n)}
t₄₄: X₂+1 {O(n)}
t₄₅: X₂+1 {O(n)}
t₄₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈: 1 {O(1)}
t₄₉: 1 {O(1)}
t₅₀: 1 {O(1)}
t₅₁: 1 {O(1)}
t₅₂: 1 {O(1)}
t₅₃: 1 {O(1)}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 3⋅X₂+4 {O(n)}
t₅₈: 1 {O(1)}
t₅₉: 3⋅X₂+5 {O(n)}
t₆₀: X₂⋅X₂+2⋅X₂ {O(n^2)}
t₆₁: X₂+1 {O(n)}
t₆₂: 4⋅X₂⋅X₂+12⋅X₂+8 {O(n^2)}
t₆₃: 3⋅X₂⋅X₂+10⋅X₂+8 {O(n^2)}
t₆₅: 3⋅X₂⋅X₂+10⋅X₂+8 {O(n^2)}
t₆₆: 3⋅X₂⋅X₂+10⋅X₂+8 {O(n^2)}
t₆₇: 3⋅X₂⋅X₂+6⋅X₂ {O(n^2)}
t₆₈: X₂⋅X₂+2⋅X₂ {O(n^2)}
t₆₉: X₂⋅X₂+2⋅X₂ {O(n^2)}
t₇₀: X₂⋅X₂+2⋅X₂ {O(n^2)}
t₇₁: 4⋅X₂⋅X₂+12⋅X₂+8 {O(n^2)}
t₇₂: X₂ {O(n)}
t₇₃: 3⋅X₂+5 {O(n)}
t₇₄: X₂+1 {O(n)}
t₇₅: 1 {O(1)}
Costbounds
Overall costbound: 48⋅X₂⋅X₂+145⋅X₂+128 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: X₂+2 {O(n)}
t₇: 1 {O(1)}
t₈: 6⋅X₂⋅X₂+15⋅X₂+12 {O(n^2)}
t₉: X₂+2 {O(n)}
t₁₁: 12⋅X₂⋅X₂+28⋅X₂+20 {O(n^2)}
t₁₄: X₂+1 {O(n)}
t₂₉: 6⋅X₂⋅X₂+14⋅X₂+10 {O(n^2)}
t₄₃: 3⋅X₂+3 {O(n)}
t₄₄: X₂+1 {O(n)}
t₄₅: X₂+1 {O(n)}
t₄₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈: 1 {O(1)}
t₄₉: 1 {O(1)}
t₅₀: 1 {O(1)}
t₅₁: 1 {O(1)}
t₅₂: 1 {O(1)}
t₅₃: 1 {O(1)}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 3⋅X₂+4 {O(n)}
t₅₈: 1 {O(1)}
t₅₉: 3⋅X₂+5 {O(n)}
t₆₀: X₂⋅X₂+2⋅X₂ {O(n^2)}
t₆₁: X₂+1 {O(n)}
t₆₂: 4⋅X₂⋅X₂+12⋅X₂+8 {O(n^2)}
t₆₃: 3⋅X₂⋅X₂+10⋅X₂+8 {O(n^2)}
t₆₅: 3⋅X₂⋅X₂+10⋅X₂+8 {O(n^2)}
t₆₆: 3⋅X₂⋅X₂+10⋅X₂+8 {O(n^2)}
t₆₇: 3⋅X₂⋅X₂+6⋅X₂ {O(n^2)}
t₆₈: X₂⋅X₂+2⋅X₂ {O(n^2)}
t₆₉: X₂⋅X₂+2⋅X₂ {O(n^2)}
t₇₀: X₂⋅X₂+2⋅X₂ {O(n^2)}
t₇₁: 4⋅X₂⋅X₂+12⋅X₂+8 {O(n^2)}
t₇₂: X₂ {O(n)}
t₇₃: 3⋅X₂+5 {O(n)}
t₇₄: X₂+1 {O(n)}
t₇₅: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: 1 {O(1)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₆, X₀: 3⋅X₂+X₀+4 {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: 3⋅X₂+5 {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: 3⋅X₂+4 {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: 3⋅X₂+4 {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: 3⋅X₂+5 {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: 3⋅X₂+4 {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₈, X₀: 3⋅X₂+X₀+4 {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: 3⋅X₂+5 {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: 3⋅X₂+4 {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₉, X₀: 3⋅X₂+X₀+4 {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: 0 {O(1)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: 3⋅X₂+4 {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₁₁, X₀: 3⋅X₂+X₀+4 {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: 3⋅X₂+5 {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: 3⋅X₂+4 {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₇ {O(n)}
t₁₄, X₀: 3⋅X₂+X₀+4 {O(n)}
t₁₄, X₁: X₁ {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: 3⋅X₂+5 {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: 3⋅X₂+4 {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: X₇ {O(n)}
t₂₉, X₀: 3⋅X₂+X₀+4 {O(n)}
t₂₉, X₁: X₁ {O(n)}
t₂₉, X₂: X₂ {O(n)}
t₂₉, X₃: 3⋅X₂+5 {O(n)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₅: 3⋅X₂+4 {O(n)}
t₂₉, X₆: X₆ {O(n)}
t₂₉, X₇: X₇ {O(n)}
t₄₃, X₀: 3⋅X₂+4 {O(n)}
t₄₃, X₁: X₁ {O(n)}
t₄₃, X₂: X₂ {O(n)}
t₄₃, X₃: 3⋅X₂+5 {O(n)}
t₄₃, X₄: X₄ {O(n)}
t₄₃, X₅: 6⋅X₂+8 {O(n)}
t₄₃, X₆: X₆ {O(n)}
t₄₃, X₇: X₇ {O(n)}
t₄₄, X₀: 3⋅X₂+4 {O(n)}
t₄₄, X₁: X₁ {O(n)}
t₄₄, X₂: X₂ {O(n)}
t₄₄, X₃: 3⋅X₂+5 {O(n)}
t₄₄, X₄: X₄ {O(n)}
t₄₄, X₅: 6⋅X₂+8 {O(n)}
t₄₄, X₆: X₆ {O(n)}
t₄₄, X₇: X₇ {O(n)}
t₄₅, X₀: 3⋅X₂+4 {O(n)}
t₄₅, X₁: X₁ {O(n)}
t₄₅, X₂: X₂ {O(n)}
t₄₅, X₃: 3⋅X₂+5 {O(n)}
t₄₅, X₄: X₄ {O(n)}
t₄₅, X₅: 3⋅X₂+4 {O(n)}
t₄₅, X₆: X₆ {O(n)}
t₄₅, X₇: X₇ {O(n)}
t₄₆, X₀: 3⋅X₂+4 {O(n)}
t₄₆, X₁: X₁ {O(n)}
t₄₆, X₂: X₂ {O(n)}
t₄₆, X₃: 3⋅X₂+5 {O(n)}
t₄₆, X₄: X₄ {O(n)}
t₄₆, X₅: 3⋅X₂+4 {O(n)}
t₄₆, X₆: X₆ {O(n)}
t₄₆, X₇: X₇ {O(n)}
t₄₇, X₀: 3⋅X₂+4 {O(n)}
t₄₇, X₁: X₁ {O(n)}
t₄₇, X₂: X₂ {O(n)}
t₄₇, X₃: 3⋅X₂+5 {O(n)}
t₄₇, X₄: X₄ {O(n)}
t₄₇, X₅: 3⋅X₂+4 {O(n)}
t₄₇, X₆: X₆ {O(n)}
t₄₇, X₇: X₇ {O(n)}
t₄₈, X₀: 3⋅X₂+4 {O(n)}
t₄₈, X₁: X₁ {O(n)}
t₄₈, X₂: X₂ {O(n)}
t₄₈, X₃: 3⋅X₂+5 {O(n)}
t₄₈, X₄: X₄ {O(n)}
t₄₈, X₅: 3⋅X₂+4 {O(n)}
t₄₈, X₆: X₆ {O(n)}
t₄₈, X₇: X₇ {O(n)}
t₄₉, X₀: 3⋅X₂+4 {O(n)}
t₄₉, X₁: X₁ {O(n)}
t₄₉, X₂: X₂ {O(n)}
t₄₉, X₃: 3⋅X₂+5 {O(n)}
t₄₉, X₄: X₄ {O(n)}
t₄₉, X₅: 3⋅X₂+4 {O(n)}
t₄₉, X₆: X₆ {O(n)}
t₄₉, X₇: X₇ {O(n)}
t₅₀, X₀: 3⋅X₂+4 {O(n)}
t₅₀, X₁: X₁ {O(n)}
t₅₀, X₂: X₂ {O(n)}
t₅₀, X₃: 3⋅X₂+5 {O(n)}
t₅₀, X₄: X₄ {O(n)}
t₅₀, X₅: 3⋅X₂+4 {O(n)}
t₅₀, X₆: X₆ {O(n)}
t₅₀, X₇: X₇ {O(n)}
t₅₁, X₀: 3⋅X₂+4 {O(n)}
t₅₁, X₁: X₁ {O(n)}
t₅₁, X₂: X₂ {O(n)}
t₅₁, X₃: 3⋅X₂+5 {O(n)}
t₅₁, X₄: X₄ {O(n)}
t₅₁, X₅: 3⋅X₂+4 {O(n)}
t₅₁, X₆: X₆ {O(n)}
t₅₁, X₇: X₇ {O(n)}
t₅₂, X₀: 3⋅X₂+4 {O(n)}
t₅₂, X₁: X₁ {O(n)}
t₅₂, X₂: X₂ {O(n)}
t₅₂, X₃: 3⋅X₂+5 {O(n)}
t₅₂, X₄: X₄ {O(n)}
t₅₂, X₅: 3⋅X₂+4 {O(n)}
t₅₂, X₆: X₆ {O(n)}
t₅₂, X₇: X₇ {O(n)}
t₅₃, X₀: 3⋅X₂+4 {O(n)}
t₅₃, X₁: X₁ {O(n)}
t₅₃, X₂: X₂ {O(n)}
t₅₃, X₃: 3⋅X₂+5 {O(n)}
t₅₃, X₄: X₄ {O(n)}
t₅₃, X₅: 3⋅X₂+4 {O(n)}
t₅₃, X₆: X₆ {O(n)}
t₅₃, X₇: X₇ {O(n)}
t₅₄, X₀: 3⋅X₂+4 {O(n)}
t₅₄, X₁: X₁ {O(n)}
t₅₄, X₂: X₂ {O(n)}
t₅₄, X₃: 3⋅X₂+5 {O(n)}
t₅₄, X₄: X₄ {O(n)}
t₅₄, X₅: 3⋅X₂+4 {O(n)}
t₅₄, X₆: X₆ {O(n)}
t₅₄, X₇: X₇ {O(n)}
t₅₅, X₀: 3⋅X₂+4 {O(n)}
t₅₅, X₁: X₁ {O(n)}
t₅₅, X₂: X₂ {O(n)}
t₅₅, X₃: 3⋅X₂+5 {O(n)}
t₅₅, X₄: X₄ {O(n)}
t₅₅, X₅: 3⋅X₂+4 {O(n)}
t₅₅, X₆: X₆ {O(n)}
t₅₅, X₇: X₇ {O(n)}
t₅₆, X₀: 3⋅X₂+4 {O(n)}
t₅₆, X₁: X₁ {O(n)}
t₅₆, X₂: X₂ {O(n)}
t₅₆, X₃: 3⋅X₂+5 {O(n)}
t₅₆, X₄: X₄ {O(n)}
t₅₆, X₅: 3⋅X₂+4 {O(n)}
t₅₆, X₆: 0 {O(1)}
t₅₆, X₇: X₇ {O(n)}
t₅₇, X₀: 3⋅X₂+4 {O(n)}
t₅₇, X₁: X₁+X₂ {O(n)}
t₅₇, X₂: X₂ {O(n)}
t₅₇, X₃: 3⋅X₂+5 {O(n)}
t₅₇, X₄: 2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2⋅X₂+X₄ {O(EXP)}
t₅₇, X₅: 3⋅X₂+4 {O(n)}
t₅₇, X₆: X₂ {O(n)}
t₅₇, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂⋅X₂+X₇ {O(EXP)}
t₅₈, X₀: 3⋅X₂+4 {O(n)}
t₅₈, X₁: X₂ {O(n)}
t₅₈, X₂: X₂ {O(n)}
t₅₈, X₃: 3⋅X₂+5 {O(n)}
t₅₈, X₄: 2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2⋅X₂ {O(EXP)}
t₅₈, X₅: 3⋅X₂+4 {O(n)}
t₅₈, X₆: X₂ {O(n)}
t₅₈, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂⋅X₂+X₇ {O(EXP)}
t₅₉, X₀: 3⋅X₂+4 {O(n)}
t₅₉, X₁: X₁+X₂ {O(n)}
t₅₉, X₂: X₂ {O(n)}
t₅₉, X₃: 3⋅X₂+5 {O(n)}
t₅₉, X₄: 0 {O(1)}
t₅₉, X₅: 3⋅X₂+4 {O(n)}
t₅₉, X₆: X₂ {O(n)}
t₅₉, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂⋅X₂+X₇ {O(EXP)}
t₆₀, X₀: 3⋅X₂+4 {O(n)}
t₆₀, X₁: X₁+X₂ {O(n)}
t₆₀, X₂: X₂ {O(n)}
t₆₀, X₃: 3⋅X₂+5 {O(n)}
t₆₀, X₄: 6⋅X₂ {O(n)}
t₆₀, X₅: 3⋅X₂+4 {O(n)}
t₆₀, X₆: X₂ {O(n)}
t₆₀, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅32⋅X₂+X₇ {O(EXP)}
t₆₁, X₀: 3⋅X₂+4 {O(n)}
t₆₁, X₁: 4⋅X₁+4⋅X₂ {O(n)}
t₆₁, X₂: X₂ {O(n)}
t₆₁, X₃: 3⋅X₂+5 {O(n)}
t₆₁, X₄: 2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2⋅X₂ {O(EXP)}
t₆₁, X₅: 3⋅X₂+4 {O(n)}
t₆₁, X₆: X₂ {O(n)}
t₆₁, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂⋅X₂+X₇ {O(EXP)}
t₆₂, X₀: 3⋅X₂+4 {O(n)}
t₆₂, X₁: X₁+X₂ {O(n)}
t₆₂, X₂: X₂ {O(n)}
t₆₂, X₃: 3⋅X₂+5 {O(n)}
t₆₂, X₄: 8⋅X₂ {O(n)}
t₆₂, X₅: 3⋅X₂+4 {O(n)}
t₆₂, X₆: X₂ {O(n)}
t₆₂, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅32⋅X₂+X₇ {O(EXP)}
t₆₃, X₀: 3⋅X₂+4 {O(n)}
t₆₃, X₁: X₁+X₂ {O(n)}
t₆₃, X₂: X₂ {O(n)}
t₆₃, X₃: 3⋅X₂+5 {O(n)}
t₆₃, X₄: 8⋅X₂ {O(n)}
t₆₃, X₅: 3⋅X₂+4 {O(n)}
t₆₃, X₆: X₂ {O(n)}
t₆₃, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅32⋅X₂+X₇ {O(EXP)}
t₆₅, X₀: 3⋅X₂+4 {O(n)}
t₆₅, X₁: X₁+X₂ {O(n)}
t₆₅, X₂: X₂ {O(n)}
t₆₅, X₃: 3⋅X₂+5 {O(n)}
t₆₅, X₄: 8⋅X₂ {O(n)}
t₆₅, X₅: 3⋅X₂+4 {O(n)}
t₆₅, X₆: X₂ {O(n)}
t₆₅, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅32⋅X₂+X₇ {O(EXP)}
t₆₆, X₀: 3⋅X₂+4 {O(n)}
t₆₆, X₁: X₁+X₂ {O(n)}
t₆₆, X₂: X₂ {O(n)}
t₆₆, X₃: 3⋅X₂+5 {O(n)}
t₆₆, X₄: 6⋅X₂ {O(n)}
t₆₆, X₅: 3⋅X₂+4 {O(n)}
t₆₆, X₆: X₂ {O(n)}
t₆₆, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅32⋅X₂+X₇ {O(EXP)}
t₆₇, X₀: 3⋅X₂+4 {O(n)}
t₆₇, X₁: X₁+X₂ {O(n)}
t₆₇, X₂: X₂ {O(n)}
t₆₇, X₃: 3⋅X₂+5 {O(n)}
t₆₇, X₄: 8⋅X₂ {O(n)}
t₆₇, X₅: 3⋅X₂+4 {O(n)}
t₆₇, X₆: X₂ {O(n)}
t₆₇, X₇: 2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂ {O(EXP)}
t₆₈, X₀: 3⋅X₂+4 {O(n)}
t₆₈, X₁: X₁+X₂ {O(n)}
t₆₈, X₂: X₂ {O(n)}
t₆₈, X₃: 3⋅X₂+5 {O(n)}
t₆₈, X₄: 6⋅X₂ {O(n)}
t₆₈, X₅: 3⋅X₂+4 {O(n)}
t₆₈, X₆: X₂ {O(n)}
t₆₈, X₇: 2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂ {O(EXP)}
t₆₉, X₀: 3⋅X₂+4 {O(n)}
t₆₉, X₁: X₁+X₂ {O(n)}
t₆₉, X₂: X₂ {O(n)}
t₆₉, X₃: 3⋅X₂+5 {O(n)}
t₆₉, X₄: 14⋅X₂ {O(n)}
t₆₉, X₅: 3⋅X₂+4 {O(n)}
t₆₉, X₆: X₂ {O(n)}
t₆₉, X₇: 2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂ {O(EXP)}
t₇₀, X₀: 3⋅X₂+4 {O(n)}
t₇₀, X₁: 2⋅X₁+2⋅X₂ {O(n)}
t₇₀, X₂: X₂ {O(n)}
t₇₀, X₃: 3⋅X₂+5 {O(n)}
t₇₀, X₄: 2⋅X₂ {O(n)}
t₇₀, X₅: 3⋅X₂+4 {O(n)}
t₇₀, X₆: X₂ {O(n)}
t₇₀, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂⋅X₂ {O(EXP)}
t₇₁, X₀: 3⋅X₂+4 {O(n)}
t₇₁, X₁: X₁+X₂ {O(n)}
t₇₁, X₂: X₂ {O(n)}
t₇₁, X₃: 3⋅X₂+5 {O(n)}
t₇₁, X₄: 2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂ {O(EXP)}
t₇₁, X₅: 3⋅X₂+4 {O(n)}
t₇₁, X₆: X₂ {O(n)}
t₇₁, X₇: 2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂ {O(EXP)}
t₇₂, X₀: 3⋅X₂+4 {O(n)}
t₇₂, X₁: X₂ {O(n)}
t₇₂, X₂: X₂ {O(n)}
t₇₂, X₃: 3⋅X₂+5 {O(n)}
t₇₂, X₄: 2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2⋅X₂ {O(EXP)}
t₇₂, X₅: 3⋅X₂+4 {O(n)}
t₇₂, X₆: X₂ {O(n)}
t₇₂, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂⋅X₂+X₇ {O(EXP)}
t₇₃, X₀: 3⋅X₂+4 {O(n)}
t₇₃, X₁: X₂ {O(n)}
t₇₃, X₂: X₂ {O(n)}
t₇₃, X₃: 3⋅X₂+5 {O(n)}
t₇₃, X₄: 2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2⋅X₂ {O(EXP)}
t₇₃, X₅: 3⋅X₂+4 {O(n)}
t₇₃, X₆: X₂ {O(n)}
t₇₃, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂⋅X₂+X₇ {O(EXP)}
t₇₄, X₀: 3⋅X₂+4 {O(n)}
t₇₄, X₁: X₂ {O(n)}
t₇₄, X₂: X₂ {O(n)}
t₇₄, X₃: 3⋅X₂+5 {O(n)}
t₇₄, X₄: 2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2⋅X₂ {O(EXP)}
t₇₄, X₅: 3⋅X₂+4 {O(n)}
t₇₄, X₆: X₂ {O(n)}
t₇₄, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂⋅X₂+X₇ {O(EXP)}
t₇₅, X₀: 3⋅X₂+X₀+4 {O(n)}
t₇₅, X₁: X₁+X₂ {O(n)}
t₇₅, X₂: 2⋅X₂ {O(n)}
t₇₅, X₃: 3⋅X₂+X₃+5 {O(n)}
t₇₅, X₄: 2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2⋅X₂+X₄ {O(EXP)}
t₇₅, X₅: 3⋅X₂+X₅+4 {O(n)}
t₇₅, X₆: X₂+X₆ {O(n)}
t₇₅, X₇: 16⋅2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅4⋅X₂⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂+2^(3⋅X₂⋅X₂+6⋅X₂)⋅2^(X₂⋅X₂+2⋅X₂)⋅8⋅X₂⋅X₂+2⋅X₇ {O(EXP)}