Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₁₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₂, X₂, X₀, X₅, X₅, X₇, X₇)
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₀ ∧ X₆+1 ≤ X₂ ∧ X₆+3 ≤ X₀+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, 0, X₅, 1+X₆, X₇) :|: X₆+1 ≤ X₂ ∧ X₆+3 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₂ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₆ ∧ X₆+1 ≤ X₂ ∧ X₆+3 ≤ X₀+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: 1 ≤ X₀ ∧ X₆+1 ≤ X₂ ∧ 2 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ 1 ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁
t₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, 0, X₅, 1+X₆, X₇) :|: X₀ ≤ 0 ∧ X₆+1 ≤ X₂ ∧ 2 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ 1 ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀+1 ≤ X₂ ∧ 2 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁
t₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 1, X₅, 0, X₇) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆
t₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁
Preprocessing
Cut unsatisfiable transition t₄: l2→l4
Cut unsatisfiable transition t₉: l3→l3
Found invariant 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l6
Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l5
Found invariant X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l1
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 3 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 5 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location l4
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₁₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₂, X₂, X₀, X₅, X₅, X₇, X₇)
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₀ ∧ X₆+1 ≤ X₂ ∧ X₆+3 ≤ X₀+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, 0, X₅, 1+X₆, X₇) :|: X₆+1 ≤ X₂ ∧ X₆+3 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₂ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: 1 ≤ X₀ ∧ X₆+1 ≤ X₂ ∧ 2 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ 1 ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀+1 ≤ X₂ ∧ 2 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 3 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 5 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀
t₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 1, X₅, 0, X₇) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
MPRF for transition t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, 0, X₅, 1+X₆, X₇) :|: X₆+1 ≤ X₂ ∧ X₆+3 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₂ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: 1 ≤ X₀ ∧ X₆+1 ≤ X₂ ∧ 2 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ 1 ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₀ ∧ X₆+1 ≤ X₂ ∧ X₆+3 ≤ X₀+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₂+2⋅X₂+X₀+2 {O(n^2)}
Chain transitions t₆: l2→l3 and t₇: l3→l4 to t₆₇: l2→l4
Chain transitions t₆: l2→l3 and t₈: l3→l2 to t₆₈: l2→l2
Analysing control-flow refined program
Found invariant 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l6
Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l5
Found invariant X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l1
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 3 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 5 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location l4
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3
knowledge_propagation leads to new time bound X₀⋅X₂+2⋅X₂+X₀+2 {O(n^2)} for transition t₆₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{2}> l2(X₀, X₁, X₂, X₃, 1, X₅, 1+X₆, X₇) :|: X₆+1 ≤ X₂ ∧ X₆+3 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₂ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 2+X₆ ≤ X₂ ∧ 2 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l6
Found invariant 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l2___1
Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l5
Found invariant X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l1
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 3 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 5 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 3+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location l4
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, 0, X₅, 1+X₆, X₇) :|: X₆+1 ≤ X₂ ∧ X₆+3 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₂ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₁₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___1(X₀, X₁, X₁, X₀, X₄+1, X₅, X₆, X₇) :|: 1+X₄ ≤ X₀ ∧ X₄ ≤ 1 ∧ 2 ≤ X₀ ∧ 1 ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ 1+X₆ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₆ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___1(X₀, X₁, X₁, X₀, X₄+1, X₅, X₆, X₇) :|: X₄ ≤ 1 ∧ X₆ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ 0 ≤ X₆ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₆ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
MPRF for transition t₁₁₉: n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___1(X₀, X₁, X₁, X₀, X₄+1, X₅, X₆, X₇) :|: 2 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₆ ∧ 1+X₀ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₀⋅X₂+2⋅X₀+3⋅X₂+3 {O(n^2)}
MPRF for transition t₁₂₄: n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, 0, X₅, 1+X₆, X₇) :|: X₆+1 ≤ X₂ ∧ X₆+3 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₂ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:X₀⋅X₂+4⋅X₂+X₀+9 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₅: X₀⋅X₂+2⋅X₂+X₀+2 {O(n^2)}
t₆: X₂ {O(n)}
t₇: 1 {O(1)}
t₈: X₂ {O(n)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
Costbounds
Overall costbound: X₀⋅X₂+4⋅X₂+X₀+9 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₅: X₀⋅X₂+2⋅X₂+X₀+2 {O(n^2)}
t₆: X₂ {O(n)}
t₇: 1 {O(1)}
t₈: X₂ {O(n)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₂ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₀ {O(n)}
t₀, X₄: X₅ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₇ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₂ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₀ {O(n)}
t₁, X₄: X₅ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₇ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₂ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₀ {O(n)}
t₂, X₄: 1 {O(1)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: 0 {O(1)}
t₂, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₂ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₀ {O(n)}
t₃, X₄: X₅ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₇ {O(n)}
t₃, X₇: X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₂ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₀ {O(n)}
t₅, X₄: X₀⋅X₂+2⋅X₂+X₀+4 {O(n^2)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₂ {O(n)}
t₅, X₇: X₇ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₂ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₀ {O(n)}
t₆, X₄: 0 {O(1)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₂ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₂ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₀ {O(n)}
t₇, X₄: 0 {O(1)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₂ {O(n)}
t₇, X₇: X₇ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₂ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₀ {O(n)}
t₈, X₄: 1 {O(1)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₂ {O(n)}
t₈, X₇: X₇ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₂ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₀ {O(n)}
t₁₀, X₄: 0 {O(1)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₂ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₂ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₀ {O(n)}
t₁₁, X₄: X₅ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: X₇ {O(n)}
t₁₁, X₇: X₇ {O(n)}