Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆
Temp_Vars: A2, B2, C2, D2, L1, M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, X1, Y1, Z1
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₅₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l1(2, X₁, X₂, L1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, L1, O1, P1, O1, X₂₀, X₂₁, O1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, N1, M1) :|: 2 ≤ L1
t₅₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l5(S1, 0, X₂, L1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, Q1, X1, A2, Z1, X₂₀, X₂₁, Y1, B2, C2, X₂₅, R1, X₂₇, M1, N1, O1, P1, D2, X₃₃, X₃₄, T1, X₃₆) :|: U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
t₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l1(1+X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₈, L1, X₁₈, N1, X₀, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₀+1 ≤ X₁₆ ∧ 0 ≤ X₀
t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₇, X₁₇, 0, L1, X₁₇, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, N1, O1, R1, M1, X₂₀, X₂₁, P1, S1, T1, Q1, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₁₆ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₁₇+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₇ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₇, X₁₇, 0, L1, X₁₇, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, N1, O1, R1, M1, X₂₀, X₂₁, P1, S1, T1, Q1, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₁₆ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₁₇ ∧ L1 ≤ Q1 ∧ L1 ≤ X₇ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, 1+X₂, L1, N1, O1, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁, P1, 1+X₂, X₇-1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, 1+X₂, L1, N1, O1, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁, P1, 1+X₂, X₇-1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, 1+X₂, L1, N1, O1, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁, P1, 1+X₂, X₇-1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, 1+X₂, L1, N1, O1, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁, P1, 1+X₂, X₇-1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1
t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, 1+X₂, L1, N1, O1, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁, P1, 1+X₂, X₇-1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
t₁₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, 1+X₂, L1, N1, O1, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁, P1, 1+X₂, X₇-1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, 1+X₂, L1, N1, O1, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁, P1, 1+X₂, X₇-1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, 1+X₂, L1, N1, O1, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁, P1, 1+X₂, X₇-1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1
t₄₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₃₃+1, L1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₄, X₃₃, 0, X₄, 0, X₄, X₄, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ 1 ≤ X₄ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ X₄+1 ≤ 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
t₄₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₃₃+1, L1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₄, X₃₃, 0, X₄, 0, X₄, X₄, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ 1 ≤ X₄ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
t₄₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₃₃+1, L1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₄, X₃₃, 0, X₄, 0, X₄, X₄, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ X₄+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
t₄₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₃₃+1, L1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₄, X₃₃, 0, X₄, 0, X₄, X₄, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ X₄+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
t₂₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₂₆+1 ≤ O1 ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₂₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₂₆+1 ≤ O1 ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₂₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₂₆+1 ≤ O1 ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₂₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃, X₃₄, X₃₅, X₃₆) :|: X₂₆+1 ≤ O1 ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₂₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃, X₃₄, X₃₅, X₃₆) :|: O1+1 ≤ X₂₆ ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₂₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃, X₃₄, X₃₅, X₃₆) :|: O1+1 ≤ X₂₆ ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₂₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃, X₃₄, X₃₅, X₃₆) :|: O1+1 ≤ X₂₆ ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₃₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃, X₃₄, X₃₅, X₃₆) :|: O1+1 ≤ X₂₆ ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₃₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l5(X₀, X₁, X₂, L1, S1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, T1, X₂₅, R1, X₂₇, M1, N1, O1, P1, Q1, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₂₇ ∧ S1+1 ≤ 0 ∧ 2 ≤ L1 ∧ X₂₈ ≤ X₂₆ ∧ X₂₆ ≤ X₂₈
t₃₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l5(X₀, X₁, X₂, L1, S1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, T1, X₂₅, R1, X₂₇, M1, N1, O1, P1, Q1, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₂₇ ∧ 1 ≤ S1 ∧ 2 ≤ L1 ∧ X₂₈ ≤ X₂₆ ∧ X₂₆ ≤ X₂₈
t₃₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, O1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃-1, X₃₃-1, X₃₅, X₃₆) :|: X₂₆+1 ≤ P1 ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₃₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, O1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃-1, X₃₃-1, X₃₅, X₃₆) :|: X₂₆+1 ≤ P1 ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₃₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, O1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃-1, X₃₃-1, X₃₅, X₃₆) :|: X₂₆+1 ≤ P1 ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₃₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, O1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃-1, X₃₃-1, X₃₅, X₃₆) :|: X₂₆+1 ≤ P1 ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₃₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, O1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃-1, X₃₃-1, X₃₅, X₃₆) :|: P1+1 ≤ X₂₆ ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₃₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, O1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃-1, X₃₃-1, X₃₅, X₃₆) :|: P1+1 ≤ X₂₆ ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, O1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃-1, X₃₃-1, X₃₅, X₃₆) :|: P1+1 ≤ X₂₆ ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₂, L1, N1, O1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, 0, N1, 0, N1, X₂₆, X₃₃-1, X₃₃-1, X₃₅, X₃₆) :|: P1+1 ≤ X₂₆ ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
t₄₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l5(X₀, X₁, X₂, L1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, S1, X₂₅, R1, X₂₇, M1, N1, O1, P1, T1, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ L1 ∧ 0 ≤ X₃₃ ∧ X₂₈ ≤ X₂₆ ∧ X₂₆ ≤ X₂₈
t₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, 1, L1, N1, O1, 1+X₇, X₇, P1, X₇, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₁+1 ≤ 0 ∧ L1 ≤ M1 ∧ N1+1 ≤ 0 ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, 1, L1, N1, O1, 1+X₇, X₇, P1, X₇, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₁+1 ≤ 0 ∧ L1 ≤ M1 ∧ 1 ≤ N1 ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, 1, L1, N1, O1, 1+X₇, X₇, P1, X₇, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₁ ∧ L1 ≤ M1 ∧ N1+1 ≤ 0 ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, 1, L1, N1, O1, 1+X₇, X₇, P1, X₇, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₁ ∧ L1 ≤ M1 ∧ 1 ≤ N1 ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, O1, P1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₉ ∧ 2 ≤ L1 ∧ X₁+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, O1, P1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₉ ∧ 2 ≤ L1 ∧ X₁+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, O1, P1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₉ ∧ 2 ≤ L1 ∧ X₁+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, O1, P1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₉ ∧ 2 ≤ L1 ∧ X₁+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, O1, P1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₉ ∧ 2 ≤ L1 ∧ 1 ≤ X₁ ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, O1, P1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₉ ∧ 2 ≤ L1 ∧ 1 ≤ X₁ ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, O1, P1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₉ ∧ 2 ≤ L1 ∧ 1 ≤ X₁ ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l2(X₀, X₁, X₂, L1, N1, X₅, X₆, X₇, X₈, X₉, O1, P1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) :|: 0 ≤ X₉ ∧ 2 ≤ L1 ∧ 1 ≤ X₁ ∧ 1 ≤ N1 ∧ 1 ≤ P1
t₄₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₃₃+1, L1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₄, X₃₃, 0, X₄, 0, X₄, X₄, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ 1 ≤ X₄ ∧ 2 ≤ L1 ∧ X₄+1 ≤ 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₄₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₃₃+1, L1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₄, X₃₃, 0, X₄, 0, X₄, X₄, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ 1 ≤ X₄ ∧ 2 ≤ L1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₄₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₃₃+1, L1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₄, X₃₃, 0, X₄, 0, X₄, X₄, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ X₄+1 ≤ 0 ∧ 2 ≤ L1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₄₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆) → l4(X₀, 0, X₃₃+1, L1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₄, X₃₃, 0, X₄, 0, X₄, X₄, X₃₃, X₃₄, X₃₅, X₃₆) :|: 2 ≤ N1 ∧ X₄+1 ≤ 0 ∧ 2 ≤ L1 ∧ 1 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₀
η (X₀) = 2
η (X₃) = L1
η (X₁₆) = L1
η (X₁₇) = O1
η (X₁₈) = P1
η (X₁₉) = O1
η (X₂₂) = O1
η (X₃₅) = N1
η (X₃₆) = M1
τ = 2 ≤ L1
l5
l5
l0->l5
t₅₁
η (X₀) = S1
η (X₁) = 0
η (X₃) = L1
η (X₄) = 0
η (X₁₆) = Q1
η (X₁₇) = X1
η (X₁₈) = A2
η (X₁₉) = Z1
η (X₂₂) = Y1
η (X₂₃) = B2
η (X₂₄) = C2
η (X₂₆) = R1
η (X₂₈) = M1
η (X₂₉) = N1
η (X₃₀) = O1
η (X₃₁) = P1
η (X₃₂) = D2
η (X₃₅) = T1
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₂₀
η (X₀) = 1+X₀
η (X₁₇) = X₁₈
η (X₁₈) = L1
η (X₁₉) = X₁₈
η (X₂₀) = N1
η (X₂₁) = X₀
τ = X₀+1 ≤ X₁₆ ∧ 0 ≤ X₀
l2
l2
l1->l2
t₂₁
η (X₀) = X₇
η (X₁) = X₁₇
η (X₂) = 0
η (X₃) = L1
η (X₄) = X₁₇
η (X₁₆) = N1
η (X₁₇) = O1
η (X₁₈) = R1
η (X₁₉) = M1
η (X₂₂) = P1
η (X₂₃) = S1
η (X₂₄) = T1
η (X₂₅) = Q1
τ = X₁₆ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₁₇+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₇ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
l1->l2
t₂₂
η (X₀) = X₇
η (X₁) = X₁₇
η (X₂) = 0
η (X₃) = L1
η (X₄) = X₁₇
η (X₁₆) = N1
η (X₁₇) = O1
η (X₁₈) = R1
η (X₁₉) = M1
η (X₂₂) = P1
η (X₂₃) = S1
η (X₂₄) = T1
η (X₂₅) = Q1
τ = X₁₆ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₁₇ ∧ L1 ≤ Q1 ∧ L1 ≤ X₇ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
l2->l2
t₁₂
η (X₂) = 1+X₂
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₇) = X₇-1
η (X₁₂) = X₁
η (X₁₃) = P1
η (X₁₄) = 1+X₂
η (X₁₅) = X₇-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
l2->l2
t₁₃
η (X₂) = 1+X₂
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₇) = X₇-1
η (X₁₂) = X₁
η (X₁₃) = P1
η (X₁₄) = 1+X₂
η (X₁₅) = X₇-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
l2->l2
t₁₄
η (X₂) = 1+X₂
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₇) = X₇-1
η (X₁₂) = X₁
η (X₁₃) = P1
η (X₁₄) = 1+X₂
η (X₁₅) = X₇-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
l2->l2
t₁₅
η (X₂) = 1+X₂
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₇) = X₇-1
η (X₁₂) = X₁
η (X₁₃) = P1
η (X₁₄) = 1+X₂
η (X₁₅) = X₇-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1
l2->l2
t₁₆
η (X₂) = 1+X₂
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₇) = X₇-1
η (X₁₂) = X₁
η (X₁₃) = P1
η (X₁₄) = 1+X₂
η (X₁₅) = X₇-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
l2->l2
t₁₇
η (X₂) = 1+X₂
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₇) = X₇-1
η (X₁₂) = X₁
η (X₁₃) = P1
η (X₁₄) = 1+X₂
η (X₁₅) = X₇-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
l2->l2
t₁₈
η (X₂) = 1+X₂
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₇) = X₇-1
η (X₁₂) = X₁
η (X₁₃) = P1
η (X₁₄) = 1+X₂
η (X₁₅) = X₇-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
l2->l2
t₁₉
η (X₂) = 1+X₂
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₇) = X₇-1
η (X₁₂) = X₁
η (X₁₃) = P1
η (X₁₄) = 1+X₂
η (X₁₅) = X₇-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1
l4
l4
l2->l4
t₄₆
η (X₁) = 0
η (X₂) = X₃₃+1
η (X₃) = L1
η (X₂₆) = X₄
η (X₂₇) = X₃₃
η (X₂₈) = 0
η (X₂₉) = X₄
η (X₃₀) = 0
η (X₃₁) = X₄
η (X₃₂) = X₄
τ = 2 ≤ N1 ∧ 1 ≤ X₄ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ X₄+1 ≤ 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
l2->l4
t₄₇
η (X₁) = 0
η (X₂) = X₃₃+1
η (X₃) = L1
η (X₂₆) = X₄
η (X₂₇) = X₃₃
η (X₂₈) = 0
η (X₂₉) = X₄
η (X₃₀) = 0
η (X₃₁) = X₄
η (X₃₂) = X₄
τ = 2 ≤ N1 ∧ 1 ≤ X₄ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
l2->l4
t₄₈
η (X₁) = 0
η (X₂) = X₃₃+1
η (X₃) = L1
η (X₂₆) = X₄
η (X₂₇) = X₃₃
η (X₂₈) = 0
η (X₂₉) = X₄
η (X₃₀) = 0
η (X₃₁) = X₄
η (X₃₂) = X₄
τ = 2 ≤ N1 ∧ X₄+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
l2->l4
t₄₉
η (X₁) = 0
η (X₂) = X₃₃+1
η (X₃) = L1
η (X₂₆) = X₄
η (X₂₇) = X₃₃
η (X₂₈) = 0
η (X₂₉) = X₄
η (X₃₀) = 0
η (X₃₁) = X₄
η (X₃₂) = X₄
τ = 2 ≤ N1 ∧ X₄+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₇ ∧ 1 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
l3
l3
l3->l4
t₂₃
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
τ = X₂₆+1 ≤ O1 ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l3->l4
t₂₄
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
τ = X₂₆+1 ≤ O1 ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l3->l4
t₂₅
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
τ = X₂₆+1 ≤ O1 ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l3->l4
t₂₆
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
τ = X₂₆+1 ≤ O1 ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l3->l4
t₂₇
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
τ = O1+1 ≤ X₂₆ ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l3->l4
t₂₈
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
τ = O1+1 ≤ X₂₆ ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ O1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l3->l4
t₂₉
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
τ = O1+1 ≤ X₂₆ ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l3->l4
t₃₀
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
τ = O1+1 ≤ X₂₆ ∧ 0 ≤ X₂₇ ∧ 2 ≤ L1 ∧ N1+1 ≤ O1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l3->l5
t₃₁
η (X₃) = L1
η (X₄) = S1
η (X₂₄) = T1
η (X₂₆) = R1
η (X₂₈) = M1
η (X₂₉) = N1
η (X₃₀) = O1
η (X₃₁) = P1
η (X₃₂) = Q1
τ = 0 ≤ X₂₇ ∧ S1+1 ≤ 0 ∧ 2 ≤ L1 ∧ X₂₈ ≤ X₂₆ ∧ X₂₆ ≤ X₂₈
l3->l5
t₃₂
η (X₃) = L1
η (X₄) = S1
η (X₂₄) = T1
η (X₂₆) = R1
η (X₂₈) = M1
η (X₂₉) = N1
η (X₃₀) = O1
η (X₃₁) = P1
η (X₃₂) = Q1
τ = 0 ≤ X₂₇ ∧ 1 ≤ S1 ∧ 2 ≤ L1 ∧ X₂₈ ≤ X₂₆ ∧ X₂₆ ≤ X₂₈
l4->l4
t₃₃
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
η (X₃₃) = X₃₃-1
η (X₃₄) = X₃₃-1
τ = X₂₆+1 ≤ P1 ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l4->l4
t₃₄
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
η (X₃₃) = X₃₃-1
η (X₃₄) = X₃₃-1
τ = X₂₆+1 ≤ P1 ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l4->l4
t₃₅
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
η (X₃₃) = X₃₃-1
η (X₃₄) = X₃₃-1
τ = X₂₆+1 ≤ P1 ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l4->l4
t₃₆
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
η (X₃₃) = X₃₃-1
η (X₃₄) = X₃₃-1
τ = X₂₆+1 ≤ P1 ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l4->l4
t₃₇
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
η (X₃₃) = X₃₃-1
η (X₃₄) = X₃₃-1
τ = P1+1 ≤ X₂₆ ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l4->l4
t₃₈
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
η (X₃₃) = X₃₃-1
η (X₃₄) = X₃₃-1
τ = P1+1 ≤ X₂₆ ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l4->l4
t₃₉
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
η (X₃₃) = X₃₃-1
η (X₃₄) = X₃₃-1
τ = P1+1 ≤ X₂₆ ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l4->l4
t₄₀
η (X₁) = 0
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₂₈) = 0
η (X₂₉) = N1
η (X₃₀) = 0
η (X₃₁) = N1
η (X₃₂) = X₂₆
η (X₃₃) = X₃₃-1
η (X₃₄) = X₃₃-1
τ = P1+1 ≤ X₂₆ ∧ 0 ≤ X₃₃ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₂₈ ≤ 0 ∧ 0 ≤ X₂₈
l4->l5
t₄₁
η (X₃) = L1
η (X₂₄) = S1
η (X₂₆) = R1
η (X₂₈) = M1
η (X₂₉) = N1
η (X₃₀) = O1
η (X₃₁) = P1
η (X₃₂) = T1
τ = 2 ≤ L1 ∧ 0 ≤ X₃₃ ∧ X₂₈ ≤ X₂₆ ∧ X₂₆ ≤ X₂₈
l6
l6
l6->l2
t₀
η (X₂) = 1
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₆) = 1+X₇
η (X₈) = P1
η (X₉) = X₇
τ = 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₁+1 ≤ 0 ∧ L1 ≤ M1 ∧ N1+1 ≤ 0 ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
l6->l2
t₁
η (X₂) = 1
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₆) = 1+X₇
η (X₈) = P1
η (X₉) = X₇
τ = 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₁+1 ≤ 0 ∧ L1 ≤ M1 ∧ 1 ≤ N1 ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
l6->l2
t₂
η (X₂) = 1
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₆) = 1+X₇
η (X₈) = P1
η (X₉) = X₇
τ = 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₁ ∧ L1 ≤ M1 ∧ N1+1 ≤ 0 ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
l6->l2
t₃
η (X₂) = 1
η (X₃) = L1
η (X₄) = N1
η (X₅) = O1
η (X₆) = 1+X₇
η (X₈) = P1
η (X₉) = X₇
τ = 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₁ ∧ L1 ≤ M1 ∧ 1 ≤ N1 ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
l7
l7
l7->l2
t₄
η (X₃) = L1
η (X₄) = N1
η (X₁₀) = O1
η (X₁₁) = P1
τ = 0 ≤ X₉ ∧ 2 ≤ L1 ∧ X₁+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
l7->l2
t₅
η (X₃) = L1
η (X₄) = N1
η (X₁₀) = O1
η (X₁₁) = P1
τ = 0 ≤ X₉ ∧ 2 ≤ L1 ∧ X₁+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
l7->l2
t₆
η (X₃) = L1
η (X₄) = N1
η (X₁₀) = O1
η (X₁₁) = P1
τ = 0 ≤ X₉ ∧ 2 ≤ L1 ∧ X₁+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
l7->l2
t₇
η (X₃) = L1
η (X₄) = N1
η (X₁₀) = O1
η (X₁₁) = P1
τ = 0 ≤ X₉ ∧ 2 ≤ L1 ∧ X₁+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1
l7->l2
t₈
η (X₃) = L1
η (X₄) = N1
η (X₁₀) = O1
η (X₁₁) = P1
τ = 0 ≤ X₉ ∧ 2 ≤ L1 ∧ 1 ≤ X₁ ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0
l7->l2
t₉
η (X₃) = L1
η (X₄) = N1
η (X₁₀) = O1
η (X₁₁) = P1
τ = 0 ≤ X₉ ∧ 2 ≤ L1 ∧ 1 ≤ X₁ ∧ N1+1 ≤ 0 ∧ 1 ≤ P1
l7->l2
t₁₀
η (X₃) = L1
η (X₄) = N1
η (X₁₀) = O1
η (X₁₁) = P1
τ = 0 ≤ X₉ ∧ 2 ≤ L1 ∧ 1 ≤ X₁ ∧ 1 ≤ N1 ∧ P1+1 ≤ 0
l7->l2
t₁₁
η (X₃) = L1
η (X₄) = N1
η (X₁₀) = O1
η (X₁₁) = P1
τ = 0 ≤ X₉ ∧ 2 ≤ L1 ∧ 1 ≤ X₁ ∧ 1 ≤ N1 ∧ 1 ≤ P1
l7->l4
t₄₂
η (X₁) = 0
η (X₂) = X₃₃+1
η (X₃) = L1
η (X₉) = 0
η (X₂₆) = X₄
η (X₂₇) = X₃₃
η (X₂₈) = 0
η (X₂₉) = X₄
η (X₃₀) = 0
η (X₃₁) = X₄
η (X₃₂) = X₄
τ = 2 ≤ N1 ∧ 1 ≤ X₄ ∧ 2 ≤ L1 ∧ X₄+1 ≤ 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
l7->l4
t₄₃
η (X₁) = 0
η (X₂) = X₃₃+1
η (X₃) = L1
η (X₉) = 0
η (X₂₆) = X₄
η (X₂₇) = X₃₃
η (X₂₈) = 0
η (X₂₉) = X₄
η (X₃₀) = 0
η (X₃₁) = X₄
η (X₃₂) = X₄
τ = 2 ≤ N1 ∧ 1 ≤ X₄ ∧ 2 ≤ L1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
l7->l4
t₄₄
η (X₁) = 0
η (X₂) = X₃₃+1
η (X₃) = L1
η (X₉) = 0
η (X₂₆) = X₄
η (X₂₇) = X₃₃
η (X₂₈) = 0
η (X₂₉) = X₄
η (X₃₀) = 0
η (X₃₁) = X₄
η (X₃₂) = X₄
τ = 2 ≤ N1 ∧ X₄+1 ≤ 0 ∧ 2 ≤ L1 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
l7->l4
t₄₅
η (X₁) = 0
η (X₂) = X₃₃+1
η (X₃) = L1
η (X₉) = 0
η (X₂₆) = X₄
η (X₂₇) = X₃₃
η (X₂₈) = 0
η (X₂₉) = X₄
η (X₃₀) = 0
η (X₃₁) = X₄
η (X₃₂) = X₄
τ = 2 ≤ N1 ∧ X₄+1 ≤ 0 ∧ 2 ≤ L1 ∧ 1 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
Preprocessing
Cut unreachable locations [l3; l6; l7] from the program graph
Cut unsatisfiable transition t₄₆: l2→l4
Cut unsatisfiable transition t₄₉: l2→l4
Eliminate variables {B2,C2,D2,T1,Y1,Z1,X₃,X₅,X₆,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₇,X₂₉,X₃₀,X₃₁,X₃₂,X₃₄,X₃₅,X₃₆} that do not contribute to the problem
Found invariant X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location l2
Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l5
Found invariant 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀ for location l1
Found invariant X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: A2, L1, M1, N1, O1, P1, Q1, R1, S1, U1, V1, W1, X1
Locations: l0, l1, l2, l4, l5
Transitions:
t₁₀₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(2, X₁, X₂, X₃, X₄, L1, O1, P1, X₈, X₉, X₁₀) :|: 2 ≤ L1
t₁₀₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(S1, 0, X₂, 0, X₄, Q1, X1, A2, R1, M1, X₁₀) :|: U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
t₁₀₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(1+X₀, X₁, X₂, X₃, X₄, X₅, X₇, L1, X₈, X₉, X₁₀) :|: X₀+1 ≤ X₅ ∧ 0 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
t₁₀₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₄, X₆, 0, X₆, X₄, N1, O1, R1, X₈, X₉, X₁₀) :|: X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₆+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
t₁₀₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₄, X₆, 0, X₆, X₄, N1, O1, R1, X₈, X₉, X₁₀) :|: X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₆ ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
t₁₀₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, 1+X₂, N1, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₀₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, 1+X₂, N1, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₀₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, 1+X₂, N1, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₀₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, 1+X₂, N1, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, 1+X₂, N1, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, 1+X₂, N1, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, 1+X₂, N1, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, 1+X₂, N1, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₁₀+1, X₃, X₄, X₅, X₆, X₇, X₃, 0, X₁₀) :|: 2 ≤ N1 ∧ 1 ≤ X₃ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₁₀+1, X₃, X₄, X₅, X₆, X₇, X₃, 0, X₁₀) :|: 2 ≤ N1 ∧ X₃+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
t₁₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₁₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₂₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, R1, M1, X₁₀) :|: 2 ≤ L1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₅) = L1
η (X₆) = O1
η (X₇) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₂
η (X₀) = S1
η (X₁) = 0
η (X₃) = 0
η (X₅) = Q1
η (X₆) = X1
η (X₇) = A2
η (X₈) = R1
η (X₉) = M1
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₆) = X₇
η (X₇) = L1
τ = X₀+1 ≤ X₅ ∧ 0 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₆+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₆ ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₃ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ X₃+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l5
t₁₂₄
η (X₈) = R1
η (X₉) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
Analysing control-flow refined program
Found invariant X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀ for location l2
Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l5
Found invariant 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l1
Found invariant X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l4
Found invariant 3 ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 3 ≤ X₀ for location n_l1___1
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
TWN: t₁₀₆: l2→l2
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₅) = L1
η (X₆) = O1
η (X₇) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₂
η (X₀) = S1
η (X₁) = 0
η (X₃) = 0
η (X₅) = Q1
η (X₆) = X1
η (X₇) = A2
η (X₈) = R1
η (X₉) = M1
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₆) = X₇
η (X₇) = L1
τ = X₀+1 ≤ X₅ ∧ 0 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₆+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₆ ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₃ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ X₃+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l5
t₁₂₄
η (X₈) = R1
η (X₉) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
cycle: [t₁₀₆: l2→l2; t₁₀₇: l2→l2; t₁₀₈: l2→l2; t₁₀₉: l2→l2; t₁₁₀: l2→l2; t₁₁₁: l2→l2; t₁₁₂: l2→l2; t₁₁₃: l2→l2]
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄ ∨ 0 ≤ X₂ ∧ 0 ≤ X₄,(X₂,X₄) -> (1+X₂,X₄-1)
order: [X₂; X₄]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₀₇: l2→l2
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₀₈: l2→l2
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₀₉: l2→l2
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₁₀: l2→l2
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₁₁: l2→l2
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₁₂: l2→l2
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₁₃: l2→l2
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₂+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₂: 0 {O(1)}
X₄: 2⋅X₄ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
MPRF for transition t₁₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₅) = L1
η (X₆) = O1
η (X₇) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₂
η (X₀) = S1
η (X₁) = 0
η (X₃) = 0
η (X₅) = Q1
η (X₆) = X1
η (X₇) = A2
η (X₈) = R1
η (X₉) = M1
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₆) = X₇
η (X₇) = L1
τ = X₀+1 ≤ X₅ ∧ 0 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₆+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₆ ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₃ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ X₃+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l5
t₁₂₄
η (X₈) = R1
η (X₉) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₁₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₅) = L1
η (X₆) = O1
η (X₇) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₂
η (X₀) = S1
η (X₁) = 0
η (X₃) = 0
η (X₅) = Q1
η (X₆) = X1
η (X₇) = A2
η (X₈) = R1
η (X₉) = M1
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₆) = X₇
η (X₇) = L1
τ = X₀+1 ≤ X₅ ∧ 0 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₆+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₆ ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₃ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ X₃+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l5
t₁₂₄
η (X₈) = R1
η (X₉) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₅) = L1
η (X₆) = O1
η (X₇) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₂
η (X₀) = S1
η (X₁) = 0
η (X₃) = 0
η (X₅) = Q1
η (X₆) = X1
η (X₇) = A2
η (X₈) = R1
η (X₉) = M1
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₆) = X₇
η (X₇) = L1
τ = X₀+1 ≤ X₅ ∧ 0 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₆+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₆ ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₃ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ X₃+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l5
t₁₂₄
η (X₈) = R1
η (X₉) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₅) = L1
η (X₆) = O1
η (X₇) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₂
η (X₀) = S1
η (X₁) = 0
η (X₃) = 0
η (X₅) = Q1
η (X₆) = X1
η (X₇) = A2
η (X₈) = R1
η (X₉) = M1
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₆) = X₇
η (X₇) = L1
τ = X₀+1 ≤ X₅ ∧ 0 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₆+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₆ ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₃ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ X₃+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l5
t₁₂₄
η (X₈) = R1
η (X₉) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₅) = L1
η (X₆) = O1
η (X₇) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₂
η (X₀) = S1
η (X₁) = 0
η (X₃) = 0
η (X₅) = Q1
η (X₆) = X1
η (X₇) = A2
η (X₈) = R1
η (X₉) = M1
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₆) = X₇
η (X₇) = L1
τ = X₀+1 ≤ X₅ ∧ 0 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₆+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₆ ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₃ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ X₃+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l5
t₁₂₄
η (X₈) = R1
η (X₉) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₅) = L1
η (X₆) = O1
η (X₇) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₂
η (X₀) = S1
η (X₁) = 0
η (X₃) = 0
η (X₅) = Q1
η (X₆) = X1
η (X₇) = A2
η (X₈) = R1
η (X₉) = M1
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₆) = X₇
η (X₇) = L1
τ = X₀+1 ≤ X₅ ∧ 0 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₆+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₆ ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₃ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ X₃+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l5
t₁₂₄
η (X₈) = R1
η (X₉) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₅) = L1
η (X₆) = O1
η (X₇) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₂
η (X₀) = S1
η (X₁) = 0
η (X₃) = 0
η (X₅) = Q1
η (X₆) = X1
η (X₇) = A2
η (X₈) = R1
η (X₉) = M1
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₆) = X₇
η (X₇) = L1
τ = X₀+1 ≤ X₅ ∧ 0 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₆+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₆ ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₃ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ X₃+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l5
t₁₂₄
η (X₈) = R1
η (X₉) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, N1, X₄, X₅, X₆, X₇, X₈, 0, X₁₀-1) :|: P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₅) = L1
η (X₆) = O1
η (X₇) = P1
τ = 2 ≤ L1
l5
l5
l0->l5
t₁₀₂
η (X₀) = S1
η (X₁) = 0
η (X₃) = 0
η (X₅) = Q1
η (X₆) = X1
η (X₇) = A2
η (X₈) = R1
η (X₉) = M1
τ = U1 ≤ 0 ∧ V1 ≤ 0 ∧ L1 ≤ 0 ∧ W1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₆) = X₇
η (X₇) = L1
τ = X₀+1 ≤ X₅ ∧ 0 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ X₆+1 ≤ 0 ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₄
η (X₁) = X₆
η (X₂) = 0
η (X₃) = X₆
η (X₅) = N1
η (X₆) = O1
η (X₇) = R1
τ = X₅ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ L1 ∧ 1 ≤ X₆ ∧ L1 ≤ Q1 ∧ L1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ M1+1 ≤ 0 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ N1+1 ≤ 0 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ P1+1 ≤ 0 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₂) = 1+X₂
η (X₃) = N1
η (X₄) = X₄-1
τ = 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ L1 ∧ 1 ≤ M1 ∧ 1 ≤ N1 ∧ 1 ≤ P1 ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ 1 ≤ X₃ ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₁) = 0
η (X₂) = X₁₀+1
η (X₈) = X₃
η (X₉) = 0
τ = 2 ≤ N1 ∧ X₃+1 ≤ 0 ∧ 2 ≤ L1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ P1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ P1+1 ≤ N1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ N1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₁) = 0
η (X₃) = N1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = P1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ L1 ∧ N1+1 ≤ P1 ∧ 1 ≤ N1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
l4->l5
t₁₂₄
η (X₈) = R1
η (X₉) = M1
τ = 2 ≤ L1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₄ ∧ X₉ ≤ X₁ ∧ X₁+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₁₀₁: 1 {O(1)}
t₁₀₂: 1 {O(1)}
t₁₀₃: inf {Infinity}
t₁₀₄: 1 {O(1)}
t₁₀₅: 1 {O(1)}
t₁₀₆: 64⋅X₄+96 {O(n)}
t₁₀₇: 64⋅X₄+96 {O(n)}
t₁₀₈: 64⋅X₄+96 {O(n)}
t₁₀₉: 64⋅X₄+96 {O(n)}
t₁₁₀: 64⋅X₄+96 {O(n)}
t₁₁₁: 64⋅X₄+96 {O(n)}
t₁₁₂: 64⋅X₄+96 {O(n)}
t₁₁₃: 64⋅X₄+96 {O(n)}
t₁₁₄: 1 {O(1)}
t₁₁₅: 1 {O(1)}
t₁₁₆: 32⋅X₁₀+2 {O(n)}
t₁₁₇: 32⋅X₁₀+2 {O(n)}
t₁₁₈: 32⋅X₁₀+2 {O(n)}
t₁₁₉: 32⋅X₁₀+2 {O(n)}
t₁₂₀: 32⋅X₁₀+2 {O(n)}
t₁₂₁: 32⋅X₁₀+2 {O(n)}
t₁₂₂: 32⋅X₁₀+2 {O(n)}
t₁₂₃: 32⋅X₁₀+2 {O(n)}
t₁₂₄: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
t₁₀₁: 1 {O(1)}
t₁₀₂: 1 {O(1)}
t₁₀₃: inf {Infinity}
t₁₀₄: 1 {O(1)}
t₁₀₅: 1 {O(1)}
t₁₀₆: 64⋅X₄+96 {O(n)}
t₁₀₇: 64⋅X₄+96 {O(n)}
t₁₀₈: 64⋅X₄+96 {O(n)}
t₁₀₉: 64⋅X₄+96 {O(n)}
t₁₁₀: 64⋅X₄+96 {O(n)}
t₁₁₁: 64⋅X₄+96 {O(n)}
t₁₁₂: 64⋅X₄+96 {O(n)}
t₁₁₃: 64⋅X₄+96 {O(n)}
t₁₁₄: 1 {O(1)}
t₁₁₅: 1 {O(1)}
t₁₁₆: 32⋅X₁₀+2 {O(n)}
t₁₁₇: 32⋅X₁₀+2 {O(n)}
t₁₁₈: 32⋅X₁₀+2 {O(n)}
t₁₁₉: 32⋅X₁₀+2 {O(n)}
t₁₂₀: 32⋅X₁₀+2 {O(n)}
t₁₂₁: 32⋅X₁₀+2 {O(n)}
t₁₂₂: 32⋅X₁₀+2 {O(n)}
t₁₂₃: 32⋅X₁₀+2 {O(n)}
t₁₂₄: 1 {O(1)}
Sizebounds
t₁₀₁, X₀: 2 {O(1)}
t₁₀₁, X₁: X₁ {O(n)}
t₁₀₁, X₂: X₂ {O(n)}
t₁₀₁, X₃: X₃ {O(n)}
t₁₀₁, X₄: X₄ {O(n)}
t₁₀₁, X₈: X₈ {O(n)}
t₁₀₁, X₉: X₉ {O(n)}
t₁₀₁, X₁₀: X₁₀ {O(n)}
t₁₀₂, X₁: 0 {O(1)}
t₁₀₂, X₂: X₂ {O(n)}
t₁₀₂, X₃: 0 {O(1)}
t₁₀₂, X₄: X₄ {O(n)}
t₁₀₂, X₁₀: X₁₀ {O(n)}
t₁₀₃, X₁: X₁ {O(n)}
t₁₀₃, X₂: X₂ {O(n)}
t₁₀₃, X₃: X₃ {O(n)}
t₁₀₃, X₄: X₄ {O(n)}
t₁₀₃, X₈: X₈ {O(n)}
t₁₀₃, X₉: X₉ {O(n)}
t₁₀₃, X₁₀: X₁₀ {O(n)}
t₁₀₄, X₀: 2⋅X₄ {O(n)}
t₁₀₄, X₂: 0 {O(1)}
t₁₀₄, X₄: 2⋅X₄ {O(n)}
t₁₀₄, X₈: 2⋅X₈ {O(n)}
t₁₀₄, X₉: 2⋅X₉ {O(n)}
t₁₀₄, X₁₀: 2⋅X₁₀ {O(n)}
t₁₀₅, X₀: 2⋅X₄ {O(n)}
t₁₀₅, X₂: 0 {O(1)}
t₁₀₅, X₄: 2⋅X₄ {O(n)}
t₁₀₅, X₈: 2⋅X₈ {O(n)}
t₁₀₅, X₉: 2⋅X₉ {O(n)}
t₁₀₅, X₁₀: 2⋅X₁₀ {O(n)}
t₁₀₆, X₀: 4⋅X₄ {O(n)}
t₁₀₆, X₂: 512⋅X₄+768 {O(n)}
t₁₀₆, X₄: 4⋅X₄+1 {O(n)}
t₁₀₆, X₈: 4⋅X₈ {O(n)}
t₁₀₆, X₉: 4⋅X₉ {O(n)}
t₁₀₆, X₁₀: 4⋅X₁₀ {O(n)}
t₁₀₇, X₀: 4⋅X₄ {O(n)}
t₁₀₇, X₂: 512⋅X₄+768 {O(n)}
t₁₀₇, X₄: 4⋅X₄+1 {O(n)}
t₁₀₇, X₈: 4⋅X₈ {O(n)}
t₁₀₇, X₉: 4⋅X₉ {O(n)}
t₁₀₇, X₁₀: 4⋅X₁₀ {O(n)}
t₁₀₈, X₀: 4⋅X₄ {O(n)}
t₁₀₈, X₂: 512⋅X₄+768 {O(n)}
t₁₀₈, X₄: 4⋅X₄+1 {O(n)}
t₁₀₈, X₈: 4⋅X₈ {O(n)}
t₁₀₈, X₉: 4⋅X₉ {O(n)}
t₁₀₈, X₁₀: 4⋅X₁₀ {O(n)}
t₁₀₉, X₀: 4⋅X₄ {O(n)}
t₁₀₉, X₂: 512⋅X₄+768 {O(n)}
t₁₀₉, X₄: 4⋅X₄+1 {O(n)}
t₁₀₉, X₈: 4⋅X₈ {O(n)}
t₁₀₉, X₉: 4⋅X₉ {O(n)}
t₁₀₉, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₀, X₀: 4⋅X₄ {O(n)}
t₁₁₀, X₂: 512⋅X₄+768 {O(n)}
t₁₁₀, X₄: 4⋅X₄+1 {O(n)}
t₁₁₀, X₈: 4⋅X₈ {O(n)}
t₁₁₀, X₉: 4⋅X₉ {O(n)}
t₁₁₀, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₁, X₀: 4⋅X₄ {O(n)}
t₁₁₁, X₂: 512⋅X₄+768 {O(n)}
t₁₁₁, X₄: 4⋅X₄+1 {O(n)}
t₁₁₁, X₈: 4⋅X₈ {O(n)}
t₁₁₁, X₉: 4⋅X₉ {O(n)}
t₁₁₁, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₂, X₀: 4⋅X₄ {O(n)}
t₁₁₂, X₂: 512⋅X₄+768 {O(n)}
t₁₁₂, X₄: 4⋅X₄+1 {O(n)}
t₁₁₂, X₈: 4⋅X₈ {O(n)}
t₁₁₂, X₉: 4⋅X₉ {O(n)}
t₁₁₂, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₃, X₀: 4⋅X₄ {O(n)}
t₁₁₃, X₂: 512⋅X₄+768 {O(n)}
t₁₁₃, X₄: 4⋅X₄+1 {O(n)}
t₁₁₃, X₈: 4⋅X₈ {O(n)}
t₁₁₃, X₉: 4⋅X₉ {O(n)}
t₁₁₃, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₄, X₀: 16⋅X₄ {O(n)}
t₁₁₄, X₁: 0 {O(1)}
t₁₁₄, X₂: 16⋅X₁₀+4 {O(n)}
t₁₁₄, X₄: 16⋅X₄+4 {O(n)}
t₁₁₄, X₉: 0 {O(1)}
t₁₁₄, X₁₀: 16⋅X₁₀ {O(n)}
t₁₁₅, X₀: 16⋅X₄ {O(n)}
t₁₁₅, X₁: 0 {O(1)}
t₁₁₅, X₂: 16⋅X₁₀+4 {O(n)}
t₁₁₅, X₄: 16⋅X₄+4 {O(n)}
t₁₁₅, X₉: 0 {O(1)}
t₁₁₅, X₁₀: 16⋅X₁₀ {O(n)}
t₁₁₆, X₀: 32⋅X₄ {O(n)}
t₁₁₆, X₁: 0 {O(1)}
t₁₁₆, X₂: 32⋅X₁₀+8 {O(n)}
t₁₁₆, X₄: 32⋅X₄+8 {O(n)}
t₁₁₆, X₉: 0 {O(1)}
t₁₁₆, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₁₇, X₀: 32⋅X₄ {O(n)}
t₁₁₇, X₁: 0 {O(1)}
t₁₁₇, X₂: 32⋅X₁₀+8 {O(n)}
t₁₁₇, X₄: 32⋅X₄+8 {O(n)}
t₁₁₇, X₉: 0 {O(1)}
t₁₁₇, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₁₈, X₀: 32⋅X₄ {O(n)}
t₁₁₈, X₁: 0 {O(1)}
t₁₁₈, X₂: 32⋅X₁₀+8 {O(n)}
t₁₁₈, X₄: 32⋅X₄+8 {O(n)}
t₁₁₈, X₉: 0 {O(1)}
t₁₁₈, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₁₉, X₀: 32⋅X₄ {O(n)}
t₁₁₉, X₁: 0 {O(1)}
t₁₁₉, X₂: 32⋅X₁₀+8 {O(n)}
t₁₁₉, X₄: 32⋅X₄+8 {O(n)}
t₁₁₉, X₉: 0 {O(1)}
t₁₁₉, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₂₀, X₀: 32⋅X₄ {O(n)}
t₁₂₀, X₁: 0 {O(1)}
t₁₂₀, X₂: 32⋅X₁₀+8 {O(n)}
t₁₂₀, X₄: 32⋅X₄+8 {O(n)}
t₁₂₀, X₉: 0 {O(1)}
t₁₂₀, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₂₁, X₀: 32⋅X₄ {O(n)}
t₁₂₁, X₁: 0 {O(1)}
t₁₂₁, X₂: 32⋅X₁₀+8 {O(n)}
t₁₂₁, X₄: 32⋅X₄+8 {O(n)}
t₁₂₁, X₉: 0 {O(1)}
t₁₂₁, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₂₂, X₀: 32⋅X₄ {O(n)}
t₁₂₂, X₁: 0 {O(1)}
t₁₂₂, X₂: 32⋅X₁₀+8 {O(n)}
t₁₂₂, X₄: 32⋅X₄+8 {O(n)}
t₁₂₂, X₉: 0 {O(1)}
t₁₂₂, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₂₃, X₀: 32⋅X₄ {O(n)}
t₁₂₃, X₁: 0 {O(1)}
t₁₂₃, X₂: 32⋅X₁₀+8 {O(n)}
t₁₂₃, X₄: 32⋅X₄+8 {O(n)}
t₁₂₃, X₉: 0 {O(1)}
t₁₂₃, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₂₄, X₀: 192⋅X₄ {O(n)}
t₁₂₄, X₁: 0 {O(1)}
t₁₂₄, X₂: 192⋅X₁₀+48 {O(n)}
t₁₂₄, X₄: 192⋅X₄+48 {O(n)}
t₁₂₄, X₁₀: 192⋅X₁₀+6 {O(n)}