Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: I
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₁₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₂, X₂, X₀, X₅, X₅, X₇, X₇)
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: 1 ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, I, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆, X₇) :|: 2 ≤ X₄ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ X₄ ≤ X₆+1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₅, X₆-1, X₇) :|: 1 ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, I, X₂, X₃, 0, X₅, X₆, X₇) :|: 2 ≤ X₄ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ X₄ ≤ X₆+1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₀ ∧ X₆+1 ≤ 0 ∧ 0 ≤ 1+X₆ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: 0 ≤ X₄ ∧ X₄+1 ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃
t₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₃, X₇) :|: 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₅, X₃-1, X₇) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, I, X₂, X₃, 0, X₅, X₃, X₇) :|: 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆
t₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇) :|: X₀+1 ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆

Preprocessing

Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 1+X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l2

Found invariant 1+X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l5

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l1

Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l4

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: I
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₁₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₂, X₂, X₀, X₅, X₅, X₇, X₇)
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: 1 ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, I, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆, X₇) :|: 2 ≤ X₄ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ X₄ ≤ X₆+1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 1+X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₅, X₆-1, X₇) :|: 1 ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 1+X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, I, X₂, X₃, 0, X₅, X₆, X₇) :|: 2 ≤ X₄ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ X₄ ≤ X₆+1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 1+X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₀ ∧ X₆+1 ≤ 0 ∧ 0 ≤ 1+X₆ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 1+X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: 0 ≤ X₄ ∧ X₄+1 ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₃, X₇) :|: 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₅, X₃-1, X₇) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, I, X₂, X₃, 0, X₅, X₃, X₇) :|: 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂
t₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇) :|: X₀+1 ≤ 0 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂

MPRF for transition t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, 0, X₅, X₆-1, X₇) :|: 1 ≤ X₀ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 1+X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₀ {O(n)}

MPRF for transition t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, I, X₂, X₃, 0, X₅, X₆, X₇) :|: 2 ≤ X₄ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ X₄ ≤ X₆+1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 1+X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₀+2 {O(n)}

MPRF for transition t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆, X₇) :|: 2 ≤ X₄ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ X₄ ≤ X₆+1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 1+X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₀+2 {O(n)}

MPRF for transition t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: 1 ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀ {O(n)}

MPRF for transition t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, I, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₀⋅X₀+2⋅X₀+2 {O(n^2)}

MPRF for transition t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₀⋅X₀+2⋅X₀+2 {O(n^2)}

MPRF for transition t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: 0 ≤ X₄ ∧ X₄+1 ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₀⋅X₀+2⋅X₀+1 {O(n^2)}

Chain transitions t₂: l4→l3 and t₁₁: l3→l1 to t₁₂₁: l4→l1

Chain transitions t₆: l2→l3 and t₁₁: l3→l1 to t₁₂₂: l2→l1

Chain transitions t₉: l1→l3 and t₁₁: l3→l1 to t₁₂₃: l1→l1

Analysing control-flow refined program

Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 1+X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l2

Found invariant 1+X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l5

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l1

Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l4

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l3

knowledge_propagation leads to new time bound 2⋅X₀ {O(n)} for transition t₁₂₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{2}> l1(X₀, I, X₂, X₃, 1, X₅, X₆, X₇) :|: 2 ≤ X₄ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₆+1 ≤ X₄ ∧ X₄ ≤ X₆+1 ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ 0 ∧ 1 ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 1+X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 1+X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀

MPRF for transition t₁₂₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{2}> l1(X₀, I, X₂, X₃, 1+X₄, X₅, X₆, X₇) :|: X₄+1 ≤ X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₄ ∧ X₄+1 ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

16⋅X₀⋅X₀⋅X₀⋅X₀+20⋅X₀⋅X₀⋅X₀+36⋅X₀⋅X₀+18⋅X₀+14 {O(n^4)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 1+X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l2

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀ for location n_l1___6

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 6 ≤ X₃+X₆ ∧ 6 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₀ for location n_l3___4

Found invariant 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₀ for location n_l3___3

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀ for location n_l3___5

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l1___2

Found invariant 1+X₆ ≤ 0 ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l5

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l1

Found invariant X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l4

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀ for location n_l3___1

Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l3

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₂₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___6(X₀, X₁, X₂, X₀, X₄+1, X₅, X₆, X₇) :|: X₄ ≤ 1 ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₂₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___5(X₀, NoDet0, X₂, X₀, Arg4_P, X₅, Arg6_P, X₇) :|: X₄ ≤ 1 ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ Arg6_P ≤ X₀ ∧ 1+Arg4_P ≤ Arg6_P ∧ 1 ≤ Arg4_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₂₃₀: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___6(X₀, X₁, X₂, X₀, X₄+1, X₅, X₆, X₇) :|: 2 ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₀+2 {O(n)} for transition t₂₃₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₀, X₄+1, X₅, X₆, X₇) :|: 1+X₆ ≤ X₀ ∧ X₄ ≤ 0 ∧ 1 ≤ X₆ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₂₃₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___2(X₀, X₁, X₂, X₀, X₄+1, X₅, X₆, X₇) :|: X₀ ≤ X₆ ∧ X₄ ≤ 0 ∧ 1 ≤ X₀ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₂₄₀: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: 1 ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₂₂₁: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___6(X₀, X₁, X₂, X₀, X₄+1, X₅, X₆, X₇) :|: 1+X₄ ≤ X₆ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₂₂₂: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___1(X₀, NoDet0, X₂, X₀, Arg4_P, X₅, Arg6_P, X₇) :|: Arg6_P ≤ X₀ ∧ 1+Arg4_P ≤ Arg6_P ∧ 1 ≤ Arg4_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 4⋅X₀+4 {O(n)} for transition t₂₂₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___6(X₀, X₁, X₂, X₀, X₄+1, X₅, X₆, X₇) :|: X₄ ≤ 1 ∧ 1+X₆ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 4⋅X₀+4 {O(n)} for transition t₂₂₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___3(X₀, NoDet0, X₂, X₀, Arg4_P, X₅, Arg6_P, X₇) :|: X₄ ≤ 1 ∧ 1+X₆ ≤ X₀ ∧ Arg6_P ≤ X₀ ∧ 1+Arg4_P ≤ Arg6_P ∧ 1 ≤ Arg4_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₂₂₇: n_l3___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___6(X₀, X₁, X₂, X₀, X₄+1, X₅, X₆, X₇) :|: 1 ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 4⋅X₀+4 {O(n)} for transition t₂₂₈: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___6(X₀, X₁, X₂, X₀, X₄+1, X₅, X₆, X₇) :|: 1+X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₀ ∧ 1+X₄ ≤ X₆ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₄ ≤ 1 ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₀

All Bounds

Timebounds

Overall timebound:12⋅X₀⋅X₀+14⋅X₀+15 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 2⋅X₀ {O(n)}
t₆: 2⋅X₀+2 {O(n)}
t₇: 2⋅X₀+2 {O(n)}
t₈: 2⋅X₀ {O(n)}
t₉: 4⋅X₀⋅X₀+2⋅X₀+2 {O(n^2)}
t₁₀: 4⋅X₀⋅X₀+2⋅X₀+2 {O(n^2)}
t₁₁: 4⋅X₀⋅X₀+2⋅X₀+1 {O(n^2)}
t₁₂: 1 {O(1)}

Costbounds

Overall costbound: 12⋅X₀⋅X₀+14⋅X₀+15 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 2⋅X₀ {O(n)}
t₆: 2⋅X₀+2 {O(n)}
t₇: 2⋅X₀+2 {O(n)}
t₈: 2⋅X₀ {O(n)}
t₉: 4⋅X₀⋅X₀+2⋅X₀+2 {O(n^2)}
t₁₀: 4⋅X₀⋅X₀+2⋅X₀+2 {O(n^2)}
t₁₁: 4⋅X₀⋅X₀+2⋅X₀+1 {O(n^2)}
t₁₂: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₂ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₀ {O(n)}
t₀, X₄: X₅ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₀ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: 0 {O(1)}
t₁, X₁: X₂ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: 0 {O(1)}
t₁, X₄: 0 {O(1)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: 1 {O(1)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₀ {O(n)}
t₂, X₄: 0 {O(1)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₀ {O(n)}
t₂, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₂ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₀ {O(n)}
t₃, X₄: 1 {O(1)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₀ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄, X₀: 2⋅X₀ {O(n)}
t₄, X₂: 3⋅X₂ {O(n)}
t₄, X₃: 2⋅X₀ {O(n)}
t₄, X₄: 0 {O(1)}
t₄, X₅: 3⋅X₅ {O(n)}
t₄, X₆: 1 {O(1)}
t₄, X₇: 3⋅X₇ {O(n)}
t₅, X₀: 2⋅X₀ {O(n)}
t₅, X₂: 2⋅X₂ {O(n)}
t₅, X₃: 2⋅X₀ {O(n)}
t₅, X₄: 0 {O(1)}
t₅, X₅: 2⋅X₅ {O(n)}
t₅, X₆: 1 {O(1)}
t₅, X₇: 2⋅X₇ {O(n)}
t₆, X₀: 2⋅X₀ {O(n)}
t₆, X₂: 2⋅X₂ {O(n)}
t₆, X₃: 2⋅X₀ {O(n)}
t₆, X₄: 0 {O(1)}
t₆, X₅: 2⋅X₅ {O(n)}
t₆, X₆: 2⋅X₀ {O(n)}
t₆, X₇: 2⋅X₇ {O(n)}
t₇, X₀: 2⋅X₀ {O(n)}
t₇, X₂: 2⋅X₂ {O(n)}
t₇, X₃: 2⋅X₀ {O(n)}
t₇, X₄: 1 {O(1)}
t₇, X₅: 2⋅X₅ {O(n)}
t₇, X₆: 2⋅X₀ {O(n)}
t₇, X₇: 2⋅X₇ {O(n)}
t₈, X₀: 2⋅X₀ {O(n)}
t₈, X₂: 2⋅X₂ {O(n)}
t₈, X₃: 2⋅X₀ {O(n)}
t₈, X₄: 16⋅X₀⋅X₀+8⋅X₀+12 {O(n^2)}
t₈, X₅: 2⋅X₅ {O(n)}
t₈, X₆: 2⋅X₀ {O(n)}
t₈, X₇: 2⋅X₇ {O(n)}
t₉, X₀: 2⋅X₀ {O(n)}
t₉, X₂: 2⋅X₂ {O(n)}
t₉, X₃: 2⋅X₀ {O(n)}
t₉, X₄: 8⋅X₀⋅X₀+4⋅X₀+5 {O(n^2)}
t₉, X₅: 2⋅X₅ {O(n)}
t₉, X₆: 2⋅X₀ {O(n)}
t₉, X₇: 2⋅X₇ {O(n)}
t₁₀, X₀: 2⋅X₀ {O(n)}
t₁₀, X₂: 2⋅X₂ {O(n)}
t₁₀, X₃: 2⋅X₀ {O(n)}
t₁₀, X₄: 8⋅X₀⋅X₀+4⋅X₀+5 {O(n^2)}
t₁₀, X₅: 2⋅X₅ {O(n)}
t₁₀, X₆: 2⋅X₀ {O(n)}
t₁₀, X₇: 2⋅X₇ {O(n)}
t₁₁, X₀: 2⋅X₀ {O(n)}
t₁₁, X₂: 2⋅X₂ {O(n)}
t₁₁, X₃: 2⋅X₀ {O(n)}
t₁₁, X₄: 8⋅X₀⋅X₀+4⋅X₀+5 {O(n^2)}
t₁₁, X₅: 2⋅X₅ {O(n)}
t₁₁, X₆: 2⋅X₀ {O(n)}
t₁₁, X₇: 2⋅X₇ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₂ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₀ {O(n)}
t₁₂, X₄: X₅ {O(n)}
t₁₂, X₅: X₅ {O(n)}
t₁₂, X₆: X₇ {O(n)}
t₁₂, X₇: X₇ {O(n)}