Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: F
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄)
t₉: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁
t₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃
t₁₀: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: F+1 ≤ 0
t₁₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ F
t₁₂: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₁₃: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃+1, X₄)
t₁₄: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₀-1, X₃)
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₂, X₄) :|: F+1 ≤ 0
t₆: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₂, X₄) :|: 1 ≤ F
t₇: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₀, X₂)
t₁₅: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₃, X₁, X₄-1, X₃, X₄)
t₂: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₀ ∧ 0 ≤ X₂
t₃: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ 0
t₄: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0
t₁₆: l8(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄)
t₁: l9(X₀, X₁, X₂, X₃, X₄) → l7(X₁, X₁, 0, X₃, X₄)
Preprocessing
Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l2
Found invariant 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l7
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l8
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1
Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l10
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4
Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: F
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄)
t₉: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₀: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: F+1 ≤ 0 ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ F ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₂: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₃: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₄: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₀-1, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₂, X₄) :|: F+1 ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₂, X₄) :|: 1 ≤ F ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₀, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₁₅: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₃, X₁, X₄-1, X₃, X₄) :|: 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₂: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁
t₃: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁
t₄: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁
t₁₆: l8(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ 1+X₂ ∧ X₀ ≤ X₁
t₁: l9(X₀, X₁, X₂, X₃, X₄) → l7(X₁, X₁, 0, X₃, X₄)
MPRF for transition t₅: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₂, X₄) :|: F+1 ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₆: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₂, X₄) :|: 1 ≤ F ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₁₂: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₁₄: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₀-1, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₉: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
7⋅X₁⋅X₁+24⋅X₁+14 {O(n^2)}
MPRF for transition t₁₀: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: F+1 ≤ 0 ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+3⋅X₁+2 {O(n^2)}
MPRF for transition t₁₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ F ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+3⋅X₁+2 {O(n^2)}
MPRF for transition t₁₃: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+3⋅X₁+2 {O(n^2)}
MPRF for transition t₂: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ of depth 1:
new bound:
X₁⋅X₁⋅X₁+4⋅X₁⋅X₁+8⋅X₁+8 {O(n^3)}
MPRF for transition t₇: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₀, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁⋅X₁+4⋅X₁⋅X₁+6⋅X₁+4 {O(n^3)}
MPRF for transition t₁₅: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₃, X₁, X₄-1, X₃, X₄) :|: 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁⋅X₁+4⋅X₁⋅X₁+7⋅X₁+5 {O(n^3)}
Chain transitions t₆: l5→l1 and t₈: l1→l4 to t₁₅₆: l5→l4
Chain transitions t₅: l5→l1 and t₈: l1→l4 to t₁₅₇: l5→l4
Chain transitions t₅: l5→l1 and t₉: l1→l2 to t₁₅₈: l5→l2
Chain transitions t₆: l5→l1 and t₉: l1→l2 to t₁₅₉: l5→l2
Chain transitions t₁₃: l3→l1 and t₉: l1→l2 to t₁₆₀: l3→l2
Chain transitions t₁₃: l3→l1 and t₈: l1→l4 to t₁₆₁: l3→l4
Chain transitions t₁₅₉: l5→l2 and t₁₂: l2→l4 to t₁₆₂: l5→l4
Chain transitions t₁₅₈: l5→l2 and t₁₂: l2→l4 to t₁₆₃: l5→l4
Chain transitions t₁₅₈: l5→l2 and t₁₁: l2→l3 to t₁₆₄: l5→l3
Chain transitions t₁₅₉: l5→l2 and t₁₁: l2→l3 to t₁₆₅: l5→l3
Chain transitions t₁₆₀: l3→l2 and t₁₁: l2→l3 to t₁₆₆: l3→l3
Chain transitions t₁₆₀: l3→l2 and t₁₂: l2→l4 to t₁₆₇: l3→l4
Chain transitions t₁₆₀: l3→l2 and t₁₀: l2→l3 to t₁₆₈: l3→l3
Chain transitions t₁₅₈: l5→l2 and t₁₀: l2→l3 to t₁₆₉: l5→l3
Chain transitions t₁₅₉: l5→l2 and t₁₀: l2→l3 to t₁₇₀: l5→l3
Chain transitions t₁₆₃: l5→l4 and t₁₄: l4→l6 to t₁₇₁: l5→l6
Chain transitions t₁₆₂: l5→l4 and t₁₄: l4→l6 to t₁₇₂: l5→l6
Chain transitions t₁₅₇: l5→l4 and t₁₄: l4→l6 to t₁₇₃: l5→l6
Chain transitions t₁₅₆: l5→l4 and t₁₄: l4→l6 to t₁₇₄: l5→l6
Chain transitions t₁₆₇: l3→l4 and t₁₄: l4→l6 to t₁₇₅: l3→l6
Chain transitions t₁₆₁: l3→l4 and t₁₄: l4→l6 to t₁₇₆: l3→l6
Chain transitions t₂: l7→l5 and t₁₇₄: l5→l6 to t₁₇₇: l7→l6
Chain transitions t₂: l7→l5 and t₁₇₃: l5→l6 to t₁₇₈: l7→l6
Chain transitions t₂: l7→l5 and t₁₇₂: l5→l6 to t₁₇₉: l7→l6
Chain transitions t₂: l7→l5 and t₁₇₁: l5→l6 to t₁₈₀: l7→l6
Chain transitions t₂: l7→l5 and t₇: l5→l6 to t₁₈₁: l7→l6
Chain transitions t₂: l7→l5 and t₁₆₃: l5→l4 to t₁₈₂: l7→l4
Chain transitions t₂: l7→l5 and t₁₆₂: l5→l4 to t₁₈₃: l7→l4
Chain transitions t₂: l7→l5 and t₁₅₇: l5→l4 to t₁₈₄: l7→l4
Chain transitions t₂: l7→l5 and t₁₅₆: l5→l4 to t₁₈₅: l7→l4
Chain transitions t₂: l7→l5 and t₁₇₀: l5→l3 to t₁₈₆: l7→l3
Chain transitions t₂: l7→l5 and t₁₆₉: l5→l3 to t₁₈₇: l7→l3
Chain transitions t₂: l7→l5 and t₁₆₅: l5→l3 to t₁₈₈: l7→l3
Chain transitions t₂: l7→l5 and t₁₆₄: l5→l3 to t₁₈₉: l7→l3
Chain transitions t₂: l7→l5 and t₁₅₉: l5→l2 to t₁₉₀: l7→l2
Chain transitions t₂: l7→l5 and t₁₅₈: l5→l2 to t₁₉₁: l7→l2
Chain transitions t₂: l7→l5 and t₆: l5→l1 to t₁₉₂: l7→l1
Chain transitions t₂: l7→l5 and t₅: l5→l1 to t₁₉₃: l7→l1
Chain transitions t₁₈₁: l7→l6 and t₁₅: l6→l7 to t₁₉₄: l7→l7
Chain transitions t₁₈₀: l7→l6 and t₁₅: l6→l7 to t₁₉₅: l7→l7
Chain transitions t₁₇₉: l7→l6 and t₁₅: l6→l7 to t₁₉₆: l7→l7
Chain transitions t₁₇₈: l7→l6 and t₁₅: l6→l7 to t₁₉₇: l7→l7
Chain transitions t₁₇₇: l7→l6 and t₁₅: l6→l7 to t₁₉₈: l7→l7
Chain transitions t₁₇₆: l3→l6 and t₁₅: l6→l7 to t₁₉₉: l3→l7
Chain transitions t₁₇₅: l3→l6 and t₁₅: l6→l7 to t₂₀₀: l3→l7
Analysing control-flow refined program
Eliminate variables {X₄} that do not contribute to the problem
Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l2
Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l7
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l8
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1
Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l10
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4
Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l3
MPRF for transition t₂₅₇: l3(X₀, X₁, X₂, X₃) -{4}> l7(X₀-1, X₁, X₃, X₀-1) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₅₈: l3(X₀, X₁, X₂, X₃) -{5}> l7(X₀-1, X₁, X₃, X₀-1) :|: 1+X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₆₃: l7(X₀, X₁, X₂, X₃) -{4}> l3(X₀, X₁, X₂, X₂) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ Temp_Int₈₀₆ ∧ X₂ ≤ X₁ ∧ Temp_Int₈₀₇+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₆₄: l7(X₀, X₁, X₂, X₃) -{4}> l3(X₀, X₁, X₂, X₂) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ Temp_Int₈₁₂+1 ≤ 0 ∧ X₂ ≤ X₁ ∧ Temp_Int₈₁₃+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₆₅: l7(X₀, X₁, X₂, X₃) -{4}> l3(X₀, X₁, X₂, X₂) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ Temp_Int₈₁₈ ∧ X₂ ≤ X₁ ∧ 1 ≤ Temp_Int₈₁₉ ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₆₆: l7(X₀, X₁, X₂, X₃) -{4}> l3(X₀, X₁, X₂, X₂) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ Temp_Int₈₂₄+1 ≤ 0 ∧ X₂ ≤ X₁ ∧ 1 ≤ Temp_Int₈₂₅ ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₇₈: l7(X₀, X₁, X₂, X₃) -{6}> l7(X₀-1, X₁, X₂-1, X₀-1) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ Temp_Int₇₇₈+1 ≤ 0 ∧ X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₇₉: l7(X₀, X₁, X₂, X₃) -{6}> l7(X₀-1, X₁, X₂-1, X₀-1) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ Temp_Int₇₇₄ ∧ X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₈₀: l7(X₀, X₁, X₂, X₃) -{5}> l7(X₀-1, X₁, X₂-1, X₀-1) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ Temp_Int₇₇₀+1 ≤ 0 ∧ X₁+1 ≤ X₂ ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₈₁: l7(X₀, X₁, X₂, X₃) -{5}> l7(X₀-1, X₁, X₂-1, X₀-1) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ Temp_Int₇₆₆ ∧ X₁+1 ≤ X₂ ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₅₁: l3(X₀, X₁, X₂, X₃) -{3}> l3(X₀, X₁, X₂, 1+X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ Temp_Int₇₁₅ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
6⋅X₁⋅X₁+13⋅X₁+5 {O(n^2)}
MPRF for transition t₂₅₂: l3(X₀, X₁, X₂, X₃) -{3}> l3(X₀, X₁, X₂, 1+X₃) :|: 1+X₃ ≤ X₁ ∧ Temp_Int₇₂₆+1 ≤ 0 ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
4⋅X₁⋅X₁+10⋅X₁+5 {O(n^2)}
MPRF for transition t₂₇₇: l7(X₀, X₁, X₂, X₃) -{3}> l7(X₀, X₁, X₂-1, X₀) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ of depth 1:
new bound:
4⋅X₁⋅X₁+8⋅X₁+5 {O(n^2)}
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₄: l7→l8
Cut unsatisfiable transition t₇₃₆: n_l7___3→l8
Cut unsatisfiable transition t₇₃₈: n_l7___7→l8
Cut unsatisfiable transition t₇₃₉: n_l7___11→l8
Cut unsatisfiable transition t₇₄₀: n_l7___23→l8
Cut unsatisfiable transition t₇₄₆: n_l1___9→l4
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l2___15
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l5___1
Found invariant X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l6___24
Found invariant X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l6___5
Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l1___9
Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l2___19
Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l4___17
Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l6___12
Found invariant X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l1___21
Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l7___3
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l4___13
Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l5___10
Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l5___2
Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l5___6
Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l7
Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l3___14
Found invariant X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l1___16
Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ for location n_l7___23
Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l8
Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l5___22
Found invariant X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l6___8
Found invariant 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ for location l10
Found invariant X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4
Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ for location n_l7___11
Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l7___7
Found invariant X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l6___20
Found invariant X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 2+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ for location n_l7___4
Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l3___18
Cut unsatisfiable transition t₇₄₅: n_l1___21→l4
MPRF for transition t₆₇₅: n_l1___21(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁ {O(n)}
MPRF for transition t₆₇₆: n_l1___9(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+3 {O(n)}
MPRF for transition t₆₇₉: n_l2___15(X₀, X₁, X₂, X₃, X₄) → n_l4___13(X₀, X₁, X₂, X₃, X₄) :|: 1+X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+3 {O(n)}
MPRF for transition t₆₈₀: n_l2___19(X₀, X₁, X₂, X₃, X₄) → n_l3___18(X₀, X₁, Arg2_P, X₃, X₄) :|: X₃ ≤ X₂ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+3 {O(n)}
MPRF for transition t₆₈₁: n_l2___19(X₀, X₁, X₂, X₃, X₄) → n_l3___18(X₀, X₁, Arg2_P, X₃, X₄) :|: X₃ ≤ X₂ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+3 {O(n)}
MPRF for transition t₆₈₂: n_l2___19(X₀, X₁, X₂, X₃, X₄) → n_l4___17(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+3 {O(n)}
MPRF for transition t₆₈₄: n_l3___18(X₀, X₁, X₂, X₃, X₄) → n_l1___16(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+3 {O(n)}
MPRF for transition t₆₈₅: n_l4___13(X₀, X₁, X₂, X₃, X₄) → n_l6___12(X₀, X₁, X₂, X₀-1, X₃) :|: 1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
6⋅X₁ {O(n)}
MPRF for transition t₆₈₆: n_l4___17(X₀, X₁, X₂, X₃, X₄) → n_l6___5(X₀, X₁, X₂, X₀-1, X₃) :|: X₃ ≤ 1+X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+3 {O(n)}
MPRF for transition t₆₈₇: l4(X₀, X₁, X₂, X₃, X₄) → n_l6___24(X₀, X₁, X₂, X₀-1, X₃) :|: 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
6⋅X₁+3 {O(n)}
MPRF for transition t₆₉₁: n_l5___10(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁ {O(n)}
MPRF for transition t₆₉₂: n_l5___10(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁ {O(n)}
MPRF for transition t₆₉₃: n_l5___10(X₀, X₁, X₂, X₃, X₄) → n_l6___8(X₀, X₁, X₂, X₀, X₂) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁ {O(n)}
MPRF for transition t₆₉₄: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l1___21(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: 1 ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁ {O(n)}
MPRF for transition t₆₉₅: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l1___21(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: 1 ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
12⋅X₁ {O(n)}
MPRF for transition t₆₉₇: n_l5___22(X₀, X₁, X₂, X₃, X₄) → n_l1___21(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ X₂ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁ {O(n)}
MPRF for transition t₆₉₈: n_l5___22(X₀, X₁, X₂, X₃, X₄) → n_l1___21(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ X₂ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁ {O(n)}
MPRF for transition t₆₉₉: n_l5___22(X₀, X₁, X₂, X₃, X₄) → n_l6___20(X₀, X₁, X₂, X₀, X₂) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁ {O(n)}
MPRF for transition t₇₀₀: n_l5___6(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+1 {O(n)}
MPRF for transition t₇₀₁: n_l5___6(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+1 {O(n)}
MPRF for transition t₇₀₃: n_l6___12(X₀, X₁, X₂, X₃, X₄) → n_l7___11(X₃, X₁, X₄-1, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+3 {O(n)}
MPRF for transition t₇₀₅: n_l6___24(X₀, X₁, X₂, X₃, X₄) → n_l7___23(X₃, X₁, X₄-1, X₃, X₄) :|: 1 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+3 {O(n)}
MPRF for transition t₇₀₆: n_l6___5(X₀, X₁, X₂, X₃, X₄) → n_l7___4(X₃, X₁, X₄-1, X₃, X₄) :|: X₄ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+3 {O(n)}
MPRF for transition t₇₀₈: n_l7___11(X₀, X₁, X₂, X₃, X₄) → n_l5___10(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ 1+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ 1+X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ of depth 1:
new bound:
3⋅X₁ {O(n)}
MPRF for transition t₇₀₉: n_l7___23(X₀, X₁, X₂, X₃, X₄) → n_l5___22(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ 1+X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ of depth 1:
new bound:
3⋅X₁ {O(n)}
MPRF for transition t₇₁₂: n_l7___4(X₀, X₁, X₂, X₃, X₄) → n_l5___10(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₃ ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 2+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ of depth 1:
new bound:
6⋅X₁ {O(n)}
MPRF for transition t₇₄₄: n_l1___16(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₁+3 {O(n)}
MPRF for transition t₆₇₄: n_l1___16(X₀, X₁, X₂, X₃, X₄) → n_l2___15(X₀, X₁, X₂, X₃, X₄) :|: 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
45⋅X₁⋅X₁+45⋅X₁+6 {O(n^2)}
MPRF for transition t₆₇₇: n_l2___15(X₀, X₁, X₂, X₃, X₄) → n_l3___14(X₀, X₁, Arg2_P, X₃, X₄) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
45⋅X₁⋅X₁+45⋅X₁+6 {O(n^2)}
MPRF for transition t₆₇₈: n_l2___15(X₀, X₁, X₂, X₃, X₄) → n_l3___14(X₀, X₁, Arg2_P, X₃, X₄) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
54⋅X₁⋅X₁+51⋅X₁+3 {O(n^2)}
MPRF for transition t₆₈₃: n_l3___14(X₀, X₁, X₂, X₃, X₄) → n_l1___16(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
144⋅X₁⋅X₁+150⋅X₁+12 {O(n^2)}
MPRF for transition t₆₉₆: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l6___20(X₀, X₁, X₂, X₀, X₂) :|: 1 ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
9⋅X₁⋅X₁+12⋅X₁+3 {O(n^2)}
MPRF for transition t₇₀₂: n_l5___6(X₀, X₁, X₂, X₃, X₄) → n_l6___8(X₀, X₁, X₂, X₀, X₂) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
81⋅X₁⋅X₁+24⋅X₁ {O(n^2)}
MPRF for transition t₇₀₄: n_l6___20(X₀, X₁, X₂, X₃, X₄) → n_l7___3(X₃, X₁, X₄-1, X₃, X₄) :|: 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
9⋅X₁⋅X₁+12⋅X₁+3 {O(n^2)}
MPRF for transition t₇₀₇: n_l6___8(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₃, X₁, X₄-1, X₃, X₄) :|: 0 ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₂ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
27⋅X₁⋅X₁+1 {O(n^2)}
MPRF for transition t₇₁₁: n_l7___3(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
9⋅X₁⋅X₁+12⋅X₁+3 {O(n^2)}
MPRF for transition t₇₁₃: n_l7___7(X₀, X₁, X₂, X₃, X₄) → n_l5___6(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
54⋅X₁⋅X₁+3⋅X₁+1 {O(n^2)}
CFR did not improve the program. Rolling back
CFR: Improvement to new bound with the following program:
new bound:
477⋅X₁⋅X₁+453⋅X₁+76 {O(n^2)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: Arg0_P, Arg1_P, Arg2_P, Arg3_P
Locations: l0, l10, l4, l7, l8, l9, n_l1___16, n_l1___21, n_l1___9, n_l2___15, n_l2___19, n_l3___14, n_l3___18, n_l4___13, n_l4___17, n_l5___1, n_l5___10, n_l5___2, n_l5___22, n_l5___6, n_l6___12, n_l6___20, n_l6___24, n_l6___5, n_l6___8, n_l7___11, n_l7___23, n_l7___3, n_l7___4, n_l7___7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄)
t₆₈₇: l4(X₀, X₁, X₂, X₃, X₄) → n_l6___24(X₀, X₁, X₂, X₀-1, X₃) :|: 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₃: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
t₇₁₀: l7(X₀, X₁, X₂, X₃, X₄) → n_l5___1(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
t₁₆: l8(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁
t₁: l9(X₀, X₁, X₂, X₃, X₄) → l7(X₁, X₁, 0, X₃, X₄)
t₇₄₄: n_l1___16(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₁+1 ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₇₄: n_l1___16(X₀, X₁, X₂, X₃, X₄) → n_l2___15(X₀, X₁, X₂, X₃, X₄) :|: 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₇₅: n_l1___21(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₇₆: n_l1___9(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₇₇: n_l2___15(X₀, X₁, X₂, X₃, X₄) → n_l3___14(X₀, X₁, Arg2_P, X₃, X₄) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₇₈: n_l2___15(X₀, X₁, X₂, X₃, X₄) → n_l3___14(X₀, X₁, Arg2_P, X₃, X₄) :|: 1+X₂ ≤ X₃ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₇₉: n_l2___15(X₀, X₁, X₂, X₃, X₄) → n_l4___13(X₀, X₁, X₂, X₃, X₄) :|: 1+X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₈₀: n_l2___19(X₀, X₁, X₂, X₃, X₄) → n_l3___18(X₀, X₁, Arg2_P, X₃, X₄) :|: X₃ ≤ X₂ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₈₁: n_l2___19(X₀, X₁, X₂, X₃, X₄) → n_l3___18(X₀, X₁, Arg2_P, X₃, X₄) :|: X₃ ≤ X₂ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₈₂: n_l2___19(X₀, X₁, X₂, X₃, X₄) → n_l4___17(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₈₃: n_l3___14(X₀, X₁, X₂, X₃, X₄) → n_l1___16(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₈₄: n_l3___18(X₀, X₁, X₂, X₃, X₄) → n_l1___16(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₈₅: n_l4___13(X₀, X₁, X₂, X₃, X₄) → n_l6___12(X₀, X₁, X₂, X₀-1, X₃) :|: 1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₈₆: n_l4___17(X₀, X₁, X₂, X₃, X₄) → n_l6___5(X₀, X₁, X₂, X₀-1, X₃) :|: X₃ ≤ 1+X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₈₈: n_l5___1(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₈₉: n_l5___1(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₉₀: n_l5___1(X₀, X₁, X₂, X₃, X₄) → n_l6___8(X₀, X₁, X₂, X₀, X₂) :|: X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₉₁: n_l5___10(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₉₂: n_l5___10(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₉₃: n_l5___10(X₀, X₁, X₂, X₃, X₄) → n_l6___8(X₀, X₁, X₂, X₀, X₂) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₉₄: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l1___21(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: 1 ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₉₅: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l1___21(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: 1 ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₉₆: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l6___20(X₀, X₁, X₂, X₀, X₂) :|: 1 ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₉₇: n_l5___22(X₀, X₁, X₂, X₃, X₄) → n_l1___21(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ X₂ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₉₈: n_l5___22(X₀, X₁, X₂, X₃, X₄) → n_l1___21(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ X₂ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₆₉₉: n_l5___22(X₀, X₁, X₂, X₃, X₄) → n_l6___20(X₀, X₁, X₂, X₀, X₂) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇₀₀: n_l5___6(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇₀₁: n_l5___6(X₀, X₁, X₂, X₃, X₄) → n_l1___9(Arg0_P, Arg1_P, Arg2_P, Arg3_P, X₄) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ Arg3_P ∧ Arg0_P ≤ Arg1_P ∧ 0 ≤ Arg0_P ∧ X₂ ≤ Arg3_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₀ ≤ Arg0_P ∧ Arg0_P ≤ X₀ ∧ Arg2_P ≤ Arg3_P ∧ Arg3_P ≤ Arg2_P ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇₀₂: n_l5___6(X₀, X₁, X₂, X₃, X₄) → n_l6___8(X₀, X₁, X₂, X₀, X₂) :|: X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇₀₃: n_l6___12(X₀, X₁, X₂, X₃, X₄) → n_l7___11(X₃, X₁, X₄-1, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇₀₄: n_l6___20(X₀, X₁, X₂, X₃, X₄) → n_l7___3(X₃, X₁, X₄-1, X₃, X₄) :|: 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇₀₅: n_l6___24(X₀, X₁, X₂, X₃, X₄) → n_l7___23(X₃, X₁, X₄-1, X₃, X₄) :|: 1 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇₀₆: n_l6___5(X₀, X₁, X₂, X₃, X₄) → n_l7___4(X₃, X₁, X₄-1, X₃, X₄) :|: X₄ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇₀₇: n_l6___8(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₃, X₁, X₄-1, X₃, X₄) :|: 0 ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₂ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₃ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇₃₄: n_l7___11(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀
t₇₀₈: n_l7___11(X₀, X₁, X₂, X₃, X₄) → n_l5___10(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ 1+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ 1+X₀ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀
t₇₃₅: n_l7___23(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀
t₇₀₉: n_l7___23(X₀, X₁, X₂, X₃, X₄) → n_l5___22(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ 1+X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀
t₇₄₁: n_l7___3(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇₁₁: n_l7___3(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇₃₇: n_l7___4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 2+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀
t₇₄₂: n_l7___4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 2+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀
t₇₁₂: n_l7___4(X₀, X₁, X₂, X₃, X₄) → n_l5___10(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₃ ∧ 1+X₃ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 2+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 0 ≤ 2+X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀
t₇₄₃: n_l7___7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
t₇₁₃: n_l7___7(X₀, X₁, X₂, X₃, X₄) → n_l5___6(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀
All Bounds
Timebounds
Overall timebound:477⋅X₁⋅X₁+453⋅X₁+90 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₃: 1 {O(1)}
t₁₆: 1 {O(1)}
t₆₇₄: 45⋅X₁⋅X₁+45⋅X₁+6 {O(n^2)}
t₆₇₅: 3⋅X₁ {O(n)}
t₆₇₆: 3⋅X₁+3 {O(n)}
t₆₇₇: 45⋅X₁⋅X₁+45⋅X₁+6 {O(n^2)}
t₆₇₈: 54⋅X₁⋅X₁+51⋅X₁+3 {O(n^2)}
t₆₇₉: 3⋅X₁+3 {O(n)}
t₆₈₀: 3⋅X₁+3 {O(n)}
t₆₈₁: 3⋅X₁+3 {O(n)}
t₆₈₂: 3⋅X₁+3 {O(n)}
t₆₈₃: 144⋅X₁⋅X₁+150⋅X₁+12 {O(n^2)}
t₆₈₄: 3⋅X₁+3 {O(n)}
t₆₈₅: 6⋅X₁ {O(n)}
t₆₈₆: 3⋅X₁+3 {O(n)}
t₆₈₇: 6⋅X₁+3 {O(n)}
t₆₈₈: 1 {O(1)}
t₆₈₉: 1 {O(1)}
t₆₉₀: 1 {O(1)}
t₆₉₁: 3⋅X₁ {O(n)}
t₆₉₂: 3⋅X₁ {O(n)}
t₆₉₃: 3⋅X₁ {O(n)}
t₆₉₄: 3⋅X₁ {O(n)}
t₆₉₅: 12⋅X₁ {O(n)}
t₆₉₆: 9⋅X₁⋅X₁+12⋅X₁+3 {O(n^2)}
t₆₉₇: 3⋅X₁ {O(n)}
t₆₉₈: 3⋅X₁ {O(n)}
t₆₉₉: 3⋅X₁ {O(n)}
t₇₀₀: 3⋅X₁+1 {O(n)}
t₇₀₁: 3⋅X₁+1 {O(n)}
t₇₀₂: 81⋅X₁⋅X₁+24⋅X₁ {O(n^2)}
t₇₀₃: 3⋅X₁+3 {O(n)}
t₇₀₄: 9⋅X₁⋅X₁+12⋅X₁+3 {O(n^2)}
t₇₀₅: 3⋅X₁+3 {O(n)}
t₇₀₆: 3⋅X₁+3 {O(n)}
t₇₀₇: 27⋅X₁⋅X₁+1 {O(n^2)}
t₇₀₈: 3⋅X₁ {O(n)}
t₇₀₉: 3⋅X₁ {O(n)}
t₇₁₀: 1 {O(1)}
t₇₁₁: 9⋅X₁⋅X₁+12⋅X₁+3 {O(n^2)}
t₇₁₂: 6⋅X₁ {O(n)}
t₇₁₃: 54⋅X₁⋅X₁+3⋅X₁+1 {O(n^2)}
t₇₃₄: 1 {O(1)}
t₇₃₅: 1 {O(1)}
t₇₃₇: 1 {O(1)}
t₇₄₁: 1 {O(1)}
t₇₄₂: 1 {O(1)}
t₇₄₃: 1 {O(1)}
t₇₄₄: 3⋅X₁+3 {O(n)}
Costbounds
Overall costbound: 477⋅X₁⋅X₁+453⋅X₁+90 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₃: 1 {O(1)}
t₁₆: 1 {O(1)}
t₆₇₄: 45⋅X₁⋅X₁+45⋅X₁+6 {O(n^2)}
t₆₇₅: 3⋅X₁ {O(n)}
t₆₇₆: 3⋅X₁+3 {O(n)}
t₆₇₇: 45⋅X₁⋅X₁+45⋅X₁+6 {O(n^2)}
t₆₇₈: 54⋅X₁⋅X₁+51⋅X₁+3 {O(n^2)}
t₆₇₉: 3⋅X₁+3 {O(n)}
t₆₈₀: 3⋅X₁+3 {O(n)}
t₆₈₁: 3⋅X₁+3 {O(n)}
t₆₈₂: 3⋅X₁+3 {O(n)}
t₆₈₃: 144⋅X₁⋅X₁+150⋅X₁+12 {O(n^2)}
t₆₈₄: 3⋅X₁+3 {O(n)}
t₆₈₅: 6⋅X₁ {O(n)}
t₆₈₆: 3⋅X₁+3 {O(n)}
t₆₈₇: 6⋅X₁+3 {O(n)}
t₆₈₈: 1 {O(1)}
t₆₈₉: 1 {O(1)}
t₆₉₀: 1 {O(1)}
t₆₉₁: 3⋅X₁ {O(n)}
t₆₉₂: 3⋅X₁ {O(n)}
t₆₉₃: 3⋅X₁ {O(n)}
t₆₉₄: 3⋅X₁ {O(n)}
t₆₉₅: 12⋅X₁ {O(n)}
t₆₉₆: 9⋅X₁⋅X₁+12⋅X₁+3 {O(n^2)}
t₆₉₇: 3⋅X₁ {O(n)}
t₆₉₈: 3⋅X₁ {O(n)}
t₆₉₉: 3⋅X₁ {O(n)}
t₇₀₀: 3⋅X₁+1 {O(n)}
t₇₀₁: 3⋅X₁+1 {O(n)}
t₇₀₂: 81⋅X₁⋅X₁+24⋅X₁ {O(n^2)}
t₇₀₃: 3⋅X₁+3 {O(n)}
t₇₀₄: 9⋅X₁⋅X₁+12⋅X₁+3 {O(n^2)}
t₇₀₅: 3⋅X₁+3 {O(n)}
t₇₀₆: 3⋅X₁+3 {O(n)}
t₇₀₇: 27⋅X₁⋅X₁+1 {O(n^2)}
t₇₀₈: 3⋅X₁ {O(n)}
t₇₀₉: 3⋅X₁ {O(n)}
t₇₁₀: 1 {O(1)}
t₇₁₁: 9⋅X₁⋅X₁+12⋅X₁+3 {O(n^2)}
t₇₁₂: 6⋅X₁ {O(n)}
t₇₁₃: 54⋅X₁⋅X₁+3⋅X₁+1 {O(n^2)}
t₇₃₄: 1 {O(1)}
t₇₃₅: 1 {O(1)}
t₇₃₇: 1 {O(1)}
t₇₄₁: 1 {O(1)}
t₇₄₂: 1 {O(1)}
t₇₄₃: 1 {O(1)}
t₇₄₄: 3⋅X₁+3 {O(n)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₁, X₀: X₁ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: 0 {O(1)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₃, X₀: X₁ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: 0 {O(1)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₁₆, X₀: 3⋅X₁+2 {O(n)}
t₁₆, X₁: 3⋅X₁ {O(n)}
t₁₆, X₂: X₁⋅X₁+3⋅X₁+4 {O(n^2)}
t₁₆, X₃: 6⋅X₁+X₃+10 {O(n)}
t₁₆, X₄: 4⋅X₁⋅X₁+12⋅X₁+X₄+12 {O(n^2)}
t₆₇₄, X₀: 3⋅X₁+1 {O(n)}
t₆₇₄, X₁: 3⋅X₁ {O(n)}
t₆₇₅, X₀: 3⋅X₁+1 {O(n)}
t₆₇₅, X₁: 3⋅X₁ {O(n)}
t₆₇₆, X₀: 3⋅X₁+1 {O(n)}
t₆₇₆, X₁: 3⋅X₁ {O(n)}
t₆₇₇, X₀: 3⋅X₁+1 {O(n)}
t₆₇₇, X₁: 3⋅X₁ {O(n)}
t₆₇₈, X₀: 3⋅X₁+1 {O(n)}
t₆₇₈, X₁: 3⋅X₁ {O(n)}
t₆₇₉, X₀: 3⋅X₁+1 {O(n)}
t₆₇₉, X₁: 3⋅X₁ {O(n)}
t₆₈₀, X₀: 3⋅X₁+1 {O(n)}
t₆₈₀, X₁: 3⋅X₁ {O(n)}
t₆₈₁, X₀: 3⋅X₁+1 {O(n)}
t₆₈₁, X₁: 3⋅X₁ {O(n)}
t₆₈₂, X₀: 3⋅X₁+1 {O(n)}
t₆₈₂, X₁: 3⋅X₁ {O(n)}
t₆₈₃, X₀: 3⋅X₁+1 {O(n)}
t₆₈₃, X₁: 3⋅X₁ {O(n)}
t₆₈₄, X₀: 3⋅X₁+1 {O(n)}
t₆₈₄, X₁: 3⋅X₁ {O(n)}
t₆₈₅, X₀: 3⋅X₁+1 {O(n)}
t₆₈₅, X₁: 3⋅X₁ {O(n)}
t₆₈₅, X₃: 3⋅X₁+2 {O(n)}
t₆₈₆, X₀: 3⋅X₁+1 {O(n)}
t₆₈₆, X₁: 3⋅X₁ {O(n)}
t₆₈₆, X₃: 3⋅X₁+2 {O(n)}
t₆₈₇, X₀: 3⋅X₁+1 {O(n)}
t₆₈₇, X₁: 3⋅X₁ {O(n)}
t₆₈₇, X₃: 3⋅X₁+2 {O(n)}
t₆₈₈, X₀: X₁ {O(n)}
t₆₈₈, X₁: X₁ {O(n)}
t₆₈₈, X₂: 0 {O(1)}
t₆₈₈, X₃: 0 {O(1)}
t₆₈₈, X₄: X₄ {O(n)}
t₆₈₉, X₀: X₁ {O(n)}
t₆₈₉, X₁: X₁ {O(n)}
t₆₈₉, X₂: 0 {O(1)}
t₆₈₉, X₃: 0 {O(1)}
t₆₈₉, X₄: X₄ {O(n)}
t₆₉₀, X₀: X₁ {O(n)}
t₆₉₀, X₁: X₁ {O(n)}
t₆₉₀, X₂: 0 {O(1)}
t₆₉₀, X₃: X₁ {O(n)}
t₆₉₀, X₄: 0 {O(1)}
t₆₉₁, X₀: 3⋅X₁+1 {O(n)}
t₆₉₁, X₁: 3⋅X₁ {O(n)}
t₆₉₂, X₀: 3⋅X₁+1 {O(n)}
t₆₉₂, X₁: 3⋅X₁ {O(n)}
t₆₉₃, X₀: 3⋅X₁+1 {O(n)}
t₆₉₃, X₁: 3⋅X₁ {O(n)}
t₆₉₃, X₃: 6⋅X₁+2 {O(n)}
t₆₉₄, X₀: 3⋅X₁+1 {O(n)}
t₆₉₄, X₁: 3⋅X₁ {O(n)}
t₆₉₅, X₀: 3⋅X₁+1 {O(n)}
t₆₉₅, X₁: 3⋅X₁ {O(n)}
t₆₉₆, X₀: 3⋅X₁+1 {O(n)}
t₆₉₆, X₁: 3⋅X₁ {O(n)}
t₆₉₆, X₃: 3⋅X₁+1 {O(n)}
t₆₉₇, X₀: 3⋅X₁+1 {O(n)}
t₆₉₇, X₁: 3⋅X₁ {O(n)}
t₆₉₈, X₀: 3⋅X₁+1 {O(n)}
t₆₉₈, X₁: 3⋅X₁ {O(n)}
t₆₉₉, X₀: 3⋅X₁+1 {O(n)}
t₆₉₉, X₁: 3⋅X₁ {O(n)}
t₆₉₉, X₃: 3⋅X₁+1 {O(n)}
t₇₀₀, X₀: 3⋅X₁+1 {O(n)}
t₇₀₀, X₁: 3⋅X₁ {O(n)}
t₇₀₁, X₀: 3⋅X₁+1 {O(n)}
t₇₀₁, X₁: 3⋅X₁ {O(n)}
t₇₀₂, X₀: 3⋅X₁+1 {O(n)}
t₇₀₂, X₁: 3⋅X₁ {O(n)}
t₇₀₂, X₃: 3⋅X₁+1 {O(n)}
t₇₀₃, X₀: 3⋅X₁+1 {O(n)}
t₇₀₃, X₁: 3⋅X₁ {O(n)}
t₇₀₃, X₃: 3⋅X₁+2 {O(n)}
t₇₀₄, X₀: 3⋅X₁+1 {O(n)}
t₇₀₄, X₁: 3⋅X₁ {O(n)}
t₇₀₄, X₃: 6⋅X₁+2 {O(n)}
t₇₀₅, X₀: 3⋅X₁+1 {O(n)}
t₇₀₅, X₁: 3⋅X₁ {O(n)}
t₇₀₅, X₃: 3⋅X₁+2 {O(n)}
t₇₀₆, X₀: 3⋅X₁+1 {O(n)}
t₇₀₆, X₁: 3⋅X₁ {O(n)}
t₇₀₆, X₃: 3⋅X₁+2 {O(n)}
t₇₀₇, X₀: 3⋅X₁+1 {O(n)}
t₇₀₇, X₁: 3⋅X₁ {O(n)}
t₇₀₇, X₃: 10⋅X₁+3 {O(n)}
t₇₀₈, X₀: 3⋅X₁+1 {O(n)}
t₇₀₈, X₁: 3⋅X₁ {O(n)}
t₇₀₈, X₃: 3⋅X₁+2 {O(n)}
t₇₀₉, X₀: 3⋅X₁+1 {O(n)}
t₇₀₉, X₁: 3⋅X₁ {O(n)}
t₇₀₉, X₃: 3⋅X₁+2 {O(n)}
t₇₁₀, X₀: X₁ {O(n)}
t₇₁₀, X₁: X₁ {O(n)}
t₇₁₀, X₂: 0 {O(1)}
t₇₁₀, X₃: X₃ {O(n)}
t₇₁₀, X₄: X₄ {O(n)}
t₇₁₁, X₀: 3⋅X₁+1 {O(n)}
t₇₁₁, X₁: 3⋅X₁ {O(n)}
t₇₁₁, X₃: 6⋅X₁+2 {O(n)}
t₇₁₂, X₀: 3⋅X₁+1 {O(n)}
t₇₁₂, X₁: 3⋅X₁ {O(n)}
t₇₁₂, X₃: 3⋅X₁+2 {O(n)}
t₇₁₃, X₀: 3⋅X₁+1 {O(n)}
t₇₁₃, X₁: 3⋅X₁ {O(n)}
t₇₁₃, X₃: 10⋅X₁+3 {O(n)}
t₇₃₄, X₀: 1 {O(1)}
t₇₃₄, X₁: 3⋅X₁ {O(n)}
t₇₃₄, X₃: 1 {O(1)}
t₇₃₅, X₀: 1 {O(1)}
t₇₃₅, X₁: 3⋅X₁ {O(n)}
t₇₃₅, X₃: 1 {O(1)}
t₇₃₇, X₀: 1 {O(1)}
t₇₃₇, X₁: 3⋅X₁ {O(n)}
t₇₃₇, X₃: 1 {O(1)}
t₇₄₁, X₀: 3⋅X₁+1 {O(n)}
t₇₄₁, X₁: 3⋅X₁ {O(n)}
t₇₄₁, X₂: 1 {O(1)}
t₇₄₁, X₃: 6⋅X₁+2 {O(n)}
t₇₄₁, X₄: 0 {O(1)}
t₇₄₂, X₀: 3⋅X₁+1 {O(n)}
t₇₄₂, X₁: 3⋅X₁ {O(n)}
t₇₄₂, X₂: 1 {O(1)}
t₇₄₂, X₃: 3⋅X₁+2 {O(n)}
t₇₄₂, X₄: 0 {O(1)}
t₇₄₃, X₀: 3⋅X₁+1 {O(n)}
t₇₄₃, X₁: 3⋅X₁ {O(n)}
t₇₄₃, X₂: 1 {O(1)}
t₇₄₃, X₃: 10⋅X₁+3 {O(n)}
t₇₄₃, X₄: 0 {O(1)}
t₇₄₄, X₀: 3⋅X₁+1 {O(n)}
t₇₄₄, X₁: 3⋅X₁ {O(n)}