Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l10, l100, l101, l102, l103, l104, l105, l106, l107, l108, l109, l11, l110, l111, l112, l113, l114, l115, l116, l117, l118, l119, l12, l120, l121, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l34, l35, l36, l37, l38, l39, l4, l40, l41, l42, l43, l44, l45, l46, l47, l48, l49, l5, l50, l51, l52, l53, l54, l55, l56, l57, l58, l59, l6, l60, l61, l62, l63, l64, l65, l66, l67, l68, l69, l7, l70, l71, l72, l73, l74, l75, l76, l77, l78, l79, l8, l80, l81, l82, l83, l84, l85, l86, l87, l88, l89, l9, l90, l91, l92, l93, l94, l95, l96, l97, l98, l99
Transitions:
t₀: l0(X₀, X₁, X₂) → l1(0, 2, 0)
t₁: l1(X₀, X₁, X₂) → l1(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 2
t₂₄₀: l1(X₀, X₁, X₂) → l2(X₀, X₁, 0) :|: 3 ≤ X₂
t₁₀: l10(X₀, X₁, X₂) → l10(X₀+X₂, X₁, X₂+1) :|: 2+X₂ ≤ 0
t₂₃₁: l10(X₀, X₁, X₂) → l11(X₀, X₁, -3) :|: 0 ≤ 1+X₂
t₁₀₀: l100(X₀, X₁, X₂) → l100(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 1+X₂
t₁₄₁: l100(X₀, X₁, X₂) → l101(X₀, X₁, 9) :|: 2+X₂ ≤ 0
t₁₀₁: l101(X₀, X₁, X₂) → l101(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 1+X₂
t₁₄₀: l101(X₀, X₁, X₂) → l102(X₀, X₁, 9) :|: 2+X₂ ≤ 0
t₁₀₂: l102(X₀, X₁, X₂) → l102(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 2+X₂
t₁₃₉: l102(X₀, X₁, X₂) → l103(X₀, X₁, 9) :|: 3+X₂ ≤ 0
t₁₀₃: l103(X₀, X₁, X₂) → l103(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 1+X₂
t₁₃₈: l103(X₀, X₁, X₂) → l104(X₀, X₁, 9) :|: 2+X₂ ≤ 0
t₁₀₄: l104(X₀, X₁, X₂) → l104(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 2+X₂
t₁₃₇: l104(X₀, X₁, X₂) → l105(X₀, X₁, 0) :|: 3+X₂ ≤ 0
t₁₀₅: l105(X₀, X₁, X₂) → l105(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 2+X₂
t₁₃₆: l105(X₀, X₁, X₂) → l106(X₀, X₁, 0) :|: 3+X₂ ≤ 0
t₁₀₆: l106(X₀, X₁, X₂) → l106(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 3+X₂
t₁₃₅: l106(X₀, X₁, X₂) → l107(X₀, X₁, 0) :|: 4+X₂ ≤ 0
t₁₀₇: l107(X₀, X₁, X₂) → l107(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 2+X₂
t₁₃₄: l107(X₀, X₁, X₂) → l108(X₀, X₁, 0) :|: 3+X₂ ≤ 0
t₁₀₈: l108(X₀, X₁, X₂) → l108(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 3+X₂
t₁₃₃: l108(X₀, X₁, X₂) → l109(X₀, X₁, -1) :|: 4+X₂ ≤ 0
t₁₀₉: l109(X₀, X₁, X₂) → l109(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 4+X₂
t₁₃₂: l109(X₀, X₁, X₂) → l110(X₀, X₁, -1) :|: 5+X₂ ≤ 0
t₁₁: l11(X₀, X₁, X₂) → l11(X₀+X₂, X₁, X₂+1) :|: 3+X₂ ≤ 0
t₂₃₀: l11(X₀, X₁, X₂) → l12(X₀, X₁, -3) :|: 0 ≤ 2+X₂
t₁₁₀: l110(X₀, X₁, X₂) → l110(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 5+X₂
t₁₃₁: l110(X₀, X₁, X₂) → l111(X₀, X₁, -1) :|: 6+X₂ ≤ 0
t₁₁₁: l111(X₀, X₁, X₂) → l111(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 4+X₂
t₁₃₀: l111(X₀, X₁, X₂) → l112(X₀, X₁, -1) :|: 5+X₂ ≤ 0
t₁₁₂: l112(X₀, X₁, X₂) → l112(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 5+X₂
t₁₂₉: l112(X₀, X₁, X₂) → l113(X₀, X₁, -2) :|: 6+X₂ ≤ 0
t₁₁₃: l113(X₀, X₁, X₂) → l113(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 6+X₂
t₁₂₈: l113(X₀, X₁, X₂) → l114(X₀, X₁, -2) :|: 7+X₂ ≤ 0
t₁₁₄: l114(X₀, X₁, X₂) → l114(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 7+X₂
t₁₂₇: l114(X₀, X₁, X₂) → l115(X₀, X₁, -2) :|: 8+X₂ ≤ 0
t₁₁₅: l115(X₀, X₁, X₂) → l115(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 6+X₂
t₁₂₆: l115(X₀, X₁, X₂) → l116(X₀, X₁, -2) :|: 7+X₂ ≤ 0
t₁₁₆: l116(X₀, X₁, X₂) → l116(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 7+X₂
t₁₂₅: l116(X₀, X₁, X₂) → l117(X₀, X₁, 16) :|: 8+X₂ ≤ 0
t₁₁₇: l117(X₀, X₁, X₂) → l117(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 7+X₂
t₁₂₄: l117(X₀, X₁, X₂) → l118(X₀, X₁, 16) :|: 8+X₂ ≤ 0
t₁₁₈: l118(X₀, X₁, X₂) → l118(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 8+X₂
t₁₂₃: l118(X₀, X₁, X₂) → l119(X₀, X₁, 16) :|: 9+X₂ ≤ 0
t₁₁₉: l119(X₀, X₁, X₂) → l119(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 7+X₂
t₁₂₂: l119(X₀, X₁, X₂) → l120(X₀, X₁, 16) :|: 8+X₂ ≤ 0
t₁₂: l12(X₀, X₁, X₂) → l12(X₀+X₂, X₁, X₂+1) :|: 2+X₂ ≤ 0
t₂₂₉: l12(X₀, X₁, X₂) → l13(X₀, X₁, -4) :|: 0 ≤ 1+X₂
t₁₂₀: l120(X₀, X₁, X₂) → l120(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 8+X₂
t₁₂₁: l120(X₀, X₁, X₂) → l121(X₀, X₁, X₂) :|: 9+X₂ ≤ 0
t₁₃: l13(X₀, X₁, X₂) → l13(X₀+X₂, X₁, X₂+1) :|: 2+X₂ ≤ 0
t₂₂₈: l13(X₀, X₁, X₂) → l14(X₀, X₁, -4) :|: 0 ≤ 1+X₂
t₁₄: l14(X₀, X₁, X₂) → l14(X₀+X₂, X₁, X₂+1) :|: X₂+1 ≤ 0
t₂₂₇: l14(X₀, X₁, X₂) → l15(X₀, X₁, -4) :|: 0 ≤ X₂
t₁₅: l15(X₀, X₁, X₂) → l15(X₀+X₂, X₁, X₂+1) :|: 2+X₂ ≤ 0
t₂₂₆: l15(X₀, X₁, X₂) → l16(X₀, X₁, -4) :|: 0 ≤ 1+X₂
t₁₆: l16(X₀, X₁, X₂) → l16(X₀+X₂, X₁, X₂+1) :|: X₂+1 ≤ 0
t₂₂₅: l16(X₀, X₁, X₂) → l17(X₀, X₁, -5) :|: 0 ≤ X₂
t₁₇: l17(X₀, X₁, X₂) → l17(X₀+X₂, X₁, X₂+1) :|: X₂+1 ≤ 0
t₂₂₄: l17(X₀, X₁, X₂) → l18(X₀, X₁, -5) :|: 0 ≤ X₂
t₁₈: l18(X₀, X₁, X₂) → l18(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 0
t₂₂₃: l18(X₀, X₁, X₂) → l19(X₀, X₁, -5) :|: 1 ≤ X₂
t₁₉: l19(X₀, X₁, X₂) → l19(X₀+X₂, X₁, X₂+1) :|: X₂+1 ≤ 0
t₂₂₂: l19(X₀, X₁, X₂) → l20(X₀, X₁, -5) :|: 0 ≤ X₂
t₂: l2(X₀, X₁, X₂) → l2(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 3
t₂₃₉: l2(X₀, X₁, X₂) → l3(X₀, X₁, 0) :|: 4 ≤ X₂
t₂₀: l20(X₀, X₁, X₂) → l20(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 0
t₂₂₁: l20(X₀, X₁, X₂) → l21(X₀, X₁, -6) :|: 1 ≤ X₂
t₂₁: l21(X₀, X₁, X₂) → l21(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 3
t₂₂₀: l21(X₀, X₁, X₂) → l22(X₀, X₁, -6) :|: 4 ≤ X₂
t₂₂: l22(X₀, X₁, X₂) → l22(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 4
t₂₁₉: l22(X₀, X₁, X₂) → l23(X₀, X₁, -6) :|: 5 ≤ X₂
t₂₃: l23(X₀, X₁, X₂) → l23(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 3
t₂₁₈: l23(X₀, X₁, X₂) → l24(X₀, X₁, -6) :|: 4 ≤ X₂
t₂₄: l24(X₀, X₁, X₂) → l24(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 4
t₂₁₇: l24(X₀, X₁, X₂) → l25(X₀, X₁, 0) :|: 5 ≤ X₂
t₂₅: l25(X₀, X₁, X₂) → l25(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 2
t₂₁₆: l25(X₀, X₁, X₂) → l26(X₀, X₁, 0) :|: 3 ≤ X₂
t₂₆: l26(X₀, X₁, X₂) → l26(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 3
t₂₁₅: l26(X₀, X₁, X₂) → l27(X₀, X₁, 0) :|: 4 ≤ X₂
t₂₇: l27(X₀, X₁, X₂) → l27(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 2
t₂₁₄: l27(X₀, X₁, X₂) → l28(X₀, X₁, 0) :|: 3 ≤ X₂
t₂₈: l28(X₀, X₁, X₂) → l28(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 3
t₂₁₃: l28(X₀, X₁, X₂) → l29(X₀, X₁, 1) :|: 4 ≤ X₂
t₂₉: l29(X₀, X₁, X₂) → l29(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 1
t₂₁₂: l29(X₀, X₁, X₂) → l30(X₀, X₁, 1) :|: 2 ≤ X₂
t₃: l3(X₀, X₁, X₂) → l3(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 2
t₂₃₈: l3(X₀, X₁, X₂) → l4(X₀, X₁, 0) :|: 3 ≤ X₂
t₃₀: l30(X₀, X₁, X₂) → l30(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 2
t₂₁₁: l30(X₀, X₁, X₂) → l31(X₀, X₁, 1) :|: 3 ≤ X₂
t₃₁: l31(X₀, X₁, X₂) → l31(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 1
t₂₁₀: l31(X₀, X₁, X₂) → l32(X₀, X₁, 1) :|: 2 ≤ X₂
t₃₂: l32(X₀, X₁, X₂) → l32(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 2
t₂₀₉: l32(X₀, X₁, X₂) → l33(X₀, X₁, -3) :|: 3 ≤ X₂
t₃₃: l33(X₀, X₁, X₂) → l33(X₀+X₂, X₁, X₂+X₁) :|: 3+X₂ ≤ 0
t₂₀₈: l33(X₀, X₁, X₂) → l34(X₀, X₁, -3) :|: 0 ≤ 2+X₂
t₃₄: l34(X₀, X₁, X₂) → l34(X₀+X₂, X₁, X₂+X₁) :|: 2+X₂ ≤ 0
t₂₀₇: l34(X₀, X₁, X₂) → l35(X₀, X₁, -3) :|: 0 ≤ 1+X₂
t₃₅: l35(X₀, X₁, X₂) → l35(X₀+X₂, X₁, X₂+X₁) :|: 3+X₂ ≤ 0
t₂₀₆: l35(X₀, X₁, X₂) → l36(X₀, X₁, -3) :|: 0 ≤ 2+X₂
t₃₆: l36(X₀, X₁, X₂) → l36(X₀+X₂, X₁, X₂+X₁) :|: 2+X₂ ≤ 0
t₂₀₅: l36(X₀, X₁, X₂) → l37(X₀, X₁, -4) :|: 0 ≤ 1+X₂
t₃₇: l37(X₀, X₁, X₂) → l37(X₀+X₂, X₁, X₂+X₁) :|: 2+X₂ ≤ 0
t₂₀₄: l37(X₀, X₁, X₂) → l38(X₀, X₁, -4) :|: 0 ≤ 1+X₂
t₃₈: l38(X₀, X₁, X₂) → l38(X₀+X₂, X₁, X₂+X₁) :|: X₂+1 ≤ 0
t₂₀₃: l38(X₀, X₁, X₂) → l39(X₀, X₁, -4) :|: 0 ≤ X₂
t₃₉: l39(X₀, X₁, X₂) → l39(X₀+X₂, X₁, X₂+X₁) :|: 2+X₂ ≤ 0
t₂₀₂: l39(X₀, X₁, X₂) → l40(X₀, X₁, -4) :|: 0 ≤ 1+X₂
t₄: l4(X₀, X₁, X₂) → l4(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 3
t₂₃₇: l4(X₀, X₁, X₂) → l5(X₀, X₁, 1) :|: 4 ≤ X₂
t₄₀: l40(X₀, X₁, X₂) → l40(X₀+X₂, X₁, X₂+X₁) :|: X₂+1 ≤ 0
t₂₀₁: l40(X₀, X₁, X₂) → l41(X₀, X₁, -5) :|: 0 ≤ X₂
t₄₁: l41(X₀, X₁, X₂) → l41(X₀+X₂, X₁, X₂+X₁) :|: X₂+1 ≤ 0
t₂₀₀: l41(X₀, X₁, X₂) → l42(X₀, X₁, -5) :|: 0 ≤ X₂
t₄₂: l42(X₀, X₁, X₂) → l42(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 0
t₁₉₉: l42(X₀, X₁, X₂) → l43(X₀, X₁, -5) :|: 1 ≤ X₂
t₄₃: l43(X₀, X₁, X₂) → l43(X₀+X₂, X₁, X₂+X₁) :|: X₂+1 ≤ 0
t₁₉₈: l43(X₀, X₁, X₂) → l44(X₀, X₁, -5) :|: 0 ≤ X₂
t₄₄: l44(X₀, X₁, X₂) → l44(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 0
t₁₉₇: l44(X₀, X₁, X₂) → l45(X₀, X₁, -6) :|: 1 ≤ X₂
t₄₅: l45(X₀, X₁, X₂) → l45(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 3
t₁₉₆: l45(X₀, X₁, X₂) → l46(X₀, X₁, -6) :|: 4 ≤ X₂
t₄₆: l46(X₀, X₁, X₂) → l46(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 4
t₁₉₅: l46(X₀, X₁, X₂) → l47(X₀, X₁, -6) :|: 5 ≤ X₂
t₄₇: l47(X₀, X₁, X₂) → l47(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 3
t₁₉₄: l47(X₀, X₁, X₂) → l48(X₀, X₁, -6) :|: 4 ≤ X₂
t₄₈: l48(X₀, X₁, X₂) → l48(X₀+X₂, X₁, X₂+X₁) :|: X₂ ≤ 4
t₁₉₃: l48(X₀, X₁, X₂) → l49(X₀, X₁, 5) :|: 5 ≤ X₂
t₄₉: l49(X₀, X₁, X₂) → l49(X₀+X₂, X₁, X₂-1) :|: 3 ≤ X₂
t₁₉₂: l49(X₀, X₁, X₂) → l50(X₀, X₁, 5) :|: X₂ ≤ 2
t₅: l5(X₀, X₁, X₂) → l5(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 1
t₂₃₆: l5(X₀, X₁, X₂) → l6(X₀, X₁, 1) :|: 2 ≤ X₂
t₅₀: l50(X₀, X₁, X₂) → l50(X₀+X₂, X₁, X₂-1) :|: 2 ≤ X₂
t₁₉₁: l50(X₀, X₁, X₂) → l51(X₀, X₁, 5) :|: X₂ ≤ 1
t₅₁: l51(X₀, X₁, X₂) → l51(X₀+X₂, X₁, X₂-1) :|: 3 ≤ X₂
t₁₉₀: l51(X₀, X₁, X₂) → l52(X₀, X₁, 5) :|: X₂ ≤ 2
t₅₂: l52(X₀, X₁, X₂) → l52(X₀+X₂, X₁, X₂-1) :|: 2 ≤ X₂
t₁₈₉: l52(X₀, X₁, X₂) → l53(X₀, X₁, 6) :|: X₂ ≤ 1
t₅₃: l53(X₀, X₁, X₂) → l53(X₀+X₂, X₁, X₂-1) :|: 2 ≤ X₂
t₁₈₈: l53(X₀, X₁, X₂) → l54(X₀, X₁, 6) :|: X₂ ≤ 1
t₅₄: l54(X₀, X₁, X₂) → l54(X₀+X₂, X₁, X₂-1) :|: 1 ≤ X₂
t₁₈₇: l54(X₀, X₁, X₂) → l55(X₀, X₁, 6) :|: X₂ ≤ 0
t₅₅: l55(X₀, X₁, X₂) → l55(X₀+X₂, X₁, X₂-1) :|: 2 ≤ X₂
t₁₈₆: l55(X₀, X₁, X₂) → l56(X₀, X₁, 6) :|: X₂ ≤ 1
t₅₆: l56(X₀, X₁, X₂) → l56(X₀+X₂, X₁, X₂-1) :|: 1 ≤ X₂
t₁₈₅: l56(X₀, X₁, X₂) → l57(X₀, X₁, 7) :|: X₂ ≤ 0
t₅₇: l57(X₀, X₁, X₂) → l57(X₀+X₂, X₁, X₂-1) :|: 1 ≤ X₂
t₁₈₄: l57(X₀, X₁, X₂) → l58(X₀, X₁, 7) :|: X₂ ≤ 0
t₅₈: l58(X₀, X₁, X₂) → l58(X₀+X₂, X₁, X₂-1) :|: 0 ≤ X₂
t₁₈₃: l58(X₀, X₁, X₂) → l59(X₀, X₁, 7) :|: X₂+1 ≤ 0
t₅₉: l59(X₀, X₁, X₂) → l59(X₀+X₂, X₁, X₂-1) :|: 1 ≤ X₂
t₁₈₂: l59(X₀, X₁, X₂) → l60(X₀, X₁, 7) :|: X₂ ≤ 0
t₆: l6(X₀, X₁, X₂) → l6(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 2
t₂₃₅: l6(X₀, X₁, X₂) → l7(X₀, X₁, 1) :|: 3 ≤ X₂
t₆₀: l60(X₀, X₁, X₂) → l60(X₀+X₂, X₁, X₂-1) :|: 0 ≤ X₂
t₁₈₁: l60(X₀, X₁, X₂) → l61(X₀, X₁, 8) :|: X₂+1 ≤ 0
t₆₁: l61(X₀, X₁, X₂) → l61(X₀+X₂, X₁, X₂-1) :|: 0 ≤ X₂
t₁₈₀: l61(X₀, X₁, X₂) → l62(X₀, X₁, 8) :|: X₂+1 ≤ 0
t₆₂: l62(X₀, X₁, X₂) → l62(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 1+X₂
t₁₇₉: l62(X₀, X₁, X₂) → l63(X₀, X₁, 8) :|: 2+X₂ ≤ 0
t₆₃: l63(X₀, X₁, X₂) → l63(X₀+X₂, X₁, X₂-1) :|: 0 ≤ X₂
t₁₇₈: l63(X₀, X₁, X₂) → l64(X₀, X₁, 8) :|: X₂+1 ≤ 0
t₆₄: l64(X₀, X₁, X₂) → l64(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 1+X₂
t₁₇₇: l64(X₀, X₁, X₂) → l65(X₀, X₁, 9) :|: 2+X₂ ≤ 0
t₆₅: l65(X₀, X₁, X₂) → l65(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 1+X₂
t₁₇₆: l65(X₀, X₁, X₂) → l66(X₀, X₁, 9) :|: 2+X₂ ≤ 0
t₆₆: l66(X₀, X₁, X₂) → l66(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 2+X₂
t₁₇₅: l66(X₀, X₁, X₂) → l67(X₀, X₁, 9) :|: 3+X₂ ≤ 0
t₆₇: l67(X₀, X₁, X₂) → l67(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 1+X₂
t₁₇₄: l67(X₀, X₁, X₂) → l68(X₀, X₁, 9) :|: 2+X₂ ≤ 0
t₆₈: l68(X₀, X₁, X₂) → l68(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 2+X₂
t₁₇₃: l68(X₀, X₁, X₂) → l69(X₀, X₁, 0) :|: 3+X₂ ≤ 0
t₆₉: l69(X₀, X₁, X₂) → l69(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 2+X₂
t₁₇₂: l69(X₀, X₁, X₂) → l70(X₀, X₁, 0) :|: 3+X₂ ≤ 0
t₇: l7(X₀, X₁, X₂) → l7(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 1
t₂₃₄: l7(X₀, X₁, X₂) → l8(X₀, X₁, 1) :|: 2 ≤ X₂
t₇₀: l70(X₀, X₁, X₂) → l70(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 3+X₂
t₁₇₁: l70(X₀, X₁, X₂) → l71(X₀, X₁, 0) :|: 4+X₂ ≤ 0
t₇₁: l71(X₀, X₁, X₂) → l71(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 2+X₂
t₁₇₀: l71(X₀, X₁, X₂) → l72(X₀, X₁, 0) :|: 3+X₂ ≤ 0
t₇₂: l72(X₀, X₁, X₂) → l72(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 3+X₂
t₁₆₉: l72(X₀, X₁, X₂) → l73(X₀, X₁, -1) :|: 4+X₂ ≤ 0
t₇₃: l73(X₀, X₁, X₂) → l73(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 4+X₂
t₁₆₈: l73(X₀, X₁, X₂) → l74(X₀, X₁, -1) :|: 5+X₂ ≤ 0
t₇₄: l74(X₀, X₁, X₂) → l74(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 5+X₂
t₁₆₇: l74(X₀, X₁, X₂) → l75(X₀, X₁, -1) :|: 6+X₂ ≤ 0
t₇₅: l75(X₀, X₁, X₂) → l75(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 4+X₂
t₁₆₆: l75(X₀, X₁, X₂) → l76(X₀, X₁, -1) :|: 5+X₂ ≤ 0
t₇₆: l76(X₀, X₁, X₂) → l76(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 5+X₂
t₁₆₅: l76(X₀, X₁, X₂) → l77(X₀, X₁, -2) :|: 6+X₂ ≤ 0
t₇₇: l77(X₀, X₁, X₂) → l77(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 6+X₂
t₁₆₄: l77(X₀, X₁, X₂) → l78(X₀, X₁, -2) :|: 7+X₂ ≤ 0
t₇₈: l78(X₀, X₁, X₂) → l78(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 7+X₂
t₁₆₃: l78(X₀, X₁, X₂) → l79(X₀, X₁, -2) :|: 8+X₂ ≤ 0
t₇₉: l79(X₀, X₁, X₂) → l79(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 6+X₂
t₁₆₂: l79(X₀, X₁, X₂) → l80(X₀, X₁, -2) :|: 7+X₂ ≤ 0
t₈: l8(X₀, X₁, X₂) → l8(X₀+X₂, X₁, X₂+1) :|: X₂ ≤ 2
t₂₃₃: l8(X₀, X₁, X₂) → l9(X₀, X₁, -3) :|: 3 ≤ X₂
t₈₀: l80(X₀, X₁, X₂) → l80(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 7+X₂
t₁₆₁: l80(X₀, X₁, X₂) → l81(X₀, X₁, 16) :|: 8+X₂ ≤ 0
t₈₁: l81(X₀, X₁, X₂) → l81(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 7+X₂
t₁₆₀: l81(X₀, X₁, X₂) → l82(X₀, X₁, 16) :|: 8+X₂ ≤ 0
t₈₂: l82(X₀, X₁, X₂) → l82(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 8+X₂
t₁₅₉: l82(X₀, X₁, X₂) → l83(X₀, X₁, 16) :|: 9+X₂ ≤ 0
t₈₃: l83(X₀, X₁, X₂) → l83(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 7+X₂
t₁₅₈: l83(X₀, X₁, X₂) → l84(X₀, X₁, 16) :|: 8+X₂ ≤ 0
t₈₄: l84(X₀, X₁, X₂) → l84(X₀+X₂, X₁, X₂-1) :|: 0 ≤ 8+X₂
t₁₅₇: l84(X₀, X₁, X₂) → l85(X₀, X₁, 5) :|: 9+X₂ ≤ 0
t₈₅: l85(X₀, X₁, X₂) → l85(X₀+X₂, X₁, X₂-X₁) :|: 3 ≤ X₂
t₁₅₆: l85(X₀, X₁, X₂) → l86(X₀, X₁, 5) :|: X₂ ≤ 2
t₈₆: l86(X₀, X₁, X₂) → l86(X₀+X₂, X₁, X₂-X₁) :|: 2 ≤ X₂
t₁₅₅: l86(X₀, X₁, X₂) → l87(X₀, X₁, 5) :|: X₂ ≤ 1
t₈₇: l87(X₀, X₁, X₂) → l87(X₀+X₂, X₁, X₂-X₁) :|: 3 ≤ X₂
t₁₅₄: l87(X₀, X₁, X₂) → l88(X₀, X₁, 5) :|: X₂ ≤ 2
t₈₈: l88(X₀, X₁, X₂) → l88(X₀+X₂, X₁, X₂-X₁) :|: 2 ≤ X₂
t₁₅₃: l88(X₀, X₁, X₂) → l89(X₀, X₁, 6) :|: X₂ ≤ 1
t₈₉: l89(X₀, X₁, X₂) → l89(X₀+X₂, X₁, X₂-X₁) :|: 2 ≤ X₂
t₁₅₂: l89(X₀, X₁, X₂) → l90(X₀, X₁, 6) :|: X₂ ≤ 1
t₂₃₂: l9(X₀, X₁, X₂) → l10(X₀, X₁, -3) :|: 0 ≤ 2+X₂
t₉: l9(X₀, X₁, X₂) → l9(X₀+X₂, X₁, X₂+1) :|: 3+X₂ ≤ 0
t₉₀: l90(X₀, X₁, X₂) → l90(X₀+X₂, X₁, X₂-X₁) :|: 1 ≤ X₂
t₁₅₁: l90(X₀, X₁, X₂) → l91(X₀, X₁, 6) :|: X₂ ≤ 0
t₉₁: l91(X₀, X₁, X₂) → l91(X₀+X₂, X₁, X₂-X₁) :|: 2 ≤ X₂
t₁₅₀: l91(X₀, X₁, X₂) → l92(X₀, X₁, 6) :|: X₂ ≤ 1
t₉₂: l92(X₀, X₁, X₂) → l92(X₀+X₂, X₁, X₂-X₁) :|: 1 ≤ X₂
t₁₄₉: l92(X₀, X₁, X₂) → l93(X₀, X₁, 7) :|: X₂ ≤ 0
t₉₃: l93(X₀, X₁, X₂) → l93(X₀+X₂, X₁, X₂-X₁) :|: 1 ≤ X₂
t₁₄₈: l93(X₀, X₁, X₂) → l94(X₀, X₁, 7) :|: X₂ ≤ 0
t₉₄: l94(X₀, X₁, X₂) → l94(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ X₂
t₁₄₇: l94(X₀, X₁, X₂) → l95(X₀, X₁, 7) :|: X₂+1 ≤ 0
t₉₅: l95(X₀, X₁, X₂) → l95(X₀+X₂, X₁, X₂-X₁) :|: 1 ≤ X₂
t₁₄₆: l95(X₀, X₁, X₂) → l96(X₀, X₁, 7) :|: X₂ ≤ 0
t₉₆: l96(X₀, X₁, X₂) → l96(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ X₂
t₁₄₅: l96(X₀, X₁, X₂) → l97(X₀, X₁, 8) :|: X₂+1 ≤ 0
t₉₇: l97(X₀, X₁, X₂) → l97(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ X₂
t₁₄₄: l97(X₀, X₁, X₂) → l98(X₀, X₁, 8) :|: X₂+1 ≤ 0
t₉₈: l98(X₀, X₁, X₂) → l98(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ 1+X₂
t₁₄₃: l98(X₀, X₁, X₂) → l99(X₀, X₁, 8) :|: 2+X₂ ≤ 0
t₁₄₂: l99(X₀, X₁, X₂) → l100(X₀, X₁, 8) :|: X₂+1 ≤ 0
t₉₉: l99(X₀, X₁, X₂) → l99(X₀+X₂, X₁, X₂-X₁) :|: 0 ≤ X₂

Preprocessing

Eliminate variables {X₀} that do not contribute to the problem

Found invariant 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l115

Found invariant X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l49

Found invariant X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l54

Found invariant X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l32

Found invariant X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l53

Found invariant X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l6

Found invariant X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l82

Found invariant 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l45

Found invariant X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l57

Found invariant X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l52

Found invariant X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l43

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l12

Found invariant X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l61

Found invariant X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l81

Found invariant X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l56

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l10

Found invariant X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l4

Found invariant X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l3

Found invariant X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l103

Found invariant X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l118

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l14

Found invariant 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l116

Found invariant X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l117

Found invariant X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l25

Found invariant X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l41

Found invariant 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l79

Found invariant X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l2

Found invariant X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l85

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l109

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l39

Found invariant X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l65

Found invariant X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l91

Found invariant X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l100

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l111

Found invariant X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l31

Found invariant X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l38

Found invariant X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l26

Found invariant X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l67

Found invariant X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l94

Found invariant X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l7

Found invariant X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l42

Found invariant X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l5

Found invariant X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l8

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l16

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l72

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l73

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l36

Found invariant X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l64

Found invariant X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l27

Found invariant 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l48

Found invariant X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l93

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l34

Found invariant X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l66

Found invariant X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l90

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l112

Found invariant X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l119

Found invariant X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l96

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l19

Found invariant X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l87

Found invariant X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l29

Found invariant 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l47

Found invariant X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l62

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l70

Found invariant X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l20

Found invariant X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l51

Found invariant X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l55

Found invariant X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l22

Found invariant X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l1

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l108

Found invariant X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l18

Found invariant X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l63

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l74

Found invariant 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l77

Found invariant X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l98

Found invariant 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l46

Found invariant X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l59

Found invariant X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l83

Found invariant X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l97

Found invariant 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l11

Found invariant X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l50

Found invariant X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l58

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l76

Found invariant 9+X₁ ≤ 0 ∧ 11+X₁ ≤ X₀ ∧ 7+X₀+X₁ ≤ 0 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l121

Found invariant X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l60

Found invariant X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l86

Found invariant X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l24

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l75

Found invariant X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l88

Found invariant X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l95

Found invariant X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l102

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l107

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l15

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l33

Found invariant X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l84

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l71

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l106

Found invariant X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l30

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l35

Found invariant X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l68

Found invariant X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l92

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l69

Found invariant X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l89

Found invariant X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l23

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l110

Found invariant 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l113

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l17

Found invariant X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l28

Found invariant 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l80

Found invariant X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l101

Found invariant X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l21

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l37

Found invariant 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l78

Found invariant 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l13

Found invariant X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l44

Found invariant 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l114

Found invariant 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l9

Found invariant X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l104

Found invariant X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l105

Found invariant X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l120

Found invariant X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l40

Found invariant X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l99

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l1, l10, l100, l101, l102, l103, l104, l105, l106, l107, l108, l109, l11, l110, l111, l112, l113, l114, l115, l116, l117, l118, l119, l12, l120, l121, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l34, l35, l36, l37, l38, l39, l4, l40, l41, l42, l43, l44, l45, l46, l47, l48, l49, l5, l50, l51, l52, l53, l54, l55, l56, l57, l58, l59, l6, l60, l61, l62, l63, l64, l65, l66, l67, l68, l69, l7, l70, l71, l72, l73, l74, l75, l76, l77, l78, l79, l8, l80, l81, l82, l83, l84, l85, l86, l87, l88, l89, l9, l90, l91, l92, l93, l94, l95, l96, l97, l98, l99
Transitions:
t₆₀₁: l0(X₀, X₁) → l1(2, 0)
t₆₀₂: l1(X₀, X₁) → l1(X₀, X₁+1) :|: X₁ ≤ 2 ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₀₃: l1(X₀, X₁) → l2(X₀, 0) :|: 3 ≤ X₁ ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₀₄: l10(X₀, X₁) → l10(X₀, X₁+1) :|: 2+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₀₅: l10(X₀, X₁) → l11(X₀, -3) :|: 0 ≤ 1+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₀₆: l100(X₀, X₁) → l100(X₀, X₁-X₀) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₀₇: l100(X₀, X₁) → l101(X₀, 9) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₀₈: l101(X₀, X₁) → l101(X₀, X₁-X₀) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₀₉: l101(X₀, X₁) → l102(X₀, 9) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₁₀: l102(X₀, X₁) → l102(X₀, X₁-X₀) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₁₁: l102(X₀, X₁) → l103(X₀, 9) :|: 3+X₁ ≤ 0 ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₁₂: l103(X₀, X₁) → l103(X₀, X₁-X₀) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₁₃: l103(X₀, X₁) → l104(X₀, 9) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₁₄: l104(X₀, X₁) → l104(X₀, X₁-X₀) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₁₅: l104(X₀, X₁) → l105(X₀, 0) :|: 3+X₁ ≤ 0 ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₁₆: l105(X₀, X₁) → l105(X₀, X₁-X₀) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₁₇: l105(X₀, X₁) → l106(X₀, 0) :|: 3+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₁₈: l106(X₀, X₁) → l106(X₀, X₁-X₀) :|: 0 ≤ 3+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₁₉: l106(X₀, X₁) → l107(X₀, 0) :|: 4+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₂₀: l107(X₀, X₁) → l107(X₀, X₁-X₀) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₂₁: l107(X₀, X₁) → l108(X₀, 0) :|: 3+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₂₂: l108(X₀, X₁) → l108(X₀, X₁-X₀) :|: 0 ≤ 3+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₂₃: l108(X₀, X₁) → l109(X₀, -1) :|: 4+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₂₄: l109(X₀, X₁) → l109(X₀, X₁-X₀) :|: 0 ≤ 4+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₂₅: l109(X₀, X₁) → l110(X₀, -1) :|: 5+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₂₆: l11(X₀, X₁) → l11(X₀, X₁+1) :|: 3+X₁ ≤ 0 ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₂₇: l11(X₀, X₁) → l12(X₀, -3) :|: 0 ≤ 2+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₂₈: l110(X₀, X₁) → l110(X₀, X₁-X₀) :|: 0 ≤ 5+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₂₉: l110(X₀, X₁) → l111(X₀, -1) :|: 6+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₃₀: l111(X₀, X₁) → l111(X₀, X₁-X₀) :|: 0 ≤ 4+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₃₁: l111(X₀, X₁) → l112(X₀, -1) :|: 5+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₃₂: l112(X₀, X₁) → l112(X₀, X₁-X₀) :|: 0 ≤ 5+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₃₃: l112(X₀, X₁) → l113(X₀, -2) :|: 6+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₃₄: l113(X₀, X₁) → l113(X₀, X₁-X₀) :|: 0 ≤ 6+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₃₅: l113(X₀, X₁) → l114(X₀, -2) :|: 7+X₁ ≤ 0 ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₃₆: l114(X₀, X₁) → l114(X₀, X₁-X₀) :|: 0 ≤ 7+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₃₇: l114(X₀, X₁) → l115(X₀, -2) :|: 8+X₁ ≤ 0 ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₃₈: l115(X₀, X₁) → l115(X₀, X₁-X₀) :|: 0 ≤ 6+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₃₉: l115(X₀, X₁) → l116(X₀, -2) :|: 7+X₁ ≤ 0 ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₄₀: l116(X₀, X₁) → l116(X₀, X₁-X₀) :|: 0 ≤ 7+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₄₁: l116(X₀, X₁) → l117(X₀, 16) :|: 8+X₁ ≤ 0 ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₄₂: l117(X₀, X₁) → l117(X₀, X₁-X₀) :|: 0 ≤ 7+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₄₃: l117(X₀, X₁) → l118(X₀, 16) :|: 8+X₁ ≤ 0 ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₄₄: l118(X₀, X₁) → l118(X₀, X₁-X₀) :|: 0 ≤ 8+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₄₅: l118(X₀, X₁) → l119(X₀, 16) :|: 9+X₁ ≤ 0 ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₄₆: l119(X₀, X₁) → l119(X₀, X₁-X₀) :|: 0 ≤ 7+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₄₇: l119(X₀, X₁) → l120(X₀, 16) :|: 8+X₁ ≤ 0 ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₄₈: l12(X₀, X₁) → l12(X₀, X₁+1) :|: 2+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₄₉: l12(X₀, X₁) → l13(X₀, -4) :|: 0 ≤ 1+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₅₀: l120(X₀, X₁) → l120(X₀, X₁-X₀) :|: 0 ≤ 8+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₅₁: l120(X₀, X₁) → l121(X₀, X₁) :|: 9+X₁ ≤ 0 ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₅₂: l13(X₀, X₁) → l13(X₀, X₁+1) :|: 2+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₅₃: l13(X₀, X₁) → l14(X₀, -4) :|: 0 ≤ 1+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₅₄: l14(X₀, X₁) → l14(X₀, X₁+1) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₅₅: l14(X₀, X₁) → l15(X₀, -4) :|: 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₅₆: l15(X₀, X₁) → l15(X₀, X₁+1) :|: 2+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₅₇: l15(X₀, X₁) → l16(X₀, -4) :|: 0 ≤ 1+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₅₈: l16(X₀, X₁) → l16(X₀, X₁+1) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₅₉: l16(X₀, X₁) → l17(X₀, -5) :|: 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₆₀: l17(X₀, X₁) → l17(X₀, X₁+1) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₆₁: l17(X₀, X₁) → l18(X₀, -5) :|: 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₆₂: l18(X₀, X₁) → l18(X₀, X₁+1) :|: X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₆₃: l18(X₀, X₁) → l19(X₀, -5) :|: 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₆₄: l19(X₀, X₁) → l19(X₀, X₁+1) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₆₅: l19(X₀, X₁) → l20(X₀, -5) :|: 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₆₆: l2(X₀, X₁) → l2(X₀, X₁+1) :|: X₁ ≤ 3 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₆₇: l2(X₀, X₁) → l3(X₀, 0) :|: 4 ≤ X₁ ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₆₈: l20(X₀, X₁) → l20(X₀, X₁+1) :|: X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₆₉: l20(X₀, X₁) → l21(X₀, -6) :|: 1 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₇₀: l21(X₀, X₁) → l21(X₀, X₁+1) :|: X₁ ≤ 3 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₇₁: l21(X₀, X₁) → l22(X₀, -6) :|: 4 ≤ X₁ ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₇₂: l22(X₀, X₁) → l22(X₀, X₁+1) :|: X₁ ≤ 4 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₇₃: l22(X₀, X₁) → l23(X₀, -6) :|: 5 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₇₄: l23(X₀, X₁) → l23(X₀, X₁+1) :|: X₁ ≤ 3 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₇₅: l23(X₀, X₁) → l24(X₀, -6) :|: 4 ≤ X₁ ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₇₆: l24(X₀, X₁) → l24(X₀, X₁+1) :|: X₁ ≤ 4 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₇₇: l24(X₀, X₁) → l25(X₀, 0) :|: 5 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₇₈: l25(X₀, X₁) → l25(X₀, X₁+X₀) :|: X₁ ≤ 2 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₇₉: l25(X₀, X₁) → l26(X₀, 0) :|: 3 ≤ X₁ ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₈₀: l26(X₀, X₁) → l26(X₀, X₁+X₀) :|: X₁ ≤ 3 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₈₁: l26(X₀, X₁) → l27(X₀, 0) :|: 4 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₈₂: l27(X₀, X₁) → l27(X₀, X₁+X₀) :|: X₁ ≤ 2 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₈₃: l27(X₀, X₁) → l28(X₀, 0) :|: 3 ≤ X₁ ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₈₄: l28(X₀, X₁) → l28(X₀, X₁+X₀) :|: X₁ ≤ 3 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₈₅: l28(X₀, X₁) → l29(X₀, 1) :|: 4 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₈₆: l29(X₀, X₁) → l29(X₀, X₁+X₀) :|: X₁ ≤ 1 ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₈₇: l29(X₀, X₁) → l30(X₀, 1) :|: 2 ≤ X₁ ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₈₈: l3(X₀, X₁) → l3(X₀, X₁+1) :|: X₁ ≤ 2 ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₈₉: l3(X₀, X₁) → l4(X₀, 0) :|: 3 ≤ X₁ ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₉₀: l30(X₀, X₁) → l30(X₀, X₁+X₀) :|: X₁ ≤ 2 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₉₁: l30(X₀, X₁) → l31(X₀, 1) :|: 3 ≤ X₁ ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₉₂: l31(X₀, X₁) → l31(X₀, X₁+X₀) :|: X₁ ≤ 1 ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₉₃: l31(X₀, X₁) → l32(X₀, 1) :|: 2 ≤ X₁ ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₉₄: l32(X₀, X₁) → l32(X₀, X₁+X₀) :|: X₁ ≤ 2 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₉₅: l32(X₀, X₁) → l33(X₀, -3) :|: 3 ≤ X₁ ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₉₆: l33(X₀, X₁) → l33(X₀, X₁+X₀) :|: 3+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₉₇: l33(X₀, X₁) → l34(X₀, -3) :|: 0 ≤ 2+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₉₈: l34(X₀, X₁) → l34(X₀, X₁+X₀) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₆₉₉: l34(X₀, X₁) → l35(X₀, -3) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₀₀: l35(X₀, X₁) → l35(X₀, X₁+X₀) :|: 3+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₀₁: l35(X₀, X₁) → l36(X₀, -3) :|: 0 ≤ 2+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₀₂: l36(X₀, X₁) → l36(X₀, X₁+X₀) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₀₃: l36(X₀, X₁) → l37(X₀, -4) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₀₄: l37(X₀, X₁) → l37(X₀, X₁+X₀) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₀₅: l37(X₀, X₁) → l38(X₀, -4) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₀₆: l38(X₀, X₁) → l38(X₀, X₁+X₀) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₀₇: l38(X₀, X₁) → l39(X₀, -4) :|: 0 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₀₈: l39(X₀, X₁) → l39(X₀, X₁+X₀) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₀₉: l39(X₀, X₁) → l40(X₀, -4) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₁₀: l4(X₀, X₁) → l4(X₀, X₁+1) :|: X₁ ≤ 3 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₁₁: l4(X₀, X₁) → l5(X₀, 1) :|: 4 ≤ X₁ ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₁₂: l40(X₀, X₁) → l40(X₀, X₁+X₀) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₁₃: l40(X₀, X₁) → l41(X₀, -5) :|: 0 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₁₄: l41(X₀, X₁) → l41(X₀, X₁+X₀) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₁₅: l41(X₀, X₁) → l42(X₀, -5) :|: 0 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₁₆: l42(X₀, X₁) → l42(X₀, X₁+X₀) :|: X₁ ≤ 0 ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₁₇: l42(X₀, X₁) → l43(X₀, -5) :|: 1 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₁₈: l43(X₀, X₁) → l43(X₀, X₁+X₀) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₁₉: l43(X₀, X₁) → l44(X₀, -5) :|: 0 ≤ X₁ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₂₀: l44(X₀, X₁) → l44(X₀, X₁+X₀) :|: X₁ ≤ 0 ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₂₁: l44(X₀, X₁) → l45(X₀, -6) :|: 1 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₂₂: l45(X₀, X₁) → l45(X₀, X₁+X₀) :|: X₁ ≤ 3 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₂₃: l45(X₀, X₁) → l46(X₀, -6) :|: 4 ≤ X₁ ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₂₄: l46(X₀, X₁) → l46(X₀, X₁+X₀) :|: X₁ ≤ 4 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₂₅: l46(X₀, X₁) → l47(X₀, -6) :|: 5 ≤ X₁ ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₂₆: l47(X₀, X₁) → l47(X₀, X₁+X₀) :|: X₁ ≤ 3 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₂₇: l47(X₀, X₁) → l48(X₀, -6) :|: 4 ≤ X₁ ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₂₈: l48(X₀, X₁) → l48(X₀, X₁+X₀) :|: X₁ ≤ 4 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₂₉: l48(X₀, X₁) → l49(X₀, 5) :|: 5 ≤ X₁ ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₃₀: l49(X₀, X₁) → l49(X₀, X₁-1) :|: 3 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₃₁: l49(X₀, X₁) → l50(X₀, 5) :|: X₁ ≤ 2 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₃₂: l5(X₀, X₁) → l5(X₀, X₁+1) :|: X₁ ≤ 1 ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₃₃: l5(X₀, X₁) → l6(X₀, 1) :|: 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₃₄: l50(X₀, X₁) → l50(X₀, X₁-1) :|: 2 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₃₅: l50(X₀, X₁) → l51(X₀, 5) :|: X₁ ≤ 1 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₃₆: l51(X₀, X₁) → l51(X₀, X₁-1) :|: 3 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₃₇: l51(X₀, X₁) → l52(X₀, 5) :|: X₁ ≤ 2 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₃₈: l52(X₀, X₁) → l52(X₀, X₁-1) :|: 2 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₃₉: l52(X₀, X₁) → l53(X₀, 6) :|: X₁ ≤ 1 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₄₀: l53(X₀, X₁) → l53(X₀, X₁-1) :|: 2 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₄₁: l53(X₀, X₁) → l54(X₀, 6) :|: X₁ ≤ 1 ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₄₂: l54(X₀, X₁) → l54(X₀, X₁-1) :|: 1 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₄₃: l54(X₀, X₁) → l55(X₀, 6) :|: X₁ ≤ 0 ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₄₄: l55(X₀, X₁) → l55(X₀, X₁-1) :|: 2 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₄₅: l55(X₀, X₁) → l56(X₀, 6) :|: X₁ ≤ 1 ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₄₆: l56(X₀, X₁) → l56(X₀, X₁-1) :|: 1 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₄₇: l56(X₀, X₁) → l57(X₀, 7) :|: X₁ ≤ 0 ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₄₈: l57(X₀, X₁) → l57(X₀, X₁-1) :|: 1 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₄₉: l57(X₀, X₁) → l58(X₀, 7) :|: X₁ ≤ 0 ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₅₀: l58(X₀, X₁) → l58(X₀, X₁-1) :|: 0 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₅₁: l58(X₀, X₁) → l59(X₀, 7) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₅₂: l59(X₀, X₁) → l59(X₀, X₁-1) :|: 1 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₅₃: l59(X₀, X₁) → l60(X₀, 7) :|: X₁ ≤ 0 ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₅₄: l6(X₀, X₁) → l6(X₀, X₁+1) :|: X₁ ≤ 2 ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₅₅: l6(X₀, X₁) → l7(X₀, 1) :|: 3 ≤ X₁ ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₅₆: l60(X₀, X₁) → l60(X₀, X₁-1) :|: 0 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₅₇: l60(X₀, X₁) → l61(X₀, 8) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₅₈: l61(X₀, X₁) → l61(X₀, X₁-1) :|: 0 ≤ X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₅₉: l61(X₀, X₁) → l62(X₀, 8) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₆₀: l62(X₀, X₁) → l62(X₀, X₁-1) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₆₁: l62(X₀, X₁) → l63(X₀, 8) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₆₂: l63(X₀, X₁) → l63(X₀, X₁-1) :|: 0 ≤ X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₆₃: l63(X₀, X₁) → l64(X₀, 8) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₆₄: l64(X₀, X₁) → l64(X₀, X₁-1) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₆₅: l64(X₀, X₁) → l65(X₀, 9) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₆₆: l65(X₀, X₁) → l65(X₀, X₁-1) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₆₇: l65(X₀, X₁) → l66(X₀, 9) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₆₈: l66(X₀, X₁) → l66(X₀, X₁-1) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₆₉: l66(X₀, X₁) → l67(X₀, 9) :|: 3+X₁ ≤ 0 ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₇₀: l67(X₀, X₁) → l67(X₀, X₁-1) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₇₁: l67(X₀, X₁) → l68(X₀, 9) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₇₂: l68(X₀, X₁) → l68(X₀, X₁-1) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₇₃: l68(X₀, X₁) → l69(X₀, 0) :|: 3+X₁ ≤ 0 ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₇₄: l69(X₀, X₁) → l69(X₀, X₁-1) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₇₅: l69(X₀, X₁) → l70(X₀, 0) :|: 3+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₇₆: l7(X₀, X₁) → l7(X₀, X₁+1) :|: X₁ ≤ 1 ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₇₇: l7(X₀, X₁) → l8(X₀, 1) :|: 2 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₇₈: l70(X₀, X₁) → l70(X₀, X₁-1) :|: 0 ≤ 3+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₇₉: l70(X₀, X₁) → l71(X₀, 0) :|: 4+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₈₀: l71(X₀, X₁) → l71(X₀, X₁-1) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₈₁: l71(X₀, X₁) → l72(X₀, 0) :|: 3+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₈₂: l72(X₀, X₁) → l72(X₀, X₁-1) :|: 0 ≤ 3+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₈₃: l72(X₀, X₁) → l73(X₀, -1) :|: 4+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₈₄: l73(X₀, X₁) → l73(X₀, X₁-1) :|: 0 ≤ 4+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₈₅: l73(X₀, X₁) → l74(X₀, -1) :|: 5+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₈₆: l74(X₀, X₁) → l74(X₀, X₁-1) :|: 0 ≤ 5+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₈₇: l74(X₀, X₁) → l75(X₀, -1) :|: 6+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₈₈: l75(X₀, X₁) → l75(X₀, X₁-1) :|: 0 ≤ 4+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₈₉: l75(X₀, X₁) → l76(X₀, -1) :|: 5+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₉₀: l76(X₀, X₁) → l76(X₀, X₁-1) :|: 0 ≤ 5+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₉₁: l76(X₀, X₁) → l77(X₀, -2) :|: 6+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₉₂: l77(X₀, X₁) → l77(X₀, X₁-1) :|: 0 ≤ 6+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₉₃: l77(X₀, X₁) → l78(X₀, -2) :|: 7+X₁ ≤ 0 ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₉₄: l78(X₀, X₁) → l78(X₀, X₁-1) :|: 0 ≤ 7+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₉₅: l78(X₀, X₁) → l79(X₀, -2) :|: 8+X₁ ≤ 0 ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₉₆: l79(X₀, X₁) → l79(X₀, X₁-1) :|: 0 ≤ 6+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₉₇: l79(X₀, X₁) → l80(X₀, -2) :|: 7+X₁ ≤ 0 ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₉₈: l8(X₀, X₁) → l8(X₀, X₁+1) :|: X₁ ≤ 2 ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₇₉₉: l8(X₀, X₁) → l9(X₀, -3) :|: 3 ≤ X₁ ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₀₀: l80(X₀, X₁) → l80(X₀, X₁-1) :|: 0 ≤ 7+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₀₁: l80(X₀, X₁) → l81(X₀, 16) :|: 8+X₁ ≤ 0 ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₀₂: l81(X₀, X₁) → l81(X₀, X₁-1) :|: 0 ≤ 7+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₀₃: l81(X₀, X₁) → l82(X₀, 16) :|: 8+X₁ ≤ 0 ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₀₄: l82(X₀, X₁) → l82(X₀, X₁-1) :|: 0 ≤ 8+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₀₅: l82(X₀, X₁) → l83(X₀, 16) :|: 9+X₁ ≤ 0 ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₀₆: l83(X₀, X₁) → l83(X₀, X₁-1) :|: 0 ≤ 7+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₀₇: l83(X₀, X₁) → l84(X₀, 16) :|: 8+X₁ ≤ 0 ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₀₈: l84(X₀, X₁) → l84(X₀, X₁-1) :|: 0 ≤ 8+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₀₉: l84(X₀, X₁) → l85(X₀, 5) :|: 9+X₁ ≤ 0 ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₁₀: l85(X₀, X₁) → l85(X₀, X₁-X₀) :|: 3 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₁₁: l85(X₀, X₁) → l86(X₀, 5) :|: X₁ ≤ 2 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₁₂: l86(X₀, X₁) → l86(X₀, X₁-X₀) :|: 2 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₁₃: l86(X₀, X₁) → l87(X₀, 5) :|: X₁ ≤ 1 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₁₄: l87(X₀, X₁) → l87(X₀, X₁-X₀) :|: 3 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₁₅: l87(X₀, X₁) → l88(X₀, 5) :|: X₁ ≤ 2 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₁₆: l88(X₀, X₁) → l88(X₀, X₁-X₀) :|: 2 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₁₇: l88(X₀, X₁) → l89(X₀, 6) :|: X₁ ≤ 1 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₁₈: l89(X₀, X₁) → l89(X₀, X₁-X₀) :|: 2 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₁₉: l89(X₀, X₁) → l90(X₀, 6) :|: X₁ ≤ 1 ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₂₀: l9(X₀, X₁) → l10(X₀, -3) :|: 0 ≤ 2+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₂₁: l9(X₀, X₁) → l9(X₀, X₁+1) :|: 3+X₁ ≤ 0 ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₂₂: l90(X₀, X₁) → l90(X₀, X₁-X₀) :|: 1 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₂₃: l90(X₀, X₁) → l91(X₀, 6) :|: X₁ ≤ 0 ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₂₄: l91(X₀, X₁) → l91(X₀, X₁-X₀) :|: 2 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₂₅: l91(X₀, X₁) → l92(X₀, 6) :|: X₁ ≤ 1 ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₂₆: l92(X₀, X₁) → l92(X₀, X₁-X₀) :|: 1 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₂₇: l92(X₀, X₁) → l93(X₀, 7) :|: X₁ ≤ 0 ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₂₈: l93(X₀, X₁) → l93(X₀, X₁-X₀) :|: 1 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₂₉: l93(X₀, X₁) → l94(X₀, 7) :|: X₁ ≤ 0 ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₃₀: l94(X₀, X₁) → l94(X₀, X₁-X₀) :|: 0 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₃₁: l94(X₀, X₁) → l95(X₀, 7) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₃₂: l95(X₀, X₁) → l95(X₀, X₁-X₀) :|: 1 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₃₃: l95(X₀, X₁) → l96(X₀, 7) :|: X₁ ≤ 0 ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₃₄: l96(X₀, X₁) → l96(X₀, X₁-X₀) :|: 0 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₃₅: l96(X₀, X₁) → l97(X₀, 8) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₃₆: l97(X₀, X₁) → l97(X₀, X₁-X₀) :|: 0 ≤ X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₃₇: l97(X₀, X₁) → l98(X₀, 8) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₃₈: l98(X₀, X₁) → l98(X₀, X₁-X₀) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₃₉: l98(X₀, X₁) → l99(X₀, 8) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₄₀: l99(X₀, X₁) → l100(X₀, 8) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀
t₈₄₁: l99(X₀, X₁) → l99(X₀, X₁-X₀) :|: 0 ≤ X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

MPRF for transition t₆₀₂: l1(X₀, X₁) → l1(X₀, X₁+1) :|: X₁ ≤ 2 ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

3 {O(1)}

MPRF for transition t₆₆₆: l2(X₀, X₁) → l2(X₀, X₁+1) :|: X₁ ≤ 3 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF for transition t₆₈₈: l3(X₀, X₁) → l3(X₀, X₁+1) :|: X₁ ≤ 2 ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

3 {O(1)}

MPRF for transition t₇₁₀: l4(X₀, X₁) → l4(X₀, X₁+1) :|: X₁ ≤ 3 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₃₂: l5(X₀, X₁) → l5(X₀, X₁+1) :|: X₁ ≤ 1 ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

MPRF for transition t₇₅₄: l6(X₀, X₁) → l6(X₀, X₁+1) :|: X₁ ≤ 2 ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₇₆: l7(X₀, X₁) → l7(X₀, X₁+1) :|: X₁ ≤ 1 ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

MPRF for transition t₇₉₈: l8(X₀, X₁) → l8(X₀, X₁+1) :|: X₁ ≤ 2 ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₈₂₁: l9(X₀, X₁) → l9(X₀, X₁+1) :|: 3+X₁ ≤ 0 ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

MPRF for transition t₆₀₄: l10(X₀, X₁) → l10(X₀, X₁+1) :|: 2+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

3 {O(1)}

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₂₆: l11(X₀, X₁) → l11(X₀, X₁+1) :|: 3+X₁ ≤ 0 ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

MPRF for transition t₆₄₈: l12(X₀, X₁) → l12(X₀, X₁+1) :|: 2+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

3 {O(1)}

MPRF for transition t₆₅₂: l13(X₀, X₁) → l13(X₀, X₁+1) :|: 2+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF for transition t₆₅₄: l14(X₀, X₁) → l14(X₀, X₁+1) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₆₅₆: l15(X₀, X₁) → l15(X₀, X₁+1) :|: 2+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF for transition t₆₅₈: l16(X₀, X₁) → l16(X₀, X₁+1) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₆₆₀: l17(X₀, X₁) → l17(X₀, X₁+1) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₆₆₂: l18(X₀, X₁) → l18(X₀, X₁+1) :|: X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₆₆₄: l19(X₀, X₁) → l19(X₀, X₁+1) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₆₆₈: l20(X₀, X₁) → l20(X₀, X₁+1) :|: X₁ ≤ 0 ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₆₇₀: l21(X₀, X₁) → l21(X₀, X₁+1) :|: X₁ ≤ 3 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₆₇₂: l22(X₀, X₁) → l22(X₀, X₁+1) :|: X₁ ≤ 4 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

11 {O(1)}

MPRF for transition t₆₇₄: l23(X₀, X₁) → l23(X₀, X₁+1) :|: X₁ ≤ 3 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₆₇₆: l24(X₀, X₁) → l24(X₀, X₁+1) :|: X₁ ≤ 4 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

11 {O(1)}

MPRF for transition t₆₇₈: l25(X₀, X₁) → l25(X₀, X₁+X₀) :|: X₁ ≤ 2 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₆₈₀: l26(X₀, X₁) → l26(X₀, X₁+X₀) :|: X₁ ≤ 3 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₆₈₂: l27(X₀, X₁) → l27(X₀, X₁+X₀) :|: X₁ ≤ 2 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₆₈₄: l28(X₀, X₁) → l28(X₀, X₁+X₀) :|: X₁ ≤ 3 ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₈₆: l29(X₀, X₁) → l29(X₀, X₁+X₀) :|: X₁ ≤ 1 ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₉₀: l30(X₀, X₁) → l30(X₀, X₁+X₀) :|: X₁ ≤ 2 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₉₂: l31(X₀, X₁) → l31(X₀, X₁+X₀) :|: X₁ ≤ 1 ∧ X₁ ≤ 3 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 5 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₉₄: l32(X₀, X₁) → l32(X₀, X₁+X₀) :|: X₁ ≤ 2 ∧ X₁ ≤ 4 ∧ X₁ ≤ 2+X₀ ∧ X₀+X₁ ≤ 6 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₉₆: l33(X₀, X₁) → l33(X₀, X₁+X₀) :|: 3+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₆₉₈: l34(X₀, X₁) → l34(X₀, X₁+X₀) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₀₀: l35(X₀, X₁) → l35(X₀, X₁+X₀) :|: 3+X₁ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₀₂: l36(X₀, X₁) → l36(X₀, X₁+X₀) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀

MPRF for transition t₇₀₄: l37(X₀, X₁) → l37(X₀, X₁+X₀) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₇₀₆: l38(X₀, X₁) → l38(X₀, X₁+X₀) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF for transition t₇₀₈: l39(X₀, X₁) → l39(X₀, X₁+X₀) :|: 2+X₁ ≤ 0 ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₇₁₂: l40(X₀, X₁) → l40(X₀, X₁+X₀) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF for transition t₇₁₄: l41(X₀, X₁) → l41(X₀, X₁+X₀) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₇₁₆: l42(X₀, X₁) → l42(X₀, X₁+X₀) :|: X₁ ≤ 0 ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₇₁₈: l43(X₀, X₁) → l43(X₀, X₁+X₀) :|: X₁+1 ≤ 0 ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 3 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₇₂₀: l44(X₀, X₁) → l44(X₀, X₁+X₀) :|: X₁ ≤ 0 ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 4 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₇₂₂: l45(X₀, X₁) → l45(X₀, X₁+X₀) :|: X₁ ≤ 3 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₇₂₄: l46(X₀, X₁) → l46(X₀, X₁+X₀) :|: X₁ ≤ 4 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

11 {O(1)}

MPRF for transition t₇₂₆: l47(X₀, X₁) → l47(X₀, X₁+X₀) :|: X₁ ≤ 3 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₇₂₈: l48(X₀, X₁) → l48(X₀, X₁+X₀) :|: X₁ ≤ 4 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

11 {O(1)}

MPRF for transition t₇₃₀: l49(X₀, X₁) → l49(X₀, X₁-1) :|: 3 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₇₃₄: l50(X₀, X₁) → l50(X₀, X₁-1) :|: 2 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₇₃₆: l51(X₀, X₁) → l51(X₀, X₁-1) :|: 3 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₇₃₈: l52(X₀, X₁) → l52(X₀, X₁-1) :|: 2 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₇₄₀: l53(X₀, X₁) → l53(X₀, X₁-1) :|: 2 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₇₄₂: l54(X₀, X₁) → l54(X₀, X₁-1) :|: 1 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

7 {O(1)}

MPRF for transition t₇₄₄: l55(X₀, X₁) → l55(X₀, X₁-1) :|: 2 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₇₄₆: l56(X₀, X₁) → l56(X₀, X₁-1) :|: 1 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

7 {O(1)}

MPRF for transition t₇₄₈: l57(X₀, X₁) → l57(X₀, X₁-1) :|: 1 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

8 {O(1)}

MPRF for transition t₇₅₀: l58(X₀, X₁) → l58(X₀, X₁-1) :|: 0 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

8 {O(1)}

MPRF for transition t₇₅₂: l59(X₀, X₁) → l59(X₀, X₁-1) :|: 1 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

8 {O(1)}

MPRF for transition t₇₅₆: l60(X₀, X₁) → l60(X₀, X₁-1) :|: 0 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

8 {O(1)}

MPRF for transition t₇₅₈: l61(X₀, X₁) → l61(X₀, X₁-1) :|: 0 ≤ X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF for transition t₇₆₀: l62(X₀, X₁) → l62(X₀, X₁-1) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₇₆₂: l63(X₀, X₁) → l63(X₀, X₁-1) :|: 0 ≤ X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF for transition t₇₆₄: l64(X₀, X₁) → l64(X₀, X₁-1) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₇₆₆: l65(X₀, X₁) → l65(X₀, X₁-1) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

11 {O(1)}

MPRF for transition t₇₆₈: l66(X₀, X₁) → l66(X₀, X₁-1) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

13 {O(1)}

MPRF for transition t₇₇₀: l67(X₀, X₁) → l67(X₀, X₁-1) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

11 {O(1)}

MPRF for transition t₇₇₂: l68(X₀, X₁) → l68(X₀, X₁-1) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

13 {O(1)}

MPRF for transition t₇₇₄: l69(X₀, X₁) → l69(X₀, X₁-1) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF for transition t₇₇₈: l70(X₀, X₁) → l70(X₀, X₁-1) :|: 0 ≤ 3+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₇₈₀: l71(X₀, X₁) → l71(X₀, X₁-1) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 3+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF for transition t₇₈₂: l72(X₀, X₁) → l72(X₀, X₁-1) :|: 0 ≤ 3+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₇₈₄: l73(X₀, X₁) → l73(X₀, X₁-1) :|: 0 ≤ 4+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₇₈₆: l74(X₀, X₁) → l74(X₀, X₁-1) :|: 0 ≤ 5+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

7 {O(1)}

MPRF for transition t₇₈₈: l75(X₀, X₁) → l75(X₀, X₁-1) :|: 0 ≤ 4+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₇₉₀: l76(X₀, X₁) → l76(X₀, X₁-1) :|: 0 ≤ 5+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

7 {O(1)}

MPRF for transition t₇₉₂: l77(X₀, X₁) → l77(X₀, X₁-1) :|: 0 ≤ 6+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF for transition t₇₉₄: l78(X₀, X₁) → l78(X₀, X₁-1) :|: 0 ≤ 7+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₇₉₆: l79(X₀, X₁) → l79(X₀, X₁-1) :|: 0 ≤ 6+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF for transition t₈₀₀: l80(X₀, X₁) → l80(X₀, X₁-1) :|: 0 ≤ 7+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₈₀₂: l81(X₀, X₁) → l81(X₀, X₁-1) :|: 0 ≤ 7+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

25 {O(1)}

MPRF for transition t₈₀₄: l82(X₀, X₁) → l82(X₀, X₁-1) :|: 0 ≤ 8+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

26 {O(1)}

MPRF for transition t₈₀₆: l83(X₀, X₁) → l83(X₀, X₁-1) :|: 0 ≤ 7+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

25 {O(1)}

MPRF for transition t₈₀₈: l84(X₀, X₁) → l84(X₀, X₁-1) :|: 0 ≤ 8+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

26 {O(1)}

MPRF for transition t₈₁₀: l85(X₀, X₁) → l85(X₀, X₁-X₀) :|: 3 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₈₁₂: l86(X₀, X₁) → l86(X₀, X₁-X₀) :|: 2 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₈₁₄: l87(X₀, X₁) → l87(X₀, X₁-X₀) :|: 3 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

5 {O(1)}

MPRF for transition t₈₁₆: l88(X₀, X₁) → l88(X₀, X₁-X₀) :|: 2 ≤ X₁ ∧ X₁ ≤ 5 ∧ X₁ ≤ 3+X₀ ∧ X₀+X₁ ≤ 7 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₈₁₈: l89(X₀, X₁) → l89(X₀, X₁-X₀) :|: 2 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

7 {O(1)}

MPRF for transition t₈₂₂: l90(X₀, X₁) → l90(X₀, X₁-X₀) :|: 1 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

8 {O(1)}

MPRF for transition t₈₂₄: l91(X₀, X₁) → l91(X₀, X₁-X₀) :|: 2 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

7 {O(1)}

MPRF for transition t₈₂₆: l92(X₀, X₁) → l92(X₀, X₁-X₀) :|: 1 ≤ X₁ ∧ X₁ ≤ 6 ∧ X₁ ≤ 4+X₀ ∧ X₀+X₁ ≤ 8 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

8 {O(1)}

MPRF for transition t₈₂₈: l93(X₀, X₁) → l93(X₀, X₁-X₀) :|: 1 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF for transition t₈₃₀: l94(X₀, X₁) → l94(X₀, X₁-X₀) :|: 0 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

8 {O(1)}

MPRF for transition t₈₃₂: l95(X₀, X₁) → l95(X₀, X₁-X₀) :|: 1 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 1+X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF for transition t₈₃₄: l96(X₀, X₁) → l96(X₀, X₁-X₀) :|: 0 ≤ X₁ ∧ X₁ ≤ 7 ∧ X₁ ≤ 5+X₀ ∧ X₀+X₁ ≤ 9 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

8 {O(1)}

MPRF for transition t₈₃₆: l97(X₀, X₁) → l97(X₀, X₁-X₀) :|: 0 ≤ X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF for transition t₈₃₈: l98(X₀, X₁) → l98(X₀, X₁-X₀) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₈₄₁: l99(X₀, X₁) → l99(X₀, X₁-X₀) :|: 0 ≤ X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ 0 ≤ 2+X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 4+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF for transition t₆₀₆: l100(X₀, X₁) → l100(X₀, X₁-X₀) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 8 ∧ X₁ ≤ 6+X₀ ∧ X₀+X₁ ≤ 10 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₆₀₈: l101(X₀, X₁) → l101(X₀, X₁-X₀) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

11 {O(1)}

MPRF for transition t₆₁₀: l102(X₀, X₁) → l102(X₀, X₁-X₀) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

12 {O(1)}

MPRF for transition t₆₁₂: l103(X₀, X₁) → l103(X₀, X₁-X₀) :|: 0 ≤ 1+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

11 {O(1)}

MPRF for transition t₆₁₄: l104(X₀, X₁) → l104(X₀, X₁-X₀) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 9 ∧ X₁ ≤ 7+X₀ ∧ X₀+X₁ ≤ 11 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

12 {O(1)}

MPRF for transition t₆₁₆: l105(X₀, X₁) → l105(X₀, X₁-X₀) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

3 {O(1)}

MPRF for transition t₆₁₈: l106(X₀, X₁) → l106(X₀, X₁-X₀) :|: 0 ≤ 3+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF for transition t₆₂₀: l107(X₀, X₁) → l107(X₀, X₁-X₀) :|: 0 ≤ 2+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 4+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ X₀ ≤ 6+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

3 {O(1)}

MPRF for transition t₆₂₂: l108(X₀, X₁) → l108(X₀, X₁-X₀) :|: 0 ≤ 3+X₁ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ 5+X₁ ∧ 0 ≤ 3+X₀+X₁ ∧ X₀ ≤ 7+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF for transition t₆₂₄: l109(X₀, X₁) → l109(X₀, X₁-X₀) :|: 0 ≤ 4+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

8 {O(1)}

MPRF for transition t₆₂₈: l110(X₀, X₁) → l110(X₀, X₁-X₀) :|: 0 ≤ 5+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF for transition t₆₃₀: l111(X₀, X₁) → l111(X₀, X₁-X₀) :|: 0 ≤ 4+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 6+X₁ ∧ 0 ≤ 4+X₀+X₁ ∧ X₀ ≤ 8+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

8 {O(1)}

MPRF for transition t₆₃₂: l112(X₀, X₁) → l112(X₀, X₁-X₀) :|: 0 ≤ 5+X₁ ∧ 1+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 1 ∧ 0 ≤ 7+X₁ ∧ 0 ≤ 5+X₀+X₁ ∧ X₀ ≤ 9+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF for transition t₆₃₄: l113(X₀, X₁) → l113(X₀, X₁-X₀) :|: 0 ≤ 6+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF for transition t₆₃₆: l114(X₀, X₁) → l114(X₀, X₁-X₀) :|: 0 ≤ 7+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₆₃₈: l115(X₀, X₁) → l115(X₀, X₁-X₀) :|: 0 ≤ 6+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 8+X₁ ∧ 0 ≤ 6+X₀+X₁ ∧ X₀ ≤ 10+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

9 {O(1)}

MPRF for transition t₆₄₀: l116(X₀, X₁) → l116(X₀, X₁-X₀) :|: 0 ≤ 7+X₁ ∧ 2+X₁ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ 9+X₁ ∧ 0 ≤ 7+X₀+X₁ ∧ X₀ ≤ 11+X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₆₄₂: l117(X₀, X₁) → l117(X₀, X₁-X₀) :|: 0 ≤ 7+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

24 {O(1)}

MPRF for transition t₆₄₄: l118(X₀, X₁) → l118(X₀, X₁-X₀) :|: 0 ≤ 8+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

25 {O(1)}

MPRF for transition t₆₄₆: l119(X₀, X₁) → l119(X₀, X₁-X₀) :|: 0 ≤ 7+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

24 {O(1)}

MPRF for transition t₆₅₀: l120(X₀, X₁) → l120(X₀, X₁-X₀) :|: 0 ≤ 8+X₁ ∧ X₁ ≤ 16 ∧ X₁ ≤ 14+X₀ ∧ X₀+X₁ ≤ 18 ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ of depth 1:

new bound:

25 {O(1)}

All Bounds

Timebounds

Overall timebound:1053 {O(1)}
t₆₀₁: 1 {O(1)}
t₆₀₂: 3 {O(1)}
t₆₀₃: 1 {O(1)}
t₆₀₄: 3 {O(1)}
t₆₀₅: 1 {O(1)}
t₆₀₆: 10 {O(1)}
t₆₀₇: 1 {O(1)}
t₆₀₈: 11 {O(1)}
t₆₀₉: 1 {O(1)}
t₆₁₀: 12 {O(1)}
t₆₁₁: 1 {O(1)}
t₆₁₂: 11 {O(1)}
t₆₁₃: 1 {O(1)}
t₆₁₄: 12 {O(1)}
t₆₁₅: 1 {O(1)}
t₆₁₆: 3 {O(1)}
t₆₁₇: 1 {O(1)}
t₆₁₈: 4 {O(1)}
t₆₁₉: 1 {O(1)}
t₆₂₀: 3 {O(1)}
t₆₂₁: 1 {O(1)}
t₆₂₂: 4 {O(1)}
t₆₂₃: 1 {O(1)}
t₆₂₄: 8 {O(1)}
t₆₂₅: 1 {O(1)}
t₆₂₆: 1 {O(1)}
t₆₂₇: 1 {O(1)}
t₆₂₈: 9 {O(1)}
t₆₂₉: 1 {O(1)}
t₆₃₀: 8 {O(1)}
t₆₃₁: 1 {O(1)}
t₆₃₂: 9 {O(1)}
t₆₃₃: 1 {O(1)}
t₆₃₄: 9 {O(1)}
t₆₃₅: 1 {O(1)}
t₆₃₆: 10 {O(1)}
t₆₃₇: 1 {O(1)}
t₆₃₈: 9 {O(1)}
t₆₃₉: 1 {O(1)}
t₆₄₀: 10 {O(1)}
t₆₄₁: 1 {O(1)}
t₆₄₂: 24 {O(1)}
t₆₄₃: 1 {O(1)}
t₆₄₄: 25 {O(1)}
t₆₄₅: 1 {O(1)}
t₆₄₆: 24 {O(1)}
t₆₄₇: 1 {O(1)}
t₆₄₈: 3 {O(1)}
t₆₄₉: 1 {O(1)}
t₆₅₀: 25 {O(1)}
t₆₅₁: 1 {O(1)}
t₆₅₂: 4 {O(1)}
t₆₅₃: 1 {O(1)}
t₆₅₄: 5 {O(1)}
t₆₅₅: 1 {O(1)}
t₆₅₆: 4 {O(1)}
t₆₅₇: 1 {O(1)}
t₆₅₈: 5 {O(1)}
t₆₅₉: 1 {O(1)}
t₆₆₀: 6 {O(1)}
t₆₆₁: 1 {O(1)}
t₆₆₂: 6 {O(1)}
t₆₆₃: 1 {O(1)}
t₆₆₄: 6 {O(1)}
t₆₆₅: 1 {O(1)}
t₆₆₆: 4 {O(1)}
t₆₆₇: 1 {O(1)}
t₆₆₈: 6 {O(1)}
t₆₆₉: 1 {O(1)}
t₆₇₀: 10 {O(1)}
t₆₇₁: 1 {O(1)}
t₆₇₂: 11 {O(1)}
t₆₇₃: 1 {O(1)}
t₆₇₄: 10 {O(1)}
t₆₇₅: 1 {O(1)}
t₆₇₆: 11 {O(1)}
t₆₇₇: 1 {O(1)}
t₆₇₈: 5 {O(1)}
t₆₇₉: 1 {O(1)}
t₆₈₀: 6 {O(1)}
t₆₈₁: 1 {O(1)}
t₆₈₂: 5 {O(1)}
t₆₈₃: 1 {O(1)}
t₆₈₄: 6 {O(1)}
t₆₈₅: 1 {O(1)}
t₆₈₆: 1 {O(1)}
t₆₈₇: 1 {O(1)}
t₆₈₈: 3 {O(1)}
t₆₈₉: 1 {O(1)}
t₆₉₀: 1 {O(1)}
t₆₉₁: 1 {O(1)}
t₆₉₂: 1 {O(1)}
t₆₉₃: 1 {O(1)}
t₆₉₄: 1 {O(1)}
t₆₉₅: 1 {O(1)}
t₆₉₆: 1 {O(1)}
t₆₉₇: 1 {O(1)}
t₆₉₈: 1 {O(1)}
t₆₉₉: 1 {O(1)}
t₇₀₀: 1 {O(1)}
t₇₀₁: 1 {O(1)}
t₇₀₂: 1 {O(1)}
t₇₀₃: 1 {O(1)}
t₇₀₄: 5 {O(1)}
t₇₀₅: 1 {O(1)}
t₇₀₆: 4 {O(1)}
t₇₀₇: 1 {O(1)}
t₇₀₈: 5 {O(1)}
t₇₀₉: 1 {O(1)}
t₇₁₀: 4 {O(1)}
t₇₁₁: 1 {O(1)}
t₇₁₂: 4 {O(1)}
t₇₁₃: 1 {O(1)}
t₇₁₄: 5 {O(1)}
t₇₁₅: 1 {O(1)}
t₇₁₆: 6 {O(1)}
t₇₁₇: 1 {O(1)}
t₇₁₈: 5 {O(1)}
t₇₁₉: 1 {O(1)}
t₇₂₀: 6 {O(1)}
t₇₂₁: 1 {O(1)}
t₇₂₂: 10 {O(1)}
t₇₂₃: 1 {O(1)}
t₇₂₄: 11 {O(1)}
t₇₂₅: 1 {O(1)}
t₇₂₆: 10 {O(1)}
t₇₂₇: 1 {O(1)}
t₇₂₈: 11 {O(1)}
t₇₂₉: 1 {O(1)}
t₇₃₀: 5 {O(1)}
t₇₃₁: 1 {O(1)}
t₇₃₂: 1 {O(1)}
t₇₃₃: 1 {O(1)}
t₇₃₄: 5 {O(1)}
t₇₃₅: 1 {O(1)}
t₇₃₆: 5 {O(1)}
t₇₃₇: 1 {O(1)}
t₇₃₈: 5 {O(1)}
t₇₃₉: 1 {O(1)}
t₇₄₀: 6 {O(1)}
t₇₄₁: 1 {O(1)}
t₇₄₂: 7 {O(1)}
t₇₄₃: 1 {O(1)}
t₇₄₄: 6 {O(1)}
t₇₄₅: 1 {O(1)}
t₇₄₆: 7 {O(1)}
t₇₄₇: 1 {O(1)}
t₇₄₈: 8 {O(1)}
t₇₄₉: 1 {O(1)}
t₇₅₀: 8 {O(1)}
t₇₅₁: 1 {O(1)}
t₇₅₂: 8 {O(1)}
t₇₅₃: 1 {O(1)}
t₇₅₄: 5 {O(1)}
t₇₅₅: 1 {O(1)}
t₇₅₆: 8 {O(1)}
t₇₅₇: 1 {O(1)}
t₇₅₈: 9 {O(1)}
t₇₅₉: 1 {O(1)}
t₇₆₀: 10 {O(1)}
t₇₆₁: 1 {O(1)}
t₇₆₂: 9 {O(1)}
t₇₆₃: 1 {O(1)}
t₇₆₄: 10 {O(1)}
t₇₆₅: 1 {O(1)}
t₇₆₆: 11 {O(1)}
t₇₆₇: 1 {O(1)}
t₇₆₈: 13 {O(1)}
t₇₆₉: 1 {O(1)}
t₇₇₀: 11 {O(1)}
t₇₇₁: 1 {O(1)}
t₇₇₂: 13 {O(1)}
t₇₇₃: 1 {O(1)}
t₇₇₄: 4 {O(1)}
t₇₇₅: 1 {O(1)}
t₇₇₆: 1 {O(1)}
t₇₇₇: 1 {O(1)}
t₇₇₈: 5 {O(1)}
t₇₇₉: 1 {O(1)}
t₇₈₀: 4 {O(1)}
t₇₈₁: 1 {O(1)}
t₇₈₂: 5 {O(1)}
t₇₈₃: 1 {O(1)}
t₇₈₄: 6 {O(1)}
t₇₈₅: 1 {O(1)}
t₇₈₆: 7 {O(1)}
t₇₈₇: 1 {O(1)}
t₇₈₈: 6 {O(1)}
t₇₈₉: 1 {O(1)}
t₇₉₀: 7 {O(1)}
t₇₉₁: 1 {O(1)}
t₇₉₂: 9 {O(1)}
t₇₉₃: 1 {O(1)}
t₇₉₄: 10 {O(1)}
t₇₉₅: 1 {O(1)}
t₇₉₆: 9 {O(1)}
t₇₉₇: 1 {O(1)}
t₇₉₈: 5 {O(1)}
t₇₉₉: 1 {O(1)}
t₈₀₀: 10 {O(1)}
t₈₀₁: 1 {O(1)}
t₈₀₂: 25 {O(1)}
t₈₀₃: 1 {O(1)}
t₈₀₄: 26 {O(1)}
t₈₀₅: 1 {O(1)}
t₈₀₆: 25 {O(1)}
t₈₀₇: 1 {O(1)}
t₈₀₈: 26 {O(1)}
t₈₀₉: 1 {O(1)}
t₈₁₀: 5 {O(1)}
t₈₁₁: 1 {O(1)}
t₈₁₂: 6 {O(1)}
t₈₁₃: 1 {O(1)}
t₈₁₄: 5 {O(1)}
t₈₁₅: 1 {O(1)}
t₈₁₆: 6 {O(1)}
t₈₁₇: 1 {O(1)}
t₈₁₈: 7 {O(1)}
t₈₁₉: 1 {O(1)}
t₈₂₀: 1 {O(1)}
t₈₂₁: 1 {O(1)}
t₈₂₂: 8 {O(1)}
t₈₂₃: 1 {O(1)}
t₈₂₄: 7 {O(1)}
t₈₂₅: 1 {O(1)}
t₈₂₆: 8 {O(1)}
t₈₂₇: 1 {O(1)}
t₈₂₈: 9 {O(1)}
t₈₂₉: 1 {O(1)}
t₈₃₀: 8 {O(1)}
t₈₃₁: 1 {O(1)}
t₈₃₂: 9 {O(1)}
t₈₃₃: 1 {O(1)}
t₈₃₄: 8 {O(1)}
t₈₃₅: 1 {O(1)}
t₈₃₆: 9 {O(1)}
t₈₃₇: 1 {O(1)}
t₈₃₈: 10 {O(1)}
t₈₃₉: 1 {O(1)}
t₈₄₀: 1 {O(1)}
t₈₄₁: 9 {O(1)}

Costbounds

Overall costbound: 1053 {O(1)}
t₆₀₁: 1 {O(1)}
t₆₀₂: 3 {O(1)}
t₆₀₃: 1 {O(1)}
t₆₀₄: 3 {O(1)}
t₆₀₅: 1 {O(1)}
t₆₀₆: 10 {O(1)}
t₆₀₇: 1 {O(1)}
t₆₀₈: 11 {O(1)}
t₆₀₉: 1 {O(1)}
t₆₁₀: 12 {O(1)}
t₆₁₁: 1 {O(1)}
t₆₁₂: 11 {O(1)}
t₆₁₃: 1 {O(1)}
t₆₁₄: 12 {O(1)}
t₆₁₅: 1 {O(1)}
t₆₁₆: 3 {O(1)}
t₆₁₇: 1 {O(1)}
t₆₁₈: 4 {O(1)}
t₆₁₉: 1 {O(1)}
t₆₂₀: 3 {O(1)}
t₆₂₁: 1 {O(1)}
t₆₂₂: 4 {O(1)}
t₆₂₃: 1 {O(1)}
t₆₂₄: 8 {O(1)}
t₆₂₅: 1 {O(1)}
t₆₂₆: 1 {O(1)}
t₆₂₇: 1 {O(1)}
t₆₂₈: 9 {O(1)}
t₆₂₉: 1 {O(1)}
t₆₃₀: 8 {O(1)}
t₆₃₁: 1 {O(1)}
t₆₃₂: 9 {O(1)}
t₆₃₃: 1 {O(1)}
t₆₃₄: 9 {O(1)}
t₆₃₅: 1 {O(1)}
t₆₃₆: 10 {O(1)}
t₆₃₇: 1 {O(1)}
t₆₃₈: 9 {O(1)}
t₆₃₉: 1 {O(1)}
t₆₄₀: 10 {O(1)}
t₆₄₁: 1 {O(1)}
t₆₄₂: 24 {O(1)}
t₆₄₃: 1 {O(1)}
t₆₄₄: 25 {O(1)}
t₆₄₅: 1 {O(1)}
t₆₄₆: 24 {O(1)}
t₆₄₇: 1 {O(1)}
t₆₄₈: 3 {O(1)}
t₆₄₉: 1 {O(1)}
t₆₅₀: 25 {O(1)}
t₆₅₁: 1 {O(1)}
t₆₅₂: 4 {O(1)}
t₆₅₃: 1 {O(1)}
t₆₅₄: 5 {O(1)}
t₆₅₅: 1 {O(1)}
t₆₅₆: 4 {O(1)}
t₆₅₇: 1 {O(1)}
t₆₅₈: 5 {O(1)}
t₆₅₉: 1 {O(1)}
t₆₆₀: 6 {O(1)}
t₆₆₁: 1 {O(1)}
t₆₆₂: 6 {O(1)}
t₆₆₃: 1 {O(1)}
t₆₆₄: 6 {O(1)}
t₆₆₅: 1 {O(1)}
t₆₆₆: 4 {O(1)}
t₆₆₇: 1 {O(1)}
t₆₆₈: 6 {O(1)}
t₆₆₉: 1 {O(1)}
t₆₇₀: 10 {O(1)}
t₆₇₁: 1 {O(1)}
t₆₇₂: 11 {O(1)}
t₆₇₃: 1 {O(1)}
t₆₇₄: 10 {O(1)}
t₆₇₅: 1 {O(1)}
t₆₇₆: 11 {O(1)}
t₆₇₇: 1 {O(1)}
t₆₇₈: 5 {O(1)}
t₆₇₉: 1 {O(1)}
t₆₈₀: 6 {O(1)}
t₆₈₁: 1 {O(1)}
t₆₈₂: 5 {O(1)}
t₆₈₃: 1 {O(1)}
t₆₈₄: 6 {O(1)}
t₆₈₅: 1 {O(1)}
t₆₈₆: 1 {O(1)}
t₆₈₇: 1 {O(1)}
t₆₈₈: 3 {O(1)}
t₆₈₉: 1 {O(1)}
t₆₉₀: 1 {O(1)}
t₆₉₁: 1 {O(1)}
t₆₉₂: 1 {O(1)}
t₆₉₃: 1 {O(1)}
t₆₉₄: 1 {O(1)}
t₆₉₅: 1 {O(1)}
t₆₉₆: 1 {O(1)}
t₆₉₇: 1 {O(1)}
t₆₉₈: 1 {O(1)}
t₆₉₉: 1 {O(1)}
t₇₀₀: 1 {O(1)}
t₇₀₁: 1 {O(1)}
t₇₀₂: 1 {O(1)}
t₇₀₃: 1 {O(1)}
t₇₀₄: 5 {O(1)}
t₇₀₅: 1 {O(1)}
t₇₀₆: 4 {O(1)}
t₇₀₇: 1 {O(1)}
t₇₀₈: 5 {O(1)}
t₇₀₉: 1 {O(1)}
t₇₁₀: 4 {O(1)}
t₇₁₁: 1 {O(1)}
t₇₁₂: 4 {O(1)}
t₇₁₃: 1 {O(1)}
t₇₁₄: 5 {O(1)}
t₇₁₅: 1 {O(1)}
t₇₁₆: 6 {O(1)}
t₇₁₇: 1 {O(1)}
t₇₁₈: 5 {O(1)}
t₇₁₉: 1 {O(1)}
t₇₂₀: 6 {O(1)}
t₇₂₁: 1 {O(1)}
t₇₂₂: 10 {O(1)}
t₇₂₃: 1 {O(1)}
t₇₂₄: 11 {O(1)}
t₇₂₅: 1 {O(1)}
t₇₂₆: 10 {O(1)}
t₇₂₇: 1 {O(1)}
t₇₂₈: 11 {O(1)}
t₇₂₉: 1 {O(1)}
t₇₃₀: 5 {O(1)}
t₇₃₁: 1 {O(1)}
t₇₃₂: 1 {O(1)}
t₇₃₃: 1 {O(1)}
t₇₃₄: 5 {O(1)}
t₇₃₅: 1 {O(1)}
t₇₃₆: 5 {O(1)}
t₇₃₇: 1 {O(1)}
t₇₃₈: 5 {O(1)}
t₇₃₉: 1 {O(1)}
t₇₄₀: 6 {O(1)}
t₇₄₁: 1 {O(1)}
t₇₄₂: 7 {O(1)}
t₇₄₃: 1 {O(1)}
t₇₄₄: 6 {O(1)}
t₇₄₅: 1 {O(1)}
t₇₄₆: 7 {O(1)}
t₇₄₇: 1 {O(1)}
t₇₄₈: 8 {O(1)}
t₇₄₉: 1 {O(1)}
t₇₅₀: 8 {O(1)}
t₇₅₁: 1 {O(1)}
t₇₅₂: 8 {O(1)}
t₇₅₃: 1 {O(1)}
t₇₅₄: 5 {O(1)}
t₇₅₅: 1 {O(1)}
t₇₅₆: 8 {O(1)}
t₇₅₇: 1 {O(1)}
t₇₅₈: 9 {O(1)}
t₇₅₉: 1 {O(1)}
t₇₆₀: 10 {O(1)}
t₇₆₁: 1 {O(1)}
t₇₆₂: 9 {O(1)}
t₇₆₃: 1 {O(1)}
t₇₆₄: 10 {O(1)}
t₇₆₅: 1 {O(1)}
t₇₆₆: 11 {O(1)}
t₇₆₇: 1 {O(1)}
t₇₆₈: 13 {O(1)}
t₇₆₉: 1 {O(1)}
t₇₇₀: 11 {O(1)}
t₇₇₁: 1 {O(1)}
t₇₇₂: 13 {O(1)}
t₇₇₃: 1 {O(1)}
t₇₇₄: 4 {O(1)}
t₇₇₅: 1 {O(1)}
t₇₇₆: 1 {O(1)}
t₇₇₇: 1 {O(1)}
t₇₇₈: 5 {O(1)}
t₇₇₉: 1 {O(1)}
t₇₈₀: 4 {O(1)}
t₇₈₁: 1 {O(1)}
t₇₈₂: 5 {O(1)}
t₇₈₃: 1 {O(1)}
t₇₈₄: 6 {O(1)}
t₇₈₅: 1 {O(1)}
t₇₈₆: 7 {O(1)}
t₇₈₇: 1 {O(1)}
t₇₈₈: 6 {O(1)}
t₇₈₉: 1 {O(1)}
t₇₉₀: 7 {O(1)}
t₇₉₁: 1 {O(1)}
t₇₉₂: 9 {O(1)}
t₇₉₃: 1 {O(1)}
t₇₉₄: 10 {O(1)}
t₇₉₅: 1 {O(1)}
t₇₉₆: 9 {O(1)}
t₇₉₇: 1 {O(1)}
t₇₉₈: 5 {O(1)}
t₇₉₉: 1 {O(1)}
t₈₀₀: 10 {O(1)}
t₈₀₁: 1 {O(1)}
t₈₀₂: 25 {O(1)}
t₈₀₃: 1 {O(1)}
t₈₀₄: 26 {O(1)}
t₈₀₅: 1 {O(1)}
t₈₀₆: 25 {O(1)}
t₈₀₇: 1 {O(1)}
t₈₀₈: 26 {O(1)}
t₈₀₉: 1 {O(1)}
t₈₁₀: 5 {O(1)}
t₈₁₁: 1 {O(1)}
t₈₁₂: 6 {O(1)}
t₈₁₃: 1 {O(1)}
t₈₁₄: 5 {O(1)}
t₈₁₅: 1 {O(1)}
t₈₁₆: 6 {O(1)}
t₈₁₇: 1 {O(1)}
t₈₁₈: 7 {O(1)}
t₈₁₉: 1 {O(1)}
t₈₂₀: 1 {O(1)}
t₈₂₁: 1 {O(1)}
t₈₂₂: 8 {O(1)}
t₈₂₃: 1 {O(1)}
t₈₂₄: 7 {O(1)}
t₈₂₅: 1 {O(1)}
t₈₂₆: 8 {O(1)}
t₈₂₇: 1 {O(1)}
t₈₂₈: 9 {O(1)}
t₈₂₉: 1 {O(1)}
t₈₃₀: 8 {O(1)}
t₈₃₁: 1 {O(1)}
t₈₃₂: 9 {O(1)}
t₈₃₃: 1 {O(1)}
t₈₃₄: 8 {O(1)}
t₈₃₅: 1 {O(1)}
t₈₃₆: 9 {O(1)}
t₈₃₇: 1 {O(1)}
t₈₃₈: 10 {O(1)}
t₈₃₉: 1 {O(1)}
t₈₄₀: 1 {O(1)}
t₈₄₁: 9 {O(1)}

Sizebounds

t₆₀₁, X₀: 2 {O(1)}
t₆₀₁, X₁: 0 {O(1)}
t₆₀₂, X₀: 2 {O(1)}
t₆₀₂, X₁: 3 {O(1)}
t₆₀₃, X₀: 2 {O(1)}
t₆₀₃, X₁: 0 {O(1)}
t₆₀₄, X₀: 2 {O(1)}
t₆₀₄, X₁: 2 {O(1)}
t₆₀₅, X₀: 2 {O(1)}
t₆₀₅, X₁: 3 {O(1)}
t₆₀₆, X₀: 2 {O(1)}
t₆₀₆, X₁: 6 {O(1)}
t₆₀₇, X₀: 2 {O(1)}
t₆₀₇, X₁: 9 {O(1)}
t₆₀₈, X₀: 2 {O(1)}
t₆₀₈, X₁: 7 {O(1)}
t₆₀₉, X₀: 2 {O(1)}
t₆₀₉, X₁: 9 {O(1)}
t₆₁₀, X₀: 2 {O(1)}
t₆₁₀, X₁: 7 {O(1)}
t₆₁₁, X₀: 2 {O(1)}
t₆₁₁, X₁: 9 {O(1)}
t₆₁₂, X₀: 2 {O(1)}
t₆₁₂, X₁: 7 {O(1)}
t₆₁₃, X₀: 2 {O(1)}
t₆₁₃, X₁: 9 {O(1)}
t₆₁₄, X₀: 2 {O(1)}
t₆₁₄, X₁: 7 {O(1)}
t₆₁₅, X₀: 2 {O(1)}
t₆₁₅, X₁: 0 {O(1)}
t₆₁₆, X₀: 2 {O(1)}
t₆₁₆, X₁: 4 {O(1)}
t₆₁₇, X₀: 2 {O(1)}
t₆₁₇, X₁: 0 {O(1)}
t₆₁₈, X₀: 2 {O(1)}
t₆₁₈, X₁: 5 {O(1)}
t₆₁₉, X₀: 2 {O(1)}
t₆₁₉, X₁: 0 {O(1)}
t₆₂₀, X₀: 2 {O(1)}
t₆₂₀, X₁: 4 {O(1)}
t₆₂₁, X₀: 2 {O(1)}
t₆₂₁, X₁: 0 {O(1)}
t₆₂₂, X₀: 2 {O(1)}
t₆₂₂, X₁: 5 {O(1)}
t₆₂₃, X₀: 2 {O(1)}
t₆₂₃, X₁: 1 {O(1)}
t₆₂₄, X₀: 2 {O(1)}
t₆₂₄, X₁: 6 {O(1)}
t₆₂₅, X₀: 2 {O(1)}
t₆₂₅, X₁: 1 {O(1)}
t₆₂₆, X₀: 2 {O(1)}
t₆₂₆, X₁: 2 {O(1)}
t₆₂₇, X₀: 2 {O(1)}
t₆₂₇, X₁: 3 {O(1)}
t₆₂₈, X₀: 2 {O(1)}
t₆₂₈, X₁: 7 {O(1)}
t₆₂₉, X₀: 2 {O(1)}
t₆₂₉, X₁: 1 {O(1)}
t₆₃₀, X₀: 2 {O(1)}
t₆₃₀, X₁: 6 {O(1)}
t₆₃₁, X₀: 2 {O(1)}
t₆₃₁, X₁: 1 {O(1)}
t₆₃₂, X₀: 2 {O(1)}
t₆₃₂, X₁: 7 {O(1)}
t₆₃₃, X₀: 2 {O(1)}
t₆₃₃, X₁: 2 {O(1)}
t₆₃₄, X₀: 2 {O(1)}
t₆₃₄, X₁: 8 {O(1)}
t₆₃₅, X₀: 2 {O(1)}
t₆₃₅, X₁: 2 {O(1)}
t₆₃₆, X₀: 2 {O(1)}
t₆₃₆, X₁: 9 {O(1)}
t₆₃₇, X₀: 2 {O(1)}
t₆₃₇, X₁: 2 {O(1)}
t₆₃₈, X₀: 2 {O(1)}
t₆₃₈, X₁: 8 {O(1)}
t₆₃₉, X₀: 2 {O(1)}
t₆₃₉, X₁: 2 {O(1)}
t₆₄₀, X₀: 2 {O(1)}
t₆₄₀, X₁: 9 {O(1)}
t₆₄₁, X₀: 2 {O(1)}
t₆₄₁, X₁: 16 {O(1)}
t₆₄₂, X₀: 2 {O(1)}
t₆₄₂, X₁: 14 {O(1)}
t₆₄₃, X₀: 2 {O(1)}
t₆₄₃, X₁: 16 {O(1)}
t₆₄₄, X₀: 2 {O(1)}
t₆₄₄, X₁: 14 {O(1)}
t₆₄₅, X₀: 2 {O(1)}
t₆₄₅, X₁: 16 {O(1)}
t₆₄₆, X₀: 2 {O(1)}
t₆₄₆, X₁: 14 {O(1)}
t₆₄₇, X₀: 2 {O(1)}
t₆₄₇, X₁: 16 {O(1)}
t₆₄₈, X₀: 2 {O(1)}
t₆₄₈, X₁: 2 {O(1)}
t₆₄₉, X₀: 2 {O(1)}
t₆₄₉, X₁: 4 {O(1)}
t₆₅₀, X₀: 2 {O(1)}
t₆₅₀, X₁: 14 {O(1)}
t₆₅₁, X₀: 2 {O(1)}
t₆₅₁, X₁: 14 {O(1)}
t₆₅₂, X₀: 2 {O(1)}
t₆₅₂, X₁: 3 {O(1)}
t₆₅₃, X₀: 2 {O(1)}
t₆₅₃, X₁: 4 {O(1)}
t₆₅₄, X₀: 2 {O(1)}
t₆₅₄, X₁: 3 {O(1)}
t₆₅₅, X₀: 2 {O(1)}
t₆₅₅, X₁: 4 {O(1)}
t₆₅₆, X₀: 2 {O(1)}
t₆₅₆, X₁: 3 {O(1)}
t₆₅₇, X₀: 2 {O(1)}
t₆₅₇, X₁: 4 {O(1)}
t₆₅₈, X₀: 2 {O(1)}
t₆₅₈, X₁: 3 {O(1)}
t₆₅₉, X₀: 2 {O(1)}
t₆₅₉, X₁: 5 {O(1)}
t₆₆₀, X₀: 2 {O(1)}
t₆₆₀, X₁: 4 {O(1)}
t₆₆₁, X₀: 2 {O(1)}
t₆₆₁, X₁: 5 {O(1)}
t₆₆₂, X₀: 2 {O(1)}
t₆₆₂, X₁: 4 {O(1)}
t₆₆₃, X₀: 2 {O(1)}
t₆₆₃, X₁: 5 {O(1)}
t₆₆₄, X₀: 2 {O(1)}
t₆₆₄, X₁: 4 {O(1)}
t₆₆₅, X₀: 2 {O(1)}
t₆₆₅, X₁: 5 {O(1)}
t₆₆₆, X₀: 2 {O(1)}
t₆₆₆, X₁: 4 {O(1)}
t₆₆₇, X₀: 2 {O(1)}
t₆₆₇, X₁: 0 {O(1)}
t₆₆₈, X₀: 2 {O(1)}
t₆₆₈, X₁: 4 {O(1)}
t₆₆₉, X₀: 2 {O(1)}
t₆₆₉, X₁: 6 {O(1)}
t₆₇₀, X₀: 2 {O(1)}
t₆₇₀, X₁: 5 {O(1)}
t₆₇₁, X₀: 2 {O(1)}
t₆₇₁, X₁: 6 {O(1)}
t₆₇₂, X₀: 2 {O(1)}
t₆₇₂, X₁: 5 {O(1)}
t₆₇₃, X₀: 2 {O(1)}
t₆₇₃, X₁: 6 {O(1)}
t₆₇₄, X₀: 2 {O(1)}
t₆₇₄, X₁: 5 {O(1)}
t₆₇₅, X₀: 2 {O(1)}
t₆₇₅, X₁: 6 {O(1)}
t₆₇₆, X₀: 2 {O(1)}
t₆₇₆, X₁: 5 {O(1)}
t₆₇₇, X₀: 2 {O(1)}
t₆₇₇, X₁: 0 {O(1)}
t₆₇₈, X₀: 2 {O(1)}
t₆₇₈, X₁: 4 {O(1)}
t₆₇₉, X₀: 2 {O(1)}
t₆₇₉, X₁: 0 {O(1)}
t₆₈₀, X₀: 2 {O(1)}
t₆₈₀, X₁: 5 {O(1)}
t₆₈₁, X₀: 2 {O(1)}
t₆₈₁, X₁: 0 {O(1)}
t₆₈₂, X₀: 2 {O(1)}
t₆₈₂, X₁: 4 {O(1)}
t₆₈₃, X₀: 2 {O(1)}
t₆₈₃, X₁: 0 {O(1)}
t₆₈₄, X₀: 2 {O(1)}
t₆₈₄, X₁: 5 {O(1)}
t₆₈₅, X₀: 2 {O(1)}
t₆₈₅, X₁: 1 {O(1)}
t₆₈₆, X₀: 2 {O(1)}
t₆₈₆, X₁: 3 {O(1)}
t₆₈₇, X₀: 2 {O(1)}
t₆₈₇, X₁: 1 {O(1)}
t₆₈₈, X₀: 2 {O(1)}
t₆₈₈, X₁: 3 {O(1)}
t₆₈₉, X₀: 2 {O(1)}
t₆₈₉, X₁: 0 {O(1)}
t₆₉₀, X₀: 2 {O(1)}
t₆₉₀, X₁: 4 {O(1)}
t₆₉₁, X₀: 2 {O(1)}
t₆₉₁, X₁: 1 {O(1)}
t₆₉₂, X₀: 2 {O(1)}
t₆₉₂, X₁: 3 {O(1)}
t₆₉₃, X₀: 2 {O(1)}
t₆₉₃, X₁: 1 {O(1)}
t₆₉₄, X₀: 2 {O(1)}
t₆₉₄, X₁: 4 {O(1)}
t₆₉₅, X₀: 2 {O(1)}
t₆₉₅, X₁: 3 {O(1)}
t₆₉₆, X₀: 2 {O(1)}
t₆₉₆, X₁: 1 {O(1)}
t₆₉₇, X₀: 2 {O(1)}
t₆₉₇, X₁: 3 {O(1)}
t₆₉₈, X₀: 2 {O(1)}
t₆₉₈, X₁: 1 {O(1)}
t₆₉₉, X₀: 2 {O(1)}
t₆₉₉, X₁: 3 {O(1)}
t₇₀₀, X₀: 2 {O(1)}
t₇₀₀, X₁: 1 {O(1)}
t₇₀₁, X₀: 2 {O(1)}
t₇₀₁, X₁: 3 {O(1)}
t₇₀₂, X₀: 2 {O(1)}
t₇₀₂, X₁: 1 {O(1)}
t₇₀₃, X₀: 2 {O(1)}
t₇₀₃, X₁: 4 {O(1)}
t₇₀₄, X₀: 2 {O(1)}
t₇₀₄, X₁: 2 {O(1)}
t₇₀₅, X₀: 2 {O(1)}
t₇₀₅, X₁: 4 {O(1)}
t₇₀₆, X₀: 2 {O(1)}
t₇₀₆, X₁: 2 {O(1)}
t₇₀₇, X₀: 2 {O(1)}
t₇₀₇, X₁: 4 {O(1)}
t₇₀₈, X₀: 2 {O(1)}
t₇₀₈, X₁: 2 {O(1)}
t₇₀₉, X₀: 2 {O(1)}
t₇₀₉, X₁: 4 {O(1)}
t₇₁₀, X₀: 2 {O(1)}
t₇₁₀, X₁: 4 {O(1)}
t₇₁₁, X₀: 2 {O(1)}
t₇₁₁, X₁: 1 {O(1)}
t₇₁₂, X₀: 2 {O(1)}
t₇₁₂, X₁: 2 {O(1)}
t₇₁₃, X₀: 2 {O(1)}
t₇₁₃, X₁: 5 {O(1)}
t₇₁₄, X₀: 2 {O(1)}
t₇₁₄, X₁: 3 {O(1)}
t₇₁₅, X₀: 2 {O(1)}
t₇₁₅, X₁: 5 {O(1)}
t₇₁₆, X₀: 2 {O(1)}
t₇₁₆, X₁: 3 {O(1)}
t₇₁₇, X₀: 2 {O(1)}
t₇₁₇, X₁: 5 {O(1)}
t₇₁₈, X₀: 2 {O(1)}
t₇₁₈, X₁: 3 {O(1)}
t₇₁₉, X₀: 2 {O(1)}
t₇₁₉, X₁: 5 {O(1)}
t₇₂₀, X₀: 2 {O(1)}
t₇₂₀, X₁: 3 {O(1)}
t₇₂₁, X₀: 2 {O(1)}
t₇₂₁, X₁: 6 {O(1)}
t₇₂₂, X₀: 2 {O(1)}
t₇₂₂, X₁: 5 {O(1)}
t₇₂₃, X₀: 2 {O(1)}
t₇₂₃, X₁: 6 {O(1)}
t₇₂₄, X₀: 2 {O(1)}
t₇₂₄, X₁: 6 {O(1)}
t₇₂₅, X₀: 2 {O(1)}
t₇₂₅, X₁: 6 {O(1)}
t₇₂₆, X₀: 2 {O(1)}
t₇₂₆, X₁: 5 {O(1)}
t₇₂₇, X₀: 2 {O(1)}
t₇₂₇, X₁: 6 {O(1)}
t₇₂₈, X₀: 2 {O(1)}
t₇₂₈, X₁: 6 {O(1)}
t₇₂₉, X₀: 2 {O(1)}
t₇₂₉, X₁: 5 {O(1)}
t₇₃₀, X₀: 2 {O(1)}
t₇₃₀, X₁: 4 {O(1)}
t₇₃₁, X₀: 2 {O(1)}
t₇₃₁, X₁: 5 {O(1)}
t₇₃₂, X₀: 2 {O(1)}
t₇₃₂, X₁: 2 {O(1)}
t₇₃₃, X₀: 2 {O(1)}
t₇₃₃, X₁: 1 {O(1)}
t₇₃₄, X₀: 2 {O(1)}
t₇₃₄, X₁: 4 {O(1)}
t₇₃₅, X₀: 2 {O(1)}
t₇₃₅, X₁: 5 {O(1)}
t₇₃₆, X₀: 2 {O(1)}
t₇₃₆, X₁: 4 {O(1)}
t₇₃₇, X₀: 2 {O(1)}
t₇₃₇, X₁: 5 {O(1)}
t₇₃₈, X₀: 2 {O(1)}
t₇₃₈, X₁: 4 {O(1)}
t₇₃₉, X₀: 2 {O(1)}
t₇₃₉, X₁: 6 {O(1)}
t₇₄₀, X₀: 2 {O(1)}
t₇₄₀, X₁: 5 {O(1)}
t₇₄₁, X₀: 2 {O(1)}
t₇₄₁, X₁: 6 {O(1)}
t₇₄₂, X₀: 2 {O(1)}
t₇₄₂, X₁: 5 {O(1)}
t₇₄₃, X₀: 2 {O(1)}
t₇₄₃, X₁: 6 {O(1)}
t₇₄₄, X₀: 2 {O(1)}
t₇₄₄, X₁: 5 {O(1)}
t₇₄₅, X₀: 2 {O(1)}
t₇₄₅, X₁: 6 {O(1)}
t₇₄₆, X₀: 2 {O(1)}
t₇₄₆, X₁: 5 {O(1)}
t₇₄₇, X₀: 2 {O(1)}
t₇₄₇, X₁: 7 {O(1)}
t₇₄₈, X₀: 2 {O(1)}
t₇₄₈, X₁: 6 {O(1)}
t₇₄₉, X₀: 2 {O(1)}
t₇₄₉, X₁: 7 {O(1)}
t₇₅₀, X₀: 2 {O(1)}
t₇₅₀, X₁: 6 {O(1)}
t₇₅₁, X₀: 2 {O(1)}
t₇₅₁, X₁: 7 {O(1)}
t₇₅₂, X₀: 2 {O(1)}
t₇₅₂, X₁: 6 {O(1)}
t₇₅₃, X₀: 2 {O(1)}
t₇₅₃, X₁: 7 {O(1)}
t₇₅₄, X₀: 2 {O(1)}
t₇₅₄, X₁: 3 {O(1)}
t₇₅₅, X₀: 2 {O(1)}
t₇₅₅, X₁: 1 {O(1)}
t₇₅₆, X₀: 2 {O(1)}
t₇₅₆, X₁: 6 {O(1)}
t₇₅₇, X₀: 2 {O(1)}
t₇₅₇, X₁: 8 {O(1)}
t₇₅₈, X₀: 2 {O(1)}
t₇₅₈, X₁: 7 {O(1)}
t₇₅₉, X₀: 2 {O(1)}
t₇₅₉, X₁: 8 {O(1)}
t₇₆₀, X₀: 2 {O(1)}
t₇₆₀, X₁: 7 {O(1)}
t₇₆₁, X₀: 2 {O(1)}
t₇₆₁, X₁: 8 {O(1)}
t₇₆₂, X₀: 2 {O(1)}
t₇₆₂, X₁: 7 {O(1)}
t₇₆₃, X₀: 2 {O(1)}
t₇₆₃, X₁: 8 {O(1)}
t₇₆₄, X₀: 2 {O(1)}
t₇₆₄, X₁: 7 {O(1)}
t₇₆₅, X₀: 2 {O(1)}
t₇₆₅, X₁: 9 {O(1)}
t₇₆₆, X₀: 2 {O(1)}
t₇₆₆, X₁: 8 {O(1)}
t₇₆₇, X₀: 2 {O(1)}
t₇₆₇, X₁: 9 {O(1)}
t₇₆₈, X₀: 2 {O(1)}
t₇₆₈, X₁: 8 {O(1)}
t₇₆₉, X₀: 2 {O(1)}
t₇₆₉, X₁: 9 {O(1)}
t₇₇₀, X₀: 2 {O(1)}
t₇₇₀, X₁: 8 {O(1)}
t₇₇₁, X₀: 2 {O(1)}
t₇₇₁, X₁: 9 {O(1)}
t₇₇₂, X₀: 2 {O(1)}
t₇₇₂, X₁: 8 {O(1)}
t₇₇₃, X₀: 2 {O(1)}
t₇₇₃, X₁: 0 {O(1)}
t₇₇₄, X₀: 2 {O(1)}
t₇₇₄, X₁: 3 {O(1)}
t₇₇₅, X₀: 2 {O(1)}
t₇₇₅, X₁: 0 {O(1)}
t₇₇₆, X₀: 2 {O(1)}
t₇₇₆, X₁: 2 {O(1)}
t₇₇₇, X₀: 2 {O(1)}
t₇₇₇, X₁: 1 {O(1)}
t₇₇₈, X₀: 2 {O(1)}
t₇₇₈, X₁: 4 {O(1)}
t₇₇₉, X₀: 2 {O(1)}
t₇₇₉, X₁: 0 {O(1)}
t₇₈₀, X₀: 2 {O(1)}
t₇₈₀, X₁: 3 {O(1)}
t₇₈₁, X₀: 2 {O(1)}
t₇₈₁, X₁: 0 {O(1)}
t₇₈₂, X₀: 2 {O(1)}
t₇₈₂, X₁: 4 {O(1)}
t₇₈₃, X₀: 2 {O(1)}
t₇₈₃, X₁: 1 {O(1)}
t₇₈₄, X₀: 2 {O(1)}
t₇₈₄, X₁: 5 {O(1)}
t₇₈₅, X₀: 2 {O(1)}
t₇₈₅, X₁: 1 {O(1)}
t₇₈₆, X₀: 2 {O(1)}
t₇₈₆, X₁: 6 {O(1)}
t₇₈₇, X₀: 2 {O(1)}
t₇₈₇, X₁: 1 {O(1)}
t₇₈₈, X₀: 2 {O(1)}
t₇₈₈, X₁: 5 {O(1)}
t₇₈₉, X₀: 2 {O(1)}
t₇₈₉, X₁: 1 {O(1)}
t₇₉₀, X₀: 2 {O(1)}
t₇₉₀, X₁: 6 {O(1)}
t₇₉₁, X₀: 2 {O(1)}
t₇₉₁, X₁: 2 {O(1)}
t₇₉₂, X₀: 2 {O(1)}
t₇₉₂, X₁: 7 {O(1)}
t₇₉₃, X₀: 2 {O(1)}
t₇₉₃, X₁: 2 {O(1)}
t₇₉₄, X₀: 2 {O(1)}
t₇₉₄, X₁: 8 {O(1)}
t₇₉₅, X₀: 2 {O(1)}
t₇₉₅, X₁: 2 {O(1)}
t₇₉₆, X₀: 2 {O(1)}
t₇₉₆, X₁: 7 {O(1)}
t₇₉₇, X₀: 2 {O(1)}
t₇₉₇, X₁: 2 {O(1)}
t₇₉₈, X₀: 2 {O(1)}
t₇₉₈, X₁: 3 {O(1)}
t₇₉₉, X₀: 2 {O(1)}
t₇₉₉, X₁: 3 {O(1)}
t₈₀₀, X₀: 2 {O(1)}
t₈₀₀, X₁: 8 {O(1)}
t₈₀₁, X₀: 2 {O(1)}
t₈₀₁, X₁: 16 {O(1)}
t₈₀₂, X₀: 2 {O(1)}
t₈₀₂, X₁: 15 {O(1)}
t₈₀₃, X₀: 2 {O(1)}
t₈₀₃, X₁: 16 {O(1)}
t₈₀₄, X₀: 2 {O(1)}
t₈₀₄, X₁: 15 {O(1)}
t₈₀₅, X₀: 2 {O(1)}
t₈₀₅, X₁: 16 {O(1)}
t₈₀₆, X₀: 2 {O(1)}
t₈₀₆, X₁: 15 {O(1)}
t₈₀₇, X₀: 2 {O(1)}
t₈₀₇, X₁: 16 {O(1)}
t₈₀₈, X₀: 2 {O(1)}
t₈₀₈, X₁: 15 {O(1)}
t₈₀₉, X₀: 2 {O(1)}
t₈₀₉, X₁: 5 {O(1)}
t₈₁₀, X₀: 2 {O(1)}
t₈₁₀, X₁: 3 {O(1)}
t₈₁₁, X₀: 2 {O(1)}
t₈₁₁, X₁: 5 {O(1)}
t₈₁₂, X₀: 2 {O(1)}
t₈₁₂, X₁: 3 {O(1)}
t₈₁₃, X₀: 2 {O(1)}
t₈₁₃, X₁: 5 {O(1)}
t₈₁₄, X₀: 2 {O(1)}
t₈₁₄, X₁: 3 {O(1)}
t₈₁₅, X₀: 2 {O(1)}
t₈₁₅, X₁: 5 {O(1)}
t₈₁₆, X₀: 2 {O(1)}
t₈₁₆, X₁: 3 {O(1)}
t₈₁₇, X₀: 2 {O(1)}
t₈₁₇, X₁: 6 {O(1)}
t₈₁₈, X₀: 2 {O(1)}
t₈₁₈, X₁: 4 {O(1)}
t₈₁₉, X₀: 2 {O(1)}
t₈₁₉, X₁: 6 {O(1)}
t₈₂₀, X₀: 2 {O(1)}
t₈₂₀, X₁: 3 {O(1)}
t₈₂₁, X₀: 2 {O(1)}
t₈₂₁, X₁: 2 {O(1)}
t₈₂₂, X₀: 2 {O(1)}
t₈₂₂, X₁: 4 {O(1)}
t₈₂₃, X₀: 2 {O(1)}
t₈₂₃, X₁: 6 {O(1)}
t₈₂₄, X₀: 2 {O(1)}
t₈₂₄, X₁: 4 {O(1)}
t₈₂₅, X₀: 2 {O(1)}
t₈₂₅, X₁: 6 {O(1)}
t₈₂₆, X₀: 2 {O(1)}
t₈₂₆, X₁: 4 {O(1)}
t₈₂₇, X₀: 2 {O(1)}
t₈₂₇, X₁: 7 {O(1)}
t₈₂₈, X₀: 2 {O(1)}
t₈₂₈, X₁: 5 {O(1)}
t₈₂₉, X₀: 2 {O(1)}
t₈₂₉, X₁: 7 {O(1)}
t₈₃₀, X₀: 2 {O(1)}
t₈₃₀, X₁: 5 {O(1)}
t₈₃₁, X₀: 2 {O(1)}
t₈₃₁, X₁: 7 {O(1)}
t₈₃₂, X₀: 2 {O(1)}
t₈₃₂, X₁: 5 {O(1)}
t₈₃₃, X₀: 2 {O(1)}
t₈₃₃, X₁: 7 {O(1)}
t₈₃₄, X₀: 2 {O(1)}
t₈₃₄, X₁: 5 {O(1)}
t₈₃₅, X₀: 2 {O(1)}
t₈₃₅, X₁: 8 {O(1)}
t₈₃₆, X₀: 2 {O(1)}
t₈₃₆, X₁: 6 {O(1)}
t₈₃₇, X₀: 2 {O(1)}
t₈₃₇, X₁: 8 {O(1)}
t₈₃₈, X₀: 2 {O(1)}
t₈₃₈, X₁: 6 {O(1)}
t₈₃₉, X₀: 2 {O(1)}
t₈₃₉, X₁: 8 {O(1)}
t₈₄₀, X₀: 2 {O(1)}
t₈₄₀, X₁: 8 {O(1)}
t₈₄₁, X₀: 2 {O(1)}
t₈₄₁, X₁: 6 {O(1)}