Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃
Temp_Vars: O, P
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, 3, P, 0, 0, 3, P, 2, X₁₂, X₁₃) :|: P ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, 3, P, 0, 0, 3, P, 2, X₁₂, X₁₃) :|: P ≤ 7 ∧ 5 ≤ P
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂+1, X₂+1, X₄+1, X₄+1, 3, 4, 1, 0, 3, 4, 2, X₁₂, X₁₃)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, 0, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, 0, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 7, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 7, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 3, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 3, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(0, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 0, P, 4, 3, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 6, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 6, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 6, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, P, O, 0, 0, P, O, 2, X₁₂, X₁₃) :|: 1 ≤ X₁₂ ∧ X₄+1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ X₂+1 ≤ X₁₃ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 1 ≤ X₇
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, P, O, 0, 0, P, O, 2, X₁₂, X₁₃) :|: 1 ≤ X₁₂ ∧ X₄+1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ X₂+1 ≤ X₁₃ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 1 ≤ X₇
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 0, 0, P, 4, 2, X₁₂, X₁₃) :|: X₄+2 ≤ X₁₂ ∧ X₂+2 ≤ X₁₃ ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ P ≤ 7 ∧ 1 ≤ P
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 7, X₁₂, X₁₃) :|: X₁₂ ≤ X₄ ∧ X₁₃ ≤ X₂ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₂₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 7, X₁₂, X₁₃) :|: X₁₂ ≤ X₄ ∧ X₁₃ ≤ X₂ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(0, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 0, P, 4, 7, X₁₂, X₁₃) :|: X₁₂ ≤ X₄+1 ∧ X₁₃ ≤ X₂+1 ∧ P ≤ 7 ∧ 1 ≤ P
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 7, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(P, X₂, X₂, X₄, X₄, O, 2, 0, P, O, 2, 4, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(P, X₂, X₂, X₄, X₄, O, 7, 1, P, O, 7, 4, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₇ ≤ 1 ∧ 1 ≤ X₇
Eliminate variables {X₀,X₁,X₃,X₅,X₆,X₈,X₉,X₁₀,X₁₁} that do not contribute to the problem
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l2
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l6
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l5
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l4
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l3
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: O, P
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₅₃: l0(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₅₄: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 0, X₃, X₄) :|: P ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P
t₅₅: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 0, X₃, X₄) :|: P ≤ 7 ∧ 5 ≤ P
t₅₆: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀+1, X₁+1, 1, X₃, X₄)
t₅₇: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, 0, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₅₈: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, 0, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₅₉: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P
t₆₀: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₂: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₃: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₄: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₅: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₆: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₇: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₈: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₉: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 0, X₃, X₄) :|: 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₀+1 ≤ X₄ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₀: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 0, X₃, X₄) :|: 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₀+1 ≤ X₄ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₁: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀+1, X₁+1, 0, X₃, X₄) :|: X₁+2 ≤ X₃ ∧ X₀+2 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₂: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₄ ≤ X₀ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₃: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₄ ≤ X₀ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₄: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀+1, X₁+1, 1, X₃, X₄) :|: X₃ ≤ X₁+1 ∧ X₄ ≤ X₀+1 ∧ P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₅: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₆: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₇: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₈: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 0, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₉: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 1, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
new bound:
3⋅X₀+3⋅X₄+5 {O(n)}
new bound:
3⋅X₁+3⋅X₃+2 {O(n)}
new bound:
3⋅X₁+3⋅X₃+4 {O(n)}
knowledge_propagation leads to new time bound 3⋅X₀+3⋅X₄+6⋅X₁+6⋅X₃+14 {O(n)} for transition t₆₃: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₀+3⋅X₄+6⋅X₁+6⋅X₃+14 {O(n)} for transition t₆₄: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
knowledge_propagation leads to new time bound 3⋅X₀+3⋅X₄+6⋅X₁+6⋅X₃+14 {O(n)} for transition t₆₅: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
knowledge_propagation leads to new time bound 18⋅X₁+18⋅X₃+9⋅X₀+9⋅X₄+42 {O(n)} for transition t₆₆: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
knowledge_propagation leads to new time bound 18⋅X₁+18⋅X₃+9⋅X₀+9⋅X₄+42 {O(n)} for transition t₆₇: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
knowledge_propagation leads to new time bound 18⋅X₁+18⋅X₃+9⋅X₀+9⋅X₄+42 {O(n)} for transition t₆₈: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
knowledge_propagation leads to new time bound 27⋅X₀+27⋅X₄+54⋅X₁+54⋅X₃+126 {O(n)} for transition t₇₈: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 0, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
knowledge_propagation leads to new time bound 27⋅X₀+27⋅X₄+54⋅X₁+54⋅X₃+126 {O(n)} for transition t₇₉: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 1, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
Overall timebound:186⋅X₁+186⋅X₃+93⋅X₀+93⋅X₄+447 {O(n)}
t₅₃: 1 {O(1)}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 1 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: 3⋅X₀+3⋅X₄+6⋅X₁+6⋅X₃+14 {O(n)}
t₆₄: 3⋅X₀+3⋅X₄+6⋅X₁+6⋅X₃+14 {O(n)}
t₆₅: 3⋅X₀+3⋅X₄+6⋅X₁+6⋅X₃+14 {O(n)}
t₆₆: 18⋅X₁+18⋅X₃+9⋅X₀+9⋅X₄+42 {O(n)}
t₆₇: 18⋅X₁+18⋅X₃+9⋅X₀+9⋅X₄+42 {O(n)}
t₆₈: 18⋅X₁+18⋅X₃+9⋅X₀+9⋅X₄+42 {O(n)}
t₆₉: 3⋅X₀+3⋅X₄+5 {O(n)}
t₇₀: 3⋅X₁+3⋅X₃+2 {O(n)}
t₇₁: 3⋅X₁+3⋅X₃+4 {O(n)}
t₇₂: 1 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 1 {O(1)}
t₇₅: 1 {O(1)}
t₇₆: 1 {O(1)}
t₇₇: 1 {O(1)}
t₇₈: 27⋅X₀+27⋅X₄+54⋅X₁+54⋅X₃+126 {O(n)}
t₇₉: 27⋅X₀+27⋅X₄+54⋅X₁+54⋅X₃+126 {O(n)}
Overall costbound: 186⋅X₁+186⋅X₃+93⋅X₀+93⋅X₄+447 {O(n)}
t₅₃: 1 {O(1)}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 1 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: 3⋅X₀+3⋅X₄+6⋅X₁+6⋅X₃+14 {O(n)}
t₆₄: 3⋅X₀+3⋅X₄+6⋅X₁+6⋅X₃+14 {O(n)}
t₆₅: 3⋅X₀+3⋅X₄+6⋅X₁+6⋅X₃+14 {O(n)}
t₆₆: 18⋅X₁+18⋅X₃+9⋅X₀+9⋅X₄+42 {O(n)}
t₆₇: 18⋅X₁+18⋅X₃+9⋅X₀+9⋅X₄+42 {O(n)}
t₆₈: 18⋅X₁+18⋅X₃+9⋅X₀+9⋅X₄+42 {O(n)}
t₆₉: 3⋅X₀+3⋅X₄+5 {O(n)}
t₇₀: 3⋅X₁+3⋅X₃+2 {O(n)}
t₇₁: 3⋅X₁+3⋅X₃+4 {O(n)}
t₇₂: 1 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 1 {O(1)}
t₇₅: 1 {O(1)}
t₇₆: 1 {O(1)}
t₇₇: 1 {O(1)}
t₇₈: 27⋅X₀+27⋅X₄+54⋅X₁+54⋅X₃+126 {O(n)}
t₇₉: 27⋅X₀+27⋅X₄+54⋅X₁+54⋅X₃+126 {O(n)}
t₅₃, X₀: X₀ {O(n)}
t₅₃, X₁: X₁ {O(n)}
t₅₃, X₂: X₂ {O(n)}
t₅₃, X₃: X₃ {O(n)}
t₅₃, X₄: X₄ {O(n)}
t₅₄, X₀: X₀ {O(n)}
t₅₄, X₁: X₁ {O(n)}
t₅₄, X₂: 0 {O(1)}
t₅₄, X₃: X₃ {O(n)}
t₅₄, X₄: X₄ {O(n)}
t₅₅, X₀: X₀ {O(n)}
t₅₅, X₁: X₁ {O(n)}
t₅₅, X₂: 0 {O(1)}
t₅₅, X₃: X₃ {O(n)}
t₅₅, X₄: X₄ {O(n)}
t₅₆, X₀: X₀+1 {O(n)}
t₅₆, X₁: X₁+1 {O(n)}
t₅₆, X₂: 1 {O(1)}
t₅₆, X₃: X₃ {O(n)}
t₅₆, X₄: X₄ {O(n)}
t₅₇, X₀: X₀ {O(n)}
t₅₇, X₁: X₁ {O(n)}
t₅₇, X₂: 0 {O(1)}
t₅₇, X₃: X₃ {O(n)}
t₅₇, X₄: X₄ {O(n)}
t₅₈, X₀: X₀ {O(n)}
t₅₈, X₁: X₁ {O(n)}
t₅₈, X₂: 0 {O(1)}
t₅₈, X₃: X₃ {O(n)}
t₅₈, X₄: X₄ {O(n)}
t₅₉, X₀: X₀+1 {O(n)}
t₅₉, X₁: X₁+1 {O(n)}
t₅₉, X₂: 1 {O(1)}
t₅₉, X₃: X₃ {O(n)}
t₅₉, X₄: X₄ {O(n)}
t₆₀, X₀: 36⋅X₄+48⋅X₀+81⋅X₁+81⋅X₃+184 {O(n)}
t₆₀, X₁: 36⋅X₀+36⋅X₄+81⋅X₃+93⋅X₁+184 {O(n)}
t₆₀, X₂: 1 {O(1)}
t₆₀, X₃: 12⋅X₃ {O(n)}
t₆₀, X₄: 12⋅X₄ {O(n)}
t₆₁, X₀: 36⋅X₄+48⋅X₀+81⋅X₁+81⋅X₃+184 {O(n)}
t₆₁, X₁: 36⋅X₀+36⋅X₄+81⋅X₃+93⋅X₁+184 {O(n)}
t₆₁, X₂: 1 {O(1)}
t₆₁, X₃: 12⋅X₃ {O(n)}
t₆₁, X₄: 12⋅X₄ {O(n)}
t₆₂, X₀: 36⋅X₄+48⋅X₀+81⋅X₁+81⋅X₃+190 {O(n)}
t₆₂, X₁: 36⋅X₀+36⋅X₄+81⋅X₃+93⋅X₁+190 {O(n)}
t₆₂, X₂: 1 {O(1)}
t₆₂, X₃: 12⋅X₃ {O(n)}
t₆₂, X₄: 12⋅X₄ {O(n)}
t₆₃, X₀: 12⋅X₄+15⋅X₀+27⋅X₁+27⋅X₃+61 {O(n)}
t₆₃, X₁: 12⋅X₀+12⋅X₄+27⋅X₃+30⋅X₁+61 {O(n)}
t₆₃, X₂: 1 {O(1)}
t₆₃, X₃: 3⋅X₃ {O(n)}
t₆₃, X₄: 3⋅X₄ {O(n)}
t₆₄, X₀: 12⋅X₄+15⋅X₀+27⋅X₁+27⋅X₃+61 {O(n)}
t₆₄, X₁: 12⋅X₀+12⋅X₄+27⋅X₃+30⋅X₁+61 {O(n)}
t₆₄, X₂: 1 {O(1)}
t₆₄, X₃: 3⋅X₃ {O(n)}
t₆₄, X₄: 3⋅X₄ {O(n)}
t₆₅, X₀: 12⋅X₄+15⋅X₀+27⋅X₁+27⋅X₃+61 {O(n)}
t₆₅, X₁: 12⋅X₀+12⋅X₄+27⋅X₃+30⋅X₁+61 {O(n)}
t₆₅, X₂: 1 {O(1)}
t₆₅, X₃: 3⋅X₃ {O(n)}
t₆₅, X₄: 3⋅X₄ {O(n)}
t₆₆, X₀: 12⋅X₄+15⋅X₀+27⋅X₁+27⋅X₃+61 {O(n)}
t₆₆, X₁: 12⋅X₀+12⋅X₄+27⋅X₃+30⋅X₁+61 {O(n)}
t₆₆, X₂: 1 {O(1)}
t₆₆, X₃: 3⋅X₃ {O(n)}
t₆₆, X₄: 3⋅X₄ {O(n)}
t₆₇, X₀: 12⋅X₄+15⋅X₀+27⋅X₁+27⋅X₃+61 {O(n)}
t₆₇, X₁: 12⋅X₀+12⋅X₄+27⋅X₃+30⋅X₁+61 {O(n)}
t₆₇, X₂: 1 {O(1)}
t₆₇, X₃: 3⋅X₃ {O(n)}
t₆₇, X₄: 3⋅X₄ {O(n)}
t₆₈, X₀: 12⋅X₄+15⋅X₀+27⋅X₁+27⋅X₃+61 {O(n)}
t₆₈, X₁: 12⋅X₀+12⋅X₄+27⋅X₃+30⋅X₁+61 {O(n)}
t₆₈, X₂: 1 {O(1)}
t₆₈, X₃: 3⋅X₃ {O(n)}
t₆₈, X₄: 3⋅X₄ {O(n)}
t₆₉, X₀: 12⋅X₄+15⋅X₀+27⋅X₁+27⋅X₃+61 {O(n)}
t₆₉, X₁: 12⋅X₀+12⋅X₄+27⋅X₃+30⋅X₁+61 {O(n)}
t₆₉, X₂: 0 {O(1)}
t₆₉, X₃: 3⋅X₃ {O(n)}
t₆₉, X₄: 3⋅X₄ {O(n)}
t₇₀, X₀: 12⋅X₄+15⋅X₀+27⋅X₁+27⋅X₃+61 {O(n)}
t₇₀, X₁: 12⋅X₀+12⋅X₄+27⋅X₃+30⋅X₁+61 {O(n)}
t₇₀, X₂: 0 {O(1)}
t₇₀, X₃: 3⋅X₃ {O(n)}
t₇₀, X₄: 3⋅X₄ {O(n)}
t₇₁, X₀: 12⋅X₄+15⋅X₀+27⋅X₁+27⋅X₃+61 {O(n)}
t₇₁, X₁: 12⋅X₀+12⋅X₄+27⋅X₃+30⋅X₁+61 {O(n)}
t₇₁, X₂: 0 {O(1)}
t₇₁, X₃: 3⋅X₃ {O(n)}
t₇₁, X₄: 3⋅X₄ {O(n)}
t₇₂, X₀: 24⋅X₄+30⋅X₀+54⋅X₁+54⋅X₃+122 {O(n)}
t₇₂, X₁: 24⋅X₀+24⋅X₄+54⋅X₃+60⋅X₁+122 {O(n)}
t₇₂, X₂: 1 {O(1)}
t₇₂, X₃: 6⋅X₃ {O(n)}
t₇₂, X₄: 6⋅X₄ {O(n)}
t₇₃, X₀: 24⋅X₄+30⋅X₀+54⋅X₁+54⋅X₃+122 {O(n)}
t₇₃, X₁: 24⋅X₀+24⋅X₄+54⋅X₃+60⋅X₁+122 {O(n)}
t₇₃, X₂: 1 {O(1)}
t₇₃, X₃: 6⋅X₃ {O(n)}
t₇₃, X₄: 6⋅X₄ {O(n)}
t₇₄, X₀: 24⋅X₄+30⋅X₀+54⋅X₁+54⋅X₃+124 {O(n)}
t₇₄, X₁: 24⋅X₀+24⋅X₄+54⋅X₃+60⋅X₁+124 {O(n)}
t₇₄, X₂: 1 {O(1)}
t₇₄, X₃: 6⋅X₃ {O(n)}
t₇₄, X₄: 6⋅X₄ {O(n)}
t₇₅, X₀: 24⋅X₄+30⋅X₀+54⋅X₁+54⋅X₃+122 {O(n)}
t₇₅, X₁: 24⋅X₀+24⋅X₄+54⋅X₃+60⋅X₁+122 {O(n)}
t₇₅, X₂: 1 {O(1)}
t₇₅, X₃: 6⋅X₃ {O(n)}
t₇₅, X₄: 6⋅X₄ {O(n)}
t₇₆, X₀: 24⋅X₄+30⋅X₀+54⋅X₁+54⋅X₃+122 {O(n)}
t₇₆, X₁: 24⋅X₀+24⋅X₄+54⋅X₃+60⋅X₁+122 {O(n)}
t₇₆, X₂: 1 {O(1)}
t₇₆, X₃: 6⋅X₃ {O(n)}
t₇₆, X₄: 6⋅X₄ {O(n)}
t₇₇, X₀: 24⋅X₄+30⋅X₀+54⋅X₁+54⋅X₃+124 {O(n)}
t₇₇, X₁: 24⋅X₀+24⋅X₄+54⋅X₃+60⋅X₁+124 {O(n)}
t₇₇, X₂: 1 {O(1)}
t₇₇, X₃: 6⋅X₃ {O(n)}
t₇₇, X₄: 6⋅X₄ {O(n)}
t₇₈, X₀: 12⋅X₄+15⋅X₀+27⋅X₁+27⋅X₃+61 {O(n)}
t₇₈, X₁: 12⋅X₀+12⋅X₄+27⋅X₃+30⋅X₁+61 {O(n)}
t₇₈, X₂: 0 {O(1)}
t₇₈, X₃: 3⋅X₃ {O(n)}
t₇₈, X₄: 3⋅X₄ {O(n)}
t₇₉, X₀: 12⋅X₄+15⋅X₀+27⋅X₁+27⋅X₃+61 {O(n)}
t₇₉, X₁: 12⋅X₀+12⋅X₄+27⋅X₃+30⋅X₁+61 {O(n)}
t₇₉, X₂: 1 {O(1)}
t₇₉, X₃: 3⋅X₃ {O(n)}
t₇₉, X₄: 3⋅X₄ {O(n)}