Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₃+1, X₃, X₄, X₅, X₆, X₇)
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₃
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇) :|: X₃ ≤ X₇
t₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, 1, X₄, X₅, X₆, X₇)
t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₄+1, X₁, X₂, X₃, X₄, X₅, 1, X₇) :|: X₄+1 ≤ X₇
t₁₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₄+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄+1
t₁₆: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: X₀ < X₆
t₁₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇)
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₅+1, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₅
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₅ ≤ X₃
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇)

Preprocessing

Found invariant 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂ for location l11

Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l6

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2+X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l19

Found invariant 1 ≤ X₃ for location l12

Found invariant 1+X₇ ≤ X₃ ∧ 1 ≤ X₃ for location l17

Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l20

Found invariant 1+X₇ ≤ X₃ ∧ 1 ≤ X₃ for location l21

Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃ for location l8

Found invariant 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₃ for location l10

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l18

Found invariant 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂ for location l9

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₃+1, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₃
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂
t₁₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₃ ∧ 1 ≤ X₃
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇) :|: X₃ ≤ X₇ ∧ 1 ≤ X₃
t₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, 1, X₄, X₅, X₆, X₇)
t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₇ ≤ X₃ ∧ 1 ≤ X₃
t₁₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₄+1, X₁, X₂, X₃, X₄, X₅, 1, X₇) :|: X₄+1 ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₄+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄+1 ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₆: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: X₀ < X₆ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2+X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₀ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2+X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₅+1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₅ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂

Solv. Size Bound: t₁₁: l8→l18 for X₀

Solv. Size Bound: t₁₁: l8→l18 for X₁

Solv. Size Bound: t₁₁: l8→l18 for X₂

Solv. Size Bound: t₁₁: l8→l18 for X₃

Solv. Size Bound: t₁₁: l8→l18 for X₄

cycle: [t₁₁: l8→l18; t₁₄: l18→l6; t₁₈: l6→l7; t₁₉: l7→l5; t₂₀: l5→l8]
loop: (X₅ ≤ X₃ ∧ X₇ < X₃+1,(X₃,X₄) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₃+X₅+2 {O(n)}

Solv. Size Bound - Lifting for t₁₁: l8→l18 and X₄: inf {Infinity}

Solv. Size Bound: t₁₄: l18→l6 for X₀

Solv. Size Bound: t₁₄: l18→l6 for X₁

Solv. Size Bound: t₁₄: l18→l6 for X₂

Solv. Size Bound: t₁₄: l18→l6 for X₃

Solv. Size Bound: t₁₄: l18→l6 for X₄

cycle: [t₁₁: l8→l18; t₂₀: l5→l8; t₁₉: l7→l5; t₁₈: l6→l7; t₁₄: l18→l6]
loop: (X₇ < X₄+1 ∧ X₅ ≤ X₃,(X₃,X₄) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: 16⋅X₃+8⋅X₁+8⋅X₅+9 {O(n)}

Solv. Size Bound - Lifting for t₁₄: l18→l6 and X₄: inf {Infinity}

Solv. Size Bound: t₁₈: l6→l7 for X₀

Solv. Size Bound: t₁₈: l6→l7 for X₁

Solv. Size Bound: t₁₈: l6→l7 for X₂

Solv. Size Bound: t₁₈: l6→l7 for X₃

Solv. Size Bound: t₁₈: l6→l7 for X₄

cycle: [t₁₄: l18→l6; t₁₁: l8→l18; t₂₀: l5→l8; t₁₉: l7→l5; t₁₈: l6→l7]
loop: (X₇ < X₄+1 ∧ X₅ ≤ X₃,(X₃,X₄) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₃+X₅+2 {O(n)}

Solv. Size Bound - Lifting for t₁₈: l6→l7 and X₄: inf {Infinity}

Solv. Size Bound: t₁₉: l7→l5 for X₀

Solv. Size Bound: t₁₉: l7→l5 for X₁

Solv. Size Bound: t₁₉: l7→l5 for X₂

Solv. Size Bound: t₁₉: l7→l5 for X₃

Solv. Size Bound: t₁₉: l7→l5 for X₄

cycle: [t₁₈: l6→l7; t₁₄: l18→l6; t₁₁: l8→l18; t₂₀: l5→l8; t₁₉: l7→l5]
loop: (X₇ < X₄+1 ∧ X₅ ≤ X₃,(X₃,X₄) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₃+X₅+2 {O(n)}

Solv. Size Bound - Lifting for t₁₉: l7→l5 and X₄: inf {Infinity}

Solv. Size Bound: t₂₀: l5→l8 for X₀

Solv. Size Bound: t₂₀: l5→l8 for X₁

Solv. Size Bound: t₂₀: l5→l8 for X₂

Solv. Size Bound: t₂₀: l5→l8 for X₃

Solv. Size Bound: t₂₀: l5→l8 for X₄

cycle: [t₁₉: l7→l5; t₁₈: l6→l7; t₁₄: l18→l6; t₁₁: l8→l18; t₂₀: l5→l8]
loop: (X₇ < X₄+1 ∧ X₁ ≤ X₃,(X₃,X₄) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₁+X₃+2 {O(n)}

Solv. Size Bound - Lifting for t₂₀: l5→l8 and X₄: inf {Infinity}

MPRF for transition t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, 1, X₆, X₇) :|: X₃ ≤ X₇ ∧ 1 ≤ X₃ of depth 1:

new bound:

X₇+2 {O(n)}

MPRF for transition t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃ of depth 1:

new bound:

X₇+2 {O(n)}

MPRF for transition t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₃+1, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₃ of depth 1:

new bound:

2⋅X₇+1 {O(n)}

MPRF for transition t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂ of depth 1:

new bound:

X₇+2 {O(n)}

MPRF for transition t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₂ of depth 1:

new bound:

X₇+2 {O(n)}

Solv. Size Bound: t₁₄: l18→l6 for X₀

Solv. Size Bound: t₁₄: l18→l6 for X₁

Solv. Size Bound - Lifting for t₁₄: l18→l6 and X₄: 8⋅X₇+8 {O(n)}

Solv. Size Bound: t₁₈: l6→l7 for X₀

Solv. Size Bound: t₁₈: l6→l7 for X₁

Solv. Size Bound - Lifting for t₁₈: l6→l7 and X₄: 8⋅X₇+8 {O(n)}

Solv. Size Bound: t₁₉: l7→l5 for X₀

Solv. Size Bound: t₁₉: l7→l5 for X₁

Solv. Size Bound - Lifting for t₁₉: l7→l5 and X₄: 8⋅X₇+8 {O(n)}

Solv. Size Bound: t₂₀: l5→l8 for X₀

Solv. Size Bound: t₂₀: l5→l8 for X₁

Solv. Size Bound - Lifting for t₂₀: l5→l8 and X₄: 8⋅X₇+8 {O(n)}

MPRF for transition t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₅ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃ of depth 1:

new bound:

2⋅X₇⋅X₇+6⋅X₇+5 {O(n^2)}

MPRF for transition t₁₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₄+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄+1 ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

X₇⋅X₇+3⋅X₇ {O(n^2)}

MPRF for transition t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₅+1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₇⋅X₇+6⋅X₇ {O(n^2)}

MPRF for transition t₁₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₇⋅X₇+6⋅X₇ {O(n^2)}

MPRF for transition t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₇) :|: X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₇⋅X₇+6⋅X₇+5 {O(n^2)}

MPRF for transition t₁₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₄+1, X₁, X₂, X₃, X₄, X₅, 1, X₇) :|: X₄+1 ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+24⋅X₇+6 {O(n^3)}

MPRF for transition t₁₆: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: X₀ < X₆ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2+X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:

new bound:

6⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇+28⋅X₇+11 {O(n^3)}

MPRF for transition t₁₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₀ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2+X₄ ∧ X₆ ≤ 1+X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:

new bound:

6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇ {O(n^4)}

MPRF for transition t₁₇: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:

new bound:

6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇ {O(n^4)}

Chain transitions t₁₂: l8→l10 and t₂₁: l10→l11 to t₂₅₄: l8→l11

Chain transitions t₂₅₄: l8→l11 and t₂₂: l11→l9 to t₂₅₅: l8→l9

Chain transitions t₂₃: l9→l12 and t₉: l12→l8 to t₂₅₆: l9→l8

Chain transitions t₈: l16→l12 and t₉: l12→l8 to t₂₅₇: l16→l8

Chain transitions t₈: l16→l12 and t₁₀: l12→l17 to t₂₅₈: l16→l17

Chain transitions t₂₃: l9→l12 and t₁₀: l12→l17 to t₂₅₉: l9→l17

Chain transitions t₁₁: l8→l18 and t₁₄: l18→l6 to t₂₆₀: l8→l6

Chain transitions t₁₆: l19→l18 and t₁₄: l18→l6 to t₂₆₁: l19→l6

Chain transitions t₁₆: l19→l18 and t₁₃: l18→l19 to t₂₆₂: l19→l19

Chain transitions t₁₁: l8→l18 and t₁₃: l18→l19 to t₂₆₃: l8→l19

Chain transitions t₁₅: l19→l20 and t₁₇: l20→l19 to t₂₆₄: l19→l19

Chain transitions t₁₉: l7→l5 and t₂₀: l5→l8 to t₂₆₅: l7→l8

Chain transitions t₂₆₀: l8→l6 and t₁₈: l6→l7 to t₂₆₆: l8→l7

Chain transitions t₂₆₁: l19→l6 and t₁₈: l6→l7 to t₂₆₇: l19→l7

Chain transitions t₂₆₆: l8→l7 and t₂₆₅: l7→l8 to t₂₆₈: l8→l8

Chain transitions t₂₆₇: l19→l7 and t₂₆₅: l7→l8 to t₂₆₉: l19→l8

Chain transitions t₂₆₇: l19→l7 and t₁₉: l7→l5 to t₂₇₀: l19→l5

Chain transitions t₂₆₆: l8→l7 and t₁₉: l7→l5 to t₂₇₁: l8→l5

Chain transitions t₂₅₅: l8→l9 and t₂₅₆: l9→l8 to t₂₇₂: l8→l8

Chain transitions t₂₅₅: l8→l9 and t₂₅₉: l9→l17 to t₂₇₃: l8→l17

Chain transitions t₂₅₅: l8→l9 and t₂₃: l9→l12 to t₂₇₄: l8→l12

Analysing control-flow refined program

Eliminate variables {X₁,X₂} that do not contribute to the problem

Found invariant 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l11

Found invariant X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l19

Found invariant 1 ≤ X₁ for location l12

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₁ for location l17

Found invariant X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l20

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₁ for location l21

Found invariant X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l8

Found invariant 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l10

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l18

Found invariant 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l9

Solv. Size Bound: t₃₃₅: l19→l8 for X₀

Solv. Size Bound: t₃₃₅: l19→l8 for X₁

Solv. Size Bound: t₃₃₅: l19→l8 for X₂

cycle: [t₃₃₅: l19→l8; t₃₄₄: l8→l19]
loop: (X₀ < X₄ ∧ X₅ < X₀+1 ∧ 1+X₃ ≤ X₁ ∧ X₁+1 ≤ X₅,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: X₁+X₃+1 {O(n)}

Solv. Size Bound - Lifting for t₃₃₅: l19→l8 and X₂: inf {Infinity}

Solv. Size Bound: t₃₄₈: l8→l8 for X₀

Solv. Size Bound: t₃₄₈: l8→l8 for X₁

Solv. Size Bound: t₃₄₈: l8→l8 for X₂

cycle: [t₃₄₈: l8→l8]
loop: (X₃ ≤ X₁ ∧ X₅ < X₁+1,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: X₁+X₃+2 {O(n)}

Solv. Size Bound - Lifting for t₃₄₈: l8→l8 and X₂: inf {Infinity}

MPRF for transition t₃₄₉: l8(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l8(X₀, 1+X₁, X₂, 1, X₄, X₅) :|: X₁ < X₃ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅+2 {O(n)}

Solv. Size Bound: t₃₃₅: l19→l8 for X₀

Solv. Size Bound - Lifting for t₃₃₅: l19→l8 and X₂: 4⋅X₅+14 {O(n)}

MPRF for transition t₃₃₅: l19(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l8(1+X₀, X₁, X₀, 1+X₃, X₄, X₅) :|: X₀ < X₄ ∧ X₅ < X₀+1 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₅⋅X₅+4⋅X₅+3 {O(n^2)}

MPRF for transition t₃₄₄: l8(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l19(X₁+1, X₁, X₁, X₃, 1, X₅) :|: X₃ ≤ X₁ ∧ X₁+1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅⋅X₅+7⋅X₅+13 {O(n^2)}

MPRF for transition t₃₄₈: l8(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l8(1+X₁, X₁, X₁, 1+X₃, X₄, X₅) :|: X₃ ≤ X₁ ∧ X₅ < X₁+1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅⋅X₅+7⋅X₅+13 {O(n^2)}

MPRF for transition t₃₂₉: l19(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l19(X₀+1, X₁, X₀, X₃, 1, X₅) :|: X₀ < X₄ ∧ X₀+1 ≤ X₅ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

3⋅X₅⋅X₅⋅X₅+32⋅X₅⋅X₅+116⋅X₅+143 {O(n^3)}

MPRF for transition t₃₃₀: l19(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l19(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: X₄ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

18⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+384⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3455⋅X₅⋅X₅⋅X₅⋅X₅+16804⋅X₅⋅X₅⋅X₅+46653⋅X₅⋅X₅+70186⋅X₅+44759 {O(n^6)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₁₂: l8→l10

Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l11

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 2 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l18___2

Found invariant 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2 ∧ X₆ ≤ 1+X₅ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l19___13

Found invariant 1+X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 2 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 3 ≤ X₀ for location n_l6___9

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l18___17

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 2 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l6___1

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l19___16

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l8___3

Found invariant 2 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 2+X₄ ∧ X₆ ≤ 1+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l19___11

Found invariant 1+X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 2 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 3 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l8___6

Found invariant 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l20___12

Found invariant 1 ≤ X₃ for location l12

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l5___4

Found invariant 1+X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 2 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___8

Found invariant 1+X₇ ≤ X₃ ∧ 1 ≤ X₃ for location l17

Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l20___14

Found invariant 1+X₇ ≤ X₃ ∧ 1 ≤ X₃ for location l21

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃ for location l8

Found invariant 1+X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 2 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 5 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l5___7

Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l9

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l7___5

Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₁ ≤ 1+X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l10

Found invariant X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₀ for location n_l6___15

Found invariant 2 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ 1+X₄ ∧ X₆ ≤ 1+X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₃ ≤ X₆ ∧ 5 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l18___10

Solv. Size Bound: t₅₆₂: n_l18___10→n_l6___9 for X₀

Solv. Size Bound: t₅₆₂: n_l18___10→n_l6___9 for X₁

Solv. Size Bound: t₅₆₂: n_l18___10→n_l6___9 for X₄

Solv. Size Bound: t₅₆₂: n_l18___10→n_l6___9 for X₅

Solv. Size Bound: t₅₆₂: n_l18___10→n_l6___9 for X₆

Solv. Size Bound: t₅₆₂: n_l18___10→n_l6___9 for X₇

cycle: [t₅₆₆: n_l19___11→n_l18___10; t₅₇₀: n_l20___12→n_l19___11; t₅₆₈: n_l19___13→n_l20___12; t₅₇₁: n_l20___14→n_l19___13; t₅₆₉: n_l19___16→n_l20___14; t₅₆₃: n_l18___17→n_l19___16; t₅₇₉: l8→n_l18___17; t₉: l12→l8; t₂₃: l9→l12; t₂₂: l11→l9; t₂₁: l10→l11; t₅₉₇: n_l8___6→l10; t₅₇₃: n_l5___7→n_l8___6; t₅₇₈: n_l7___8→n_l5___7; t₅₇₆: n_l6___9→n_l7___8; t₅₆₂: n_l18___10→n_l6___9]
loop: (X₇ < 1+X₄ ∧ 0 ≤ 0 ∧ 2 ≤ X₆ ∧ 1+X₄ < X₆ ∧ 0 ≤ 0 ∧ 2 ≤ X₆ ∧ 0 ≤ 1 ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ X₆ ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₆ ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ 0 ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ 0 ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₇ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₃ ∧ X₃ ≤ X₇ ∧ X₂ < 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₁ ≤ 2 ∧ X₄ ≤ X₃ ∧ X₁ ≤ 2 ∧ X₄ ≤ X₇ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 < 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0,(X₄,X₇) -> (X₄,X₄)
overappr. closed-form: 2⋅X₄ {O(n)}
runtime bound: X₂+2 {O(n)}

Solv. Size Bound - Lifting for t₅₆₂: n_l18___10→n_l6___9 and X₇: inf {Infinity}

Solv. Size Bound: t₅₆₃: n_l18___17→n_l19___16 for X₁

Solv. Size Bound: t₅₆₃: n_l18___17→n_l19___16 for X₅

Solv. Size Bound: t₅₆₃: n_l18___17→n_l19___16 for X₇

cycle: [t₅₈₁: n_l8___6→n_l18___17; t₅₇₃: n_l5___7→n_l8___6; t₅₇₈: n_l7___8→n_l5___7; t₅₇₆: n_l6___9→n_l7___8; t₅₆₂: n_l18___10→n_l6___9; t₅₆₆: n_l19___11→n_l18___10; t₅₇₀: n_l20___12→n_l19___11; t₅₆₈: n_l19___13→n_l20___12; t₅₇₁: n_l20___14→n_l19___13; t₅₆₉: n_l19___16→n_l20___14; t₅₆₃: n_l18___17→n_l19___16]
loop: (X₄ ≤ X₃ ∧ 1+X₄ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₁ ≤ X₅+1 ∧ X₄ ≤ X₃ ∧ X₁ ≤ X₅+1 ∧ X₄ ≤ X₇ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 < 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < 1 ∧ 0 ≤ 0 ∧ 1 ≤ 0 ∧ X₄ < 0 ∧ 0 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 0 ≤ 0 ∧ 1 ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 ≤ X₄ ∧ 2 ≤ 0 ∧ 2 ≤ X₄ ∧ 2 ≤ X₄ ∧ 0 ≤ 0,(X₄,X₇) -> (X₄,X₄)
overappr. closed-form: 2⋅X₄ {O(n)}
runtime bound: 1 {O(1)}

Solv. Size Bound - Lifting for t₅₆₃: n_l18___17→n_l19___16 and X₇: inf {Infinity}

Solv. Size Bound: t₅₇₀: n_l20___12→n_l19___11 for X₀

Solv. Size Bound: t₅₇₀: n_l20___12→n_l19___11 for X₁

Solv. Size Bound: t₅₇₀: n_l20___12→n_l19___11 for X₄

cycle: [t₅₆₈: n_l19___13→n_l20___12; t₅₇₁: n_l20___14→n_l19___13; t₅₆₉: n_l19___16→n_l20___14; t₅₆₃: n_l18___17→n_l19___16; t₅₇₉: l8→n_l18___17; t₉: l12→l8; t₂₃: l9→l12; t₂₂: l11→l9; t₂₁: l10→l11; t₅₉₇: n_l8___6→l10; t₅₇₃: n_l5___7→n_l8___6; t₅₇₈: n_l7___8→n_l5___7; t₅₇₆: n_l6___9→n_l7___8; t₅₆₂: n_l18___10→n_l6___9; t₅₆₆: n_l19___11→n_l18___10; t₅₇₀: n_l20___12→n_l19___11]
loop: (2 ≤ X₆ ∧ X₀ ≤ X₄+1 ∧ X₀ ≤ X₄+1 ∧ 0 ≤ 0 ∧ X₆+1 ≤ X₀ ∧ X₆+1 ≤ X₀ ∧ 1 ≤ X₆ ∧ X₆+1 ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₆ ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2+X₆ ≤ X₀ ∧ 1+X₆ ≤ 0 ∧ 2+X₆ ≤ X₀ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ 0 ∧ X₀ ≤ X₃+1 ∧ X₀ ≤ X₇ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₃ ∧ X₃ ≤ X₇ ∧ X₂ < 1 ∧ X₀ ≤ X₃+1 ∧ X₀ ≤ X₇+1 ∧ X₁ ≤ 2 ∧ X₀ ≤ X₃+1 ∧ X₁ ≤ 2 ∧ X₀ ≤ X₇+1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 < 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < 1 ∧ 0 ≤ 0 ∧ 1 ≤ 0 ∧ X₀ < 1 ∧ 0 ≤ 0,(X₀,X₄) -> (X₀,X₀)
overappr. closed-form: 2⋅X₀ {O(n)}
runtime bound: 2 {O(1)}

Solv. Size Bound - Lifting for t₅₇₀: n_l20___12→n_l19___11 and X₄: inf {Infinity}

Solv. Size Bound: t₅₇₃: n_l5___7→n_l8___6 for X₀

Solv. Size Bound: t₅₇₃: n_l5___7→n_l8___6 for X₁

Solv. Size Bound: t₅₇₃: n_l5___7→n_l8___6 for X₄

cycle: [t₅₇₈: n_l7___8→n_l5___7; t₅₇₆: n_l6___9→n_l7___8; t₅₆₂: n_l18___10→n_l6___9; t₅₆₆: n_l19___11→n_l18___10; t₅₇₀: n_l20___12→n_l19___11; t₅₆₈: n_l19___13→n_l20___12; t₅₇₁: n_l20___14→n_l19___13; t₅₆₉: n_l19___16→n_l20___14; t₅₆₃: n_l18___17→n_l19___16; t₅₈₁: n_l8___6→n_l18___17; t₅₇₃: n_l5___7→n_l8___6]
loop: (X₀ ≤ X₄+1 ∧ X₀ ≤ X₇+1 ∧ X₁ ≤ X₅+1 ∧ X₀ ≤ X₄+1 ∧ X₁ ≤ X₅+1 ∧ X₀ ≤ X₇+1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 < 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < 1 ∧ 0 ≤ 0 ∧ 2 ≤ X₆ ∧ X₀ < X₆ ∧ 0 ≤ 0 ∧ 2 ≤ X₆ ∧ 0 ≤ 1 ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ X₆+1 ≤ X₀ ∧ X₆+1 ≤ X₀ ∧ 1 ≤ X₆ ∧ X₆+1 ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₆ ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2+X₆ ≤ X₀ ∧ 1+X₆ ≤ 0 ∧ 2+X₆ ≤ X₀ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ 0 ∧ X₀ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₃+1,(X₃,X₄) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: 2 {O(1)}

Solv. Size Bound - Lifting for t₅₇₃: n_l5___7→n_l8___6 and X₄: 12⋅X₇+12 {O(n)}

Solv. Size Bound: t₅₇₇: n_l7___5→n_l5___4 for X₁

Solv. Size Bound: t₅₇₇: n_l7___5→n_l5___4 for X₅

cycle: [t₅₇₅: n_l6___15→n_l7___5; t₅₆₄: n_l18___17→n_l6___15; t₅₇₉: l8→n_l18___17; t₉: l12→l8; t₂₃: l9→l12; t₂₂: l11→l9; t₂₁: l10→l11; t₅₉₆: n_l8___3→l10; t₅₇₂: n_l5___4→n_l8___3; t₅₇₇: n_l7___5→n_l5___4]
loop: (X₀ ≤ X₇+1 ∧ X₁ ≤ X₅+1 ∧ X₀ ≤ X₃+1 ∧ X₀ ≤ X₄+1 ∧ X₀ ≤ X₄+1 ∧ X₁ ≤ X₅+1 ∧ X₀ ≤ X₇+1 ∧ 0 < 1 ∧ 0 ≤ 0 ∧ X₀ ≤ X₃+1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₀ ≤ X₃+1 ∧ 0 < 1 ∧ X₁ ≤ X₃+1 ∧ X₁ ≤ X₀ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₃+1 ∧ X₁ ≤ X₃+1 ∧ X₃+1 ≤ X₀ ∧ X₂ < 1 ∧ 0 ≤ 0 ∧ X₁ ≤ 2 ∧ X₀ ≤ X₂+1 ∧ X₀ ≤ X₃+1 ∧ X₀ ≤ X₃+1 ∧ X₁ ≤ 2 ∧ 0 ≤ 0,(X₁,X₅) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: X₂+2 {O(n)}

Solv. Size Bound - Lifting for t₅₇₇: n_l7___5→n_l5___4 and X₅: inf {Infinity}

Solv. Size Bound: t₅₇₈: n_l7___8→n_l5___7 for X₀

Solv. Size Bound: t₅₇₈: n_l7___8→n_l5___7 for X₁

Solv. Size Bound: t₅₇₈: n_l7___8→n_l5___7 for X₄

Solv. Size Bound: t₅₇₈: n_l7___8→n_l5___7 for X₅

cycle: [t₅₇₆: n_l6___9→n_l7___8; t₅₆₂: n_l18___10→n_l6___9; t₅₆₆: n_l19___11→n_l18___10; t₅₇₀: n_l20___12→n_l19___11; t₅₆₈: n_l19___13→n_l20___12; t₅₇₁: n_l20___14→n_l19___13; t₅₆₉: n_l19___16→n_l20___14; t₅₆₃: n_l18___17→n_l19___16; t₅₈₁: n_l8___6→n_l18___17; t₅₇₃: n_l5___7→n_l8___6; t₅₇₈: n_l7___8→n_l5___7]
loop: (X₀ ≤ X₄+1 ∧ X₀ ≤ X₇+1 ∧ X₁ ≤ X₅+1 ∧ X₀ ≤ X₄+1 ∧ X₁ ≤ X₅+1 ∧ X₀ ≤ X₇+1 ∧ 0 < 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < 1 ∧ 0 ≤ 0 ∧ 2 ≤ X₆ ∧ X₀ < X₆ ∧ 0 ≤ 0 ∧ 2 ≤ X₆ ∧ 0 ≤ 1 ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ X₆+1 ≤ X₀ ∧ X₆+1 ≤ X₀ ∧ 1 ≤ X₆ ∧ X₆+1 ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₆ ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2+X₆ ≤ X₀ ∧ 1+X₆ ≤ 0 ∧ 2+X₆ ≤ X₀ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ 0 ∧ X₀ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₃+1 ∧ X₀ ≤ X₃+1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₀ ≤ X₃+1 ∧ 0 ≤ 0 ∧ 0 ≤ 0,(X₁,X₅) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: 2 {O(1)}

Solv. Size Bound - Lifting for t₅₇₈: n_l7___8→n_l5___7 and X₅: inf {Infinity}

knowledge_propagation leads to new time bound X₇+2 {O(n)} for transition t₅₇₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___17(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₅ ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₅ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃

knowledge_propagation leads to new time bound X₇+2 {O(n)} for transition t₅₆₄: n_l18___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___15(X₄+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ X₃ ∧ X₇ < 1+X₄ ∧ X₃ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₃ ≤ X₇ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₃ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃

knowledge_propagation leads to new time bound X₇+2 {O(n)} for transition t₅₇₅: n_l6___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___5(X₀, X₅+1, X₂, X₃, X₀-1, X₅, X₆, X₀-1) :|: X₇ < X₀ ∧ X₀ ≤ X₄+1 ∧ X₀ ≤ X₃+1 ∧ X₀ ≤ X₄+1 ∧ X₀ ≤ X₇+1 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ X₀ ≤ 1+X₇ ∧ 1+X₄ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1+X₃ ≤ X₀ ∧ 1+X₄ ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ 1+X₇ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₀

All Bounds

Timebounds

Overall timebound:12⋅X₇⋅X₇⋅X₇⋅X₇+56⋅X₇⋅X₇⋅X₇+107⋅X₇⋅X₇+109⋅X₇+47 {O(n^4)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: X₇+2 {O(n)}
t₁₀: 1 {O(1)}
t₁₁: 2⋅X₇⋅X₇+6⋅X₇+5 {O(n^2)}
t₁₂: X₇+2 {O(n)}
t₁₃: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+24⋅X₇+6 {O(n^3)}
t₁₄: X₇⋅X₇+3⋅X₇ {O(n^2)}
t₁₅: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇ {O(n^4)}
t₁₆: 6⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇+28⋅X₇+11 {O(n^3)}
t₁₇: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇ {O(n^4)}
t₁₈: 2⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₁₉: 2⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₂₀: 2⋅X₇⋅X₇+6⋅X₇+5 {O(n^2)}
t₂₁: 2⋅X₇+1 {O(n)}
t₂₂: X₇+2 {O(n)}
t₂₃: X₇+2 {O(n)}
t₂₄: 1 {O(1)}

Costbounds

Overall costbound: 12⋅X₇⋅X₇⋅X₇⋅X₇+56⋅X₇⋅X₇⋅X₇+107⋅X₇⋅X₇+109⋅X₇+47 {O(n^4)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: X₇+2 {O(n)}
t₁₀: 1 {O(1)}
t₁₁: 2⋅X₇⋅X₇+6⋅X₇+5 {O(n^2)}
t₁₂: X₇+2 {O(n)}
t₁₃: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+24⋅X₇+6 {O(n^3)}
t₁₄: X₇⋅X₇+3⋅X₇ {O(n^2)}
t₁₅: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇ {O(n^4)}
t₁₆: 6⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇+28⋅X₇+11 {O(n^3)}
t₁₇: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇ {O(n^4)}
t₁₈: 2⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₁₉: 2⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
t₂₀: 2⋅X₇⋅X₇+6⋅X₇+5 {O(n^2)}
t₂₁: 2⋅X₇+1 {O(n)}
t₂₂: X₇+2 {O(n)}
t₂₃: X₇+2 {O(n)}
t₂₄: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: 1 {O(1)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₉, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+X₀+16 {O(n^3)}
t₉, X₁: 2⋅X₇⋅X₇+6⋅X₇+X₁+1 {O(n^2)}
t₉, X₂: 2⋅X₇+X₂+2 {O(n)}
t₉, X₃: 2⋅X₇+2 {O(n)}
t₉, X₄: 8⋅X₇+X₄+8 {O(n)}
t₉, X₅: 1 {O(1)}
t₉, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+X₆+1 {O(n^4)}
t₉, X₇: X₇ {O(n)}
t₁₀, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+X₀+16 {O(n^3)}
t₁₀, X₁: 2⋅X₇⋅X₇+6⋅X₇+X₁+1 {O(n^2)}
t₁₀, X₂: 2⋅X₇+X₂+2 {O(n)}
t₁₀, X₃: 2⋅X₇+3 {O(n)}
t₁₀, X₄: 8⋅X₇+X₄+8 {O(n)}
t₁₀, X₅: 2⋅X₇⋅X₇+6⋅X₇+X₅+1 {O(n^2)}
t₁₀, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+2⋅X₆+1 {O(n^4)}
t₁₀, X₇: 2⋅X₇ {O(n)}
t₁₁, X₀: 12⋅X₇⋅X₇⋅X₇+40⋅X₇⋅X₇+64⋅X₇+X₀+32 {O(n^3)}
t₁₁, X₁: 4⋅X₇⋅X₇+12⋅X₇+X₁+2 {O(n^2)}
t₁₁, X₂: 2⋅X₇+X₂+2 {O(n)}
t₁₁, X₃: 2⋅X₇+2 {O(n)}
t₁₁, X₄: 4⋅X₇+4 {O(n)}
t₁₁, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₁₁, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+X₆+1 {O(n^4)}
t₁₁, X₇: X₇ {O(n)}
t₁₂, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+16 {O(n^3)}
t₁₂, X₁: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₁₂, X₂: 2⋅X₇+X₂+2 {O(n)}
t₁₂, X₃: 2⋅X₇+2 {O(n)}
t₁₂, X₄: 8⋅X₇+8 {O(n)}
t₁₂, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₁₂, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+X₆+1 {O(n^4)}
t₁₂, X₇: X₇ {O(n)}
t₁₃, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+28⋅X₇+10 {O(n^3)}
t₁₃, X₁: 4⋅X₇⋅X₇+12⋅X₇+X₁+2 {O(n^2)}
t₁₃, X₂: 2⋅X₇+X₂+2 {O(n)}
t₁₃, X₃: 2⋅X₇+2 {O(n)}
t₁₃, X₄: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+14 {O(n^3)}
t₁₃, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₁₃, X₆: 1 {O(1)}
t₁₃, X₇: X₇ {O(n)}
t₁₄, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+16 {O(n^3)}
t₁₄, X₁: 8⋅X₇⋅X₇+2⋅X₁+24⋅X₇+4 {O(n^2)}
t₁₄, X₂: 2⋅X₇+X₂+2 {O(n)}
t₁₄, X₃: 2⋅X₇+2 {O(n)}
t₁₄, X₄: 8⋅X₇+8 {O(n)}
t₁₄, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₁₄, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+X₆+1 {O(n^4)}
t₁₄, X₇: X₇ {O(n)}
t₁₅, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+28⋅X₇+10 {O(n^3)}
t₁₅, X₁: 4⋅X₇⋅X₇+12⋅X₇+X₁+2 {O(n^2)}
t₁₅, X₂: 2⋅X₇+X₂+2 {O(n)}
t₁₅, X₃: 2⋅X₇+2 {O(n)}
t₁₅, X₄: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+14 {O(n^3)}
t₁₅, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₁₅, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+1 {O(n^4)}
t₁₅, X₇: X₇ {O(n)}
t₁₆, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+28⋅X₇+10 {O(n^3)}
t₁₆, X₁: 4⋅X₇⋅X₇+12⋅X₇+X₁+2 {O(n^2)}
t₁₆, X₂: 2⋅X₇+X₂+2 {O(n)}
t₁₆, X₃: 2⋅X₇+2 {O(n)}
t₁₆, X₄: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+28⋅X₇+10 {O(n^3)}
t₁₆, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₁₆, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+1 {O(n^4)}
t₁₆, X₇: X₇ {O(n)}
t₁₇, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+28⋅X₇+10 {O(n^3)}
t₁₇, X₁: 4⋅X₇⋅X₇+12⋅X₇+X₁+2 {O(n^2)}
t₁₇, X₂: 2⋅X₇+X₂+2 {O(n)}
t₁₇, X₃: 2⋅X₇+2 {O(n)}
t₁₇, X₄: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+14 {O(n^3)}
t₁₇, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₁₇, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+1 {O(n^4)}
t₁₇, X₇: X₇ {O(n)}
t₁₈, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+16 {O(n^3)}
t₁₈, X₁: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₁₈, X₂: 2⋅X₇+X₂+2 {O(n)}
t₁₈, X₃: 2⋅X₇+2 {O(n)}
t₁₈, X₄: 8⋅X₇+8 {O(n)}
t₁₈, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₁₈, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+X₆+1 {O(n^4)}
t₁₈, X₇: X₇ {O(n)}
t₁₉, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+16 {O(n^3)}
t₁₉, X₁: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₁₉, X₂: 2⋅X₇+X₂+2 {O(n)}
t₁₉, X₃: 2⋅X₇+2 {O(n)}
t₁₉, X₄: 8⋅X₇+8 {O(n)}
t₁₉, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₁₉, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+X₆+1 {O(n^4)}
t₁₉, X₇: X₇ {O(n)}
t₂₀, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+16 {O(n^3)}
t₂₀, X₁: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₂₀, X₂: 2⋅X₇+X₂+2 {O(n)}
t₂₀, X₃: 2⋅X₇+2 {O(n)}
t₂₀, X₄: 8⋅X₇+8 {O(n)}
t₂₀, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₂₀, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+X₆+1 {O(n^4)}
t₂₀, X₇: X₇ {O(n)}
t₂₁, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+16 {O(n^3)}
t₂₁, X₁: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₂₁, X₂: 2⋅X₇+2 {O(n)}
t₂₁, X₃: 2⋅X₇+2 {O(n)}
t₂₁, X₄: 8⋅X₇+8 {O(n)}
t₂₁, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₂₁, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+X₆+1 {O(n^4)}
t₂₁, X₇: X₇ {O(n)}
t₂₂, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+16 {O(n^3)}
t₂₂, X₁: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₂₂, X₂: 2⋅X₇+2 {O(n)}
t₂₂, X₃: 2⋅X₇+2 {O(n)}
t₂₂, X₄: 8⋅X₇+8 {O(n)}
t₂₂, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₂₂, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+X₆+1 {O(n^4)}
t₂₂, X₇: X₇ {O(n)}
t₂₃, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+16 {O(n^3)}
t₂₃, X₁: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₂₃, X₂: 2⋅X₇+2 {O(n)}
t₂₃, X₃: 2⋅X₇+2 {O(n)}
t₂₃, X₄: 8⋅X₇+8 {O(n)}
t₂₃, X₅: 2⋅X₇⋅X₇+6⋅X₇+1 {O(n^2)}
t₂₃, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+X₆+1 {O(n^4)}
t₂₃, X₇: X₇ {O(n)}
t₂₄, X₀: 6⋅X₇⋅X₇⋅X₇+20⋅X₇⋅X₇+32⋅X₇+X₀+16 {O(n^3)}
t₂₄, X₁: 2⋅X₇⋅X₇+6⋅X₇+X₁+1 {O(n^2)}
t₂₄, X₂: 2⋅X₇+X₂+2 {O(n)}
t₂₄, X₃: 2⋅X₇+3 {O(n)}
t₂₄, X₄: 8⋅X₇+X₄+8 {O(n)}
t₂₄, X₅: 2⋅X₇⋅X₇+6⋅X₇+X₅+1 {O(n^2)}
t₂₄, X₆: 6⋅X₇⋅X₇⋅X₇⋅X₇+22⋅X₇⋅X₇⋅X₇+28⋅X₇⋅X₇+12⋅X₇+2⋅X₆+1 {O(n^4)}
t₂₄, X₇: 2⋅X₇ {O(n)}