Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: M, N
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(1, 12, 1, 1, M, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅+1 ≤ X₁
t₃₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₅
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0) :|: X₃+1 ≤ 0
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0) :|: 1 ≤ X₃
t₂₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, 0, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1) :|: X₃ ≤ 0 ∧ 0 ≤ X₃
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, 0, X₃, X₄, X₅+1, 0, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅+1 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂+1 ≤ 0 ∧ X₅+1 ≤ X₁
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₂ ∧ X₅+1 ≤ X₁
t₃₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₅
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, 1, X₃, X₄, X₅+1, 1, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ M ∧ N+1 ≤ X₁
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, 0, X₃, X₄, X₅+1, 0, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ M
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, 0, X₃, X₄, X₅+1, 0, X₇, X₈, X₉, X₁₀, X₁₁) :|: M+1 ≤ 0
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅+1, X₈, X₉, X₁₀, X₁₁) :|: 2+X₅ ≤ X₁
t₃₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₅+1
t₃₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₇
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, 0, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀+1 ≤ 0 ∧ X₇+1 ≤ X₁
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₀ ∧ X₇+1 ≤ X₁
t₃₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1) :|: X₁ ≤ X₅+1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, 0, X₄, X₅+1, X₆, X₇, X₈, M, 0, X₁₁) :|: 2+X₅ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, M, X₁₀, X₁₁) :|: X₃+1 ≤ 0 ∧ 2+X₅ ≤ X₁
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, M, X₁₀, X₁₁) :|: 1 ≤ X₃ ∧ 2+X₅ ≤ X₁
t₂₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂+1 ≤ 0 ∧ X₁ ≤ X₅+1
t₂₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₂ ∧ X₁ ≤ X₅+1
t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(1, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, 1, X₉, X₁₀, X₁₁) :|: N+1 ≤ M
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(1, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, 1, X₉, X₁₀, X₁₁)
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, 0, X₉, X₁₀, X₁₁)
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, 1, X₄, X₅+1, X₆, X₇, X₈, X₉, 1, X₁₁) :|: X₉+1 ≤ 0
t₂₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, 1, X₄, X₅+1, X₆, X₇, X₈, X₉, 1, X₁₁) :|: 1 ≤ X₉
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, 0, X₄, X₅+1, X₆, X₇, X₈, 0, 0, X₁₁) :|: X₉ ≤ 0 ∧ 0 ≤ X₉
t₂₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, 0, X₄, X₅+1, X₆, X₇, X₈, X₉, 0, X₁₁)
t₂₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀+1 ≤ 0
t₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₀
Preprocessing
Eliminate variables {X₄,X₆,X₈,X₁₀,X₁₁} that do not contribute to the problem
Found invariant 11 ≤ X₄ ∧ 11 ≤ X₃+X₄ ∧ 10+X₃ ≤ X₄ ∧ 12 ≤ X₂+X₄ ∧ 10+X₂ ≤ X₄ ∧ 23 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 10+X₀ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l11
Found invariant 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l2
Found invariant 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l6
Found invariant X₅ ≤ 11 ∧ X₅ ≤ 11+X₄ ∧ X₄+X₅ ≤ 21 ∧ X₅ ≤ 10+X₃ ∧ X₃+X₅ ≤ 12 ∧ X₅ ≤ 11+X₂ ∧ X₂+X₅ ≤ 12 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 23 ∧ X₅ ≤ 20+X₀ ∧ X₀+X₅ ≤ 12 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 13 ≤ X₁+X₅ ∧ X₁ ≤ 11+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₄ ≤ 19+X₀ ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ 10+X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 0 ≤ 8+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 0 ≤ 9+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 21+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ 9+X₀ for location l7
Found invariant 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 13 ≤ X₁+X₅ ∧ X₁ ≤ 11+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l5
Found invariant X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l8
Found invariant X₄ ≤ 12 ∧ X₄ ≤ 11+X₃ ∧ X₃+X₄ ≤ 13 ∧ X₄ ≤ 11+X₂ ∧ X₂+X₄ ≤ 13 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 24 ∧ X₄ ≤ 11+X₀ ∧ X₀+X₄ ≤ 13 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l1
Found invariant 11 ≤ X₄ ∧ 11 ≤ X₃+X₄ ∧ 10+X₃ ≤ X₄ ∧ 11 ≤ X₂+X₄ ∧ 10+X₂ ≤ X₄ ∧ 23 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 10+X₀ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l10
Found invariant 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l4
Found invariant 11 ≤ X₄ ∧ 11 ≤ X₃+X₄ ∧ 10+X₃ ≤ X₄ ∧ 12 ≤ X₂+X₄ ∧ 10+X₂ ≤ X₄ ∧ 23 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 10+X₀ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l9
Found invariant X₄ ≤ 11 ∧ X₄ ≤ 10+X₃ ∧ X₃+X₄ ≤ 12 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 12 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 23 ∧ X₄ ≤ 10+X₀ ∧ X₀+X₄ ≤ 12 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l3
Cut unsatisfiable transition t₉₁: l11→l10
Cut unsatisfiable transition t₉₅: l2→l3
Cut unsatisfiable transition t₁₀₉: l6→l8
Cut unsatisfiable transition t₁₁₁: l6→l9
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: M, N
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₈₈: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(1, 12, 1, 1, 0, X₅, X₆)
t₈₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₄+1 ≤ X₁ ∧ X₄ ≤ 12 ∧ X₄ ≤ 11+X₃ ∧ X₃+X₄ ≤ 13 ∧ X₄ ≤ 11+X₂ ∧ X₂+X₄ ≤ 13 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 24 ∧ X₄ ≤ 11+X₀ ∧ X₀+X₄ ≤ 13 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, 0, X₅, X₆) :|: X₁ ≤ X₄ ∧ X₄ ≤ 12 ∧ X₄ ≤ 11+X₃ ∧ X₃+X₄ ≤ 13 ∧ X₄ ≤ 11+X₂ ∧ X₂+X₄ ≤ 13 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 24 ∧ X₄ ≤ 11+X₀ ∧ X₀+X₄ ≤ 13 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₃ ∧ 11 ≤ X₄ ∧ 11 ≤ X₃+X₄ ∧ 10+X₃ ≤ X₄ ∧ 12 ≤ X₂+X₄ ∧ 10+X₂ ≤ X₄ ∧ 23 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 10+X₀ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₉₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, 0, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 11 ≤ X₄ ∧ 11 ≤ X₃+X₄ ∧ 10+X₃ ≤ X₄ ∧ 12 ≤ X₂+X₄ ∧ 10+X₂ ≤ X₄ ∧ 23 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 10+X₀ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₉₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, 0, X₃, X₄+1, X₅, X₆) :|: X₄+1 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₂ ∧ X₄+1 ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, 0, X₅, X₆) :|: X₁ ≤ X₄ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, 1, X₃, X₄+1, X₅, X₆) :|: 0 ≤ M ∧ N+1 ≤ X₁ ∧ X₄ ≤ 11 ∧ X₄ ≤ 10+X₃ ∧ X₃+X₄ ≤ 12 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 12 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 23 ∧ X₄ ≤ 10+X₀ ∧ X₀+X₄ ≤ 12 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, 0, X₃, X₄+1, X₅, X₆) :|: 0 ≤ M ∧ X₄ ≤ 11 ∧ X₄ ≤ 10+X₃ ∧ X₃+X₄ ≤ 12 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 12 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 23 ∧ X₄ ≤ 10+X₀ ∧ X₀+X₄ ≤ 12 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₀₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, 0, X₃, X₄+1, X₅, X₆) :|: M+1 ≤ 0 ∧ X₄ ≤ 11 ∧ X₄ ≤ 10+X₃ ∧ X₃+X₄ ≤ 12 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 12 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 23 ∧ X₄ ≤ 10+X₀ ∧ X₀+X₄ ≤ 12 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₀₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₄+1, X₆) :|: 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, 0, X₅, X₆) :|: X₁ ≤ X₄+1 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₁ ≤ X₅ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 13 ≤ X₁+X₅ ∧ X₁ ≤ 11+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(0, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₅+1 ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 13 ≤ X₁+X₅ ∧ X₁ ≤ 11+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ 0 ∧ X₅+1 ≤ X₁ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 13 ≤ X₁+X₅ ∧ X₁ ≤ 11+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₀ ∧ X₅+1 ≤ X₁ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 13 ≤ X₁+X₅ ∧ X₁ ≤ 11+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, 0, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₄+1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₀₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, 0, X₄+1, X₅, M) :|: 2+X₄ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, M) :|: 1 ≤ X₃ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₂ ∧ X₁ ≤ X₄+1 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(1, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: N+1 ≤ M ∧ X₅ ≤ 11 ∧ X₅ ≤ 11+X₄ ∧ X₄+X₅ ≤ 21 ∧ X₅ ≤ 10+X₃ ∧ X₃+X₅ ≤ 12 ∧ X₅ ≤ 11+X₂ ∧ X₂+X₅ ≤ 12 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 23 ∧ X₅ ≤ 20+X₀ ∧ X₀+X₅ ≤ 12 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 13 ≤ X₁+X₅ ∧ X₁ ≤ 11+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₄ ≤ 19+X₀ ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ 10+X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 0 ≤ 8+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 0 ≤ 9+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 21+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ 9+X₀
t₁₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(1, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₅ ≤ 11 ∧ X₅ ≤ 11+X₄ ∧ X₄+X₅ ≤ 21 ∧ X₅ ≤ 10+X₃ ∧ X₃+X₅ ≤ 12 ∧ X₅ ≤ 11+X₂ ∧ X₂+X₅ ≤ 12 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 23 ∧ X₅ ≤ 20+X₀ ∧ X₀+X₅ ≤ 12 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 13 ≤ X₁+X₅ ∧ X₁ ≤ 11+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₄ ≤ 19+X₀ ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ 10+X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 0 ≤ 8+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 0 ≤ 9+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 21+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ 9+X₀
t₁₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(0, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₅ ≤ 11 ∧ X₅ ≤ 11+X₄ ∧ X₄+X₅ ≤ 21 ∧ X₅ ≤ 10+X₃ ∧ X₃+X₅ ≤ 12 ∧ X₅ ≤ 11+X₂ ∧ X₂+X₅ ≤ 12 ∧ 1+X₅ ≤ X₁ ∧ X₁+X₅ ≤ 23 ∧ X₅ ≤ 20+X₀ ∧ X₀+X₅ ≤ 12 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 13 ≤ X₁+X₅ ∧ X₁ ≤ 11+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₄ ≤ 19+X₀ ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ 10+X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 0 ≤ 8+X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 0 ≤ 9+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 21+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ 9+X₀
t₁₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, 1, X₄+1, X₅, X₆) :|: X₆+1 ≤ 0 ∧ X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, 1, X₄+1, X₅, X₆) :|: 1 ≤ X₆ ∧ X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, 0, X₄+1, X₅, 0) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, 0, X₄+1, X₅, X₆) :|: X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(0, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 11 ≤ X₄ ∧ 11 ≤ X₃+X₄ ∧ 10+X₃ ≤ X₄ ∧ 12 ≤ X₂+X₄ ∧ 10+X₂ ≤ X₄ ∧ 23 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 10+X₀ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ 0 ∧ 11 ≤ X₄ ∧ 11 ≤ X₃+X₄ ∧ 10+X₃ ≤ X₄ ∧ 12 ≤ X₂+X₄ ∧ 10+X₂ ≤ X₄ ∧ 23 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 10+X₀ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
t₁₂₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₀ ∧ 11 ≤ X₄ ∧ 11 ≤ X₃+X₄ ∧ 10+X₃ ≤ X₄ ∧ 12 ≤ X₂+X₄ ∧ 10+X₂ ≤ X₄ ∧ 23 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 10+X₀ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1
MPRF for transition t₈₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₄+1 ≤ X₁ ∧ X₄ ≤ 12 ∧ X₄ ≤ 11+X₃ ∧ X₃+X₄ ≤ 13 ∧ X₄ ≤ 11+X₂ ∧ X₂+X₄ ≤ 13 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 24 ∧ X₄ ≤ 11+X₀ ∧ X₀+X₄ ≤ 13 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
13 {O(1)}
MPRF for transition t₉₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, 0, X₃, X₄+1, X₅, X₆) :|: X₄+1 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
12 {O(1)}
MPRF for transition t₉₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₂ ∧ X₄+1 ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
12 {O(1)}
MPRF for transition t₉₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, 1, X₃, X₄+1, X₅, X₆) :|: 0 ≤ M ∧ N+1 ≤ X₁ ∧ X₄ ≤ 11 ∧ X₄ ≤ 10+X₃ ∧ X₃+X₄ ≤ 12 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 12 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 23 ∧ X₄ ≤ 10+X₀ ∧ X₀+X₄ ≤ 12 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
12 {O(1)}
MPRF for transition t₉₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, 0, X₃, X₄+1, X₅, X₆) :|: 0 ≤ M ∧ X₄ ≤ 11 ∧ X₄ ≤ 10+X₃ ∧ X₃+X₄ ≤ 12 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 12 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 23 ∧ X₄ ≤ 10+X₀ ∧ X₀+X₄ ≤ 12 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
3 {O(1)}
MPRF for transition t₁₀₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, 0, X₃, X₄+1, X₅, X₆) :|: M+1 ≤ 0 ∧ X₄ ≤ 11 ∧ X₄ ≤ 10+X₃ ∧ X₃+X₄ ≤ 12 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 12 ∧ 1+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 23 ∧ X₄ ≤ 10+X₀ ∧ X₀+X₄ ≤ 12 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 2 ∧ 1 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ X₁ ≤ 11+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 12 ∧ X₁ ≤ 11+X₀ ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
3 {O(1)}
MPRF for transition t₁₀₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₄+1, X₆) :|: 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
13 {O(1)}
TWN: t₁₀₅: l5→l7
cycle: [t₁₀₅: l5→l7; t₁₀₆: l5→l7; t₁₁₃: l7→l5; t₁₁₄: l7→l5]
loop: (X₀+1 ≤ 0 ∧ X₅+1 ≤ X₁ ∨ X₀+1 ≤ 0 ∧ X₅+1 ≤ X₁ ∨ 1 ≤ X₀ ∧ X₅+1 ≤ X₁ ∨ 1 ≤ X₀ ∧ X₅+1 ≤ X₁,(X₀,X₁,X₅) -> (1,X₁,X₅+1)
order: [X₀; X₁; X₅]
closed-form:
X₀: [[n == 0]] * X₀ + [[n != 0]]
X₁: X₁
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 2 < 0
∨ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 2 < 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0 ∧ 2 < 0
∨ 1 < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 < 0
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 2 < 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 1 < 0
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1
∨ 1 < 0
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1
Stabilization-Threshold for: X₅+1 ≤ X₁
alphas_abs: X₅+1+X₁
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₅+4 {O(n)}
TWN - Lifting for t₁₀₅: l5→l7 of 2⋅X₁+2⋅X₅+7 {O(n)}
relevant size-bounds w.r.t. t₁₀₁:
X₁: 12 {O(1)}
X₅: 11 {O(1)}
Runtime-bound of t₁₀₁: 13 {O(1)}
Results in: 689 {O(1)}
TWN: t₁₀₆: l5→l7
TWN - Lifting for t₁₀₆: l5→l7 of 2⋅X₁+2⋅X₅+7 {O(n)}
relevant size-bounds w.r.t. t₁₀₁:
X₁: 12 {O(1)}
X₅: 11 {O(1)}
Runtime-bound of t₁₀₁: 13 {O(1)}
Results in: 689 {O(1)}
TWN: t₁₁₃: l7→l5
TWN - Lifting for t₁₁₃: l7→l5 of 2⋅X₁+2⋅X₅+7 {O(n)}
relevant size-bounds w.r.t. t₁₀₁:
X₁: 12 {O(1)}
X₅: 11 {O(1)}
Runtime-bound of t₁₀₁: 13 {O(1)}
Results in: 689 {O(1)}
TWN: t₁₁₄: l7→l5
TWN - Lifting for t₁₁₄: l7→l5 of 2⋅X₁+2⋅X₅+7 {O(n)}
relevant size-bounds w.r.t. t₁₀₁:
X₁: 12 {O(1)}
X₅: 11 {O(1)}
Runtime-bound of t₁₀₁: 13 {O(1)}
Results in: 689 {O(1)}
TWN: t₁₁₅: l7→l5
cycle: [t₁₀₅: l5→l7; t₁₀₆: l5→l7; t₁₁₅: l7→l5]
loop: (X₀+1 ≤ 0 ∧ X₅+1 ≤ X₁ ∨ 1 ≤ X₀ ∧ X₅+1 ≤ X₁,(X₀,X₁,X₅) -> (0,X₁,X₅+1)
order: [X₀; X₁; X₅]
closed-form:
X₀: [[n == 0]] * X₀
X₁: X₁
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 < 0
∨ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 < 0
∨ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₅+1 ≤ X₁
alphas_abs: X₅+1+X₁
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₅+4 {O(n)}
loop: (X₀+1 ≤ 0 ∧ X₅+1 ≤ X₁ ∨ 1 ≤ X₀ ∧ X₅+1 ≤ X₁,(X₀,X₁,X₅) -> (0,X₁,X₅+1)
order: [X₀; X₁; X₅]
closed-form:
X₀: [[n == 0]] * X₀
X₁: X₁
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 < 0
∨ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 < 0
∨ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₅+1 ≤ X₁
alphas_abs: X₅+1+X₁
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₅+4 {O(n)}
loop: (X₀+1 ≤ 0 ∧ X₅+1 ≤ X₁ ∨ 1 ≤ X₀ ∧ X₅+1 ≤ X₁,(X₀,X₁,X₅) -> (0,X₁,X₅+1)
order: [X₀; X₁; X₅]
closed-form:
X₀: [[n == 0]] * X₀
X₁: X₁
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 < 0
∨ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 < 0
∨ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₅+1 ≤ X₁
alphas_abs: X₅+1+X₁
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₅+4 {O(n)}
loop: (X₀+1 ≤ 0 ∧ X₅+1 ≤ X₁ ∨ 1 ≤ X₀ ∧ X₅+1 ≤ X₁,(X₀,X₁,X₅) -> (0,X₁,X₅+1)
order: [X₀; X₁; X₅]
closed-form:
X₀: [[n == 0]] * X₀
X₁: X₁
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 < 0
∨ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₅+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 < 0
∨ X₅+1 ≤ X₁ ∧ X₁ ≤ X₅+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₅+1 ≤ X₁
alphas_abs: X₅+1+X₁
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₅+4 {O(n)}
TWN - Lifting for t₁₁₅: l7→l5 of 2⋅X₁+2⋅X₅+8 {O(n)}
relevant size-bounds w.r.t. t₁₀₁:
X₁: 12 {O(1)}
X₅: 11 {O(1)}
Runtime-bound of t₁₀₁: 13 {O(1)}
Results in: 702 {O(1)}
TWN - Lifting for t₁₁₅: l7→l5 of 2⋅X₁+2⋅X₅+8 {O(n)}
relevant size-bounds w.r.t. t₁₁₄:
X₁: 12 {O(1)}
X₅: 12 {O(1)}
Runtime-bound of t₁₁₄: 689 {O(1)}
Results in: 38584 {O(1)}
TWN - Lifting for t₁₁₅: l7→l5 of 2⋅X₁+2⋅X₅+8 {O(n)}
relevant size-bounds w.r.t. t₁₁₃:
X₁: 12 {O(1)}
X₅: 12 {O(1)}
Runtime-bound of t₁₁₃: 689 {O(1)}
Results in: 38584 {O(1)}
TWN - Lifting for t₁₁₅: l7→l5 of 2⋅X₁+2⋅X₅+8 {O(n)}
relevant size-bounds w.r.t. t₁₀₁:
X₁: 12 {O(1)}
X₅: 11 {O(1)}
Runtime-bound of t₁₀₁: 13 {O(1)}
Results in: 702 {O(1)}
MPRF for transition t₁₀₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₁ ≤ X₅ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 13 ≤ X₁+X₅ ∧ X₁ ≤ 11+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
13 {O(1)}
MPRF for transition t₁₀₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(0, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₅+1 ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 13 ≤ X₁+X₅ ∧ X₁ ≤ 11+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
299 {O(1)}
MPRF for transition t₁₀₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, 0, X₄+1, X₅, M) :|: 2+X₄ ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
12 {O(1)}
MPRF for transition t₁₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, M) :|: 1 ≤ X₃ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 12 ≤ X₁+X₃ ∧ X₁ ≤ 12+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
13 {O(1)}
MPRF for transition t₁₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, 1, X₄+1, X₅, X₆) :|: X₆+1 ≤ 0 ∧ X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
11 {O(1)}
MPRF for transition t₁₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, 1, X₄+1, X₅, X₆) :|: 1 ≤ X₆ ∧ X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
11 {O(1)}
MPRF for transition t₁₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, 0, X₄+1, X₅, 0) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
1 {O(1)}
MPRF for transition t₁₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, 0, X₄+1, X₅, X₆) :|: X₄ ≤ 10 ∧ X₄ ≤ 9+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ 10+X₂ ∧ X₂+X₄ ≤ 11 ∧ 2+X₄ ≤ X₁ ∧ X₁+X₄ ≤ 22 ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 12 ≤ X₁+X₄ ∧ X₁ ≤ 12+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 2 ∧ 11+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 13 ∧ X₀+X₃ ≤ 2 ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 13 ≤ X₁+X₃ ∧ X₁ ≤ 11+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1 ∧ 11+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 13 ∧ X₀+X₂ ≤ 2 ∧ 0 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ X₁ ≤ 12+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 12 ∧ X₀+X₁ ≤ 13 ∧ 12 ≤ X₁ ∧ 11+X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
1 {O(1)}
All Bounds
Timebounds
Overall timebound:81768 {O(1)}
t₈₈: 1 {O(1)}
t₈₉: 13 {O(1)}
t₉₀: 1 {O(1)}
t₉₂: 1 {O(1)}
t₉₃: 1 {O(1)}
t₉₄: 12 {O(1)}
t₉₆: 12 {O(1)}
t₉₇: 1 {O(1)}
t₉₈: 12 {O(1)}
t₉₉: 3 {O(1)}
t₁₀₀: 3 {O(1)}
t₁₀₁: 13 {O(1)}
t₁₀₂: 1 {O(1)}
t₁₀₃: 13 {O(1)}
t₁₀₄: 299 {O(1)}
t₁₀₅: 689 {O(1)}
t₁₀₆: 689 {O(1)}
t₁₀₇: 1 {O(1)}
t₁₀₈: 12 {O(1)}
t₁₁₀: 13 {O(1)}
t₁₁₂: 1 {O(1)}
t₁₁₃: 689 {O(1)}
t₁₁₄: 689 {O(1)}
t₁₁₅: 78572 {O(1)}
t₁₁₆: 11 {O(1)}
t₁₁₇: 11 {O(1)}
t₁₁₈: 1 {O(1)}
t₁₁₉: 1 {O(1)}
t₁₂₀: 1 {O(1)}
t₁₂₁: 1 {O(1)}
t₁₂₂: 1 {O(1)}
Costbounds
Overall costbound: 81768 {O(1)}
t₈₈: 1 {O(1)}
t₈₉: 13 {O(1)}
t₉₀: 1 {O(1)}
t₉₂: 1 {O(1)}
t₉₃: 1 {O(1)}
t₉₄: 12 {O(1)}
t₉₆: 12 {O(1)}
t₉₇: 1 {O(1)}
t₉₈: 12 {O(1)}
t₉₉: 3 {O(1)}
t₁₀₀: 3 {O(1)}
t₁₀₁: 13 {O(1)}
t₁₀₂: 1 {O(1)}
t₁₀₃: 13 {O(1)}
t₁₀₄: 299 {O(1)}
t₁₀₅: 689 {O(1)}
t₁₀₆: 689 {O(1)}
t₁₀₇: 1 {O(1)}
t₁₀₈: 12 {O(1)}
t₁₁₀: 13 {O(1)}
t₁₁₂: 1 {O(1)}
t₁₁₃: 689 {O(1)}
t₁₁₄: 689 {O(1)}
t₁₁₅: 78572 {O(1)}
t₁₁₆: 11 {O(1)}
t₁₁₇: 11 {O(1)}
t₁₁₈: 1 {O(1)}
t₁₁₉: 1 {O(1)}
t₁₂₀: 1 {O(1)}
t₁₂₁: 1 {O(1)}
t₁₂₂: 1 {O(1)}
Sizebounds
t₈₈, X₀: 1 {O(1)}
t₈₈, X₁: 12 {O(1)}
t₈₈, X₂: 1 {O(1)}
t₈₈, X₃: 1 {O(1)}
t₈₈, X₄: 0 {O(1)}
t₈₈, X₅: X₅ {O(n)}
t₈₈, X₆: X₆ {O(n)}
t₈₉, X₀: 1 {O(1)}
t₈₉, X₁: 12 {O(1)}
t₈₉, X₂: 1 {O(1)}
t₈₉, X₃: 1 {O(1)}
t₈₉, X₄: 12 {O(1)}
t₈₉, X₅: X₅ {O(n)}
t₈₉, X₆: X₆ {O(n)}
t₉₀, X₀: 1 {O(1)}
t₉₀, X₁: 12 {O(1)}
t₉₀, X₂: 1 {O(1)}
t₉₀, X₃: 1 {O(1)}
t₉₀, X₄: 0 {O(1)}
t₉₀, X₅: X₅ {O(n)}
t₉₀, X₆: X₆ {O(n)}
t₉₂, X₀: 13 {O(1)}
t₉₂, X₁: 12 {O(1)}
t₉₂, X₂: 1 {O(1)}
t₉₂, X₃: 1 {O(1)}
t₉₂, X₄: 110 {O(1)}
t₉₂, X₅: 576 {O(1)}
t₉₃, X₀: 13 {O(1)}
t₉₃, X₁: 12 {O(1)}
t₉₃, X₂: 1 {O(1)}
t₉₃, X₃: 0 {O(1)}
t₉₃, X₄: 110 {O(1)}
t₉₃, X₅: 576 {O(1)}
t₉₄, X₀: 1 {O(1)}
t₉₄, X₁: 12 {O(1)}
t₉₄, X₂: 0 {O(1)}
t₉₄, X₃: 1 {O(1)}
t₉₄, X₄: 12 {O(1)}
t₉₄, X₅: 2⋅X₅ {O(n)}
t₉₄, X₆: 2⋅X₆ {O(n)}
t₉₆, X₀: 1 {O(1)}
t₉₆, X₁: 12 {O(1)}
t₉₆, X₂: 1 {O(1)}
t₉₆, X₃: 1 {O(1)}
t₉₆, X₄: 11 {O(1)}
t₉₆, X₅: X₅ {O(n)}
t₉₆, X₆: X₆ {O(n)}
t₉₇, X₀: 1 {O(1)}
t₉₇, X₁: 12 {O(1)}
t₉₇, X₂: 1 {O(1)}
t₉₇, X₃: 1 {O(1)}
t₉₇, X₄: 0 {O(1)}
t₉₇, X₅: 5⋅X₅ {O(n)}
t₉₇, X₆: 5⋅X₆ {O(n)}
t₉₈, X₀: 1 {O(1)}
t₉₈, X₁: 12 {O(1)}
t₉₈, X₂: 1 {O(1)}
t₉₈, X₃: 1 {O(1)}
t₉₈, X₄: 12 {O(1)}
t₉₈, X₅: X₅ {O(n)}
t₉₈, X₆: X₆ {O(n)}
t₉₉, X₀: 1 {O(1)}
t₉₉, X₁: 12 {O(1)}
t₉₉, X₂: 0 {O(1)}
t₉₉, X₃: 1 {O(1)}
t₉₉, X₄: 12 {O(1)}
t₉₉, X₅: X₅ {O(n)}
t₉₉, X₆: X₆ {O(n)}
t₁₀₀, X₀: 1 {O(1)}
t₁₀₀, X₁: 12 {O(1)}
t₁₀₀, X₂: 0 {O(1)}
t₁₀₀, X₃: 1 {O(1)}
t₁₀₀, X₄: 12 {O(1)}
t₁₀₀, X₅: X₅ {O(n)}
t₁₀₀, X₆: X₆ {O(n)}
t₁₀₁, X₀: 9 {O(1)}
t₁₀₁, X₁: 12 {O(1)}
t₁₀₁, X₂: 1 {O(1)}
t₁₀₁, X₃: 1 {O(1)}
t₁₀₁, X₄: 10 {O(1)}
t₁₀₁, X₅: 11 {O(1)}
t₁₀₁, X₆: 5⋅X₆ {O(n)}
t₁₀₂, X₀: 2 {O(1)}
t₁₀₂, X₁: 12 {O(1)}
t₁₀₂, X₂: 1 {O(1)}
t₁₀₂, X₃: 1 {O(1)}
t₁₀₂, X₄: 0 {O(1)}
t₁₀₂, X₅: 48 {O(1)}
t₁₀₂, X₆: 5⋅X₆ {O(n)}
t₁₀₃, X₀: 2 {O(1)}
t₁₀₃, X₁: 12 {O(1)}
t₁₀₃, X₂: 1 {O(1)}
t₁₀₃, X₃: 1 {O(1)}
t₁₀₃, X₄: 44 {O(1)}
t₁₀₃, X₅: 48 {O(1)}
t₁₀₃, X₆: 5⋅X₆ {O(n)}
t₁₀₄, X₀: 0 {O(1)}
t₁₀₄, X₁: 12 {O(1)}
t₁₀₄, X₂: 1 {O(1)}
t₁₀₄, X₃: 1 {O(1)}
t₁₀₄, X₄: 10 {O(1)}
t₁₀₄, X₅: 12 {O(1)}
t₁₀₄, X₆: 5⋅X₆ {O(n)}
t₁₀₅, X₀: 9 {O(1)}
t₁₀₅, X₁: 12 {O(1)}
t₁₀₅, X₂: 1 {O(1)}
t₁₀₅, X₃: 1 {O(1)}
t₁₀₅, X₄: 10 {O(1)}
t₁₀₅, X₅: 11 {O(1)}
t₁₀₅, X₆: 5⋅X₆ {O(n)}
t₁₀₆, X₀: 1 {O(1)}
t₁₀₆, X₁: 12 {O(1)}
t₁₀₆, X₂: 1 {O(1)}
t₁₀₆, X₃: 1 {O(1)}
t₁₀₆, X₄: 10 {O(1)}
t₁₀₆, X₅: 11 {O(1)}
t₁₀₆, X₆: 5⋅X₆ {O(n)}
t₁₀₇, X₀: 12 {O(1)}
t₁₀₇, X₁: 12 {O(1)}
t₁₀₇, X₂: 0 {O(1)}
t₁₀₇, X₃: 1 {O(1)}
t₁₀₇, X₄: 55 {O(1)}
t₁₀₇, X₅: 288 {O(1)}
t₁₀₈, X₀: 4 {O(1)}
t₁₀₈, X₁: 12 {O(1)}
t₁₀₈, X₂: 1 {O(1)}
t₁₀₈, X₃: 0 {O(1)}
t₁₀₈, X₄: 11 {O(1)}
t₁₀₈, X₅: 96 {O(1)}
t₁₁₀, X₀: 2 {O(1)}
t₁₁₀, X₁: 12 {O(1)}
t₁₁₀, X₂: 1 {O(1)}
t₁₁₀, X₃: 1 {O(1)}
t₁₁₀, X₄: 10 {O(1)}
t₁₁₀, X₅: 48 {O(1)}
t₁₁₂, X₀: 12 {O(1)}
t₁₁₂, X₁: 12 {O(1)}
t₁₁₂, X₂: 1 {O(1)}
t₁₁₂, X₃: 1 {O(1)}
t₁₁₂, X₄: 55 {O(1)}
t₁₁₂, X₅: 288 {O(1)}
t₁₁₃, X₀: 1 {O(1)}
t₁₁₃, X₁: 12 {O(1)}
t₁₁₃, X₂: 1 {O(1)}
t₁₁₃, X₃: 1 {O(1)}
t₁₁₃, X₄: 10 {O(1)}
t₁₁₃, X₅: 12 {O(1)}
t₁₁₃, X₆: 5⋅X₆ {O(n)}
t₁₁₄, X₀: 1 {O(1)}
t₁₁₄, X₁: 12 {O(1)}
t₁₁₄, X₂: 1 {O(1)}
t₁₁₄, X₃: 1 {O(1)}
t₁₁₄, X₄: 10 {O(1)}
t₁₁₄, X₅: 12 {O(1)}
t₁₁₄, X₆: 5⋅X₆ {O(n)}
t₁₁₅, X₀: 0 {O(1)}
t₁₁₅, X₁: 12 {O(1)}
t₁₁₅, X₂: 1 {O(1)}
t₁₁₅, X₃: 1 {O(1)}
t₁₁₅, X₄: 10 {O(1)}
t₁₁₅, X₅: 12 {O(1)}
t₁₁₅, X₆: 5⋅X₆ {O(n)}
t₁₁₆, X₀: 2 {O(1)}
t₁₁₆, X₁: 12 {O(1)}
t₁₁₆, X₂: 1 {O(1)}
t₁₁₆, X₃: 1 {O(1)}
t₁₁₆, X₄: 11 {O(1)}
t₁₁₆, X₅: 48 {O(1)}
t₁₁₇, X₀: 2 {O(1)}
t₁₁₇, X₁: 12 {O(1)}
t₁₁₇, X₂: 1 {O(1)}
t₁₁₇, X₃: 1 {O(1)}
t₁₁₇, X₄: 11 {O(1)}
t₁₁₇, X₅: 48 {O(1)}
t₁₁₈, X₀: 2 {O(1)}
t₁₁₈, X₁: 12 {O(1)}
t₁₁₈, X₂: 1 {O(1)}
t₁₁₈, X₃: 0 {O(1)}
t₁₁₈, X₄: 11 {O(1)}
t₁₁₈, X₅: 48 {O(1)}
t₁₁₈, X₆: 0 {O(1)}
t₁₁₉, X₀: 2 {O(1)}
t₁₁₉, X₁: 12 {O(1)}
t₁₁₉, X₂: 1 {O(1)}
t₁₁₉, X₃: 0 {O(1)}
t₁₁₉, X₄: 11 {O(1)}
t₁₁₉, X₅: 48 {O(1)}
t₁₂₀, X₀: 0 {O(1)}
t₁₂₀, X₁: 12 {O(1)}
t₁₂₀, X₂: 1 {O(1)}
t₁₂₀, X₃: 1 {O(1)}
t₁₂₀, X₄: 55 {O(1)}
t₁₂₀, X₅: 288 {O(1)}
t₁₂₁, X₀: 12 {O(1)}
t₁₂₁, X₁: 12 {O(1)}
t₁₂₁, X₂: 1 {O(1)}
t₁₂₁, X₃: 1 {O(1)}
t₁₂₁, X₄: 55 {O(1)}
t₁₂₁, X₅: 288 {O(1)}
t₁₂₂, X₀: 1 {O(1)}
t₁₂₂, X₁: 12 {O(1)}
t₁₂₂, X₂: 1 {O(1)}
t₁₂₂, X₃: 1 {O(1)}
t₁₂₂, X₄: 55 {O(1)}
t₁₂₂, X₅: 288 {O(1)}