Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₀
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆)
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆)
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₁, X₂, X₃, X₀, X₄, X₅, X₆)
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆) :|: 1 ≤ X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+1 ≤ X₆
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1)
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆)
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁+1 ≤ X₅
t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₁

Preprocessing

Found invariant X₃ ≤ 0 for location l11

Found invariant X₃ ≤ 0 for location l2

Found invariant X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7

Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l1

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l9

Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₁, X₂, X₃, X₀, X₄, X₅, X₆)
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆) :|: 1 ≤ X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+1 ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁+1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀

Solv. Size Bound: t₇: l9→l10 for X₄

Solv. Size Bound: t₇: l9→l10 for X₅

cycle: [t₄: l1→l9; t₁₂: l10→l1; t₇: l9→l10]
loop: (X₁+1 ≤ X₅ ∧ X₄ ≤ X₀,(X₃,X₅) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₀+X₄+2 {O(n)}

Solv. Size Bound - Lifting for t₇: l9→l10 and X₅: 4⋅X₀ {O(n)}

Solv. Size Bound: t₁₂: l10→l1 for X₄

Solv. Size Bound: t₁₂: l10→l1 for X₅

cycle: [t₇: l9→l10; t₄: l1→l9; t₁₂: l10→l1]
loop: (X₁+1 ≤ X₅ ∧ 1+X₄ ≤ X₀,(X₃,X₅) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₀+X₄+1 {O(n)}

Solv. Size Bound - Lifting for t₁₂: l10→l1 and X₅: 4⋅X₀ {O(n)}

MPRF for transition t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆) :|: 1 ≤ X₃ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

X₀ {O(n)}

MPRF for transition t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

X₀⋅X₁+X₁ {O(n^2)}

MPRF for transition t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁+1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₁+X₁ {O(n^2)}

MPRF for transition t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+X₀⋅X₁+X₀+X₁ {O(n^2)}

MPRF for transition t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀⋅X₂+X₀⋅X₁⋅X₂+X₀⋅X₂+X₁⋅X₂+X₂ {O(n^3)}

MPRF for transition t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+1 ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀⋅X₂+X₀⋅X₁⋅X₂+X₀⋅X₂+X₁⋅X₂+X₂ {O(n^3)}

MPRF for transition t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀⋅X₂+2⋅X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₁⋅X₂+2⋅X₂ {O(n^3)}

Chain transitions t₂: l5→l1 and t₄: l1→l9 to t₁₃₈: l5→l9

Chain transitions t₁₂: l10→l1 and t₄: l1→l9 to t₁₃₉: l10→l9

Chain transitions t₁₂: l10→l1 and t₅: l1→l3 to t₁₄₀: l10→l3

Chain transitions t₂: l5→l1 and t₅: l1→l3 to t₁₄₁: l5→l3

Chain transitions t₇: l9→l10 and t₁₃₉: l10→l9 to t₁₄₂: l9→l9

Chain transitions t₇: l9→l10 and t₁₄₀: l10→l3 to t₁₄₃: l9→l3

Chain transitions t₇: l9→l10 and t₁₂: l10→l1 to t₁₄₄: l9→l1

Chain transitions t₁₄₃: l9→l3 and t₁₃: l3→l5 to t₁₄₅: l9→l5

Chain transitions t₁₄₁: l5→l3 and t₁₃: l3→l5 to t₁₄₆: l5→l5

Chain transitions t₆: l9→l6 and t₉: l6→l8 to t₁₄₇: l9→l8

Chain transitions t₁₀: l7→l6 and t₉: l6→l8 to t₁₄₈: l7→l8

Chain transitions t₁₀: l7→l6 and t₈: l6→l7 to t₁₄₉: l7→l7

Chain transitions t₆: l9→l6 and t₈: l6→l7 to t₁₅₀: l9→l7

Chain transitions t₁₄₇: l9→l8 and t₁₁: l8→l9 to t₁₅₁: l9→l9

Chain transitions t₁₄₈: l7→l8 and t₁₁: l8→l9 to t₁₅₂: l7→l9

Analysing control-flow refined program

Cut unsatisfiable transition t₁₄₈: l7→l8

Cut unsatisfiable transition t₁₅₂: l7→l9

Found invariant X₃ ≤ 0 for location l11

Found invariant X₃ ≤ 0 for location l2

Found invariant X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7

Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l1

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l9

Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ for location l3

MPRF for transition t₁₃₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{2}> l9(X₀, X₁, X₂, X₃, 1, X₃, X₆) :|: 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ of depth 1:

new bound:

X₀ {O(n)}

MPRF for transition t₁₄₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{4}> l5(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, X₆) :|: X₁+1 ≤ X₅ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀ {O(n)}

MPRF for transition t₁₄₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l5(X₀, X₁, X₂, X₃-1, 1, X₅, X₆) :|: 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 1 ≤ X₃ of depth 1:

new bound:

X₀ {O(n)}

MPRF for transition t₁₄₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l9(X₀, X₁, X₂, X₃, 1+X₄, X₃, X₆) :|: X₁+1 ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₁+X₁ {O(n^2)}

MPRF for transition t₁₅₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₂) :|: X₅ ≤ X₁ ∧ X₄+1 ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ 2 ≤ X₂ ∧ 3 ≤ X₅+X₂ ∧ 3 ≤ X₄+X₂ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₃+X₂ ∧ 4 ≤ 2⋅X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₁⋅X₂+3⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₂+2⋅X₁⋅X₂+3⋅X₀⋅X₁+2⋅X₂ {O(n^3)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant X₃ ≤ 0 for location l11

Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___3

Found invariant X₃ ≤ 0 for location l2

Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l9___10

Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l1___11

Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___8

Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___4

Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l9___1

Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___12

Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l10___13

Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___2

Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l7___6

Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___7

Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l7___9

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l1

Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l9___14

Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ for location l3

Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l9___5

Solv. Size Bound: t₂₉₃: n_l10___4→n_l1___2 for X₄

Solv. Size Bound: t₂₉₃: n_l10___4→n_l1___2 for X₅

cycle: [t₃₀₈: n_l9___5→n_l10___4; t₃₀₃: n_l8___8→n_l9___5; t₂₉₈: n_l6___12→n_l8___8; t₃₀₄: n_l9___1→n_l6___12; t₂₉₆: n_l1___2→n_l9___1; t₂₉₃: n_l10___4→n_l1___2]
loop: (X₆ ≤ X₂ ∧ 1+X₄ ≤ X₆ ∧ X₃ ≤ X₁ ∧ X₁+1 ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ 2+X₄ ≤ X₂ ∧ 1+X₃ ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ 2+X₄ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₁ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ 1+X₅ ∧ X₁ ≤ X₅ ∧ 1+X₄ ≤ X₀,(X₃,X₅) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₀+X₄+2 {O(n)}

Solv. Size Bound - Lifting for t₂₉₃: n_l10___4→n_l1___2 and X₅: 4⋅X₀ {O(n)}

Solv. Size Bound: t₃₀₃: n_l8___8→n_l9___5 for X₄

Solv. Size Bound: t₃₀₃: n_l8___8→n_l9___5 for X₅

cycle: [t₂₉₈: n_l6___12→n_l8___8; t₃₀₄: n_l9___1→n_l6___12; t₂₉₆: n_l1___2→n_l9___1; t₂₉₃: n_l10___4→n_l1___2; t₃₀₈: n_l9___5→n_l10___4; t₃₀₃: n_l8___8→n_l9___5]
loop: (X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ ≤ 1+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 2+X₄ ≤ X₂ ∧ 1 ≤ 0 ∧ X₃ ≤ 1+X₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₃,(X₃,X₅) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: 1 {O(1)}

Solv. Size Bound - Lifting for t₃₀₃: n_l8___8→n_l9___5 and X₅: 4⋅X₀ {O(n)}

Solv. Size Bound: t₃₀₈: n_l9___5→n_l10___4 for X₄

Solv. Size Bound: t₃₀₈: n_l9___5→n_l10___4 for X₅

cycle: [t₃₀₃: n_l8___8→n_l9___5; t₂₉₈: n_l6___12→n_l8___8; t₃₀₄: n_l9___1→n_l6___12; t₂₉₆: n_l1___2→n_l9___1; t₂₉₃: n_l10___4→n_l1___2; t₃₀₈: n_l9___5→n_l10___4]
loop: (1+X₄ ≤ X₂ ∧ 1+X₃ ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₁ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ ≤ 1+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁,(X₃,X₅) -> (X₃,X₃)
overappr. closed-form: 2⋅X₃ {O(n)}
runtime bound: X₀+X₄+2 {O(n)}

Solv. Size Bound - Lifting for t₃₀₈: n_l9___5→n_l10___4 and X₅: 4⋅X₀ {O(n)}

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₉₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___14(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ 1 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₃₀₆: n_l9___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₃ ∧ 1+X₁ ≤ X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₃₀₇: n_l9___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___12(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀

MPRF for transition t₂₉₂: n_l10___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___11(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₅ ≤ X₃ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+X₀⋅X₁+2⋅X₀+X₁+1 {O(n^2)}

MPRF for transition t₂₉₃: n_l10___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___2(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₆ ≤ X₂ ∧ 1+X₄ ≤ X₆ ∧ X₃ ≤ X₁ ∧ X₁+1 ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₀⋅X₁+2⋅X₀+5⋅X₁+X₃+2 {O(n^2)}

MPRF for transition t₂₉₄: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___10(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: 1+X₁ ≤ X₃ ∧ 2 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₁+2⋅X₀+X₁+2 {O(n^2)}

MPRF for transition t₂₉₆: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___1(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₃ ≤ X₁ ∧ 2 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₃+X₀+X₃+1 {O(n^2)}

MPRF for transition t₂₉₈: n_l6___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+X₀⋅X₁+2⋅X₁+3⋅X₀+X₃+1 {O(n^2)}

MPRF for transition t₃₀₄: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___12(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₀⋅X₁+2⋅X₁+X₀+X₃+1 {O(n^2)}

MPRF for transition t₃₀₅: n_l9___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₁ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₀⋅X₁+X₀+X₁+1 {O(n^2)}

MPRF for transition t₃₀₈: n_l9___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₄ ≤ X₂ ∧ 1+X₃ ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₁ ≤ X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀⋅X₁+X₀⋅X₃+2⋅X₁+X₀+X₃+1 {O(n^2)}

MPRF for transition t₃₂₃: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF for transition t₃₂₄: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

TWN: t₂₉₉: n_l6___3→n_l8___8

cycle: [t₃₀₉: n_l9___5→n_l6___3; t₃₀₃: n_l8___8→n_l9___5; t₂₉₉: n_l6___3→n_l8___8]
loop: (X₂ ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₁,(X₁,X₂,X₃,X₄,X₅,X₆) -> (X₁,X₂,X₃,X₄,1+X₅,X₂)
order: [X₁; X₂; X₃; X₄; X₅; X₆]
closed-form:
X₁: X₁
X₂: X₂
X₃: X₃
X₄: X₄
X₅: X₅ + [[n != 0]] * n^1
X₆: [[n == 0]] * X₆ + [[n != 0]] * X₂

Termination: true
Formula:

1+X₄ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₄ < X₂ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₄ < X₂ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄

Stabilization-Threshold for: 1+X₅ ≤ X₁
alphas_abs: X₁+1+X₅
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₅ ≤ X₁
alphas_abs: X₁+X₅
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ ≤ X₅
alphas_abs: X₃+X₅
M: 0
N: 1
Bound: 2⋅X₃+2⋅X₅+2 {O(n)}

TWN - Lifting for t₂₉₉: n_l6___3→n_l8___8 of 2⋅X₃+4⋅X₁+6⋅X₅+12 {O(n)}

relevant size-bounds w.r.t. t₂₉₈:
X₁: X₂ {O(n)}
X₃: X₀ {O(n)}
X₅: 2⋅X₀ {O(n)}
Runtime-bound of t₂₉₈: X₀⋅X₀+X₀⋅X₁+2⋅X₁+3⋅X₀+X₃+1 {O(n^2)}
Results in: 14⋅X₀⋅X₀⋅X₀+14⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₂+4⋅X₀⋅X₁⋅X₂+12⋅X₀⋅X₂+14⋅X₀⋅X₃+4⋅X₂⋅X₃+40⋅X₀⋅X₁+54⋅X₀⋅X₀+8⋅X₁⋅X₂+12⋅X₃+24⋅X₁+4⋅X₂+50⋅X₀+12 {O(n^3)}

TWN: t₃₀₃: n_l8___8→n_l9___5

TWN - Lifting for t₃₀₃: n_l8___8→n_l9___5 of 2⋅X₃+4⋅X₁+6⋅X₅+12 {O(n)}

relevant size-bounds w.r.t. t₂₉₈:
X₁: X₂ {O(n)}
X₃: X₀ {O(n)}
X₅: 2⋅X₀ {O(n)}
Runtime-bound of t₂₉₈: X₀⋅X₀+X₀⋅X₁+2⋅X₁+3⋅X₀+X₃+1 {O(n^2)}
Results in: 14⋅X₀⋅X₀⋅X₀+14⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₂+4⋅X₀⋅X₁⋅X₂+12⋅X₀⋅X₂+14⋅X₀⋅X₃+4⋅X₂⋅X₃+40⋅X₀⋅X₁+54⋅X₀⋅X₀+8⋅X₁⋅X₂+12⋅X₃+24⋅X₁+4⋅X₂+50⋅X₀+12 {O(n^3)}

TWN: t₃₀₉: n_l9___5→n_l6___3

TWN - Lifting for t₃₀₉: n_l9___5→n_l6___3 of 2⋅X₃+4⋅X₁+6⋅X₅+12 {O(n)}

relevant size-bounds w.r.t. t₂₉₈:
X₁: X₂ {O(n)}
X₃: X₀ {O(n)}
X₅: 2⋅X₀ {O(n)}
Runtime-bound of t₂₉₈: X₀⋅X₀+X₀⋅X₁+2⋅X₁+3⋅X₀+X₃+1 {O(n^2)}
Results in: 14⋅X₀⋅X₀⋅X₀+14⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₂+4⋅X₀⋅X₁⋅X₂+12⋅X₀⋅X₂+14⋅X₀⋅X₃+4⋅X₂⋅X₃+40⋅X₀⋅X₁+54⋅X₀⋅X₀+8⋅X₁⋅X₂+12⋅X₃+24⋅X₁+4⋅X₂+50⋅X₀+12 {O(n^3)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₀+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₀⋅X₁+X₁ {O(n^2)}
t₅: X₀+1 {O(n)}
t₆: X₀⋅X₀⋅X₂+X₀⋅X₁⋅X₂+X₀⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
t₇: X₀⋅X₁+X₁ {O(n^2)}
t₈: inf {Infinity}
t₉: X₀⋅X₀⋅X₂+X₀⋅X₁⋅X₂+X₀⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
t₁₀: inf {Infinity}
t₁₁: 2⋅X₀⋅X₀⋅X₂+2⋅X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₁⋅X₂+2⋅X₂ {O(n^3)}
t₁₂: X₀⋅X₀+X₀⋅X₁+X₀+X₁ {O(n^2)}
t₁₃: X₀ {O(n)}
t₁₄: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₀+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₀⋅X₁+X₁ {O(n^2)}
t₅: X₀+1 {O(n)}
t₆: X₀⋅X₀⋅X₂+X₀⋅X₁⋅X₂+X₀⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
t₇: X₀⋅X₁+X₁ {O(n^2)}
t₈: inf {Infinity}
t₉: X₀⋅X₀⋅X₂+X₀⋅X₁⋅X₂+X₀⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
t₁₀: inf {Infinity}
t₁₁: 2⋅X₀⋅X₀⋅X₂+2⋅X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₁⋅X₂+2⋅X₂ {O(n^3)}
t₁₂: X₀⋅X₀+X₀⋅X₁+X₀+X₁ {O(n^2)}
t₁₃: X₀ {O(n)}
t₁₄: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₁ {O(n)}
t₁, X₁: X₂ {O(n)}
t₁, X₂: X₃ {O(n)}
t₁, X₃: X₀ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: X₁ {O(n)}
t₂, X₁: X₂ {O(n)}
t₂, X₂: X₃ {O(n)}
t₂, X₃: X₀ {O(n)}
t₂, X₄: 1 {O(1)}
t₂, X₅: 4⋅X₀+X₅ {O(n)}
t₂, X₆: 2⋅X₃+X₆ {O(n)}
t₃, X₀: 2⋅X₁ {O(n)}
t₃, X₁: 2⋅X₂ {O(n)}
t₃, X₂: 2⋅X₃ {O(n)}
t₃, X₃: 2⋅X₀ {O(n)}
t₃, X₄: X₀⋅X₀+X₀⋅X₁+X₀+X₁+X₄+2 {O(n^2)}
t₃, X₅: 2⋅X₅+4⋅X₀ {O(n)}
t₃, X₆: 2⋅X₃+2⋅X₆ {O(n)}
t₄, X₀: X₁ {O(n)}
t₄, X₁: X₂ {O(n)}
t₄, X₂: X₃ {O(n)}
t₄, X₃: X₀ {O(n)}
t₄, X₄: X₀⋅X₀+X₀⋅X₁+X₀+X₁+1 {O(n^2)}
t₄, X₅: 2⋅X₀ {O(n)}
t₄, X₆: 2⋅X₃+X₆ {O(n)}
t₅, X₀: X₁ {O(n)}
t₅, X₁: X₂ {O(n)}
t₅, X₂: X₃ {O(n)}
t₅, X₃: X₀ {O(n)}
t₅, X₄: X₀⋅X₀+X₀⋅X₁+X₀+X₁+2 {O(n^2)}
t₅, X₅: 4⋅X₀+X₅ {O(n)}
t₅, X₆: 2⋅X₃+X₆ {O(n)}
t₆, X₀: X₁ {O(n)}
t₆, X₁: X₂ {O(n)}
t₆, X₂: X₃ {O(n)}
t₆, X₃: X₀ {O(n)}
t₆, X₄: X₀⋅X₀+X₀⋅X₁+X₀+X₁+1 {O(n^2)}
t₆, X₅: 2⋅X₀⋅X₀⋅X₂+2⋅X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₁⋅X₂+2⋅X₀+2⋅X₂ {O(n^3)}
t₆, X₆: 2⋅X₃ {O(n)}
t₇, X₀: X₁ {O(n)}
t₇, X₁: X₂ {O(n)}
t₇, X₂: X₃ {O(n)}
t₇, X₃: X₀ {O(n)}
t₇, X₄: X₀⋅X₀+X₀⋅X₁+X₀+X₁+1 {O(n^2)}
t₇, X₅: 4⋅X₀ {O(n)}
t₇, X₆: 2⋅X₃+X₆ {O(n)}
t₈, X₀: X₁ {O(n)}
t₈, X₁: X₂ {O(n)}
t₈, X₂: X₃ {O(n)}
t₈, X₃: X₀ {O(n)}
t₈, X₄: X₀⋅X₀+X₀⋅X₁+X₀+X₁+1 {O(n^2)}
t₈, X₅: 2⋅X₀⋅X₀⋅X₂+2⋅X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₁⋅X₂+2⋅X₀+2⋅X₂ {O(n^3)}
t₉, X₀: X₁ {O(n)}
t₉, X₁: X₂ {O(n)}
t₉, X₂: X₃ {O(n)}
t₉, X₃: X₀ {O(n)}
t₉, X₄: X₀⋅X₀+X₀⋅X₁+X₀+X₁+1 {O(n^2)}
t₉, X₅: 2⋅X₀⋅X₀⋅X₂+2⋅X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₁⋅X₂+2⋅X₀+2⋅X₂ {O(n^3)}
t₉, X₆: 2⋅X₃ {O(n)}
t₁₀, X₀: X₁ {O(n)}
t₁₀, X₁: X₂ {O(n)}
t₁₀, X₂: X₃ {O(n)}
t₁₀, X₃: X₀ {O(n)}
t₁₀, X₄: X₀⋅X₀+X₀⋅X₁+X₀+X₁+1 {O(n^2)}
t₁₀, X₅: 2⋅X₀⋅X₀⋅X₂+2⋅X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₁⋅X₂+2⋅X₀+2⋅X₂ {O(n^3)}
t₁₁, X₀: X₁ {O(n)}
t₁₁, X₁: X₂ {O(n)}
t₁₁, X₂: X₃ {O(n)}
t₁₁, X₃: X₀ {O(n)}
t₁₁, X₄: X₀⋅X₀+X₀⋅X₁+X₀+X₁+1 {O(n^2)}
t₁₁, X₅: 2⋅X₀⋅X₀⋅X₂+2⋅X₀⋅X₁⋅X₂+2⋅X₀⋅X₂+2⋅X₁⋅X₂+2⋅X₀+2⋅X₂ {O(n^3)}
t₁₁, X₆: 2⋅X₃ {O(n)}
t₁₂, X₀: X₁ {O(n)}
t₁₂, X₁: X₂ {O(n)}
t₁₂, X₂: X₃ {O(n)}
t₁₂, X₃: X₀ {O(n)}
t₁₂, X₄: X₀⋅X₀+X₀⋅X₁+X₀+X₁+1 {O(n^2)}
t₁₂, X₅: 4⋅X₀ {O(n)}
t₁₂, X₆: 2⋅X₃+X₆ {O(n)}
t₁₃, X₀: X₁ {O(n)}
t₁₃, X₁: X₂ {O(n)}
t₁₃, X₂: X₃ {O(n)}
t₁₃, X₃: X₀ {O(n)}
t₁₃, X₄: X₀⋅X₀+X₀⋅X₁+X₀+X₁+2 {O(n^2)}
t₁₃, X₅: 4⋅X₀+X₅ {O(n)}
t₁₃, X₆: 2⋅X₃+X₆ {O(n)}
t₁₄, X₀: 2⋅X₁ {O(n)}
t₁₄, X₁: 2⋅X₂ {O(n)}
t₁₄, X₂: 2⋅X₃ {O(n)}
t₁₄, X₃: 2⋅X₀ {O(n)}
t₁₄, X₄: X₀⋅X₀+X₀⋅X₁+X₀+X₁+X₄+2 {O(n^2)}
t₁₄, X₅: 2⋅X₅+4⋅X₀ {O(n)}
t₁₄, X₆: 2⋅X₃+2⋅X₆ {O(n)}