Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2
Transitions:
t₁: l0(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₂
t₂: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, E) :|: 1+X₀ ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₂
t₃: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, E) :|: X₀ ≤ X₁ ∧ X₂+1 ≤ X₁
t₄: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, E) :|: X₁+1 ≤ X₀
t₀: l1(X₀, X₁, X₂, X₃) → l1(1+X₀, 1+X₁, X₂-1, X₃)
Eliminate variables {E,X₃} that do not contribute to the problem
Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l1
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2
Transitions:
t₇: l0(X₀, X₁, X₂) → l1(X₀, X₁, X₂) :|: X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₂
t₈: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: 1+X₀ ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₂
t₉: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₀ ≤ X₁ ∧ X₂+1 ≤ X₁
t₁₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₁+1 ≤ X₀
t₁₁: l1(X₀, X₁, X₂) → l1(1+X₀, 1+X₁, X₂-1) :|: X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l1
Found invariant 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location n_l1___1
Overall timebound:inf {Infinity}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: inf {Infinity}
Overall costbound: inf {Infinity}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: inf {Infinity}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}