Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀
t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(nondef_1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁₁-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁-2)
t₃₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₈, X₈, X₉, X₁, X₁₁)
t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ X₁₀
t₁₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ < X₇+1
t₃₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₁₀-X₂, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₅: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈, X₃, X₁₀, X₁₁)
t₁₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2 ≤ X₆
t₁₂: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2
t₇: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₀: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₅, X₁₀, X₁₁)
t₂₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈+3 ≤ X₁₁
t₂₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ < X₈+3
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₃: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆-1, X₈, X₉, X₉+X₆-1, X₁₁)
t₃₆: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, nondef_0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₇-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₇, X₉, X₁₀, X₁₀-1)
Preprocessing
Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location l11
Found invariant X₆ ≤ 1 for location l32
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ for location l6
Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l15
Found invariant X₆ ≤ 1 for location l31
Found invariant 2 ≤ X₆ for location l30
Found invariant X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂ for location l19
Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ for location l29
Found invariant X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ for location l23
Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location l12
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀ for location l17
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ for location l7
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ for location l5
Found invariant X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂ for location l20
Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location l13
Found invariant 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ for location l8
Found invariant X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ for location l22
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀ for location l16
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 2 ≤ X₁₀ for location l9
Found invariant 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ for location l18
Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0 ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀
t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀
t₂₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(nondef_1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀
t₂₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁₁-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀
t₂₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁-2) :|: 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₃₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₈, X₈, X₉, X₁, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀
t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀
t₁₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆
t₁₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ < X₇+1 ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆
t₃₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₁₀-X₂, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂
t₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂
t₃₅: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈, X₃, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂
t₁₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2 ≤ X₆
t₁₂: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2
t₇: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₀: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₅, X₁₀, X₁₁)
t₂₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈+3 ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀
t₂₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ < X₈+3 ∧ X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₃: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆-1, X₈, X₉, X₉+X₆-1, X₁₁) :|: 2 ≤ X₆
t₃₆: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 1
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, nondef_0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀
t₃₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₇-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₇, X₉, X₁₀, X₁₀-1) :|: 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 2 ≤ X₁₀
MPRF for transition t₁₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ of depth 1:
new bound:
4⋅X₅ {O(n)}
MPRF for transition t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ of depth 1:
new bound:
2⋅X₅+1 {O(n)}
MPRF for transition t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, nondef_0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF for transition t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ of depth 1:
new bound:
4⋅X₅+6 {O(n)}
MPRF for transition t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ of depth 1:
new bound:
4⋅X₅+2 {O(n)}
MPRF for transition t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₇, X₉, X₁₀, X₁₀-1) :|: 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 2 ≤ X₁₀ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF for transition t₂₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈+3 ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ of depth 1:
new bound:
3⋅X₅+1 {O(n)}
MPRF for transition t₂₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ < X₈+3 ∧ X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ of depth 1:
new bound:
4⋅X₅+2 {O(n)}
MPRF for transition t₂₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ of depth 1:
new bound:
3⋅X₅ {O(n)}
MPRF for transition t₂₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(nondef_1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF for transition t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF for transition t₂₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0 ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF for transition t₂₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁-2) :|: 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₅+7 {O(n)}
MPRF for transition t₂₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁₁-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ of depth 1:
new bound:
2⋅X₅ {O(n)}
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₃₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₈, X₈, X₉, X₁, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀
MPRF for transition t₁₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2 ≤ X₆ of depth 1:
new bound:
8⋅X₅⋅X₅+19⋅X₅+1 {O(n^2)}
MPRF for transition t₁₃: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆-1, X₈, X₉, X₉+X₆-1, X₁₁) :|: 2 ≤ X₆ of depth 1:
new bound:
8⋅X₅⋅X₅+17⋅X₅ {O(n^2)}
MPRF for transition t₁₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ < X₇+1 ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ of depth 1:
new bound:
8⋅X₅⋅X₅+17⋅X₅ {O(n^2)}
MPRF for transition t₃₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₇-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ of depth 1:
new bound:
8⋅X₅⋅X₅+17⋅X₅+1 {O(n^2)}
MPRF for transition t₃₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂ of depth 1:
new bound:
8⋅X₅⋅X₅+19⋅X₅+1 {O(n^2)}
MPRF for transition t₃₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₁₀-X₂, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂ of depth 1:
new bound:
8⋅X₅⋅X₅+15⋅X₅+1 {O(n^2)}
MPRF for transition t₃₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ of depth 1:
new bound:
8⋅X₅⋅X₅+15⋅X₅+1 {O(n^2)}
MPRF for transition t₃₅: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈, X₃, X₁₀, X₁₁) :|: X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ of depth 1:
new bound:
8⋅X₅⋅X₅+15⋅X₅+1 {O(n^2)}
Chain transitions t₂₄: l13→l11 and t₂₅: l11→l15 to t₄₃₀: l13→l15
Chain transitions t₂₄: l13→l11 and t₂₆: l11→l14 to t₄₃₁: l13→l14
Chain transitions t₂₁: l29→l12 and t₂₃: l12→l13 to t₄₃₂: l29→l13
Chain transitions t₄₃₂: l29→l13 and t₄₃₀: l13→l15 to t₄₃₃: l29→l15
Chain transitions t₄₃₂: l29→l13 and t₄₃₁: l13→l14 to t₄₃₄: l29→l14
Chain transitions t₄₃₂: l29→l13 and t₂₄: l13→l11 to t₄₃₅: l29→l11
Chain transitions t₄₃₄: l29→l14 and t₂₈: l14→l17 to t₄₃₆: l29→l17
Chain transitions t₂₂: l29→l14 and t₂₈: l14→l17 to t₄₃₇: l29→l17
Chain transitions t₄₃₃: l29→l15 and t₂₇: l15→l29 to t₄₃₈: l29→l29
Chain transitions t₂₉: l17→l16 and t₃₀: l16→l18 to t₄₃₉: l17→l18
Chain transitions t₄₃₇: l29→l17 and t₄₃₉: l17→l18 to t₄₄₀: l29→l18
Chain transitions t₄₃₆: l29→l17 and t₄₃₉: l17→l18 to t₄₄₁: l29→l18
Chain transitions t₄₃₆: l29→l17 and t₂₉: l17→l16 to t₄₄₂: l29→l16
Chain transitions t₄₃₇: l29→l17 and t₂₉: l17→l16 to t₄₄₃: l29→l16
Chain transitions t₁₃: l30→l18 and t₁₅: l18→l8 to t₄₄₄: l30→l8
Chain transitions t₄₄₁: l29→l18 and t₁₅: l18→l8 to t₄₄₅: l29→l8
Chain transitions t₄₄₁: l29→l18 and t₁₄: l18→l6 to t₄₄₆: l29→l6
Chain transitions t₁₃: l30→l18 and t₁₄: l18→l6 to t₄₄₇: l30→l6
Chain transitions t₄₄₀: l29→l18 and t₁₄: l18→l6 to t₄₄₈: l29→l6
Chain transitions t₄₄₀: l29→l18 and t₁₅: l18→l8 to t₄₄₉: l29→l8
Chain transitions t₃₂: l20→l19 and t₃₃: l19→l22 to t₄₅₀: l20→l22
Chain transitions t₃₁: l8→l20 and t₄₅₀: l20→l22 to t₄₅₁: l8→l22
Chain transitions t₃₁: l8→l20 and t₃₂: l20→l19 to t₄₅₂: l8→l19
Chain transitions t₄₅₁: l8→l22 and t₃₄: l22→l23 to t₄₅₃: l8→l23
Chain transitions t₄₅₃: l8→l23 and t₃₅: l23→l24 to t₄₅₄: l8→l24
Chain transitions t₄₅₄: l8→l24 and t₁₂: l24→l31 to t₄₅₅: l8→l31
Chain transitions t₁₀: l28→l24 and t₁₂: l24→l31 to t₄₅₆: l28→l31
Chain transitions t₁₀: l28→l24 and t₁₁: l24→l30 to t₄₅₇: l28→l30
Chain transitions t₄₅₄: l8→l24 and t₁₁: l24→l30 to t₄₅₈: l8→l30
Chain transitions t₄₅₈: l8→l30 and t₄₄₄: l30→l8 to t₄₅₉: l8→l8
Chain transitions t₄₅₇: l28→l30 and t₄₄₄: l30→l8 to t₄₆₀: l28→l8
Chain transitions t₄₅₇: l28→l30 and t₄₄₇: l30→l6 to t₄₆₁: l28→l6
Chain transitions t₄₅₈: l8→l30 and t₄₄₇: l30→l6 to t₄₆₂: l8→l6
Chain transitions t₄₅₇: l28→l30 and t₁₃: l30→l18 to t₄₆₃: l28→l18
Chain transitions t₄₅₈: l8→l30 and t₁₃: l30→l18 to t₄₆₄: l8→l18
Chain transitions t₁₇: l7→l5 and t₁₈: l5→l9 to t₄₆₅: l7→l9
Chain transitions t₁₇: l7→l5 and t₁₉: l5→l8 to t₄₆₆: l7→l8
Chain transitions t₄₆₂: l8→l6 and t₁₆: l6→l7 to t₄₆₇: l8→l7
Chain transitions t₄₄₈: l29→l6 and t₁₆: l6→l7 to t₄₆₈: l29→l7
Chain transitions t₄₄₆: l29→l6 and t₁₆: l6→l7 to t₄₆₉: l29→l7
Chain transitions t₄₆₁: l28→l6 and t₁₆: l6→l7 to t₄₇₀: l28→l7
Chain transitions t₄₆₇: l8→l7 and t₄₆₅: l7→l9 to t₄₇₁: l8→l9
Chain transitions t₄₆₉: l29→l7 and t₄₆₅: l7→l9 to t₄₇₂: l29→l9
Chain transitions t₄₆₉: l29→l7 and t₄₆₆: l7→l8 to t₄₇₃: l29→l8
Chain transitions t₄₆₇: l8→l7 and t₄₆₆: l7→l8 to t₄₇₄: l8→l8
Chain transitions t₄₆₈: l29→l7 and t₄₆₆: l7→l8 to t₄₇₅: l29→l8
Chain transitions t₄₆₈: l29→l7 and t₄₆₅: l7→l9 to t₄₇₆: l29→l9
Chain transitions t₄₆₈: l29→l7 and t₁₇: l7→l5 to t₄₇₇: l29→l5
Chain transitions t₄₆₉: l29→l7 and t₁₇: l7→l5 to t₄₇₈: l29→l5
Chain transitions t₄₆₇: l8→l7 and t₁₇: l7→l5 to t₄₇₉: l8→l5
Chain transitions t₄₇₀: l28→l7 and t₁₇: l7→l5 to t₄₈₀: l28→l5
Chain transitions t₄₇₀: l28→l7 and t₄₆₆: l7→l8 to t₄₈₁: l28→l8
Chain transitions t₄₇₀: l28→l7 and t₄₆₅: l7→l9 to t₄₈₂: l28→l9
Chain transitions t₄₇₁: l8→l9 and t₂₀: l9→l29 to t₄₈₃: l8→l29
Chain transitions t₄₇₆: l29→l9 and t₂₀: l9→l29 to t₄₈₄: l29→l29
Chain transitions t₄₇₂: l29→l9 and t₂₀: l9→l29 to t₄₈₅: l29→l29
Chain transitions t₄₈₂: l28→l9 and t₂₀: l9→l29 to t₄₈₆: l28→l29
Analysing control-flow refined program
Cut unsatisfiable transition t₄₄₅: l29→l8
Cut unsatisfiable transition t₄₆₀: l28→l8
Eliminate variables {Temp_Int₄₆₃₆,X₀,X₁,X₂,X₃,X₉} that do not contribute to the problem
Found invariant 4 ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11
Found invariant X₂ ≤ 1 for location l32
Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l6
Found invariant 4 ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l15
Found invariant X₂ ≤ 1 ∧ X₂ ≤ X₁ for location l31
Found invariant 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l30
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l19
Found invariant 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l29
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l23
Found invariant 4 ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l12
Found invariant 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l17
Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l7
Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l5
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l20
Found invariant 4 ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l13
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l8
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l22
Found invariant 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l16
Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l18
Found invariant X₄ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l14
Analysing control-flow refined program
Found invariant X₆ ≤ 1 for location l32
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ for location l6
Found invariant X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀ for location n_l23___3
Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ for location l29
Found invariant X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀ for location n_l20___6
Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location l12
Found invariant X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₁₀ ∧ X₉ ≤ X₁ ∧ X₃ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₃ ≤ 1+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₁ ≤ 2+X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l24___17
Found invariant 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ 2 ≤ X₆ ∧ 1+X₁₀ ≤ X₆ for location n_l8___14
Found invariant X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l20___21
Found invariant X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l22___19
Found invariant X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀ for location n_l22___4
Found invariant X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location l18
Found invariant X₉ ≤ 1 ∧ X₉ ≤ X₇ ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₃ ∧ X₃+X₉ ≤ 2 ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₀ ∧ X₃ ≤ X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₃ ≤ 1+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ for location n_l24___9
Found invariant X₉ ≤ X₃ ∧ X₉ ≤ X₁₀ ∧ 2 ≤ X₉ ∧ 5 ≤ X₇+X₉ ∧ 4 ≤ X₆+X₉ ∧ 2+X₄ ≤ X₉ ∧ 4 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 4 ≤ X₂+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3+X₄ ≤ X₇ ∧ 5 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 7 ≤ X₁₀+X₇ ∧ X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 6 ≤ X₁₀+X₃ ∧ 2+X₂ ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 6 ≤ X₁₀+X₂ ∧ 4 ≤ X₁₀ for location n_l30___1
Found invariant X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₁₀ ∧ X₉ ≤ X₁ ∧ X₃ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ 1+X₂ ∧ 3 ≤ X₈ ∧ 6 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 5 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 4 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 5 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₃ ≤ 1+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₁ ≤ 2+X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l30___16
Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ for location l14
Found invariant X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ X₆ ≤ X₅ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₅ for location n_l30___7
Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location l11
Found invariant X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀ for location n_l19___5
Found invariant X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 1 ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ X₃ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ for location n_l23___10
Found invariant X₉ ≤ X₆ ∧ X₉ ≤ X₅ ∧ X₆ ≤ X₉ ∧ X₅ ≤ X₉ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ for location l24
Found invariant 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ for location n_l18___15
Found invariant X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ for location n_l19___12
Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l15
Found invariant X₆ ≤ 1 for location l31
Found invariant X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ for location n_l20___13
Found invariant X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l8___22
Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ X₈ ≤ 1+X₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ 1+X₁ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ X₆ ≤ 2+X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₁₁+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 0 ≤ X₁ for location l17
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ for location l7
Found invariant X₉ ≤ X₃ ∧ X₉ ≤ X₁₀ ∧ X₃ ≤ X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₀ ∧ 0 ≤ X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀ for location n_l24___2
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁₀ for location l5
Found invariant X₉ ≤ 1 ∧ 2+X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ X₉ ≤ X₃ ∧ X₃+X₉ ≤ 2 ∧ 1+X₉ ≤ X₂ ∧ X₉ ≤ X₁₀ ∧ X₃ ≤ X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₃ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ for location n_l30___8
Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 6 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₁₁+X₇ ∧ 6 ≤ X₁₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 7 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₁₁+X₄ ∧ 6 ≤ X₁₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location l13
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₁₀ ∧ 2 ≤ X₁₀ for location l8
Found invariant X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l19___20
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2+X₁ ≤ X₁₀ for location l16
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 2 ≤ X₁₀ for location l9
Found invariant X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀ for location n_l23___18
Found invariant X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ for location n_l22___11
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₇₅₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₄ ∧ X₁₀ < 1+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₇₇₆: n_l8___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___21(X₀, X₁, X₇-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ < 1+X₈ ∧ 1 ≤ X₄ ∧ X₆ ≤ 1+X₈ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₁+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 4⋅X₅+2 {O(n)} for transition t₇₇₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___6(X₀, X₁, X₇-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₁₀ ∧ 2 ≤ X₁₀
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₇₅₉: n_l20___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₁ < 1+X₈ ∧ 1 ≤ X₄ ∧ X₆ ≤ 1+X₈ ∧ X₂+1 ≤ X₈ ∧ X₈ ≤ 1+X₂ ∧ X₁+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₂+1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 4⋅X₅+2 {O(n)} for transition t₇₆₀: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₂+1 ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₇₅₆: n_l19___20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___19(X₀, X₁, X₂, X₁₀-X₂, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₁ < 1+X₈ ∧ 1 ≤ X₄ ∧ X₆ ≤ 1+X₈ ∧ X₂+1 ≤ X₈ ∧ X₈ ≤ 1+X₂ ∧ X₁+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₂+1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 4⋅X₅+2 {O(n)} for transition t₇₅₇: n_l19___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___4(X₀, X₁, X₂, X₁₀-X₂, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₂+1 ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₇₆₂: n_l22___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ < 1+X₇ ∧ 1 ≤ X₄ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₂+1 ≤ X₇ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₁₀+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₃ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 4⋅X₅+2 {O(n)} for transition t₇₆₃: n_l22___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₃ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₇₆₅: n_l23___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___17(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₂+1, X₈, X₃, X₁₀, X₁₁) :|: X₁₀ < 1+X₇ ∧ 1 ≤ X₄ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₂+1 ≤ X₇ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₁₀+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₃ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 4⋅X₅+2 {O(n)} for transition t₇₆₆: n_l23___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₂+1, X₈, X₃, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₃ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ 2+X₂ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₇₆₇: n_l24___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ < 2+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ X₆+1 ≤ X₈ ∧ X₈ ≤ 1+X₆ ∧ X₈+X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₈+X₉ ∧ X₃+X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₃+X₈ ∧ X₂+1 ≤ X₈ ∧ X₈ ≤ 1+X₂ ∧ X₁+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₁₀+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ 2 ≤ X₆ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₁₀ ∧ X₉ ≤ X₁ ∧ X₃ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ 1+X₂ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₃ ≤ 1+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₁ ≤ 2+X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
knowledge_propagation leads to new time bound 4⋅X₅+2 {O(n)} for transition t₇₆₈: n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 2 ≤ X₉ ∧ X₉ ≤ X₁₀ ∧ X₂+X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₂+X₉ ∧ X₆+X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₆+X₉ ∧ X₇+X₉ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₇+X₉ ∧ X₃ ≤ X₉ ∧ X₉ ≤ X₃ ∧ 2 ≤ X₆ ∧ X₉ ≤ X₃ ∧ X₉ ≤ X₁₀ ∧ X₃ ≤ X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₀ ∧ 0 ≤ X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2+X₂ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2 ≤ X₁₀
knowledge_propagation leads to new time bound 4⋅X₅+2 {O(n)} for transition t₇₇₁: n_l30___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆-1, X₈, X₉, X₆+X₉-1, X₁₁) :|: X₄ ≤ 0 ∧ 2 ≤ X₉ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₆+X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₆+X₉ ∧ X₃ ≤ X₉ ∧ X₉ ≤ X₃ ∧ X₆+1 ≤ X₇ ∧ X₇ ≤ 1+X₆ ∧ 2 ≤ X₆ ∧ 2 ≤ X₆ ∧ X₉ ≤ X₃ ∧ X₉ ≤ X₁₀ ∧ 2 ≤ X₉ ∧ 5 ≤ X₇+X₉ ∧ 4 ≤ X₆+X₉ ∧ 2+X₄ ≤ X₉ ∧ 4 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 4 ≤ X₂+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1+X₇ ≤ X₁₀ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 3+X₄ ≤ X₇ ∧ 5 ≤ X₃+X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 7 ≤ X₁₀+X₇ ∧ X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁₀ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 6 ≤ X₁₀+X₃ ∧ 2+X₂ ≤ X₁₀ ∧ 2 ≤ X₂ ∧ 6 ≤ X₁₀+X₂ ∧ 4 ≤ X₁₀
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₇₇₂: n_l30___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆-1, X₈, X₉, X₆+X₉-1, X₁₁) :|: X₁₁ < 3+X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₂+X₉+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₂+X₉ ∧ X₂+X₃+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₂+X₃ ∧ X₂+1 ≤ X₈ ∧ X₈ ≤ 1+X₂ ∧ X₁+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₁₀+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ 2 ≤ X₆ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₇ ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₃ ∧ X₉ ≤ 1+X₂ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₁₀ ∧ X₉ ≤ X₁ ∧ X₃ ≤ X₉ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₆ ∧ X₈ ≤ 1+X₂ ∧ 3 ≤ X₈ ∧ 6 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 5 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 4 ≤ X₄+X₈ ∧ X₃ ≤ X₈ ∧ 5 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ X₁₁ ≤ 1+X₈ ∧ X₁₀ ≤ X₈ ∧ X₁ ≤ X₈ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₁ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₃ ≤ 1+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₁ ≤ 2+X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₃ ≤ 1+X₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ 2 ≤ X₂ ∧ X₁₁ ≤ 2+X₂ ∧ X₁₀ ≤ 1+X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁₁ ≤ 1+X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1+X₁₀ ≤ X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ X₁₀ ≤ X₁ ∧ X₁ ≤ X₁₀
MPRF for transition t₇₅₃: n_l18___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₇ ≤ X₆ ∧ X₆+X₉ ≤ 1+X₁₀ ∧ 1+X₁₀ ≤ X₆+X₉ ∧ X₁₀ < 1+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ of depth 1:
new bound:
24⋅X₅⋅X₅+51⋅X₅+14 {O(n^2)}
MPRF for transition t₇₅₅: n_l19___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___11(X₀, X₁, X₂, X₁₀-X₂, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₉ < 1 ∧ 1+X₉ ≤ X₁₀ ∧ X₇+X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₇+X₉ ∧ X₆+X₉ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₆+X₉ ∧ X₂+X₉+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₂+X₉ ∧ X₂+1 ≤ X₇ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ of depth 1:
new bound:
24⋅X₅⋅X₅+51⋅X₅+14 {O(n^2)}
MPRF for transition t₇₅₈: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₉ < 1 ∧ 1+X₉ ≤ X₁₀ ∧ X₇+X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₇+X₉ ∧ X₆+X₉ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₆+X₉ ∧ X₂+X₉+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₂+X₉ ∧ X₂+1 ≤ X₇ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ of depth 1:
new bound:
24⋅X₅⋅X₅+53⋅X₅+14 {O(n^2)}
MPRF for transition t₇₆₁: n_l22___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂+1, X₈, X₉, X₁₀, X₁₁) :|: X₃ < 2 ∧ X₃ ≤ X₁₀ ∧ X₂+X₃ ≤ X₁₀ ∧ X₁₀ ≤ X₂+X₃ ∧ X₃ ≤ X₉+1 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₃+X₆ ≤ X₁₀+2 ∧ 2+X₁₀ ≤ X₃+X₆ ∧ X₃ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ of depth 1:
new bound:
72⋅X₅⋅X₅+157⋅X₅+44 {O(n^2)}
MPRF for transition t₇₆₄: n_l23___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₂+1, X₈, X₃, X₁₀, X₁₁) :|: X₃ < 2 ∧ X₃ ≤ X₁₀ ∧ X₂+X₃ ≤ X₁₀ ∧ X₁₀ ≤ X₂+X₃ ∧ X₃ ≤ X₉+1 ∧ 1+X₉ ≤ X₃ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₃+X₆ ≤ X₁₀+2 ∧ 2+X₁₀ ≤ X₃+X₆ ∧ X₃ ≤ X₁₀ ∧ X₂+1 ≤ X₇ ∧ 2 ≤ X₆ ∧ X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₉ ≤ 0 ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₃ ∧ X₃+X₉ ≤ 1 ∧ X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ X₃ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ of depth 1:
new bound:
24⋅X₅⋅X₅+57⋅X₅+15 {O(n^2)}
MPRF for transition t₇₇₀: n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < 2 ∧ X₃ ≤ X₁₀ ∧ X₂+X₃ ≤ X₁₀ ∧ X₁₀ ≤ X₂+X₃ ∧ X₃ ≤ X₉ ∧ X₉ ≤ X₃ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₃+X₆ ≤ X₁₀ ∧ X₁₀ ≤ X₃+X₆ ∧ 2 ≤ X₆ ∧ X₉ ≤ 1 ∧ X₉ ≤ X₇ ∧ X₉ ≤ 1+X₆ ∧ X₉ ≤ X₃ ∧ X₃+X₉ ≤ 2 ∧ X₉ ≤ 1+X₂ ∧ X₉ ≤ X₁₀ ∧ X₃ ≤ X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ X₃ ≤ 1+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ of depth 1:
new bound:
40⋅X₅⋅X₅+85⋅X₅+16 {O(n^2)}
MPRF for transition t₇₇₄: n_l30___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆-1, X₈, X₉, X₆+X₉-1, X₁₁) :|: X₃ < 2 ∧ 3 ≤ X₇ ∧ X₂+1 ≤ X₇ ∧ X₇ ≤ 1+X₂ ∧ X₆+1 ≤ X₇ ∧ X₇ ≤ 1+X₆ ∧ X₃+X₇ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₃+X₇ ∧ X₃ ≤ X₉ ∧ X₉ ≤ X₃ ∧ 2 ≤ X₆ ∧ X₉ ≤ 1 ∧ 2+X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ X₉ ≤ X₃ ∧ X₃+X₉ ≤ 2 ∧ 1+X₉ ≤ X₂ ∧ X₉ ≤ X₁₀ ∧ X₃ ≤ X₉ ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₂ ∧ 3 ≤ X₇ ∧ 5 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₁₀ ≤ 1+X₆ ∧ X₃ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁₀ ∧ 2 ≤ X₂ ∧ X₁₀ ≤ 1+X₂ of depth 1:
new bound:
24⋅X₅⋅X₅+57⋅X₅+16 {O(n^2)}
MPRF for transition t₇₇₅: n_l8___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___13(X₀, X₁, X₇-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ < 1 ∧ 1+X₉ ≤ X₁₀ ∧ X₆+X₉ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₆+X₉ ∧ X₇+X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₇+X₉ ∧ 2 ≤ X₆ ∧ X₆ ≤ 1+X₇ ∧ 1+X₉ ≤ X₇ ∧ 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ X₁₀ ≤ X₇ ∧ 2 ≤ X₆ ∧ 1+X₁₀ ≤ X₆ of depth 1:
new bound:
32⋅X₅⋅X₅+67⋅X₅+14 {O(n^2)}
MPRF for transition t₇₉₁: n_l18___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ of depth 1:
new bound:
11⋅X₅+5 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:64⋅X₅⋅X₅+177⋅X₅+38 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 8⋅X₅⋅X₅+19⋅X₅+1 {O(n^2)}
t₁₂: 1 {O(1)}
t₁₃: 8⋅X₅⋅X₅+17⋅X₅ {O(n^2)}
t₁₄: 4⋅X₅ {O(n)}
t₁₅: 8⋅X₅⋅X₅+17⋅X₅ {O(n^2)}
t₁₆: 2⋅X₅+1 {O(n)}
t₁₇: 2⋅X₅ {O(n)}
t₁₈: 4⋅X₅+6 {O(n)}
t₁₉: 4⋅X₅+2 {O(n)}
t₂₀: 2⋅X₅ {O(n)}
t₂₁: 3⋅X₅+1 {O(n)}
t₂₂: 4⋅X₅+2 {O(n)}
t₂₃: 3⋅X₅ {O(n)}
t₂₄: 2⋅X₅ {O(n)}
t₂₅: 2⋅X₅ {O(n)}
t₂₆: 2⋅X₅ {O(n)}
t₂₇: 3⋅X₅+7 {O(n)}
t₂₈: 2⋅X₅ {O(n)}
t₂₉: 2⋅X₅ {O(n)}
t₃₀: 2⋅X₅ {O(n)}
t₃₁: 8⋅X₅⋅X₅+17⋅X₅+1 {O(n^2)}
t₃₂: 8⋅X₅⋅X₅+19⋅X₅+1 {O(n^2)}
t₃₃: 8⋅X₅⋅X₅+15⋅X₅+1 {O(n^2)}
t₃₄: 8⋅X₅⋅X₅+15⋅X₅+1 {O(n^2)}
t₃₅: 8⋅X₅⋅X₅+15⋅X₅+1 {O(n^2)}
t₃₆: 1 {O(1)}
Costbounds
Overall costbound: 64⋅X₅⋅X₅+177⋅X₅+38 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 8⋅X₅⋅X₅+19⋅X₅+1 {O(n^2)}
t₁₂: 1 {O(1)}
t₁₃: 8⋅X₅⋅X₅+17⋅X₅ {O(n^2)}
t₁₄: 4⋅X₅ {O(n)}
t₁₅: 8⋅X₅⋅X₅+17⋅X₅ {O(n^2)}
t₁₆: 2⋅X₅+1 {O(n)}
t₁₇: 2⋅X₅ {O(n)}
t₁₈: 4⋅X₅+6 {O(n)}
t₁₉: 4⋅X₅+2 {O(n)}
t₂₀: 2⋅X₅ {O(n)}
t₂₁: 3⋅X₅+1 {O(n)}
t₂₂: 4⋅X₅+2 {O(n)}
t₂₃: 3⋅X₅ {O(n)}
t₂₄: 2⋅X₅ {O(n)}
t₂₅: 2⋅X₅ {O(n)}
t₂₆: 2⋅X₅ {O(n)}
t₂₇: 3⋅X₅+7 {O(n)}
t₂₈: 2⋅X₅ {O(n)}
t₂₉: 2⋅X₅ {O(n)}
t₃₀: 2⋅X₅ {O(n)}
t₃₁: 8⋅X₅⋅X₅+17⋅X₅+1 {O(n^2)}
t₃₂: 8⋅X₅⋅X₅+19⋅X₅+1 {O(n^2)}
t₃₃: 8⋅X₅⋅X₅+15⋅X₅+1 {O(n^2)}
t₃₄: 8⋅X₅⋅X₅+15⋅X₅+1 {O(n^2)}
t₃₅: 8⋅X₅⋅X₅+15⋅X₅+1 {O(n^2)}
t₃₆: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₉ {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: X₁₀ {O(n)}
t₄, X₁₁: X₁₁ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₅, X₁₁: X₁₁ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₆, X₁₁: X₁₁ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₇, X₁₁: X₁₁ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₈, X₈: X₈ {O(n)}
t₈, X₉: X₉ {O(n)}
t₈, X₁₀: X₁₀ {O(n)}
t₈, X₁₁: X₁₁ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₉, X₁₁: X₁₁ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₅ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₀, X₈: X₈ {O(n)}
t₁₀, X₉: X₅ {O(n)}
t₁₀, X₁₀: X₁₀ {O(n)}
t₁₀, X₁₁: X₁₁ {O(n)}
t₁₁, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₁₁, X₂: 4⋅X₅+X₂+7 {O(n)}
t₁₁, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: 4⋅X₅+7 {O(n)}
t₁₁, X₇: 8⋅X₅+X₇+14 {O(n)}
t₁₁, X₈: 4⋅X₅+X₈+7 {O(n)}
t₁₁, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₁, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁₀+21 {O(n^3)}
t₁₁, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₁₂, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+2⋅X₁+237⋅X₅+21 {O(n^3)}
t₁₂, X₂: 4⋅X₅+X₂+7 {O(n)}
t₁₂, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₁₂, X₅: 2⋅X₅ {O(n)}
t₁₂, X₆: 5⋅X₅+7 {O(n)}
t₁₂, X₇: 8⋅X₅+X₇+14 {O(n)}
t₁₂, X₈: 2⋅X₈+4⋅X₅+7 {O(n)}
t₁₂, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+238⋅X₅+21 {O(n^3)}
t₁₂, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁₀+21 {O(n^3)}
t₁₂, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+2⋅X₁₁+474⋅X₅+42 {O(n^3)}
t₁₃, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₁₃, X₂: 4⋅X₅+X₂+7 {O(n)}
t₁₃, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: 4⋅X₅+7 {O(n)}
t₁₃, X₇: 4⋅X₅+7 {O(n)}
t₁₃, X₈: 4⋅X₅+X₈+7 {O(n)}
t₁₃, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₃, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₃, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₁₄, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₁₄, X₂: 4⋅X₅+X₂+7 {O(n)}
t₁₄, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: 4⋅X₅+7 {O(n)}
t₁₄, X₇: 4⋅X₅+7 {O(n)}
t₁₄, X₈: 4⋅X₅+X₈+7 {O(n)}
t₁₄, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₄, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₄, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₁₅, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₁₅, X₂: 2⋅X₂+8⋅X₅+14 {O(n)}
t₁₅, X₃: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+2⋅X₃+474⋅X₅+42 {O(n^3)}
t₁₅, X₅: X₅ {O(n)}
t₁₅, X₆: 8⋅X₅+14 {O(n)}
t₁₅, X₇: 4⋅X₅+7 {O(n)}
t₁₅, X₈: 4⋅X₅+X₈+7 {O(n)}
t₁₅, X₉: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+42 {O(n^3)}
t₁₅, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₅, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₁₆, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₁₆, X₂: 4⋅X₅+X₂+7 {O(n)}
t₁₆, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₁₆, X₅: X₅ {O(n)}
t₁₆, X₆: 4⋅X₅+7 {O(n)}
t₁₆, X₇: 4⋅X₅+7 {O(n)}
t₁₆, X₈: 4⋅X₅+X₈+7 {O(n)}
t₁₆, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₆, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₆, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₁₇, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₁₇, X₂: 4⋅X₅+X₂+7 {O(n)}
t₁₇, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₁₇, X₅: X₅ {O(n)}
t₁₇, X₆: 4⋅X₅+7 {O(n)}
t₁₇, X₇: 4⋅X₅+7 {O(n)}
t₁₇, X₈: 4⋅X₅+X₈+7 {O(n)}
t₁₇, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₇, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₇, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₁₈, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₁₈, X₂: 4⋅X₅+X₂+7 {O(n)}
t₁₈, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₁₈, X₅: X₅ {O(n)}
t₁₈, X₆: 4⋅X₅+7 {O(n)}
t₁₈, X₇: 4⋅X₅+7 {O(n)}
t₁₈, X₈: 4⋅X₅+X₈+7 {O(n)}
t₁₈, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₈, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₈, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₁₉, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₁₉, X₂: 4⋅X₅+X₂+7 {O(n)}
t₁₉, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₁₉, X₅: X₅ {O(n)}
t₁₉, X₆: 4⋅X₅+7 {O(n)}
t₁₉, X₇: 4⋅X₅+7 {O(n)}
t₁₉, X₈: 4⋅X₅+X₈+7 {O(n)}
t₁₉, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₉, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₁₉, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₂₀, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₂₀, X₂: 4⋅X₅+X₂+7 {O(n)}
t₂₀, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₂₀, X₅: X₅ {O(n)}
t₂₀, X₆: 4⋅X₅+7 {O(n)}
t₂₀, X₇: 4⋅X₅+7 {O(n)}
t₂₀, X₈: 4⋅X₅+7 {O(n)}
t₂₀, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₀, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₀, X₁₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₁, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₂₁, X₂: 4⋅X₅+X₂+7 {O(n)}
t₂₁, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₂₁, X₅: X₅ {O(n)}
t₂₁, X₆: 4⋅X₅+7 {O(n)}
t₂₁, X₇: 4⋅X₅+7 {O(n)}
t₂₁, X₈: 4⋅X₅+7 {O(n)}
t₂₁, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₁, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₁, X₁₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₂, X₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+2⋅X₁+474⋅X₅+42 {O(n^3)}
t₂₂, X₂: 4⋅X₅+X₂+7 {O(n)}
t₂₂, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: 4⋅X₅+7 {O(n)}
t₂₂, X₇: 8⋅X₅+14 {O(n)}
t₂₂, X₈: 4⋅X₅+7 {O(n)}
t₂₂, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₂, X₁₀: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+42 {O(n^3)}
t₂₂, X₁₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₃, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₂₃, X₂: 4⋅X₅+X₂+7 {O(n)}
t₂₃, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: 4⋅X₅+7 {O(n)}
t₂₃, X₇: 4⋅X₅+7 {O(n)}
t₂₃, X₈: 4⋅X₅+7 {O(n)}
t₂₃, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₃, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₃, X₁₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₄, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₂₄, X₂: 4⋅X₅+X₂+7 {O(n)}
t₂₄, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₂₄, X₅: X₅ {O(n)}
t₂₄, X₆: 4⋅X₅+7 {O(n)}
t₂₄, X₇: 4⋅X₅+7 {O(n)}
t₂₄, X₈: 4⋅X₅+7 {O(n)}
t₂₄, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₄, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₄, X₁₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₅, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₂₅, X₂: 4⋅X₅+X₂+7 {O(n)}
t₂₅, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₂₅, X₅: X₅ {O(n)}
t₂₅, X₆: 4⋅X₅+7 {O(n)}
t₂₅, X₇: 4⋅X₅+7 {O(n)}
t₂₅, X₈: 4⋅X₅+7 {O(n)}
t₂₅, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₅, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₅, X₁₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₆, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₂₆, X₂: 4⋅X₅+X₂+7 {O(n)}
t₂₆, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₂₆, X₅: X₅ {O(n)}
t₂₆, X₆: 4⋅X₅+7 {O(n)}
t₂₆, X₇: 4⋅X₅+7 {O(n)}
t₂₆, X₈: 4⋅X₅+7 {O(n)}
t₂₆, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₆, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₆, X₁₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₇, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₂₇, X₂: 4⋅X₅+X₂+7 {O(n)}
t₂₇, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₂₇, X₅: X₅ {O(n)}
t₂₇, X₆: 4⋅X₅+7 {O(n)}
t₂₇, X₇: 4⋅X₅+7 {O(n)}
t₂₇, X₈: 4⋅X₅+7 {O(n)}
t₂₇, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₇, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₇, X₁₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₈, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₈, X₂: 4⋅X₅+X₂+7 {O(n)}
t₂₈, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₂₈, X₅: X₅ {O(n)}
t₂₈, X₆: 4⋅X₅+7 {O(n)}
t₂₈, X₇: 12⋅X₅+21 {O(n)}
t₂₈, X₈: 4⋅X₅+7 {O(n)}
t₂₈, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₈, X₁₀: 192⋅X₅⋅X₅⋅X₅+720⋅X₅⋅X₅+711⋅X₅+63 {O(n^3)}
t₂₈, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+42 {O(n^3)}
t₂₉, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₉, X₂: 4⋅X₅+X₂+7 {O(n)}
t₂₉, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₂₉, X₅: X₅ {O(n)}
t₂₉, X₆: 4⋅X₅+7 {O(n)}
t₂₉, X₇: 12⋅X₅+21 {O(n)}
t₂₉, X₈: 4⋅X₅+7 {O(n)}
t₂₉, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₂₉, X₁₀: 192⋅X₅⋅X₅⋅X₅+720⋅X₅⋅X₅+711⋅X₅+63 {O(n^3)}
t₂₉, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+42 {O(n^3)}
t₃₀, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₃₀, X₂: 4⋅X₅+X₂+7 {O(n)}
t₃₀, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₃₀, X₅: X₅ {O(n)}
t₃₀, X₆: 4⋅X₅+7 {O(n)}
t₃₀, X₇: 4⋅X₅+7 {O(n)}
t₃₀, X₈: 4⋅X₅+7 {O(n)}
t₃₀, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₃₀, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₃₀, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+42 {O(n^3)}
t₃₁, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₃₁, X₂: 4⋅X₅+7 {O(n)}
t₃₁, X₃: 192⋅X₅⋅X₅⋅X₅+720⋅X₅⋅X₅+3⋅X₃+711⋅X₅+63 {O(n^3)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: 12⋅X₅+21 {O(n)}
t₃₁, X₇: 8⋅X₅+14 {O(n)}
t₃₁, X₈: 4⋅X₅+X₈+7 {O(n)}
t₃₁, X₉: 192⋅X₅⋅X₅⋅X₅+720⋅X₅⋅X₅+711⋅X₅+63 {O(n^3)}
t₃₁, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₃₁, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₃₂, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₃₂, X₂: 4⋅X₅+7 {O(n)}
t₃₂, X₃: 192⋅X₅⋅X₅⋅X₅+720⋅X₅⋅X₅+3⋅X₃+711⋅X₅+63 {O(n^3)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: 12⋅X₅+21 {O(n)}
t₃₂, X₇: 8⋅X₅+14 {O(n)}
t₃₂, X₈: 4⋅X₅+X₈+7 {O(n)}
t₃₂, X₉: 192⋅X₅⋅X₅⋅X₅+720⋅X₅⋅X₅+711⋅X₅+63 {O(n^3)}
t₃₂, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₃₂, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₃₃, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₃₃, X₂: 4⋅X₅+7 {O(n)}
t₃₃, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₃₃, X₅: X₅ {O(n)}
t₃₃, X₆: 12⋅X₅+21 {O(n)}
t₃₃, X₇: 8⋅X₅+14 {O(n)}
t₃₃, X₈: 4⋅X₅+X₈+7 {O(n)}
t₃₃, X₉: 192⋅X₅⋅X₅⋅X₅+720⋅X₅⋅X₅+711⋅X₅+63 {O(n^3)}
t₃₃, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₃₃, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₃₄, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₃₄, X₂: 4⋅X₅+7 {O(n)}
t₃₄, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₃₄, X₅: X₅ {O(n)}
t₃₄, X₆: 12⋅X₅+21 {O(n)}
t₃₄, X₇: 8⋅X₅+14 {O(n)}
t₃₄, X₈: 4⋅X₅+X₈+7 {O(n)}
t₃₄, X₉: 192⋅X₅⋅X₅⋅X₅+720⋅X₅⋅X₅+711⋅X₅+63 {O(n^3)}
t₃₄, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₃₄, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₃₅, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁+21 {O(n^3)}
t₃₅, X₂: 4⋅X₅+7 {O(n)}
t₃₅, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₃₅, X₅: X₅ {O(n)}
t₃₅, X₆: 4⋅X₅+7 {O(n)}
t₃₅, X₇: 8⋅X₅+14 {O(n)}
t₃₅, X₈: 4⋅X₅+X₈+7 {O(n)}
t₃₅, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₃₅, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+21 {O(n^3)}
t₃₅, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+474⋅X₅+X₁₁+42 {O(n^3)}
t₃₆, X₁: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+2⋅X₁+237⋅X₅+21 {O(n^3)}
t₃₆, X₂: 4⋅X₅+X₂+7 {O(n)}
t₃₆, X₃: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₃+21 {O(n^3)}
t₃₆, X₅: 2⋅X₅ {O(n)}
t₃₆, X₆: 5⋅X₅+7 {O(n)}
t₃₆, X₇: 8⋅X₅+X₇+14 {O(n)}
t₃₆, X₈: 2⋅X₈+4⋅X₅+7 {O(n)}
t₃₆, X₉: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+238⋅X₅+21 {O(n^3)}
t₃₆, X₁₀: 64⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+237⋅X₅+X₁₀+21 {O(n^3)}
t₃₆, X₁₁: 128⋅X₅⋅X₅⋅X₅+480⋅X₅⋅X₅+2⋅X₁₁+474⋅X₅+42 {O(n^3)}