Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₁: l1(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+X₃, X₃-1) :|: 1 ≤ X₃
t₂: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₃ < 1
t₃: l2(X₀, X₁, X₂, X₃) → l3(X₂, X₂, X₂, X₃) :|: 1 ≤ X₂
t₅: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂-1, X₃) :|: X₀ ≤ 0
t₄: l3(X₀, X₁, X₂, X₃) → l3(X₀+X₁, X₁-1, X₂, X₃) :|: 1 ≤ X₀

Preprocessing

Found invariant X₃ ≤ 0 for location l2

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₁: l1(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+X₃, X₃-1) :|: 1 ≤ X₃
t₂: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₃ < 1
t₃: l2(X₀, X₁, X₂, X₃) → l3(X₂, X₂, X₂, X₃) :|: 1 ≤ X₂ ∧ X₃ ≤ 0
t₅: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂-1, X₃) :|: X₀ ≤ 0 ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀
t₄: l3(X₀, X₁, X₂, X₃) → l3(X₀+X₁, X₁-1, X₂, X₃) :|: 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀

MPRF for transition t₁: l1(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+X₃, X₃-1) :|: 1 ≤ X₃ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₃: l2(X₀, X₁, X₂, X₃) → l3(X₂, X₂, X₂, X₃) :|: 1 ≤ X₂ ∧ X₃ ≤ 0 of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂-1, X₃) :|: X₀ ≤ 0 ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀ of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}

TWN: t₄: l3→l3

cycle: [t₄: l3→l3]
loop: (1 ≤ X₀,(X₀,X₁) -> (X₀+X₁,X₁-1)
order: [X₁; X₀]
closed-form:
X₁: X₁ + [[n != 0]] * -1 * n^1
X₀: X₀ + [[n != 0]] * X₁ * n^1 + [[n != 0, n != 1]] * -1/2 * n^2 + [[n != 0, n != 1]] * 1/2 * n^1

Termination: true
Formula:

1 < 0
∨ 0 < 2⋅X₁+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2

Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 2+2⋅X₀+2⋅X₁
M: 0
N: 2
Bound: 4⋅X₀+4⋅X₁+7 {O(n)}

TWN - Lifting for t₄: l3→l3 of 4⋅X₀+4⋅X₁+9 {O(n)}

relevant size-bounds w.r.t. t₃:
X₀: 4⋅X₃⋅X₃+4⋅X₂+4⋅X₃ {O(n^2)}
X₁: 4⋅X₃⋅X₃+4⋅X₂+4⋅X₃ {O(n^2)}
Runtime-bound of t₃: 2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}
Results in: 64⋅X₃⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃⋅X₃+128⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃+64⋅X₂⋅X₂+82⋅X₃⋅X₃+18⋅X₂+18⋅X₃ {O(n^4)}

Chain transitions t₅: l3→l2 and t₃: l2→l3 to t₄₁: l3→l3

Chain transitions t₂: l1→l2 and t₃: l2→l3 to t₄₂: l1→l3

Analysing control-flow refined program

Found invariant X₃ ≤ 0 for location l2

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀ for location l3

knowledge_propagation leads to new time bound 64⋅X₃⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃⋅X₃+128⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃+64⋅X₂⋅X₂+82⋅X₃⋅X₃+18⋅X₂+18⋅X₃ {O(n^4)} for transition t₄₁: l3(X₀, X₁, X₂, X₃) -{2}> l3(X₂-1, X₂-1, X₂-1, X₃) :|: X₀ ≤ 0 ∧ 2 ≤ X₂ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant X₃ ≤ 0 for location l2

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___4

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l3___3

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 2+X₁+X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 2+X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ 0 for location n_l2___1

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ 2+X₁ ≤ X₂ ∧ 2+X₁ ≤ X₀ for location n_l3___2

MPRF for transition t₈₆: n_l2___1(X₀, X₁, X₂, X₃) → n_l3___4(X₂, X₂, X₂, X₃) :|: 0 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ 0 ∧ 1 ≤ X₂ ∧ X₃ ≤ 0 ∧ X₃ ≤ 0 ∧ X₃ ≤ 0 ∧ X₃ ≤ 0 ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 2+X₁+X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 2+X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}

MPRF for transition t₈₈: n_l3___2(X₀, X₁, X₂, X₃) → n_l2___1(X₀, X₁, X₂-1, X₃) :|: 2+X₁ ≤ X₀ ∧ 2+2⋅X₁ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₃ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ 2+X₁ ≤ X₂ ∧ 2+X₁ ≤ X₀ of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}

MPRF for transition t₉₀: n_l3___3(X₀, X₁, X₂, X₃) → n_l3___2(X₀+X₁, X₁-1, X₂, X₃) :|: 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2+X₁ ≤ X₀ ∧ 2+2⋅X₁ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

4⋅X₃⋅X₃+4⋅X₂+4⋅X₃ {O(n^2)}

MPRF for transition t₉₁: n_l3___4(X₀, X₁, X₂, X₃) → n_l3___3(X₀+X₁, X₁-1, X₂, X₃) :|: 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ 0 ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}

TWN: t₈₉: n_l3___2→n_l3___2

cycle: [t₈₉: n_l3___2→n_l3___2]
loop: (2+X₁ ≤ X₀ ∧ 2+2⋅X₁ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀,(X₀,X₁,X₂) -> (X₀+X₁,X₁-1,X₂)
order: [X₁; X₀; X₂]
closed-form:
X₁: X₁ + [[n != 0]] * -1 * n^1
X₀: X₀ + [[n != 0]] * X₁ * n^1 + [[n != 0, n != 1]] * -1/2 * n^2 + [[n != 0, n != 1]] * 1/2 * n^1
X₂: X₂

Termination: true
Formula:

0 < 1 ∧ 1 < 0
∨ 0 < 1 ∧ 1 < 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 < 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 1+X₁ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1+X₁ < X₂ ∧ 1 < 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₁ < X₂ ∧ 1 < 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 1+X₁ < X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 1 < 0 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 1 < 0 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 1+X₁ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₁ < X₂ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₁ < X₂ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 1 < 0 ∧ 1+X₁ < X₂ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0
∨ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 1 < 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 1 < 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 1 < 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 2⋅X₁+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 1 < 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 1 < 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 < 0
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 < 0
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 2⋅X₁+1 ∧ 0 < 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 1 < 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 1 < 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 < 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 < 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ < X₂ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 2⋅X₁+1 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 < 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 < 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 < 2⋅X₁+1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 2 < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 < 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 < 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 < 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 1 < 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 1 < 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 < 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 < 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ < X₂ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 < 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 < 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 2 < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 1 < 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 1 < 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 1 < 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 < 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 < 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 < 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 1 < 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 1 < 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 < 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 < 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ < X₂ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 < 2⋅X₁+5 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 < 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 4+4⋅X₁ < 2⋅X₀ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 < 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 0 < 2⋅X₁+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 4+2⋅X₁ < 2⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0
∨ 0 ≤ 2⋅X₁+1 ∧ 2⋅X₁+1 ≤ 0 ∧ 2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ 2⋅X₁+5 ∧ 2⋅X₁+5 ≤ 0 ∧ 4+4⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁+3 ∧ 2⋅X₁+3 ≤ 0 ∧ 4+2⋅X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 4+2⋅X₁

Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 2+2⋅X₀+2⋅X₁
M: 0
N: 2
Bound: 4⋅X₀+4⋅X₁+7 {O(n)}
Stabilization-Threshold for: 1+X₁ ≤ X₂
alphas_abs: 1+X₁+X₂
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+4 {O(n)}
Stabilization-Threshold for: 2+2⋅X₁ ≤ X₀
alphas_abs: 5+2⋅X₀+4⋅X₁
M: 0
N: 2
Bound: 4⋅X₀+8⋅X₁+13 {O(n)}
Stabilization-Threshold for: 2+X₁ ≤ X₀
alphas_abs: 4+2⋅X₀+2⋅X₁
M: 0
N: 2
Bound: 4⋅X₀+4⋅X₁+11 {O(n)}

TWN - Lifting for t₈₉: n_l3___2→n_l3___2 of 12⋅X₀+18⋅X₁+2⋅X₂+37 {O(n)}

relevant size-bounds w.r.t. t₉₀:
X₀: 16⋅X₃⋅X₃+16⋅X₂+16⋅X₃ {O(n^2)}
X₁: 4⋅X₃⋅X₃+4⋅X₂+4⋅X₃+1 {O(n^2)}
X₂: 2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}
Runtime-bound of t₉₀: 4⋅X₃⋅X₃+4⋅X₂+4⋅X₃ {O(n^2)}
Results in: 1072⋅X₃⋅X₃⋅X₃⋅X₃+2144⋅X₂⋅X₃⋅X₃+2144⋅X₃⋅X₃⋅X₃+1072⋅X₂⋅X₂+1292⋅X₃⋅X₃+2144⋅X₂⋅X₃+220⋅X₂+220⋅X₃ {O(n^4)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:64⋅X₃⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃⋅X₃+128⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃+64⋅X₂⋅X₂+86⋅X₃⋅X₃+22⋅X₂+23⋅X₃+2 {O(n^4)}
t₀: 1 {O(1)}
t₁: X₃ {O(n)}
t₂: 1 {O(1)}
t₃: 2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}
t₄: 64⋅X₃⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃⋅X₃+128⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃+64⋅X₂⋅X₂+82⋅X₃⋅X₃+18⋅X₂+18⋅X₃ {O(n^4)}
t₅: 2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}

Costbounds

Overall costbound: 64⋅X₃⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃⋅X₃+128⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃+64⋅X₂⋅X₂+86⋅X₃⋅X₃+22⋅X₂+23⋅X₃+2 {O(n^4)}
t₀: 1 {O(1)}
t₁: X₃ {O(n)}
t₂: 1 {O(1)}
t₃: 2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}
t₄: 64⋅X₃⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃⋅X₃+128⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃+64⋅X₂⋅X₂+82⋅X₃⋅X₃+18⋅X₂+18⋅X₃ {O(n^4)}
t₅: 2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: 2⋅X₃⋅X₃+2⋅X₃+X₂ {O(n^2)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: 2⋅X₀ {O(n)}
t₂, X₁: 2⋅X₁ {O(n)}
t₂, X₂: 2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}
t₂, X₃: 2⋅X₃ {O(n)}
t₃, X₀: 4⋅X₃⋅X₃+4⋅X₂+4⋅X₃ {O(n^2)}
t₃, X₁: 4⋅X₃⋅X₃+4⋅X₂+4⋅X₃ {O(n^2)}
t₃, X₂: 2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}
t₃, X₃: 2⋅X₃ {O(n)}
t₄, X₀: 4096⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃+16384⋅X₂⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃+16384⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃+24576⋅X₂⋅X₂⋅X₃⋅X₃⋅X₃⋅X₃+27392⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃+49152⋅X₂⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃+16384⋅X₂⋅X₂⋅X₂⋅X₃⋅X₃+24832⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃+49152⋅X₂⋅X₂⋅X₃⋅X₃⋅X₃+57600⋅X₂⋅X₃⋅X₃⋅X₃⋅X₃+13076⋅X₃⋅X₃⋅X₃⋅X₃+16384⋅X₂⋅X₂⋅X₂⋅X₃+33024⋅X₂⋅X₂⋅X₃⋅X₃+33280⋅X₂⋅X₃⋅X₃⋅X₃+4096⋅X₂⋅X₂⋅X₂⋅X₂+2816⋅X₂⋅X₂⋅X₂+3880⋅X₃⋅X₃⋅X₃+8448⋅X₂⋅X₂⋅X₃+9512⋅X₂⋅X₃⋅X₃+1064⋅X₂⋅X₃+532⋅X₂⋅X₂+562⋅X₃⋅X₃+30⋅X₂+30⋅X₃ {O(n^8)}
t₄, X₁: 64⋅X₃⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃⋅X₃+128⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃+64⋅X₂⋅X₂+86⋅X₃⋅X₃+22⋅X₂+22⋅X₃ {O(n^4)}
t₄, X₂: 2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}
t₄, X₃: 2⋅X₃ {O(n)}
t₅, X₀: 4096⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃+16384⋅X₂⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃+16384⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃+24576⋅X₂⋅X₂⋅X₃⋅X₃⋅X₃⋅X₃+27392⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃+49152⋅X₂⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃+16384⋅X₂⋅X₂⋅X₂⋅X₃⋅X₃+24832⋅X₃⋅X₃⋅X₃⋅X₃⋅X₃+49152⋅X₂⋅X₂⋅X₃⋅X₃⋅X₃+57600⋅X₂⋅X₃⋅X₃⋅X₃⋅X₃+13076⋅X₃⋅X₃⋅X₃⋅X₃+16384⋅X₂⋅X₂⋅X₂⋅X₃+33024⋅X₂⋅X₂⋅X₃⋅X₃+33280⋅X₂⋅X₃⋅X₃⋅X₃+4096⋅X₂⋅X₂⋅X₂⋅X₂+2816⋅X₂⋅X₂⋅X₂+3880⋅X₃⋅X₃⋅X₃+8448⋅X₂⋅X₂⋅X₃+9512⋅X₂⋅X₃⋅X₃+1064⋅X₂⋅X₃+532⋅X₂⋅X₂+562⋅X₃⋅X₃+30⋅X₂+30⋅X₃ {O(n^8)}
t₅, X₁: 64⋅X₃⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃⋅X₃+128⋅X₃⋅X₃⋅X₃+128⋅X₂⋅X₃+64⋅X₂⋅X₂+86⋅X₃⋅X₃+22⋅X₂+22⋅X₃ {O(n^4)}
t₅, X₂: 2⋅X₃⋅X₃+2⋅X₂+2⋅X₃ {O(n^2)}
t₅, X₃: 2⋅X₃ {O(n)}