Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4
Transitions:
t₂: l0(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₁+1) :|: 0 ≤ X₁ ∧ X₁ ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃) → l2(E, X₁, X₂, X₃) :|: X₃+1 ≤ X₁
t₄: l1(X₀, X₁, X₂, X₃) → l2(E, X₁, X₂, X₃) :|: 1+X₁ ≤ X₃
t₈: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₁) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁
t₇: l2(X₀, X₁, X₂, X₃) → l3(0, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₀: l2(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀+1 ≤ 0
t₁: l2(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: 1 ≤ X₀
t₅: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃+1) :|: X₃ ≤ X₂
t₆: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, 0) :|: 1+X₂ ≤ X₃

Preprocessing

Found invariant X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ for location l2

Found invariant X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ for location l1

Found invariant X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ for location l4

Found invariant X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4
Transitions:
t₂: l0(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₁+1) :|: 0 ≤ X₁ ∧ X₁ ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃) → l2(E, X₁, X₂, X₃) :|: X₃+1 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₄: l1(X₀, X₁, X₂, X₃) → l2(E, X₁, X₂, X₃) :|: 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₈: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₁) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₇: l2(X₀, X₁, X₂, X₃) → l3(0, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₀: l2(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀+1 ≤ 0 ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: 1 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃+1) :|: X₃ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₆: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, 0) :|: 1+X₂ ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁

Chain transitions t₆: l4→l1 and t₈: l1→l3 to t₁₇₄: l4→l3

Chain transitions t₅: l4→l1 and t₈: l1→l3 to t₁₇₅: l4→l3

Chain transitions t₅: l4→l1 and t₄: l1→l2 to t₁₇₆: l4→l2

Chain transitions t₆: l4→l1 and t₄: l1→l2 to t₁₇₇: l4→l2

Chain transitions t₂: l0→l1 and t₄: l1→l2 to t₁₇₈: l0→l2

Chain transitions t₂: l0→l1 and t₈: l1→l3 to t₁₇₉: l0→l3

Chain transitions t₂: l0→l1 and t₃: l1→l2 to t₁₈₀: l0→l2

Chain transitions t₅: l4→l1 and t₃: l1→l2 to t₁₈₁: l4→l2

Chain transitions t₆: l4→l1 and t₃: l1→l2 to t₁₈₂: l4→l2

Chain transitions t₁₈₂: l4→l2 and t₁: l2→l4 to t₁₈₃: l4→l4

Chain transitions t₁₈₁: l4→l2 and t₁: l2→l4 to t₁₈₄: l4→l4

Chain transitions t₁₈₁: l4→l2 and t₀: l2→l4 to t₁₈₅: l4→l4

Chain transitions t₁₈₂: l4→l2 and t₀: l2→l4 to t₁₈₆: l4→l4

Chain transitions t₁₇₇: l4→l2 and t₀: l2→l4 to t₁₈₇: l4→l4

Chain transitions t₁₇₇: l4→l2 and t₁: l2→l4 to t₁₈₈: l4→l4

Chain transitions t₁₇₇: l4→l2 and t₇: l2→l3 to t₁₈₉: l4→l3

Chain transitions t₁₈₁: l4→l2 and t₇: l2→l3 to t₁₉₀: l4→l3

Chain transitions t₁₈₂: l4→l2 and t₇: l2→l3 to t₁₉₁: l4→l3

Chain transitions t₁₇₆: l4→l2 and t₇: l2→l3 to t₁₉₂: l4→l3

Chain transitions t₁₇₆: l4→l2 and t₀: l2→l4 to t₁₉₃: l4→l4

Chain transitions t₁₇₆: l4→l2 and t₁: l2→l4 to t₁₉₄: l4→l4

Chain transitions t₁₈₀: l0→l2 and t₇: l2→l3 to t₁₉₅: l0→l3

Chain transitions t₁₈₀: l0→l2 and t₀: l2→l4 to t₁₉₆: l0→l4

Chain transitions t₁₈₀: l0→l2 and t₁: l2→l4 to t₁₉₇: l0→l4

Chain transitions t₁₇₈: l0→l2 and t₇: l2→l3 to t₁₉₈: l0→l3

Chain transitions t₁₇₈: l0→l2 and t₀: l2→l4 to t₁₉₉: l0→l4

Chain transitions t₁₇₈: l0→l2 and t₁: l2→l4 to t₂₀₀: l0→l4

Analysing control-flow refined program

Cut unsatisfiable transition t₁₇₇: l4→l2

Cut unsatisfiable transition t₁₇₉: l0→l3

Cut unsatisfiable transition t₁₈₀: l0→l2

Cut unsatisfiable transition t₁₈₇: l4→l4

Cut unsatisfiable transition t₁₈₈: l4→l4

Cut unsatisfiable transition t₁₈₉: l4→l3

Cut unsatisfiable transition t₁₉₅: l0→l3

Cut unsatisfiable transition t₁₉₆: l0→l4

Cut unsatisfiable transition t₁₉₇: l0→l4

Eliminate variables {X₀} that do not contribute to the problem

Found invariant X₂ ≤ 1+X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l2

Found invariant X₂ ≤ 1+X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1

Found invariant X₂ ≤ 1+X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4

Found invariant X₂ ≤ 1+X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l3

MPRF for transition t₃₀₅: l4(X₀, X₁, X₂) -{3}> l4(X₀, X₁, 1+X₂) :|: X₂ ≤ X₁ ∧ X₀ ≤ X₂ ∧ Temp_Int₆₆₉+1 ≤ 0 ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₀+2⋅X₁+4 {O(n)}

MPRF for transition t₃₀₆: l4(X₀, X₁, X₂) -{3}> l4(X₀, X₁, 1+X₂) :|: X₂ ≤ X₁ ∧ X₀ ≤ X₂ ∧ 1 ≤ Temp_Int₆₆₉ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₀+2⋅X₁+4 {O(n)}

knowledge_propagation leads to new time bound 4⋅X₀+4⋅X₁+10 {O(n)} for transition t₃₀₁: l4(X₀, X₁, X₂) -{3}> l4(X₀, X₁, 0) :|: 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ Temp_Int₆₉₃ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound 4⋅X₀+4⋅X₁+10 {O(n)} for transition t₃₀₄: l4(X₀, X₁, X₂) -{3}> l4(X₀, X₁, 0) :|: 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ ∧ Temp_Int₆₉₃+1 ≤ 0 ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀

MPRF for transition t₃₀₂: l4(X₀, X₁, X₂) -{3}> l4(X₀, X₁, 1+X₂) :|: X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ Temp_Int₆₈₉ ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

48⋅X₀⋅X₁+48⋅X₁⋅X₁+10⋅X₀+130⋅X₁+24 {O(n^2)}

MPRF for transition t₃₀₃: l4(X₀, X₁, X₂) -{3}> l4(X₀, X₁, 1+X₂) :|: X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ Temp_Int₆₈₉+1 ≤ 0 ∧ X₂ ≤ 1+X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

48⋅X₀⋅X₁+48⋅X₁⋅X₁+10⋅X₀+130⋅X₁+24 {O(n^2)}

Analysing control-flow refined program

Cut unsatisfiable transition t₈: l1→l3

Cut unsatisfiable transition t₅₉₁: n_l1___7→n_l2___5

Cut unsatisfiable transition t₆₃₄: n_l1___15→l3

Cut unreachable locations [n_l2___5; n_l4___1; n_l4___2] from the program graph

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₁ for location n_l2___6

Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l4___17

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___3

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l4___9

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l4___4

Found invariant X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l1___7

Found invariant X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l4___12

Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___16

Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ for location n_l2___18

Found invariant X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁ for location n_l1___15

Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ for location l1

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ for location n_l1___14

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l2___10

Found invariant X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___8

Found invariant X₃ ≤ 1+X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ for location l3

Found invariant X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁ for location n_l2___13

Found invariant X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___11

MPRF for transition t₅₈₉: n_l1___15(X₀, X₁, X₂, X₃) → n_l2___13(NoDet0, Arg1_P, Arg2_P, Arg3_P) :|: 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ Arg3_P ≤ 1+Arg2_P ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:

new bound:

2⋅X₁+2⋅X₂+8 {O(n)}

MPRF for transition t₅₉₅: n_l2___13(X₀, X₁, X₂, X₃) → n_l4___11(X₀, X₁, X₂, X₃) :|: 1+X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:

new bound:

2⋅X₁+2⋅X₂+8 {O(n)}

MPRF for transition t₅₉₆: n_l2___13(X₀, X₁, X₂, X₃) → n_l4___12(X₀, X₁, X₂, X₃) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ 0 ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:

new bound:

2⋅X₁+2⋅X₂+8 {O(n)}

MPRF for transition t₆₀₅: n_l4___11(X₀, X₁, X₂, X₃) → n_l1___15(X₀, X₁, X₂, X₃+1) :|: 1+X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁+2⋅X₂+6 {O(n)}

MPRF for transition t₆₀₇: n_l4___12(X₀, X₁, X₂, X₃) → n_l1___15(X₀, X₁, X₂, X₃+1) :|: 1+X₀ ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 of depth 1:

new bound:

2⋅X₁+4⋅X₂+4 {O(n)}

MPRF for transition t₅₉₂: n_l1___7(X₀, X₁, X₂, X₃) → n_l2___6(NoDet0, Arg1_P, Arg2_P, Arg3_P) :|: X₃ ≤ X₂ ∧ 1+Arg3_P ≤ Arg1_P ∧ Arg1_P ≤ Arg2_P ∧ 0 ≤ Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

12⋅X₁+4 {O(n)}

MPRF for transition t₆₀₁: n_l2___6(X₀, X₁, X₂, X₃) → n_l4___3(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

12⋅X₂+6 {O(n)}

MPRF for transition t₆₀₂: n_l2___6(X₀, X₁, X₂, X₃) → n_l4___4(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

12⋅X₂+6 {O(n)}

MPRF for transition t₆₁₃: n_l4___3(X₀, X₁, X₂, X₃) → n_l1___7(X₀, X₁, X₂, X₃+1) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

12⋅X₂+2 {O(n)}

MPRF for transition t₆₁₄: n_l4___4(X₀, X₁, X₂, X₃) → n_l1___7(X₀, X₁, X₂, X₃+1) :|: 1+X₀ ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 of depth 1:

new bound:

12⋅X₁+2 {O(n)}

CFR: Improvement to new bound with the following program:

new bound:

Infinite

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: Arg1_P, Arg2_P, Arg3_P, NoDet0
Locations: l0, l1, l3, n_l1___14, n_l1___15, n_l1___7, n_l2___10, n_l2___13, n_l2___18, n_l2___6, n_l4___11, n_l4___12, n_l4___16, n_l4___17, n_l4___3, n_l4___4, n_l4___8, n_l4___9
Transitions:
t₂: l0(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₁+1) :|: 0 ≤ X₁ ∧ X₁ ≤ X₂
t₅₉₀: l1(X₀, X₁, X₂, X₃) → n_l2___18(NoDet0, Arg1_P, Arg2_P, Arg3_P) :|: 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ Arg3_P ≤ 1+Arg2_P ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₆₃₃: n_l1___14(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₁) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅₈₈: n_l1___14(X₀, X₁, X₂, X₃) → n_l2___10(NoDet0, Arg1_P, Arg2_P, Arg3_P) :|: X₃ ≤ X₂ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+Arg3_P ≤ Arg1_P ∧ Arg1_P ≤ Arg2_P ∧ 0 ≤ Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅₈₉: n_l1___15(X₀, X₁, X₂, X₃) → n_l2___13(NoDet0, Arg1_P, Arg2_P, Arg3_P) :|: 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ Arg3_P ≤ 1+Arg2_P ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁
t₆₃₅: n_l1___7(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₁) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₅₉₂: n_l1___7(X₀, X₁, X₂, X₃) → n_l2___6(NoDet0, Arg1_P, Arg2_P, Arg3_P) :|: X₃ ≤ X₂ ∧ 1+Arg3_P ≤ Arg1_P ∧ Arg1_P ≤ Arg2_P ∧ 0 ≤ Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₆₃₆: n_l2___10(X₀, X₁, X₂, X₃) → l3(0, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₅₉₃: n_l2___10(X₀, X₁, X₂, X₃) → n_l4___8(X₀, X₁, X₂, X₃) :|: 1 ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₅₉₄: n_l2___10(X₀, X₁, X₂, X₃) → n_l4___9(X₀, X₁, X₂, X₃) :|: 1 ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₆₃₇: n_l2___13(X₀, X₁, X₂, X₃) → l3(0, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅₉₅: n_l2___13(X₀, X₁, X₂, X₃) → n_l4___11(X₀, X₁, X₂, X₃) :|: 1+X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅₉₆: n_l2___13(X₀, X₁, X₂, X₃) → n_l4___12(X₀, X₁, X₂, X₃) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ 0 ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁
t₆₃₈: n_l2___18(X₀, X₁, X₂, X₃) → l3(0, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅₉₇: n_l2___18(X₀, X₁, X₂, X₃) → n_l4___16(X₀, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅₉₈: n_l2___18(X₀, X₁, X₂, X₃) → n_l4___17(X₀, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₀ ≤ 0 ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₆₄₀: n_l2___6(X₀, X₁, X₂, X₃) → l3(0, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₁
t₆₀₁: n_l2___6(X₀, X₁, X₂, X₃) → n_l4___3(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₁
t₆₀₂: n_l2___6(X₀, X₁, X₂, X₃) → n_l4___4(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₁
t₆₀₄: n_l4___11(X₀, X₁, X₂, X₃) → n_l1___14(X₀, X₁, X₂, 0) :|: 1+X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₀₅: n_l4___11(X₀, X₁, X₂, X₃) → n_l1___15(X₀, X₁, X₂, X₃+1) :|: 1+X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₀₆: n_l4___12(X₀, X₁, X₂, X₃) → n_l1___14(X₀, X₁, X₂, 0) :|: 1+X₀ ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₂+1 ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
t₆₀₇: n_l4___12(X₀, X₁, X₂, X₃) → n_l1___15(X₀, X₁, X₂, X₃+1) :|: 1+X₀ ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
t₆₀₈: n_l4___16(X₀, X₁, X₂, X₃) → n_l1___14(X₀, X₁, X₂, 0) :|: 1 ≤ X₀ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₂+1 ≤ X₃ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₀₉: n_l4___16(X₀, X₁, X₂, X₃) → n_l1___15(X₀, X₁, X₂, X₃+1) :|: 1 ≤ X₀ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₁₀: n_l4___17(X₀, X₁, X₂, X₃) → n_l1___14(X₀, X₁, X₂, 0) :|: 1+X₀ ≤ 0 ∧ 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₂+1 ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
t₆₁₁: n_l4___17(X₀, X₁, X₂, X₃) → n_l1___15(X₀, X₁, X₂, X₃+1) :|: 1+X₀ ≤ 0 ∧ 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
t₆₁₃: n_l4___3(X₀, X₁, X₂, X₃) → n_l1___7(X₀, X₁, X₂, X₃+1) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₁₄: n_l4___4(X₀, X₁, X₂, X₃) → n_l1___7(X₀, X₁, X₂, X₃+1) :|: 1+X₀ ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
t₆₁₅: n_l4___8(X₀, X₁, X₂, X₃) → n_l1___7(X₀, X₁, X₂, X₃+1) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₁₆: n_l4___9(X₀, X₁, X₂, X₃) → n_l1___7(X₀, X₁, X₂, X₃+1) :|: 1+X₀ ≤ 0 ∧ 1 ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0

CFR: Improvement to new bound with the following program:

new bound:

34⋅X₁+48⋅X₂+54 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: Arg1_P, Arg2_P, Arg3_P, NoDet0
Locations: l0, l1, l3, n_l1___14, n_l1___15, n_l1___7, n_l2___10, n_l2___13, n_l2___18, n_l2___6, n_l4___11, n_l4___12, n_l4___16, n_l4___17, n_l4___3, n_l4___4, n_l4___8, n_l4___9
Transitions:
t₂: l0(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₁+1) :|: 0 ≤ X₁ ∧ X₁ ≤ X₂
t₅₉₀: l1(X₀, X₁, X₂, X₃) → n_l2___18(NoDet0, Arg1_P, Arg2_P, Arg3_P) :|: 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ Arg3_P ≤ 1+Arg2_P ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₆₃₃: n_l1___14(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₁) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅₈₈: n_l1___14(X₀, X₁, X₂, X₃) → n_l2___10(NoDet0, Arg1_P, Arg2_P, Arg3_P) :|: X₃ ≤ X₂ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+Arg3_P ≤ Arg1_P ∧ Arg1_P ≤ Arg2_P ∧ 0 ≤ Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅₈₉: n_l1___15(X₀, X₁, X₂, X₃) → n_l2___13(NoDet0, Arg1_P, Arg2_P, Arg3_P) :|: 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ Arg3_P ≤ 1+Arg2_P ∧ 1+Arg1_P ≤ Arg3_P ∧ 0 ≤ Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁
t₆₃₅: n_l1___7(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₁) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₅₉₂: n_l1___7(X₀, X₁, X₂, X₃) → n_l2___6(NoDet0, Arg1_P, Arg2_P, Arg3_P) :|: X₃ ≤ X₂ ∧ 1+Arg3_P ≤ Arg1_P ∧ Arg1_P ≤ Arg2_P ∧ 0 ≤ Arg1_P ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₆₃₆: n_l2___10(X₀, X₁, X₂, X₃) → l3(0, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₅₉₃: n_l2___10(X₀, X₁, X₂, X₃) → n_l4___8(X₀, X₁, X₂, X₃) :|: 1 ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₅₉₄: n_l2___10(X₀, X₁, X₂, X₃) → n_l4___9(X₀, X₁, X₂, X₃) :|: 1 ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₆₃₇: n_l2___13(X₀, X₁, X₂, X₃) → l3(0, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅₉₅: n_l2___13(X₀, X₁, X₂, X₃) → n_l4___11(X₀, X₁, X₂, X₃) :|: 1+X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅₉₆: n_l2___13(X₀, X₁, X₂, X₃) → n_l4___12(X₀, X₁, X₂, X₃) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ 0 ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 0 ≤ X₁
t₆₃₈: n_l2___18(X₀, X₁, X₂, X₃) → l3(0, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅₉₇: n_l2___18(X₀, X₁, X₂, X₃) → n_l4___16(X₀, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₅₉₈: n_l2___18(X₀, X₁, X₂, X₃) → n_l4___17(X₀, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ 1+X₀ ≤ 0 ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁
t₆₄₀: n_l2___6(X₀, X₁, X₂, X₃) → l3(0, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₁
t₆₀₁: n_l2___6(X₀, X₁, X₂, X₃) → n_l4___3(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₁
t₆₀₂: n_l2___6(X₀, X₁, X₂, X₃) → n_l4___4(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ 0 ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₁
t₆₀₄: n_l4___11(X₀, X₁, X₂, X₃) → n_l1___14(X₀, X₁, X₂, 0) :|: 1+X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₀₅: n_l4___11(X₀, X₁, X₂, X₃) → n_l1___15(X₀, X₁, X₂, X₃+1) :|: 1+X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₀₆: n_l4___12(X₀, X₁, X₂, X₃) → n_l1___14(X₀, X₁, X₂, 0) :|: 1+X₀ ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₂+1 ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
t₆₀₇: n_l4___12(X₀, X₁, X₂, X₃) → n_l1___15(X₀, X₁, X₂, X₃+1) :|: 1+X₀ ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
t₆₀₈: n_l4___16(X₀, X₁, X₂, X₃) → n_l1___14(X₀, X₁, X₂, 0) :|: 1 ≤ X₀ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₂+1 ≤ X₃ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₀₉: n_l4___16(X₀, X₁, X₂, X₃) → n_l1___15(X₀, X₁, X₂, X₃+1) :|: 1 ≤ X₀ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₁₀: n_l4___17(X₀, X₁, X₂, X₃) → n_l1___14(X₀, X₁, X₂, 0) :|: 1+X₀ ≤ 0 ∧ 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₂+1 ≤ X₃ ∧ X₃ ≤ 1+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
t₆₁₁: n_l4___17(X₀, X₁, X₂, X₃) → n_l1___15(X₀, X₁, X₂, X₃+1) :|: 1+X₀ ≤ 0 ∧ 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
t₆₁₃: n_l4___3(X₀, X₁, X₂, X₃) → n_l1___7(X₀, X₁, X₂, X₃+1) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₁₄: n_l4___4(X₀, X₁, X₂, X₃) → n_l1___7(X₀, X₁, X₂, X₃+1) :|: 1+X₀ ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0
t₆₁₅: n_l4___8(X₀, X₁, X₂, X₃) → n_l1___7(X₀, X₁, X₂, X₃+1) :|: 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆₁₆: n_l4___9(X₀, X₁, X₂, X₃) → n_l1___7(X₀, X₁, X₂, X₃+1) :|: 1+X₀ ≤ 0 ∧ 1 ≤ X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0

All Bounds

Timebounds

Overall timebound:34⋅X₁+48⋅X₂+75 {O(n)}
t₂: 1 {O(1)}
t₅₈₈: 1 {O(1)}
t₅₈₉: 2⋅X₁+2⋅X₂+8 {O(n)}
t₅₉₀: 1 {O(1)}
t₅₉₂: 12⋅X₁+4 {O(n)}
t₅₉₃: 1 {O(1)}
t₅₉₄: 1 {O(1)}
t₅₉₅: 2⋅X₁+2⋅X₂+8 {O(n)}
t₅₉₆: 2⋅X₁+2⋅X₂+8 {O(n)}
t₅₉₇: 1 {O(1)}
t₅₉₈: 1 {O(1)}
t₆₀₁: 12⋅X₂+6 {O(n)}
t₆₀₂: 12⋅X₂+6 {O(n)}
t₆₀₄: 1 {O(1)}
t₆₀₅: 2⋅X₁+2⋅X₂+6 {O(n)}
t₆₀₆: 1 {O(1)}
t₆₀₇: 2⋅X₁+4⋅X₂+4 {O(n)}
t₆₀₈: 1 {O(1)}
t₆₀₉: 1 {O(1)}
t₆₁₀: 1 {O(1)}
t₆₁₁: 1 {O(1)}
t₆₁₃: 12⋅X₂+2 {O(n)}
t₆₁₄: 12⋅X₁+2 {O(n)}
t₆₁₅: 1 {O(1)}
t₆₁₆: 1 {O(1)}
t₆₃₃: 1 {O(1)}
t₆₃₅: 1 {O(1)}
t₆₃₆: 1 {O(1)}
t₆₃₇: 1 {O(1)}
t₆₃₈: 1 {O(1)}
t₆₄₀: 1 {O(1)}

Costbounds

Overall costbound: 34⋅X₁+48⋅X₂+75 {O(n)}
t₂: 1 {O(1)}
t₅₈₈: 1 {O(1)}
t₅₈₉: 2⋅X₁+2⋅X₂+8 {O(n)}
t₅₉₀: 1 {O(1)}
t₅₉₂: 12⋅X₁+4 {O(n)}
t₅₉₃: 1 {O(1)}
t₅₉₄: 1 {O(1)}
t₅₉₅: 2⋅X₁+2⋅X₂+8 {O(n)}
t₅₉₆: 2⋅X₁+2⋅X₂+8 {O(n)}
t₅₉₇: 1 {O(1)}
t₅₉₈: 1 {O(1)}
t₆₀₁: 12⋅X₂+6 {O(n)}
t₆₀₂: 12⋅X₂+6 {O(n)}
t₆₀₄: 1 {O(1)}
t₆₀₅: 2⋅X₁+2⋅X₂+6 {O(n)}
t₆₀₆: 1 {O(1)}
t₆₀₇: 2⋅X₁+4⋅X₂+4 {O(n)}
t₆₀₈: 1 {O(1)}
t₆₀₉: 1 {O(1)}
t₆₁₀: 1 {O(1)}
t₆₁₁: 1 {O(1)}
t₆₁₃: 12⋅X₂+2 {O(n)}
t₆₁₄: 12⋅X₁+2 {O(n)}
t₆₁₅: 1 {O(1)}
t₆₁₆: 1 {O(1)}
t₆₃₃: 1 {O(1)}
t₆₃₅: 1 {O(1)}
t₆₃₆: 1 {O(1)}
t₆₃₇: 1 {O(1)}
t₆₃₈: 1 {O(1)}
t₆₄₀: 1 {O(1)}

Sizebounds

t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₁+1 {O(n)}
t₅₈₈, X₁: 6⋅X₁ {O(n)}
t₅₈₈, X₂: 6⋅X₂ {O(n)}
t₅₈₈, X₃: 0 {O(1)}
t₅₈₉, X₁: 2⋅X₁ {O(n)}
t₅₈₉, X₂: 2⋅X₂ {O(n)}
t₅₈₉, X₃: 6⋅X₁+6⋅X₂+14 {O(n)}
t₅₉₀, X₁: X₁ {O(n)}
t₅₉₀, X₂: X₂ {O(n)}
t₅₉₀, X₃: X₁+1 {O(n)}
t₅₉₂, X₁: 12⋅X₁ {O(n)}
t₅₉₂, X₂: 12⋅X₂ {O(n)}
t₅₉₂, X₃: 12⋅X₁+12⋅X₂+6 {O(n)}
t₅₉₃, X₁: 6⋅X₁ {O(n)}
t₅₉₃, X₂: 6⋅X₂ {O(n)}
t₅₉₃, X₃: 0 {O(1)}
t₅₉₄, X₁: 6⋅X₁ {O(n)}
t₅₉₄, X₂: 6⋅X₂ {O(n)}
t₅₉₄, X₃: 0 {O(1)}
t₅₉₅, X₁: 2⋅X₁ {O(n)}
t₅₉₅, X₂: 2⋅X₂ {O(n)}
t₅₉₅, X₃: 6⋅X₁+6⋅X₂+14 {O(n)}
t₅₉₆, X₁: 2⋅X₁ {O(n)}
t₅₉₆, X₂: 2⋅X₂ {O(n)}
t₅₉₆, X₃: 6⋅X₁+6⋅X₂+14 {O(n)}
t₅₉₇, X₁: X₁ {O(n)}
t₅₉₇, X₂: X₂ {O(n)}
t₅₉₇, X₃: X₁+1 {O(n)}
t₅₉₈, X₁: X₁ {O(n)}
t₅₉₈, X₂: X₂ {O(n)}
t₅₉₈, X₃: X₁+1 {O(n)}
t₆₀₁, X₁: 12⋅X₁ {O(n)}
t₆₀₁, X₂: 12⋅X₂ {O(n)}
t₆₀₁, X₃: 12⋅X₁+12⋅X₂+6 {O(n)}
t₆₀₂, X₁: 12⋅X₁ {O(n)}
t₆₀₂, X₂: 12⋅X₂ {O(n)}
t₆₀₂, X₃: 12⋅X₁+12⋅X₂+6 {O(n)}
t₆₀₄, X₁: 2⋅X₁ {O(n)}
t₆₀₄, X₂: 2⋅X₂ {O(n)}
t₆₀₄, X₃: 0 {O(1)}
t₆₀₅, X₁: 2⋅X₁ {O(n)}
t₆₀₅, X₂: 2⋅X₂ {O(n)}
t₆₀₅, X₃: 6⋅X₁+6⋅X₂+14 {O(n)}
t₆₀₆, X₁: 2⋅X₁ {O(n)}
t₆₀₆, X₂: 2⋅X₂ {O(n)}
t₆₀₆, X₃: 0 {O(1)}
t₆₀₇, X₁: 2⋅X₁ {O(n)}
t₆₀₇, X₂: 2⋅X₂ {O(n)}
t₆₀₇, X₃: 6⋅X₁+6⋅X₂+14 {O(n)}
t₆₀₈, X₁: X₁ {O(n)}
t₆₀₈, X₂: X₂ {O(n)}
t₆₀₈, X₃: 0 {O(1)}
t₆₀₉, X₁: X₁ {O(n)}
t₆₀₉, X₂: X₂ {O(n)}
t₆₀₉, X₃: X₁+2 {O(n)}
t₆₁₀, X₁: X₁ {O(n)}
t₆₁₀, X₂: X₂ {O(n)}
t₆₁₀, X₃: 0 {O(1)}
t₆₁₁, X₁: X₁ {O(n)}
t₆₁₁, X₂: X₂ {O(n)}
t₆₁₁, X₃: X₁+2 {O(n)}
t₆₁₃, X₁: 12⋅X₁ {O(n)}
t₆₁₃, X₂: 12⋅X₂ {O(n)}
t₆₁₃, X₃: 12⋅X₁+12⋅X₂+6 {O(n)}
t₆₁₄, X₁: 12⋅X₁ {O(n)}
t₆₁₄, X₂: 12⋅X₂ {O(n)}
t₆₁₄, X₃: 12⋅X₁+12⋅X₂+6 {O(n)}
t₆₁₅, X₁: 6⋅X₁ {O(n)}
t₆₁₅, X₂: 6⋅X₂ {O(n)}
t₆₁₅, X₃: 1 {O(1)}
t₆₁₆, X₁: 6⋅X₁ {O(n)}
t₆₁₆, X₂: 6⋅X₂ {O(n)}
t₆₁₆, X₃: 1 {O(1)}
t₆₃₃, X₁: 0 {O(1)}
t₆₃₃, X₂: 6⋅X₂ {O(n)}
t₆₃₃, X₃: 0 {O(1)}
t₆₃₅, X₁: 36⋅X₁ {O(n)}
t₆₃₅, X₂: 36⋅X₂ {O(n)}
t₆₃₅, X₃: 36⋅X₁ {O(n)}
t₆₃₆, X₀: 0 {O(1)}
t₆₃₆, X₁: 6⋅X₁ {O(n)}
t₆₃₆, X₂: 6⋅X₂ {O(n)}
t₆₃₆, X₃: 0 {O(1)}
t₆₃₇, X₀: 0 {O(1)}
t₆₃₇, X₁: 2⋅X₁ {O(n)}
t₆₃₇, X₂: 2⋅X₂ {O(n)}
t₆₃₇, X₃: 6⋅X₁+6⋅X₂+14 {O(n)}
t₆₃₈, X₀: 0 {O(1)}
t₆₃₈, X₁: X₁ {O(n)}
t₆₃₈, X₂: X₂ {O(n)}
t₆₃₈, X₃: X₁+1 {O(n)}
t₆₄₀, X₀: 0 {O(1)}
t₆₄₀, X₁: 12⋅X₁ {O(n)}
t₆₄₀, X₂: 12⋅X₂ {O(n)}
t₆₄₀, X₃: 12⋅X₁+12⋅X₂+6 {O(n)}