Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 2 ≤ X₀
t₁: l0(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: X₀ ≤ 1
t₂: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₀, 2⋅X₀) :|: 2 ≤ X₁
t₅: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃, 2⋅X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃
t₆: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃+1, 2⋅X₃+2) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃
t₈: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃, 2⋅X₃) :|: 1 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁
t₃: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁
t₄: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃+1) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁
t₇: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁
t₉: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁
t₁₀: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
Preprocessing
Eliminate variables {X₂} that do not contribute to the problem
Found invariant 2 ≤ X₁ for location l2
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₁ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₂₇: l0(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 2 ≤ X₀
t₂₈: l0(X₀, X₁, X₂) → l1(X₀, X₁-1, X₂) :|: X₀ ≤ 1
t₂₉: l1(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₀) :|: 2 ≤ X₁
t₃₀: l2(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₂) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁
t₃₁: l2(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₂+2) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁
t₃₂: l2(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₂) :|: 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁
t₃₃: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁
t₃₄: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂+1) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁
t₃₅: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁
t₃₆: l3(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁
t₃₇: l3(X₀, X₁, X₂) → l1(X₀, X₁-1, X₂) :|: 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁
Solv. Size Bound: t₃₃: l2→l3 for X₂
cycle: [t₃₃: l2→l3; t₃₅: l2→l3; t₃₇: l3→l1; t₂₉: l1→l2]
loop: (X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁ ∨ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁,(X₀,X₂) -> (X₀,2⋅X₀)
overappr. closed-form: 4⋅X₀ {O(n)}
runtime bound: X₁+1 {O(n)}
Solv. Size Bound - Lifting for t₃₃: l2→l3 and X₂: 40⋅X₀+16 {O(n)}
Solv. Size Bound: t₃₄: l2→l3 for X₂
cycle: [t₃₄: l2→l3; t₃₇: l3→l1; t₂₉: l1→l2]
loop: (X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁,(X₀,X₂) -> (X₀,2⋅X₀)
overappr. closed-form: 4⋅X₀ {O(n)}
runtime bound: X₁+1 {O(n)}
Solv. Size Bound - Lifting for t₃₄: l2→l3 and X₂: 48⋅X₀+20 {O(n)}
Solv. Size Bound: t₃₅: l2→l3 for X₂
cycle: [t₃₃: l2→l3; t₃₅: l2→l3; t₃₇: l3→l1; t₂₉: l1→l2]
loop: (X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁ ∨ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁,(X₀,X₂) -> (X₀,2⋅X₀)
overappr. closed-form: 4⋅X₀ {O(n)}
runtime bound: X₁+1 {O(n)}
Solv. Size Bound - Lifting for t₃₅: l2→l3 and X₂: 40⋅X₀+16 {O(n)}
Solv. Size Bound: t₃₇: l3→l1 for X₂
cycle: [t₃₇: l3→l1; t₂₉: l1→l2; t₃₃: l2→l3; t₃₅: l2→l3]
loop: (2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁ ∧ 2⋅X₀+1 ≤ X₁ ∧ 2+2⋅X₀ ≤ X₁ ∨ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁ ∧ X₁ ≤ 1+2⋅X₀ ∧ 2⋅X₀+1 ≤ X₁,(X₀,X₂) -> (X₀,2⋅X₀)
overappr. closed-form: 4⋅X₀ {O(n)}
runtime bound: X₁+1 {O(n)}
Solv. Size Bound - Lifting for t₃₇: l3→l1 and X₂: 40⋅X₀+16 {O(n)}
MPRF for transition t₃₆: l3(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₀+2 {O(n)}
MPRF for transition t₃₇: l3(X₀, X₁, X₂) → l1(X₀, X₁-1, X₂) :|: 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₁+3 {O(n)}
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁+7 {O(n)} for transition t₂₉: l1(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₀) :|: 2 ≤ X₁
MPRF for transition t₃₀: l2(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₂) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
MPRF for transition t₃₁: l2(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₂+2) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22 {O(n^2)}
MPRF for transition t₃₂: l2(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₂) :|: 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
MPRF for transition t₃₃: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
MPRF for transition t₃₄: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂+1) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
MPRF for transition t₃₅: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
Chain transitions t₃₇: l3→l1 and t₂₉: l1→l2 to t₃₅₈: l3→l2
Chain transitions t₃₆: l3→l1 and t₂₉: l1→l2 to t₃₅₉: l3→l2
Chain transitions t₂₈: l0→l1 and t₂₉: l1→l2 to t₃₆₀: l0→l2
Chain transitions t₂₇: l0→l1 and t₂₉: l1→l2 to t₃₆₁: l0→l2
Chain transitions t₃₅: l2→l3 and t₃₅₉: l3→l2 to t₃₆₂: l2→l2
Chain transitions t₃₄: l2→l3 and t₃₅₉: l3→l2 to t₃₆₃: l2→l2
Chain transitions t₃₄: l2→l3 and t₃₅₈: l3→l2 to t₃₆₄: l2→l2
Chain transitions t₃₅: l2→l3 and t₃₅₈: l3→l2 to t₃₆₅: l2→l2
Chain transitions t₃₃: l2→l3 and t₃₅₈: l3→l2 to t₃₆₆: l2→l2
Chain transitions t₃₃: l2→l3 and t₃₅₉: l3→l2 to t₃₆₇: l2→l2
Chain transitions t₃₃: l2→l3 and t₃₇: l3→l1 to t₃₆₈: l2→l1
Chain transitions t₃₄: l2→l3 and t₃₇: l3→l1 to t₃₆₉: l2→l1
Chain transitions t₃₅: l2→l3 and t₃₇: l3→l1 to t₃₇₀: l2→l1
Chain transitions t₃₃: l2→l3 and t₃₆: l3→l1 to t₃₇₁: l2→l1
Chain transitions t₃₄: l2→l3 and t₃₆: l3→l1 to t₃₇₂: l2→l1
Chain transitions t₃₅: l2→l3 and t₃₆: l3→l1 to t₃₇₃: l2→l1
Analysing control-flow refined program
Found invariant 2 ≤ X₁ for location l2
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₁ for location l3
knowledge_propagation leads to new time bound 12⋅X₀⋅X₁+12⋅X₁⋅X₁+16⋅X₀⋅X₀+40⋅X₀+52⋅X₁+45 {O(n^2)} for transition t₃₆₅: l2(X₀, X₁, X₂) -{3}> l2(X₀, X₁-1, 2⋅X₀) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁
MPRF for transition t₃₆₂: l2(X₀, X₁, X₂) -{3}> l2(X₀-1, X₁, 2⋅X₀-2) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₀ {O(n)}
MPRF for transition t₃₆₃: l2(X₀, X₁, X₂) -{3}> l2(X₀-1, X₁, 2⋅X₀-2) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₂+1 ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₀ {O(n)}
MPRF for transition t₃₆₄: l2(X₀, X₁, X₂) -{3}> l2(X₀, X₁-1, 2⋅X₀) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₂+1 ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₁ {O(n)}
MPRF for transition t₃₆₆: l2(X₀, X₁, X₂) -{3}> l2(X₀, X₁-1, 2⋅X₀) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₁ {O(n)}
MPRF for transition t₃₆₇: l2(X₀, X₁, X₂) -{3}> l2(X₀-1, X₁, 2⋅X₀-2) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₀ {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 6 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 5+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___20
Found invariant 4 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___31
Found invariant 2 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___6
Found invariant X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___4
Found invariant X₂ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___9
Found invariant X₂ ≤ X₁ ∧ 5 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 6 ≤ X₀+X₂ ∧ 4+X₀ ≤ X₂ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___15
Found invariant 1+X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___27
Found invariant X₂ ≤ 2 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 3 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___22
Found invariant X₂ ≤ 2 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 3 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___19
Found invariant X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___7
Found invariant 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___38
Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant X₂ ≤ 1+X₁ ∧ 4 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___13
Found invariant X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___8
Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l2___3
Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___30
Found invariant X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___33
Found invariant 1+X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___16
Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 3 ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___10
Found invariant X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₂ ≤ 2+X₀ ∧ X₀+X₂ ≤ 4 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___18
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___12
Found invariant 4 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___35
Found invariant X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___25
Found invariant X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___24
Found invariant X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___29
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___32
Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 3 ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___11
Found invariant 4 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___17
Found invariant X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___14
Found invariant X₂ ≤ X₁ ∧ 5 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 6 ≤ X₀+X₂ ∧ 4+X₀ ≤ X₂ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___26
Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___34
Found invariant X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___23
Found invariant 4 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___21
Found invariant 4 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___36
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___28
Found invariant X₂ ≤ 2 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l3___2
Found invariant 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___37
Found invariant X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₂ ≤ 2+X₀ ∧ X₀+X₂ ≤ 4 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l3___1
Cut unsatisfiable transition t₇₂₁: n_l3___1→n_l1___7
Cut unsatisfiable transition t₇₃₀: n_l3___2→n_l1___7
Solv. Size Bound: t₆₉₅: n_l2___31→n_l2___36 for X₂
cycle: [t₇₁₇: n_l2___6→n_l2___31; t₆₆₂: n_l1___7→n_l2___6; t₇₄₃: n_l3___32→n_l1___7; t₇₁₄: n_l2___38→n_l3___32; t₆₅₈: n_l1___23→n_l2___38; t₇₃₂: n_l3___25→n_l1___23; t₇₀₂: n_l2___36→n_l3___25; t₆₉₅: n_l2___31→n_l2___36]
loop: (1 ≤ X₂ ∧ 2 ≤ X₂ ∧ 2+X₂ ≤ 2⋅X₁ ∧ 4 ≤ X₂ ∧ X₂ ≤ 2⋅X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3+2⋅X₂ ≤ X₁ ∧ 0 ≤ 1+2⋅X₂ ∧ 2⋅X₀ ≤ 2⋅X₂+2 ∧ 2⋅X₂+2 ≤ 2⋅X₀ ∧ 0 ≤ 1+2⋅X₂ ∧ 3+2⋅X₂ ≤ X₁ ∧ 0 ≤ 2⋅X₂ ∧ 4+2⋅X₂ ≤ 2⋅X₁ ∧ 0 ≤ 1+2⋅X₂ ∧ 3+2⋅X₂ ≤ X₁ ∧ 3+2⋅X₂ ≤ X₁ ∧ 3+2⋅X₂ ≤ X₁ ∧ 3+2⋅X₂ ≤ X₁ ∧ 0 ≤ 1+2⋅X₂ ∧ 1+2⋅X₀ ≤ X₁ ∧ 2 ≤ X₁ ∧ 1 ≤ 2⋅X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4+4⋅X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2⋅X₀ ≤ X₁ ∧ X₁ ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 ≤ X₀ ∧ 1 ≤ 2⋅X₀ ∧ 0 ≤ 2 ∧ 2 ≤ 0 ∧ X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ X₁ ∧ 2 ≤ X₁ ∧ 3 ≤ 2⋅X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₁ ∧ 0 ≤ 0 ∧ 2 ≤ X₁ ∧ 4 ≤ X₁ ∧ X₁+2 ≤ 2⋅X₀ ∧ 3 ≤ X₀ ∧ 3 ≤ 2⋅X₀ ∧ 6 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2⋅X₁+2 ∧ X₁+2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ X₁+2,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: 1 {O(1)}
Solv. Size Bound - Lifting for t₆₉₅: n_l2___31→n_l2___36 and X₂: 212⋅X₁+106 {O(n)}
Solv. Size Bound: t₆₉₉: n_l2___36→n_l2___31 for X₂
cycle: [t₇₁₈: n_l2___6→n_l2___36; t₆₆₂: n_l1___7→n_l2___6; t₇₄₃: n_l3___32→n_l1___7; t₇₁₄: n_l2___38→n_l3___32; t₆₅₈: n_l1___23→n_l2___38; t₇₃₂: n_l3___25→n_l1___23; t₆₉₆: n_l2___31→n_l3___25; t₆₉₉: n_l2___36→n_l2___31]
loop: (1 ≤ X₂ ∧ 4 ≤ X₂ ∧ X₂ ≤ 2⋅X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+2⋅X₂ ≤ X₁ ∧ 1 ≤ 2⋅X₂ ∧ 2⋅X₀ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ 2⋅X₀ ∧ 1 ≤ 2⋅X₂ ∧ 1+2⋅X₂ ≤ X₁ ∧ 2 ≤ 2⋅X₂ ∧ 2+2⋅X₂ ≤ 2⋅X₁ ∧ 1 ≤ 2⋅X₂ ∧ 1+2⋅X₂ ≤ X₁ ∧ 1+2⋅X₂ ≤ X₁ ∧ 1+2⋅X₂ ≤ X₁ ∧ 1+2⋅X₂ ≤ X₁ ∧ 1 ≤ 2⋅X₂ ∧ 1+2⋅X₀ ≤ X₁ ∧ 2 ≤ X₁ ∧ 1 ≤ 2⋅X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4⋅X₂+2 ≤ X₁ ∧ 2 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2⋅X₀ ≤ X₁ ∧ X₁ ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 ≤ X₀ ∧ 1 ≤ 2⋅X₀ ∧ 0 ≤ 2 ∧ 2 ≤ 0 ∧ X₁ ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ X₁ ∧ 2 ≤ X₁ ∧ 3 ≤ 2⋅X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₁ ∧ 0 ≤ 0 ∧ 2 ≤ X₁ ∧ 4 ≤ X₁ ∧ X₁+2 ≤ 2⋅X₀ ∧ 3 ≤ X₀ ∧ 3 ≤ 2⋅X₀ ∧ 4 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2⋅X₁ ∧ 6 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ 2⋅X₁+2 ∧ X₁+2 ≤ 2⋅X₀ ∧ 2⋅X₀ ≤ X₁+2,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: 1 {O(1)}
Solv. Size Bound - Lifting for t₆₉₉: n_l2___36→n_l2___31 and X₂: 212⋅X₁+106 {O(n)}
All Bounds
Timebounds
Overall timebound:16⋅X₁⋅X₁+24⋅X₀⋅X₀+28⋅X₀⋅X₁+76⋅X₀+94⋅X₁+103 {O(n^2)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 2⋅X₀+2⋅X₁+7 {O(n)}
t₃₀: 4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
t₃₁: 8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22 {O(n^2)}
t₃₂: 4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
t₃₃: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₄: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₅: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₆: 2⋅X₀+2 {O(n)}
t₃₇: 2⋅X₁+3 {O(n)}
Costbounds
Overall costbound: 16⋅X₁⋅X₁+24⋅X₀⋅X₀+28⋅X₀⋅X₁+76⋅X₀+94⋅X₁+103 {O(n^2)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 2⋅X₀+2⋅X₁+7 {O(n)}
t₃₀: 4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
t₃₁: 8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22 {O(n^2)}
t₃₂: 4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
t₃₃: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₄: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₅: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₆: 2⋅X₀+2 {O(n)}
t₃₇: 2⋅X₁+3 {O(n)}
Sizebounds
t₂₇, X₀: X₀ {O(n)}
t₂₇, X₁: X₁ {O(n)}
t₂₇, X₂: X₂ {O(n)}
t₂₈, X₀: X₀ {O(n)}
t₂₈, X₁: X₁+1 {O(n)}
t₂₈, X₂: X₂ {O(n)}
t₂₉, X₀: 2⋅X₀+1 {O(n)}
t₂₉, X₁: 2⋅X₁+1 {O(n)}
t₂₉, X₂: 8⋅X₀+4 {O(n)}
t₃₀, X₀: 2⋅X₀+1 {O(n)}
t₃₀, X₁: 2⋅X₁+1 {O(n)}
t₃₀, X₂: 26⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)+28⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₁⋅X₁ {O(EXP)}
t₃₁, X₀: 2⋅X₀+1 {O(n)}
t₃₁, X₁: 2⋅X₁+1 {O(n)}
t₃₁, X₂: 26⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)+28⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₁⋅X₁ {O(EXP)}
t₃₂, X₀: 6⋅X₀+3 {O(n)}
t₃₂, X₁: 6⋅X₁+3 {O(n)}
t₃₂, X₂: 104⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)+112⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀+128⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁⋅X₁+16⋅X₀+8 {O(EXP)}
t₃₃, X₀: 2⋅X₀+1 {O(n)}
t₃₃, X₁: 2⋅X₁+1 {O(n)}
t₃₃, X₂: 40⋅X₀+16 {O(n)}
t₃₄, X₀: 2⋅X₀+1 {O(n)}
t₃₄, X₁: 2⋅X₁+1 {O(n)}
t₃₄, X₂: 48⋅X₀+20 {O(n)}
t₃₅, X₀: 2⋅X₀+1 {O(n)}
t₃₅, X₁: 2⋅X₁+1 {O(n)}
t₃₅, X₂: 40⋅X₀+16 {O(n)}
t₃₆, X₀: 2⋅X₀+1 {O(n)}
t₃₆, X₁: 2⋅X₁+1 {O(n)}
t₃₆, X₂: 128⋅X₀+52 {O(n)}
t₃₇, X₀: 1 {O(1)}
t₃₇, X₁: 2⋅X₁+1 {O(n)}
t₃₇, X₂: 40⋅X₀+16 {O(n)}