Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₃₅: l10(X₀, X₁, X₂, X₃, X₄) → l24(X₀, X₁, X₂, X₃, X₄)
t₆: l11(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄)
t₈: l12(X₀, X₁, X₂, X₃, X₄) → l14(X₀, X₁, X₂, X₃, X₄)
t₇: l13(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄)
t₉: l14(X₀, X₁, X₂, X₃, X₄) → l15(X₀, X₁, X₂, X₃, X₄)
t₁₀: l15(X₀, X₁, X₂, X₃, X₄) → l19(X₀, X₁, X₂, X₃, X₄)
t₃₄: l16(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₀, X₄)
t₃₂: l17(X₀, X₁, X₂, X₃, X₄) → l18(X₃+1, X₁, X₂, X₃, X₄)
t₃₃: l18(X₀, X₁, X₂, X₃, X₄) → l16(X₀, X₁, X₂, X₃, X₄)
t₁₁: l19(X₀, X₁, X₂, X₃, X₄) → l20(X₀, X₁, X₂, X₃, X₄)
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₁₂: l20(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄)
t₂₁: l21(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂
t₂₀: l21(X₀, X₁, X₂, X₃, X₄) → l26(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁
t₃₀: l22(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₁, X₃, X₄)
t₂₉: l22(X₀, X₁, X₂, X₃, X₄) → l23(X₀, X₁, X₂, X₃, X₄)
t₃₁: l23(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₄, X₃, X₄)
t₁₉: l25(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, 0, X₃, X₄)
t₂₃: l26(X₀, X₁, X₂, X₃, X₄) → l27(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ < X₁
t₂₄: l26(X₀, X₁, X₂, X₃, X₄) → l27(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂
t₂₂: l26(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ X₁ ≤ X₃+3+2⋅X₂
t₂₅: l27(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄)
t₂₆: l27(X₀, X₁, X₂, X₃, X₄) → l29(X₀, X₁, X₂, X₃, X₄)
t₂₇: l28(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+1)
t₂₈: l29(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+2)
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₅: l4(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 2
t₄: l4(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: 2 < X₁
t₁₅: l5(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄)
t₁₃: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₁₄: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄)
t₁₆: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, 0, X₄)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 2+X₃
t₁₇: l9(X₀, X₁, X₂, X₃, X₄) → l25(X₀, X₁, X₂, X₃, X₄) :|: X₃+2 ≤ X₁
Preprocessing
Cut unsatisfiable transition t₂₄: l26→l27
Found invariant 3 ≤ X₁ for location l11
Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l25
Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location l27
Found invariant 3 ≤ X₁ for location l6
Found invariant 3 ≤ X₁ for location l15
Found invariant 3 ≤ X₁ for location l19
Found invariant 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l26
Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location l29
Found invariant 3 ≤ X₁ for location l12
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l23
Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l17
Found invariant 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l28
Found invariant 3 ≤ X₁ for location l7
Found invariant 3 ≤ X₁ for location l20
Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l21
Found invariant 3 ≤ X₁ for location l5
Found invariant 3 ≤ X₁ for location l13
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l22
Found invariant 3 ≤ X₁ for location l8
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l16
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l18
Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l9
Found invariant 3 ≤ X₁ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₃₅: l10(X₀, X₁, X₂, X₃, X₄) → l24(X₀, X₁, X₂, X₃, X₄)
t₆: l11(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₈: l12(X₀, X₁, X₂, X₃, X₄) → l14(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₇: l13(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₉: l14(X₀, X₁, X₂, X₃, X₄) → l15(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁₀: l15(X₀, X₁, X₂, X₃, X₄) → l19(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₃₄: l16(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₀, X₄) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₃₂: l17(X₀, X₁, X₂, X₃, X₄) → l18(X₃+1, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₃₃: l18(X₀, X₁, X₂, X₃, X₄) → l16(X₀, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l19(X₀, X₁, X₂, X₃, X₄) → l20(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₁₂: l20(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₂₁: l21(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₀: l21(X₀, X₁, X₂, X₃, X₄) → l26(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₃₀: l22(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₁, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₉: l22(X₀, X₁, X₂, X₃, X₄) → l23(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₃₁: l23(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₄, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₁₉: l25(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, 0, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁
t₂₃: l26(X₀, X₁, X₂, X₃, X₄) → l27(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ < X₁ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₂: l26(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ X₁ ≤ X₃+3+2⋅X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₅: l27(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₂₆: l27(X₀, X₁, X₂, X₃, X₄) → l29(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₂₇: l28(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₈: l29(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+2) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₅: l4(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 2
t₄: l4(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: 2 < X₁
t₁₅: l5(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁₃: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁₄: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁₆: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, 0, X₄) :|: 3 ≤ X₁
t₁₈: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 2+X₃ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁
t₁₇: l9(X₀, X₁, X₂, X₃, X₄) → l25(X₀, X₁, X₂, X₃, X₄) :|: X₃+2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁
Solv. Size Bound: t₂₀: l21→l26 for X₀
Solv. Size Bound: t₂₀: l21→l26 for X₂
cycle: [t₃₀: l22→l21; t₂₈: l29→l22; t₂₆: l27→l29; t₂₃: l26→l27; t₂₀: l21→l26]
loop: (2⋅X₂+3+X₃ ≤ X₁ ∧ X₁+3+X₃ < 0,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₂₀: l21→l26 and X₂: 6⋅X₁ {O(n)}
Solv. Size Bound: t₂₂: l26→l28 for X₀
Solv. Size Bound: t₂₂: l26→l28 for X₂
cycle: [t₂₀: l21→l26; t₃₀: l22→l21; t₂₇: l28→l22; t₂₂: l26→l28]
loop: (2⋅X₂+3+X₃ ≤ X₁ ∧ X₁ ≤ X₃+3+2⋅X₂ ∧ 2⋅X₂+3+X₃ ≤ X₁,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₂₂: l26→l28 and X₂: 8⋅X₁ {O(n)}
Solv. Size Bound: t₂₃: l26→l27 for X₀
Solv. Size Bound: t₂₃: l26→l27 for X₂
cycle: [t₂₀: l21→l26; t₃₀: l22→l21; t₂₇: l28→l22; t₂₅: l27→l28; t₂₃: l26→l27]
loop: (2⋅X₂+3+X₃ < X₁ ∧ 2⋅X₂+3+X₃ ≤ X₁,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₂₃: l26→l27 and X₂: 8⋅X₁ {O(n)}
Solv. Size Bound: t₂₅: l27→l28 for X₀
Solv. Size Bound: t₂₅: l27→l28 for X₂
cycle: [t₂₃: l26→l27; t₂₀: l21→l26; t₃₀: l22→l21; t₂₇: l28→l22; t₂₅: l27→l28]
loop: (2⋅X₂+3+X₃ < X₁ ∧ 2⋅X₂+3+X₃ ≤ X₁,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₂₅: l27→l28 and X₂: 8⋅X₁ {O(n)}
Solv. Size Bound: t₂₆: l27→l29 for X₀
Solv. Size Bound: t₂₆: l27→l29 for X₂
cycle: [t₂₃: l26→l27; t₂₀: l21→l26; t₃₀: l22→l21; t₂₈: l29→l22; t₂₆: l27→l29]
loop: (2⋅X₂+3+X₃ < X₁ ∧ 2⋅X₂+3+X₃ ≤ X₁,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₂₆: l27→l29 and X₂: 6⋅X₁ {O(n)}
Solv. Size Bound: t₂₇: l28→l22 for X₀
Solv. Size Bound: t₂₇: l28→l22 for X₂
cycle: [t₂₅: l27→l28; t₂₃: l26→l27; t₂₀: l21→l26; t₃₀: l22→l21; t₂₇: l28→l22]
loop: (2⋅X₂+3+X₃ < X₁ ∧ 2⋅X₂+3+X₃ ≤ X₁,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₂₇: l28→l22 and X₂: 8⋅X₁ {O(n)}
Solv. Size Bound: t₂₈: l29→l22 for X₀
Solv. Size Bound: t₂₈: l29→l22 for X₂
cycle: [t₂₆: l27→l29; t₂₃: l26→l27; t₂₀: l21→l26; t₃₀: l22→l21; t₂₈: l29→l22]
loop: (2⋅X₂+3+X₃ < X₁ ∧ 2⋅X₂+3+X₃ ≤ X₁,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: inf {Infinity}
Solv. Size Bound - Lifting for t₂₈: l29→l22 and X₂: 6⋅X₁ {O(n)}
MPRF for transition t₁₇: l9(X₀, X₁, X₂, X₃, X₄) → l25(X₀, X₁, X₂, X₃, X₄) :|: X₃+2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₁₉: l25(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, 0, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₁: l21(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₃₂: l17(X₀, X₁, X₂, X₃, X₄) → l18(X₃+1, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁ {O(n)}
MPRF for transition t₃₃: l18(X₀, X₁, X₂, X₃, X₄) → l16(X₀, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁ {O(n)}
MPRF for transition t₃₄: l16(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₀, X₄) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₀: l21(X₀, X₁, X₂, X₃, X₄) → l26(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+2⋅X₁ {O(n^2)}
MPRF for transition t₂₂: l26(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ X₁ ≤ X₃+3+2⋅X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+2⋅X₁ {O(n^2)}
MPRF for transition t₂₃: l26(X₀, X₁, X₂, X₃, X₄) → l27(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ < X₁ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+2⋅X₁ {O(n^2)}
MPRF for transition t₂₅: l27(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+2⋅X₁ {O(n^2)}
MPRF for transition t₂₆: l27(X₀, X₁, X₂, X₃, X₄) → l29(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:
new bound:
2⋅X₁⋅X₁+4⋅X₁ {O(n^2)}
MPRF for transition t₂₇: l28(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+2⋅X₁ {O(n^2)}
MPRF for transition t₂₈: l29(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+2) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+2⋅X₁ {O(n^2)}
MPRF for transition t₂₉: l22(X₀, X₁, X₂, X₃, X₄) → l23(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+2⋅X₁ {O(n^2)}
MPRF for transition t₃₀: l22(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₁, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+2⋅X₁ {O(n^2)}
MPRF for transition t₃₁: l23(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₄, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+2⋅X₁ {O(n^2)}
Chain transitions t₃₃: l18→l16 and t₃₄: l16→l9 to t₅₈₆: l18→l9
Chain transitions t₂₁: l21→l17 and t₃₂: l17→l18 to t₅₈₇: l21→l18
Chain transitions t₅₈₇: l21→l18 and t₅₈₆: l18→l9 to t₅₈₈: l21→l9
Chain transitions t₅₈₇: l21→l18 and t₃₃: l18→l16 to t₅₈₉: l21→l16
Chain transitions t₁₉: l25→l21 and t₅₈₈: l21→l9 to t₅₉₀: l25→l9
Chain transitions t₃₁: l23→l21 and t₅₈₈: l21→l9 to t₅₉₁: l23→l9
Chain transitions t₃₁: l23→l21 and t₂₀: l21→l26 to t₅₉₂: l23→l26
Chain transitions t₁₉: l25→l21 and t₂₀: l21→l26 to t₅₉₃: l25→l26
Chain transitions t₃₀: l22→l21 and t₂₀: l21→l26 to t₅₉₄: l22→l26
Chain transitions t₃₀: l22→l21 and t₅₈₈: l21→l9 to t₅₉₅: l22→l9
Chain transitions t₃₀: l22→l21 and t₅₈₇: l21→l18 to t₅₉₆: l22→l18
Chain transitions t₃₁: l23→l21 and t₅₈₇: l21→l18 to t₅₉₇: l23→l18
Chain transitions t₁₉: l25→l21 and t₅₈₇: l21→l18 to t₅₉₈: l25→l18
Chain transitions t₃₀: l22→l21 and t₂₁: l21→l17 to t₅₉₉: l22→l17
Chain transitions t₃₁: l23→l21 and t₂₁: l21→l17 to t₆₀₀: l23→l17
Chain transitions t₁₉: l25→l21 and t₂₁: l21→l17 to t₆₀₁: l25→l17
Chain transitions t₃₀: l22→l21 and t₅₈₉: l21→l16 to t₆₀₂: l22→l16
Chain transitions t₃₁: l23→l21 and t₅₈₉: l21→l16 to t₆₀₃: l23→l16
Chain transitions t₁₉: l25→l21 and t₅₈₉: l21→l16 to t₆₀₄: l25→l16
Chain transitions t₂₈: l29→l22 and t₅₉₅: l22→l9 to t₆₀₅: l29→l9
Chain transitions t₂₇: l28→l22 and t₅₉₅: l22→l9 to t₆₀₆: l28→l9
Chain transitions t₂₇: l28→l22 and t₅₉₄: l22→l26 to t₆₀₇: l28→l26
Chain transitions t₂₈: l29→l22 and t₅₉₄: l22→l26 to t₆₀₈: l29→l26
Chain transitions t₂₇: l28→l22 and t₂₉: l22→l23 to t₆₀₉: l28→l23
Chain transitions t₂₈: l29→l22 and t₂₉: l22→l23 to t₆₁₀: l29→l23
Chain transitions t₂₇: l28→l22 and t₃₀: l22→l21 to t₆₁₁: l28→l21
Chain transitions t₂₈: l29→l22 and t₃₀: l22→l21 to t₆₁₂: l29→l21
Chain transitions t₂₇: l28→l22 and t₅₉₆: l22→l18 to t₆₁₃: l28→l18
Chain transitions t₂₈: l29→l22 and t₅₉₆: l22→l18 to t₆₁₄: l29→l18
Chain transitions t₂₇: l28→l22 and t₅₉₉: l22→l17 to t₆₁₅: l28→l17
Chain transitions t₂₈: l29→l22 and t₅₉₉: l22→l17 to t₆₁₆: l29→l17
Chain transitions t₂₇: l28→l22 and t₆₀₂: l22→l16 to t₆₁₇: l28→l16
Chain transitions t₂₈: l29→l22 and t₆₀₂: l22→l16 to t₆₁₈: l29→l16
Chain transitions t₆₁₀: l29→l23 and t₅₉₁: l23→l9 to t₆₁₉: l29→l9
Chain transitions t₆₀₉: l28→l23 and t₅₉₁: l23→l9 to t₆₂₀: l28→l9
Chain transitions t₆₀₉: l28→l23 and t₅₉₂: l23→l26 to t₆₂₁: l28→l26
Chain transitions t₆₁₀: l29→l23 and t₅₉₂: l23→l26 to t₆₂₂: l29→l26
Chain transitions t₆₀₉: l28→l23 and t₃₁: l23→l21 to t₆₂₃: l28→l21
Chain transitions t₆₁₀: l29→l23 and t₃₁: l23→l21 to t₆₂₄: l29→l21
Chain transitions t₆₀₉: l28→l23 and t₅₉₇: l23→l18 to t₆₂₅: l28→l18
Chain transitions t₆₁₀: l29→l23 and t₅₉₇: l23→l18 to t₆₂₆: l29→l18
Chain transitions t₆₀₉: l28→l23 and t₆₀₀: l23→l17 to t₆₂₇: l28→l17
Chain transitions t₆₁₀: l29→l23 and t₆₀₀: l23→l17 to t₆₂₈: l29→l17
Chain transitions t₆₀₉: l28→l23 and t₆₀₃: l23→l16 to t₆₂₉: l28→l16
Chain transitions t₆₁₀: l29→l23 and t₆₀₃: l23→l16 to t₆₃₀: l29→l16
Chain transitions t₁₇: l9→l25 and t₅₉₀: l25→l9 to t₆₃₁: l9→l9
Chain transitions t₁₇: l9→l25 and t₅₉₃: l25→l26 to t₆₃₂: l9→l26
Chain transitions t₁₇: l9→l25 and t₁₉: l25→l21 to t₆₃₃: l9→l21
Chain transitions t₁₇: l9→l25 and t₅₉₈: l25→l18 to t₆₃₄: l9→l18
Chain transitions t₁₇: l9→l25 and t₆₀₁: l25→l17 to t₆₃₅: l9→l17
Chain transitions t₁₇: l9→l25 and t₆₀₄: l25→l16 to t₆₃₆: l9→l16
Chain transitions t₆₃₂: l9→l26 and t₂₂: l26→l28 to t₆₃₇: l9→l28
Chain transitions t₆₂₂: l29→l26 and t₂₂: l26→l28 to t₆₃₈: l29→l28
Chain transitions t₆₂₂: l29→l26 and t₂₃: l26→l27 to t₆₃₉: l29→l27
Chain transitions t₆₃₂: l9→l26 and t₂₃: l26→l27 to t₆₄₀: l9→l27
Chain transitions t₆₀₈: l29→l26 and t₂₃: l26→l27 to t₆₄₁: l29→l27
Chain transitions t₆₀₈: l29→l26 and t₂₂: l26→l28 to t₆₄₂: l29→l28
Chain transitions t₆₂₁: l28→l26 and t₂₃: l26→l27 to t₆₄₃: l28→l27
Chain transitions t₆₂₁: l28→l26 and t₂₂: l26→l28 to t₆₄₄: l28→l28
Chain transitions t₆₀₇: l28→l26 and t₂₃: l26→l27 to t₆₄₅: l28→l27
Chain transitions t₆₀₇: l28→l26 and t₂₂: l26→l28 to t₆₄₆: l28→l28
Chain transitions t₆₄₀: l9→l27 and t₂₆: l27→l29 to t₆₄₇: l9→l29
Chain transitions t₆₄₁: l29→l27 and t₂₆: l27→l29 to t₆₄₈: l29→l29
Chain transitions t₆₄₁: l29→l27 and t₂₅: l27→l28 to t₆₄₉: l29→l28
Chain transitions t₆₄₀: l9→l27 and t₂₅: l27→l28 to t₆₅₀: l9→l28
Chain transitions t₆₃₉: l29→l27 and t₂₅: l27→l28 to t₆₅₁: l29→l28
Chain transitions t₆₃₉: l29→l27 and t₂₆: l27→l29 to t₆₅₂: l29→l29
Chain transitions t₆₄₅: l28→l27 and t₂₅: l27→l28 to t₆₅₃: l28→l28
Chain transitions t₆₄₅: l28→l27 and t₂₆: l27→l29 to t₆₅₄: l28→l29
Chain transitions t₆₄₃: l28→l27 and t₂₅: l27→l28 to t₆₅₅: l28→l28
Chain transitions t₆₄₃: l28→l27 and t₂₆: l27→l29 to t₆₅₆: l28→l29
Analysing control-flow refined program
Cut unsatisfiable transition t₆₀₇: l28→l26
Cut unsatisfiable transition t₆₀₈: l29→l26
Cut unsatisfiable transition t₆₄₁: l29→l27
Cut unsatisfiable transition t₆₄₂: l29→l28
Cut unsatisfiable transition t₆₄₅: l28→l27
Cut unsatisfiable transition t₆₄₆: l28→l28
Cut unsatisfiable transition t₆₄₈: l29→l29
Cut unsatisfiable transition t₆₄₉: l29→l28
Cut unsatisfiable transition t₆₅₃: l28→l28
Cut unsatisfiable transition t₆₅₄: l28→l29
Eliminate variables {X₀,X₄} that do not contribute to the problem
Found invariant 3 ≤ X₀ for location l11
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₀ for location l25
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l27
Found invariant 3 ≤ X₀ for location l6
Found invariant 3 ≤ X₀ for location l15
Found invariant 3 ≤ X₀ for location l19
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l26
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l29
Found invariant 3 ≤ X₀ for location l12
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l23
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l28
Found invariant 3 ≤ X₀ for location l7
Found invariant 3 ≤ X₀ for location l20
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l21
Found invariant 3 ≤ X₀ for location l5
Found invariant 3 ≤ X₀ for location l13
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l22
Found invariant 3 ≤ X₀ for location l8
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l16
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l18
Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₀ for location l9
Found invariant 3 ≤ X₀ for location l14
MPRF for transition t₈₄₄: l28(X₀, X₁, X₂) -{6}> l9(X₀, X₀, 1+X₂) :|: 0 < X₀+X₂+3 ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₈₄₅: l28(X₀, X₁, X₂) -{7}> l9(X₀, 1+2⋅X₁, 1+X₂) :|: X₀ < X₂+5+4⋅X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₈₆₁: l29(X₀, X₁, X₂) -{6}> l9(X₀, X₀, 1+X₂) :|: 0 < X₀+X₂+3 ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
X₀+3 {O(n)}
MPRF for transition t₈₆₂: l29(X₀, X₁, X₂) -{7}> l9(X₀, 2+2⋅X₁, 1+X₂) :|: X₀ < X₂+7+4⋅X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
X₀+3 {O(n)}
MPRF for transition t₈₇₈: l9(X₀, X₁, X₂) -{4}> l28(X₀, 0, X₂) :|: X₂+2 ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ X₀ ≤ X₂+3 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₈₇₉: l9(X₀, X₁, X₂) -{5}> l28(X₀, 0, X₂) :|: X₂+2 ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 3+X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₈₈₀: l9(X₀, X₁, X₂) -{5}> l29(X₀, 0, X₂) :|: X₂+2 ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 3+X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₈₈₁: l9(X₀, X₁, X₂) -{6}> l9(X₀, 0, 1+X₂) :|: X₂+2 ≤ X₀ ∧ X₀ < X₂+3 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₈₄₁: l28(X₀, X₁, X₂) -{5}> l28(X₀, 1+2⋅X₁, X₂) :|: 5+4⋅X₁+X₂ ≤ X₀ ∧ 5+4⋅X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₂+5+4⋅X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+2⋅X₀ {O(n^2)}
MPRF for transition t₈₄₂: l28(X₀, X₁, X₂) -{6}> l28(X₀, 1+2⋅X₁, X₂) :|: 5+4⋅X₁+X₂ ≤ X₀ ∧ 5+4⋅X₁+X₂ < X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+2⋅X₀ {O(n^2)}
MPRF for transition t₈₄₃: l28(X₀, X₁, X₂) -{6}> l29(X₀, 1+2⋅X₁, X₂) :|: 5+4⋅X₁+X₂ ≤ X₀ ∧ 5+4⋅X₁+X₂ < X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+11⋅X₀+8 {O(n^2)}
MPRF for transition t₈₅₈: l29(X₀, X₁, X₂) -{5}> l28(X₀, 2+2⋅X₁, X₂) :|: 7+4⋅X₁+X₂ ≤ X₀ ∧ 7+4⋅X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₂+7+4⋅X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+24⋅X₀+14 {O(n^2)}
MPRF for transition t₈₅₉: l29(X₀, X₁, X₂) -{6}> l28(X₀, 2+2⋅X₁, X₂) :|: 7+4⋅X₁+X₂ ≤ X₀ ∧ 7+4⋅X₁+X₂ < X₀ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+28⋅X₀+16 {O(n^2)}
MPRF for transition t₈₆₀: l29(X₀, X₁, X₂) -{6}> l29(X₀, 2+2⋅X₁, X₂) :|: 7+4⋅X₁+X₂ ≤ X₀ ∧ 7+4⋅X₁+X₂ < X₀ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+2⋅X₀ {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₁₄₁₉: n_l21___1→n_l26___17
Found invariant X₄ ≤ 2 ∧ X₄ ≤ 2+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l23___5
Found invariant 3 ≤ X₁ for location l6
Found invariant X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l27___16
Found invariant 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 3+X₂ ≤ X₄ ∧ 10 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l22___10
Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l28___23
Found invariant 3 ≤ X₁ for location l19
Found invariant 2+X₄ ≤ X₁ ∧ 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 3+X₂ ≤ X₄ ∧ 10 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l23___9
Found invariant X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ for location n_l28___15
Found invariant 2+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ for location n_l23___7
Found invariant 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l26___26
Found invariant 3 ≤ X₁ for location l12
Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ for location n_l22___8
Found invariant 3 ≤ X₁ for location l20
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l21___1
Found invariant 3+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 9 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l23___11
Found invariant X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l29___13
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l22___4
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l18
Found invariant 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₁ for location n_l21___20
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l23___2
Found invariant 3 ≤ X₁ for location l14
Found invariant 3 ≤ X₁ for location l11
Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l25
Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 9 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l22___12
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 3+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l22___21
Found invariant X₄ ≤ 2 ∧ X₄ ≤ 2+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l22___6
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 3+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l23___19
Found invariant 3 ≤ X₁ for location l15
Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l27___25
Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l29___22
Found invariant X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l28___14
Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l17
Found invariant 3 ≤ X₁ for location l7
Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l21
Found invariant 3 ≤ X₁ for location l5
Found invariant 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l28___24
Found invariant 3 ≤ X₁ for location l13
Found invariant 3 ≤ X₁ for location l8
Found invariant X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l21___18
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 3+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₁ for location n_l21___3
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l16
Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l9
Found invariant X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ for location n_l26___17
Solv. Size Bound: t₁₇: l9→l25 for X₂
cycle: [t₁₇: l9→l25; t₁₉: l25→l21; t₁₄₂₁: l21→n_l26___26; t₁₄₄₂: n_l26___26→n_l27___25; t₁₄₄₇: n_l27___25→n_l29___22; t₁₄₅₃: n_l29___22→n_l22___6; t₁₄₃₁: n_l22___6→n_l23___5; t₁₄₃₇: n_l23___5→n_l21___18; t₁₄₂₀: n_l21___18→n_l26___17; t₁₄₄₀: n_l26___17→n_l27___16; t₁₄₄₅: n_l27___16→n_l29___13; t₁₄₅₂: n_l29___13→n_l22___10; t₁₄₂₂: n_l22___10→n_l21___20; t₁₄₇₂: n_l21___20→l17; t₃₂: l17→l18; t₃₃: l18→l16; t₃₄: l16→l9]
loop: (X₃+2 ≤ X₁ ∧ 0 ≤ 0 ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ 0 ∧ 3+X₃ < X₁ ∧ 3+X₃ < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ 1 ∧ 7+X₃ ≤ X₁ ∧ 7+X₃ ≤ X₁ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 7+X₃ < X₁ ∧ 7+X₃ < X₁ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 7+X₃ < X₁ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 7+X₃ < X₁ ∧ 0 ≤ 2 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁+X₃+3,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: X₁+X₃+1 {O(n)}
Solv. Size Bound - Lifting for t₁₇: l9→l25 and X₂: 24⋅X₁ {O(n)}
Solv. Size Bound: t₃₂: l17→l18 for X₂
cycle: [t₃₂: l17→l18; t₃₃: l18→l16; t₃₄: l16→l9; t₁₇: l9→l25; t₁₉: l25→l21; t₁₄₂₁: l21→n_l26___26; t₁₄₄₂: n_l26___26→n_l27___25; t₁₄₄₆: n_l27___25→n_l28___23; t₁₄₅₀: n_l28___23→n_l22___21; t₁₄₂₇: n_l22___21→n_l23___19; t₁₄₃₅: n_l23___19→n_l21___18; t₁₄₂₀: n_l21___18→n_l26___17; t₁₄₄₀: n_l26___17→n_l27___16; t₁₄₄₄: n_l27___16→n_l28___14; t₁₄₄₈: n_l28___14→n_l22___12; t₁₄₂₄: n_l22___12→n_l21___20; t₁₄₇₂: n_l21___20→l17]
loop: (3+X₃ ≤ X₁ ∧ 0 ≤ 0 ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ 0 ∧ 4+X₃ < X₁ ∧ 4+X₃ < X₁ ∧ 0 ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5+X₃ ≤ X₁ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ 0 ∧ 6+X₃ ≤ X₁ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 6+X₃ < X₁ ∧ 6+X₃ < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 6+X₃ < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 6+X₃ < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁+4+X₃,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: X₁+X₃+1 {O(n)}
Solv. Size Bound - Lifting for t₃₂: l17→l18 and X₂: 24⋅X₁ {O(n)}
Solv. Size Bound: t₃₃: l18→l16 for X₂
cycle: [t₃₃: l18→l16; t₃₄: l16→l9; t₁₇: l9→l25; t₁₉: l25→l21; t₁₄₂₁: l21→n_l26___26; t₁₄₄₂: n_l26___26→n_l27___25; t₁₄₄₇: n_l27___25→n_l29___22; t₁₄₅₃: n_l29___22→n_l22___6; t₁₄₃₁: n_l22___6→n_l23___5; t₁₄₃₇: n_l23___5→n_l21___18; t₁₄₂₀: n_l21___18→n_l26___17; t₁₄₄₀: n_l26___17→n_l27___16; t₁₄₄₅: n_l27___16→n_l29___13; t₁₄₅₂: n_l29___13→n_l22___10; t₁₄₂₂: n_l22___10→n_l21___20; t₁₄₇₂: n_l21___20→l17; t₃₂: l17→l18]
loop: (X₀+2 ≤ X₁ ∧ 0 ≤ 0 ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ 0 ∧ 3+X₀ < X₁ ∧ 3+X₀ < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₀ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₀ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₀ ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ 1 ∧ 7+X₀ ≤ X₁ ∧ 7+X₀ ≤ X₁ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 7+X₀ < X₁ ∧ 7+X₀ < X₁ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 7+X₀ < X₁ ∧ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 7+X₀ < X₁ ∧ 0 ≤ 2 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁+X₀+3,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: X₀+X₁+1 {O(n)}
Solv. Size Bound - Lifting for t₃₃: l18→l16 and X₂: 24⋅X₁ {O(n)}
Solv. Size Bound: t₃₄: l16→l9 for X₂
cycle: [t₃₄: l16→l9; t₁₇: l9→l25; t₁₉: l25→l21; t₁₄₂₁: l21→n_l26___26; t₁₄₄₂: n_l26___26→n_l27___25; t₁₄₄₆: n_l27___25→n_l28___23; t₁₄₅₀: n_l28___23→n_l22___21; t₁₄₂₇: n_l22___21→n_l23___19; t₁₄₃₅: n_l23___19→n_l21___18; t₁₄₂₀: n_l21___18→n_l26___17; t₁₄₄₀: n_l26___17→n_l27___16; t₁₄₄₄: n_l27___16→n_l28___14; t₁₄₄₈: n_l28___14→n_l22___12; t₁₄₂₄: n_l22___12→n_l21___20; t₁₄₇₂: n_l21___20→l17; t₃₂: l17→l18; t₃₃: l18→l16]
loop: (X₀+2 ≤ X₁ ∧ 0 ≤ 0 ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ 0 ∧ 3+X₀ < X₁ ∧ 3+X₀ < X₁ ∧ 0 ≤ 0 ∧ 4+X₀ ≤ X₁ ∧ 0 ≤ 0 ∧ 4+X₀ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₀ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4+X₀ ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 3+X₀ ≤ X₁ ∧ 0 ≤ 0 ∧ 5+X₀ ≤ X₁ ∧ 5+X₀ ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5+X₀ < X₁ ∧ 5+X₀ < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5+X₀ < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5+X₀ < X₁ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 < X₁+X₀+3,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: X₀+X₁+1 {O(n)}
Solv. Size Bound - Lifting for t₃₄: l16→l9 and X₂: 24⋅X₁ {O(n)}
Solv. Size Bound: t₁₄₂₀: n_l21___18→n_l26___17 for X₂
cycle: [t₁₄₃₅: n_l23___19→n_l21___18; t₁₄₂₇: n_l22___21→n_l23___19; t₁₄₅₀: n_l28___23→n_l22___21; t₁₄₄₆: n_l27___25→n_l28___23; t₁₄₄₂: n_l26___26→n_l27___25; t₁₄₂₁: l21→n_l26___26; t₁₉: l25→l21; t₁₇: l9→l25; t₃₄: l16→l9; t₃₃: l18→l16; t₃₂: l17→l18; t₁₄₇₂: n_l21___20→l17; t₁₄₃₂: n_l22___8→n_l21___20; t₁₄₄₉: n_l28___15→n_l22___8; t₁₄₄₁: n_l26___17→n_l28___15; t₁₄₂₀: n_l21___18→n_l26___17]
loop: (4+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₁ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3+2⋅X₂+X₃ ≤ X₁ ∧ 4+X₃ ≤ X₁ ∧ X₄ ≤ 1 ∧ X₂ ≤ 0 ∧ 4+X₃ ≤ X₁ ∧ X₄ ≤ 1 ∧ X₄ ≤ 0 ∧ 4+X₃ ≤ X₁ ∧ X₄ ≤ 0 ∧ 3+X₃ < X₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ 0 ∧ 3+2⋅X₄+X₃ < X₁ ∧ X₄ ≤ 0 ∧ 3+2⋅X₄+X₃ ≤ X₁ ∧ X₃+2 ≤ X₁ ∧ X₁ < X₀+3 ∧ 3+2⋅X₄ ≤ X₁ ∧ 2 ≤ 2⋅X₄ ∧ X₁ ≤ X₀+3+2⋅X₄ ∧ 3+X₀+2⋅X₄ ≤ X₁ ∧ 0 ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ 0 ∧ 5+4⋅X₄ ≤ X₁ ∧ 0 ≤ 2⋅X₄ ∧ X₁ ≤ X₀+5+4⋅X₄ ∧ 5+X₀+4⋅X₄ ≤ X₁ ∧ X₁ ≤ 1+2⋅X₄ ∧ 1+2⋅X₄ ≤ X₁ ∧ 5+3⋅X₁+X₀ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁+1 ∧ X₁+1 ≤ 0 ∧ 3+X₁ ≤ 0 ∧ 0 ≤ X₁+X₀+3 ∧ 3+X₁+X₀ ≤ 0,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: 2 {O(1)}
Solv. Size Bound - Lifting for t₁₄₂₀: n_l21___18→n_l26___17 and X₂: 24⋅X₁ {O(n)}
Solv. Size Bound: t₁₄₄₄: n_l27___16→n_l28___14 for X₂
cycle: [t₁₄₄₀: n_l26___17→n_l27___16; t₁₄₂₀: n_l21___18→n_l26___17; t₁₄₃₅: n_l23___19→n_l21___18; t₁₄₂₇: n_l22___21→n_l23___19; t₁₄₅₀: n_l28___23→n_l22___21; t₁₄₄₆: n_l27___25→n_l28___23; t₁₄₄₂: n_l26___26→n_l27___25; t₁₄₂₁: l21→n_l26___26; t₁₉: l25→l21; t₁₇: l9→l25; t₃₄: l16→l9; t₃₃: l18→l16; t₃₂: l17→l18; t₁₄₇₂: n_l21___20→l17; t₁₄₂₄: n_l22___12→n_l21___20; t₁₄₄₈: n_l28___14→n_l22___12; t₁₄₄₄: n_l27___16→n_l28___14]
loop: (3+X₃+2⋅X₄ < X₁ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+X₃+2⋅X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+2⋅X₂+X₃ < X₁ ∧ 4+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₁ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3+2⋅X₂+X₃ ≤ X₁ ∧ 4+X₃ ≤ X₁ ∧ X₄ ≤ 1 ∧ X₂ ≤ 0 ∧ 4+X₃ ≤ X₁ ∧ X₄ ≤ 1 ∧ X₄ ≤ 0 ∧ 4+X₃ ≤ X₁ ∧ X₄ ≤ 0 ∧ 3+X₃ < X₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ 0 ∧ 3+2⋅X₄+X₃ < X₁ ∧ X₄ ≤ 0 ∧ 3+2⋅X₄+X₃ ≤ X₁ ∧ X₃+2 ≤ X₁ ∧ X₁ < X₀+3 ∧ 3+X₀+2⋅X₄ < X₁ ∧ 2 ≤ 2⋅X₄ ∧ 0 ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ 0 ∧ 5+X₀+4⋅X₄ < X₁ ∧ 0 ≤ 2⋅X₄ ∧ X₁ ≤ 1+2⋅X₄ ∧ 1+2⋅X₄ ≤ X₁,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: 2 {O(1)}
Solv. Size Bound - Lifting for t₁₄₄₄: n_l27___16→n_l28___14 and X₂: 24⋅X₁ {O(n)}
Solv. Size Bound: t₁₄₄₅: n_l27___16→n_l29___13 for X₂
cycle: [t₁₄₄₀: n_l26___17→n_l27___16; t₁₄₂₀: n_l21___18→n_l26___17; t₁₄₃₅: n_l23___19→n_l21___18; t₁₄₂₇: n_l22___21→n_l23___19; t₁₄₅₀: n_l28___23→n_l22___21; t₁₄₄₆: n_l27___25→n_l28___23; t₁₄₄₂: n_l26___26→n_l27___25; t₁₄₂₁: l21→n_l26___26; t₁₉: l25→l21; t₁₇: l9→l25; t₃₄: l16→l9; t₃₃: l18→l16; t₃₂: l17→l18; t₁₄₇₂: n_l21___20→l17; t₁₄₂₂: n_l22___10→n_l21___20; t₁₄₅₂: n_l29___13→n_l22___10; t₁₄₄₅: n_l27___16→n_l29___13]
loop: (3+X₃+2⋅X₄ < X₁ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+X₃+2⋅X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+2⋅X₂+X₃ < X₁ ∧ 4+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₁ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3+2⋅X₂+X₃ ≤ X₁ ∧ 4+X₃ ≤ X₁ ∧ X₄ ≤ 1 ∧ X₂ ≤ 0 ∧ 4+X₃ ≤ X₁ ∧ X₄ ≤ 1 ∧ X₄ ≤ 0 ∧ 4+X₃ ≤ X₁ ∧ X₄ ≤ 0 ∧ 3+X₃ < X₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ 0 ∧ 3+2⋅X₄+X₃ < X₁ ∧ X₄ ≤ 0 ∧ 3+2⋅X₄+X₃ ≤ X₁ ∧ X₃+2 ≤ X₁ ∧ X₁ < X₀+3 ∧ 2+X₀+2⋅X₄ < X₁ ∧ 3 ≤ 2⋅X₄ ∧ 1 ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ 1 ∧ 5+X₀+4⋅X₄ < X₁ ∧ 0 ≤ 2⋅X₄ ∧ X₁ ≤ 1+2⋅X₄ ∧ 1+2⋅X₄ ≤ X₁,(X₁,X₂) -> (X₁,X₁)
overappr. closed-form: 2⋅X₁ {O(n)}
runtime bound: 2 {O(1)}
Solv. Size Bound - Lifting for t₁₄₄₅: n_l27___16→n_l29___13 and X₂: 24⋅X₁ {O(n)}
All Bounds
Timebounds
Overall timebound:11⋅X₁⋅X₁+28⋅X₁+23 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₁₃: 1 {O(1)}
t₁₄: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: X₁+1 {O(n)}
t₁₈: 1 {O(1)}
t₁₉: X₁+1 {O(n)}
t₂₀: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₂₁: X₁+1 {O(n)}
t₂₂: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₂₃: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₂₅: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₂₆: 2⋅X₁⋅X₁+4⋅X₁ {O(n^2)}
t₂₇: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₂₈: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₂₉: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₃₀: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₃₁: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₃₂: X₁ {O(n)}
t₃₃: X₁ {O(n)}
t₃₄: X₁+1 {O(n)}
t₃₅: 1 {O(1)}
Costbounds
Overall costbound: 11⋅X₁⋅X₁+28⋅X₁+23 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₁₃: 1 {O(1)}
t₁₄: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: X₁+1 {O(n)}
t₁₈: 1 {O(1)}
t₁₉: X₁+1 {O(n)}
t₂₀: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₂₁: X₁+1 {O(n)}
t₂₂: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₂₃: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₂₅: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₂₆: 2⋅X₁⋅X₁+4⋅X₁ {O(n^2)}
t₂₇: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₂₈: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₂₉: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₃₀: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₃₁: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₃₂: X₁ {O(n)}
t₃₃: X₁ {O(n)}
t₃₄: X₁+1 {O(n)}
t₃₅: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₁ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₄, X₀: X₀ {O(n)}
t₁₄, X₁: X₁ {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₅, X₀: X₀ {O(n)}
t₁₅, X₁: X₁ {O(n)}
t₁₅, X₂: X₂ {O(n)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: X₁ {O(n)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: 0 {O(1)}
t₁₆, X₄: X₄ {O(n)}
t₁₇, X₀: X₀+X₁ {O(n)}
t₁₇, X₁: X₁ {O(n)}
t₁₇, X₂: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2⋅X₁+X₂ {O(EXP)}
t₁₇, X₃: X₁ {O(n)}
t₁₇, X₄: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁+X₄ {O(EXP)}
t₁₈, X₀: X₁ {O(n)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2⋅X₁ {O(EXP)}
t₁₈, X₃: X₁ {O(n)}
t₁₈, X₄: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁+X₄ {O(EXP)}
t₁₉, X₀: X₀+X₁ {O(n)}
t₁₉, X₁: X₁ {O(n)}
t₁₉, X₂: 0 {O(1)}
t₁₉, X₃: X₁ {O(n)}
t₁₉, X₄: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁+X₄ {O(EXP)}
t₂₀, X₀: X₀+X₁ {O(n)}
t₂₀, X₁: X₁ {O(n)}
t₂₀, X₂: 6⋅X₁ {O(n)}
t₂₀, X₃: X₁ {O(n)}
t₂₀, X₄: 16⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₁, X₀: 4⋅X₀+4⋅X₁ {O(n)}
t₂₁, X₁: X₁ {O(n)}
t₂₁, X₂: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2⋅X₁ {O(EXP)}
t₂₁, X₃: X₁ {O(n)}
t₂₁, X₄: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁+X₄ {O(EXP)}
t₂₂, X₀: X₀+X₁ {O(n)}
t₂₂, X₁: X₁ {O(n)}
t₂₂, X₂: 8⋅X₁ {O(n)}
t₂₂, X₃: X₁ {O(n)}
t₂₂, X₄: 16⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₃, X₀: X₀+X₁ {O(n)}
t₂₃, X₁: X₁ {O(n)}
t₂₃, X₂: 8⋅X₁ {O(n)}
t₂₃, X₃: X₁ {O(n)}
t₂₃, X₄: 16⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₅, X₀: X₀+X₁ {O(n)}
t₂₅, X₁: X₁ {O(n)}
t₂₅, X₂: 8⋅X₁ {O(n)}
t₂₅, X₃: X₁ {O(n)}
t₂₅, X₄: 16⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₆, X₀: X₀+X₁ {O(n)}
t₂₆, X₁: X₁ {O(n)}
t₂₆, X₂: 6⋅X₁ {O(n)}
t₂₆, X₃: X₁ {O(n)}
t₂₆, X₄: 16⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₇, X₀: X₀+X₁ {O(n)}
t₂₇, X₁: X₁ {O(n)}
t₂₇, X₂: 8⋅X₁ {O(n)}
t₂₇, X₃: X₁ {O(n)}
t₂₇, X₄: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁ {O(EXP)}
t₂₈, X₀: X₀+X₁ {O(n)}
t₂₈, X₁: X₁ {O(n)}
t₂₈, X₂: 6⋅X₁ {O(n)}
t₂₈, X₃: X₁ {O(n)}
t₂₈, X₄: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁ {O(EXP)}
t₂₉, X₀: X₀+X₁ {O(n)}
t₂₉, X₁: X₁ {O(n)}
t₂₉, X₂: 14⋅X₁ {O(n)}
t₂₉, X₃: X₁ {O(n)}
t₂₉, X₄: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁ {O(EXP)}
t₃₀, X₀: 2⋅X₀+2⋅X₁ {O(n)}
t₃₀, X₁: X₁ {O(n)}
t₃₀, X₂: 2⋅X₁ {O(n)}
t₃₀, X₃: X₁ {O(n)}
t₃₀, X₄: 2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁ {O(EXP)}
t₃₁, X₀: X₀+X₁ {O(n)}
t₃₁, X₁: X₁ {O(n)}
t₃₁, X₂: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁ {O(EXP)}
t₃₁, X₃: X₁ {O(n)}
t₃₁, X₄: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁ {O(EXP)}
t₃₂, X₀: X₁ {O(n)}
t₃₂, X₁: X₁ {O(n)}
t₃₂, X₂: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2⋅X₁ {O(EXP)}
t₃₂, X₃: X₁ {O(n)}
t₃₂, X₄: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁+X₄ {O(EXP)}
t₃₃, X₀: X₁ {O(n)}
t₃₃, X₁: X₁ {O(n)}
t₃₃, X₂: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2⋅X₁ {O(EXP)}
t₃₃, X₃: X₁ {O(n)}
t₃₃, X₄: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁+X₄ {O(EXP)}
t₃₄, X₀: X₁ {O(n)}
t₃₄, X₁: X₁ {O(n)}
t₃₄, X₂: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2⋅X₁ {O(EXP)}
t₃₄, X₃: X₁ {O(n)}
t₃₄, X₄: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁+X₄ {O(EXP)}
t₃₅, X₀: X₀+X₁ {O(n)}
t₃₅, X₁: 2⋅X₁ {O(n)}
t₃₅, X₂: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2⋅X₁+X₂ {O(EXP)}
t₃₅, X₃: X₁+X₃ {O(n)}
t₃₅, X₄: 2⋅2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅4⋅X₁⋅X₁+2^(X₁⋅X₁+2⋅X₁)⋅2^(X₁⋅X₁+2⋅X₁)⋅8⋅X₁+2⋅X₄ {O(EXP)}