Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃
Temp_Vars: O, P, Q, R
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, 3, P, 0, 0, 3, P, 2, X₁₂, X₁₃) :|: P ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, 3, P, 0, 0, 3, P, 2, X₁₂, X₁₃) :|: P ≤ 7 ∧ 5 ≤ P
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂+1, X₂+1, X₄+1, X₄+1, 3, 4, 1, 0, 3, 4, 2, X₁₂, X₁₃)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, 0, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, 0, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 7, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 7, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 3, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 3, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(0, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 0, P, 4, 3, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 6, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 6, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 6, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, P, O, 0, 0, P, O, 2, X₁₂, X₁₃) :|: Q+1 ≤ X₁₂ ∧ R+1 ≤ X₁₃ ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 1 ≤ X₇
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, P, O, 0, 0, P, O, 2, X₁₂, X₁₃) :|: 1 ≤ X₁₂ ∧ X₄+1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ X₂+1 ≤ X₁₃ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 1 ≤ X₇
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 0, 0, P, 4, 2, X₁₂, X₁₃) :|: X₄+2 ≤ X₁₂ ∧ X₂+2 ≤ X₁₃ ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ P ≤ 7 ∧ 1 ≤ P
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 7, X₁₂, X₁₃) :|: X₁₂ ≤ X₄ ∧ X₁₃ ≤ X₂ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₂₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 7, X₁₂, X₁₃) :|: X₁₂ ≤ X₄ ∧ X₁₃ ≤ X₂ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(0, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 0, P, 4, 7, X₁₂, X₁₃) :|: X₁₂ ≤ X₄+1 ∧ X₁₃ ≤ X₂+1 ∧ P ≤ 7 ∧ 1 ≤ P
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 7, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(P, X₂, X₂, X₄, X₄, O, 2, 0, P, O, 2, 4, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(P, X₂, X₂, X₄, X₄, O, 7, 1, P, O, 7, 4, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₇ ≤ 1 ∧ 1 ≤ X₇
Preprocessing
Eliminate variables {X₀,X₁,X₃,X₅,X₆,X₈,X₉,X₁₀,X₁₁} that do not contribute to the problem
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l2
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l6
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l5
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l4
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: O, P, Q, R
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₅₃: l0(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₅₄: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 0, X₃, X₄) :|: P ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P
t₅₅: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 0, X₃, X₄) :|: P ≤ 7 ∧ 5 ≤ P
t₅₆: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀+1, X₁+1, 1, X₃, X₄)
t₅₇: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, 0, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₅₈: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, 0, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₅₉: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P
t₆₀: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₂: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₃: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₄: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₅: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₆: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₇: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₈: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₉: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 0, X₃, X₄) :|: Q+1 ≤ X₃ ∧ R+1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₀: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 0, X₃, X₄) :|: 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₀+1 ≤ X₄ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₁: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀+1, X₁+1, 0, X₃, X₄) :|: X₁+2 ≤ X₃ ∧ X₀+2 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₂: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₄ ≤ X₀ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₃: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₄ ≤ X₀ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₄: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀+1, X₁+1, 1, X₃, X₄) :|: X₃ ≤ X₁+1 ∧ X₄ ≤ X₀+1 ∧ P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₅: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₆: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₇: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₈: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 0, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₉: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 1, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
MPRF for transition t₇₀: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 0, X₃, X₄) :|: 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₀+1 ≤ X₄ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ of depth 1:
new bound:
3⋅X₁+3⋅X₃+2 {O(n)}
MPRF for transition t₇₁: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀+1, X₁+1, 0, X₃, X₄) :|: X₁+2 ≤ X₃ ∧ X₀+2 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ of depth 1:
new bound:
3⋅X₁+3⋅X₃+4 {O(n)}
MPRF for transition t₇₈: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 0, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ of depth 1:
new bound:
6⋅X₁+6⋅X₃+14 {O(n)}
Chain transitions t₇₁: l5→l2 and t₆₅: l2→l4 to t₁₆₂₉: l5→l4
Chain transitions t₇₀: l5→l2 and t₆₅: l2→l4 to t₁₆₃₀: l5→l4
Chain transitions t₇₀: l5→l2 and t₆₄: l2→l4 to t₁₆₃₁: l5→l4
Chain transitions t₇₁: l5→l2 and t₆₄: l2→l4 to t₁₆₃₂: l5→l4
Chain transitions t₆₉: l5→l2 and t₆₄: l2→l4 to t₁₆₃₃: l5→l4
Chain transitions t₆₉: l5→l2 and t₆₅: l2→l4 to t₁₆₃₄: l5→l4
Chain transitions t₆₉: l5→l2 and t₆₃: l2→l4 to t₁₆₃₅: l5→l4
Chain transitions t₇₀: l5→l2 and t₆₃: l2→l4 to t₁₆₃₆: l5→l4
Chain transitions t₇₁: l5→l2 and t₆₃: l2→l4 to t₁₆₃₇: l5→l4
Chain transitions t₅₆: l1→l2 and t₆₃: l2→l4 to t₁₆₃₈: l1→l4
Chain transitions t₅₆: l1→l2 and t₆₄: l2→l4 to t₁₆₃₉: l1→l4
Chain transitions t₅₆: l1→l2 and t₆₅: l2→l4 to t₁₆₄₀: l1→l4
Chain transitions t₅₆: l1→l2 and t₆₂: l2→l3 to t₁₆₄₁: l1→l3
Chain transitions t₆₉: l5→l2 and t₆₂: l2→l3 to t₁₆₄₂: l5→l3
Chain transitions t₇₀: l5→l2 and t₆₂: l2→l3 to t₁₆₄₃: l5→l3
Chain transitions t₇₁: l5→l2 and t₆₂: l2→l3 to t₁₆₄₄: l5→l3
Chain transitions t₅₅: l1→l2 and t₆₂: l2→l3 to t₁₆₄₅: l1→l3
Chain transitions t₅₅: l1→l2 and t₆₃: l2→l4 to t₁₆₄₆: l1→l4
Chain transitions t₅₅: l1→l2 and t₆₄: l2→l4 to t₁₆₄₇: l1→l4
Chain transitions t₅₅: l1→l2 and t₆₅: l2→l4 to t₁₆₄₈: l1→l4
Chain transitions t₅₅: l1→l2 and t₆₁: l2→l3 to t₁₆₄₉: l1→l3
Chain transitions t₅₆: l1→l2 and t₆₁: l2→l3 to t₁₆₅₀: l1→l3
Chain transitions t₆₉: l5→l2 and t₆₁: l2→l3 to t₁₆₅₁: l5→l3
Chain transitions t₇₀: l5→l2 and t₆₁: l2→l3 to t₁₆₅₂: l5→l3
Chain transitions t₇₁: l5→l2 and t₆₁: l2→l3 to t₁₆₅₃: l5→l3
Chain transitions t₅₄: l1→l2 and t₆₁: l2→l3 to t₁₆₅₄: l1→l3
Chain transitions t₅₄: l1→l2 and t₆₂: l2→l3 to t₁₆₅₅: l1→l3
Chain transitions t₅₄: l1→l2 and t₆₃: l2→l4 to t₁₆₅₆: l1→l4
Chain transitions t₅₄: l1→l2 and t₆₄: l2→l4 to t₁₆₅₇: l1→l4
Chain transitions t₅₄: l1→l2 and t₆₅: l2→l4 to t₁₆₅₈: l1→l4
Chain transitions t₅₄: l1→l2 and t₆₀: l2→l3 to t₁₆₅₉: l1→l3
Chain transitions t₅₅: l1→l2 and t₆₀: l2→l3 to t₁₆₆₀: l1→l3
Chain transitions t₅₆: l1→l2 and t₆₀: l2→l3 to t₁₆₆₁: l1→l3
Chain transitions t₆₉: l5→l2 and t₆₀: l2→l3 to t₁₆₆₂: l5→l3
Chain transitions t₇₀: l5→l2 and t₆₀: l2→l3 to t₁₆₆₃: l5→l3
Chain transitions t₇₁: l5→l2 and t₆₀: l2→l3 to t₁₆₆₄: l5→l3
Chain transitions t₁₆₃₇: l5→l4 and t₆₈: l4→l6 to t₁₆₆₅: l5→l6
Chain transitions t₁₆₃₆: l5→l4 and t₆₈: l4→l6 to t₁₆₆₆: l5→l6
Chain transitions t₁₆₃₆: l5→l4 and t₆₇: l4→l6 to t₁₆₆₇: l5→l6
Chain transitions t₁₆₃₇: l5→l4 and t₆₇: l4→l6 to t₁₆₆₈: l5→l6
Chain transitions t₁₆₃₅: l5→l4 and t₆₇: l4→l6 to t₁₆₆₉: l5→l6
Chain transitions t₁₆₃₅: l5→l4 and t₆₈: l4→l6 to t₁₆₇₀: l5→l6
Chain transitions t₁₆₃₅: l5→l4 and t₆₆: l4→l6 to t₁₆₇₁: l5→l6
Chain transitions t₁₆₃₆: l5→l4 and t₆₆: l4→l6 to t₁₆₇₂: l5→l6
Chain transitions t₁₆₃₇: l5→l4 and t₆₆: l4→l6 to t₁₆₇₃: l5→l6
Chain transitions t₁₆₃₄: l5→l4 and t₆₆: l4→l6 to t₁₆₇₄: l5→l6
Chain transitions t₁₆₃₄: l5→l4 and t₆₇: l4→l6 to t₁₆₇₅: l5→l6
Chain transitions t₁₆₃₄: l5→l4 and t₆₈: l4→l6 to t₁₆₇₆: l5→l6
Chain transitions t₁₆₃₃: l5→l4 and t₆₆: l4→l6 to t₁₆₇₇: l5→l6
Chain transitions t₁₆₃₃: l5→l4 and t₆₇: l4→l6 to t₁₆₇₈: l5→l6
Chain transitions t₁₆₃₃: l5→l4 and t₆₈: l4→l6 to t₁₆₇₉: l5→l6
Chain transitions t₁₆₃₂: l5→l4 and t₆₆: l4→l6 to t₁₆₈₀: l5→l6
Chain transitions t₁₆₃₂: l5→l4 and t₆₇: l4→l6 to t₁₆₈₁: l5→l6
Chain transitions t₁₆₃₂: l5→l4 and t₆₈: l4→l6 to t₁₆₈₂: l5→l6
Chain transitions t₁₆₃₁: l5→l4 and t₆₆: l4→l6 to t₁₆₈₃: l5→l6
Chain transitions t₁₆₃₁: l5→l4 and t₆₇: l4→l6 to t₁₆₈₄: l5→l6
Chain transitions t₁₆₃₁: l5→l4 and t₆₈: l4→l6 to t₁₆₈₅: l5→l6
Chain transitions t₁₆₃₀: l5→l4 and t₆₆: l4→l6 to t₁₆₈₆: l5→l6
Chain transitions t₁₆₃₀: l5→l4 and t₆₇: l4→l6 to t₁₆₈₇: l5→l6
Chain transitions t₁₆₃₀: l5→l4 and t₆₈: l4→l6 to t₁₆₈₈: l5→l6
Chain transitions t₁₆₂₉: l5→l4 and t₆₆: l4→l6 to t₁₆₈₉: l5→l6
Chain transitions t₁₆₂₉: l5→l4 and t₆₇: l4→l6 to t₁₆₉₀: l5→l6
Chain transitions t₁₆₂₉: l5→l4 and t₆₈: l4→l6 to t₁₆₉₁: l5→l6
Chain transitions t₁₆₅₈: l1→l4 and t₆₆: l4→l6 to t₁₆₉₂: l1→l6
Chain transitions t₁₆₅₈: l1→l4 and t₆₇: l4→l6 to t₁₆₉₃: l1→l6
Chain transitions t₁₆₅₈: l1→l4 and t₆₈: l4→l6 to t₁₆₉₄: l1→l6
Chain transitions t₁₆₅₇: l1→l4 and t₆₆: l4→l6 to t₁₆₉₅: l1→l6
Chain transitions t₁₆₅₇: l1→l4 and t₆₇: l4→l6 to t₁₆₉₆: l1→l6
Chain transitions t₁₆₅₇: l1→l4 and t₆₈: l4→l6 to t₁₆₉₇: l1→l6
Chain transitions t₁₆₅₆: l1→l4 and t₆₆: l4→l6 to t₁₆₉₈: l1→l6
Chain transitions t₁₆₅₆: l1→l4 and t₆₇: l4→l6 to t₁₆₉₉: l1→l6
Chain transitions t₁₆₅₆: l1→l4 and t₆₈: l4→l6 to t₁₇₀₀: l1→l6
Chain transitions t₁₆₄₈: l1→l4 and t₆₆: l4→l6 to t₁₇₀₁: l1→l6
Chain transitions t₁₆₄₈: l1→l4 and t₆₇: l4→l6 to t₁₇₀₂: l1→l6
Chain transitions t₁₆₄₈: l1→l4 and t₆₈: l4→l6 to t₁₇₀₃: l1→l6
Chain transitions t₁₆₄₇: l1→l4 and t₆₆: l4→l6 to t₁₇₀₄: l1→l6
Chain transitions t₁₆₄₇: l1→l4 and t₆₇: l4→l6 to t₁₇₀₅: l1→l6
Chain transitions t₁₆₄₇: l1→l4 and t₆₈: l4→l6 to t₁₇₀₆: l1→l6
Chain transitions t₁₆₄₆: l1→l4 and t₆₆: l4→l6 to t₁₇₀₇: l1→l6
Chain transitions t₁₆₄₆: l1→l4 and t₆₇: l4→l6 to t₁₇₀₈: l1→l6
Chain transitions t₁₆₄₆: l1→l4 and t₆₈: l4→l6 to t₁₇₀₉: l1→l6
Chain transitions t₁₆₄₀: l1→l4 and t₆₆: l4→l6 to t₁₇₁₀: l1→l6
Chain transitions t₁₆₄₀: l1→l4 and t₆₇: l4→l6 to t₁₇₁₁: l1→l6
Chain transitions t₁₆₄₀: l1→l4 and t₆₈: l4→l6 to t₁₇₁₂: l1→l6
Chain transitions t₁₆₃₉: l1→l4 and t₆₆: l4→l6 to t₁₇₁₃: l1→l6
Chain transitions t₁₆₃₉: l1→l4 and t₆₇: l4→l6 to t₁₇₁₄: l1→l6
Chain transitions t₁₆₃₉: l1→l4 and t₆₈: l4→l6 to t₁₇₁₅: l1→l6
Chain transitions t₁₆₃₈: l1→l4 and t₆₆: l4→l6 to t₁₇₁₆: l1→l6
Chain transitions t₁₆₃₈: l1→l4 and t₆₇: l4→l6 to t₁₇₁₇: l1→l6
Chain transitions t₁₆₃₈: l1→l4 and t₆₈: l4→l6 to t₁₇₁₈: l1→l6
Chain transitions t₇₉: l6→l5 and t₁₆₉₁: l5→l6 to t₁₇₁₉: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₉₁: l5→l6 to t₁₇₂₀: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₉₀: l5→l6 to t₁₇₂₁: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₉₀: l5→l6 to t₁₇₂₂: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₈₉: l5→l6 to t₁₇₂₃: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₈₉: l5→l6 to t₁₇₂₄: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₈₈: l5→l6 to t₁₇₂₅: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₈₈: l5→l6 to t₁₇₂₆: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₈₇: l5→l6 to t₁₇₂₇: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₈₇: l5→l6 to t₁₇₂₈: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₈₆: l5→l6 to t₁₇₂₉: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₈₆: l5→l6 to t₁₇₃₀: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₈₅: l5→l6 to t₁₇₃₁: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₈₅: l5→l6 to t₁₇₃₂: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₈₄: l5→l6 to t₁₇₃₃: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₈₄: l5→l6 to t₁₇₃₄: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₈₃: l5→l6 to t₁₇₃₅: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₈₃: l5→l6 to t₁₇₃₆: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₈₂: l5→l6 to t₁₇₃₇: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₈₂: l5→l6 to t₁₇₃₈: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₈₁: l5→l6 to t₁₇₃₉: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₈₁: l5→l6 to t₁₇₄₀: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₈₀: l5→l6 to t₁₇₄₁: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₈₀: l5→l6 to t₁₇₄₂: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₇₉: l5→l6 to t₁₇₄₃: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₇₉: l5→l6 to t₁₇₄₄: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₇₈: l5→l6 to t₁₇₄₅: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₇₈: l5→l6 to t₁₇₄₆: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₇₇: l5→l6 to t₁₇₄₇: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₇₇: l5→l6 to t₁₇₄₈: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₇₆: l5→l6 to t₁₇₄₉: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₇₆: l5→l6 to t₁₇₅₀: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₇₅: l5→l6 to t₁₇₅₁: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₇₅: l5→l6 to t₁₇₅₂: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₇₄: l5→l6 to t₁₇₅₃: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₇₄: l5→l6 to t₁₇₅₄: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₇₃: l5→l6 to t₁₇₅₅: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₇₃: l5→l6 to t₁₇₅₆: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₇₂: l5→l6 to t₁₇₅₇: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₇₂: l5→l6 to t₁₇₅₈: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₇₁: l5→l6 to t₁₇₅₉: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₇₁: l5→l6 to t₁₇₆₀: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₇₀: l5→l6 to t₁₇₆₁: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₇₀: l5→l6 to t₁₇₆₂: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₆₉: l5→l6 to t₁₇₆₃: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₆₉: l5→l6 to t₁₇₆₄: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₆₈: l5→l6 to t₁₇₆₅: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₆₈: l5→l6 to t₁₇₆₆: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₆₇: l5→l6 to t₁₇₆₇: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₆₇: l5→l6 to t₁₇₆₈: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₆₆: l5→l6 to t₁₇₆₉: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₆₆: l5→l6 to t₁₇₇₀: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₆₅: l5→l6 to t₁₇₇₁: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₆₆₅: l5→l6 to t₁₇₇₂: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₆₃₇: l5→l4 to t₁₇₇₃: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₆₃₇: l5→l4 to t₁₇₇₄: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₆₃₆: l5→l4 to t₁₇₇₅: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₆₃₆: l5→l4 to t₁₇₇₆: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₆₃₅: l5→l4 to t₁₇₇₇: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₆₃₅: l5→l4 to t₁₇₇₈: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₆₃₄: l5→l4 to t₁₇₇₉: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₆₃₄: l5→l4 to t₁₇₈₀: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₆₃₃: l5→l4 to t₁₇₈₁: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₆₃₃: l5→l4 to t₁₇₈₂: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₆₃₂: l5→l4 to t₁₇₈₃: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₆₃₂: l5→l4 to t₁₇₈₄: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₆₃₁: l5→l4 to t₁₇₈₅: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₆₃₁: l5→l4 to t₁₇₈₆: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₆₃₀: l5→l4 to t₁₇₈₇: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₆₃₀: l5→l4 to t₁₇₈₈: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₆₂₉: l5→l4 to t₁₇₈₉: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₆₂₉: l5→l4 to t₁₇₉₀: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₆₆₄: l5→l3 to t₁₇₉₁: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₆₆₄: l5→l3 to t₁₇₉₂: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₆₆₃: l5→l3 to t₁₇₉₃: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₆₆₃: l5→l3 to t₁₇₉₄: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₆₆₂: l5→l3 to t₁₇₉₅: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₆₆₂: l5→l3 to t₁₇₉₆: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₆₅₃: l5→l3 to t₁₇₉₇: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₆₅₃: l5→l3 to t₁₇₉₈: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₆₅₂: l5→l3 to t₁₇₉₉: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₆₅₂: l5→l3 to t₁₈₀₀: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₆₅₁: l5→l3 to t₁₈₀₁: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₆₅₁: l5→l3 to t₁₈₀₂: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₆₄₄: l5→l3 to t₁₈₀₃: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₆₄₄: l5→l3 to t₁₈₀₄: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₆₄₃: l5→l3 to t₁₈₀₅: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₆₄₃: l5→l3 to t₁₈₀₆: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₆₄₂: l5→l3 to t₁₈₀₇: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₆₄₂: l5→l3 to t₁₈₀₈: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₇: l5→l3 to t₁₈₀₉: l6→l3
Chain transitions t₇₉: l6→l5 and t₇₇: l5→l3 to t₁₈₁₀: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₆: l5→l3 to t₁₈₁₁: l6→l3
Chain transitions t₇₉: l6→l5 and t₇₆: l5→l3 to t₁₈₁₂: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₅: l5→l3 to t₁₈₁₃: l6→l3
Chain transitions t₇₉: l6→l5 and t₇₅: l5→l3 to t₁₈₁₄: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₄: l5→l3 to t₁₈₁₅: l6→l3
Chain transitions t₇₉: l6→l5 and t₇₄: l5→l3 to t₁₈₁₆: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₃: l5→l3 to t₁₈₁₇: l6→l3
Chain transitions t₇₉: l6→l5 and t₇₃: l5→l3 to t₁₈₁₈: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₂: l5→l3 to t₁₈₁₉: l6→l3
Chain transitions t₇₉: l6→l5 and t₇₂: l5→l3 to t₁₈₂₀: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₁: l5→l2 to t₁₈₂₁: l6→l2
Chain transitions t₇₉: l6→l5 and t₇₁: l5→l2 to t₁₈₂₂: l6→l2
Chain transitions t₇₈: l6→l5 and t₇₀: l5→l2 to t₁₈₂₃: l6→l2
Chain transitions t₇₉: l6→l5 and t₇₀: l5→l2 to t₁₈₂₄: l6→l2
Chain transitions t₇₈: l6→l5 and t₆₉: l5→l2 to t₁₈₂₅: l6→l2
Chain transitions t₇₉: l6→l5 and t₆₉: l5→l2 to t₁₈₂₆: l6→l2
Analysing control-flow refined program
Analysing control-flow refined program
Cut unsatisfiable transition t₂₉₄₅: n_l5___14→l3
Cut unsatisfiable transition t₂₉₅₄: n_l5___14→l3
Cut unsatisfiable transition t₂₉₉₉: n_l5___14→l3
Cut unsatisfiable transition t₃₀₀₈: n_l5___14→l3
Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___20
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l2
Found invariant X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l5___1
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l4___18
Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l4___24
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l2___19
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l4___17
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l6___4
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l4___9
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l5___5
Found invariant X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l4___23
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l6___16
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___14
Found invariant X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l6___21
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l2___11
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l5___2
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___6
Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l6___22
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l5___12
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___13
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l6___7
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l6___8
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l3
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l4___10
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___3
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l6___15
MPRF for transition t₂₈₃₆: n_l2___19(X₀, X₁, X₂, X₃, X₄) → n_l4___17(X₀+1, X₁+1, 1, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₂₈₃₇: n_l2___19(X₀, X₁, X₂, X₃, X₄) → n_l4___18(X₀, X₁, Arg2_P, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ Arg2_P ≤ 1 ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+102 {O(n)}
MPRF for transition t₂₈₃₈: n_l2___19(X₀, X₁, X₂, X₃, X₄) → n_l4___18(X₀, X₁, Arg2_P, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ X₂ ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ Arg2_P ≤ 1 ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₂₈₄₈: n_l4___17(X₀, X₁, X₂, X₃, X₄) → n_l6___15(X₀, X₁, Arg2_P, X₃, X₄) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ Arg2_P ≤ 1 ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+99 {O(n)}
MPRF for transition t₂₈₄₉: n_l4___17(X₀, X₁, X₂, X₃, X₄) → n_l6___15(X₀, X₁, Arg2_P, X₃, X₄) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ Arg2_P ≤ 1 ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₂₈₅₀: n_l4___17(X₀, X₁, X₂, X₃, X₄) → n_l6___4(X₀+1, X₁+1, 1, X₃, X₄) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+99 {O(n)}
MPRF for transition t₂₈₅₁: n_l4___18(X₀, X₁, X₂, X₃, X₄) → n_l6___15(X₀+1, X₁+1, 1, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₃+84⋅X₄+99 {O(n)}
MPRF for transition t₂₈₅₂: n_l4___18(X₀, X₁, X₂, X₃, X₄) → n_l6___16(X₀, X₁, Arg2_P, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ Arg2_P ≤ 1 ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+99 {O(n)}
MPRF for transition t₂₈₅₃: n_l4___18(X₀, X₁, X₂, X₃, X₄) → n_l6___16(X₀, X₁, Arg2_P, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ Arg2_P ≤ 1 ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+99 {O(n)}
MPRF for transition t₂₈₆₆: n_l5___12(X₀, X₁, X₂, X₃, X₄) → n_l2___11(X₀, X₁, 0, Arg3_P, Arg4_P) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ Arg4_P ∧ 1 ≤ Arg3_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+100 {O(n)}
MPRF for transition t₂₈₆₇: n_l5___12(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀, X₁, 0, Arg3_P, Arg4_P) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ Arg4_P ∧ 1+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₂₈₆₈: n_l5___12(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀+1, X₁+1, 0, Arg3_P, Arg4_P) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₂₈₆₉: n_l5___13(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀+1, X₁+1, 0, Arg3_P, Arg4_P) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₂₈₇₀: n_l5___14(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀+1, X₁+1, 0, Arg3_P, Arg4_P) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₂₈₇₁: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l2___11(X₀, X₁, 0, Arg3_P, Arg4_P) :|: X₀ ≤ 1+X₄ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ Arg4_P ∧ 1 ≤ Arg3_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+100 {O(n)}
MPRF for transition t₂₈₇₂: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀, X₁, 0, Arg3_P, Arg4_P) :|: X₀ ≤ 1+X₄ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ Arg4_P ∧ 1+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+102 {O(n)}
MPRF for transition t₂₈₇₃: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀+1, X₁+1, 0, Arg3_P, Arg4_P) :|: X₀ ≤ 1+X₄ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+103 {O(n)}
MPRF for transition t₂₈₇₅: n_l5___3(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀+1, X₁+1, 0, Arg3_P, Arg4_P) :|: X₀ ≤ 1+X₄ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₂₈₇₇: n_l5___5(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀, X₁, 0, Arg3_P, Arg4_P) :|: 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ Arg4_P ∧ 1+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+102 {O(n)}
MPRF for transition t₂₈₇₈: n_l5___5(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀+1, X₁+1, 0, Arg3_P, Arg4_P) :|: 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+103 {O(n)}
MPRF for transition t₂₈₇₉: n_l5___6(X₀, X₁, X₂, X₃, X₄) → n_l2___19(X₀+1, X₁+1, 0, Arg3_P, Arg4_P) :|: 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+102 {O(n)}
MPRF for transition t₂₈₈₀: n_l6___15(X₀, X₁, X₂, X₃, X₄) → n_l5___12(X₀, X₁, 1, X₃, X₄) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+99 {O(n)}
MPRF for transition t₂₈₈₁: n_l6___15(X₀, X₁, X₂, X₃, X₄) → n_l5___13(X₀, X₁, 0, X₃, X₄) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+99 {O(n)}
MPRF for transition t₂₈₈₂: n_l6___16(X₀, X₁, X₂, X₃, X₄) → n_l5___14(X₀, X₁, 0, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₃+84⋅X₄+99 {O(n)}
MPRF for transition t₂₈₈₆: n_l6___4(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, X₁, 1, X₃, X₄) :|: X₀ ≤ 1+X₄ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+99 {O(n)}
MPRF for transition t₂₈₈₇: n_l6___4(X₀, X₁, X₂, X₃, X₄) → n_l5___3(X₀, X₁, 0, X₃, X₄) :|: X₀ ≤ 1+X₄ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₃+84⋅X₄+102 {O(n)}
MPRF for transition t₂₈₄₆: n_l4___10(X₀, X₁, X₂, X₃, X₄) → n_l6___8(X₀, X₁, Arg2_P, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ Arg2_P ≤ 1 ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
7056⋅X₁⋅X₄+7056⋅X₃⋅X₄+252⋅X₁+252⋅X₃+8316⋅X₄+302 {O(n^2)}
MPRF for transition t₂₈₄₇: n_l4___10(X₀, X₁, X₂, X₃, X₄) → n_l6___8(X₀, X₁, Arg2_P, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ Arg2_P ≤ 1 ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
168⋅X₁+168⋅X₃+199 {O(n)}
MPRF for transition t₂₈₈₉: n_l6___7(X₀, X₁, X₂, X₃, X₄) → n_l5___6(X₀, X₁, 0, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
14112⋅X₁⋅X₃+14112⋅X₃⋅X₃+168⋅X₁+16884⋅X₃+201 {O(n^2)}
MPRF for transition t₂₈₉₀: n_l6___8(X₀, X₁, X₂, X₃, X₄) → n_l5___6(X₀, X₁, 0, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
14112⋅X₁⋅X₃+14112⋅X₃⋅X₃+16716⋅X₃+3 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₅₃: 1 {O(1)}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 1 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: inf {Infinity}
t₆₄: inf {Infinity}
t₆₅: inf {Infinity}
t₆₆: inf {Infinity}
t₆₇: inf {Infinity}
t₆₈: inf {Infinity}
t₆₉: inf {Infinity}
t₇₀: 3⋅X₁+3⋅X₃+2 {O(n)}
t₇₁: 3⋅X₁+3⋅X₃+4 {O(n)}
t₇₂: 1 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 1 {O(1)}
t₇₅: 1 {O(1)}
t₇₆: 1 {O(1)}
t₇₇: 1 {O(1)}
t₇₈: 6⋅X₁+6⋅X₃+14 {O(n)}
t₇₉: inf {Infinity}
Costbounds
Overall costbound: inf {Infinity}
t₅₃: 1 {O(1)}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 1 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: inf {Infinity}
t₆₄: inf {Infinity}
t₆₅: inf {Infinity}
t₆₆: inf {Infinity}
t₆₇: inf {Infinity}
t₆₈: inf {Infinity}
t₆₉: inf {Infinity}
t₇₀: 3⋅X₁+3⋅X₃+2 {O(n)}
t₇₁: 3⋅X₁+3⋅X₃+4 {O(n)}
t₇₂: 1 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 1 {O(1)}
t₇₅: 1 {O(1)}
t₇₆: 1 {O(1)}
t₇₇: 1 {O(1)}
t₇₈: 6⋅X₁+6⋅X₃+14 {O(n)}
t₇₉: inf {Infinity}
Sizebounds
t₅₃, X₀: X₀ {O(n)}
t₅₃, X₁: X₁ {O(n)}
t₅₃, X₂: X₂ {O(n)}
t₅₃, X₃: X₃ {O(n)}
t₅₃, X₄: X₄ {O(n)}
t₅₄, X₀: X₀ {O(n)}
t₅₄, X₁: X₁ {O(n)}
t₅₄, X₂: 0 {O(1)}
t₅₄, X₃: X₃ {O(n)}
t₅₄, X₄: X₄ {O(n)}
t₅₅, X₀: X₀ {O(n)}
t₅₅, X₁: X₁ {O(n)}
t₅₅, X₂: 0 {O(1)}
t₅₅, X₃: X₃ {O(n)}
t₅₅, X₄: X₄ {O(n)}
t₅₆, X₀: X₀+1 {O(n)}
t₅₆, X₁: X₁+1 {O(n)}
t₅₆, X₂: 1 {O(1)}
t₅₆, X₃: X₃ {O(n)}
t₅₆, X₄: X₄ {O(n)}
t₅₇, X₀: X₀ {O(n)}
t₅₇, X₁: X₁ {O(n)}
t₅₇, X₂: 0 {O(1)}
t₅₇, X₃: X₃ {O(n)}
t₅₇, X₄: X₄ {O(n)}
t₅₈, X₀: X₀ {O(n)}
t₅₈, X₁: X₁ {O(n)}
t₅₈, X₂: 0 {O(1)}
t₅₈, X₃: X₃ {O(n)}
t₅₈, X₄: X₄ {O(n)}
t₅₉, X₀: X₀+1 {O(n)}
t₅₉, X₁: X₁+1 {O(n)}
t₅₉, X₂: 1 {O(1)}
t₅₉, X₃: X₃ {O(n)}
t₅₉, X₄: X₄ {O(n)}
t₆₀, X₂: 1 {O(1)}
t₆₀, X₃: 12⋅X₃ {O(n)}
t₆₀, X₄: 12⋅X₄ {O(n)}
t₆₁, X₂: 1 {O(1)}
t₆₁, X₃: 12⋅X₃ {O(n)}
t₆₁, X₄: 12⋅X₄ {O(n)}
t₆₂, X₂: 1 {O(1)}
t₆₂, X₃: 12⋅X₃ {O(n)}
t₆₂, X₄: 12⋅X₄ {O(n)}
t₆₃, X₂: 1 {O(1)}
t₆₃, X₃: 3⋅X₃ {O(n)}
t₆₃, X₄: 3⋅X₄ {O(n)}
t₆₄, X₂: 1 {O(1)}
t₆₄, X₃: 3⋅X₃ {O(n)}
t₆₄, X₄: 3⋅X₄ {O(n)}
t₆₅, X₂: 1 {O(1)}
t₆₅, X₃: 3⋅X₃ {O(n)}
t₆₅, X₄: 3⋅X₄ {O(n)}
t₆₆, X₂: 1 {O(1)}
t₆₆, X₃: 3⋅X₃ {O(n)}
t₆₆, X₄: 3⋅X₄ {O(n)}
t₆₇, X₂: 1 {O(1)}
t₆₇, X₃: 3⋅X₃ {O(n)}
t₆₇, X₄: 3⋅X₄ {O(n)}
t₆₈, X₂: 1 {O(1)}
t₆₈, X₃: 3⋅X₃ {O(n)}
t₆₈, X₄: 3⋅X₄ {O(n)}
t₆₉, X₂: 0 {O(1)}
t₆₉, X₃: 3⋅X₃ {O(n)}
t₆₉, X₄: 3⋅X₄ {O(n)}
t₇₀, X₂: 0 {O(1)}
t₇₀, X₃: 3⋅X₃ {O(n)}
t₇₀, X₄: 3⋅X₄ {O(n)}
t₇₁, X₂: 0 {O(1)}
t₇₁, X₃: 3⋅X₃ {O(n)}
t₇₁, X₄: 3⋅X₄ {O(n)}
t₇₂, X₂: 1 {O(1)}
t₇₂, X₃: 6⋅X₃ {O(n)}
t₇₂, X₄: 6⋅X₄ {O(n)}
t₇₃, X₂: 1 {O(1)}
t₇₃, X₃: 6⋅X₃ {O(n)}
t₇₃, X₄: 6⋅X₄ {O(n)}
t₇₄, X₂: 1 {O(1)}
t₇₄, X₃: 6⋅X₃ {O(n)}
t₇₄, X₄: 6⋅X₄ {O(n)}
t₇₅, X₂: 1 {O(1)}
t₇₅, X₃: 6⋅X₃ {O(n)}
t₇₅, X₄: 6⋅X₄ {O(n)}
t₇₆, X₂: 1 {O(1)}
t₇₆, X₃: 6⋅X₃ {O(n)}
t₇₆, X₄: 6⋅X₄ {O(n)}
t₇₇, X₂: 1 {O(1)}
t₇₇, X₃: 6⋅X₃ {O(n)}
t₇₇, X₄: 6⋅X₄ {O(n)}
t₇₈, X₂: 0 {O(1)}
t₇₈, X₃: 3⋅X₃ {O(n)}
t₇₈, X₄: 3⋅X₄ {O(n)}
t₇₉, X₂: 1 {O(1)}
t₇₉, X₃: 3⋅X₃ {O(n)}
t₇₉, X₄: 3⋅X₄ {O(n)}