Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₃: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂)
t₁₂: l10(X₀, X₁, X₂) → l9(X₀, X₁, 2⋅X₂)
t₁: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂)
t₂: l3(X₀, X₁, X₂) → l1(X₀, X₁, X₂)
t₄: l4(X₀, X₁, X₂) → l5(X₀, X₀, X₂) :|: 0 ≤ X₀
t₅: l4(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₀ < 0
t₇: l5(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₁ < 0
t₆: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: 0 ≤ X₁
t₁₄: l6(X₀, X₁, X₂) → l11(X₀, X₁, X₂)
t₉: l7(X₀, X₁, X₂) → l8(X₀, X₁, X₂) :|: X₁ ≤ 1
t₈: l7(X₀, X₁, X₂) → l9(X₀, X₁, 1) :|: 1 < X₁
t₁₃: l8(X₀, X₁, X₂) → l5(X₀, X₁-1, X₂)
t₁₀: l9(X₀, X₁, X₂) → l10(X₀, X₁, X₂) :|: X₂ < X₁
t₁₁: l9(X₀, X₁, X₂) → l8(X₀, X₁, X₂) :|: X₁ ≤ X₂

Preprocessing

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8

Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l10

Found invariant 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l9

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₃: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂)
t₁₂: l10(X₀, X₁, X₂) → l9(X₀, X₁, 2⋅X₂) :|: 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂)
t₂: l3(X₀, X₁, X₂) → l1(X₀, X₁, X₂)
t₄: l4(X₀, X₁, X₂) → l5(X₀, X₀, X₂) :|: 0 ≤ X₀
t₅: l4(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₀ < 0
t₇: l5(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₁ < 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀
t₆: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀
t₁₄: l6(X₀, X₁, X₂) → l11(X₀, X₁, X₂)
t₉: l7(X₀, X₁, X₂) → l8(X₀, X₁, X₂) :|: X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₈: l7(X₀, X₁, X₂) → l9(X₀, X₁, 1) :|: 1 < X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₃: l8(X₀, X₁, X₂) → l5(X₀, X₁-1, X₂) :|: X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₀: l9(X₀, X₁, X₂) → l10(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₁: l9(X₀, X₁, X₂) → l8(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀

MPRF for transition t₆: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₈: l7(X₀, X₁, X₂) → l9(X₀, X₁, 1) :|: 1 < X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₉: l7(X₀, X₁, X₂) → l8(X₀, X₁, X₂) :|: X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₁₁: l9(X₀, X₁, X₂) → l8(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₀ {O(n)}

MPRF for transition t₁₃: l8(X₀, X₁, X₂) → l5(X₀, X₁-1, X₂) :|: X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₁₀: l9(X₀, X₁, X₂) → l10(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+X₀ {O(n^2)}

MPRF for transition t₁₂: l10(X₀, X₁, X₂) → l9(X₀, X₁, 2⋅X₂) :|: 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₀⋅X₀+2⋅X₀ {O(n^2)}

Chain transitions t₁₀: l9→l10 and t₁₂: l10→l9 to t₈₇: l9→l9

Chain transitions t₁₃: l8→l5 and t₆: l5→l7 to t₈₈: l8→l7

Chain transitions t₄: l4→l5 and t₆: l5→l7 to t₈₉: l4→l7

Chain transitions t₄: l4→l5 and t₇: l5→l6 to t₉₀: l4→l6

Chain transitions t₁₃: l8→l5 and t₇: l5→l6 to t₉₁: l8→l6

Chain transitions t₈₈: l8→l7 and t₈: l7→l9 to t₉₂: l8→l9

Chain transitions t₈₉: l4→l7 and t₈: l7→l9 to t₉₃: l4→l9

Chain transitions t₈₉: l4→l7 and t₉: l7→l8 to t₉₄: l4→l8

Chain transitions t₈₈: l8→l7 and t₉: l7→l8 to t₉₅: l8→l8

Analysing control-flow refined program

Cut unsatisfiable transition t₉₀: l4→l6

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8

Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l10

Found invariant 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l9

knowledge_propagation leads to new time bound X₀ {O(n)} for transition t₉₂: l8(X₀, X₁, X₂) -{3}> l9(X₀, X₁-1, 1) :|: 1 ≤ X₁ ∧ 2 < X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₀+1 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₀+1 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

MPRF for transition t₈₇: l9(X₀, X₁, X₂) -{2}> l9(X₀, X₁, 2⋅X₂) :|: X₂ < X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

MPRF for transition t₉₅: l8(X₀, X₁, X₂) -{3}> l8(X₀, X₁-1, X₂) :|: 1 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₀+1 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₀+1 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₀+2 {O(n)}

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₁₁: l9→l8

Found invariant X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l10___3

Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l10___1

Found invariant 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l9___2

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7

Found invariant X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8

Found invariant X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l9

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₈₁: l9(X₀, X₁, X₂) → n_l10___3(X₀, X₁, X₂) :|: X₂ < X₁ ∧ X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₇₉: n_l10___3(X₀, X₁, X₂) → n_l9___2(X₀, X₁, 2⋅X₂) :|: X₂ < X₁ ∧ 2 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀

MPRF for transition t₁₇₈: n_l10___1(X₀, X₁, X₂) → n_l9___2(X₀, X₁, 2⋅X₂) :|: X₂ < X₁ ∧ 2 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+2⋅X₀ {O(n^2)}

MPRF for transition t₁₈₀: n_l9___2(X₀, X₁, X₂) → n_l10___1(X₀, X₁, X₂) :|: 2 ≤ X₂ ∧ 2+X₂ ≤ 2⋅X₁ ∧ X₂ < X₁ ∧ 2 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₀⋅X₀+2⋅X₀ {O(n^2)}

MPRF for transition t₁₈₅: n_l9___2(X₀, X₁, X₂) → l8(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₀+1 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:3⋅X₀⋅X₀+8⋅X₀+12 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: X₀+1 {O(n)}
t₇: 1 {O(1)}
t₈: X₀+1 {O(n)}
t₉: X₀+1 {O(n)}
t₁₀: X₀⋅X₀+X₀ {O(n^2)}
t₁₁: X₀ {O(n)}
t₁₂: 2⋅X₀⋅X₀+2⋅X₀ {O(n^2)}
t₁₃: X₀+1 {O(n)}
t₁₄: 1 {O(1)}

Costbounds

Overall costbound: 3⋅X₀⋅X₀+8⋅X₀+12 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: X₀+1 {O(n)}
t₇: 1 {O(1)}
t₈: X₀+1 {O(n)}
t₉: X₀+1 {O(n)}
t₁₀: X₀⋅X₀+X₀ {O(n^2)}
t₁₁: X₀ {O(n)}
t₁₂: 2⋅X₀⋅X₀+2⋅X₀ {O(n^2)}
t₁₃: X₀+1 {O(n)}
t₁₄: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₀ {O(n)}
t₄, X₂: X₂ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₀+2 {O(n)}
t₆, X₂: 2^(2⋅X₀⋅X₀+2⋅X₀)+X₂ {O(EXP)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: 1 {O(1)}
t₇, X₂: 2^(2⋅X₀⋅X₀+2⋅X₀)+X₂ {O(EXP)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₀+2 {O(n)}
t₈, X₂: 1 {O(1)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: 1 {O(1)}
t₉, X₂: 2^(2⋅X₀⋅X₀+2⋅X₀)+X₂ {O(EXP)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₀+2 {O(n)}
t₁₀, X₂: 2^(2⋅X₀⋅X₀+2⋅X₀) {O(EXP)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₀+2 {O(n)}
t₁₁, X₂: 2^(2⋅X₀⋅X₀+2⋅X₀) {O(EXP)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₀+2 {O(n)}
t₁₂, X₂: 2^(2⋅X₀⋅X₀+2⋅X₀) {O(EXP)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₀+2 {O(n)}
t₁₃, X₂: 2^(2⋅X₀⋅X₀+2⋅X₀)+X₂ {O(EXP)}
t₁₄, X₀: 2⋅X₀ {O(n)}
t₁₄, X₁: X₁+1 {O(n)}
t₁₄, X₂: 2^(2⋅X₀⋅X₀+2⋅X₀)+2⋅X₂ {O(EXP)}