Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: K
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₁₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(0, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉)
t₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, 0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 19
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 20 ≤ X₀
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 20 ≤ X₁
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, K, X₈, K) :|: X₁ ≤ 19
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, 0, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 19
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉) :|: 20 ≤ X₂
t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 20 ≤ X₃
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, K, K, X₉) :|: X₃ ≤ 19
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉) :|: X₄ ≤ 19
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 20 ≤ X₄
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉) :|: 20 ≤ X₅
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉) :|: X₅ ≤ 19
t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉) :|: 20 ≤ X₆
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉) :|: X₆ ≤ 19

Preprocessing

Eliminate variables {K,X₇,X₈,X₉} that do not contribute to the problem

Found invariant X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l2

Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l6

Found invariant 20 ≤ X₄ ∧ 40 ≤ X₂+X₄ ∧ 40 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l7

Found invariant 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l5

Found invariant X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l8

Found invariant 0 ≤ X₀ for location l1

Found invariant X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l4

Found invariant 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₃₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(0, X₁, X₂, X₃, X₄, X₅, X₆)
t₃₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, 0, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 19 ∧ 0 ≤ X₀
t₃₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, 0, X₃, X₄, X₅, X₆) :|: 20 ≤ X₀ ∧ 0 ≤ X₀
t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: 20 ≤ X₁ ∧ X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 19 ∧ X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, 0, X₄, X₅, X₆) :|: X₂ ≤ 19 ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, 0, X₅, X₆) :|: 20 ≤ X₂ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: 20 ≤ X₃ ∧ X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆) :|: X₃ ≤ 19 ∧ X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, 0, X₆) :|: X₄ ≤ 19 ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 20 ≤ X₄ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 20 ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, 0) :|: X₅ ≤ 19 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 20 ≤ X₆ ∧ X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀
t₄₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₆ ≤ 19 ∧ X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀

MPRF for transition t₃₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, 0, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 19 ∧ 0 ≤ X₀ of depth 1:

new bound:

20 {O(1)}

TWN: t₃₆: l2→l2

cycle: [t₃₆: l2→l2]
loop: (X₁ ≤ 19,(X₁) -> (X₁+1)
order: [X₁]
closed-form:
X₁: X₁ + [[n != 0]] * n^1

Termination: true
Formula:

1 < 0
∨ X₁ < 19 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ 19 ∧ 19 ≤ X₁

Stabilization-Threshold for: X₁ ≤ 19
alphas_abs: X₁+19
M: 0
N: 1
Bound: 2⋅X₁+40 {O(n)}

TWN - Lifting for t₃₆: l2→l2 of 2⋅X₁+42 {O(n)}

relevant size-bounds w.r.t. t₃₃:
X₁: 0 {O(1)}
Runtime-bound of t₃₃: 20 {O(1)}
Results in: 840 {O(1)}

knowledge_propagation leads to new time bound 840 {O(1)} for transition t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆) :|: 20 ≤ X₁ ∧ X₁ ≤ 20 ∧ X₁ ≤ 20+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

MPRF for transition t₃₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, 0, X₄, X₅, X₆) :|: X₂ ≤ 19 ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀ of depth 1:

new bound:

20 {O(1)}

TWN: t₄₀: l4→l4

cycle: [t₄₀: l4→l4]
loop: (X₃ ≤ 19,(X₃) -> (X₃+1)
order: [X₃]
closed-form:
X₃: X₃ + [[n != 0]] * n^1

Termination: true
Formula:

1 < 0
∨ X₃ < 19 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ ≤ 19 ∧ 19 ≤ X₃

Stabilization-Threshold for: X₃ ≤ 19
alphas_abs: X₃+19
M: 0
N: 1
Bound: 2⋅X₃+40 {O(n)}

TWN - Lifting for t₄₀: l4→l4 of 2⋅X₃+42 {O(n)}

relevant size-bounds w.r.t. t₃₇:
X₃: 0 {O(1)}
Runtime-bound of t₃₇: 20 {O(1)}
Results in: 840 {O(1)}

knowledge_propagation leads to new time bound 840 {O(1)} for transition t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: 20 ≤ X₃ ∧ X₃ ≤ 20 ∧ X₃ ≤ 20+X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 20 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 20 ≤ X₀+X₂ ∧ 20 ≤ X₀

MPRF for transition t₄₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, 0, X₆) :|: X₄ ≤ 19 ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ of depth 1:

new bound:

210 {O(1)}

MPRF for transition t₄₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 20 ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ of depth 1:

new bound:

3990 {O(1)}

MPRF for transition t₄₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, 0) :|: X₅ ≤ 19 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ of depth 1:

new bound:

4200 {O(1)}

MPRF for transition t₄₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 20 ≤ X₆ ∧ X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ of depth 1:

new bound:

4200 {O(1)}

MPRF for transition t₄₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₆ ≤ 19 ∧ X₆ ≤ 20 ∧ X₆ ≤ 20+X₅ ∧ X₆ ≤ 20+X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 20 ≤ X₂+X₆ ∧ 20 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 20 ≤ X₂+X₅ ∧ 20 ≤ X₀+X₅ ∧ 0 ≤ X₄ ∧ 20 ≤ X₂+X₄ ∧ 20 ≤ X₀+X₄ ∧ 20 ≤ X₂ ∧ 40 ≤ X₀+X₂ ∧ 20 ≤ X₀ of depth 1:

new bound:

X₆+84020 {O(n)}

All Bounds

Timebounds

Overall timebound:X₆+100024 {O(n)}
t₃₂: 1 {O(1)}
t₃₃: 20 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 840 {O(1)}
t₃₆: 840 {O(1)}
t₃₇: 20 {O(1)}
t₃₈: 1 {O(1)}
t₃₉: 840 {O(1)}
t₄₀: 840 {O(1)}
t₄₁: 210 {O(1)}
t₄₂: 1 {O(1)}
t₄₃: 3990 {O(1)}
t₄₄: 4200 {O(1)}
t₄₅: 4200 {O(1)}
t₄₆: X₆+84020 {O(n)}

Costbounds

Overall costbound: X₆+100024 {O(n)}
t₃₂: 1 {O(1)}
t₃₃: 20 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 840 {O(1)}
t₃₆: 840 {O(1)}
t₃₇: 20 {O(1)}
t₃₈: 1 {O(1)}
t₃₉: 840 {O(1)}
t₄₀: 840 {O(1)}
t₄₁: 210 {O(1)}
t₄₂: 1 {O(1)}
t₄₃: 3990 {O(1)}
t₄₄: 4200 {O(1)}
t₄₅: 4200 {O(1)}
t₄₆: X₆+84020 {O(n)}

Sizebounds

t₃₂, X₀: 0 {O(1)}
t₃₂, X₁: X₁ {O(n)}
t₃₂, X₂: X₂ {O(n)}
t₃₂, X₃: X₃ {O(n)}
t₃₂, X₄: X₄ {O(n)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: X₆ {O(n)}
t₃₃, X₀: 19 {O(1)}
t₃₃, X₁: 0 {O(1)}
t₃₃, X₂: X₂ {O(n)}
t₃₃, X₃: X₃ {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₅: X₅ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₄, X₀: 20 {O(1)}
t₃₄, X₁: 20 {O(1)}
t₃₄, X₂: 0 {O(1)}
t₃₄, X₃: X₃ {O(n)}
t₃₄, X₄: X₄ {O(n)}
t₃₄, X₅: X₅ {O(n)}
t₃₄, X₆: X₆ {O(n)}
t₃₅, X₀: 20 {O(1)}
t₃₅, X₁: 20 {O(1)}
t₃₅, X₂: X₂ {O(n)}
t₃₅, X₃: X₃ {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₅, X₅: X₅ {O(n)}
t₃₅, X₆: X₆ {O(n)}
t₃₆, X₀: 19 {O(1)}
t₃₆, X₁: 20 {O(1)}
t₃₆, X₂: X₂ {O(n)}
t₃₆, X₃: X₃ {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₅: X₅ {O(n)}
t₃₆, X₆: X₆ {O(n)}
t₃₇, X₀: 20 {O(1)}
t₃₇, X₁: 20 {O(1)}
t₃₇, X₂: 19 {O(1)}
t₃₇, X₃: 0 {O(1)}
t₃₇, X₄: X₄ {O(n)}
t₃₇, X₅: X₅ {O(n)}
t₃₇, X₆: X₆ {O(n)}
t₃₈, X₀: 20 {O(1)}
t₃₈, X₁: 20 {O(1)}
t₃₈, X₂: 20 {O(1)}
t₃₈, X₃: 20 {O(1)}
t₃₈, X₄: 0 {O(1)}
t₃₈, X₅: X₅ {O(n)}
t₃₈, X₆: X₆ {O(n)}
t₃₉, X₀: 20 {O(1)}
t₃₉, X₁: 20 {O(1)}
t₃₉, X₂: 20 {O(1)}
t₃₉, X₃: 20 {O(1)}
t₃₉, X₄: X₄ {O(n)}
t₃₉, X₅: X₅ {O(n)}
t₃₉, X₆: X₆ {O(n)}
t₄₀, X₀: 20 {O(1)}
t₄₀, X₁: 20 {O(1)}
t₄₀, X₂: 19 {O(1)}
t₄₀, X₃: 20 {O(1)}
t₄₀, X₄: X₄ {O(n)}
t₄₀, X₅: X₅ {O(n)}
t₄₀, X₆: X₆ {O(n)}
t₄₁, X₀: 20 {O(1)}
t₄₁, X₁: 20 {O(1)}
t₄₁, X₂: 20 {O(1)}
t₄₁, X₃: 20 {O(1)}
t₄₁, X₄: 19 {O(1)}
t₄₁, X₅: 0 {O(1)}
t₄₁, X₆: X₆+20 {O(n)}
t₄₂, X₀: 20 {O(1)}
t₄₂, X₁: 20 {O(1)}
t₄₂, X₂: 20 {O(1)}
t₄₂, X₃: 20 {O(1)}
t₄₂, X₄: 20 {O(1)}
t₄₂, X₅: 20 {O(1)}
t₄₂, X₆: 20 {O(1)}
t₄₃, X₀: 20 {O(1)}
t₄₃, X₁: 20 {O(1)}
t₄₃, X₂: 20 {O(1)}
t₄₃, X₃: 20 {O(1)}
t₄₃, X₄: 20 {O(1)}
t₄₃, X₅: 20 {O(1)}
t₄₃, X₆: 20 {O(1)}
t₄₄, X₀: 20 {O(1)}
t₄₄, X₁: 20 {O(1)}
t₄₄, X₂: 20 {O(1)}
t₄₄, X₃: 20 {O(1)}
t₄₄, X₄: 19 {O(1)}
t₄₄, X₅: 19 {O(1)}
t₄₄, X₆: 0 {O(1)}
t₄₅, X₀: 20 {O(1)}
t₄₅, X₁: 20 {O(1)}
t₄₅, X₂: 20 {O(1)}
t₄₅, X₃: 20 {O(1)}
t₄₅, X₄: 19 {O(1)}
t₄₅, X₅: 20 {O(1)}
t₄₅, X₆: 20 {O(1)}
t₄₆, X₀: 20 {O(1)}
t₄₆, X₁: 20 {O(1)}
t₄₆, X₂: 20 {O(1)}
t₄₆, X₃: 20 {O(1)}
t₄₆, X₄: 19 {O(1)}
t₄₆, X₅: 19 {O(1)}
t₄₆, X₆: 20 {O(1)}