Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: I, J, K, L
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₁
t₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, 0, X₁, X₄, X₅, X₆, X₇) :|: X₁+1 ≤ X₀
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, J) :|: X₄ ≤ X₀
t₁₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, J) :|: X₄ ≤ X₀
t₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄
t₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄+1, J, I, X₇) :|: X₄ ≤ X₀ ∧ J ≤ I
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, J, X₄, X₄+1, I, K, X₇) :|: X₄ ≤ X₀ ∧ 1+K ≤ I
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁+1, 0, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂+1 ≤ 0
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₂
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₃
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, 0) :|: X₃ ≤ X₀
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, J) :|: I+1 ≤ 0 ∧ X₃ ≤ X₀ ∧ K*X₂ ≤ I ∧ I+1 ≤ K*X₂+K ∧ J ≤ K ∧ L*X₂ ≤ I ∧ I+1 ≤ L*X₂+L ∧ L ≤ J
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, J) :|: 1 ≤ I ∧ X₃ ≤ X₀ ∧ K*X₂ ≤ I ∧ I+1 ≤ K*X₂+K ∧ J ≤ K ∧ L*X₂ ≤ I ∧ I+1 ≤ L*X₂+L ∧ L ≤ J
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇) :|: X₄ ≤ X₀
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄
t₁₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₄
t₁₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇) :|: X₄ ≤ X₀

Preprocessing

Cut unsatisfiable transition t₃: l3→l3

Cut unsatisfiable transition t₄: l4→l4

Cut unsatisfiable transition t₁₀: l9→l9

Eliminate variables {X₅,X₆,X₇} that do not contribute to the problem

Found invariant X₀ ≤ X₁ for location l2

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l6

Found invariant X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ for location l7

Found invariant X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l5

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l8

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l4

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l9

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3

Cut unsatisfiable transition t₆₈: l8→l8

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: I, J, K, L
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₅₁: l0(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₅₂: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₁
t₅₃: l1(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 0, X₁, X₄) :|: X₁+1 ≤ X₀
t₅₄: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₅: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₆: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₇: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₈: l5(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₀ ∧ J ≤ I ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₅₉: l5(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, J, X₄, X₄+1) :|: X₄ ≤ X₀ ∧ 1+K ≤ I ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₀: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₁, X₄) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₁: l6(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁+1, 0, X₃, X₄) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₂: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0 ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₃: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₆₄: l7(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁+1, X₂, X₃, X₄) :|: 1+X₀ ≤ X₃ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀
t₆₅: l7(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₀ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀
t₆₆: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: I+1 ≤ 0 ∧ X₃ ≤ X₀ ∧ K*X₂ ≤ I ∧ I+1 ≤ K*X₂+K ∧ J ≤ K ∧ L*X₂ ≤ I ∧ I+1 ≤ L*X₂+L ∧ L ≤ J ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀
t₆₇: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ I ∧ X₃ ≤ X₀ ∧ K*X₂ ≤ I ∧ I+1 ≤ K*X₂+K ∧ J ≤ K ∧ L*X₂ ≤ I ∧ I+1 ≤ L*X₂+L ∧ L ≤ J ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀
t₆₉: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀
t₇₀: l9(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

MPRF for transition t₅₃: l1(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 0, X₁, X₄) :|: X₁+1 ≤ X₀ of depth 1:

new bound:

X₀+X₁ {O(n)}

MPRF for transition t₅₄: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF for transition t₅₅: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₀+X₁ {O(n)}

MPRF for transition t₅₆: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₀+X₁ {O(n)}

MPRF for transition t₅₇: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₀+X₁ {O(n)}

MPRF for transition t₅₈: l5(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄+1) :|: X₄ ≤ X₀ ∧ J ≤ I ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₀+X₄+1 {O(n)}

MPRF for transition t₅₉: l5(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, J, X₄, X₄+1) :|: X₄ ≤ X₀ ∧ 1+K ≤ I ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₀+X₄+1 {O(n)}

MPRF for transition t₆₀: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₁, X₄) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF for transition t₆₁: l6(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁+1, 0, X₃, X₄) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₀+X₁ {O(n)}

MPRF for transition t₆₂: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ 0 ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF for transition t₆₃: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF for transition t₆₄: l7(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁+1, X₂, X₃, X₄) :|: 1+X₀ ≤ X₃ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₀+X₁ {O(n)}

MPRF for transition t₆₅: l7(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₀ ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+106⋅X₀+60⋅X₄+82⋅X₁+42 {O(n^2)}

MPRF for transition t₆₆: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: I+1 ≤ 0 ∧ X₃ ≤ X₀ ∧ K*X₂ ≤ I ∧ I+1 ≤ K*X₂+K ∧ J ≤ K ∧ L*X₂ ≤ I ∧ I+1 ≤ L*X₂+L ∧ L ≤ J ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+106⋅X₀+60⋅X₄+82⋅X₁+42 {O(n^2)}

MPRF for transition t₆₇: l7(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ I ∧ X₃ ≤ X₀ ∧ K*X₂ ≤ I ∧ I+1 ≤ K*X₂+K ∧ J ≤ K ∧ L*X₂ ≤ I ∧ I+1 ≤ L*X₂+L ∧ L ≤ J ∧ X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

102⋅X₀⋅X₁+40⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+62⋅X₀⋅X₀+100⋅X₀+54⋅X₄+78⋅X₁+38 {O(n^2)}

MPRF for transition t₆₉: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+104⋅X₀+60⋅X₄+80⋅X₁+40 {O(n^2)}

MPRF for transition t₇₀: l9(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+104⋅X₀+60⋅X₄+80⋅X₁+40 {O(n^2)}

Chain transitions t₆₄: l7→l1 and t₅₃: l1→l5 to t₂₁₂: l7→l5

Chain transitions t₆₁: l6→l1 and t₅₃: l1→l5 to t₂₁₃: l6→l5

Chain transitions t₆₁: l6→l1 and t₅₂: l1→l2 to t₂₁₄: l6→l2

Chain transitions t₆₄: l7→l1 and t₅₂: l1→l2 to t₂₁₅: l7→l2

Chain transitions t₅₁: l0→l1 and t₅₂: l1→l2 to t₂₁₆: l0→l2

Chain transitions t₅₁: l0→l1 and t₅₃: l1→l5 to t₂₁₇: l0→l5

Chain transitions t₅₇: l5→l3 and t₅₄: l3→l4 to t₂₁₈: l5→l4

Chain transitions t₅₆: l5→l3 and t₅₄: l3→l4 to t₂₁₉: l5→l4

Chain transitions t₂₁₉: l5→l4 and t₅₅: l4→l6 to t₂₂₀: l5→l6

Chain transitions t₂₁₈: l5→l4 and t₅₅: l4→l6 to t₂₂₁: l5→l6

Chain transitions t₂₂₁: l5→l6 and t₆₃: l6→l7 to t₂₂₂: l5→l7

Chain transitions t₂₂₀: l5→l6 and t₆₃: l6→l7 to t₂₂₃: l5→l7

Chain transitions t₂₂₀: l5→l6 and t₆₂: l6→l7 to t₂₂₄: l5→l7

Chain transitions t₂₂₁: l5→l6 and t₆₂: l6→l7 to t₂₂₅: l5→l7

Chain transitions t₆₀: l5→l6 and t₆₂: l6→l7 to t₂₂₆: l5→l7

Chain transitions t₆₀: l5→l6 and t₆₃: l6→l7 to t₂₂₇: l5→l7

Chain transitions t₆₀: l5→l6 and t₂₁₃: l6→l5 to t₂₂₈: l5→l5

Chain transitions t₂₂₀: l5→l6 and t₂₁₃: l6→l5 to t₂₂₉: l5→l5

Chain transitions t₂₂₁: l5→l6 and t₂₁₃: l6→l5 to t₂₃₀: l5→l5

Chain transitions t₆₀: l5→l6 and t₂₁₄: l6→l2 to t₂₃₁: l5→l2

Chain transitions t₂₂₀: l5→l6 and t₂₁₄: l6→l2 to t₂₃₂: l5→l2

Chain transitions t₂₂₁: l5→l6 and t₂₁₄: l6→l2 to t₂₃₃: l5→l2

Chain transitions t₆₀: l5→l6 and t₆₁: l6→l1 to t₂₃₄: l5→l1

Chain transitions t₂₂₀: l5→l6 and t₆₁: l6→l1 to t₂₃₅: l5→l1

Chain transitions t₂₂₁: l5→l6 and t₆₁: l6→l1 to t₂₃₆: l5→l1

Chain transitions t₆₇: l7→l8 and t₆₉: l8→l9 to t₂₃₇: l7→l9

Chain transitions t₆₆: l7→l8 and t₆₉: l8→l9 to t₂₃₈: l7→l9

Chain transitions t₂₃₈: l7→l9 and t₇₀: l9→l7 to t₂₃₉: l7→l7

Chain transitions t₂₃₇: l7→l9 and t₇₀: l9→l7 to t₂₄₀: l7→l7

Analysing control-flow refined program

Found invariant X₀ ≤ X₁ for location l2

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l6

Found invariant X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ for location l7

Found invariant X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l5

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l8

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l4

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l9

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3

knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₄+2 {O(n)} for transition t₂₂₂: l5(X₀, X₁, X₂, X₃, X₄) -{4}> l7(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound X₀+X₄+1 {O(n)} for transition t₂₂₃: l5(X₀, X₁, X₂, X₃, X₄) -{4}> l7(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound X₀+X₄+1 {O(n)} for transition t₂₂₄: l5(X₀, X₁, X₂, X₃, X₄) -{4}> l7(X₀, X₁, X₂, X₃, X₄) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂+1 ≤ 0 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₄+2 {O(n)} for transition t₂₂₅: l5(X₀, X₁, X₂, X₃, X₄) -{4}> l7(X₀, X₁, X₂, X₃, X₄) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂+1 ≤ 0 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound X₀+X₄+1 {O(n)} for transition t₂₂₆: l5(X₀, X₁, X₂, X₃, X₄) -{2}> l7(X₀, X₁, X₂, X₁, X₄) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₂+1 ≤ 0 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound X₀+X₄+1 {O(n)} for transition t₂₂₇: l5(X₀, X₁, X₂, X₃, X₄) -{2}> l7(X₀, X₁, X₂, X₁, X₄) :|: 1+X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound X₀+X₄+1 {O(n)} for transition t₂₂₉: l5(X₀, X₁, X₂, X₃, X₄) -{5}> l5(X₀, 1+X₁, 0, 1+X₁, X₄) :|: X₃+1 ≤ X₁ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₄+2 {O(n)} for transition t₂₃₀: l5(X₀, X₁, X₂, X₃, X₄) -{5}> l5(X₀, 1+X₁, 0, 1+X₁, X₄) :|: 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

Analysing control-flow refined program

Cut unsatisfiable transition t₆₄: l7→l1

Found invariant X₀ ≤ X₁ for location l2

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l8___2

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l6

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location n_l9___4

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l9___1

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location n_l8___5

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ for location n_l8___6

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ for location n_l9___3

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l7

Found invariant X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l5

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l4

Found invariant X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ for location n_l7___7

Found invariant 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ for location l3

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₇₅₂: l7(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₇₅₃: l7(X₀, X₁, X₂, X₃, X₄) → n_l8___2(X₀, X₁, X₂, Arg3_P, Arg4_P) :|: X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ 1+X₀ ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₇₅₄: l7(X₀, X₁, X₂, X₃, X₄) → n_l8___2(X₀, X₁, X₂, Arg3_P, Arg4_P) :|: X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ 1+X₀ ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₇₅₅: l7(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃+1, X₄) :|: X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₇₅₆: l7(X₀, X₁, X₂, X₃, X₄) → n_l8___6(X₀, X₁, X₂, Arg3_P, Arg4_P) :|: X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ 1+X₀ ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₇₅₇: l7(X₀, X₁, X₂, X₃, X₄) → n_l8___6(X₀, X₁, X₂, Arg3_P, Arg4_P) :|: X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ Arg3_P ≤ X₀ ∧ 1+X₀ ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁+2 {O(n)} for transition t₇₅₈: n_l8___2(X₀, X₁, X₂, X₃, X₄) → n_l9___1(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁+2 {O(n)} for transition t₇₆₀: n_l8___6(X₀, X₁, X₂, X₃, X₄) → n_l9___3(X₀, X₁, X₂, X₃, X₄) :|: 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁+2 {O(n)} for transition t₇₆₁: n_l9___1(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃+1, X₄) :|: 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁+2 {O(n)} for transition t₇₆₂: n_l9___3(X₀, X₁, X₂, X₃, X₄) → n_l7___7(X₀, X₁, X₂, X₃+1, X₄) :|: 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 2+X₁ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ 0 ∧ 1+X₁ ≤ X₀

All Bounds

Timebounds

Overall timebound:200⋅X₁⋅X₁+294⋅X₀⋅X₄+294⋅X₁⋅X₄+318⋅X₀⋅X₀+518⋅X₀⋅X₁+296⋅X₄+412⋅X₁+532⋅X₀+210 {O(n^2)}
t₅₁: 1 {O(1)}
t₅₂: 1 {O(1)}
t₅₃: X₀+X₁ {O(n)}
t₅₄: X₀+X₁+1 {O(n)}
t₅₅: X₀+X₁ {O(n)}
t₅₆: X₀+X₁ {O(n)}
t₅₇: X₀+X₁ {O(n)}
t₅₈: X₀+X₄+1 {O(n)}
t₅₉: X₀+X₄+1 {O(n)}
t₆₀: X₀+X₁+1 {O(n)}
t₆₁: X₀+X₁ {O(n)}
t₆₂: X₀+X₁+1 {O(n)}
t₆₃: X₀+X₁+1 {O(n)}
t₆₄: X₀+X₁ {O(n)}
t₆₅: 104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+106⋅X₀+60⋅X₄+82⋅X₁+42 {O(n^2)}
t₆₆: 104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+106⋅X₀+60⋅X₄+82⋅X₁+42 {O(n^2)}
t₆₇: 102⋅X₀⋅X₁+40⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+62⋅X₀⋅X₀+100⋅X₀+54⋅X₄+78⋅X₁+38 {O(n^2)}
t₆₉: 104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+104⋅X₀+60⋅X₄+80⋅X₁+40 {O(n^2)}
t₇₀: 104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+104⋅X₀+60⋅X₄+80⋅X₁+40 {O(n^2)}

Costbounds

Overall costbound: 200⋅X₁⋅X₁+294⋅X₀⋅X₄+294⋅X₁⋅X₄+318⋅X₀⋅X₀+518⋅X₀⋅X₁+296⋅X₄+412⋅X₁+532⋅X₀+210 {O(n^2)}
t₅₁: 1 {O(1)}
t₅₂: 1 {O(1)}
t₅₃: X₀+X₁ {O(n)}
t₅₄: X₀+X₁+1 {O(n)}
t₅₅: X₀+X₁ {O(n)}
t₅₆: X₀+X₁ {O(n)}
t₅₇: X₀+X₁ {O(n)}
t₅₈: X₀+X₄+1 {O(n)}
t₅₉: X₀+X₄+1 {O(n)}
t₆₀: X₀+X₁+1 {O(n)}
t₆₁: X₀+X₁ {O(n)}
t₆₂: X₀+X₁+1 {O(n)}
t₆₃: X₀+X₁+1 {O(n)}
t₆₄: X₀+X₁ {O(n)}
t₆₅: 104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+106⋅X₀+60⋅X₄+82⋅X₁+42 {O(n^2)}
t₆₆: 104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+106⋅X₀+60⋅X₄+82⋅X₁+42 {O(n^2)}
t₆₇: 102⋅X₀⋅X₁+40⋅X₁⋅X₁+54⋅X₀⋅X₄+54⋅X₁⋅X₄+62⋅X₀⋅X₀+100⋅X₀+54⋅X₄+78⋅X₁+38 {O(n^2)}
t₆₉: 104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+104⋅X₀+60⋅X₄+80⋅X₁+40 {O(n^2)}
t₇₀: 104⋅X₀⋅X₁+40⋅X₁⋅X₁+60⋅X₀⋅X₄+60⋅X₁⋅X₄+64⋅X₀⋅X₀+104⋅X₀+60⋅X₄+80⋅X₁+40 {O(n^2)}

Sizebounds

t₅₁, X₀: X₀ {O(n)}
t₅₁, X₁: X₁ {O(n)}
t₅₁, X₂: X₂ {O(n)}
t₅₁, X₃: X₃ {O(n)}
t₅₁, X₄: X₄ {O(n)}
t₅₂, X₀: 3⋅X₀ {O(n)}
t₅₂, X₁: 4⋅X₀+7⋅X₁ {O(n)}
t₅₂, X₃: 160⋅X₁⋅X₁+240⋅X₀⋅X₄+240⋅X₁⋅X₄+256⋅X₀⋅X₀+416⋅X₀⋅X₁+375⋅X₄+424⋅X₁+570⋅X₀+X₃+254 {O(n^2)}
t₅₂, X₄: 4⋅X₀+7⋅X₄+4 {O(n)}
t₅₃, X₀: X₀ {O(n)}
t₅₃, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₃, X₂: 0 {O(1)}
t₅₃, X₃: 4⋅X₀+7⋅X₁ {O(n)}
t₅₃, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₄, X₀: X₀ {O(n)}
t₅₄, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₄, X₃: 14⋅X₁+26⋅X₀+27⋅X₄+18 {O(n)}
t₅₄, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₅, X₀: X₀ {O(n)}
t₅₅, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₅, X₃: 14⋅X₁+26⋅X₀+27⋅X₄+18 {O(n)}
t₅₅, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₆, X₀: X₀ {O(n)}
t₅₆, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₆, X₃: 10⋅X₀+7⋅X₁+9⋅X₄+6 {O(n)}
t₅₆, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₇, X₀: X₀ {O(n)}
t₅₇, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₇, X₃: 16⋅X₀+18⋅X₄+7⋅X₁+12 {O(n)}
t₅₇, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₈, X₀: X₀ {O(n)}
t₅₈, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₈, X₃: 10⋅X₀+7⋅X₁+9⋅X₄+6 {O(n)}
t₅₈, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₅₉, X₀: X₀ {O(n)}
t₅₉, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₅₉, X₃: 6⋅X₀+9⋅X₄+6 {O(n)}
t₅₉, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₀, X₀: X₀ {O(n)}
t₆₀, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₀, X₃: 4⋅X₀+6⋅X₁ {O(n)}
t₆₀, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₁, X₀: X₀ {O(n)}
t₆₁, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₁, X₂: 0 {O(1)}
t₆₁, X₃: 20⋅X₁+27⋅X₄+30⋅X₀+18 {O(n)}
t₆₁, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₂, X₀: X₀ {O(n)}
t₆₂, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₂, X₃: 20⋅X₁+27⋅X₄+30⋅X₀+18 {O(n)}
t₆₂, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₃, X₀: X₀ {O(n)}
t₆₃, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₃, X₃: 20⋅X₁+27⋅X₄+30⋅X₀+18 {O(n)}
t₆₃, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₄, X₀: X₀ {O(n)}
t₆₄, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₄, X₃: 160⋅X₁⋅X₁+240⋅X₀⋅X₄+240⋅X₁⋅X₄+256⋅X₀⋅X₀+416⋅X₀⋅X₁+348⋅X₄+404⋅X₁+540⋅X₀+236 {O(n^2)}
t₆₄, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₅, X₀: X₀ {O(n)}
t₆₅, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₅, X₃: 120⋅X₀⋅X₄+120⋅X₁⋅X₄+128⋅X₀⋅X₀+208⋅X₀⋅X₁+80⋅X₁⋅X₁+174⋅X₄+202⋅X₁+270⋅X₀+118 {O(n^2)}
t₆₅, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₆, X₀: X₀ {O(n)}
t₆₆, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₆, X₃: 120⋅X₀⋅X₄+120⋅X₁⋅X₄+128⋅X₀⋅X₀+208⋅X₀⋅X₁+80⋅X₁⋅X₁+174⋅X₄+202⋅X₁+270⋅X₀+118 {O(n^2)}
t₆₆, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₇, X₀: X₀ {O(n)}
t₆₇, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₇, X₃: 120⋅X₀⋅X₄+120⋅X₁⋅X₄+128⋅X₀⋅X₀+208⋅X₀⋅X₁+80⋅X₁⋅X₁+174⋅X₄+202⋅X₁+270⋅X₀+118 {O(n^2)}
t₆₇, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₆₉, X₀: X₀ {O(n)}
t₆₉, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₆₉, X₃: 120⋅X₀⋅X₄+120⋅X₁⋅X₄+128⋅X₀⋅X₀+208⋅X₀⋅X₁+80⋅X₁⋅X₁+174⋅X₄+202⋅X₁+270⋅X₀+118 {O(n^2)}
t₆₉, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}
t₇₀, X₀: X₀ {O(n)}
t₇₀, X₁: 2⋅X₀+3⋅X₁ {O(n)}
t₇₀, X₃: 120⋅X₀⋅X₄+120⋅X₁⋅X₄+128⋅X₀⋅X₀+208⋅X₀⋅X₁+80⋅X₁⋅X₁+174⋅X₄+202⋅X₁+270⋅X₀+118 {O(n^2)}
t₇₀, X₄: 2⋅X₀+3⋅X₄+2 {O(n)}