Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇
Temp_Vars: A2, B2, C2, D2, E2, F2, G2, M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, X1, Y1, Z1
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₄₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l1(2, O1, P1, X₃, X₄, O1, X₆, X₇, P1, P1, Q1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, M1, R1) :|: 2 ≤ O1
t₄₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l6(R1, P1, Q1, X₃, X₄, O1, S1, T1, U1, N1, Y1, 0, Z1, A2, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, F2, X₂₈, E2, B2, C2, D2, G2, X₃₄, X₃₅, M1, X₃₇) :|: V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l1(1+X₀, X₁, X₁₀, X₃, X₄, X₅, X₆, X₇, X₈, X₁₀, M1, X₁₁, X₁₂, X₁₃, X₁₄, O1, X₀, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: X₀+1 ≤ X₁ ∧ 0 ≤ X₀
t₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₃, O1, P1, X₃, 0, M1, Q1, R1, S1, T1, U1, X₂, X₂, X₂, N1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₃, O1, P1, X₃, 0, M1, Q1, R1, S1, T1, U1, X₂, X₂, X₂, N1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₁₃, Q1, 1+X₄, X₃-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0
t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₁₃, Q1, 1+X₄, X₃-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1
t₁₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₁₃, Q1, 1+X₄, X₃-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₁₃, Q1, 1+X₄, X₃-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₁₃, Q1, 1+X₄, X₃-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₁₃, Q1, 1+X₄, X₃-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1
t₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₁₃, Q1, 1+X₄, X₃-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0
t₂₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₁₃, Q1, 1+X₄, X₃-1, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1
t₄₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₃₄+1, M1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, O1, P1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₁₁, X₃₄, 0, X₁₁, 0, X₁₁, X₁₁, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
t₄₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₃₄+1, M1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, O1, P1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₁₁, X₃₄, 0, X₁₁, 0, X₁₁, X₁₁, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
t₅₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₃₄+1, M1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, O1, P1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₁₁, X₃₄, 0, X₁₁, 0, X₁₁, X₁₁, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
t₅₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₃₄+1, M1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, O1, P1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₁₁, X₃₄, 0, X₁₁, 0, X₁₁, X₁₁, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₁₁+1 ≤ 0 ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃, 1, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, P1, 1+X₃, Q1, X₃, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₁₃+1 ≤ 0 ∧ M1 ≤ R1 ∧ O1+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃, 1, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, P1, 1+X₃, Q1, X₃, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₁₃+1 ≤ 0 ∧ M1 ≤ R1 ∧ 1 ≤ O1 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃, 1, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, P1, 1+X₃, Q1, X₃, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₁₃ ∧ M1 ≤ R1 ∧ O1+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃, 1, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, P1, 1+X₃, Q1, X₃, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₁₃ ∧ M1 ≤ R1 ∧ 1 ≤ O1 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₃₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄-1, X₃₄-1, X₃₆, X₃₇) :|: X₂₇+1 ≤ Q1 ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₃₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄-1, X₃₄-1, X₃₆, X₃₇) :|: X₂₇+1 ≤ Q1 ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₃₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄-1, X₃₄-1, X₃₆, X₃₇) :|: X₂₇+1 ≤ Q1 ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₃₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄-1, X₃₄-1, X₃₆, X₃₇) :|: X₂₇+1 ≤ Q1 ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₃₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄-1, X₃₄-1, X₃₆, X₃₇) :|: Q1+1 ≤ X₂₇ ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₃₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄-1, X₃₄-1, X₃₆, X₃₇) :|: Q1+1 ≤ X₂₇ ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄-1, X₃₄-1, X₃₆, X₃₇) :|: Q1+1 ≤ X₂₇ ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, P1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄-1, X₃₄-1, X₃₆, X₃₇) :|: Q1+1 ≤ X₂₇ ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₄₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l6(X₀, X₁, X₂, X₃, X₄, M1, X₆, O1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, T1, X₂₈, S1, P1, Q1, R1, U1, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ M1 ∧ 0 ≤ X₃₄ ∧ X₂₉ ≤ X₂₇ ∧ X₂₇ ≤ X₂₉
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, P1, Q1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ X₁₃+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, P1, Q1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ X₁₃+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, P1, Q1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ X₁₃+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, P1, Q1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ X₁₃+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, P1, Q1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₁₃ ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, P1, Q1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₁₃ ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, P1, Q1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₁₃ ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l2(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, O1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, P1, Q1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₁₃ ∧ 1 ≤ O1 ∧ 1 ≤ Q1
t₄₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₃₄+1, M1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, O1, P1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₁₁, X₃₄, 0, X₁₁, 0, X₁₁, X₁₁, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₂₀ ∧ 1 ≤ X₁₁ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₃₄+1, M1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, O1, P1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₁₁, X₃₄, 0, X₁₁, 0, X₁₁, X₁₁, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₂₀ ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₃₄+1, M1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, O1, P1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₁₁, X₃₄, 0, X₁₁, 0, X₁₁, X₁₁, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₂₀ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₃₄+1, M1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, O1, P1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₁₁, X₃₄, 0, X₁₁, 0, X₁₁, X₁₁, X₃₄, X₃₅, X₃₆, X₃₇) :|: 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₂₀ ∧ X₁₁+1 ≤ 0 ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₂₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄, X₃₅, X₃₆, X₃₇) :|: X₂₇+1 ≤ P1 ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ P1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄, X₃₅, X₃₆, X₃₇) :|: X₂₇+1 ≤ P1 ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ P1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄, X₃₅, X₃₆, X₃₇) :|: X₂₇+1 ≤ P1 ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ O1+1 ≤ P1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₂₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄, X₃₅, X₃₆, X₃₇) :|: X₂₇+1 ≤ P1 ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ O1+1 ≤ P1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₂₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄, X₃₅, X₃₆, X₃₇) :|: P1+1 ≤ X₂₇ ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ P1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₂₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄, X₃₅, X₃₆, X₃₇) :|: P1+1 ≤ X₂₇ ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ P1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₂₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄, X₃₅, X₃₆, X₃₇) :|: P1+1 ≤ X₂₇ ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ O1+1 ≤ P1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₃₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l4(X₀, X₁, X₂, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀, O1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, 0, O1, 0, O1, X₂₇, X₃₄, X₃₅, X₃₆, X₃₇) :|: P1+1 ≤ X₂₇ ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ O1+1 ≤ P1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
t₃₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l6(X₀, X₁, X₂, X₃, X₄, M1, X₆, O1, X₈, X₉, X₁₀, P1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, U1, X₂₈, T1, Q1, R1, S1, N1, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₂₈ ∧ P1+1 ≤ 0 ∧ 2 ≤ M1 ∧ X₂₉ ≤ X₂₇ ∧ X₂₇ ≤ X₂₉
t₃₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇) → l6(X₀, X₁, X₂, X₃, X₄, M1, X₆, O1, X₈, X₉, X₁₀, P1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, U1, X₂₈, T1, Q1, R1, S1, N1, X₃₄, X₃₅, X₃₆, X₃₇) :|: 0 ≤ X₂₈ ∧ 1 ≤ P1 ∧ 2 ≤ M1 ∧ X₂₉ ≤ X₂₇ ∧ X₂₇ ≤ X₂₉
Show Graph
G
l0
l0
l1
l1
l0->l1
t₄₂
η (X₀) = 2
η (X₁) = O1
η (X₂) = P1
η (X₅) = O1
η (X₈) = P1
η (X₉) = P1
η (X₁₀) = Q1
η (X₃₆) = M1
η (X₃₇) = R1
τ = 2 ≤ O1
l6
l6
l0->l6
t₄₃
η (X₀) = R1
η (X₁) = P1
η (X₂) = Q1
η (X₅) = O1
η (X₆) = S1
η (X₇) = T1
η (X₈) = U1
η (X₉) = N1
η (X₁₀) = Y1
η (X₁₁) = 0
η (X₁₂) = Z1
η (X₁₃) = A2
η (X₂₇) = F2
η (X₂₉) = E2
η (X₃₀) = B2
η (X₃₁) = C2
η (X₃₂) = D2
η (X₃₃) = G2
η (X₃₆) = M1
τ = V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
l1->l1
t₂
η (X₀) = 1+X₀
η (X₂) = X₁₀
η (X₉) = X₁₀
η (X₁₀) = M1
η (X₁₅) = O1
η (X₁₆) = X₀
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀
l2
l2
l1->l2
t₀
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = M1
η (X₆) = Q1
η (X₇) = R1
η (X₈) = S1
η (X₉) = T1
η (X₁₀) = U1
η (X₁₁) = X₂
η (X₁₂) = X₂
η (X₁₃) = X₂
η (X₁₄) = N1
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
l1->l2
t₁
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = M1
η (X₆) = Q1
η (X₇) = R1
η (X₈) = S1
η (X₉) = T1
η (X₁₀) = U1
η (X₁₁) = X₂
η (X₁₂) = X₂
η (X₁₃) = X₂
η (X₁₄) = N1
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
l2->l2
t₁₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₁₇) = P1
η (X₂₃) = X₁₃
η (X₂₄) = Q1
η (X₂₅) = 1+X₄
η (X₂₆) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0
l2->l2
t₁₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₁₇) = P1
η (X₂₃) = X₁₃
η (X₂₄) = Q1
η (X₂₅) = 1+X₄
η (X₂₆) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1
l2->l2
t₁₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₁₇) = P1
η (X₂₃) = X₁₃
η (X₂₄) = Q1
η (X₂₅) = 1+X₄
η (X₂₆) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0
l2->l2
t₁₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₁₇) = P1
η (X₂₃) = X₁₃
η (X₂₄) = Q1
η (X₂₅) = 1+X₄
η (X₂₆) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1
l2->l2
t₁₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₁₇) = P1
η (X₂₃) = X₁₃
η (X₂₄) = Q1
η (X₂₅) = 1+X₄
η (X₂₆) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0
l2->l2
t₂₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₁₇) = P1
η (X₂₃) = X₁₃
η (X₂₄) = Q1
η (X₂₅) = 1+X₄
η (X₂₆) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1
l2->l2
t₂₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₁₇) = P1
η (X₂₃) = X₁₃
η (X₂₄) = Q1
η (X₂₅) = 1+X₄
η (X₂₆) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0
l2->l2
t₂₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₁₇) = P1
η (X₂₃) = X₁₃
η (X₂₄) = Q1
η (X₂₅) = 1+X₄
η (X₂₆) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1
l4
l4
l2->l4
t₄₈
η (X₄) = X₃₄+1
η (X₅) = M1
η (X₁₂) = O1
η (X₁₃) = P1
η (X₂₇) = X₁₁
η (X₂₈) = X₃₄
η (X₂₉) = 0
η (X₃₀) = X₁₁
η (X₃₁) = 0
η (X₃₂) = X₁₁
η (X₃₃) = X₁₁
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
l2->l4
t₄₉
η (X₄) = X₃₄+1
η (X₅) = M1
η (X₁₂) = O1
η (X₁₃) = P1
η (X₂₇) = X₁₁
η (X₂₈) = X₃₄
η (X₂₉) = 0
η (X₃₀) = X₁₁
η (X₃₁) = 0
η (X₃₂) = X₁₁
η (X₃₃) = X₁₁
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
l2->l4
t₅₀
η (X₄) = X₃₄+1
η (X₅) = M1
η (X₁₂) = O1
η (X₁₃) = P1
η (X₂₇) = X₁₁
η (X₂₈) = X₃₄
η (X₂₉) = 0
η (X₃₀) = X₁₁
η (X₃₁) = 0
η (X₃₂) = X₁₁
η (X₃₃) = X₁₁
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
l2->l4
t₅₁
η (X₄) = X₃₄+1
η (X₅) = M1
η (X₁₂) = O1
η (X₁₃) = P1
η (X₂₇) = X₁₁
η (X₂₈) = X₃₄
η (X₂₉) = 0
η (X₃₀) = X₁₁
η (X₃₁) = 0
η (X₃₂) = X₁₁
η (X₃₃) = X₁₁
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₁₁+1 ≤ 0 ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
l3
l3
l3->l2
t₃
η (X₄) = 1
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₁₇) = P1
η (X₁₈) = 1+X₃
η (X₁₉) = Q1
η (X₂₀) = X₃
τ = 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₁₃+1 ≤ 0 ∧ M1 ≤ R1 ∧ O1+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l3->l2
t₄
η (X₄) = 1
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₁₇) = P1
η (X₁₈) = 1+X₃
η (X₁₉) = Q1
η (X₂₀) = X₃
τ = 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₁₃+1 ≤ 0 ∧ M1 ≤ R1 ∧ 1 ≤ O1 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l3->l2
t₅
η (X₄) = 1
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₁₇) = P1
η (X₁₈) = 1+X₃
η (X₁₉) = Q1
η (X₂₀) = X₃
τ = 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₁₃ ∧ M1 ≤ R1 ∧ O1+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l3->l2
t₆
η (X₄) = 1
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₁₇) = P1
η (X₁₈) = 1+X₃
η (X₁₉) = Q1
η (X₂₀) = X₃
τ = 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₁₃ ∧ M1 ≤ R1 ∧ 1 ≤ O1 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l4->l4
t₃₃
η (X₅) = M1
η (X₁₁) = O1
η (X₁₇) = P1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
η (X₃₄) = X₃₄-1
η (X₃₅) = X₃₄-1
τ = X₂₇+1 ≤ Q1 ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l4->l4
t₃₄
η (X₅) = M1
η (X₁₁) = O1
η (X₁₇) = P1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
η (X₃₄) = X₃₄-1
η (X₃₅) = X₃₄-1
τ = X₂₇+1 ≤ Q1 ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l4->l4
t₃₅
η (X₅) = M1
η (X₁₁) = O1
η (X₁₇) = P1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
η (X₃₄) = X₃₄-1
η (X₃₅) = X₃₄-1
τ = X₂₇+1 ≤ Q1 ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l4->l4
t₃₆
η (X₅) = M1
η (X₁₁) = O1
η (X₁₇) = P1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
η (X₃₄) = X₃₄-1
η (X₃₅) = X₃₄-1
τ = X₂₇+1 ≤ Q1 ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l4->l4
t₃₇
η (X₅) = M1
η (X₁₁) = O1
η (X₁₇) = P1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
η (X₃₄) = X₃₄-1
η (X₃₅) = X₃₄-1
τ = Q1+1 ≤ X₂₇ ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l4->l4
t₃₈
η (X₅) = M1
η (X₁₁) = O1
η (X₁₇) = P1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
η (X₃₄) = X₃₄-1
η (X₃₅) = X₃₄-1
τ = Q1+1 ≤ X₂₇ ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l4->l4
t₃₉
η (X₅) = M1
η (X₁₁) = O1
η (X₁₇) = P1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
η (X₃₄) = X₃₄-1
η (X₃₅) = X₃₄-1
τ = Q1+1 ≤ X₂₇ ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l4->l4
t₄₀
η (X₅) = M1
η (X₁₁) = O1
η (X₁₇) = P1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
η (X₃₄) = X₃₄-1
η (X₃₅) = X₃₄-1
τ = Q1+1 ≤ X₂₇ ∧ 0 ≤ X₃₄ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l4->l6
t₄₁
η (X₅) = M1
η (X₇) = O1
η (X₂₇) = T1
η (X₂₉) = S1
η (X₃₀) = P1
η (X₃₁) = Q1
η (X₃₂) = R1
η (X₃₃) = U1
τ = 2 ≤ M1 ∧ 0 ≤ X₃₄ ∧ X₂₉ ≤ X₂₇ ∧ X₂₇ ≤ X₂₉
l5
l5
l5->l2
t₇
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₂₁) = P1
η (X₂₂) = Q1
τ = 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ X₁₃+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0
l5->l2
t₈
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₂₁) = P1
η (X₂₂) = Q1
τ = 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ X₁₃+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1
l5->l2
t₉
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₂₁) = P1
η (X₂₂) = Q1
τ = 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ X₁₃+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0
l5->l2
t₁₀
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₂₁) = P1
η (X₂₂) = Q1
τ = 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ X₁₃+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1
l5->l2
t₁₁
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₂₁) = P1
η (X₂₂) = Q1
τ = 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₁₃ ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0
l5->l2
t₁₂
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₂₁) = P1
η (X₂₂) = Q1
τ = 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₁₃ ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1
l5->l2
t₁₃
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₂₁) = P1
η (X₂₂) = Q1
τ = 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₁₃ ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0
l5->l2
t₁₄
η (X₅) = M1
η (X₁₁) = O1
η (X₁₂) = O1
η (X₂₁) = P1
η (X₂₂) = Q1
τ = 0 ≤ X₂₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₁₃ ∧ 1 ≤ O1 ∧ 1 ≤ Q1
l5->l4
t₄₄
η (X₄) = X₃₄+1
η (X₅) = M1
η (X₁₂) = O1
η (X₁₃) = P1
η (X₂₇) = X₁₁
η (X₂₈) = X₃₄
η (X₂₉) = 0
η (X₃₀) = X₁₁
η (X₃₁) = 0
η (X₃₂) = X₁₁
η (X₃₃) = X₁₁
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₂₀ ∧ 1 ≤ X₁₁ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l5->l4
t₄₅
η (X₄) = X₃₄+1
η (X₅) = M1
η (X₁₂) = O1
η (X₁₃) = P1
η (X₂₇) = X₁₁
η (X₂₈) = X₃₄
η (X₂₉) = 0
η (X₃₀) = X₁₁
η (X₃₁) = 0
η (X₃₂) = X₁₁
η (X₃₃) = X₁₁
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₂₀ ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l5->l4
t₄₆
η (X₄) = X₃₄+1
η (X₅) = M1
η (X₁₂) = O1
η (X₁₃) = P1
η (X₂₇) = X₁₁
η (X₂₈) = X₃₄
η (X₂₉) = 0
η (X₃₀) = X₁₁
η (X₃₁) = 0
η (X₃₂) = X₁₁
η (X₃₃) = X₁₁
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₂₀ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l5->l4
t₄₇
η (X₄) = X₃₄+1
η (X₅) = M1
η (X₁₂) = O1
η (X₁₃) = P1
η (X₂₇) = X₁₁
η (X₂₈) = X₃₄
η (X₂₉) = 0
η (X₃₀) = X₁₁
η (X₃₁) = 0
η (X₃₂) = X₁₁
η (X₃₃) = X₁₁
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₂₀ ∧ X₁₁+1 ≤ 0 ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l7
l7
l7->l4
t₂₃
η (X₅) = M1
η (X₁₁) = O1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
τ = X₂₇+1 ≤ P1 ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ P1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l7->l4
t₂₄
η (X₅) = M1
η (X₁₁) = O1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
τ = X₂₇+1 ≤ P1 ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ P1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l7->l4
t₂₅
η (X₅) = M1
η (X₁₁) = O1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
τ = X₂₇+1 ≤ P1 ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ O1+1 ≤ P1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l7->l4
t₂₆
η (X₅) = M1
η (X₁₁) = O1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
τ = X₂₇+1 ≤ P1 ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ O1+1 ≤ P1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l7->l4
t₂₇
η (X₅) = M1
η (X₁₁) = O1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
τ = P1+1 ≤ X₂₇ ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ P1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l7->l4
t₂₈
η (X₅) = M1
η (X₁₁) = O1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
τ = P1+1 ≤ X₂₇ ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ P1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l7->l4
t₂₉
η (X₅) = M1
η (X₁₁) = O1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
τ = P1+1 ≤ X₂₇ ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ O1+1 ≤ P1 ∧ O1+1 ≤ 0 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l7->l4
t₃₀
η (X₅) = M1
η (X₁₁) = O1
η (X₂₉) = 0
η (X₃₀) = O1
η (X₃₁) = 0
η (X₃₂) = O1
η (X₃₃) = X₂₇
τ = P1+1 ≤ X₂₇ ∧ 0 ≤ X₂₈ ∧ 2 ≤ M1 ∧ O1+1 ≤ P1 ∧ 1 ≤ O1 ∧ X₂₉ ≤ 0 ∧ 0 ≤ X₂₉
l7->l6
t₃₁
η (X₅) = M1
η (X₇) = O1
η (X₁₁) = P1
η (X₂₇) = U1
η (X₂₉) = T1
η (X₃₀) = Q1
η (X₃₁) = R1
η (X₃₂) = S1
η (X₃₃) = N1
τ = 0 ≤ X₂₈ ∧ P1+1 ≤ 0 ∧ 2 ≤ M1 ∧ X₂₉ ≤ X₂₇ ∧ X₂₇ ≤ X₂₉
l7->l6
t₃₂
η (X₅) = M1
η (X₇) = O1
η (X₁₁) = P1
η (X₂₇) = U1
η (X₂₉) = T1
η (X₃₀) = Q1
η (X₃₁) = R1
η (X₃₂) = S1
η (X₃₃) = N1
τ = 0 ≤ X₂₈ ∧ 1 ≤ P1 ∧ 2 ≤ M1 ∧ X₂₉ ≤ X₂₇ ∧ X₂₇ ≤ X₂₉
Preprocessing
Cut unreachable locations [l3; l5; l7] from the program graph
Cut unsatisfiable transition t₄₈: l2→l4
Cut unsatisfiable transition t₅₁: l2→l4
Eliminate variables {B2,C2,D2,G2,Z1,X₅,X₆,X₇,X₈,X₉,X₁₂,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆,X₂₈,X₃₀,X₃₁,X₃₂,X₃₃,X₃₅,X₃₆,X₃₇} that do not contribute to the problem
Found invariant 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l2
Found invariant 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ for location l1
Found invariant X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: A2, E2, F2, M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, X1, Y1
Locations: l0, l1, l2, l4, l6
Transitions:
t₁₀₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(2, O1, P1, X₃, X₄, Q1, X₆, X₇, X₈, X₉, X₁₀) :|: 2 ≤ O1
t₁₀₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(R1, P1, Q1, X₃, X₄, Y1, 0, A2, F2, E2, X₁₀) :|: V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
t₁₀₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(1+X₀, X₁, X₅, X₃, X₄, M1, X₆, X₇, X₈, X₉, X₁₀) :|: X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
t₁₀₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₃, O1, P1, X₃, 0, U1, X₂, X₂, X₈, X₉, X₁₀) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
t₁₀₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₃, O1, P1, X₃, 0, U1, X₂, X₂, X₈, X₉, X₁₀) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
t₁₀₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, O1, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₀₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, O1, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₀₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, O1, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₀₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, O1, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, O1, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, O1, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, O1, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, O1, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₁₀+1, X₅, X₆, P1, X₆, 0, X₁₀) :|: 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₁₀+1, X₅, X₆, P1, X₆, 0, X₁₀) :|: 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₁₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₂₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, T1, S1, X₁₀) :|: 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₁) = O1
η (X₂) = P1
η (X₅) = Q1
τ = 2 ≤ O1
l6
l6
l0->l6
t₁₀₂
η (X₀) = R1
η (X₁) = P1
η (X₂) = Q1
η (X₅) = Y1
η (X₆) = 0
η (X₇) = A2
η (X₈) = F2
η (X₉) = E2
τ = V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = M1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l6
t₁₂₄
η (X₈) = T1
η (X₉) = S1
τ = 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
Analysing control-flow refined program
Found invariant 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l2
Found invariant 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l1
Found invariant X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l4
Found invariant 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location n_l1___1
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
TWN: t₁₀₆: l2→l2
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₁) = O1
η (X₂) = P1
η (X₅) = Q1
τ = 2 ≤ O1
l6
l6
l0->l6
t₁₀₂
η (X₀) = R1
η (X₁) = P1
η (X₂) = Q1
η (X₅) = Y1
η (X₆) = 0
η (X₇) = A2
η (X₈) = F2
η (X₉) = E2
τ = V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = M1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l6
t₁₂₄
η (X₈) = T1
η (X₉) = S1
τ = 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
cycle: [t₁₀₆: l2→l2; t₁₀₇: l2→l2; t₁₀₈: l2→l2; t₁₀₉: l2→l2; t₁₁₀: l2→l2; t₁₁₁: l2→l2; t₁₁₂: l2→l2; t₁₁₃: l2→l2]
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₆: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₀₇: l2→l2
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₇: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₀₈: l2→l2
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₈: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₀₉: l2→l2
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₀₉: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₁₀: l2→l2
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₀: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₁₁: l2→l2
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₁: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₁₂: l2→l2
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₂: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₁₃: l2→l2
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₅:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₅: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₁₃: l2→l2 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₀₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
MPRF for transition t₁₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₁) = O1
η (X₂) = P1
η (X₅) = Q1
τ = 2 ≤ O1
l6
l6
l0->l6
t₁₀₂
η (X₀) = R1
η (X₁) = P1
η (X₂) = Q1
η (X₅) = Y1
η (X₆) = 0
η (X₇) = A2
η (X₈) = F2
η (X₉) = E2
τ = V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = M1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l6
t₁₂₄
η (X₈) = T1
η (X₉) = S1
τ = 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
MPRF for transition t₁₁₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₁) = O1
η (X₂) = P1
η (X₅) = Q1
τ = 2 ≤ O1
l6
l6
l0->l6
t₁₀₂
η (X₀) = R1
η (X₁) = P1
η (X₂) = Q1
η (X₅) = Y1
η (X₆) = 0
η (X₇) = A2
η (X₈) = F2
η (X₉) = E2
τ = V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = M1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l6
t₁₂₄
η (X₈) = T1
η (X₉) = S1
τ = 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
MPRF for transition t₁₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₁) = O1
η (X₂) = P1
η (X₅) = Q1
τ = 2 ≤ O1
l6
l6
l0->l6
t₁₀₂
η (X₀) = R1
η (X₁) = P1
η (X₂) = Q1
η (X₅) = Y1
η (X₆) = 0
η (X₇) = A2
η (X₈) = F2
η (X₉) = E2
τ = V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = M1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l6
t₁₂₄
η (X₈) = T1
η (X₉) = S1
τ = 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
MPRF for transition t₁₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₁) = O1
η (X₂) = P1
η (X₅) = Q1
τ = 2 ≤ O1
l6
l6
l0->l6
t₁₀₂
η (X₀) = R1
η (X₁) = P1
η (X₂) = Q1
η (X₅) = Y1
η (X₆) = 0
η (X₇) = A2
η (X₈) = F2
η (X₉) = E2
τ = V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = M1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l6
t₁₂₄
η (X₈) = T1
η (X₉) = S1
τ = 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
MPRF for transition t₁₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₁) = O1
η (X₂) = P1
η (X₅) = Q1
τ = 2 ≤ O1
l6
l6
l0->l6
t₁₀₂
η (X₀) = R1
η (X₁) = P1
η (X₂) = Q1
η (X₅) = Y1
η (X₆) = 0
η (X₇) = A2
η (X₈) = F2
η (X₉) = E2
τ = V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = M1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l6
t₁₂₄
η (X₈) = T1
η (X₉) = S1
τ = 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
MPRF for transition t₁₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₁) = O1
η (X₂) = P1
η (X₅) = Q1
τ = 2 ≤ O1
l6
l6
l0->l6
t₁₀₂
η (X₀) = R1
η (X₁) = P1
η (X₂) = Q1
η (X₅) = Y1
η (X₆) = 0
η (X₇) = A2
η (X₈) = F2
η (X₉) = E2
τ = V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = M1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l6
t₁₂₄
η (X₈) = T1
η (X₉) = S1
τ = 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
MPRF for transition t₁₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₁) = O1
η (X₂) = P1
η (X₅) = Q1
τ = 2 ≤ O1
l6
l6
l0->l6
t₁₀₂
η (X₀) = R1
η (X₁) = P1
η (X₂) = Q1
η (X₅) = Y1
η (X₆) = 0
η (X₇) = A2
η (X₈) = F2
η (X₉) = E2
τ = V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = M1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l6
t₁₂₄
η (X₈) = T1
η (X₉) = S1
τ = 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
MPRF for transition t₁₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, O1, X₇, X₈, 0, X₁₀-1) :|: Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
32⋅X₁₀+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₀₁
η (X₀) = 2
η (X₁) = O1
η (X₂) = P1
η (X₅) = Q1
τ = 2 ≤ O1
l6
l6
l0->l6
t₁₀₂
η (X₀) = R1
η (X₁) = P1
η (X₂) = Q1
η (X₅) = Y1
η (X₆) = 0
η (X₇) = A2
η (X₈) = F2
η (X₉) = E2
τ = V1 ≤ 0 ∧ W1 ≤ 0 ∧ O1 ≤ 0 ∧ X1 ≤ 0
l1->l1
t₁₀₃
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = M1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₀₄
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ X₂+1 ≤ 0 ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l1->l2
t₁₀₅
η (X₀) = X₃
η (X₁) = O1
η (X₂) = P1
η (X₄) = 0
η (X₅) = U1
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ M1 ∧ 1 ≤ X₂ ∧ M1 ≤ N1 ∧ M1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l2->l2
t₁₀₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₀₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ R1+1 ≤ 0 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ O1+1 ≤ 0 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ Q1+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₃
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = O1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ M1 ∧ 1 ≤ R1 ∧ 1 ≤ O1 ∧ 1 ≤ Q1 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4
l4
l2->l4
t₁₁₄
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l4
t₁₁₅
η (X₄) = X₁₀+1
η (X₇) = P1
η (X₈) = X₆
η (X₉) = 0
τ = 2 ≤ Q1 ∧ 2 ≤ M1 ∧ 0 ≤ X₃ ∧ 0 ≤ X₄ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₆
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₇
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₈
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₁₉
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = X₈+1 ≤ Q1 ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₀
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₁
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ Q1+1 ≤ O1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₂
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ O1+1 ≤ 0 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₂₃
η (X₆) = O1
η (X₉) = 0
η (X₁₀) = X₁₀-1
τ = Q1+1 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 2 ≤ M1 ∧ O1+1 ≤ Q1 ∧ 1 ≤ O1 ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l6
t₁₂₄
η (X₈) = T1
η (X₉) = S1
τ = 2 ≤ M1 ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₉ ∧ X₉ ≤ 0 ∧ X₉ ≤ X₃ ∧ 2+X₉ ≤ X₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₁₀ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₁₀₁: 1 {O(1)}
t₁₀₂: 1 {O(1)}
t₁₀₃: inf {Infinity}
t₁₀₄: 1 {O(1)}
t₁₀₅: 1 {O(1)}
t₁₀₆: 64⋅X₃+96 {O(n)}
t₁₀₇: 64⋅X₃+96 {O(n)}
t₁₀₈: 64⋅X₃+96 {O(n)}
t₁₀₉: 64⋅X₃+96 {O(n)}
t₁₁₀: 64⋅X₃+96 {O(n)}
t₁₁₁: 64⋅X₃+96 {O(n)}
t₁₁₂: 64⋅X₃+96 {O(n)}
t₁₁₃: 64⋅X₃+96 {O(n)}
t₁₁₄: 1 {O(1)}
t₁₁₅: 1 {O(1)}
t₁₁₆: 32⋅X₁₀+2 {O(n)}
t₁₁₇: 32⋅X₁₀+2 {O(n)}
t₁₁₈: 32⋅X₁₀+2 {O(n)}
t₁₁₉: 32⋅X₁₀+2 {O(n)}
t₁₂₀: 32⋅X₁₀+2 {O(n)}
t₁₂₁: 32⋅X₁₀+2 {O(n)}
t₁₂₂: 32⋅X₁₀+2 {O(n)}
t₁₂₃: 32⋅X₁₀+2 {O(n)}
t₁₂₄: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
t₁₀₁: 1 {O(1)}
t₁₀₂: 1 {O(1)}
t₁₀₃: inf {Infinity}
t₁₀₄: 1 {O(1)}
t₁₀₅: 1 {O(1)}
t₁₀₆: 64⋅X₃+96 {O(n)}
t₁₀₇: 64⋅X₃+96 {O(n)}
t₁₀₈: 64⋅X₃+96 {O(n)}
t₁₀₉: 64⋅X₃+96 {O(n)}
t₁₁₀: 64⋅X₃+96 {O(n)}
t₁₁₁: 64⋅X₃+96 {O(n)}
t₁₁₂: 64⋅X₃+96 {O(n)}
t₁₁₃: 64⋅X₃+96 {O(n)}
t₁₁₄: 1 {O(1)}
t₁₁₅: 1 {O(1)}
t₁₁₆: 32⋅X₁₀+2 {O(n)}
t₁₁₇: 32⋅X₁₀+2 {O(n)}
t₁₁₈: 32⋅X₁₀+2 {O(n)}
t₁₁₉: 32⋅X₁₀+2 {O(n)}
t₁₂₀: 32⋅X₁₀+2 {O(n)}
t₁₂₁: 32⋅X₁₀+2 {O(n)}
t₁₂₂: 32⋅X₁₀+2 {O(n)}
t₁₂₃: 32⋅X₁₀+2 {O(n)}
t₁₂₄: 1 {O(1)}
Sizebounds
t₁₀₁, X₀: 2 {O(1)}
t₁₀₁, X₃: X₃ {O(n)}
t₁₀₁, X₄: X₄ {O(n)}
t₁₀₁, X₆: X₆ {O(n)}
t₁₀₁, X₇: X₇ {O(n)}
t₁₀₁, X₈: X₈ {O(n)}
t₁₀₁, X₉: X₉ {O(n)}
t₁₀₁, X₁₀: X₁₀ {O(n)}
t₁₀₂, X₃: X₃ {O(n)}
t₁₀₂, X₄: X₄ {O(n)}
t₁₀₂, X₆: 0 {O(1)}
t₁₀₂, X₁₀: X₁₀ {O(n)}
t₁₀₃, X₃: X₃ {O(n)}
t₁₀₃, X₄: X₄ {O(n)}
t₁₀₃, X₆: X₆ {O(n)}
t₁₀₃, X₇: X₇ {O(n)}
t₁₀₃, X₈: X₈ {O(n)}
t₁₀₃, X₉: X₉ {O(n)}
t₁₀₃, X₁₀: X₁₀ {O(n)}
t₁₀₄, X₀: 2⋅X₃ {O(n)}
t₁₀₄, X₃: 2⋅X₃ {O(n)}
t₁₀₄, X₄: 0 {O(1)}
t₁₀₄, X₈: 2⋅X₈ {O(n)}
t₁₀₄, X₉: 2⋅X₉ {O(n)}
t₁₀₄, X₁₀: 2⋅X₁₀ {O(n)}
t₁₀₅, X₀: 2⋅X₃ {O(n)}
t₁₀₅, X₃: 2⋅X₃ {O(n)}
t₁₀₅, X₄: 0 {O(1)}
t₁₀₅, X₈: 2⋅X₈ {O(n)}
t₁₀₅, X₉: 2⋅X₉ {O(n)}
t₁₀₅, X₁₀: 2⋅X₁₀ {O(n)}
t₁₀₆, X₀: 4⋅X₃ {O(n)}
t₁₀₆, X₃: 4⋅X₃+1 {O(n)}
t₁₀₆, X₄: 512⋅X₃+768 {O(n)}
t₁₀₆, X₈: 4⋅X₈ {O(n)}
t₁₀₆, X₉: 4⋅X₉ {O(n)}
t₁₀₆, X₁₀: 4⋅X₁₀ {O(n)}
t₁₀₇, X₀: 4⋅X₃ {O(n)}
t₁₀₇, X₃: 4⋅X₃+1 {O(n)}
t₁₀₇, X₄: 512⋅X₃+768 {O(n)}
t₁₀₇, X₈: 4⋅X₈ {O(n)}
t₁₀₇, X₉: 4⋅X₉ {O(n)}
t₁₀₇, X₁₀: 4⋅X₁₀ {O(n)}
t₁₀₈, X₀: 4⋅X₃ {O(n)}
t₁₀₈, X₃: 4⋅X₃+1 {O(n)}
t₁₀₈, X₄: 512⋅X₃+768 {O(n)}
t₁₀₈, X₈: 4⋅X₈ {O(n)}
t₁₀₈, X₉: 4⋅X₉ {O(n)}
t₁₀₈, X₁₀: 4⋅X₁₀ {O(n)}
t₁₀₉, X₀: 4⋅X₃ {O(n)}
t₁₀₉, X₃: 4⋅X₃+1 {O(n)}
t₁₀₉, X₄: 512⋅X₃+768 {O(n)}
t₁₀₉, X₈: 4⋅X₈ {O(n)}
t₁₀₉, X₉: 4⋅X₉ {O(n)}
t₁₀₉, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₀, X₀: 4⋅X₃ {O(n)}
t₁₁₀, X₃: 4⋅X₃+1 {O(n)}
t₁₁₀, X₄: 512⋅X₃+768 {O(n)}
t₁₁₀, X₈: 4⋅X₈ {O(n)}
t₁₁₀, X₉: 4⋅X₉ {O(n)}
t₁₁₀, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₁, X₀: 4⋅X₃ {O(n)}
t₁₁₁, X₃: 4⋅X₃+1 {O(n)}
t₁₁₁, X₄: 512⋅X₃+768 {O(n)}
t₁₁₁, X₈: 4⋅X₈ {O(n)}
t₁₁₁, X₉: 4⋅X₉ {O(n)}
t₁₁₁, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₂, X₀: 4⋅X₃ {O(n)}
t₁₁₂, X₃: 4⋅X₃+1 {O(n)}
t₁₁₂, X₄: 512⋅X₃+768 {O(n)}
t₁₁₂, X₈: 4⋅X₈ {O(n)}
t₁₁₂, X₉: 4⋅X₉ {O(n)}
t₁₁₂, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₃, X₀: 4⋅X₃ {O(n)}
t₁₁₃, X₃: 4⋅X₃+1 {O(n)}
t₁₁₃, X₄: 512⋅X₃+768 {O(n)}
t₁₁₃, X₈: 4⋅X₈ {O(n)}
t₁₁₃, X₉: 4⋅X₉ {O(n)}
t₁₁₃, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₄, X₀: 16⋅X₃ {O(n)}
t₁₁₄, X₃: 16⋅X₃+4 {O(n)}
t₁₁₄, X₄: 16⋅X₁₀+4 {O(n)}
t₁₁₄, X₉: 0 {O(1)}
t₁₁₄, X₁₀: 16⋅X₁₀ {O(n)}
t₁₁₅, X₀: 16⋅X₃ {O(n)}
t₁₁₅, X₃: 16⋅X₃+4 {O(n)}
t₁₁₅, X₄: 16⋅X₁₀+4 {O(n)}
t₁₁₅, X₉: 0 {O(1)}
t₁₁₅, X₁₀: 16⋅X₁₀ {O(n)}
t₁₁₆, X₀: 32⋅X₃ {O(n)}
t₁₁₆, X₃: 32⋅X₃+8 {O(n)}
t₁₁₆, X₄: 32⋅X₁₀+8 {O(n)}
t₁₁₆, X₉: 0 {O(1)}
t₁₁₆, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₁₇, X₀: 32⋅X₃ {O(n)}
t₁₁₇, X₃: 32⋅X₃+8 {O(n)}
t₁₁₇, X₄: 32⋅X₁₀+8 {O(n)}
t₁₁₇, X₉: 0 {O(1)}
t₁₁₇, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₁₈, X₀: 32⋅X₃ {O(n)}
t₁₁₈, X₃: 32⋅X₃+8 {O(n)}
t₁₁₈, X₄: 32⋅X₁₀+8 {O(n)}
t₁₁₈, X₉: 0 {O(1)}
t₁₁₈, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₁₉, X₀: 32⋅X₃ {O(n)}
t₁₁₉, X₃: 32⋅X₃+8 {O(n)}
t₁₁₉, X₄: 32⋅X₁₀+8 {O(n)}
t₁₁₉, X₉: 0 {O(1)}
t₁₁₉, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₂₀, X₀: 32⋅X₃ {O(n)}
t₁₂₀, X₃: 32⋅X₃+8 {O(n)}
t₁₂₀, X₄: 32⋅X₁₀+8 {O(n)}
t₁₂₀, X₉: 0 {O(1)}
t₁₂₀, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₂₁, X₀: 32⋅X₃ {O(n)}
t₁₂₁, X₃: 32⋅X₃+8 {O(n)}
t₁₂₁, X₄: 32⋅X₁₀+8 {O(n)}
t₁₂₁, X₉: 0 {O(1)}
t₁₂₁, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₂₂, X₀: 32⋅X₃ {O(n)}
t₁₂₂, X₃: 32⋅X₃+8 {O(n)}
t₁₂₂, X₄: 32⋅X₁₀+8 {O(n)}
t₁₂₂, X₉: 0 {O(1)}
t₁₂₂, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₂₃, X₀: 32⋅X₃ {O(n)}
t₁₂₃, X₃: 32⋅X₃+8 {O(n)}
t₁₂₃, X₄: 32⋅X₁₀+8 {O(n)}
t₁₂₃, X₉: 0 {O(1)}
t₁₂₃, X₁₀: 32⋅X₁₀+1 {O(n)}
t₁₂₄, X₀: 192⋅X₃ {O(n)}
t₁₂₄, X₃: 192⋅X₃+48 {O(n)}
t₁₂₄, X₄: 192⋅X₁₀+48 {O(n)}
t₁₂₄, X₁₀: 192⋅X₁₀+6 {O(n)}